Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.1
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include "compat.h"
 
  44#include "delayed-inode.h"
  45#include "ctree.h"
  46#include "disk-io.h"
  47#include "transaction.h"
  48#include "btrfs_inode.h"
  49#include "ioctl.h"
  50#include "print-tree.h"
 
 
  51#include "xattr.h"
  52#include "volumes.h"
  53#include "version.h"
  54#include "export.h"
  55#include "compression.h"
 
 
 
 
 
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/btrfs.h>
  59
  60static const struct super_operations btrfs_super_ops;
 
  61
  62static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
  63				      char nbuf[16])
 
  64{
  65	char *errstr = NULL;
  66
  67	switch (errno) {
  68	case -EIO:
  69		errstr = "IO failure";
  70		break;
  71	case -ENOMEM:
  72		errstr = "Out of memory";
  73		break;
  74	case -EROFS:
  75		errstr = "Readonly filesystem";
  76		break;
  77	default:
  78		if (nbuf) {
  79			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
  80				errstr = nbuf;
  81		}
 
 
 
  82		break;
  83	}
  84
  85	return errstr;
  86}
  87
  88static void __save_error_info(struct btrfs_fs_info *fs_info)
  89{
  90	/*
  91	 * today we only save the error info into ram.  Long term we'll
  92	 * also send it down to the disk
  93	 */
  94	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
  95}
  96
  97/* NOTE:
  98 *	We move write_super stuff at umount in order to avoid deadlock
  99 *	for umount hold all lock.
 100 */
 101static void save_error_info(struct btrfs_fs_info *fs_info)
 102{
 103	__save_error_info(fs_info);
 104}
 105
 106/* btrfs handle error by forcing the filesystem readonly */
 107static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 108{
 109	struct super_block *sb = fs_info->sb;
 110
 111	if (sb->s_flags & MS_RDONLY)
 112		return;
 113
 114	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
 115		sb->s_flags |= MS_RDONLY;
 116		printk(KERN_INFO "btrfs is forced readonly\n");
 
 
 
 
 
 
 
 
 
 
 117	}
 118}
 119
 
 120/*
 121 * __btrfs_std_error decodes expected errors from the caller and
 122 * invokes the approciate error response.
 123 */
 124void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 125		     unsigned int line, int errno)
 126{
 127	struct super_block *sb = fs_info->sb;
 128	char nbuf[16];
 129	const char *errstr;
 130
 131	/*
 132	 * Special case: if the error is EROFS, and we're already
 133	 * under MS_RDONLY, then it is safe here.
 134	 */
 135	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 136		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137
 138	errstr = btrfs_decode_error(fs_info, errno, nbuf);
 139	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
 140		sb->s_id, function, line, errstr);
 141	save_error_info(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 142
 143	btrfs_handle_error(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144}
 145
 146static void btrfs_put_super(struct super_block *sb)
 
 
 
 147{
 148	struct btrfs_root *root = btrfs_sb(sb);
 149	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150
 151	ret = close_ctree(root);
 152	sb->s_fs_info = NULL;
 153
 154	(void)ret; /* FIXME: need to fix VFS to return error? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155}
 156
 157enum {
 158	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 159	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 160	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 161	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 162	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 163	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
 164	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
 165	Opt_inode_cache, Opt_err,
 
 
 
 
 
 
 166};
 167
 168static match_table_t tokens = {
 169	{Opt_degraded, "degraded"},
 170	{Opt_subvol, "subvol=%s"},
 171	{Opt_subvolid, "subvolid=%d"},
 172	{Opt_device, "device=%s"},
 173	{Opt_nodatasum, "nodatasum"},
 
 174	{Opt_nodatacow, "nodatacow"},
 
 175	{Opt_nobarrier, "nobarrier"},
 
 176	{Opt_max_inline, "max_inline=%s"},
 177	{Opt_alloc_start, "alloc_start=%s"},
 178	{Opt_thread_pool, "thread_pool=%d"},
 179	{Opt_compress, "compress"},
 180	{Opt_compress_type, "compress=%s"},
 181	{Opt_compress_force, "compress-force"},
 182	{Opt_compress_force_type, "compress-force=%s"},
 183	{Opt_ssd, "ssd"},
 184	{Opt_ssd_spread, "ssd_spread"},
 185	{Opt_nossd, "nossd"},
 
 186	{Opt_noacl, "noacl"},
 187	{Opt_notreelog, "notreelog"},
 
 188	{Opt_flushoncommit, "flushoncommit"},
 
 189	{Opt_ratio, "metadata_ratio=%d"},
 190	{Opt_discard, "discard"},
 
 191	{Opt_space_cache, "space_cache"},
 192	{Opt_clear_cache, "clear_cache"},
 193	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 194	{Opt_enospc_debug, "enospc_debug"},
 
 195	{Opt_subvolrootid, "subvolrootid=%d"},
 196	{Opt_defrag, "autodefrag"},
 
 197	{Opt_inode_cache, "inode_cache"},
 
 
 
 
 
 
 
 
 
 
 198	{Opt_err, NULL},
 199};
 200
 201/*
 202 * Regular mount options parser.  Everything that is needed only when
 203 * reading in a new superblock is parsed here.
 
 204 */
 205int btrfs_parse_options(struct btrfs_root *root, char *options)
 206{
 207	struct btrfs_fs_info *info = root->fs_info;
 208	substring_t args[MAX_OPT_ARGS];
 209	char *p, *num, *orig;
 
 210	int intarg;
 211	int ret = 0;
 212	char *compress_type;
 213	bool compress_force = false;
 
 
 
 
 
 214
 215	if (!options)
 216		return 0;
 217
 218	/*
 219	 * strsep changes the string, duplicate it because parse_options
 220	 * gets called twice
 221	 */
 222	options = kstrdup(options, GFP_NOFS);
 223	if (!options)
 224		return -ENOMEM;
 225
 226	orig = options;
 227
 228	while ((p = strsep(&options, ",")) != NULL) {
 229		int token;
 230		if (!*p)
 231			continue;
 232
 233		token = match_token(p, tokens, args);
 234		switch (token) {
 235		case Opt_degraded:
 236			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
 237			btrfs_set_opt(info->mount_opt, DEGRADED);
 238			break;
 239		case Opt_subvol:
 240		case Opt_subvolid:
 241		case Opt_subvolrootid:
 242		case Opt_device:
 243			/*
 244			 * These are parsed by btrfs_parse_early_options
 245			 * and can be happily ignored here.
 246			 */
 247			break;
 248		case Opt_nodatasum:
 249			printk(KERN_INFO "btrfs: setting nodatasum\n");
 250			btrfs_set_opt(info->mount_opt, NODATASUM);
 
 
 
 
 
 
 
 
 
 
 251			break;
 252		case Opt_nodatacow:
 253			printk(KERN_INFO "btrfs: setting nodatacow\n");
 
 
 
 
 
 
 
 
 
 
 254			btrfs_set_opt(info->mount_opt, NODATACOW);
 255			btrfs_set_opt(info->mount_opt, NODATASUM);
 256			break;
 
 
 
 
 257		case Opt_compress_force:
 258		case Opt_compress_force_type:
 259			compress_force = true;
 
 260		case Opt_compress:
 261		case Opt_compress_type:
 
 262			if (token == Opt_compress ||
 263			    token == Opt_compress_force ||
 264			    strcmp(args[0].from, "zlib") == 0) {
 265				compress_type = "zlib";
 266				info->compress_type = BTRFS_COMPRESS_ZLIB;
 
 
 
 267			} else if (strcmp(args[0].from, "lzo") == 0) {
 268				compress_type = "lzo";
 269				info->compress_type = BTRFS_COMPRESS_LZO;
 
 
 
 
 
 
 
 
 
 270			} else {
 271				ret = -EINVAL;
 272				goto out;
 273			}
 274
 275			btrfs_set_opt(info->mount_opt, COMPRESS);
 276			if (compress_force) {
 277				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 278				pr_info("btrfs: force %s compression\n",
 279					compress_type);
 280			} else
 281				pr_info("btrfs: use %s compression\n",
 282					compress_type);
 
 
 
 283			break;
 284		case Opt_ssd:
 285			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
 286			btrfs_set_opt(info->mount_opt, SSD);
 287			break;
 288		case Opt_ssd_spread:
 289			printk(KERN_INFO "btrfs: use spread ssd "
 290			       "allocation scheme\n");
 291			btrfs_set_opt(info->mount_opt, SSD);
 292			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
 293			break;
 294		case Opt_nossd:
 295			printk(KERN_INFO "btrfs: not using ssd allocation "
 296			       "scheme\n");
 297			btrfs_set_opt(info->mount_opt, NOSSD);
 298			btrfs_clear_opt(info->mount_opt, SSD);
 299			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
 
 
 
 300			break;
 301		case Opt_nobarrier:
 302			printk(KERN_INFO "btrfs: turning off barriers\n");
 303			btrfs_set_opt(info->mount_opt, NOBARRIER);
 304			break;
 305		case Opt_thread_pool:
 306			intarg = 0;
 307			match_int(&args[0], &intarg);
 308			if (intarg) {
 
 309				info->thread_pool_size = intarg;
 310				printk(KERN_INFO "btrfs: thread pool %d\n",
 311				       info->thread_pool_size);
 
 312			}
 313			break;
 314		case Opt_max_inline:
 315			num = match_strdup(&args[0]);
 316			if (num) {
 317				info->max_inline = memparse(num, NULL);
 318				kfree(num);
 319
 320				if (info->max_inline) {
 321					info->max_inline = max_t(u64,
 322						info->max_inline,
 323						root->sectorsize);
 324				}
 325				printk(KERN_INFO "btrfs: max_inline at %llu\n",
 326					(unsigned long long)info->max_inline);
 
 
 
 327			}
 328			break;
 329		case Opt_alloc_start:
 330			num = match_strdup(&args[0]);
 331			if (num) {
 
 332				info->alloc_start = memparse(num, NULL);
 
 333				kfree(num);
 334				printk(KERN_INFO
 335					"btrfs: allocations start at %llu\n",
 336					(unsigned long long)info->alloc_start);
 
 
 337			}
 338			break;
 
 
 
 339		case Opt_noacl:
 340			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
 341			break;
 342		case Opt_notreelog:
 343			printk(KERN_INFO "btrfs: disabling tree log\n");
 344			btrfs_set_opt(info->mount_opt, NOTREELOG);
 
 
 
 
 345			break;
 346		case Opt_flushoncommit:
 347			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
 348			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
 
 
 
 
 349			break;
 350		case Opt_ratio:
 351			intarg = 0;
 352			match_int(&args[0], &intarg);
 353			if (intarg) {
 
 354				info->metadata_ratio = intarg;
 355				printk(KERN_INFO "btrfs: metadata ratio %d\n",
 356				       info->metadata_ratio);
 
 
 
 357			}
 358			break;
 359		case Opt_discard:
 360			btrfs_set_opt(info->mount_opt, DISCARD);
 
 
 
 
 
 361			break;
 362		case Opt_space_cache:
 363			printk(KERN_INFO "btrfs: enabling disk space caching\n");
 364			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 
 
 
 
 
 
 
 365			break;
 366		case Opt_inode_cache:
 367			printk(KERN_INFO "btrfs: enabling inode map caching\n");
 368			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
 
 
 
 
 369			break;
 370		case Opt_clear_cache:
 371			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
 372			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
 373			break;
 374		case Opt_user_subvol_rm_allowed:
 375			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 376			break;
 377		case Opt_enospc_debug:
 378			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 379			break;
 
 
 
 380		case Opt_defrag:
 381			printk(KERN_INFO "btrfs: enabling auto defrag");
 382			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383			break;
 384		case Opt_err:
 385			printk(KERN_INFO "btrfs: unrecognized mount option "
 386			       "'%s'\n", p);
 387			ret = -EINVAL;
 388			goto out;
 389		default:
 390			break;
 391		}
 392	}
 393out:
 
 
 394	kfree(orig);
 395	return ret;
 396}
 397
 398/*
 399 * Parse mount options that are required early in the mount process.
 400 *
 401 * All other options will be parsed on much later in the mount process and
 402 * only when we need to allocate a new super block.
 403 */
 404static int btrfs_parse_early_options(const char *options, fmode_t flags,
 405		void *holder, char **subvol_name, u64 *subvol_objectid,
 406		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
 407{
 408	substring_t args[MAX_OPT_ARGS];
 409	char *opts, *orig, *p;
 
 410	int error = 0;
 411	int intarg;
 412
 413	if (!options)
 414		goto out;
 415
 416	/*
 417	 * strsep changes the string, duplicate it because parse_options
 418	 * gets called twice
 419	 */
 420	opts = kstrdup(options, GFP_KERNEL);
 421	if (!opts)
 422		return -ENOMEM;
 423	orig = opts;
 424
 425	while ((p = strsep(&opts, ",")) != NULL) {
 426		int token;
 427		if (!*p)
 428			continue;
 429
 430		token = match_token(p, tokens, args);
 431		switch (token) {
 432		case Opt_subvol:
 
 433			*subvol_name = match_strdup(&args[0]);
 
 
 
 
 434			break;
 435		case Opt_subvolid:
 436			intarg = 0;
 437			error = match_int(&args[0], &intarg);
 438			if (!error) {
 
 439				/* we want the original fs_tree */
 440				if (!intarg)
 441					*subvol_objectid =
 442						BTRFS_FS_TREE_OBJECTID;
 443				else
 444					*subvol_objectid = intarg;
 
 445			}
 446			break;
 447		case Opt_subvolrootid:
 448			intarg = 0;
 449			error = match_int(&args[0], &intarg);
 450			if (!error) {
 451				/* we want the original fs_tree */
 452				if (!intarg)
 453					*subvol_rootid =
 454						BTRFS_FS_TREE_OBJECTID;
 455				else
 456					*subvol_rootid = intarg;
 457			}
 458			break;
 459		case Opt_device:
 460			error = btrfs_scan_one_device(match_strdup(&args[0]),
 
 
 
 
 
 461					flags, holder, fs_devices);
 
 462			if (error)
 463				goto out_free_opts;
 464			break;
 465		default:
 466			break;
 467		}
 468	}
 469
 470 out_free_opts:
 471	kfree(orig);
 472 out:
 473	/*
 474	 * If no subvolume name is specified we use the default one.  Allocate
 475	 * a copy of the string "." here so that code later in the
 476	 * mount path doesn't care if it's the default volume or another one.
 477	 */
 478	if (!*subvol_name) {
 479		*subvol_name = kstrdup(".", GFP_KERNEL);
 480		if (!*subvol_name)
 481			return -ENOMEM;
 482	}
 483	return error;
 484}
 485
 486static struct dentry *get_default_root(struct super_block *sb,
 487				       u64 subvol_objectid)
 488{
 489	struct btrfs_root *root = sb->s_fs_info;
 
 490	struct btrfs_root *new_root;
 491	struct btrfs_dir_item *di;
 492	struct btrfs_path *path;
 493	struct btrfs_key location;
 494	struct inode *inode;
 495	struct dentry *dentry;
 496	u64 dir_id;
 497	int new = 0;
 498
 499	/*
 500	 * We have a specific subvol we want to mount, just setup location and
 501	 * go look up the root.
 502	 */
 503	if (subvol_objectid) {
 504		location.objectid = subvol_objectid;
 505		location.type = BTRFS_ROOT_ITEM_KEY;
 506		location.offset = (u64)-1;
 507		goto find_root;
 508	}
 509
 510	path = btrfs_alloc_path();
 511	if (!path)
 512		return ERR_PTR(-ENOMEM);
 513	path->leave_spinning = 1;
 514
 515	/*
 516	 * Find the "default" dir item which points to the root item that we
 517	 * will mount by default if we haven't been given a specific subvolume
 518	 * to mount.
 519	 */
 520	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
 521	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
 522	if (IS_ERR(di)) {
 523		btrfs_free_path(path);
 524		return ERR_CAST(di);
 525	}
 526	if (!di) {
 527		/*
 528		 * Ok the default dir item isn't there.  This is weird since
 529		 * it's always been there, but don't freak out, just try and
 530		 * mount to root most subvolume.
 531		 */
 532		btrfs_free_path(path);
 533		dir_id = BTRFS_FIRST_FREE_OBJECTID;
 534		new_root = root->fs_info->fs_root;
 535		goto setup_root;
 536	}
 537
 538	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 539	btrfs_free_path(path);
 540
 541find_root:
 542	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
 543	if (IS_ERR(new_root))
 544		return ERR_CAST(new_root);
 545
 546	if (btrfs_root_refs(&new_root->root_item) == 0)
 547		return ERR_PTR(-ENOENT);
 548
 549	dir_id = btrfs_root_dirid(&new_root->root_item);
 550setup_root:
 551	location.objectid = dir_id;
 552	location.type = BTRFS_INODE_ITEM_KEY;
 553	location.offset = 0;
 554
 555	inode = btrfs_iget(sb, &location, new_root, &new);
 556	if (IS_ERR(inode))
 557		return ERR_CAST(inode);
 558
 559	/*
 560	 * If we're just mounting the root most subvol put the inode and return
 561	 * a reference to the dentry.  We will have already gotten a reference
 562	 * to the inode in btrfs_fill_super so we're good to go.
 563	 */
 564	if (!new && sb->s_root->d_inode == inode) {
 565		iput(inode);
 566		return dget(sb->s_root);
 567	}
 568
 569	if (new) {
 570		const struct qstr name = { .name = "/", .len = 1 };
 571
 572		/*
 573		 * New inode, we need to make the dentry a sibling of s_root so
 574		 * everything gets cleaned up properly on unmount.
 575		 */
 576		dentry = d_alloc(sb->s_root, &name);
 577		if (!dentry) {
 578			iput(inode);
 579			return ERR_PTR(-ENOMEM);
 580		}
 581		d_splice_alias(inode, dentry);
 582	} else {
 583		/*
 584		 * We found the inode in cache, just find a dentry for it and
 585		 * put the reference to the inode we just got.
 586		 */
 587		dentry = d_find_alias(inode);
 588		iput(inode);
 589	}
 590
 591	return dentry;
 592}
 593
 594static int btrfs_fill_super(struct super_block *sb,
 595			    struct btrfs_fs_devices *fs_devices,
 596			    void *data, int silent)
 597{
 598	struct inode *inode;
 599	struct dentry *root_dentry;
 600	struct btrfs_root *tree_root;
 601	struct btrfs_key key;
 602	int err;
 603
 604	sb->s_maxbytes = MAX_LFS_FILESIZE;
 605	sb->s_magic = BTRFS_SUPER_MAGIC;
 606	sb->s_op = &btrfs_super_ops;
 607	sb->s_d_op = &btrfs_dentry_operations;
 608	sb->s_export_op = &btrfs_export_ops;
 609	sb->s_xattr = btrfs_xattr_handlers;
 610	sb->s_time_gran = 1;
 611#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 612	sb->s_flags |= MS_POSIXACL;
 613#endif
 614
 615	tree_root = open_ctree(sb, fs_devices, (char *)data);
 616
 617	if (IS_ERR(tree_root)) {
 618		printk("btrfs: open_ctree failed\n");
 619		return PTR_ERR(tree_root);
 620	}
 621	sb->s_fs_info = tree_root;
 622
 623	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 624	key.type = BTRFS_INODE_ITEM_KEY;
 625	key.offset = 0;
 626	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
 627	if (IS_ERR(inode)) {
 628		err = PTR_ERR(inode);
 629		goto fail_close;
 630	}
 631
 632	root_dentry = d_alloc_root(inode);
 633	if (!root_dentry) {
 634		iput(inode);
 635		err = -ENOMEM;
 636		goto fail_close;
 637	}
 638
 639	sb->s_root = root_dentry;
 640
 641	save_mount_options(sb, data);
 642	cleancache_init_fs(sb);
 
 643	return 0;
 644
 645fail_close:
 646	close_ctree(tree_root);
 647	return err;
 648}
 649
 650int btrfs_sync_fs(struct super_block *sb, int wait)
 651{
 652	struct btrfs_trans_handle *trans;
 653	struct btrfs_root *root = btrfs_sb(sb);
 654	int ret;
 655
 656	trace_btrfs_sync_fs(wait);
 657
 658	if (!wait) {
 659		filemap_flush(root->fs_info->btree_inode->i_mapping);
 660		return 0;
 661	}
 662
 663	btrfs_start_delalloc_inodes(root, 0);
 664	btrfs_wait_ordered_extents(root, 0, 0);
 665
 666	trans = btrfs_start_transaction(root, 0);
 667	if (IS_ERR(trans))
 
 
 
 668		return PTR_ERR(trans);
 669	ret = btrfs_commit_transaction(trans, root);
 670	return ret;
 671}
 672
 673static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
 674{
 675	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
 676	struct btrfs_fs_info *info = root->fs_info;
 677	char *compress_type;
 678
 679	if (btrfs_test_opt(root, DEGRADED))
 680		seq_puts(seq, ",degraded");
 681	if (btrfs_test_opt(root, NODATASUM))
 682		seq_puts(seq, ",nodatasum");
 683	if (btrfs_test_opt(root, NODATACOW))
 684		seq_puts(seq, ",nodatacow");
 685	if (btrfs_test_opt(root, NOBARRIER))
 686		seq_puts(seq, ",nobarrier");
 687	if (info->max_inline != 8192 * 1024)
 688		seq_printf(seq, ",max_inline=%llu",
 689			   (unsigned long long)info->max_inline);
 690	if (info->alloc_start != 0)
 691		seq_printf(seq, ",alloc_start=%llu",
 692			   (unsigned long long)info->alloc_start);
 693	if (info->thread_pool_size !=  min_t(unsigned long,
 694					     num_online_cpus() + 2, 8))
 695		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
 696	if (btrfs_test_opt(root, COMPRESS)) {
 697		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
 698			compress_type = "zlib";
 699		else
 700			compress_type = "lzo";
 701		if (btrfs_test_opt(root, FORCE_COMPRESS))
 702			seq_printf(seq, ",compress-force=%s", compress_type);
 703		else
 704			seq_printf(seq, ",compress=%s", compress_type);
 705	}
 706	if (btrfs_test_opt(root, NOSSD))
 707		seq_puts(seq, ",nossd");
 708	if (btrfs_test_opt(root, SSD_SPREAD))
 709		seq_puts(seq, ",ssd_spread");
 710	else if (btrfs_test_opt(root, SSD))
 711		seq_puts(seq, ",ssd");
 712	if (btrfs_test_opt(root, NOTREELOG))
 713		seq_puts(seq, ",notreelog");
 714	if (btrfs_test_opt(root, FLUSHONCOMMIT))
 715		seq_puts(seq, ",flushoncommit");
 716	if (btrfs_test_opt(root, DISCARD))
 717		seq_puts(seq, ",discard");
 718	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
 719		seq_puts(seq, ",noacl");
 720	if (btrfs_test_opt(root, SPACE_CACHE))
 721		seq_puts(seq, ",space_cache");
 
 
 
 
 722	if (btrfs_test_opt(root, CLEAR_CACHE))
 723		seq_puts(seq, ",clear_cache");
 724	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
 725		seq_puts(seq, ",user_subvol_rm_allowed");
 726	if (btrfs_test_opt(root, ENOSPC_DEBUG))
 727		seq_puts(seq, ",enospc_debug");
 728	if (btrfs_test_opt(root, AUTO_DEFRAG))
 729		seq_puts(seq, ",autodefrag");
 730	if (btrfs_test_opt(root, INODE_MAP_CACHE))
 731		seq_puts(seq, ",inode_cache");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732	return 0;
 733}
 734
 735static int btrfs_test_super(struct super_block *s, void *data)
 736{
 737	struct btrfs_root *test_root = data;
 738	struct btrfs_root *root = btrfs_sb(s);
 739
 740	/*
 741	 * If this super block is going away, return false as it
 742	 * can't match as an existing super block.
 743	 */
 744	if (!atomic_read(&s->s_active))
 745		return 0;
 746	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
 747}
 748
 749static int btrfs_set_super(struct super_block *s, void *data)
 750{
 751	s->s_fs_info = data;
 
 
 
 
 752
 753	return set_anon_super(s, data);
 
 
 
 
 
 
 
 754}
 755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757/*
 758 * Find a superblock for the given device / mount point.
 759 *
 760 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
 761 *	  for multiple device setup.  Make sure to keep it in sync.
 762 */
 763static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
 764		const char *device_name, void *data)
 765{
 766	struct block_device *bdev = NULL;
 767	struct super_block *s;
 768	struct dentry *root;
 769	struct btrfs_fs_devices *fs_devices = NULL;
 770	struct btrfs_root *tree_root = NULL;
 771	struct btrfs_fs_info *fs_info = NULL;
 772	fmode_t mode = FMODE_READ;
 773	char *subvol_name = NULL;
 774	u64 subvol_objectid = 0;
 775	u64 subvol_rootid = 0;
 776	int error = 0;
 777
 778	if (!(flags & MS_RDONLY))
 779		mode |= FMODE_WRITE;
 780
 781	error = btrfs_parse_early_options(data, mode, fs_type,
 782					  &subvol_name, &subvol_objectid,
 783					  &subvol_rootid, &fs_devices);
 784	if (error)
 
 785		return ERR_PTR(error);
 
 786
 787	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
 788	if (error)
 789		goto error_free_subvol_name;
 
 
 790
 791	error = btrfs_open_devices(fs_devices, mode, fs_type);
 792	if (error)
 793		goto error_free_subvol_name;
 794
 795	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
 796		error = -EACCES;
 797		goto error_close_devices;
 798	}
 799
 800	/*
 801	 * Setup a dummy root and fs_info for test/set super.  This is because
 802	 * we don't actually fill this stuff out until open_ctree, but we need
 803	 * it for searching for existing supers, so this lets us do that and
 804	 * then open_ctree will properly initialize everything later.
 805	 */
 806	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
 807	tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
 808	if (!fs_info || !tree_root) {
 
 
 
 
 
 
 809		error = -ENOMEM;
 
 
 
 
 
 
 
 
 
 810		goto error_close_devices;
 811	}
 812	fs_info->tree_root = tree_root;
 813	fs_info->fs_devices = fs_devices;
 814	tree_root->fs_info = fs_info;
 815
 816	bdev = fs_devices->latest_bdev;
 817	s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
 818	if (IS_ERR(s))
 819		goto error_s;
 
 
 
 820
 821	if (s->s_root) {
 822		if ((flags ^ s->s_flags) & MS_RDONLY) {
 823			deactivate_locked_super(s);
 824			error = -EBUSY;
 825			goto error_close_devices;
 826		}
 827
 828		btrfs_close_devices(fs_devices);
 829		kfree(fs_info);
 830		kfree(tree_root);
 
 831	} else {
 832		char b[BDEVNAME_SIZE];
 833
 834		s->s_flags = flags | MS_NOSEC;
 835		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 
 836		error = btrfs_fill_super(s, fs_devices, data,
 837					 flags & MS_SILENT ? 1 : 0);
 838		if (error) {
 839			deactivate_locked_super(s);
 840			goto error_free_subvol_name;
 841		}
 842
 843		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
 844		s->s_flags |= MS_ACTIVE;
 845	}
 846
 847	/* if they gave us a subvolume name bind mount into that */
 848	if (strcmp(subvol_name, ".")) {
 849		struct dentry *new_root;
 850
 851		root = get_default_root(s, subvol_rootid);
 852		if (IS_ERR(root)) {
 853			error = PTR_ERR(root);
 854			deactivate_locked_super(s);
 855			goto error_free_subvol_name;
 856		}
 857
 858		mutex_lock(&root->d_inode->i_mutex);
 859		new_root = lookup_one_len(subvol_name, root,
 860				      strlen(subvol_name));
 861		mutex_unlock(&root->d_inode->i_mutex);
 862
 863		if (IS_ERR(new_root)) {
 864			dput(root);
 865			deactivate_locked_super(s);
 866			error = PTR_ERR(new_root);
 867			goto error_free_subvol_name;
 868		}
 869		if (!new_root->d_inode) {
 870			dput(root);
 871			dput(new_root);
 872			deactivate_locked_super(s);
 873			error = -ENXIO;
 874			goto error_free_subvol_name;
 875		}
 876		dput(root);
 877		root = new_root;
 878	} else {
 879		root = get_default_root(s, subvol_objectid);
 880		if (IS_ERR(root)) {
 881			error = PTR_ERR(root);
 882			deactivate_locked_super(s);
 883			goto error_free_subvol_name;
 884		}
 885	}
 886
 887	kfree(subvol_name);
 888	return root;
 889
 890error_s:
 891	error = PTR_ERR(s);
 892error_close_devices:
 893	btrfs_close_devices(fs_devices);
 894	kfree(fs_info);
 895	kfree(tree_root);
 896error_free_subvol_name:
 897	kfree(subvol_name);
 898	return ERR_PTR(error);
 899}
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901static int btrfs_remount(struct super_block *sb, int *flags, char *data)
 902{
 903	struct btrfs_root *root = btrfs_sb(sb);
 
 
 
 
 
 
 
 
 904	int ret;
 905
 
 
 
 906	ret = btrfs_parse_options(root, data);
 907	if (ret)
 908		return -EINVAL;
 
 
 
 
 
 
 909
 910	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 911		return 0;
 912
 913	if (*flags & MS_RDONLY) {
 
 
 
 
 
 
 
 
 
 
 914		sb->s_flags |= MS_RDONLY;
 915
 916		ret =  btrfs_commit_super(root);
 917		WARN_ON(ret);
 
 
 
 
 
 918	} else {
 919		if (root->fs_info->fs_devices->rw_devices == 0)
 920			return -EACCES;
 
 
 
 
 
 
 
 
 921
 922		if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
 923			return -EINVAL;
 
 
 
 
 
 
 924
 925		ret = btrfs_cleanup_fs_roots(root->fs_info);
 926		WARN_ON(ret);
 
 
 
 
 
 
 927
 928		/* recover relocation */
 929		ret = btrfs_recover_relocation(root);
 930		WARN_ON(ret);
 
 
 
 
 
 
 
 
 
 
 
 931
 
 
 
 
 
 
 
 
 932		sb->s_flags &= ~MS_RDONLY;
 933	}
 934
 
 
 935	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936}
 937
 938/* Used to sort the devices by max_avail(descending sort) */
 939static int btrfs_cmp_device_free_bytes(const void *dev_info1,
 940				       const void *dev_info2)
 941{
 942	if (((struct btrfs_device_info *)dev_info1)->max_avail >
 943	    ((struct btrfs_device_info *)dev_info2)->max_avail)
 944		return -1;
 945	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
 946		 ((struct btrfs_device_info *)dev_info2)->max_avail)
 947		return 1;
 948	else
 949	return 0;
 950}
 951
 952/*
 953 * sort the devices by max_avail, in which max free extent size of each device
 954 * is stored.(Descending Sort)
 955 */
 956static inline void btrfs_descending_sort_devices(
 957					struct btrfs_device_info *devices,
 958					size_t nr_devices)
 959{
 960	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
 961	     btrfs_cmp_device_free_bytes, NULL);
 962}
 963
 964/*
 965 * The helper to calc the free space on the devices that can be used to store
 966 * file data.
 967 */
 968static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
 969{
 970	struct btrfs_fs_info *fs_info = root->fs_info;
 971	struct btrfs_device_info *devices_info;
 972	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 973	struct btrfs_device *device;
 974	u64 skip_space;
 975	u64 type;
 976	u64 avail_space;
 977	u64 used_space;
 978	u64 min_stripe_size;
 979	int min_stripes = 1;
 980	int i = 0, nr_devices;
 981	int ret;
 982
 983	nr_devices = fs_info->fs_devices->rw_devices;
 984	BUG_ON(!nr_devices);
 985
 986	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
 987			       GFP_NOFS);
 988	if (!devices_info)
 989		return -ENOMEM;
 990
 991	/* calc min stripe number for data space alloction */
 992	type = btrfs_get_alloc_profile(root, 1);
 993	if (type & BTRFS_BLOCK_GROUP_RAID0)
 994		min_stripes = 2;
 995	else if (type & BTRFS_BLOCK_GROUP_RAID1)
 
 996		min_stripes = 2;
 997	else if (type & BTRFS_BLOCK_GROUP_RAID10)
 
 998		min_stripes = 4;
 
 
 999
1000	if (type & BTRFS_BLOCK_GROUP_DUP)
1001		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1002	else
1003		min_stripe_size = BTRFS_STRIPE_LEN;
1004
1005	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1006		if (!device->in_fs_metadata)
 
1007			continue;
1008
1009		avail_space = device->total_bytes - device->bytes_used;
1010
1011		/* align with stripe_len */
1012		do_div(avail_space, BTRFS_STRIPE_LEN);
1013		avail_space *= BTRFS_STRIPE_LEN;
1014
1015		/*
1016		 * In order to avoid overwritting the superblock on the drive,
1017		 * btrfs starts at an offset of at least 1MB when doing chunk
1018		 * allocation.
1019		 */
1020		skip_space = 1024 * 1024;
1021
1022		/* user can set the offset in fs_info->alloc_start. */
1023		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1024		    device->total_bytes)
1025			skip_space = max(fs_info->alloc_start, skip_space);
1026
1027		/*
1028		 * btrfs can not use the free space in [0, skip_space - 1],
1029		 * we must subtract it from the total. In order to implement
1030		 * it, we account the used space in this range first.
1031		 */
1032		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1033						     &used_space);
1034		if (ret) {
1035			kfree(devices_info);
1036			return ret;
1037		}
1038
1039		/* calc the free space in [0, skip_space - 1] */
1040		skip_space -= used_space;
1041
1042		/*
1043		 * we can use the free space in [0, skip_space - 1], subtract
1044		 * it from the total.
1045		 */
1046		if (avail_space && avail_space >= skip_space)
1047			avail_space -= skip_space;
1048		else
1049			avail_space = 0;
1050
1051		if (avail_space < min_stripe_size)
1052			continue;
1053
1054		devices_info[i].dev = device;
1055		devices_info[i].max_avail = avail_space;
1056
1057		i++;
1058	}
1059
1060	nr_devices = i;
1061
1062	btrfs_descending_sort_devices(devices_info, nr_devices);
1063
1064	i = nr_devices - 1;
1065	avail_space = 0;
1066	while (nr_devices >= min_stripes) {
 
 
 
1067		if (devices_info[i].max_avail >= min_stripe_size) {
1068			int j;
1069			u64 alloc_size;
1070
1071			avail_space += devices_info[i].max_avail * min_stripes;
1072			alloc_size = devices_info[i].max_avail;
1073			for (j = i + 1 - min_stripes; j <= i; j++)
1074				devices_info[j].max_avail -= alloc_size;
1075		}
1076		i--;
1077		nr_devices--;
1078	}
1079
1080	kfree(devices_info);
1081	*free_bytes = avail_space;
1082	return 0;
1083}
1084
1085static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1086{
1087	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1088	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1089	struct list_head *head = &root->fs_info->space_info;
1090	struct btrfs_space_info *found;
1091	u64 total_used = 0;
1092	u64 total_free_data = 0;
1093	int bits = dentry->d_sb->s_blocksize_bits;
1094	__be32 *fsid = (__be32 *)root->fs_info->fsid;
1095	int ret;
1096
1097	/* holding chunk_muext to avoid allocating new chunks */
1098	mutex_lock(&root->fs_info->chunk_mutex);
1099	rcu_read_lock();
1100	list_for_each_entry_rcu(found, head, list) {
1101		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1102			total_free_data += found->disk_total - found->disk_used;
1103			total_free_data -=
1104				btrfs_account_ro_block_groups_free_space(found);
1105		}
1106
1107		total_used += found->disk_used;
1108	}
1109	rcu_read_unlock();
1110
1111	buf->f_namelen = BTRFS_NAME_LEN;
1112	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1113	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1114	buf->f_bsize = dentry->d_sb->s_blocksize;
1115	buf->f_type = BTRFS_SUPER_MAGIC;
1116	buf->f_bavail = total_free_data;
1117	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1118	if (ret) {
1119		mutex_unlock(&root->fs_info->chunk_mutex);
1120		return ret;
1121	}
1122	buf->f_bavail += total_free_data;
1123	buf->f_bavail = buf->f_bavail >> bits;
1124	mutex_unlock(&root->fs_info->chunk_mutex);
1125
1126	/* We treat it as constant endianness (it doesn't matter _which_)
1127	   because we want the fsid to come out the same whether mounted
1128	   on a big-endian or little-endian host */
1129	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1130	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1131	/* Mask in the root object ID too, to disambiguate subvols */
1132	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1133	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1134
1135	return 0;
1136}
1137
 
 
 
 
 
 
 
1138static struct file_system_type btrfs_fs_type = {
1139	.owner		= THIS_MODULE,
1140	.name		= "btrfs",
1141	.mount		= btrfs_mount,
1142	.kill_sb	= kill_anon_super,
1143	.fs_flags	= FS_REQUIRES_DEV,
1144};
 
1145
1146/*
1147 * used by btrfsctl to scan devices when no FS is mounted
1148 */
1149static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1150				unsigned long arg)
1151{
1152	struct btrfs_ioctl_vol_args *vol;
1153	struct btrfs_fs_devices *fs_devices;
1154	int ret = -ENOTTY;
1155
1156	if (!capable(CAP_SYS_ADMIN))
1157		return -EPERM;
1158
1159	vol = memdup_user((void __user *)arg, sizeof(*vol));
1160	if (IS_ERR(vol))
1161		return PTR_ERR(vol);
1162
1163	switch (cmd) {
1164	case BTRFS_IOC_SCAN_DEV:
1165		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1166					    &btrfs_fs_type, &fs_devices);
1167		break;
 
 
 
 
 
 
 
1168	}
1169
1170	kfree(vol);
1171	return ret;
1172}
1173
1174static int btrfs_freeze(struct super_block *sb)
1175{
1176	struct btrfs_root *root = btrfs_sb(sb);
1177	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1178	mutex_lock(&root->fs_info->cleaner_mutex);
1179	return 0;
 
 
 
 
 
 
 
1180}
1181
1182static int btrfs_unfreeze(struct super_block *sb)
1183{
1184	struct btrfs_root *root = btrfs_sb(sb);
1185	mutex_unlock(&root->fs_info->cleaner_mutex);
1186	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187	return 0;
1188}
1189
1190static const struct super_operations btrfs_super_ops = {
1191	.drop_inode	= btrfs_drop_inode,
1192	.evict_inode	= btrfs_evict_inode,
1193	.put_super	= btrfs_put_super,
1194	.sync_fs	= btrfs_sync_fs,
1195	.show_options	= btrfs_show_options,
 
1196	.write_inode	= btrfs_write_inode,
1197	.dirty_inode	= btrfs_dirty_inode,
1198	.alloc_inode	= btrfs_alloc_inode,
1199	.destroy_inode	= btrfs_destroy_inode,
1200	.statfs		= btrfs_statfs,
1201	.remount_fs	= btrfs_remount,
1202	.freeze_fs	= btrfs_freeze,
1203	.unfreeze_fs	= btrfs_unfreeze,
1204};
1205
1206static const struct file_operations btrfs_ctl_fops = {
1207	.unlocked_ioctl	 = btrfs_control_ioctl,
1208	.compat_ioctl = btrfs_control_ioctl,
1209	.owner	 = THIS_MODULE,
1210	.llseek = noop_llseek,
1211};
1212
1213static struct miscdevice btrfs_misc = {
1214	.minor		= BTRFS_MINOR,
1215	.name		= "btrfs-control",
1216	.fops		= &btrfs_ctl_fops
1217};
1218
1219MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1220MODULE_ALIAS("devname:btrfs-control");
1221
1222static int btrfs_interface_init(void)
1223{
1224	return misc_register(&btrfs_misc);
1225}
1226
1227static void btrfs_interface_exit(void)
1228{
1229	if (misc_deregister(&btrfs_misc) < 0)
1230		printk(KERN_INFO "misc_deregister failed for control device");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1231}
1232
1233static int __init init_btrfs_fs(void)
1234{
1235	int err;
1236
1237	err = btrfs_init_sysfs();
1238	if (err)
1239		return err;
1240
1241	err = btrfs_init_compress();
 
 
1242	if (err)
1243		goto free_sysfs;
 
 
1244
1245	err = btrfs_init_cachep();
1246	if (err)
1247		goto free_compress;
1248
1249	err = extent_io_init();
1250	if (err)
1251		goto free_cachep;
1252
1253	err = extent_map_init();
1254	if (err)
1255		goto free_extent_io;
1256
1257	err = btrfs_delayed_inode_init();
1258	if (err)
1259		goto free_extent_map;
1260
1261	err = btrfs_interface_init();
 
 
 
 
1262	if (err)
1263		goto free_delayed_inode;
1264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265	err = register_filesystem(&btrfs_fs_type);
1266	if (err)
1267		goto unregister_ioctl;
1268
1269	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1270	return 0;
1271
1272unregister_ioctl:
1273	btrfs_interface_exit();
 
 
 
 
 
 
1274free_delayed_inode:
1275	btrfs_delayed_inode_exit();
 
 
1276free_extent_map:
1277	extent_map_exit();
1278free_extent_io:
1279	extent_io_exit();
1280free_cachep:
1281	btrfs_destroy_cachep();
1282free_compress:
1283	btrfs_exit_compress();
1284free_sysfs:
1285	btrfs_exit_sysfs();
 
 
1286	return err;
1287}
1288
1289static void __exit exit_btrfs_fs(void)
1290{
1291	btrfs_destroy_cachep();
 
 
1292	btrfs_delayed_inode_exit();
 
 
1293	extent_map_exit();
1294	extent_io_exit();
1295	btrfs_interface_exit();
1296	unregister_filesystem(&btrfs_fs_type);
1297	btrfs_exit_sysfs();
1298	btrfs_cleanup_fs_uuids();
1299	btrfs_exit_compress();
 
1300}
1301
1302module_init(init_btrfs_fs)
1303module_exit(exit_btrfs_fs)
1304
1305MODULE_LICENSE("GPL");
v3.15
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include <linux/ratelimit.h>
  44#include <linux/btrfs.h>
  45#include "delayed-inode.h"
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
 
  50#include "print-tree.h"
  51#include "hash.h"
  52#include "props.h"
  53#include "xattr.h"
  54#include "volumes.h"
 
  55#include "export.h"
  56#include "compression.h"
  57#include "rcu-string.h"
  58#include "dev-replace.h"
  59#include "free-space-cache.h"
  60#include "backref.h"
  61#include "tests/btrfs-tests.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/btrfs.h>
  65
  66static const struct super_operations btrfs_super_ops;
  67static struct file_system_type btrfs_fs_type;
  68
  69static int btrfs_remount(struct super_block *sb, int *flags, char *data);
  70
  71static const char *btrfs_decode_error(int errno)
  72{
  73	char *errstr = "unknown";
  74
  75	switch (errno) {
  76	case -EIO:
  77		errstr = "IO failure";
  78		break;
  79	case -ENOMEM:
  80		errstr = "Out of memory";
  81		break;
  82	case -EROFS:
  83		errstr = "Readonly filesystem";
  84		break;
  85	case -EEXIST:
  86		errstr = "Object already exists";
  87		break;
  88	case -ENOSPC:
  89		errstr = "No space left";
  90		break;
  91	case -ENOENT:
  92		errstr = "No such entry";
  93		break;
  94	}
  95
  96	return errstr;
  97}
  98
  99static void save_error_info(struct btrfs_fs_info *fs_info)
 100{
 101	/*
 102	 * today we only save the error info into ram.  Long term we'll
 103	 * also send it down to the disk
 104	 */
 105	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
 
 
 
 
 
 
 
 
 
 106}
 107
 108/* btrfs handle error by forcing the filesystem readonly */
 109static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 110{
 111	struct super_block *sb = fs_info->sb;
 112
 113	if (sb->s_flags & MS_RDONLY)
 114		return;
 115
 116	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
 117		sb->s_flags |= MS_RDONLY;
 118		btrfs_info(fs_info, "forced readonly");
 119		/*
 120		 * Note that a running device replace operation is not
 121		 * canceled here although there is no way to update
 122		 * the progress. It would add the risk of a deadlock,
 123		 * therefore the canceling is ommited. The only penalty
 124		 * is that some I/O remains active until the procedure
 125		 * completes. The next time when the filesystem is
 126		 * mounted writeable again, the device replace
 127		 * operation continues.
 128		 */
 129	}
 130}
 131
 132#ifdef CONFIG_PRINTK
 133/*
 134 * __btrfs_std_error decodes expected errors from the caller and
 135 * invokes the approciate error response.
 136 */
 137void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 138		       unsigned int line, int errno, const char *fmt, ...)
 139{
 140	struct super_block *sb = fs_info->sb;
 
 141	const char *errstr;
 142
 143	/*
 144	 * Special case: if the error is EROFS, and we're already
 145	 * under MS_RDONLY, then it is safe here.
 146	 */
 147	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 148  		return;
 149
 150	errstr = btrfs_decode_error(errno);
 151	if (fmt) {
 152		struct va_format vaf;
 153		va_list args;
 154
 155		va_start(args, fmt);
 156		vaf.fmt = fmt;
 157		vaf.va = &args;
 158
 159		printk(KERN_CRIT
 160			"BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
 161			sb->s_id, function, line, errno, errstr, &vaf);
 162		va_end(args);
 163	} else {
 164		printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
 165			sb->s_id, function, line, errno, errstr);
 166	}
 167
 168	/* Don't go through full error handling during mount */
 
 
 169	save_error_info(fs_info);
 170	if (sb->s_flags & MS_BORN)
 171		btrfs_handle_error(fs_info);
 172}
 173
 174static const char * const logtypes[] = {
 175	"emergency",
 176	"alert",
 177	"critical",
 178	"error",
 179	"warning",
 180	"notice",
 181	"info",
 182	"debug",
 183};
 184
 185void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
 186{
 187	struct super_block *sb = fs_info->sb;
 188	char lvl[4];
 189	struct va_format vaf;
 190	va_list args;
 191	const char *type = logtypes[4];
 192	int kern_level;
 193
 194	va_start(args, fmt);
 195
 196	kern_level = printk_get_level(fmt);
 197	if (kern_level) {
 198		size_t size = printk_skip_level(fmt) - fmt;
 199		memcpy(lvl, fmt,  size);
 200		lvl[size] = '\0';
 201		fmt += size;
 202		type = logtypes[kern_level - '0'];
 203	} else
 204		*lvl = '\0';
 205
 206	vaf.fmt = fmt;
 207	vaf.va = &args;
 208
 209	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
 210
 211	va_end(args);
 212}
 213
 214#else
 215
 216void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 217		       unsigned int line, int errno, const char *fmt, ...)
 218{
 219	struct super_block *sb = fs_info->sb;
 220
 221	/*
 222	 * Special case: if the error is EROFS, and we're already
 223	 * under MS_RDONLY, then it is safe here.
 224	 */
 225	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 226		return;
 227
 228	/* Don't go through full error handling during mount */
 229	if (sb->s_flags & MS_BORN) {
 230		save_error_info(fs_info);
 231		btrfs_handle_error(fs_info);
 232	}
 233}
 234#endif
 235
 236/*
 237 * We only mark the transaction aborted and then set the file system read-only.
 238 * This will prevent new transactions from starting or trying to join this
 239 * one.
 240 *
 241 * This means that error recovery at the call site is limited to freeing
 242 * any local memory allocations and passing the error code up without
 243 * further cleanup. The transaction should complete as it normally would
 244 * in the call path but will return -EIO.
 245 *
 246 * We'll complete the cleanup in btrfs_end_transaction and
 247 * btrfs_commit_transaction.
 248 */
 249void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 250			       struct btrfs_root *root, const char *function,
 251			       unsigned int line, int errno)
 252{
 253	/*
 254	 * Report first abort since mount
 255	 */
 256	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
 257				&root->fs_info->fs_state)) {
 258		WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
 259				errno);
 260	}
 261	trans->aborted = errno;
 262	/* Nothing used. The other threads that have joined this
 263	 * transaction may be able to continue. */
 264	if (!trans->blocks_used) {
 265		const char *errstr;
 266
 267		errstr = btrfs_decode_error(errno);
 268		btrfs_warn(root->fs_info,
 269		           "%s:%d: Aborting unused transaction(%s).",
 270		           function, line, errstr);
 271		return;
 272	}
 273	ACCESS_ONCE(trans->transaction->aborted) = errno;
 274	/* Wake up anybody who may be waiting on this transaction */
 275	wake_up(&root->fs_info->transaction_wait);
 276	wake_up(&root->fs_info->transaction_blocked_wait);
 277	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
 278}
 279/*
 280 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 281 * issues an alert, and either panics or BUGs, depending on mount options.
 282 */
 283void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 284		   unsigned int line, int errno, const char *fmt, ...)
 285{
 286	char *s_id = "<unknown>";
 287	const char *errstr;
 288	struct va_format vaf = { .fmt = fmt };
 289	va_list args;
 290
 291	if (fs_info)
 292		s_id = fs_info->sb->s_id;
 293
 294	va_start(args, fmt);
 295	vaf.va = &args;
 296
 297	errstr = btrfs_decode_error(errno);
 298	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
 299		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
 300			s_id, function, line, &vaf, errno, errstr);
 301
 302	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
 303		   function, line, &vaf, errno, errstr);
 304	va_end(args);
 305	/* Caller calls BUG() */
 306}
 307
 308static void btrfs_put_super(struct super_block *sb)
 309{
 310	(void)close_ctree(btrfs_sb(sb)->tree_root);
 311	/* FIXME: need to fix VFS to return error? */
 312	/* AV: return it _where_?  ->put_super() can be triggered by any number
 313	 * of async events, up to and including delivery of SIGKILL to the
 314	 * last process that kept it busy.  Or segfault in the aforementioned
 315	 * process...  Whom would you report that to?
 316	 */
 317}
 318
 319enum {
 320	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 321	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 322	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 323	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 324	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 325	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
 326	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
 327	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
 328	Opt_check_integrity, Opt_check_integrity_including_extent_data,
 329	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
 330	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
 331	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
 332	Opt_datasum, Opt_treelog, Opt_noinode_cache,
 333	Opt_err,
 334};
 335
 336static match_table_t tokens = {
 337	{Opt_degraded, "degraded"},
 338	{Opt_subvol, "subvol=%s"},
 339	{Opt_subvolid, "subvolid=%s"},
 340	{Opt_device, "device=%s"},
 341	{Opt_nodatasum, "nodatasum"},
 342	{Opt_datasum, "datasum"},
 343	{Opt_nodatacow, "nodatacow"},
 344	{Opt_datacow, "datacow"},
 345	{Opt_nobarrier, "nobarrier"},
 346	{Opt_barrier, "barrier"},
 347	{Opt_max_inline, "max_inline=%s"},
 348	{Opt_alloc_start, "alloc_start=%s"},
 349	{Opt_thread_pool, "thread_pool=%d"},
 350	{Opt_compress, "compress"},
 351	{Opt_compress_type, "compress=%s"},
 352	{Opt_compress_force, "compress-force"},
 353	{Opt_compress_force_type, "compress-force=%s"},
 354	{Opt_ssd, "ssd"},
 355	{Opt_ssd_spread, "ssd_spread"},
 356	{Opt_nossd, "nossd"},
 357	{Opt_acl, "acl"},
 358	{Opt_noacl, "noacl"},
 359	{Opt_notreelog, "notreelog"},
 360	{Opt_treelog, "treelog"},
 361	{Opt_flushoncommit, "flushoncommit"},
 362	{Opt_noflushoncommit, "noflushoncommit"},
 363	{Opt_ratio, "metadata_ratio=%d"},
 364	{Opt_discard, "discard"},
 365	{Opt_nodiscard, "nodiscard"},
 366	{Opt_space_cache, "space_cache"},
 367	{Opt_clear_cache, "clear_cache"},
 368	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 369	{Opt_enospc_debug, "enospc_debug"},
 370	{Opt_noenospc_debug, "noenospc_debug"},
 371	{Opt_subvolrootid, "subvolrootid=%d"},
 372	{Opt_defrag, "autodefrag"},
 373	{Opt_nodefrag, "noautodefrag"},
 374	{Opt_inode_cache, "inode_cache"},
 375	{Opt_noinode_cache, "noinode_cache"},
 376	{Opt_no_space_cache, "nospace_cache"},
 377	{Opt_recovery, "recovery"},
 378	{Opt_skip_balance, "skip_balance"},
 379	{Opt_check_integrity, "check_int"},
 380	{Opt_check_integrity_including_extent_data, "check_int_data"},
 381	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
 382	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
 383	{Opt_fatal_errors, "fatal_errors=%s"},
 384	{Opt_commit_interval, "commit=%d"},
 385	{Opt_err, NULL},
 386};
 387
 388/*
 389 * Regular mount options parser.  Everything that is needed only when
 390 * reading in a new superblock is parsed here.
 391 * XXX JDM: This needs to be cleaned up for remount.
 392 */
 393int btrfs_parse_options(struct btrfs_root *root, char *options)
 394{
 395	struct btrfs_fs_info *info = root->fs_info;
 396	substring_t args[MAX_OPT_ARGS];
 397	char *p, *num, *orig = NULL;
 398	u64 cache_gen;
 399	int intarg;
 400	int ret = 0;
 401	char *compress_type;
 402	bool compress_force = false;
 403	bool compress = false;
 404
 405	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
 406	if (cache_gen)
 407		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 408
 409	if (!options)
 410		goto out;
 411
 412	/*
 413	 * strsep changes the string, duplicate it because parse_options
 414	 * gets called twice
 415	 */
 416	options = kstrdup(options, GFP_NOFS);
 417	if (!options)
 418		return -ENOMEM;
 419
 420	orig = options;
 421
 422	while ((p = strsep(&options, ",")) != NULL) {
 423		int token;
 424		if (!*p)
 425			continue;
 426
 427		token = match_token(p, tokens, args);
 428		switch (token) {
 429		case Opt_degraded:
 430			btrfs_info(root->fs_info, "allowing degraded mounts");
 431			btrfs_set_opt(info->mount_opt, DEGRADED);
 432			break;
 433		case Opt_subvol:
 434		case Opt_subvolid:
 435		case Opt_subvolrootid:
 436		case Opt_device:
 437			/*
 438			 * These are parsed by btrfs_parse_early_options
 439			 * and can be happily ignored here.
 440			 */
 441			break;
 442		case Opt_nodatasum:
 443			btrfs_set_and_info(root, NODATASUM,
 444					   "setting nodatasum");
 445			break;
 446		case Opt_datasum:
 447			if (btrfs_test_opt(root, NODATASUM)) {
 448				if (btrfs_test_opt(root, NODATACOW))
 449					btrfs_info(root->fs_info, "setting datasum, datacow enabled");
 450				else
 451					btrfs_info(root->fs_info, "setting datasum");
 452			}
 453			btrfs_clear_opt(info->mount_opt, NODATACOW);
 454			btrfs_clear_opt(info->mount_opt, NODATASUM);
 455			break;
 456		case Opt_nodatacow:
 457			if (!btrfs_test_opt(root, NODATACOW)) {
 458				if (!btrfs_test_opt(root, COMPRESS) ||
 459				    !btrfs_test_opt(root, FORCE_COMPRESS)) {
 460					btrfs_info(root->fs_info,
 461						   "setting nodatacow, compression disabled");
 462				} else {
 463					btrfs_info(root->fs_info, "setting nodatacow");
 464				}
 465			}
 466			btrfs_clear_opt(info->mount_opt, COMPRESS);
 467			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 468			btrfs_set_opt(info->mount_opt, NODATACOW);
 469			btrfs_set_opt(info->mount_opt, NODATASUM);
 470			break;
 471		case Opt_datacow:
 472			btrfs_clear_and_info(root, NODATACOW,
 473					     "setting datacow");
 474			break;
 475		case Opt_compress_force:
 476		case Opt_compress_force_type:
 477			compress_force = true;
 478			/* Fallthrough */
 479		case Opt_compress:
 480		case Opt_compress_type:
 481			compress = true;
 482			if (token == Opt_compress ||
 483			    token == Opt_compress_force ||
 484			    strcmp(args[0].from, "zlib") == 0) {
 485				compress_type = "zlib";
 486				info->compress_type = BTRFS_COMPRESS_ZLIB;
 487				btrfs_set_opt(info->mount_opt, COMPRESS);
 488				btrfs_clear_opt(info->mount_opt, NODATACOW);
 489				btrfs_clear_opt(info->mount_opt, NODATASUM);
 490			} else if (strcmp(args[0].from, "lzo") == 0) {
 491				compress_type = "lzo";
 492				info->compress_type = BTRFS_COMPRESS_LZO;
 493				btrfs_set_opt(info->mount_opt, COMPRESS);
 494				btrfs_clear_opt(info->mount_opt, NODATACOW);
 495				btrfs_clear_opt(info->mount_opt, NODATASUM);
 496				btrfs_set_fs_incompat(info, COMPRESS_LZO);
 497			} else if (strncmp(args[0].from, "no", 2) == 0) {
 498				compress_type = "no";
 499				btrfs_clear_opt(info->mount_opt, COMPRESS);
 500				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
 501				compress_force = false;
 502			} else {
 503				ret = -EINVAL;
 504				goto out;
 505			}
 506
 
 507			if (compress_force) {
 508				btrfs_set_and_info(root, FORCE_COMPRESS,
 509						   "force %s compression",
 510						   compress_type);
 511			} else if (compress) {
 512				if (!btrfs_test_opt(root, COMPRESS))
 513					btrfs_info(root->fs_info,
 514						   "btrfs: use %s compression\n",
 515						   compress_type);
 516			}
 517			break;
 518		case Opt_ssd:
 519			btrfs_set_and_info(root, SSD,
 520					   "use ssd allocation scheme");
 521			break;
 522		case Opt_ssd_spread:
 523			btrfs_set_and_info(root, SSD_SPREAD,
 524					   "use spread ssd allocation scheme");
 
 
 525			break;
 526		case Opt_nossd:
 527			btrfs_clear_and_info(root, NOSSD,
 528					     "not using ssd allocation scheme");
 
 529			btrfs_clear_opt(info->mount_opt, SSD);
 530			break;
 531		case Opt_barrier:
 532			btrfs_clear_and_info(root, NOBARRIER,
 533					     "turning on barriers");
 534			break;
 535		case Opt_nobarrier:
 536			btrfs_set_and_info(root, NOBARRIER,
 537					   "turning off barriers");
 538			break;
 539		case Opt_thread_pool:
 540			ret = match_int(&args[0], &intarg);
 541			if (ret) {
 542				goto out;
 543			} else if (intarg > 0) {
 544				info->thread_pool_size = intarg;
 545			} else {
 546				ret = -EINVAL;
 547				goto out;
 548			}
 549			break;
 550		case Opt_max_inline:
 551			num = match_strdup(&args[0]);
 552			if (num) {
 553				info->max_inline = memparse(num, NULL);
 554				kfree(num);
 555
 556				if (info->max_inline) {
 557					info->max_inline = min_t(u64,
 558						info->max_inline,
 559						root->sectorsize);
 560				}
 561				btrfs_info(root->fs_info, "max_inline at %llu",
 562					info->max_inline);
 563			} else {
 564				ret = -ENOMEM;
 565				goto out;
 566			}
 567			break;
 568		case Opt_alloc_start:
 569			num = match_strdup(&args[0]);
 570			if (num) {
 571				mutex_lock(&info->chunk_mutex);
 572				info->alloc_start = memparse(num, NULL);
 573				mutex_unlock(&info->chunk_mutex);
 574				kfree(num);
 575				btrfs_info(root->fs_info, "allocations start at %llu",
 576					info->alloc_start);
 577			} else {
 578				ret = -ENOMEM;
 579				goto out;
 580			}
 581			break;
 582		case Opt_acl:
 583			root->fs_info->sb->s_flags |= MS_POSIXACL;
 584			break;
 585		case Opt_noacl:
 586			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
 587			break;
 588		case Opt_notreelog:
 589			btrfs_set_and_info(root, NOTREELOG,
 590					   "disabling tree log");
 591			break;
 592		case Opt_treelog:
 593			btrfs_clear_and_info(root, NOTREELOG,
 594					     "enabling tree log");
 595			break;
 596		case Opt_flushoncommit:
 597			btrfs_set_and_info(root, FLUSHONCOMMIT,
 598					   "turning on flush-on-commit");
 599			break;
 600		case Opt_noflushoncommit:
 601			btrfs_clear_and_info(root, FLUSHONCOMMIT,
 602					     "turning off flush-on-commit");
 603			break;
 604		case Opt_ratio:
 605			ret = match_int(&args[0], &intarg);
 606			if (ret) {
 607				goto out;
 608			} else if (intarg >= 0) {
 609				info->metadata_ratio = intarg;
 610				btrfs_info(root->fs_info, "metadata ratio %d",
 611				       info->metadata_ratio);
 612			} else {
 613				ret = -EINVAL;
 614				goto out;
 615			}
 616			break;
 617		case Opt_discard:
 618			btrfs_set_and_info(root, DISCARD,
 619					   "turning on discard");
 620			break;
 621		case Opt_nodiscard:
 622			btrfs_clear_and_info(root, DISCARD,
 623					     "turning off discard");
 624			break;
 625		case Opt_space_cache:
 626			btrfs_set_and_info(root, SPACE_CACHE,
 627					   "enabling disk space caching");
 628			break;
 629		case Opt_rescan_uuid_tree:
 630			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
 631			break;
 632		case Opt_no_space_cache:
 633			btrfs_clear_and_info(root, SPACE_CACHE,
 634					     "disabling disk space caching");
 635			break;
 636		case Opt_inode_cache:
 637			btrfs_set_and_info(root, CHANGE_INODE_CACHE,
 638					   "enabling inode map caching");
 639			break;
 640		case Opt_noinode_cache:
 641			btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
 642					     "disabling inode map caching");
 643			break;
 644		case Opt_clear_cache:
 645			btrfs_set_and_info(root, CLEAR_CACHE,
 646					   "force clearing of disk cache");
 647			break;
 648		case Opt_user_subvol_rm_allowed:
 649			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 650			break;
 651		case Opt_enospc_debug:
 652			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 653			break;
 654		case Opt_noenospc_debug:
 655			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
 656			break;
 657		case Opt_defrag:
 658			btrfs_set_and_info(root, AUTO_DEFRAG,
 659					   "enabling auto defrag");
 660			break;
 661		case Opt_nodefrag:
 662			btrfs_clear_and_info(root, AUTO_DEFRAG,
 663					     "disabling auto defrag");
 664			break;
 665		case Opt_recovery:
 666			btrfs_info(root->fs_info, "enabling auto recovery");
 667			btrfs_set_opt(info->mount_opt, RECOVERY);
 668			break;
 669		case Opt_skip_balance:
 670			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 671			break;
 672#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 673		case Opt_check_integrity_including_extent_data:
 674			btrfs_info(root->fs_info,
 675				   "enabling check integrity including extent data");
 676			btrfs_set_opt(info->mount_opt,
 677				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 678			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 679			break;
 680		case Opt_check_integrity:
 681			btrfs_info(root->fs_info, "enabling check integrity");
 682			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 683			break;
 684		case Opt_check_integrity_print_mask:
 685			ret = match_int(&args[0], &intarg);
 686			if (ret) {
 687				goto out;
 688			} else if (intarg >= 0) {
 689				info->check_integrity_print_mask = intarg;
 690				btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
 691				       info->check_integrity_print_mask);
 692			} else {
 693				ret = -EINVAL;
 694				goto out;
 695			}
 696			break;
 697#else
 698		case Opt_check_integrity_including_extent_data:
 699		case Opt_check_integrity:
 700		case Opt_check_integrity_print_mask:
 701			btrfs_err(root->fs_info,
 702				"support for check_integrity* not compiled in!");
 703			ret = -EINVAL;
 704			goto out;
 705#endif
 706		case Opt_fatal_errors:
 707			if (strcmp(args[0].from, "panic") == 0)
 708				btrfs_set_opt(info->mount_opt,
 709					      PANIC_ON_FATAL_ERROR);
 710			else if (strcmp(args[0].from, "bug") == 0)
 711				btrfs_clear_opt(info->mount_opt,
 712					      PANIC_ON_FATAL_ERROR);
 713			else {
 714				ret = -EINVAL;
 715				goto out;
 716			}
 717			break;
 718		case Opt_commit_interval:
 719			intarg = 0;
 720			ret = match_int(&args[0], &intarg);
 721			if (ret < 0) {
 722				btrfs_err(root->fs_info, "invalid commit interval");
 723				ret = -EINVAL;
 724				goto out;
 725			}
 726			if (intarg > 0) {
 727				if (intarg > 300) {
 728					btrfs_warn(root->fs_info, "excessive commit interval %d",
 729							intarg);
 730				}
 731				info->commit_interval = intarg;
 732			} else {
 733				btrfs_info(root->fs_info, "using default commit interval %ds",
 734				    BTRFS_DEFAULT_COMMIT_INTERVAL);
 735				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
 736			}
 737			break;
 738		case Opt_err:
 739			btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
 
 740			ret = -EINVAL;
 741			goto out;
 742		default:
 743			break;
 744		}
 745	}
 746out:
 747	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
 748		btrfs_info(root->fs_info, "disk space caching is enabled");
 749	kfree(orig);
 750	return ret;
 751}
 752
 753/*
 754 * Parse mount options that are required early in the mount process.
 755 *
 756 * All other options will be parsed on much later in the mount process and
 757 * only when we need to allocate a new super block.
 758 */
 759static int btrfs_parse_early_options(const char *options, fmode_t flags,
 760		void *holder, char **subvol_name, u64 *subvol_objectid,
 761		struct btrfs_fs_devices **fs_devices)
 762{
 763	substring_t args[MAX_OPT_ARGS];
 764	char *device_name, *opts, *orig, *p;
 765	char *num = NULL;
 766	int error = 0;
 
 767
 768	if (!options)
 769		return 0;
 770
 771	/*
 772	 * strsep changes the string, duplicate it because parse_options
 773	 * gets called twice
 774	 */
 775	opts = kstrdup(options, GFP_KERNEL);
 776	if (!opts)
 777		return -ENOMEM;
 778	orig = opts;
 779
 780	while ((p = strsep(&opts, ",")) != NULL) {
 781		int token;
 782		if (!*p)
 783			continue;
 784
 785		token = match_token(p, tokens, args);
 786		switch (token) {
 787		case Opt_subvol:
 788			kfree(*subvol_name);
 789			*subvol_name = match_strdup(&args[0]);
 790			if (!*subvol_name) {
 791				error = -ENOMEM;
 792				goto out;
 793			}
 794			break;
 795		case Opt_subvolid:
 796			num = match_strdup(&args[0]);
 797			if (num) {
 798				*subvol_objectid = memparse(num, NULL);
 799				kfree(num);
 800				/* we want the original fs_tree */
 801				if (!*subvol_objectid)
 802					*subvol_objectid =
 803						BTRFS_FS_TREE_OBJECTID;
 804			} else {
 805				error = -EINVAL;
 806				goto out;
 807			}
 808			break;
 809		case Opt_subvolrootid:
 810			printk(KERN_WARNING
 811				"BTRFS: 'subvolrootid' mount option is deprecated and has "
 812				"no effect\n");
 
 
 
 
 
 
 
 813			break;
 814		case Opt_device:
 815			device_name = match_strdup(&args[0]);
 816			if (!device_name) {
 817				error = -ENOMEM;
 818				goto out;
 819			}
 820			error = btrfs_scan_one_device(device_name,
 821					flags, holder, fs_devices);
 822			kfree(device_name);
 823			if (error)
 824				goto out;
 825			break;
 826		default:
 827			break;
 828		}
 829	}
 830
 831out:
 832	kfree(orig);
 
 
 
 
 
 
 
 
 
 
 
 833	return error;
 834}
 835
 836static struct dentry *get_default_root(struct super_block *sb,
 837				       u64 subvol_objectid)
 838{
 839	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 840	struct btrfs_root *root = fs_info->tree_root;
 841	struct btrfs_root *new_root;
 842	struct btrfs_dir_item *di;
 843	struct btrfs_path *path;
 844	struct btrfs_key location;
 845	struct inode *inode;
 846	struct dentry *dentry;
 847	u64 dir_id;
 848	int new = 0;
 849
 850	/*
 851	 * We have a specific subvol we want to mount, just setup location and
 852	 * go look up the root.
 853	 */
 854	if (subvol_objectid) {
 855		location.objectid = subvol_objectid;
 856		location.type = BTRFS_ROOT_ITEM_KEY;
 857		location.offset = (u64)-1;
 858		goto find_root;
 859	}
 860
 861	path = btrfs_alloc_path();
 862	if (!path)
 863		return ERR_PTR(-ENOMEM);
 864	path->leave_spinning = 1;
 865
 866	/*
 867	 * Find the "default" dir item which points to the root item that we
 868	 * will mount by default if we haven't been given a specific subvolume
 869	 * to mount.
 870	 */
 871	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 872	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
 873	if (IS_ERR(di)) {
 874		btrfs_free_path(path);
 875		return ERR_CAST(di);
 876	}
 877	if (!di) {
 878		/*
 879		 * Ok the default dir item isn't there.  This is weird since
 880		 * it's always been there, but don't freak out, just try and
 881		 * mount to root most subvolume.
 882		 */
 883		btrfs_free_path(path);
 884		dir_id = BTRFS_FIRST_FREE_OBJECTID;
 885		new_root = fs_info->fs_root;
 886		goto setup_root;
 887	}
 888
 889	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 890	btrfs_free_path(path);
 891
 892find_root:
 893	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
 894	if (IS_ERR(new_root))
 895		return ERR_CAST(new_root);
 896
 
 
 
 897	dir_id = btrfs_root_dirid(&new_root->root_item);
 898setup_root:
 899	location.objectid = dir_id;
 900	location.type = BTRFS_INODE_ITEM_KEY;
 901	location.offset = 0;
 902
 903	inode = btrfs_iget(sb, &location, new_root, &new);
 904	if (IS_ERR(inode))
 905		return ERR_CAST(inode);
 906
 907	/*
 908	 * If we're just mounting the root most subvol put the inode and return
 909	 * a reference to the dentry.  We will have already gotten a reference
 910	 * to the inode in btrfs_fill_super so we're good to go.
 911	 */
 912	if (!new && sb->s_root->d_inode == inode) {
 913		iput(inode);
 914		return dget(sb->s_root);
 915	}
 916
 917	dentry = d_obtain_alias(inode);
 918	if (!IS_ERR(dentry)) {
 919		spin_lock(&dentry->d_lock);
 920		dentry->d_flags &= ~DCACHE_DISCONNECTED;
 921		spin_unlock(&dentry->d_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922	}
 
 923	return dentry;
 924}
 925
 926static int btrfs_fill_super(struct super_block *sb,
 927			    struct btrfs_fs_devices *fs_devices,
 928			    void *data, int silent)
 929{
 930	struct inode *inode;
 931	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
 932	struct btrfs_key key;
 933	int err;
 934
 935	sb->s_maxbytes = MAX_LFS_FILESIZE;
 936	sb->s_magic = BTRFS_SUPER_MAGIC;
 937	sb->s_op = &btrfs_super_ops;
 938	sb->s_d_op = &btrfs_dentry_operations;
 939	sb->s_export_op = &btrfs_export_ops;
 940	sb->s_xattr = btrfs_xattr_handlers;
 941	sb->s_time_gran = 1;
 942#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 943	sb->s_flags |= MS_POSIXACL;
 944#endif
 945	sb->s_flags |= MS_I_VERSION;
 946	err = open_ctree(sb, fs_devices, (char *)data);
 947	if (err) {
 948		printk(KERN_ERR "BTRFS: open_ctree failed\n");
 949		return err;
 
 950	}
 
 951
 952	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 953	key.type = BTRFS_INODE_ITEM_KEY;
 954	key.offset = 0;
 955	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
 956	if (IS_ERR(inode)) {
 957		err = PTR_ERR(inode);
 958		goto fail_close;
 959	}
 960
 961	sb->s_root = d_make_root(inode);
 962	if (!sb->s_root) {
 
 963		err = -ENOMEM;
 964		goto fail_close;
 965	}
 966
 
 
 967	save_mount_options(sb, data);
 968	cleancache_init_fs(sb);
 969	sb->s_flags |= MS_ACTIVE;
 970	return 0;
 971
 972fail_close:
 973	close_ctree(fs_info->tree_root);
 974	return err;
 975}
 976
 977int btrfs_sync_fs(struct super_block *sb, int wait)
 978{
 979	struct btrfs_trans_handle *trans;
 980	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 981	struct btrfs_root *root = fs_info->tree_root;
 982
 983	trace_btrfs_sync_fs(wait);
 984
 985	if (!wait) {
 986		filemap_flush(fs_info->btree_inode->i_mapping);
 987		return 0;
 988	}
 989
 990	btrfs_wait_ordered_roots(fs_info, -1);
 
 991
 992	trans = btrfs_attach_transaction_barrier(root);
 993	if (IS_ERR(trans)) {
 994		/* no transaction, don't bother */
 995		if (PTR_ERR(trans) == -ENOENT)
 996			return 0;
 997		return PTR_ERR(trans);
 998	}
 999	return btrfs_commit_transaction(trans, root);
1000}
1001
1002static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1003{
1004	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1005	struct btrfs_root *root = info->tree_root;
1006	char *compress_type;
1007
1008	if (btrfs_test_opt(root, DEGRADED))
1009		seq_puts(seq, ",degraded");
1010	if (btrfs_test_opt(root, NODATASUM))
1011		seq_puts(seq, ",nodatasum");
1012	if (btrfs_test_opt(root, NODATACOW))
1013		seq_puts(seq, ",nodatacow");
1014	if (btrfs_test_opt(root, NOBARRIER))
1015		seq_puts(seq, ",nobarrier");
1016	if (info->max_inline != 8192 * 1024)
1017		seq_printf(seq, ",max_inline=%llu", info->max_inline);
 
1018	if (info->alloc_start != 0)
1019		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
 
1020	if (info->thread_pool_size !=  min_t(unsigned long,
1021					     num_online_cpus() + 2, 8))
1022		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1023	if (btrfs_test_opt(root, COMPRESS)) {
1024		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1025			compress_type = "zlib";
1026		else
1027			compress_type = "lzo";
1028		if (btrfs_test_opt(root, FORCE_COMPRESS))
1029			seq_printf(seq, ",compress-force=%s", compress_type);
1030		else
1031			seq_printf(seq, ",compress=%s", compress_type);
1032	}
1033	if (btrfs_test_opt(root, NOSSD))
1034		seq_puts(seq, ",nossd");
1035	if (btrfs_test_opt(root, SSD_SPREAD))
1036		seq_puts(seq, ",ssd_spread");
1037	else if (btrfs_test_opt(root, SSD))
1038		seq_puts(seq, ",ssd");
1039	if (btrfs_test_opt(root, NOTREELOG))
1040		seq_puts(seq, ",notreelog");
1041	if (btrfs_test_opt(root, FLUSHONCOMMIT))
1042		seq_puts(seq, ",flushoncommit");
1043	if (btrfs_test_opt(root, DISCARD))
1044		seq_puts(seq, ",discard");
1045	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1046		seq_puts(seq, ",noacl");
1047	if (btrfs_test_opt(root, SPACE_CACHE))
1048		seq_puts(seq, ",space_cache");
1049	else
1050		seq_puts(seq, ",nospace_cache");
1051	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1052		seq_puts(seq, ",rescan_uuid_tree");
1053	if (btrfs_test_opt(root, CLEAR_CACHE))
1054		seq_puts(seq, ",clear_cache");
1055	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1056		seq_puts(seq, ",user_subvol_rm_allowed");
1057	if (btrfs_test_opt(root, ENOSPC_DEBUG))
1058		seq_puts(seq, ",enospc_debug");
1059	if (btrfs_test_opt(root, AUTO_DEFRAG))
1060		seq_puts(seq, ",autodefrag");
1061	if (btrfs_test_opt(root, INODE_MAP_CACHE))
1062		seq_puts(seq, ",inode_cache");
1063	if (btrfs_test_opt(root, SKIP_BALANCE))
1064		seq_puts(seq, ",skip_balance");
1065	if (btrfs_test_opt(root, RECOVERY))
1066		seq_puts(seq, ",recovery");
1067#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1068	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1069		seq_puts(seq, ",check_int_data");
1070	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1071		seq_puts(seq, ",check_int");
1072	if (info->check_integrity_print_mask)
1073		seq_printf(seq, ",check_int_print_mask=%d",
1074				info->check_integrity_print_mask);
1075#endif
1076	if (info->metadata_ratio)
1077		seq_printf(seq, ",metadata_ratio=%d",
1078				info->metadata_ratio);
1079	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1080		seq_puts(seq, ",fatal_errors=panic");
1081	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1082		seq_printf(seq, ",commit=%d", info->commit_interval);
1083	return 0;
1084}
1085
1086static int btrfs_test_super(struct super_block *s, void *data)
1087{
1088	struct btrfs_fs_info *p = data;
1089	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1090
1091	return fs_info->fs_devices == p->fs_devices;
 
 
 
 
 
 
1092}
1093
1094static int btrfs_set_super(struct super_block *s, void *data)
1095{
1096	int err = set_anon_super(s, data);
1097	if (!err)
1098		s->s_fs_info = data;
1099	return err;
1100}
1101
1102/*
1103 * subvolumes are identified by ino 256
1104 */
1105static inline int is_subvolume_inode(struct inode *inode)
1106{
1107	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1108		return 1;
1109	return 0;
1110}
1111
1112/*
1113 * This will strip out the subvol=%s argument for an argument string and add
1114 * subvolid=0 to make sure we get the actual tree root for path walking to the
1115 * subvol we want.
1116 */
1117static char *setup_root_args(char *args)
1118{
1119	unsigned len = strlen(args) + 2 + 1;
1120	char *src, *dst, *buf;
1121
1122	/*
1123	 * We need the same args as before, but with this substitution:
1124	 * s!subvol=[^,]+!subvolid=0!
1125	 *
1126	 * Since the replacement string is up to 2 bytes longer than the
1127	 * original, allocate strlen(args) + 2 + 1 bytes.
1128	 */
1129
1130	src = strstr(args, "subvol=");
1131	/* This shouldn't happen, but just in case.. */
1132	if (!src)
1133		return NULL;
1134
1135	buf = dst = kmalloc(len, GFP_NOFS);
1136	if (!buf)
1137		return NULL;
1138
1139	/*
1140	 * If the subvol= arg is not at the start of the string,
1141	 * copy whatever precedes it into buf.
1142	 */
1143	if (src != args) {
1144		*src++ = '\0';
1145		strcpy(buf, args);
1146		dst += strlen(args);
1147	}
1148
1149	strcpy(dst, "subvolid=0");
1150	dst += strlen("subvolid=0");
1151
1152	/*
1153	 * If there is a "," after the original subvol=... string,
1154	 * copy that suffix into our buffer.  Otherwise, we're done.
1155	 */
1156	src = strchr(src, ',');
1157	if (src)
1158		strcpy(dst, src);
1159
1160	return buf;
1161}
1162
1163static struct dentry *mount_subvol(const char *subvol_name, int flags,
1164				   const char *device_name, char *data)
1165{
1166	struct dentry *root;
1167	struct vfsmount *mnt;
1168	char *newargs;
1169
1170	newargs = setup_root_args(data);
1171	if (!newargs)
1172		return ERR_PTR(-ENOMEM);
1173	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1174			     newargs);
1175
1176	if (PTR_RET(mnt) == -EBUSY) {
1177		if (flags & MS_RDONLY) {
1178			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1179					     newargs);
1180		} else {
1181			int r;
1182			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1183					     newargs);
1184			if (IS_ERR(mnt)) {
1185				kfree(newargs);
1186				return ERR_CAST(mnt);
1187			}
1188
1189			r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1190			if (r < 0) {
1191				/* FIXME: release vfsmount mnt ??*/
1192				kfree(newargs);
1193				return ERR_PTR(r);
1194			}
1195		}
1196	}
1197
1198	kfree(newargs);
1199
1200	if (IS_ERR(mnt))
1201		return ERR_CAST(mnt);
1202
1203	root = mount_subtree(mnt, subvol_name);
1204
1205	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1206		struct super_block *s = root->d_sb;
1207		dput(root);
1208		root = ERR_PTR(-EINVAL);
1209		deactivate_locked_super(s);
1210		printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1211				subvol_name);
1212	}
1213
1214	return root;
1215}
1216
1217/*
1218 * Find a superblock for the given device / mount point.
1219 *
1220 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1221 *	  for multiple device setup.  Make sure to keep it in sync.
1222 */
1223static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1224		const char *device_name, void *data)
1225{
1226	struct block_device *bdev = NULL;
1227	struct super_block *s;
1228	struct dentry *root;
1229	struct btrfs_fs_devices *fs_devices = NULL;
 
1230	struct btrfs_fs_info *fs_info = NULL;
1231	fmode_t mode = FMODE_READ;
1232	char *subvol_name = NULL;
1233	u64 subvol_objectid = 0;
 
1234	int error = 0;
1235
1236	if (!(flags & MS_RDONLY))
1237		mode |= FMODE_WRITE;
1238
1239	error = btrfs_parse_early_options(data, mode, fs_type,
1240					  &subvol_name, &subvol_objectid,
1241					  &fs_devices);
1242	if (error) {
1243		kfree(subvol_name);
1244		return ERR_PTR(error);
1245	}
1246
1247	if (subvol_name) {
1248		root = mount_subvol(subvol_name, flags, device_name, data);
1249		kfree(subvol_name);
1250		return root;
1251	}
1252
1253	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1254	if (error)
1255		return ERR_PTR(error);
 
 
 
 
 
1256
1257	/*
1258	 * Setup a dummy root and fs_info for test/set super.  This is because
1259	 * we don't actually fill this stuff out until open_ctree, but we need
1260	 * it for searching for existing supers, so this lets us do that and
1261	 * then open_ctree will properly initialize everything later.
1262	 */
1263	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1264	if (!fs_info)
1265		return ERR_PTR(-ENOMEM);
1266
1267	fs_info->fs_devices = fs_devices;
1268
1269	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1270	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1271	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1272		error = -ENOMEM;
1273		goto error_fs_info;
1274	}
1275
1276	error = btrfs_open_devices(fs_devices, mode, fs_type);
1277	if (error)
1278		goto error_fs_info;
1279
1280	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1281		error = -EACCES;
1282		goto error_close_devices;
1283	}
 
 
 
1284
1285	bdev = fs_devices->latest_bdev;
1286	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1287		 fs_info);
1288	if (IS_ERR(s)) {
1289		error = PTR_ERR(s);
1290		goto error_close_devices;
1291	}
1292
1293	if (s->s_root) {
 
 
 
 
 
 
1294		btrfs_close_devices(fs_devices);
1295		free_fs_info(fs_info);
1296		if ((flags ^ s->s_flags) & MS_RDONLY)
1297			error = -EBUSY;
1298	} else {
1299		char b[BDEVNAME_SIZE];
1300
 
1301		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1302		btrfs_sb(s)->bdev_holder = fs_type;
1303		error = btrfs_fill_super(s, fs_devices, data,
1304					 flags & MS_SILENT ? 1 : 0);
 
 
 
 
 
 
 
1305	}
1306
1307	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1308	if (IS_ERR(root))
1309		deactivate_locked_super(s);
 
 
 
 
 
 
 
1310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311	return root;
1312
 
 
1313error_close_devices:
1314	btrfs_close_devices(fs_devices);
1315error_fs_info:
1316	free_fs_info(fs_info);
 
 
1317	return ERR_PTR(error);
1318}
1319
1320static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1321				     int new_pool_size, int old_pool_size)
1322{
1323	if (new_pool_size == old_pool_size)
1324		return;
1325
1326	fs_info->thread_pool_size = new_pool_size;
1327
1328	btrfs_info(fs_info, "resize thread pool %d -> %d",
1329	       old_pool_size, new_pool_size);
1330
1331	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1332	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1333	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1334	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1335	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1336	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1337	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1338				new_pool_size);
1339	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1340	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1341	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1342	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1343	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1344				new_pool_size);
1345}
1346
1347static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1348{
1349	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1350}
1351
1352static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1353				       unsigned long old_opts, int flags)
1354{
1355	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1356	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1357	     (flags & MS_RDONLY))) {
1358		/* wait for any defraggers to finish */
1359		wait_event(fs_info->transaction_wait,
1360			   (atomic_read(&fs_info->defrag_running) == 0));
1361		if (flags & MS_RDONLY)
1362			sync_filesystem(fs_info->sb);
1363	}
1364}
1365
1366static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1367					 unsigned long old_opts)
1368{
1369	/*
1370	 * We need cleanup all defragable inodes if the autodefragment is
1371	 * close or the fs is R/O.
1372	 */
1373	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1374	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1375	     (fs_info->sb->s_flags & MS_RDONLY))) {
1376		btrfs_cleanup_defrag_inodes(fs_info);
1377	}
1378
1379	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1380}
1381
1382static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1383{
1384	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1385	struct btrfs_root *root = fs_info->tree_root;
1386	unsigned old_flags = sb->s_flags;
1387	unsigned long old_opts = fs_info->mount_opt;
1388	unsigned long old_compress_type = fs_info->compress_type;
1389	u64 old_max_inline = fs_info->max_inline;
1390	u64 old_alloc_start = fs_info->alloc_start;
1391	int old_thread_pool_size = fs_info->thread_pool_size;
1392	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1393	int ret;
1394
1395	sync_filesystem(sb);
1396	btrfs_remount_prepare(fs_info);
1397
1398	ret = btrfs_parse_options(root, data);
1399	if (ret) {
1400		ret = -EINVAL;
1401		goto restore;
1402	}
1403
1404	btrfs_remount_begin(fs_info, old_opts, *flags);
1405	btrfs_resize_thread_pool(fs_info,
1406		fs_info->thread_pool_size, old_thread_pool_size);
1407
1408	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1409		goto out;
1410
1411	if (*flags & MS_RDONLY) {
1412		/*
1413		 * this also happens on 'umount -rf' or on shutdown, when
1414		 * the filesystem is busy.
1415		 */
1416
1417		/* wait for the uuid_scan task to finish */
1418		down(&fs_info->uuid_tree_rescan_sem);
1419		/* avoid complains from lockdep et al. */
1420		up(&fs_info->uuid_tree_rescan_sem);
1421
1422		sb->s_flags |= MS_RDONLY;
1423
1424		btrfs_dev_replace_suspend_for_unmount(fs_info);
1425		btrfs_scrub_cancel(fs_info);
1426		btrfs_pause_balance(fs_info);
1427
1428		ret = btrfs_commit_super(root);
1429		if (ret)
1430			goto restore;
1431	} else {
1432		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1433			btrfs_err(fs_info,
1434				"Remounting read-write after error is not allowed");
1435			ret = -EINVAL;
1436			goto restore;
1437		}
1438		if (fs_info->fs_devices->rw_devices == 0) {
1439			ret = -EACCES;
1440			goto restore;
1441		}
1442
1443		if (fs_info->fs_devices->missing_devices >
1444		     fs_info->num_tolerated_disk_barrier_failures &&
1445		    !(*flags & MS_RDONLY)) {
1446			btrfs_warn(fs_info,
1447				"too many missing devices, writeable remount is not allowed");
1448			ret = -EACCES;
1449			goto restore;
1450		}
1451
1452		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1453			ret = -EINVAL;
1454			goto restore;
1455		}
1456
1457		ret = btrfs_cleanup_fs_roots(fs_info);
1458		if (ret)
1459			goto restore;
1460
1461		/* recover relocation */
1462		ret = btrfs_recover_relocation(root);
1463		if (ret)
1464			goto restore;
1465
1466		ret = btrfs_resume_balance_async(fs_info);
1467		if (ret)
1468			goto restore;
1469
1470		ret = btrfs_resume_dev_replace_async(fs_info);
1471		if (ret) {
1472			btrfs_warn(fs_info, "failed to resume dev_replace");
1473			goto restore;
1474		}
1475
1476		if (!fs_info->uuid_root) {
1477			btrfs_info(fs_info, "creating UUID tree");
1478			ret = btrfs_create_uuid_tree(fs_info);
1479			if (ret) {
1480				btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1481				goto restore;
1482			}
1483		}
1484		sb->s_flags &= ~MS_RDONLY;
1485	}
1486out:
1487	wake_up_process(fs_info->transaction_kthread);
1488	btrfs_remount_cleanup(fs_info, old_opts);
1489	return 0;
1490
1491restore:
1492	/* We've hit an error - don't reset MS_RDONLY */
1493	if (sb->s_flags & MS_RDONLY)
1494		old_flags |= MS_RDONLY;
1495	sb->s_flags = old_flags;
1496	fs_info->mount_opt = old_opts;
1497	fs_info->compress_type = old_compress_type;
1498	fs_info->max_inline = old_max_inline;
1499	mutex_lock(&fs_info->chunk_mutex);
1500	fs_info->alloc_start = old_alloc_start;
1501	mutex_unlock(&fs_info->chunk_mutex);
1502	btrfs_resize_thread_pool(fs_info,
1503		old_thread_pool_size, fs_info->thread_pool_size);
1504	fs_info->metadata_ratio = old_metadata_ratio;
1505	btrfs_remount_cleanup(fs_info, old_opts);
1506	return ret;
1507}
1508
1509/* Used to sort the devices by max_avail(descending sort) */
1510static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1511				       const void *dev_info2)
1512{
1513	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1514	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1515		return -1;
1516	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1517		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1518		return 1;
1519	else
1520	return 0;
1521}
1522
1523/*
1524 * sort the devices by max_avail, in which max free extent size of each device
1525 * is stored.(Descending Sort)
1526 */
1527static inline void btrfs_descending_sort_devices(
1528					struct btrfs_device_info *devices,
1529					size_t nr_devices)
1530{
1531	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1532	     btrfs_cmp_device_free_bytes, NULL);
1533}
1534
1535/*
1536 * The helper to calc the free space on the devices that can be used to store
1537 * file data.
1538 */
1539static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1540{
1541	struct btrfs_fs_info *fs_info = root->fs_info;
1542	struct btrfs_device_info *devices_info;
1543	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1544	struct btrfs_device *device;
1545	u64 skip_space;
1546	u64 type;
1547	u64 avail_space;
1548	u64 used_space;
1549	u64 min_stripe_size;
1550	int min_stripes = 1, num_stripes = 1;
1551	int i = 0, nr_devices;
1552	int ret;
1553
1554	nr_devices = fs_info->fs_devices->open_devices;
1555	BUG_ON(!nr_devices);
1556
1557	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1558			       GFP_NOFS);
1559	if (!devices_info)
1560		return -ENOMEM;
1561
1562	/* calc min stripe number for data space alloction */
1563	type = btrfs_get_alloc_profile(root, 1);
1564	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1565		min_stripes = 2;
1566		num_stripes = nr_devices;
1567	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1568		min_stripes = 2;
1569		num_stripes = 2;
1570	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1571		min_stripes = 4;
1572		num_stripes = 4;
1573	}
1574
1575	if (type & BTRFS_BLOCK_GROUP_DUP)
1576		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1577	else
1578		min_stripe_size = BTRFS_STRIPE_LEN;
1579
1580	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1581		if (!device->in_fs_metadata || !device->bdev ||
1582		    device->is_tgtdev_for_dev_replace)
1583			continue;
1584
1585		avail_space = device->total_bytes - device->bytes_used;
1586
1587		/* align with stripe_len */
1588		do_div(avail_space, BTRFS_STRIPE_LEN);
1589		avail_space *= BTRFS_STRIPE_LEN;
1590
1591		/*
1592		 * In order to avoid overwritting the superblock on the drive,
1593		 * btrfs starts at an offset of at least 1MB when doing chunk
1594		 * allocation.
1595		 */
1596		skip_space = 1024 * 1024;
1597
1598		/* user can set the offset in fs_info->alloc_start. */
1599		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1600		    device->total_bytes)
1601			skip_space = max(fs_info->alloc_start, skip_space);
1602
1603		/*
1604		 * btrfs can not use the free space in [0, skip_space - 1],
1605		 * we must subtract it from the total. In order to implement
1606		 * it, we account the used space in this range first.
1607		 */
1608		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1609						     &used_space);
1610		if (ret) {
1611			kfree(devices_info);
1612			return ret;
1613		}
1614
1615		/* calc the free space in [0, skip_space - 1] */
1616		skip_space -= used_space;
1617
1618		/*
1619		 * we can use the free space in [0, skip_space - 1], subtract
1620		 * it from the total.
1621		 */
1622		if (avail_space && avail_space >= skip_space)
1623			avail_space -= skip_space;
1624		else
1625			avail_space = 0;
1626
1627		if (avail_space < min_stripe_size)
1628			continue;
1629
1630		devices_info[i].dev = device;
1631		devices_info[i].max_avail = avail_space;
1632
1633		i++;
1634	}
1635
1636	nr_devices = i;
1637
1638	btrfs_descending_sort_devices(devices_info, nr_devices);
1639
1640	i = nr_devices - 1;
1641	avail_space = 0;
1642	while (nr_devices >= min_stripes) {
1643		if (num_stripes > nr_devices)
1644			num_stripes = nr_devices;
1645
1646		if (devices_info[i].max_avail >= min_stripe_size) {
1647			int j;
1648			u64 alloc_size;
1649
1650			avail_space += devices_info[i].max_avail * num_stripes;
1651			alloc_size = devices_info[i].max_avail;
1652			for (j = i + 1 - num_stripes; j <= i; j++)
1653				devices_info[j].max_avail -= alloc_size;
1654		}
1655		i--;
1656		nr_devices--;
1657	}
1658
1659	kfree(devices_info);
1660	*free_bytes = avail_space;
1661	return 0;
1662}
1663
1664static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1665{
1666	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1667	struct btrfs_super_block *disk_super = fs_info->super_copy;
1668	struct list_head *head = &fs_info->space_info;
1669	struct btrfs_space_info *found;
1670	u64 total_used = 0;
1671	u64 total_free_data = 0;
1672	int bits = dentry->d_sb->s_blocksize_bits;
1673	__be32 *fsid = (__be32 *)fs_info->fsid;
1674	int ret;
1675
1676	/* holding chunk_muext to avoid allocating new chunks */
1677	mutex_lock(&fs_info->chunk_mutex);
1678	rcu_read_lock();
1679	list_for_each_entry_rcu(found, head, list) {
1680		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1681			total_free_data += found->disk_total - found->disk_used;
1682			total_free_data -=
1683				btrfs_account_ro_block_groups_free_space(found);
1684		}
1685
1686		total_used += found->disk_used;
1687	}
1688	rcu_read_unlock();
1689
1690	buf->f_namelen = BTRFS_NAME_LEN;
1691	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1692	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1693	buf->f_bsize = dentry->d_sb->s_blocksize;
1694	buf->f_type = BTRFS_SUPER_MAGIC;
1695	buf->f_bavail = total_free_data;
1696	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1697	if (ret) {
1698		mutex_unlock(&fs_info->chunk_mutex);
1699		return ret;
1700	}
1701	buf->f_bavail += total_free_data;
1702	buf->f_bavail = buf->f_bavail >> bits;
1703	mutex_unlock(&fs_info->chunk_mutex);
1704
1705	/* We treat it as constant endianness (it doesn't matter _which_)
1706	   because we want the fsid to come out the same whether mounted
1707	   on a big-endian or little-endian host */
1708	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1709	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1710	/* Mask in the root object ID too, to disambiguate subvols */
1711	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1712	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1713
1714	return 0;
1715}
1716
1717static void btrfs_kill_super(struct super_block *sb)
1718{
1719	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1720	kill_anon_super(sb);
1721	free_fs_info(fs_info);
1722}
1723
1724static struct file_system_type btrfs_fs_type = {
1725	.owner		= THIS_MODULE,
1726	.name		= "btrfs",
1727	.mount		= btrfs_mount,
1728	.kill_sb	= btrfs_kill_super,
1729	.fs_flags	= FS_REQUIRES_DEV,
1730};
1731MODULE_ALIAS_FS("btrfs");
1732
1733/*
1734 * used by btrfsctl to scan devices when no FS is mounted
1735 */
1736static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1737				unsigned long arg)
1738{
1739	struct btrfs_ioctl_vol_args *vol;
1740	struct btrfs_fs_devices *fs_devices;
1741	int ret = -ENOTTY;
1742
1743	if (!capable(CAP_SYS_ADMIN))
1744		return -EPERM;
1745
1746	vol = memdup_user((void __user *)arg, sizeof(*vol));
1747	if (IS_ERR(vol))
1748		return PTR_ERR(vol);
1749
1750	switch (cmd) {
1751	case BTRFS_IOC_SCAN_DEV:
1752		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1753					    &btrfs_fs_type, &fs_devices);
1754		break;
1755	case BTRFS_IOC_DEVICES_READY:
1756		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1757					    &btrfs_fs_type, &fs_devices);
1758		if (ret)
1759			break;
1760		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1761		break;
1762	}
1763
1764	kfree(vol);
1765	return ret;
1766}
1767
1768static int btrfs_freeze(struct super_block *sb)
1769{
1770	struct btrfs_trans_handle *trans;
1771	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1772
1773	trans = btrfs_attach_transaction_barrier(root);
1774	if (IS_ERR(trans)) {
1775		/* no transaction, don't bother */
1776		if (PTR_ERR(trans) == -ENOENT)
1777			return 0;
1778		return PTR_ERR(trans);
1779	}
1780	return btrfs_commit_transaction(trans, root);
1781}
1782
1783static int btrfs_unfreeze(struct super_block *sb)
1784{
1785	return 0;
1786}
1787
1788static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1789{
1790	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1791	struct btrfs_fs_devices *cur_devices;
1792	struct btrfs_device *dev, *first_dev = NULL;
1793	struct list_head *head;
1794	struct rcu_string *name;
1795
1796	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1797	cur_devices = fs_info->fs_devices;
1798	while (cur_devices) {
1799		head = &cur_devices->devices;
1800		list_for_each_entry(dev, head, dev_list) {
1801			if (dev->missing)
1802				continue;
1803			if (!first_dev || dev->devid < first_dev->devid)
1804				first_dev = dev;
1805		}
1806		cur_devices = cur_devices->seed;
1807	}
1808
1809	if (first_dev) {
1810		rcu_read_lock();
1811		name = rcu_dereference(first_dev->name);
1812		seq_escape(m, name->str, " \t\n\\");
1813		rcu_read_unlock();
1814	} else {
1815		WARN_ON(1);
1816	}
1817	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1818	return 0;
1819}
1820
1821static const struct super_operations btrfs_super_ops = {
1822	.drop_inode	= btrfs_drop_inode,
1823	.evict_inode	= btrfs_evict_inode,
1824	.put_super	= btrfs_put_super,
1825	.sync_fs	= btrfs_sync_fs,
1826	.show_options	= btrfs_show_options,
1827	.show_devname	= btrfs_show_devname,
1828	.write_inode	= btrfs_write_inode,
 
1829	.alloc_inode	= btrfs_alloc_inode,
1830	.destroy_inode	= btrfs_destroy_inode,
1831	.statfs		= btrfs_statfs,
1832	.remount_fs	= btrfs_remount,
1833	.freeze_fs	= btrfs_freeze,
1834	.unfreeze_fs	= btrfs_unfreeze,
1835};
1836
1837static const struct file_operations btrfs_ctl_fops = {
1838	.unlocked_ioctl	 = btrfs_control_ioctl,
1839	.compat_ioctl = btrfs_control_ioctl,
1840	.owner	 = THIS_MODULE,
1841	.llseek = noop_llseek,
1842};
1843
1844static struct miscdevice btrfs_misc = {
1845	.minor		= BTRFS_MINOR,
1846	.name		= "btrfs-control",
1847	.fops		= &btrfs_ctl_fops
1848};
1849
1850MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1851MODULE_ALIAS("devname:btrfs-control");
1852
1853static int btrfs_interface_init(void)
1854{
1855	return misc_register(&btrfs_misc);
1856}
1857
1858static void btrfs_interface_exit(void)
1859{
1860	if (misc_deregister(&btrfs_misc) < 0)
1861		printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1862}
1863
1864static void btrfs_print_info(void)
1865{
1866	printk(KERN_INFO "Btrfs loaded"
1867#ifdef CONFIG_BTRFS_DEBUG
1868			", debug=on"
1869#endif
1870#ifdef CONFIG_BTRFS_ASSERT
1871			", assert=on"
1872#endif
1873#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1874			", integrity-checker=on"
1875#endif
1876			"\n");
1877}
1878
1879static int btrfs_run_sanity_tests(void)
1880{
1881	int ret;
1882
1883	ret = btrfs_init_test_fs();
1884	if (ret)
1885		return ret;
1886
1887	ret = btrfs_test_free_space_cache();
1888	if (ret)
1889		goto out;
1890	ret = btrfs_test_extent_buffer_operations();
1891	if (ret)
1892		goto out;
1893	ret = btrfs_test_extent_io();
1894	if (ret)
1895		goto out;
1896	ret = btrfs_test_inodes();
1897out:
1898	btrfs_destroy_test_fs();
1899	return ret;
1900}
1901
1902static int __init init_btrfs_fs(void)
1903{
1904	int err;
1905
1906	err = btrfs_hash_init();
1907	if (err)
1908		return err;
1909
1910	btrfs_props_init();
1911
1912	err = btrfs_init_sysfs();
1913	if (err)
1914		goto free_hash;
1915
1916	btrfs_init_compress();
1917
1918	err = btrfs_init_cachep();
1919	if (err)
1920		goto free_compress;
1921
1922	err = extent_io_init();
1923	if (err)
1924		goto free_cachep;
1925
1926	err = extent_map_init();
1927	if (err)
1928		goto free_extent_io;
1929
1930	err = ordered_data_init();
1931	if (err)
1932		goto free_extent_map;
1933
1934	err = btrfs_delayed_inode_init();
1935	if (err)
1936		goto free_ordered_data;
1937
1938	err = btrfs_auto_defrag_init();
1939	if (err)
1940		goto free_delayed_inode;
1941
1942	err = btrfs_delayed_ref_init();
1943	if (err)
1944		goto free_auto_defrag;
1945
1946	err = btrfs_prelim_ref_init();
1947	if (err)
1948		goto free_prelim_ref;
1949
1950	err = btrfs_interface_init();
1951	if (err)
1952		goto free_delayed_ref;
1953
1954	btrfs_init_lockdep();
1955
1956	btrfs_print_info();
1957
1958	err = btrfs_run_sanity_tests();
1959	if (err)
1960		goto unregister_ioctl;
1961
1962	err = register_filesystem(&btrfs_fs_type);
1963	if (err)
1964		goto unregister_ioctl;
1965
 
1966	return 0;
1967
1968unregister_ioctl:
1969	btrfs_interface_exit();
1970free_prelim_ref:
1971	btrfs_prelim_ref_exit();
1972free_delayed_ref:
1973	btrfs_delayed_ref_exit();
1974free_auto_defrag:
1975	btrfs_auto_defrag_exit();
1976free_delayed_inode:
1977	btrfs_delayed_inode_exit();
1978free_ordered_data:
1979	ordered_data_exit();
1980free_extent_map:
1981	extent_map_exit();
1982free_extent_io:
1983	extent_io_exit();
1984free_cachep:
1985	btrfs_destroy_cachep();
1986free_compress:
1987	btrfs_exit_compress();
 
1988	btrfs_exit_sysfs();
1989free_hash:
1990	btrfs_hash_exit();
1991	return err;
1992}
1993
1994static void __exit exit_btrfs_fs(void)
1995{
1996	btrfs_destroy_cachep();
1997	btrfs_delayed_ref_exit();
1998	btrfs_auto_defrag_exit();
1999	btrfs_delayed_inode_exit();
2000	btrfs_prelim_ref_exit();
2001	ordered_data_exit();
2002	extent_map_exit();
2003	extent_io_exit();
2004	btrfs_interface_exit();
2005	unregister_filesystem(&btrfs_fs_type);
2006	btrfs_exit_sysfs();
2007	btrfs_cleanup_fs_uuids();
2008	btrfs_exit_compress();
2009	btrfs_hash_exit();
2010}
2011
2012late_initcall(init_btrfs_fs);
2013module_exit(exit_btrfs_fs)
2014
2015MODULE_LICENSE("GPL");