Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
 
  43#include "compat.h"
  44#include "delayed-inode.h"
  45#include "ctree.h"
  46#include "disk-io.h"
  47#include "transaction.h"
  48#include "btrfs_inode.h"
  49#include "ioctl.h"
  50#include "print-tree.h"
  51#include "xattr.h"
  52#include "volumes.h"
  53#include "version.h"
  54#include "export.h"
  55#include "compression.h"
 
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/btrfs.h>
  59
  60static const struct super_operations btrfs_super_ops;
 
  61
  62static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
  63				      char nbuf[16])
  64{
  65	char *errstr = NULL;
  66
  67	switch (errno) {
  68	case -EIO:
  69		errstr = "IO failure";
  70		break;
  71	case -ENOMEM:
  72		errstr = "Out of memory";
  73		break;
  74	case -EROFS:
  75		errstr = "Readonly filesystem";
  76		break;
 
 
 
  77	default:
  78		if (nbuf) {
  79			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
  80				errstr = nbuf;
  81		}
  82		break;
  83	}
  84
  85	return errstr;
  86}
  87
  88static void __save_error_info(struct btrfs_fs_info *fs_info)
  89{
  90	/*
  91	 * today we only save the error info into ram.  Long term we'll
  92	 * also send it down to the disk
  93	 */
  94	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
  95}
  96
  97/* NOTE:
  98 *	We move write_super stuff at umount in order to avoid deadlock
  99 *	for umount hold all lock.
 100 */
 101static void save_error_info(struct btrfs_fs_info *fs_info)
 102{
 103	__save_error_info(fs_info);
 104}
 105
 106/* btrfs handle error by forcing the filesystem readonly */
 107static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 108{
 109	struct super_block *sb = fs_info->sb;
 110
 111	if (sb->s_flags & MS_RDONLY)
 112		return;
 113
 114	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
 115		sb->s_flags |= MS_RDONLY;
 116		printk(KERN_INFO "btrfs is forced readonly\n");
 
 
 117	}
 118}
 119
 120/*
 121 * __btrfs_std_error decodes expected errors from the caller and
 122 * invokes the approciate error response.
 123 */
 124void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 125		     unsigned int line, int errno)
 126{
 127	struct super_block *sb = fs_info->sb;
 128	char nbuf[16];
 129	const char *errstr;
 
 
 130
 131	/*
 132	 * Special case: if the error is EROFS, and we're already
 133	 * under MS_RDONLY, then it is safe here.
 134	 */
 135	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 136		return;
 137
 138	errstr = btrfs_decode_error(fs_info, errno, nbuf);
 139	printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
 140		sb->s_id, function, line, errstr);
 141	save_error_info(fs_info);
 
 
 142
 143	btrfs_handle_error(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144}
 145
 146static void btrfs_put_super(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147{
 148	struct btrfs_root *root = btrfs_sb(sb);
 149	int ret;
 
 
 
 
 
 
 
 
 
 150
 151	ret = close_ctree(root);
 152	sb->s_fs_info = NULL;
 
 
 
 
 
 
 
 
 153
 154	(void)ret; /* FIXME: need to fix VFS to return error? */
 
 
 
 
 
 
 
 
 155}
 156
 157enum {
 158	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 159	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 160	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 161	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 162	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 163	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
 164	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
 165	Opt_inode_cache, Opt_err,
 
 
 
 166};
 167
 168static match_table_t tokens = {
 169	{Opt_degraded, "degraded"},
 170	{Opt_subvol, "subvol=%s"},
 171	{Opt_subvolid, "subvolid=%d"},
 172	{Opt_device, "device=%s"},
 173	{Opt_nodatasum, "nodatasum"},
 174	{Opt_nodatacow, "nodatacow"},
 175	{Opt_nobarrier, "nobarrier"},
 176	{Opt_max_inline, "max_inline=%s"},
 177	{Opt_alloc_start, "alloc_start=%s"},
 178	{Opt_thread_pool, "thread_pool=%d"},
 179	{Opt_compress, "compress"},
 180	{Opt_compress_type, "compress=%s"},
 181	{Opt_compress_force, "compress-force"},
 182	{Opt_compress_force_type, "compress-force=%s"},
 183	{Opt_ssd, "ssd"},
 184	{Opt_ssd_spread, "ssd_spread"},
 185	{Opt_nossd, "nossd"},
 186	{Opt_noacl, "noacl"},
 187	{Opt_notreelog, "notreelog"},
 188	{Opt_flushoncommit, "flushoncommit"},
 189	{Opt_ratio, "metadata_ratio=%d"},
 190	{Opt_discard, "discard"},
 191	{Opt_space_cache, "space_cache"},
 192	{Opt_clear_cache, "clear_cache"},
 193	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 194	{Opt_enospc_debug, "enospc_debug"},
 195	{Opt_subvolrootid, "subvolrootid=%d"},
 196	{Opt_defrag, "autodefrag"},
 197	{Opt_inode_cache, "inode_cache"},
 
 
 
 
 
 
 
 198	{Opt_err, NULL},
 199};
 200
 201/*
 202 * Regular mount options parser.  Everything that is needed only when
 203 * reading in a new superblock is parsed here.
 
 204 */
 205int btrfs_parse_options(struct btrfs_root *root, char *options)
 206{
 207	struct btrfs_fs_info *info = root->fs_info;
 208	substring_t args[MAX_OPT_ARGS];
 209	char *p, *num, *orig;
 
 210	int intarg;
 211	int ret = 0;
 212	char *compress_type;
 213	bool compress_force = false;
 214
 
 
 
 
 215	if (!options)
 216		return 0;
 217
 218	/*
 219	 * strsep changes the string, duplicate it because parse_options
 220	 * gets called twice
 221	 */
 222	options = kstrdup(options, GFP_NOFS);
 223	if (!options)
 224		return -ENOMEM;
 225
 226	orig = options;
 227
 228	while ((p = strsep(&options, ",")) != NULL) {
 229		int token;
 230		if (!*p)
 231			continue;
 232
 233		token = match_token(p, tokens, args);
 234		switch (token) {
 235		case Opt_degraded:
 236			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
 237			btrfs_set_opt(info->mount_opt, DEGRADED);
 238			break;
 239		case Opt_subvol:
 240		case Opt_subvolid:
 241		case Opt_subvolrootid:
 242		case Opt_device:
 243			/*
 244			 * These are parsed by btrfs_parse_early_options
 245			 * and can be happily ignored here.
 246			 */
 247			break;
 248		case Opt_nodatasum:
 249			printk(KERN_INFO "btrfs: setting nodatasum\n");
 250			btrfs_set_opt(info->mount_opt, NODATASUM);
 251			break;
 252		case Opt_nodatacow:
 253			printk(KERN_INFO "btrfs: setting nodatacow\n");
 254			btrfs_set_opt(info->mount_opt, NODATACOW);
 255			btrfs_set_opt(info->mount_opt, NODATASUM);
 256			break;
 257		case Opt_compress_force:
 258		case Opt_compress_force_type:
 259			compress_force = true;
 260		case Opt_compress:
 261		case Opt_compress_type:
 262			if (token == Opt_compress ||
 263			    token == Opt_compress_force ||
 264			    strcmp(args[0].from, "zlib") == 0) {
 265				compress_type = "zlib";
 266				info->compress_type = BTRFS_COMPRESS_ZLIB;
 267			} else if (strcmp(args[0].from, "lzo") == 0) {
 268				compress_type = "lzo";
 269				info->compress_type = BTRFS_COMPRESS_LZO;
 270			} else {
 271				ret = -EINVAL;
 272				goto out;
 273			}
 274
 275			btrfs_set_opt(info->mount_opt, COMPRESS);
 276			if (compress_force) {
 277				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 278				pr_info("btrfs: force %s compression\n",
 279					compress_type);
 280			} else
 281				pr_info("btrfs: use %s compression\n",
 282					compress_type);
 283			break;
 284		case Opt_ssd:
 285			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
 286			btrfs_set_opt(info->mount_opt, SSD);
 287			break;
 288		case Opt_ssd_spread:
 289			printk(KERN_INFO "btrfs: use spread ssd "
 290			       "allocation scheme\n");
 291			btrfs_set_opt(info->mount_opt, SSD);
 292			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
 293			break;
 294		case Opt_nossd:
 295			printk(KERN_INFO "btrfs: not using ssd allocation "
 296			       "scheme\n");
 297			btrfs_set_opt(info->mount_opt, NOSSD);
 298			btrfs_clear_opt(info->mount_opt, SSD);
 299			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
 300			break;
 301		case Opt_nobarrier:
 302			printk(KERN_INFO "btrfs: turning off barriers\n");
 303			btrfs_set_opt(info->mount_opt, NOBARRIER);
 304			break;
 305		case Opt_thread_pool:
 306			intarg = 0;
 307			match_int(&args[0], &intarg);
 308			if (intarg) {
 309				info->thread_pool_size = intarg;
 310				printk(KERN_INFO "btrfs: thread pool %d\n",
 311				       info->thread_pool_size);
 312			}
 313			break;
 314		case Opt_max_inline:
 315			num = match_strdup(&args[0]);
 316			if (num) {
 317				info->max_inline = memparse(num, NULL);
 318				kfree(num);
 319
 320				if (info->max_inline) {
 321					info->max_inline = max_t(u64,
 322						info->max_inline,
 323						root->sectorsize);
 324				}
 325				printk(KERN_INFO "btrfs: max_inline at %llu\n",
 326					(unsigned long long)info->max_inline);
 327			}
 328			break;
 329		case Opt_alloc_start:
 330			num = match_strdup(&args[0]);
 331			if (num) {
 332				info->alloc_start = memparse(num, NULL);
 333				kfree(num);
 334				printk(KERN_INFO
 335					"btrfs: allocations start at %llu\n",
 336					(unsigned long long)info->alloc_start);
 337			}
 338			break;
 339		case Opt_noacl:
 340			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
 341			break;
 342		case Opt_notreelog:
 343			printk(KERN_INFO "btrfs: disabling tree log\n");
 344			btrfs_set_opt(info->mount_opt, NOTREELOG);
 345			break;
 346		case Opt_flushoncommit:
 347			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
 348			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
 349			break;
 350		case Opt_ratio:
 351			intarg = 0;
 352			match_int(&args[0], &intarg);
 353			if (intarg) {
 354				info->metadata_ratio = intarg;
 355				printk(KERN_INFO "btrfs: metadata ratio %d\n",
 356				       info->metadata_ratio);
 357			}
 358			break;
 359		case Opt_discard:
 360			btrfs_set_opt(info->mount_opt, DISCARD);
 361			break;
 362		case Opt_space_cache:
 363			printk(KERN_INFO "btrfs: enabling disk space caching\n");
 364			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 365			break;
 
 
 
 
 366		case Opt_inode_cache:
 367			printk(KERN_INFO "btrfs: enabling inode map caching\n");
 368			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
 369			break;
 370		case Opt_clear_cache:
 371			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
 372			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
 373			break;
 374		case Opt_user_subvol_rm_allowed:
 375			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 376			break;
 377		case Opt_enospc_debug:
 378			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 379			break;
 380		case Opt_defrag:
 381			printk(KERN_INFO "btrfs: enabling auto defrag");
 382			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
 383			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384		case Opt_err:
 385			printk(KERN_INFO "btrfs: unrecognized mount option "
 386			       "'%s'\n", p);
 387			ret = -EINVAL;
 388			goto out;
 389		default:
 390			break;
 391		}
 392	}
 393out:
 
 
 394	kfree(orig);
 395	return ret;
 396}
 397
 398/*
 399 * Parse mount options that are required early in the mount process.
 400 *
 401 * All other options will be parsed on much later in the mount process and
 402 * only when we need to allocate a new super block.
 403 */
 404static int btrfs_parse_early_options(const char *options, fmode_t flags,
 405		void *holder, char **subvol_name, u64 *subvol_objectid,
 406		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
 407{
 408	substring_t args[MAX_OPT_ARGS];
 409	char *opts, *orig, *p;
 410	int error = 0;
 411	int intarg;
 412
 413	if (!options)
 414		goto out;
 415
 416	/*
 417	 * strsep changes the string, duplicate it because parse_options
 418	 * gets called twice
 419	 */
 420	opts = kstrdup(options, GFP_KERNEL);
 421	if (!opts)
 422		return -ENOMEM;
 423	orig = opts;
 424
 425	while ((p = strsep(&opts, ",")) != NULL) {
 426		int token;
 427		if (!*p)
 428			continue;
 429
 430		token = match_token(p, tokens, args);
 431		switch (token) {
 432		case Opt_subvol:
 
 433			*subvol_name = match_strdup(&args[0]);
 434			break;
 435		case Opt_subvolid:
 436			intarg = 0;
 437			error = match_int(&args[0], &intarg);
 438			if (!error) {
 439				/* we want the original fs_tree */
 440				if (!intarg)
 441					*subvol_objectid =
 442						BTRFS_FS_TREE_OBJECTID;
 443				else
 444					*subvol_objectid = intarg;
 445			}
 446			break;
 447		case Opt_subvolrootid:
 448			intarg = 0;
 449			error = match_int(&args[0], &intarg);
 450			if (!error) {
 451				/* we want the original fs_tree */
 452				if (!intarg)
 453					*subvol_rootid =
 454						BTRFS_FS_TREE_OBJECTID;
 455				else
 456					*subvol_rootid = intarg;
 457			}
 458			break;
 459		case Opt_device:
 460			error = btrfs_scan_one_device(match_strdup(&args[0]),
 
 
 
 
 
 461					flags, holder, fs_devices);
 
 462			if (error)
 463				goto out_free_opts;
 464			break;
 465		default:
 466			break;
 467		}
 468	}
 469
 470 out_free_opts:
 471	kfree(orig);
 472 out:
 473	/*
 474	 * If no subvolume name is specified we use the default one.  Allocate
 475	 * a copy of the string "." here so that code later in the
 476	 * mount path doesn't care if it's the default volume or another one.
 477	 */
 478	if (!*subvol_name) {
 479		*subvol_name = kstrdup(".", GFP_KERNEL);
 480		if (!*subvol_name)
 481			return -ENOMEM;
 482	}
 483	return error;
 484}
 485
 486static struct dentry *get_default_root(struct super_block *sb,
 487				       u64 subvol_objectid)
 488{
 489	struct btrfs_root *root = sb->s_fs_info;
 
 490	struct btrfs_root *new_root;
 491	struct btrfs_dir_item *di;
 492	struct btrfs_path *path;
 493	struct btrfs_key location;
 494	struct inode *inode;
 495	struct dentry *dentry;
 496	u64 dir_id;
 497	int new = 0;
 498
 499	/*
 500	 * We have a specific subvol we want to mount, just setup location and
 501	 * go look up the root.
 502	 */
 503	if (subvol_objectid) {
 504		location.objectid = subvol_objectid;
 505		location.type = BTRFS_ROOT_ITEM_KEY;
 506		location.offset = (u64)-1;
 507		goto find_root;
 508	}
 509
 510	path = btrfs_alloc_path();
 511	if (!path)
 512		return ERR_PTR(-ENOMEM);
 513	path->leave_spinning = 1;
 514
 515	/*
 516	 * Find the "default" dir item which points to the root item that we
 517	 * will mount by default if we haven't been given a specific subvolume
 518	 * to mount.
 519	 */
 520	dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
 521	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
 522	if (IS_ERR(di)) {
 523		btrfs_free_path(path);
 524		return ERR_CAST(di);
 525	}
 526	if (!di) {
 527		/*
 528		 * Ok the default dir item isn't there.  This is weird since
 529		 * it's always been there, but don't freak out, just try and
 530		 * mount to root most subvolume.
 531		 */
 532		btrfs_free_path(path);
 533		dir_id = BTRFS_FIRST_FREE_OBJECTID;
 534		new_root = root->fs_info->fs_root;
 535		goto setup_root;
 536	}
 537
 538	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 539	btrfs_free_path(path);
 540
 541find_root:
 542	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
 543	if (IS_ERR(new_root))
 544		return ERR_CAST(new_root);
 545
 546	if (btrfs_root_refs(&new_root->root_item) == 0)
 547		return ERR_PTR(-ENOENT);
 548
 549	dir_id = btrfs_root_dirid(&new_root->root_item);
 550setup_root:
 551	location.objectid = dir_id;
 552	location.type = BTRFS_INODE_ITEM_KEY;
 553	location.offset = 0;
 554
 555	inode = btrfs_iget(sb, &location, new_root, &new);
 556	if (IS_ERR(inode))
 557		return ERR_CAST(inode);
 558
 559	/*
 560	 * If we're just mounting the root most subvol put the inode and return
 561	 * a reference to the dentry.  We will have already gotten a reference
 562	 * to the inode in btrfs_fill_super so we're good to go.
 563	 */
 564	if (!new && sb->s_root->d_inode == inode) {
 565		iput(inode);
 566		return dget(sb->s_root);
 567	}
 568
 569	if (new) {
 570		const struct qstr name = { .name = "/", .len = 1 };
 571
 572		/*
 573		 * New inode, we need to make the dentry a sibling of s_root so
 574		 * everything gets cleaned up properly on unmount.
 575		 */
 576		dentry = d_alloc(sb->s_root, &name);
 577		if (!dentry) {
 578			iput(inode);
 579			return ERR_PTR(-ENOMEM);
 580		}
 581		d_splice_alias(inode, dentry);
 582	} else {
 583		/*
 584		 * We found the inode in cache, just find a dentry for it and
 585		 * put the reference to the inode we just got.
 586		 */
 587		dentry = d_find_alias(inode);
 588		iput(inode);
 589	}
 590
 591	return dentry;
 592}
 593
 594static int btrfs_fill_super(struct super_block *sb,
 595			    struct btrfs_fs_devices *fs_devices,
 596			    void *data, int silent)
 597{
 598	struct inode *inode;
 599	struct dentry *root_dentry;
 600	struct btrfs_root *tree_root;
 601	struct btrfs_key key;
 602	int err;
 603
 604	sb->s_maxbytes = MAX_LFS_FILESIZE;
 605	sb->s_magic = BTRFS_SUPER_MAGIC;
 606	sb->s_op = &btrfs_super_ops;
 607	sb->s_d_op = &btrfs_dentry_operations;
 608	sb->s_export_op = &btrfs_export_ops;
 609	sb->s_xattr = btrfs_xattr_handlers;
 610	sb->s_time_gran = 1;
 611#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 612	sb->s_flags |= MS_POSIXACL;
 613#endif
 614
 615	tree_root = open_ctree(sb, fs_devices, (char *)data);
 616
 617	if (IS_ERR(tree_root)) {
 618		printk("btrfs: open_ctree failed\n");
 619		return PTR_ERR(tree_root);
 620	}
 621	sb->s_fs_info = tree_root;
 622
 623	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 624	key.type = BTRFS_INODE_ITEM_KEY;
 625	key.offset = 0;
 626	inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
 627	if (IS_ERR(inode)) {
 628		err = PTR_ERR(inode);
 629		goto fail_close;
 630	}
 631
 632	root_dentry = d_alloc_root(inode);
 633	if (!root_dentry) {
 634		iput(inode);
 635		err = -ENOMEM;
 636		goto fail_close;
 637	}
 638
 639	sb->s_root = root_dentry;
 640
 641	save_mount_options(sb, data);
 642	cleancache_init_fs(sb);
 
 643	return 0;
 644
 645fail_close:
 646	close_ctree(tree_root);
 647	return err;
 648}
 649
 650int btrfs_sync_fs(struct super_block *sb, int wait)
 651{
 652	struct btrfs_trans_handle *trans;
 653	struct btrfs_root *root = btrfs_sb(sb);
 
 654	int ret;
 655
 656	trace_btrfs_sync_fs(wait);
 657
 658	if (!wait) {
 659		filemap_flush(root->fs_info->btree_inode->i_mapping);
 660		return 0;
 661	}
 662
 663	btrfs_start_delalloc_inodes(root, 0);
 664	btrfs_wait_ordered_extents(root, 0, 0);
 665
 666	trans = btrfs_start_transaction(root, 0);
 667	if (IS_ERR(trans))
 668		return PTR_ERR(trans);
 669	ret = btrfs_commit_transaction(trans, root);
 670	return ret;
 671}
 672
 673static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
 674{
 675	struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
 676	struct btrfs_fs_info *info = root->fs_info;
 677	char *compress_type;
 678
 679	if (btrfs_test_opt(root, DEGRADED))
 680		seq_puts(seq, ",degraded");
 681	if (btrfs_test_opt(root, NODATASUM))
 682		seq_puts(seq, ",nodatasum");
 683	if (btrfs_test_opt(root, NODATACOW))
 684		seq_puts(seq, ",nodatacow");
 685	if (btrfs_test_opt(root, NOBARRIER))
 686		seq_puts(seq, ",nobarrier");
 687	if (info->max_inline != 8192 * 1024)
 688		seq_printf(seq, ",max_inline=%llu",
 689			   (unsigned long long)info->max_inline);
 690	if (info->alloc_start != 0)
 691		seq_printf(seq, ",alloc_start=%llu",
 692			   (unsigned long long)info->alloc_start);
 693	if (info->thread_pool_size !=  min_t(unsigned long,
 694					     num_online_cpus() + 2, 8))
 695		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
 696	if (btrfs_test_opt(root, COMPRESS)) {
 697		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
 698			compress_type = "zlib";
 699		else
 700			compress_type = "lzo";
 701		if (btrfs_test_opt(root, FORCE_COMPRESS))
 702			seq_printf(seq, ",compress-force=%s", compress_type);
 703		else
 704			seq_printf(seq, ",compress=%s", compress_type);
 705	}
 706	if (btrfs_test_opt(root, NOSSD))
 707		seq_puts(seq, ",nossd");
 708	if (btrfs_test_opt(root, SSD_SPREAD))
 709		seq_puts(seq, ",ssd_spread");
 710	else if (btrfs_test_opt(root, SSD))
 711		seq_puts(seq, ",ssd");
 712	if (btrfs_test_opt(root, NOTREELOG))
 713		seq_puts(seq, ",notreelog");
 714	if (btrfs_test_opt(root, FLUSHONCOMMIT))
 715		seq_puts(seq, ",flushoncommit");
 716	if (btrfs_test_opt(root, DISCARD))
 717		seq_puts(seq, ",discard");
 718	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
 719		seq_puts(seq, ",noacl");
 720	if (btrfs_test_opt(root, SPACE_CACHE))
 721		seq_puts(seq, ",space_cache");
 
 
 722	if (btrfs_test_opt(root, CLEAR_CACHE))
 723		seq_puts(seq, ",clear_cache");
 724	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
 725		seq_puts(seq, ",user_subvol_rm_allowed");
 726	if (btrfs_test_opt(root, ENOSPC_DEBUG))
 727		seq_puts(seq, ",enospc_debug");
 728	if (btrfs_test_opt(root, AUTO_DEFRAG))
 729		seq_puts(seq, ",autodefrag");
 730	if (btrfs_test_opt(root, INODE_MAP_CACHE))
 731		seq_puts(seq, ",inode_cache");
 
 
 
 
 732	return 0;
 733}
 734
 735static int btrfs_test_super(struct super_block *s, void *data)
 736{
 737	struct btrfs_root *test_root = data;
 738	struct btrfs_root *root = btrfs_sb(s);
 739
 740	/*
 741	 * If this super block is going away, return false as it
 742	 * can't match as an existing super block.
 743	 */
 744	if (!atomic_read(&s->s_active))
 745		return 0;
 746	return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
 747}
 748
 749static int btrfs_set_super(struct super_block *s, void *data)
 750{
 751	s->s_fs_info = data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752
 753	return set_anon_super(s, data);
 
 
 
 
 
 
 
 
 
 
 
 754}
 755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757/*
 758 * Find a superblock for the given device / mount point.
 759 *
 760 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
 761 *	  for multiple device setup.  Make sure to keep it in sync.
 762 */
 763static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
 764		const char *device_name, void *data)
 765{
 766	struct block_device *bdev = NULL;
 767	struct super_block *s;
 768	struct dentry *root;
 769	struct btrfs_fs_devices *fs_devices = NULL;
 770	struct btrfs_root *tree_root = NULL;
 771	struct btrfs_fs_info *fs_info = NULL;
 772	fmode_t mode = FMODE_READ;
 773	char *subvol_name = NULL;
 774	u64 subvol_objectid = 0;
 775	u64 subvol_rootid = 0;
 776	int error = 0;
 777
 778	if (!(flags & MS_RDONLY))
 779		mode |= FMODE_WRITE;
 780
 781	error = btrfs_parse_early_options(data, mode, fs_type,
 782					  &subvol_name, &subvol_objectid,
 783					  &subvol_rootid, &fs_devices);
 784	if (error)
 
 785		return ERR_PTR(error);
 
 786
 787	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
 788	if (error)
 789		goto error_free_subvol_name;
 
 
 790
 791	error = btrfs_open_devices(fs_devices, mode, fs_type);
 792	if (error)
 793		goto error_free_subvol_name;
 794
 795	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
 796		error = -EACCES;
 797		goto error_close_devices;
 798	}
 799
 800	/*
 801	 * Setup a dummy root and fs_info for test/set super.  This is because
 802	 * we don't actually fill this stuff out until open_ctree, but we need
 803	 * it for searching for existing supers, so this lets us do that and
 804	 * then open_ctree will properly initialize everything later.
 805	 */
 806	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
 807	tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
 808	if (!fs_info || !tree_root) {
 
 
 
 
 
 
 809		error = -ENOMEM;
 
 
 
 
 
 
 
 
 
 810		goto error_close_devices;
 811	}
 812	fs_info->tree_root = tree_root;
 813	fs_info->fs_devices = fs_devices;
 814	tree_root->fs_info = fs_info;
 815
 816	bdev = fs_devices->latest_bdev;
 817	s = sget(fs_type, btrfs_test_super, btrfs_set_super, tree_root);
 818	if (IS_ERR(s))
 819		goto error_s;
 
 
 820
 821	if (s->s_root) {
 822		if ((flags ^ s->s_flags) & MS_RDONLY) {
 823			deactivate_locked_super(s);
 824			error = -EBUSY;
 825			goto error_close_devices;
 826		}
 827
 828		btrfs_close_devices(fs_devices);
 829		kfree(fs_info);
 830		kfree(tree_root);
 
 831	} else {
 832		char b[BDEVNAME_SIZE];
 833
 834		s->s_flags = flags | MS_NOSEC;
 835		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
 
 836		error = btrfs_fill_super(s, fs_devices, data,
 837					 flags & MS_SILENT ? 1 : 0);
 838		if (error) {
 839			deactivate_locked_super(s);
 840			goto error_free_subvol_name;
 841		}
 842
 843		btrfs_sb(s)->fs_info->bdev_holder = fs_type;
 844		s->s_flags |= MS_ACTIVE;
 845	}
 846
 847	/* if they gave us a subvolume name bind mount into that */
 848	if (strcmp(subvol_name, ".")) {
 849		struct dentry *new_root;
 850
 851		root = get_default_root(s, subvol_rootid);
 852		if (IS_ERR(root)) {
 853			error = PTR_ERR(root);
 854			deactivate_locked_super(s);
 855			goto error_free_subvol_name;
 856		}
 857
 858		mutex_lock(&root->d_inode->i_mutex);
 859		new_root = lookup_one_len(subvol_name, root,
 860				      strlen(subvol_name));
 861		mutex_unlock(&root->d_inode->i_mutex);
 862
 863		if (IS_ERR(new_root)) {
 864			dput(root);
 865			deactivate_locked_super(s);
 866			error = PTR_ERR(new_root);
 867			goto error_free_subvol_name;
 868		}
 869		if (!new_root->d_inode) {
 870			dput(root);
 871			dput(new_root);
 872			deactivate_locked_super(s);
 873			error = -ENXIO;
 874			goto error_free_subvol_name;
 875		}
 876		dput(root);
 877		root = new_root;
 878	} else {
 879		root = get_default_root(s, subvol_objectid);
 880		if (IS_ERR(root)) {
 881			error = PTR_ERR(root);
 882			deactivate_locked_super(s);
 883			goto error_free_subvol_name;
 884		}
 885	}
 886
 887	kfree(subvol_name);
 888	return root;
 889
 890error_s:
 891	error = PTR_ERR(s);
 892error_close_devices:
 893	btrfs_close_devices(fs_devices);
 894	kfree(fs_info);
 895	kfree(tree_root);
 896error_free_subvol_name:
 897	kfree(subvol_name);
 898	return ERR_PTR(error);
 899}
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901static int btrfs_remount(struct super_block *sb, int *flags, char *data)
 902{
 903	struct btrfs_root *root = btrfs_sb(sb);
 
 
 
 
 
 
 
 
 904	int ret;
 905
 906	ret = btrfs_parse_options(root, data);
 907	if (ret)
 908		return -EINVAL;
 
 
 
 
 
 909
 910	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 911		return 0;
 912
 913	if (*flags & MS_RDONLY) {
 914		sb->s_flags |= MS_RDONLY;
 915
 916		ret =  btrfs_commit_super(root);
 917		WARN_ON(ret);
 
 918	} else {
 919		if (root->fs_info->fs_devices->rw_devices == 0)
 920			return -EACCES;
 
 
 921
 922		if (btrfs_super_log_root(&root->fs_info->super_copy) != 0)
 923			return -EINVAL;
 
 
 924
 925		ret = btrfs_cleanup_fs_roots(root->fs_info);
 926		WARN_ON(ret);
 
 927
 928		/* recover relocation */
 929		ret = btrfs_recover_relocation(root);
 930		WARN_ON(ret);
 
 
 
 
 
 931
 932		sb->s_flags &= ~MS_RDONLY;
 933	}
 934
 935	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 936}
 937
 938/* Used to sort the devices by max_avail(descending sort) */
 939static int btrfs_cmp_device_free_bytes(const void *dev_info1,
 940				       const void *dev_info2)
 941{
 942	if (((struct btrfs_device_info *)dev_info1)->max_avail >
 943	    ((struct btrfs_device_info *)dev_info2)->max_avail)
 944		return -1;
 945	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
 946		 ((struct btrfs_device_info *)dev_info2)->max_avail)
 947		return 1;
 948	else
 949	return 0;
 950}
 951
 952/*
 953 * sort the devices by max_avail, in which max free extent size of each device
 954 * is stored.(Descending Sort)
 955 */
 956static inline void btrfs_descending_sort_devices(
 957					struct btrfs_device_info *devices,
 958					size_t nr_devices)
 959{
 960	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
 961	     btrfs_cmp_device_free_bytes, NULL);
 962}
 963
 964/*
 965 * The helper to calc the free space on the devices that can be used to store
 966 * file data.
 967 */
 968static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
 969{
 970	struct btrfs_fs_info *fs_info = root->fs_info;
 971	struct btrfs_device_info *devices_info;
 972	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 973	struct btrfs_device *device;
 974	u64 skip_space;
 975	u64 type;
 976	u64 avail_space;
 977	u64 used_space;
 978	u64 min_stripe_size;
 979	int min_stripes = 1;
 980	int i = 0, nr_devices;
 981	int ret;
 982
 983	nr_devices = fs_info->fs_devices->rw_devices;
 984	BUG_ON(!nr_devices);
 985
 986	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
 987			       GFP_NOFS);
 988	if (!devices_info)
 989		return -ENOMEM;
 990
 991	/* calc min stripe number for data space alloction */
 992	type = btrfs_get_alloc_profile(root, 1);
 993	if (type & BTRFS_BLOCK_GROUP_RAID0)
 994		min_stripes = 2;
 995	else if (type & BTRFS_BLOCK_GROUP_RAID1)
 
 996		min_stripes = 2;
 997	else if (type & BTRFS_BLOCK_GROUP_RAID10)
 
 998		min_stripes = 4;
 
 
 999
1000	if (type & BTRFS_BLOCK_GROUP_DUP)
1001		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1002	else
1003		min_stripe_size = BTRFS_STRIPE_LEN;
1004
1005	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
1006		if (!device->in_fs_metadata)
1007			continue;
1008
1009		avail_space = device->total_bytes - device->bytes_used;
1010
1011		/* align with stripe_len */
1012		do_div(avail_space, BTRFS_STRIPE_LEN);
1013		avail_space *= BTRFS_STRIPE_LEN;
1014
1015		/*
1016		 * In order to avoid overwritting the superblock on the drive,
1017		 * btrfs starts at an offset of at least 1MB when doing chunk
1018		 * allocation.
1019		 */
1020		skip_space = 1024 * 1024;
1021
1022		/* user can set the offset in fs_info->alloc_start. */
1023		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1024		    device->total_bytes)
1025			skip_space = max(fs_info->alloc_start, skip_space);
1026
1027		/*
1028		 * btrfs can not use the free space in [0, skip_space - 1],
1029		 * we must subtract it from the total. In order to implement
1030		 * it, we account the used space in this range first.
1031		 */
1032		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1033						     &used_space);
1034		if (ret) {
1035			kfree(devices_info);
1036			return ret;
1037		}
1038
1039		/* calc the free space in [0, skip_space - 1] */
1040		skip_space -= used_space;
1041
1042		/*
1043		 * we can use the free space in [0, skip_space - 1], subtract
1044		 * it from the total.
1045		 */
1046		if (avail_space && avail_space >= skip_space)
1047			avail_space -= skip_space;
1048		else
1049			avail_space = 0;
1050
1051		if (avail_space < min_stripe_size)
1052			continue;
1053
1054		devices_info[i].dev = device;
1055		devices_info[i].max_avail = avail_space;
1056
1057		i++;
1058	}
1059
1060	nr_devices = i;
1061
1062	btrfs_descending_sort_devices(devices_info, nr_devices);
1063
1064	i = nr_devices - 1;
1065	avail_space = 0;
1066	while (nr_devices >= min_stripes) {
 
 
 
1067		if (devices_info[i].max_avail >= min_stripe_size) {
1068			int j;
1069			u64 alloc_size;
1070
1071			avail_space += devices_info[i].max_avail * min_stripes;
1072			alloc_size = devices_info[i].max_avail;
1073			for (j = i + 1 - min_stripes; j <= i; j++)
1074				devices_info[j].max_avail -= alloc_size;
1075		}
1076		i--;
1077		nr_devices--;
1078	}
1079
1080	kfree(devices_info);
1081	*free_bytes = avail_space;
1082	return 0;
1083}
1084
1085static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1086{
1087	struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1088	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1089	struct list_head *head = &root->fs_info->space_info;
1090	struct btrfs_space_info *found;
1091	u64 total_used = 0;
1092	u64 total_free_data = 0;
1093	int bits = dentry->d_sb->s_blocksize_bits;
1094	__be32 *fsid = (__be32 *)root->fs_info->fsid;
1095	int ret;
1096
1097	/* holding chunk_muext to avoid allocating new chunks */
1098	mutex_lock(&root->fs_info->chunk_mutex);
1099	rcu_read_lock();
1100	list_for_each_entry_rcu(found, head, list) {
1101		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1102			total_free_data += found->disk_total - found->disk_used;
1103			total_free_data -=
1104				btrfs_account_ro_block_groups_free_space(found);
1105		}
1106
1107		total_used += found->disk_used;
1108	}
1109	rcu_read_unlock();
1110
1111	buf->f_namelen = BTRFS_NAME_LEN;
1112	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1113	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1114	buf->f_bsize = dentry->d_sb->s_blocksize;
1115	buf->f_type = BTRFS_SUPER_MAGIC;
1116	buf->f_bavail = total_free_data;
1117	ret = btrfs_calc_avail_data_space(root, &total_free_data);
1118	if (ret) {
1119		mutex_unlock(&root->fs_info->chunk_mutex);
1120		return ret;
1121	}
1122	buf->f_bavail += total_free_data;
1123	buf->f_bavail = buf->f_bavail >> bits;
1124	mutex_unlock(&root->fs_info->chunk_mutex);
1125
1126	/* We treat it as constant endianness (it doesn't matter _which_)
1127	   because we want the fsid to come out the same whether mounted
1128	   on a big-endian or little-endian host */
1129	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1130	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1131	/* Mask in the root object ID too, to disambiguate subvols */
1132	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1133	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1134
1135	return 0;
1136}
1137
 
 
 
 
 
 
 
1138static struct file_system_type btrfs_fs_type = {
1139	.owner		= THIS_MODULE,
1140	.name		= "btrfs",
1141	.mount		= btrfs_mount,
1142	.kill_sb	= kill_anon_super,
1143	.fs_flags	= FS_REQUIRES_DEV,
1144};
1145
1146/*
1147 * used by btrfsctl to scan devices when no FS is mounted
1148 */
1149static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1150				unsigned long arg)
1151{
1152	struct btrfs_ioctl_vol_args *vol;
1153	struct btrfs_fs_devices *fs_devices;
1154	int ret = -ENOTTY;
1155
1156	if (!capable(CAP_SYS_ADMIN))
1157		return -EPERM;
1158
1159	vol = memdup_user((void __user *)arg, sizeof(*vol));
1160	if (IS_ERR(vol))
1161		return PTR_ERR(vol);
1162
1163	switch (cmd) {
1164	case BTRFS_IOC_SCAN_DEV:
1165		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1166					    &btrfs_fs_type, &fs_devices);
1167		break;
1168	}
1169
1170	kfree(vol);
1171	return ret;
1172}
1173
1174static int btrfs_freeze(struct super_block *sb)
1175{
1176	struct btrfs_root *root = btrfs_sb(sb);
1177	mutex_lock(&root->fs_info->transaction_kthread_mutex);
1178	mutex_lock(&root->fs_info->cleaner_mutex);
1179	return 0;
1180}
1181
1182static int btrfs_unfreeze(struct super_block *sb)
1183{
1184	struct btrfs_root *root = btrfs_sb(sb);
1185	mutex_unlock(&root->fs_info->cleaner_mutex);
1186	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187	return 0;
1188}
1189
1190static const struct super_operations btrfs_super_ops = {
1191	.drop_inode	= btrfs_drop_inode,
1192	.evict_inode	= btrfs_evict_inode,
1193	.put_super	= btrfs_put_super,
1194	.sync_fs	= btrfs_sync_fs,
1195	.show_options	= btrfs_show_options,
 
1196	.write_inode	= btrfs_write_inode,
1197	.dirty_inode	= btrfs_dirty_inode,
1198	.alloc_inode	= btrfs_alloc_inode,
1199	.destroy_inode	= btrfs_destroy_inode,
1200	.statfs		= btrfs_statfs,
1201	.remount_fs	= btrfs_remount,
1202	.freeze_fs	= btrfs_freeze,
1203	.unfreeze_fs	= btrfs_unfreeze,
1204};
1205
1206static const struct file_operations btrfs_ctl_fops = {
1207	.unlocked_ioctl	 = btrfs_control_ioctl,
1208	.compat_ioctl = btrfs_control_ioctl,
1209	.owner	 = THIS_MODULE,
1210	.llseek = noop_llseek,
1211};
1212
1213static struct miscdevice btrfs_misc = {
1214	.minor		= BTRFS_MINOR,
1215	.name		= "btrfs-control",
1216	.fops		= &btrfs_ctl_fops
1217};
1218
1219MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1220MODULE_ALIAS("devname:btrfs-control");
1221
1222static int btrfs_interface_init(void)
1223{
1224	return misc_register(&btrfs_misc);
1225}
1226
1227static void btrfs_interface_exit(void)
1228{
1229	if (misc_deregister(&btrfs_misc) < 0)
1230		printk(KERN_INFO "misc_deregister failed for control device");
1231}
1232
1233static int __init init_btrfs_fs(void)
1234{
1235	int err;
1236
1237	err = btrfs_init_sysfs();
1238	if (err)
1239		return err;
1240
1241	err = btrfs_init_compress();
1242	if (err)
1243		goto free_sysfs;
1244
1245	err = btrfs_init_cachep();
1246	if (err)
1247		goto free_compress;
1248
1249	err = extent_io_init();
1250	if (err)
1251		goto free_cachep;
1252
1253	err = extent_map_init();
1254	if (err)
1255		goto free_extent_io;
1256
1257	err = btrfs_delayed_inode_init();
1258	if (err)
1259		goto free_extent_map;
1260
1261	err = btrfs_interface_init();
1262	if (err)
1263		goto free_delayed_inode;
1264
1265	err = register_filesystem(&btrfs_fs_type);
1266	if (err)
1267		goto unregister_ioctl;
1268
 
 
1269	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1270	return 0;
1271
1272unregister_ioctl:
1273	btrfs_interface_exit();
1274free_delayed_inode:
1275	btrfs_delayed_inode_exit();
1276free_extent_map:
1277	extent_map_exit();
1278free_extent_io:
1279	extent_io_exit();
1280free_cachep:
1281	btrfs_destroy_cachep();
1282free_compress:
1283	btrfs_exit_compress();
1284free_sysfs:
1285	btrfs_exit_sysfs();
1286	return err;
1287}
1288
1289static void __exit exit_btrfs_fs(void)
1290{
1291	btrfs_destroy_cachep();
1292	btrfs_delayed_inode_exit();
1293	extent_map_exit();
1294	extent_io_exit();
1295	btrfs_interface_exit();
1296	unregister_filesystem(&btrfs_fs_type);
1297	btrfs_exit_sysfs();
1298	btrfs_cleanup_fs_uuids();
1299	btrfs_exit_compress();
1300}
1301
1302module_init(init_btrfs_fs)
1303module_exit(exit_btrfs_fs)
1304
1305MODULE_LICENSE("GPL");
v3.5.6
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/module.h>
  21#include <linux/buffer_head.h>
  22#include <linux/fs.h>
  23#include <linux/pagemap.h>
  24#include <linux/highmem.h>
  25#include <linux/time.h>
  26#include <linux/init.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mount.h>
  31#include <linux/mpage.h>
  32#include <linux/swap.h>
  33#include <linux/writeback.h>
  34#include <linux/statfs.h>
  35#include <linux/compat.h>
  36#include <linux/parser.h>
  37#include <linux/ctype.h>
  38#include <linux/namei.h>
  39#include <linux/miscdevice.h>
  40#include <linux/magic.h>
  41#include <linux/slab.h>
  42#include <linux/cleancache.h>
  43#include <linux/ratelimit.h>
  44#include "compat.h"
  45#include "delayed-inode.h"
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
  50#include "ioctl.h"
  51#include "print-tree.h"
  52#include "xattr.h"
  53#include "volumes.h"
  54#include "version.h"
  55#include "export.h"
  56#include "compression.h"
  57#include "rcu-string.h"
  58
  59#define CREATE_TRACE_POINTS
  60#include <trace/events/btrfs.h>
  61
  62static const struct super_operations btrfs_super_ops;
  63static struct file_system_type btrfs_fs_type;
  64
  65static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
  66				      char nbuf[16])
  67{
  68	char *errstr = NULL;
  69
  70	switch (errno) {
  71	case -EIO:
  72		errstr = "IO failure";
  73		break;
  74	case -ENOMEM:
  75		errstr = "Out of memory";
  76		break;
  77	case -EROFS:
  78		errstr = "Readonly filesystem";
  79		break;
  80	case -EEXIST:
  81		errstr = "Object already exists";
  82		break;
  83	default:
  84		if (nbuf) {
  85			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
  86				errstr = nbuf;
  87		}
  88		break;
  89	}
  90
  91	return errstr;
  92}
  93
  94static void __save_error_info(struct btrfs_fs_info *fs_info)
  95{
  96	/*
  97	 * today we only save the error info into ram.  Long term we'll
  98	 * also send it down to the disk
  99	 */
 100	fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
 101}
 102
 103/* NOTE:
 104 *	We move write_super stuff at umount in order to avoid deadlock
 105 *	for umount hold all lock.
 106 */
 107static void save_error_info(struct btrfs_fs_info *fs_info)
 108{
 109	__save_error_info(fs_info);
 110}
 111
 112/* btrfs handle error by forcing the filesystem readonly */
 113static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
 114{
 115	struct super_block *sb = fs_info->sb;
 116
 117	if (sb->s_flags & MS_RDONLY)
 118		return;
 119
 120	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
 121		sb->s_flags |= MS_RDONLY;
 122		printk(KERN_INFO "btrfs is forced readonly\n");
 123		__btrfs_scrub_cancel(fs_info);
 124//		WARN_ON(1);
 125	}
 126}
 127
 128/*
 129 * __btrfs_std_error decodes expected errors from the caller and
 130 * invokes the approciate error response.
 131 */
 132void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
 133		       unsigned int line, int errno, const char *fmt, ...)
 134{
 135	struct super_block *sb = fs_info->sb;
 136	char nbuf[16];
 137	const char *errstr;
 138	va_list args;
 139	va_start(args, fmt);
 140
 141	/*
 142	 * Special case: if the error is EROFS, and we're already
 143	 * under MS_RDONLY, then it is safe here.
 144	 */
 145	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
 146  		return;
 147
 148  	errstr = btrfs_decode_error(fs_info, errno, nbuf);
 149	if (fmt) {
 150		struct va_format vaf = {
 151			.fmt = fmt,
 152			.va = &args,
 153		};
 154
 155		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
 156			sb->s_id, function, line, errstr, &vaf);
 157	} else {
 158		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
 159			sb->s_id, function, line, errstr);
 160	}
 161
 162	/* Don't go through full error handling during mount */
 163	if (sb->s_flags & MS_BORN) {
 164		save_error_info(fs_info);
 165		btrfs_handle_error(fs_info);
 166	}
 167	va_end(args);
 168}
 169
 170const char *logtypes[] = {
 171	"emergency",
 172	"alert",
 173	"critical",
 174	"error",
 175	"warning",
 176	"notice",
 177	"info",
 178	"debug",
 179};
 180
 181void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
 182{
 183	struct super_block *sb = fs_info->sb;
 184	char lvl[4];
 185	struct va_format vaf;
 186	va_list args;
 187	const char *type = logtypes[4];
 188
 189	va_start(args, fmt);
 190
 191	if (fmt[0] == '<' && isdigit(fmt[1]) && fmt[2] == '>') {
 192		memcpy(lvl, fmt, 3);
 193		lvl[3] = '\0';
 194		fmt += 3;
 195		type = logtypes[fmt[1] - '0'];
 196	} else
 197		*lvl = '\0';
 198
 199	vaf.fmt = fmt;
 200	vaf.va = &args;
 201	printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
 202}
 203
 204/*
 205 * We only mark the transaction aborted and then set the file system read-only.
 206 * This will prevent new transactions from starting or trying to join this
 207 * one.
 208 *
 209 * This means that error recovery at the call site is limited to freeing
 210 * any local memory allocations and passing the error code up without
 211 * further cleanup. The transaction should complete as it normally would
 212 * in the call path but will return -EIO.
 213 *
 214 * We'll complete the cleanup in btrfs_end_transaction and
 215 * btrfs_commit_transaction.
 216 */
 217void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
 218			       struct btrfs_root *root, const char *function,
 219			       unsigned int line, int errno)
 220{
 221	WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted");
 222	trans->aborted = errno;
 223	/* Nothing used. The other threads that have joined this
 224	 * transaction may be able to continue. */
 225	if (!trans->blocks_used) {
 226		btrfs_printk(root->fs_info, "Aborting unused transaction.\n");
 227		return;
 228	}
 229	trans->transaction->aborted = errno;
 230	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
 231}
 232/*
 233 * __btrfs_panic decodes unexpected, fatal errors from the caller,
 234 * issues an alert, and either panics or BUGs, depending on mount options.
 235 */
 236void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
 237		   unsigned int line, int errno, const char *fmt, ...)
 238{
 239	char nbuf[16];
 240	char *s_id = "<unknown>";
 241	const char *errstr;
 242	struct va_format vaf = { .fmt = fmt };
 243	va_list args;
 244
 245	if (fs_info)
 246		s_id = fs_info->sb->s_id;
 247
 248	va_start(args, fmt);
 249	vaf.va = &args;
 250
 251	errstr = btrfs_decode_error(fs_info, errno, nbuf);
 252	if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
 253		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
 254			s_id, function, line, &vaf, errstr);
 255
 256	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
 257	       s_id, function, line, &vaf, errstr);
 258	va_end(args);
 259	/* Caller calls BUG() */
 260}
 261
 262static void btrfs_put_super(struct super_block *sb)
 263{
 264	(void)close_ctree(btrfs_sb(sb)->tree_root);
 265	/* FIXME: need to fix VFS to return error? */
 266	/* AV: return it _where_?  ->put_super() can be triggered by any number
 267	 * of async events, up to and including delivery of SIGKILL to the
 268	 * last process that kept it busy.  Or segfault in the aforementioned
 269	 * process...  Whom would you report that to?
 270	 */
 271}
 272
 273enum {
 274	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
 275	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
 276	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
 277	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
 278	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
 279	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
 280	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
 281	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
 282	Opt_check_integrity, Opt_check_integrity_including_extent_data,
 283	Opt_check_integrity_print_mask, Opt_fatal_errors,
 284	Opt_err,
 285};
 286
 287static match_table_t tokens = {
 288	{Opt_degraded, "degraded"},
 289	{Opt_subvol, "subvol=%s"},
 290	{Opt_subvolid, "subvolid=%d"},
 291	{Opt_device, "device=%s"},
 292	{Opt_nodatasum, "nodatasum"},
 293	{Opt_nodatacow, "nodatacow"},
 294	{Opt_nobarrier, "nobarrier"},
 295	{Opt_max_inline, "max_inline=%s"},
 296	{Opt_alloc_start, "alloc_start=%s"},
 297	{Opt_thread_pool, "thread_pool=%d"},
 298	{Opt_compress, "compress"},
 299	{Opt_compress_type, "compress=%s"},
 300	{Opt_compress_force, "compress-force"},
 301	{Opt_compress_force_type, "compress-force=%s"},
 302	{Opt_ssd, "ssd"},
 303	{Opt_ssd_spread, "ssd_spread"},
 304	{Opt_nossd, "nossd"},
 305	{Opt_noacl, "noacl"},
 306	{Opt_notreelog, "notreelog"},
 307	{Opt_flushoncommit, "flushoncommit"},
 308	{Opt_ratio, "metadata_ratio=%d"},
 309	{Opt_discard, "discard"},
 310	{Opt_space_cache, "space_cache"},
 311	{Opt_clear_cache, "clear_cache"},
 312	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
 313	{Opt_enospc_debug, "enospc_debug"},
 314	{Opt_subvolrootid, "subvolrootid=%d"},
 315	{Opt_defrag, "autodefrag"},
 316	{Opt_inode_cache, "inode_cache"},
 317	{Opt_no_space_cache, "nospace_cache"},
 318	{Opt_recovery, "recovery"},
 319	{Opt_skip_balance, "skip_balance"},
 320	{Opt_check_integrity, "check_int"},
 321	{Opt_check_integrity_including_extent_data, "check_int_data"},
 322	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
 323	{Opt_fatal_errors, "fatal_errors=%s"},
 324	{Opt_err, NULL},
 325};
 326
 327/*
 328 * Regular mount options parser.  Everything that is needed only when
 329 * reading in a new superblock is parsed here.
 330 * XXX JDM: This needs to be cleaned up for remount.
 331 */
 332int btrfs_parse_options(struct btrfs_root *root, char *options)
 333{
 334	struct btrfs_fs_info *info = root->fs_info;
 335	substring_t args[MAX_OPT_ARGS];
 336	char *p, *num, *orig = NULL;
 337	u64 cache_gen;
 338	int intarg;
 339	int ret = 0;
 340	char *compress_type;
 341	bool compress_force = false;
 342
 343	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
 344	if (cache_gen)
 345		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 346
 347	if (!options)
 348		goto out;
 349
 350	/*
 351	 * strsep changes the string, duplicate it because parse_options
 352	 * gets called twice
 353	 */
 354	options = kstrdup(options, GFP_NOFS);
 355	if (!options)
 356		return -ENOMEM;
 357
 358	orig = options;
 359
 360	while ((p = strsep(&options, ",")) != NULL) {
 361		int token;
 362		if (!*p)
 363			continue;
 364
 365		token = match_token(p, tokens, args);
 366		switch (token) {
 367		case Opt_degraded:
 368			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
 369			btrfs_set_opt(info->mount_opt, DEGRADED);
 370			break;
 371		case Opt_subvol:
 372		case Opt_subvolid:
 373		case Opt_subvolrootid:
 374		case Opt_device:
 375			/*
 376			 * These are parsed by btrfs_parse_early_options
 377			 * and can be happily ignored here.
 378			 */
 379			break;
 380		case Opt_nodatasum:
 381			printk(KERN_INFO "btrfs: setting nodatasum\n");
 382			btrfs_set_opt(info->mount_opt, NODATASUM);
 383			break;
 384		case Opt_nodatacow:
 385			printk(KERN_INFO "btrfs: setting nodatacow\n");
 386			btrfs_set_opt(info->mount_opt, NODATACOW);
 387			btrfs_set_opt(info->mount_opt, NODATASUM);
 388			break;
 389		case Opt_compress_force:
 390		case Opt_compress_force_type:
 391			compress_force = true;
 392		case Opt_compress:
 393		case Opt_compress_type:
 394			if (token == Opt_compress ||
 395			    token == Opt_compress_force ||
 396			    strcmp(args[0].from, "zlib") == 0) {
 397				compress_type = "zlib";
 398				info->compress_type = BTRFS_COMPRESS_ZLIB;
 399			} else if (strcmp(args[0].from, "lzo") == 0) {
 400				compress_type = "lzo";
 401				info->compress_type = BTRFS_COMPRESS_LZO;
 402			} else {
 403				ret = -EINVAL;
 404				goto out;
 405			}
 406
 407			btrfs_set_opt(info->mount_opt, COMPRESS);
 408			if (compress_force) {
 409				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
 410				pr_info("btrfs: force %s compression\n",
 411					compress_type);
 412			} else
 413				pr_info("btrfs: use %s compression\n",
 414					compress_type);
 415			break;
 416		case Opt_ssd:
 417			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
 418			btrfs_set_opt(info->mount_opt, SSD);
 419			break;
 420		case Opt_ssd_spread:
 421			printk(KERN_INFO "btrfs: use spread ssd "
 422			       "allocation scheme\n");
 423			btrfs_set_opt(info->mount_opt, SSD);
 424			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
 425			break;
 426		case Opt_nossd:
 427			printk(KERN_INFO "btrfs: not using ssd allocation "
 428			       "scheme\n");
 429			btrfs_set_opt(info->mount_opt, NOSSD);
 430			btrfs_clear_opt(info->mount_opt, SSD);
 431			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
 432			break;
 433		case Opt_nobarrier:
 434			printk(KERN_INFO "btrfs: turning off barriers\n");
 435			btrfs_set_opt(info->mount_opt, NOBARRIER);
 436			break;
 437		case Opt_thread_pool:
 438			intarg = 0;
 439			match_int(&args[0], &intarg);
 440			if (intarg)
 441				info->thread_pool_size = intarg;
 
 
 
 442			break;
 443		case Opt_max_inline:
 444			num = match_strdup(&args[0]);
 445			if (num) {
 446				info->max_inline = memparse(num, NULL);
 447				kfree(num);
 448
 449				if (info->max_inline) {
 450					info->max_inline = max_t(u64,
 451						info->max_inline,
 452						root->sectorsize);
 453				}
 454				printk(KERN_INFO "btrfs: max_inline at %llu\n",
 455					(unsigned long long)info->max_inline);
 456			}
 457			break;
 458		case Opt_alloc_start:
 459			num = match_strdup(&args[0]);
 460			if (num) {
 461				info->alloc_start = memparse(num, NULL);
 462				kfree(num);
 463				printk(KERN_INFO
 464					"btrfs: allocations start at %llu\n",
 465					(unsigned long long)info->alloc_start);
 466			}
 467			break;
 468		case Opt_noacl:
 469			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
 470			break;
 471		case Opt_notreelog:
 472			printk(KERN_INFO "btrfs: disabling tree log\n");
 473			btrfs_set_opt(info->mount_opt, NOTREELOG);
 474			break;
 475		case Opt_flushoncommit:
 476			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
 477			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
 478			break;
 479		case Opt_ratio:
 480			intarg = 0;
 481			match_int(&args[0], &intarg);
 482			if (intarg) {
 483				info->metadata_ratio = intarg;
 484				printk(KERN_INFO "btrfs: metadata ratio %d\n",
 485				       info->metadata_ratio);
 486			}
 487			break;
 488		case Opt_discard:
 489			btrfs_set_opt(info->mount_opt, DISCARD);
 490			break;
 491		case Opt_space_cache:
 
 492			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
 493			break;
 494		case Opt_no_space_cache:
 495			printk(KERN_INFO "btrfs: disabling disk space caching\n");
 496			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
 497			break;
 498		case Opt_inode_cache:
 499			printk(KERN_INFO "btrfs: enabling inode map caching\n");
 500			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
 501			break;
 502		case Opt_clear_cache:
 503			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
 504			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
 505			break;
 506		case Opt_user_subvol_rm_allowed:
 507			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
 508			break;
 509		case Opt_enospc_debug:
 510			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
 511			break;
 512		case Opt_defrag:
 513			printk(KERN_INFO "btrfs: enabling auto defrag");
 514			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
 515			break;
 516		case Opt_recovery:
 517			printk(KERN_INFO "btrfs: enabling auto recovery");
 518			btrfs_set_opt(info->mount_opt, RECOVERY);
 519			break;
 520		case Opt_skip_balance:
 521			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
 522			break;
 523#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 524		case Opt_check_integrity_including_extent_data:
 525			printk(KERN_INFO "btrfs: enabling check integrity"
 526			       " including extent data\n");
 527			btrfs_set_opt(info->mount_opt,
 528				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
 529			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 530			break;
 531		case Opt_check_integrity:
 532			printk(KERN_INFO "btrfs: enabling check integrity\n");
 533			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
 534			break;
 535		case Opt_check_integrity_print_mask:
 536			intarg = 0;
 537			match_int(&args[0], &intarg);
 538			if (intarg) {
 539				info->check_integrity_print_mask = intarg;
 540				printk(KERN_INFO "btrfs:"
 541				       " check_integrity_print_mask 0x%x\n",
 542				       info->check_integrity_print_mask);
 543			}
 544			break;
 545#else
 546		case Opt_check_integrity_including_extent_data:
 547		case Opt_check_integrity:
 548		case Opt_check_integrity_print_mask:
 549			printk(KERN_ERR "btrfs: support for check_integrity*"
 550			       " not compiled in!\n");
 551			ret = -EINVAL;
 552			goto out;
 553#endif
 554		case Opt_fatal_errors:
 555			if (strcmp(args[0].from, "panic") == 0)
 556				btrfs_set_opt(info->mount_opt,
 557					      PANIC_ON_FATAL_ERROR);
 558			else if (strcmp(args[0].from, "bug") == 0)
 559				btrfs_clear_opt(info->mount_opt,
 560					      PANIC_ON_FATAL_ERROR);
 561			else {
 562				ret = -EINVAL;
 563				goto out;
 564			}
 565			break;
 566		case Opt_err:
 567			printk(KERN_INFO "btrfs: unrecognized mount option "
 568			       "'%s'\n", p);
 569			ret = -EINVAL;
 570			goto out;
 571		default:
 572			break;
 573		}
 574	}
 575out:
 576	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
 577		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
 578	kfree(orig);
 579	return ret;
 580}
 581
 582/*
 583 * Parse mount options that are required early in the mount process.
 584 *
 585 * All other options will be parsed on much later in the mount process and
 586 * only when we need to allocate a new super block.
 587 */
 588static int btrfs_parse_early_options(const char *options, fmode_t flags,
 589		void *holder, char **subvol_name, u64 *subvol_objectid,
 590		u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
 591{
 592	substring_t args[MAX_OPT_ARGS];
 593	char *device_name, *opts, *orig, *p;
 594	int error = 0;
 595	int intarg;
 596
 597	if (!options)
 598		return 0;
 599
 600	/*
 601	 * strsep changes the string, duplicate it because parse_options
 602	 * gets called twice
 603	 */
 604	opts = kstrdup(options, GFP_KERNEL);
 605	if (!opts)
 606		return -ENOMEM;
 607	orig = opts;
 608
 609	while ((p = strsep(&opts, ",")) != NULL) {
 610		int token;
 611		if (!*p)
 612			continue;
 613
 614		token = match_token(p, tokens, args);
 615		switch (token) {
 616		case Opt_subvol:
 617			kfree(*subvol_name);
 618			*subvol_name = match_strdup(&args[0]);
 619			break;
 620		case Opt_subvolid:
 621			intarg = 0;
 622			error = match_int(&args[0], &intarg);
 623			if (!error) {
 624				/* we want the original fs_tree */
 625				if (!intarg)
 626					*subvol_objectid =
 627						BTRFS_FS_TREE_OBJECTID;
 628				else
 629					*subvol_objectid = intarg;
 630			}
 631			break;
 632		case Opt_subvolrootid:
 633			intarg = 0;
 634			error = match_int(&args[0], &intarg);
 635			if (!error) {
 636				/* we want the original fs_tree */
 637				if (!intarg)
 638					*subvol_rootid =
 639						BTRFS_FS_TREE_OBJECTID;
 640				else
 641					*subvol_rootid = intarg;
 642			}
 643			break;
 644		case Opt_device:
 645			device_name = match_strdup(&args[0]);
 646			if (!device_name) {
 647				error = -ENOMEM;
 648				goto out;
 649			}
 650			error = btrfs_scan_one_device(device_name,
 651					flags, holder, fs_devices);
 652			kfree(device_name);
 653			if (error)
 654				goto out;
 655			break;
 656		default:
 657			break;
 658		}
 659	}
 660
 661out:
 662	kfree(orig);
 
 
 
 
 
 
 
 
 
 
 
 663	return error;
 664}
 665
 666static struct dentry *get_default_root(struct super_block *sb,
 667				       u64 subvol_objectid)
 668{
 669	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 670	struct btrfs_root *root = fs_info->tree_root;
 671	struct btrfs_root *new_root;
 672	struct btrfs_dir_item *di;
 673	struct btrfs_path *path;
 674	struct btrfs_key location;
 675	struct inode *inode;
 
 676	u64 dir_id;
 677	int new = 0;
 678
 679	/*
 680	 * We have a specific subvol we want to mount, just setup location and
 681	 * go look up the root.
 682	 */
 683	if (subvol_objectid) {
 684		location.objectid = subvol_objectid;
 685		location.type = BTRFS_ROOT_ITEM_KEY;
 686		location.offset = (u64)-1;
 687		goto find_root;
 688	}
 689
 690	path = btrfs_alloc_path();
 691	if (!path)
 692		return ERR_PTR(-ENOMEM);
 693	path->leave_spinning = 1;
 694
 695	/*
 696	 * Find the "default" dir item which points to the root item that we
 697	 * will mount by default if we haven't been given a specific subvolume
 698	 * to mount.
 699	 */
 700	dir_id = btrfs_super_root_dir(fs_info->super_copy);
 701	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
 702	if (IS_ERR(di)) {
 703		btrfs_free_path(path);
 704		return ERR_CAST(di);
 705	}
 706	if (!di) {
 707		/*
 708		 * Ok the default dir item isn't there.  This is weird since
 709		 * it's always been there, but don't freak out, just try and
 710		 * mount to root most subvolume.
 711		 */
 712		btrfs_free_path(path);
 713		dir_id = BTRFS_FIRST_FREE_OBJECTID;
 714		new_root = fs_info->fs_root;
 715		goto setup_root;
 716	}
 717
 718	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
 719	btrfs_free_path(path);
 720
 721find_root:
 722	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
 723	if (IS_ERR(new_root))
 724		return ERR_CAST(new_root);
 725
 726	if (btrfs_root_refs(&new_root->root_item) == 0)
 727		return ERR_PTR(-ENOENT);
 728
 729	dir_id = btrfs_root_dirid(&new_root->root_item);
 730setup_root:
 731	location.objectid = dir_id;
 732	location.type = BTRFS_INODE_ITEM_KEY;
 733	location.offset = 0;
 734
 735	inode = btrfs_iget(sb, &location, new_root, &new);
 736	if (IS_ERR(inode))
 737		return ERR_CAST(inode);
 738
 739	/*
 740	 * If we're just mounting the root most subvol put the inode and return
 741	 * a reference to the dentry.  We will have already gotten a reference
 742	 * to the inode in btrfs_fill_super so we're good to go.
 743	 */
 744	if (!new && sb->s_root->d_inode == inode) {
 745		iput(inode);
 746		return dget(sb->s_root);
 747	}
 748
 749	return d_obtain_alias(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750}
 751
 752static int btrfs_fill_super(struct super_block *sb,
 753			    struct btrfs_fs_devices *fs_devices,
 754			    void *data, int silent)
 755{
 756	struct inode *inode;
 757	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 
 758	struct btrfs_key key;
 759	int err;
 760
 761	sb->s_maxbytes = MAX_LFS_FILESIZE;
 762	sb->s_magic = BTRFS_SUPER_MAGIC;
 763	sb->s_op = &btrfs_super_ops;
 764	sb->s_d_op = &btrfs_dentry_operations;
 765	sb->s_export_op = &btrfs_export_ops;
 766	sb->s_xattr = btrfs_xattr_handlers;
 767	sb->s_time_gran = 1;
 768#ifdef CONFIG_BTRFS_FS_POSIX_ACL
 769	sb->s_flags |= MS_POSIXACL;
 770#endif
 771	sb->s_flags |= MS_I_VERSION;
 772	err = open_ctree(sb, fs_devices, (char *)data);
 773	if (err) {
 
 774		printk("btrfs: open_ctree failed\n");
 775		return err;
 776	}
 
 777
 778	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
 779	key.type = BTRFS_INODE_ITEM_KEY;
 780	key.offset = 0;
 781	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
 782	if (IS_ERR(inode)) {
 783		err = PTR_ERR(inode);
 784		goto fail_close;
 785	}
 786
 787	sb->s_root = d_make_root(inode);
 788	if (!sb->s_root) {
 
 789		err = -ENOMEM;
 790		goto fail_close;
 791	}
 792
 
 
 793	save_mount_options(sb, data);
 794	cleancache_init_fs(sb);
 795	sb->s_flags |= MS_ACTIVE;
 796	return 0;
 797
 798fail_close:
 799	close_ctree(fs_info->tree_root);
 800	return err;
 801}
 802
 803int btrfs_sync_fs(struct super_block *sb, int wait)
 804{
 805	struct btrfs_trans_handle *trans;
 806	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
 807	struct btrfs_root *root = fs_info->tree_root;
 808	int ret;
 809
 810	trace_btrfs_sync_fs(wait);
 811
 812	if (!wait) {
 813		filemap_flush(fs_info->btree_inode->i_mapping);
 814		return 0;
 815	}
 816
 
 817	btrfs_wait_ordered_extents(root, 0, 0);
 818
 819	trans = btrfs_start_transaction(root, 0);
 820	if (IS_ERR(trans))
 821		return PTR_ERR(trans);
 822	ret = btrfs_commit_transaction(trans, root);
 823	return ret;
 824}
 825
 826static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
 827{
 828	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
 829	struct btrfs_root *root = info->tree_root;
 830	char *compress_type;
 831
 832	if (btrfs_test_opt(root, DEGRADED))
 833		seq_puts(seq, ",degraded");
 834	if (btrfs_test_opt(root, NODATASUM))
 835		seq_puts(seq, ",nodatasum");
 836	if (btrfs_test_opt(root, NODATACOW))
 837		seq_puts(seq, ",nodatacow");
 838	if (btrfs_test_opt(root, NOBARRIER))
 839		seq_puts(seq, ",nobarrier");
 840	if (info->max_inline != 8192 * 1024)
 841		seq_printf(seq, ",max_inline=%llu",
 842			   (unsigned long long)info->max_inline);
 843	if (info->alloc_start != 0)
 844		seq_printf(seq, ",alloc_start=%llu",
 845			   (unsigned long long)info->alloc_start);
 846	if (info->thread_pool_size !=  min_t(unsigned long,
 847					     num_online_cpus() + 2, 8))
 848		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
 849	if (btrfs_test_opt(root, COMPRESS)) {
 850		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
 851			compress_type = "zlib";
 852		else
 853			compress_type = "lzo";
 854		if (btrfs_test_opt(root, FORCE_COMPRESS))
 855			seq_printf(seq, ",compress-force=%s", compress_type);
 856		else
 857			seq_printf(seq, ",compress=%s", compress_type);
 858	}
 859	if (btrfs_test_opt(root, NOSSD))
 860		seq_puts(seq, ",nossd");
 861	if (btrfs_test_opt(root, SSD_SPREAD))
 862		seq_puts(seq, ",ssd_spread");
 863	else if (btrfs_test_opt(root, SSD))
 864		seq_puts(seq, ",ssd");
 865	if (btrfs_test_opt(root, NOTREELOG))
 866		seq_puts(seq, ",notreelog");
 867	if (btrfs_test_opt(root, FLUSHONCOMMIT))
 868		seq_puts(seq, ",flushoncommit");
 869	if (btrfs_test_opt(root, DISCARD))
 870		seq_puts(seq, ",discard");
 871	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
 872		seq_puts(seq, ",noacl");
 873	if (btrfs_test_opt(root, SPACE_CACHE))
 874		seq_puts(seq, ",space_cache");
 875	else
 876		seq_puts(seq, ",nospace_cache");
 877	if (btrfs_test_opt(root, CLEAR_CACHE))
 878		seq_puts(seq, ",clear_cache");
 879	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
 880		seq_puts(seq, ",user_subvol_rm_allowed");
 881	if (btrfs_test_opt(root, ENOSPC_DEBUG))
 882		seq_puts(seq, ",enospc_debug");
 883	if (btrfs_test_opt(root, AUTO_DEFRAG))
 884		seq_puts(seq, ",autodefrag");
 885	if (btrfs_test_opt(root, INODE_MAP_CACHE))
 886		seq_puts(seq, ",inode_cache");
 887	if (btrfs_test_opt(root, SKIP_BALANCE))
 888		seq_puts(seq, ",skip_balance");
 889	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
 890		seq_puts(seq, ",fatal_errors=panic");
 891	return 0;
 892}
 893
 894static int btrfs_test_super(struct super_block *s, void *data)
 895{
 896	struct btrfs_fs_info *p = data;
 897	struct btrfs_fs_info *fs_info = btrfs_sb(s);
 898
 899	return fs_info->fs_devices == p->fs_devices;
 
 
 
 
 
 
 900}
 901
 902static int btrfs_set_super(struct super_block *s, void *data)
 903{
 904	int err = set_anon_super(s, data);
 905	if (!err)
 906		s->s_fs_info = data;
 907	return err;
 908}
 909
 910/*
 911 * subvolumes are identified by ino 256
 912 */
 913static inline int is_subvolume_inode(struct inode *inode)
 914{
 915	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
 916		return 1;
 917	return 0;
 918}
 919
 920/*
 921 * This will strip out the subvol=%s argument for an argument string and add
 922 * subvolid=0 to make sure we get the actual tree root for path walking to the
 923 * subvol we want.
 924 */
 925static char *setup_root_args(char *args)
 926{
 927	unsigned len = strlen(args) + 2 + 1;
 928	char *src, *dst, *buf;
 929
 930	/*
 931	 * We need the same args as before, but with this substitution:
 932	 * s!subvol=[^,]+!subvolid=0!
 933	 *
 934	 * Since the replacement string is up to 2 bytes longer than the
 935	 * original, allocate strlen(args) + 2 + 1 bytes.
 936	 */
 937
 938	src = strstr(args, "subvol=");
 939	/* This shouldn't happen, but just in case.. */
 940	if (!src)
 941		return NULL;
 942
 943	buf = dst = kmalloc(len, GFP_NOFS);
 944	if (!buf)
 945		return NULL;
 946
 947	/*
 948	 * If the subvol= arg is not at the start of the string,
 949	 * copy whatever precedes it into buf.
 950	 */
 951	if (src != args) {
 952		*src++ = '\0';
 953		strcpy(buf, args);
 954		dst += strlen(args);
 955	}
 956
 957	strcpy(dst, "subvolid=0");
 958	dst += strlen("subvolid=0");
 959
 960	/*
 961	 * If there is a "," after the original subvol=... string,
 962	 * copy that suffix into our buffer.  Otherwise, we're done.
 963	 */
 964	src = strchr(src, ',');
 965	if (src)
 966		strcpy(dst, src);
 967
 968	return buf;
 969}
 970
 971static struct dentry *mount_subvol(const char *subvol_name, int flags,
 972				   const char *device_name, char *data)
 973{
 974	struct dentry *root;
 975	struct vfsmount *mnt;
 976	char *newargs;
 977
 978	newargs = setup_root_args(data);
 979	if (!newargs)
 980		return ERR_PTR(-ENOMEM);
 981	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
 982			     newargs);
 983	kfree(newargs);
 984	if (IS_ERR(mnt))
 985		return ERR_CAST(mnt);
 986
 987	root = mount_subtree(mnt, subvol_name);
 988
 989	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
 990		struct super_block *s = root->d_sb;
 991		dput(root);
 992		root = ERR_PTR(-EINVAL);
 993		deactivate_locked_super(s);
 994		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
 995				subvol_name);
 996	}
 997
 998	return root;
 999}
1000
1001/*
1002 * Find a superblock for the given device / mount point.
1003 *
1004 * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1005 *	  for multiple device setup.  Make sure to keep it in sync.
1006 */
1007static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1008		const char *device_name, void *data)
1009{
1010	struct block_device *bdev = NULL;
1011	struct super_block *s;
1012	struct dentry *root;
1013	struct btrfs_fs_devices *fs_devices = NULL;
 
1014	struct btrfs_fs_info *fs_info = NULL;
1015	fmode_t mode = FMODE_READ;
1016	char *subvol_name = NULL;
1017	u64 subvol_objectid = 0;
1018	u64 subvol_rootid = 0;
1019	int error = 0;
1020
1021	if (!(flags & MS_RDONLY))
1022		mode |= FMODE_WRITE;
1023
1024	error = btrfs_parse_early_options(data, mode, fs_type,
1025					  &subvol_name, &subvol_objectid,
1026					  &subvol_rootid, &fs_devices);
1027	if (error) {
1028		kfree(subvol_name);
1029		return ERR_PTR(error);
1030	}
1031
1032	if (subvol_name) {
1033		root = mount_subvol(subvol_name, flags, device_name, data);
1034		kfree(subvol_name);
1035		return root;
1036	}
1037
1038	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1039	if (error)
1040		return ERR_PTR(error);
 
 
 
 
 
1041
1042	/*
1043	 * Setup a dummy root and fs_info for test/set super.  This is because
1044	 * we don't actually fill this stuff out until open_ctree, but we need
1045	 * it for searching for existing supers, so this lets us do that and
1046	 * then open_ctree will properly initialize everything later.
1047	 */
1048	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1049	if (!fs_info)
1050		return ERR_PTR(-ENOMEM);
1051
1052	fs_info->fs_devices = fs_devices;
1053
1054	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1055	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1056	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1057		error = -ENOMEM;
1058		goto error_fs_info;
1059	}
1060
1061	error = btrfs_open_devices(fs_devices, mode, fs_type);
1062	if (error)
1063		goto error_fs_info;
1064
1065	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1066		error = -EACCES;
1067		goto error_close_devices;
1068	}
 
 
 
1069
1070	bdev = fs_devices->latest_bdev;
1071	s = sget(fs_type, btrfs_test_super, btrfs_set_super, fs_info);
1072	if (IS_ERR(s)) {
1073		error = PTR_ERR(s);
1074		goto error_close_devices;
1075	}
1076
1077	if (s->s_root) {
 
 
 
 
 
 
1078		btrfs_close_devices(fs_devices);
1079		free_fs_info(fs_info);
1080		if ((flags ^ s->s_flags) & MS_RDONLY)
1081			error = -EBUSY;
1082	} else {
1083		char b[BDEVNAME_SIZE];
1084
1085		s->s_flags = flags | MS_NOSEC;
1086		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1087		btrfs_sb(s)->bdev_holder = fs_type;
1088		error = btrfs_fill_super(s, fs_devices, data,
1089					 flags & MS_SILENT ? 1 : 0);
 
 
 
 
 
 
 
1090	}
1091
1092	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1093	if (IS_ERR(root))
1094		deactivate_locked_super(s);
 
 
 
 
 
 
 
1095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096	return root;
1097
 
 
1098error_close_devices:
1099	btrfs_close_devices(fs_devices);
1100error_fs_info:
1101	free_fs_info(fs_info);
 
 
1102	return ERR_PTR(error);
1103}
1104
1105static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1106{
1107	spin_lock_irq(&workers->lock);
1108	workers->max_workers = new_limit;
1109	spin_unlock_irq(&workers->lock);
1110}
1111
1112static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1113				     int new_pool_size, int old_pool_size)
1114{
1115	if (new_pool_size == old_pool_size)
1116		return;
1117
1118	fs_info->thread_pool_size = new_pool_size;
1119
1120	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1121	       old_pool_size, new_pool_size);
1122
1123	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1124	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1125	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1126	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1127	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1128	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1129	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1130	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1131	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1132	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1133	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1134	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1135	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1136	btrfs_set_max_workers(&fs_info->scrub_workers, new_pool_size);
1137}
1138
1139static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1140{
1141	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1142	struct btrfs_root *root = fs_info->tree_root;
1143	unsigned old_flags = sb->s_flags;
1144	unsigned long old_opts = fs_info->mount_opt;
1145	unsigned long old_compress_type = fs_info->compress_type;
1146	u64 old_max_inline = fs_info->max_inline;
1147	u64 old_alloc_start = fs_info->alloc_start;
1148	int old_thread_pool_size = fs_info->thread_pool_size;
1149	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1150	int ret;
1151
1152	ret = btrfs_parse_options(root, data);
1153	if (ret) {
1154		ret = -EINVAL;
1155		goto restore;
1156	}
1157
1158	btrfs_resize_thread_pool(fs_info,
1159		fs_info->thread_pool_size, old_thread_pool_size);
1160
1161	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1162		return 0;
1163
1164	if (*flags & MS_RDONLY) {
1165		sb->s_flags |= MS_RDONLY;
1166
1167		ret = btrfs_commit_super(root);
1168		if (ret)
1169			goto restore;
1170	} else {
1171		if (fs_info->fs_devices->rw_devices == 0) {
1172			ret = -EACCES;
1173			goto restore;
1174		}
1175
1176		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1177			ret = -EINVAL;
1178			goto restore;
1179		}
1180
1181		ret = btrfs_cleanup_fs_roots(fs_info);
1182		if (ret)
1183			goto restore;
1184
1185		/* recover relocation */
1186		ret = btrfs_recover_relocation(root);
1187		if (ret)
1188			goto restore;
1189
1190		ret = btrfs_resume_balance_async(fs_info);
1191		if (ret)
1192			goto restore;
1193
1194		sb->s_flags &= ~MS_RDONLY;
1195	}
1196
1197	return 0;
1198
1199restore:
1200	/* We've hit an error - don't reset MS_RDONLY */
1201	if (sb->s_flags & MS_RDONLY)
1202		old_flags |= MS_RDONLY;
1203	sb->s_flags = old_flags;
1204	fs_info->mount_opt = old_opts;
1205	fs_info->compress_type = old_compress_type;
1206	fs_info->max_inline = old_max_inline;
1207	fs_info->alloc_start = old_alloc_start;
1208	btrfs_resize_thread_pool(fs_info,
1209		old_thread_pool_size, fs_info->thread_pool_size);
1210	fs_info->metadata_ratio = old_metadata_ratio;
1211	return ret;
1212}
1213
1214/* Used to sort the devices by max_avail(descending sort) */
1215static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1216				       const void *dev_info2)
1217{
1218	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1219	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1220		return -1;
1221	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1222		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1223		return 1;
1224	else
1225	return 0;
1226}
1227
1228/*
1229 * sort the devices by max_avail, in which max free extent size of each device
1230 * is stored.(Descending Sort)
1231 */
1232static inline void btrfs_descending_sort_devices(
1233					struct btrfs_device_info *devices,
1234					size_t nr_devices)
1235{
1236	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1237	     btrfs_cmp_device_free_bytes, NULL);
1238}
1239
1240/*
1241 * The helper to calc the free space on the devices that can be used to store
1242 * file data.
1243 */
1244static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1245{
1246	struct btrfs_fs_info *fs_info = root->fs_info;
1247	struct btrfs_device_info *devices_info;
1248	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1249	struct btrfs_device *device;
1250	u64 skip_space;
1251	u64 type;
1252	u64 avail_space;
1253	u64 used_space;
1254	u64 min_stripe_size;
1255	int min_stripes = 1, num_stripes = 1;
1256	int i = 0, nr_devices;
1257	int ret;
1258
1259	nr_devices = fs_info->fs_devices->open_devices;
1260	BUG_ON(!nr_devices);
1261
1262	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1263			       GFP_NOFS);
1264	if (!devices_info)
1265		return -ENOMEM;
1266
1267	/* calc min stripe number for data space alloction */
1268	type = btrfs_get_alloc_profile(root, 1);
1269	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1270		min_stripes = 2;
1271		num_stripes = nr_devices;
1272	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1273		min_stripes = 2;
1274		num_stripes = 2;
1275	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1276		min_stripes = 4;
1277		num_stripes = 4;
1278	}
1279
1280	if (type & BTRFS_BLOCK_GROUP_DUP)
1281		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1282	else
1283		min_stripe_size = BTRFS_STRIPE_LEN;
1284
1285	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1286		if (!device->in_fs_metadata || !device->bdev)
1287			continue;
1288
1289		avail_space = device->total_bytes - device->bytes_used;
1290
1291		/* align with stripe_len */
1292		do_div(avail_space, BTRFS_STRIPE_LEN);
1293		avail_space *= BTRFS_STRIPE_LEN;
1294
1295		/*
1296		 * In order to avoid overwritting the superblock on the drive,
1297		 * btrfs starts at an offset of at least 1MB when doing chunk
1298		 * allocation.
1299		 */
1300		skip_space = 1024 * 1024;
1301
1302		/* user can set the offset in fs_info->alloc_start. */
1303		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1304		    device->total_bytes)
1305			skip_space = max(fs_info->alloc_start, skip_space);
1306
1307		/*
1308		 * btrfs can not use the free space in [0, skip_space - 1],
1309		 * we must subtract it from the total. In order to implement
1310		 * it, we account the used space in this range first.
1311		 */
1312		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1313						     &used_space);
1314		if (ret) {
1315			kfree(devices_info);
1316			return ret;
1317		}
1318
1319		/* calc the free space in [0, skip_space - 1] */
1320		skip_space -= used_space;
1321
1322		/*
1323		 * we can use the free space in [0, skip_space - 1], subtract
1324		 * it from the total.
1325		 */
1326		if (avail_space && avail_space >= skip_space)
1327			avail_space -= skip_space;
1328		else
1329			avail_space = 0;
1330
1331		if (avail_space < min_stripe_size)
1332			continue;
1333
1334		devices_info[i].dev = device;
1335		devices_info[i].max_avail = avail_space;
1336
1337		i++;
1338	}
1339
1340	nr_devices = i;
1341
1342	btrfs_descending_sort_devices(devices_info, nr_devices);
1343
1344	i = nr_devices - 1;
1345	avail_space = 0;
1346	while (nr_devices >= min_stripes) {
1347		if (num_stripes > nr_devices)
1348			num_stripes = nr_devices;
1349
1350		if (devices_info[i].max_avail >= min_stripe_size) {
1351			int j;
1352			u64 alloc_size;
1353
1354			avail_space += devices_info[i].max_avail * num_stripes;
1355			alloc_size = devices_info[i].max_avail;
1356			for (j = i + 1 - num_stripes; j <= i; j++)
1357				devices_info[j].max_avail -= alloc_size;
1358		}
1359		i--;
1360		nr_devices--;
1361	}
1362
1363	kfree(devices_info);
1364	*free_bytes = avail_space;
1365	return 0;
1366}
1367
1368static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1369{
1370	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1371	struct btrfs_super_block *disk_super = fs_info->super_copy;
1372	struct list_head *head = &fs_info->space_info;
1373	struct btrfs_space_info *found;
1374	u64 total_used = 0;
1375	u64 total_free_data = 0;
1376	int bits = dentry->d_sb->s_blocksize_bits;
1377	__be32 *fsid = (__be32 *)fs_info->fsid;
1378	int ret;
1379
1380	/* holding chunk_muext to avoid allocating new chunks */
1381	mutex_lock(&fs_info->chunk_mutex);
1382	rcu_read_lock();
1383	list_for_each_entry_rcu(found, head, list) {
1384		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1385			total_free_data += found->disk_total - found->disk_used;
1386			total_free_data -=
1387				btrfs_account_ro_block_groups_free_space(found);
1388		}
1389
1390		total_used += found->disk_used;
1391	}
1392	rcu_read_unlock();
1393
1394	buf->f_namelen = BTRFS_NAME_LEN;
1395	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1396	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1397	buf->f_bsize = dentry->d_sb->s_blocksize;
1398	buf->f_type = BTRFS_SUPER_MAGIC;
1399	buf->f_bavail = total_free_data;
1400	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1401	if (ret) {
1402		mutex_unlock(&fs_info->chunk_mutex);
1403		return ret;
1404	}
1405	buf->f_bavail += total_free_data;
1406	buf->f_bavail = buf->f_bavail >> bits;
1407	mutex_unlock(&fs_info->chunk_mutex);
1408
1409	/* We treat it as constant endianness (it doesn't matter _which_)
1410	   because we want the fsid to come out the same whether mounted
1411	   on a big-endian or little-endian host */
1412	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1413	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1414	/* Mask in the root object ID too, to disambiguate subvols */
1415	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1416	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1417
1418	return 0;
1419}
1420
1421static void btrfs_kill_super(struct super_block *sb)
1422{
1423	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1424	kill_anon_super(sb);
1425	free_fs_info(fs_info);
1426}
1427
1428static struct file_system_type btrfs_fs_type = {
1429	.owner		= THIS_MODULE,
1430	.name		= "btrfs",
1431	.mount		= btrfs_mount,
1432	.kill_sb	= btrfs_kill_super,
1433	.fs_flags	= FS_REQUIRES_DEV,
1434};
1435
1436/*
1437 * used by btrfsctl to scan devices when no FS is mounted
1438 */
1439static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1440				unsigned long arg)
1441{
1442	struct btrfs_ioctl_vol_args *vol;
1443	struct btrfs_fs_devices *fs_devices;
1444	int ret = -ENOTTY;
1445
1446	if (!capable(CAP_SYS_ADMIN))
1447		return -EPERM;
1448
1449	vol = memdup_user((void __user *)arg, sizeof(*vol));
1450	if (IS_ERR(vol))
1451		return PTR_ERR(vol);
1452
1453	switch (cmd) {
1454	case BTRFS_IOC_SCAN_DEV:
1455		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1456					    &btrfs_fs_type, &fs_devices);
1457		break;
1458	}
1459
1460	kfree(vol);
1461	return ret;
1462}
1463
1464static int btrfs_freeze(struct super_block *sb)
1465{
1466	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1467	mutex_lock(&fs_info->transaction_kthread_mutex);
1468	mutex_lock(&fs_info->cleaner_mutex);
1469	return 0;
1470}
1471
1472static int btrfs_unfreeze(struct super_block *sb)
1473{
1474	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1475	mutex_unlock(&fs_info->cleaner_mutex);
1476	mutex_unlock(&fs_info->transaction_kthread_mutex);
1477	return 0;
1478}
1479
1480static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1481{
1482	int ret;
1483
1484	ret = btrfs_dirty_inode(inode);
1485	if (ret)
1486		printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1487				   "error %d\n", btrfs_ino(inode), ret);
1488}
1489
1490static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1491{
1492	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1493	struct btrfs_fs_devices *cur_devices;
1494	struct btrfs_device *dev, *first_dev = NULL;
1495	struct list_head *head;
1496	struct rcu_string *name;
1497
1498	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1499	cur_devices = fs_info->fs_devices;
1500	while (cur_devices) {
1501		head = &cur_devices->devices;
1502		list_for_each_entry(dev, head, dev_list) {
1503			if (!first_dev || dev->devid < first_dev->devid)
1504				first_dev = dev;
1505		}
1506		cur_devices = cur_devices->seed;
1507	}
1508
1509	if (first_dev) {
1510		rcu_read_lock();
1511		name = rcu_dereference(first_dev->name);
1512		seq_escape(m, name->str, " \t\n\\");
1513		rcu_read_unlock();
1514	} else {
1515		WARN_ON(1);
1516	}
1517	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1518	return 0;
1519}
1520
1521static const struct super_operations btrfs_super_ops = {
1522	.drop_inode	= btrfs_drop_inode,
1523	.evict_inode	= btrfs_evict_inode,
1524	.put_super	= btrfs_put_super,
1525	.sync_fs	= btrfs_sync_fs,
1526	.show_options	= btrfs_show_options,
1527	.show_devname	= btrfs_show_devname,
1528	.write_inode	= btrfs_write_inode,
1529	.dirty_inode	= btrfs_fs_dirty_inode,
1530	.alloc_inode	= btrfs_alloc_inode,
1531	.destroy_inode	= btrfs_destroy_inode,
1532	.statfs		= btrfs_statfs,
1533	.remount_fs	= btrfs_remount,
1534	.freeze_fs	= btrfs_freeze,
1535	.unfreeze_fs	= btrfs_unfreeze,
1536};
1537
1538static const struct file_operations btrfs_ctl_fops = {
1539	.unlocked_ioctl	 = btrfs_control_ioctl,
1540	.compat_ioctl = btrfs_control_ioctl,
1541	.owner	 = THIS_MODULE,
1542	.llseek = noop_llseek,
1543};
1544
1545static struct miscdevice btrfs_misc = {
1546	.minor		= BTRFS_MINOR,
1547	.name		= "btrfs-control",
1548	.fops		= &btrfs_ctl_fops
1549};
1550
1551MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1552MODULE_ALIAS("devname:btrfs-control");
1553
1554static int btrfs_interface_init(void)
1555{
1556	return misc_register(&btrfs_misc);
1557}
1558
1559static void btrfs_interface_exit(void)
1560{
1561	if (misc_deregister(&btrfs_misc) < 0)
1562		printk(KERN_INFO "misc_deregister failed for control device");
1563}
1564
1565static int __init init_btrfs_fs(void)
1566{
1567	int err;
1568
1569	err = btrfs_init_sysfs();
1570	if (err)
1571		return err;
1572
1573	btrfs_init_compress();
 
 
1574
1575	err = btrfs_init_cachep();
1576	if (err)
1577		goto free_compress;
1578
1579	err = extent_io_init();
1580	if (err)
1581		goto free_cachep;
1582
1583	err = extent_map_init();
1584	if (err)
1585		goto free_extent_io;
1586
1587	err = btrfs_delayed_inode_init();
1588	if (err)
1589		goto free_extent_map;
1590
1591	err = btrfs_interface_init();
1592	if (err)
1593		goto free_delayed_inode;
1594
1595	err = register_filesystem(&btrfs_fs_type);
1596	if (err)
1597		goto unregister_ioctl;
1598
1599	btrfs_init_lockdep();
1600
1601	printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1602	return 0;
1603
1604unregister_ioctl:
1605	btrfs_interface_exit();
1606free_delayed_inode:
1607	btrfs_delayed_inode_exit();
1608free_extent_map:
1609	extent_map_exit();
1610free_extent_io:
1611	extent_io_exit();
1612free_cachep:
1613	btrfs_destroy_cachep();
1614free_compress:
1615	btrfs_exit_compress();
 
1616	btrfs_exit_sysfs();
1617	return err;
1618}
1619
1620static void __exit exit_btrfs_fs(void)
1621{
1622	btrfs_destroy_cachep();
1623	btrfs_delayed_inode_exit();
1624	extent_map_exit();
1625	extent_io_exit();
1626	btrfs_interface_exit();
1627	unregister_filesystem(&btrfs_fs_type);
1628	btrfs_exit_sysfs();
1629	btrfs_cleanup_fs_uuids();
1630	btrfs_exit_compress();
1631}
1632
1633module_init(init_btrfs_fs)
1634module_exit(exit_btrfs_fs)
1635
1636MODULE_LICENSE("GPL");