Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/ext2_fs.h>
  32#include <linux/sched.h>
  33#include <linux/security.h>
  34#include <linux/xattr.h>
  35#include <linux/capability.h>
  36#include <linux/unistd.h>
  37#include <linux/mm.h>
  38#include <linux/mman.h>
  39#include <linux/slab.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/swap.h>
  43#include <linux/spinlock.h>
  44#include <linux/syscalls.h>
  45#include <linux/dcache.h>
  46#include <linux/file.h>
  47#include <linux/fdtable.h>
  48#include <linux/namei.h>
  49#include <linux/mount.h>
 
 
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
 
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <linux/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
 
 
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
 
 
 
 
 
 
 
 
 
  83
  84#include "avc.h"
  85#include "objsec.h"
  86#include "netif.h"
  87#include "netnode.h"
  88#include "netport.h"
 
  89#include "xfrm.h"
  90#include "netlabel.h"
  91#include "audit.h"
 
  92
  93#define NUM_SEL_MNT_OPTS 5
  94
  95extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
  96extern struct security_operations *security_ops;
  97
  98/* SECMARK reference count */
  99atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 100
 101#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 102int selinux_enforcing;
 103
 104static int __init enforcing_setup(char *str)
 105{
 106	unsigned long enforcing;
 107	if (!strict_strtoul(str, 0, &enforcing))
 108		selinux_enforcing = enforcing ? 1 : 0;
 109	return 1;
 110}
 111__setup("enforcing=", enforcing_setup);
 
 
 112#endif
 113
 
 114#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 115int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 116
 117static int __init selinux_enabled_setup(char *str)
 118{
 119	unsigned long enabled;
 120	if (!strict_strtoul(str, 0, &enabled))
 121		selinux_enabled = enabled ? 1 : 0;
 122	return 1;
 123}
 124__setup("selinux=", selinux_enabled_setup);
 125#else
 126int selinux_enabled = 1;
 127#endif
 128
 129static struct kmem_cache *sel_inode_cache;
 
 
 
 
 
 
 
 
 
 
 
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.
 
 139 *
 140 */
 141static int selinux_secmark_enabled(void)
 142{
 143	return (atomic_read(&selinux_secmark_refcount) > 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144}
 145
 146/*
 147 * initialise the security for the init task
 148 */
 149static void cred_init_security(void)
 150{
 151	struct cred *cred = (struct cred *) current->real_cred;
 152	struct task_security_struct *tsec;
 153
 154	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 155	if (!tsec)
 156		panic("SELinux:  Failed to initialize initial task.\n");
 157
 158	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 159	cred->security = tsec;
 160}
 161
 162/*
 163 * get the security ID of a set of credentials
 164 */
 165static inline u32 cred_sid(const struct cred *cred)
 166{
 167	const struct task_security_struct *tsec;
 168
 169	tsec = cred->security;
 170	return tsec->sid;
 171}
 172
 173/*
 174 * get the objective security ID of a task
 175 */
 176static inline u32 task_sid(const struct task_struct *task)
 177{
 178	u32 sid;
 179
 180	rcu_read_lock();
 181	sid = cred_sid(__task_cred(task));
 182	rcu_read_unlock();
 183	return sid;
 184}
 185
 186/*
 187 * get the subjective security ID of the current task
 188 */
 189static inline u32 current_sid(void)
 190{
 191	const struct task_security_struct *tsec = current_security();
 192
 193	return tsec->sid;
 194}
 195
 196/* Allocate and free functions for each kind of security blob. */
 197
 198static int inode_alloc_security(struct inode *inode)
 199{
 200	struct inode_security_struct *isec;
 201	u32 sid = current_sid();
 202
 203	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 204	if (!isec)
 205		return -ENOMEM;
 206
 207	mutex_init(&isec->lock);
 208	INIT_LIST_HEAD(&isec->list);
 209	isec->inode = inode;
 210	isec->sid = SECINITSID_UNLABELED;
 211	isec->sclass = SECCLASS_FILE;
 212	isec->task_sid = sid;
 213	inode->i_security = isec;
 214
 215	return 0;
 216}
 217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218static void inode_free_security(struct inode *inode)
 219{
 220	struct inode_security_struct *isec = inode->i_security;
 221	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 222
 223	spin_lock(&sbsec->isec_lock);
 224	if (!list_empty(&isec->list))
 
 
 
 
 
 
 
 
 
 
 
 
 
 225		list_del_init(&isec->list);
 226	spin_unlock(&sbsec->isec_lock);
 227
 228	inode->i_security = NULL;
 229	kmem_cache_free(sel_inode_cache, isec);
 230}
 231
 232static int file_alloc_security(struct file *file)
 233{
 234	struct file_security_struct *fsec;
 235	u32 sid = current_sid();
 236
 237	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 238	if (!fsec)
 239		return -ENOMEM;
 240
 241	fsec->sid = sid;
 242	fsec->fown_sid = sid;
 243	file->f_security = fsec;
 244
 245	return 0;
 246}
 247
 248static void file_free_security(struct file *file)
 249{
 250	struct file_security_struct *fsec = file->f_security;
 251	file->f_security = NULL;
 252	kfree(fsec);
 253}
 254
 255static int superblock_alloc_security(struct super_block *sb)
 256{
 257	struct superblock_security_struct *sbsec;
 258
 259	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 260	if (!sbsec)
 261		return -ENOMEM;
 262
 263	mutex_init(&sbsec->lock);
 264	INIT_LIST_HEAD(&sbsec->isec_head);
 265	spin_lock_init(&sbsec->isec_lock);
 266	sbsec->sb = sb;
 267	sbsec->sid = SECINITSID_UNLABELED;
 268	sbsec->def_sid = SECINITSID_FILE;
 269	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 270	sb->s_security = sbsec;
 271
 272	return 0;
 273}
 274
 275static void superblock_free_security(struct super_block *sb)
 276{
 277	struct superblock_security_struct *sbsec = sb->s_security;
 278	sb->s_security = NULL;
 279	kfree(sbsec);
 280}
 281
 282/* The security server must be initialized before
 283   any labeling or access decisions can be provided. */
 284extern int ss_initialized;
 285
 286/* The file system's label must be initialized prior to use. */
 287
 288static const char *labeling_behaviors[6] = {
 289	"uses xattr",
 290	"uses transition SIDs",
 291	"uses task SIDs",
 292	"uses genfs_contexts",
 293	"not configured for labeling",
 294	"uses mountpoint labeling",
 295};
 296
 297static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 
 
 
 
 
 
 
 
 298
 299static inline int inode_doinit(struct inode *inode)
 300{
 301	return inode_doinit_with_dentry(inode, NULL);
 302}
 303
 304enum {
 305	Opt_error = -1,
 306	Opt_context = 1,
 
 307	Opt_fscontext = 2,
 308	Opt_defcontext = 3,
 309	Opt_rootcontext = 4,
 310	Opt_labelsupport = 5,
 311};
 312
 313static const match_table_t tokens = {
 314	{Opt_context, CONTEXT_STR "%s"},
 315	{Opt_fscontext, FSCONTEXT_STR "%s"},
 316	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 317	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 318	{Opt_labelsupport, LABELSUPP_STR},
 319	{Opt_error, NULL},
 
 
 
 
 
 320};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321
 322#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 323
 324static int may_context_mount_sb_relabel(u32 sid,
 325			struct superblock_security_struct *sbsec,
 326			const struct cred *cred)
 327{
 328	const struct task_security_struct *tsec = cred->security;
 329	int rc;
 330
 331	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 332			  FILESYSTEM__RELABELFROM, NULL);
 333	if (rc)
 334		return rc;
 335
 336	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 337			  FILESYSTEM__RELABELTO, NULL);
 338	return rc;
 339}
 340
 341static int may_context_mount_inode_relabel(u32 sid,
 342			struct superblock_security_struct *sbsec,
 343			const struct cred *cred)
 344{
 345	const struct task_security_struct *tsec = cred->security;
 346	int rc;
 347	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 348			  FILESYSTEM__RELABELFROM, NULL);
 349	if (rc)
 350		return rc;
 351
 352	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 353			  FILESYSTEM__ASSOCIATE, NULL);
 354	return rc;
 355}
 356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357static int sb_finish_set_opts(struct super_block *sb)
 358{
 359	struct superblock_security_struct *sbsec = sb->s_security;
 360	struct dentry *root = sb->s_root;
 361	struct inode *root_inode = root->d_inode;
 362	int rc = 0;
 363
 364	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 365		/* Make sure that the xattr handler exists and that no
 366		   error other than -ENODATA is returned by getxattr on
 367		   the root directory.  -ENODATA is ok, as this may be
 368		   the first boot of the SELinux kernel before we have
 369		   assigned xattr values to the filesystem. */
 370		if (!root_inode->i_op->getxattr) {
 371			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 372			       "xattr support\n", sb->s_id, sb->s_type->name);
 373			rc = -EOPNOTSUPP;
 374			goto out;
 375		}
 376		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 
 377		if (rc < 0 && rc != -ENODATA) {
 378			if (rc == -EOPNOTSUPP)
 379				printk(KERN_WARNING "SELinux: (dev %s, type "
 380				       "%s) has no security xattr handler\n",
 381				       sb->s_id, sb->s_type->name);
 382			else
 383				printk(KERN_WARNING "SELinux: (dev %s, type "
 384				       "%s) getxattr errno %d\n", sb->s_id,
 385				       sb->s_type->name, -rc);
 386			goto out;
 387		}
 388	}
 389
 390	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
 391
 392	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 393		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 394		       sb->s_id, sb->s_type->name);
 
 
 
 
 395	else
 396		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 397		       sb->s_id, sb->s_type->name,
 398		       labeling_behaviors[sbsec->behavior-1]);
 399
 400	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
 401	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
 402	    sbsec->behavior == SECURITY_FS_USE_NONE ||
 403	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 404		sbsec->flags &= ~SE_SBLABELSUPP;
 405
 406	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
 407	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 408		sbsec->flags |= SE_SBLABELSUPP;
 409
 410	/* Initialize the root inode. */
 411	rc = inode_doinit_with_dentry(root_inode, root);
 412
 413	/* Initialize any other inodes associated with the superblock, e.g.
 414	   inodes created prior to initial policy load or inodes created
 415	   during get_sb by a pseudo filesystem that directly
 416	   populates itself. */
 417	spin_lock(&sbsec->isec_lock);
 418next_inode:
 419	if (!list_empty(&sbsec->isec_head)) {
 420		struct inode_security_struct *isec =
 421				list_entry(sbsec->isec_head.next,
 422					   struct inode_security_struct, list);
 423		struct inode *inode = isec->inode;
 
 424		spin_unlock(&sbsec->isec_lock);
 425		inode = igrab(inode);
 426		if (inode) {
 427			if (!IS_PRIVATE(inode))
 428				inode_doinit(inode);
 429			iput(inode);
 430		}
 431		spin_lock(&sbsec->isec_lock);
 432		list_del_init(&isec->list);
 433		goto next_inode;
 434	}
 435	spin_unlock(&sbsec->isec_lock);
 436out:
 437	return rc;
 438}
 439
 440/*
 441 * This function should allow an FS to ask what it's mount security
 442 * options were so it can use those later for submounts, displaying
 443 * mount options, or whatever.
 444 */
 445static int selinux_get_mnt_opts(const struct super_block *sb,
 446				struct security_mnt_opts *opts)
 447{
 448	int rc = 0, i;
 449	struct superblock_security_struct *sbsec = sb->s_security;
 450	char *context = NULL;
 451	u32 len;
 452	char tmp;
 453
 454	security_init_mnt_opts(opts);
 455
 456	if (!(sbsec->flags & SE_SBINITIALIZED))
 457		return -EINVAL;
 458
 459	if (!ss_initialized)
 460		return -EINVAL;
 461
 462	tmp = sbsec->flags & SE_MNTMASK;
 463	/* count the number of mount options for this sb */
 464	for (i = 0; i < 8; i++) {
 465		if (tmp & 0x01)
 466			opts->num_mnt_opts++;
 467		tmp >>= 1;
 468	}
 469	/* Check if the Label support flag is set */
 470	if (sbsec->flags & SE_SBLABELSUPP)
 471		opts->num_mnt_opts++;
 472
 473	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 474	if (!opts->mnt_opts) {
 475		rc = -ENOMEM;
 476		goto out_free;
 477	}
 478
 479	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 480	if (!opts->mnt_opts_flags) {
 481		rc = -ENOMEM;
 482		goto out_free;
 483	}
 484
 485	i = 0;
 486	if (sbsec->flags & FSCONTEXT_MNT) {
 487		rc = security_sid_to_context(sbsec->sid, &context, &len);
 488		if (rc)
 489			goto out_free;
 490		opts->mnt_opts[i] = context;
 491		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 492	}
 493	if (sbsec->flags & CONTEXT_MNT) {
 494		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 495		if (rc)
 496			goto out_free;
 497		opts->mnt_opts[i] = context;
 498		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 499	}
 500	if (sbsec->flags & DEFCONTEXT_MNT) {
 501		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 502		if (rc)
 503			goto out_free;
 504		opts->mnt_opts[i] = context;
 505		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 506	}
 507	if (sbsec->flags & ROOTCONTEXT_MNT) {
 508		struct inode *root = sbsec->sb->s_root->d_inode;
 509		struct inode_security_struct *isec = root->i_security;
 510
 511		rc = security_sid_to_context(isec->sid, &context, &len);
 512		if (rc)
 513			goto out_free;
 514		opts->mnt_opts[i] = context;
 515		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 516	}
 517	if (sbsec->flags & SE_SBLABELSUPP) {
 518		opts->mnt_opts[i] = NULL;
 519		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
 520	}
 521
 522	BUG_ON(i != opts->num_mnt_opts);
 523
 524	return 0;
 525
 526out_free:
 527	security_free_mnt_opts(opts);
 528	return rc;
 529}
 530
 531static int bad_option(struct superblock_security_struct *sbsec, char flag,
 532		      u32 old_sid, u32 new_sid)
 533{
 534	char mnt_flags = sbsec->flags & SE_MNTMASK;
 535
 536	/* check if the old mount command had the same options */
 537	if (sbsec->flags & SE_SBINITIALIZED)
 538		if (!(sbsec->flags & flag) ||
 539		    (old_sid != new_sid))
 540			return 1;
 541
 542	/* check if we were passed the same options twice,
 543	 * aka someone passed context=a,context=b
 544	 */
 545	if (!(sbsec->flags & SE_SBINITIALIZED))
 546		if (mnt_flags & flag)
 547			return 1;
 548	return 0;
 549}
 550
 
 
 
 
 
 
 
 
 
 
 
 551/*
 552 * Allow filesystems with binary mount data to explicitly set mount point
 553 * labeling information.
 554 */
 555static int selinux_set_mnt_opts(struct super_block *sb,
 556				struct security_mnt_opts *opts)
 
 
 557{
 558	const struct cred *cred = current_cred();
 559	int rc = 0, i;
 560	struct superblock_security_struct *sbsec = sb->s_security;
 561	const char *name = sb->s_type->name;
 562	struct inode *inode = sbsec->sb->s_root->d_inode;
 563	struct inode_security_struct *root_isec = inode->i_security;
 564	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 565	u32 defcontext_sid = 0;
 566	char **mount_options = opts->mnt_opts;
 567	int *flags = opts->mnt_opts_flags;
 568	int num_opts = opts->num_mnt_opts;
 569
 570	mutex_lock(&sbsec->lock);
 571
 572	if (!ss_initialized) {
 573		if (!num_opts) {
 574			/* Defer initialization until selinux_complete_init,
 575			   after the initial policy is loaded and the security
 576			   server is ready to handle calls. */
 577			goto out;
 578		}
 579		rc = -EINVAL;
 580		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 581			"before the security server is initialized\n");
 582		goto out;
 583	}
 
 
 
 
 
 
 584
 585	/*
 586	 * Binary mount data FS will come through this function twice.  Once
 587	 * from an explicit call and once from the generic calls from the vfs.
 588	 * Since the generic VFS calls will not contain any security mount data
 589	 * we need to skip the double mount verification.
 590	 *
 591	 * This does open a hole in which we will not notice if the first
 592	 * mount using this sb set explict options and a second mount using
 593	 * this sb does not set any security options.  (The first options
 594	 * will be used for both mounts)
 595	 */
 596	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 597	    && (num_opts == 0))
 598		goto out;
 599
 
 
 600	/*
 601	 * parse the mount options, check if they are valid sids.
 602	 * also check if someone is trying to mount the same sb more
 603	 * than once with different security options.
 604	 */
 605	for (i = 0; i < num_opts; i++) {
 606		u32 sid;
 607
 608		if (flags[i] == SE_SBLABELSUPP)
 609			continue;
 610		rc = security_context_to_sid(mount_options[i],
 611					     strlen(mount_options[i]), &sid);
 612		if (rc) {
 613			printk(KERN_WARNING "SELinux: security_context_to_sid"
 614			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 615			       mount_options[i], sb->s_id, name, rc);
 616			goto out;
 617		}
 618		switch (flags[i]) {
 619		case FSCONTEXT_MNT:
 620			fscontext_sid = sid;
 621
 622			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 623					fscontext_sid))
 624				goto out_double_mount;
 625
 626			sbsec->flags |= FSCONTEXT_MNT;
 627			break;
 628		case CONTEXT_MNT:
 629			context_sid = sid;
 630
 
 631			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 632					context_sid))
 633				goto out_double_mount;
 634
 635			sbsec->flags |= CONTEXT_MNT;
 636			break;
 637		case ROOTCONTEXT_MNT:
 638			rootcontext_sid = sid;
 639
 
 640			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 641					rootcontext_sid))
 642				goto out_double_mount;
 643
 644			sbsec->flags |= ROOTCONTEXT_MNT;
 645
 646			break;
 647		case DEFCONTEXT_MNT:
 648			defcontext_sid = sid;
 649
 650			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 651					defcontext_sid))
 652				goto out_double_mount;
 653
 654			sbsec->flags |= DEFCONTEXT_MNT;
 655
 656			break;
 657		default:
 658			rc = -EINVAL;
 659			goto out;
 660		}
 661	}
 662
 663	if (sbsec->flags & SE_SBINITIALIZED) {
 664		/* previously mounted with options, but not on this attempt? */
 665		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 666			goto out_double_mount;
 667		rc = 0;
 668		goto out;
 669	}
 670
 671	if (strcmp(sb->s_type->name, "proc") == 0)
 672		sbsec->flags |= SE_SBPROC;
 673
 674	/* Determine the labeling behavior to use for this filesystem type. */
 675	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
 676	if (rc) {
 677		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
 678		       __func__, sb->s_type->name, rc);
 679		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680	}
 681
 682	/* sets the context of the superblock for the fs being mounted. */
 683	if (fscontext_sid) {
 684		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 685		if (rc)
 686			goto out;
 687
 688		sbsec->sid = fscontext_sid;
 689	}
 690
 691	/*
 692	 * Switch to using mount point labeling behavior.
 693	 * sets the label used on all file below the mountpoint, and will set
 694	 * the superblock context if not already set.
 695	 */
 
 
 
 
 
 696	if (context_sid) {
 697		if (!fscontext_sid) {
 698			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 699							  cred);
 700			if (rc)
 701				goto out;
 702			sbsec->sid = context_sid;
 703		} else {
 704			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 705							     cred);
 706			if (rc)
 707				goto out;
 708		}
 709		if (!rootcontext_sid)
 710			rootcontext_sid = context_sid;
 711
 712		sbsec->mntpoint_sid = context_sid;
 713		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 714	}
 715
 716	if (rootcontext_sid) {
 717		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 718						     cred);
 719		if (rc)
 720			goto out;
 721
 722		root_isec->sid = rootcontext_sid;
 723		root_isec->initialized = 1;
 724	}
 725
 726	if (defcontext_sid) {
 727		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
 
 728			rc = -EINVAL;
 729			printk(KERN_WARNING "SELinux: defcontext option is "
 730			       "invalid for this filesystem type\n");
 731			goto out;
 732		}
 733
 734		if (defcontext_sid != sbsec->def_sid) {
 735			rc = may_context_mount_inode_relabel(defcontext_sid,
 736							     sbsec, cred);
 737			if (rc)
 738				goto out;
 739		}
 740
 741		sbsec->def_sid = defcontext_sid;
 742	}
 743
 
 744	rc = sb_finish_set_opts(sb);
 745out:
 746	mutex_unlock(&sbsec->lock);
 747	return rc;
 748out_double_mount:
 749	rc = -EINVAL;
 750	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 751	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 752	goto out;
 753}
 754
 755static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 756					struct super_block *newsb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757{
 
 758	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 759	struct superblock_security_struct *newsbsec = newsb->s_security;
 760
 761	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 762	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 763	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 764
 765	/*
 766	 * if the parent was able to be mounted it clearly had no special lsm
 767	 * mount options.  thus we can safely deal with this superblock later
 768	 */
 769	if (!ss_initialized)
 770		return;
 
 
 
 
 
 
 
 771
 772	/* how can we clone if the old one wasn't set up?? */
 773	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 774
 775	/* if fs is reusing a sb, just let its options stand... */
 776	if (newsbsec->flags & SE_SBINITIALIZED)
 777		return;
 
 
 
 778
 779	mutex_lock(&newsbsec->lock);
 780
 781	newsbsec->flags = oldsbsec->flags;
 782
 783	newsbsec->sid = oldsbsec->sid;
 784	newsbsec->def_sid = oldsbsec->def_sid;
 785	newsbsec->behavior = oldsbsec->behavior;
 786
 
 
 
 
 
 
 
 
 
 
 
 
 787	if (set_context) {
 788		u32 sid = oldsbsec->mntpoint_sid;
 789
 790		if (!set_fscontext)
 791			newsbsec->sid = sid;
 792		if (!set_rootcontext) {
 793			struct inode *newinode = newsb->s_root->d_inode;
 794			struct inode_security_struct *newisec = newinode->i_security;
 795			newisec->sid = sid;
 796		}
 797		newsbsec->mntpoint_sid = sid;
 798	}
 799	if (set_rootcontext) {
 800		const struct inode *oldinode = oldsb->s_root->d_inode;
 801		const struct inode_security_struct *oldisec = oldinode->i_security;
 802		struct inode *newinode = newsb->s_root->d_inode;
 803		struct inode_security_struct *newisec = newinode->i_security;
 804
 805		newisec->sid = oldisec->sid;
 806	}
 807
 808	sb_finish_set_opts(newsb);
 
 809	mutex_unlock(&newsbsec->lock);
 
 810}
 811
 812static int selinux_parse_opts_str(char *options,
 813				  struct security_mnt_opts *opts)
 814{
 815	char *p;
 816	char *context = NULL, *defcontext = NULL;
 817	char *fscontext = NULL, *rootcontext = NULL;
 818	int rc, num_mnt_opts = 0;
 819
 820	opts->num_mnt_opts = 0;
 821
 822	/* Standard string-based options. */
 823	while ((p = strsep(&options, "|")) != NULL) {
 824		int token;
 825		substring_t args[MAX_OPT_ARGS];
 826
 827		if (!*p)
 828			continue;
 829
 830		token = match_token(p, tokens, args);
 831
 832		switch (token) {
 833		case Opt_context:
 834			if (context || defcontext) {
 835				rc = -EINVAL;
 836				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 837				goto out_err;
 838			}
 839			context = match_strdup(&args[0]);
 840			if (!context) {
 841				rc = -ENOMEM;
 842				goto out_err;
 843			}
 844			break;
 845
 846		case Opt_fscontext:
 847			if (fscontext) {
 848				rc = -EINVAL;
 849				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 850				goto out_err;
 851			}
 852			fscontext = match_strdup(&args[0]);
 853			if (!fscontext) {
 854				rc = -ENOMEM;
 855				goto out_err;
 856			}
 857			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858
 859		case Opt_rootcontext:
 860			if (rootcontext) {
 861				rc = -EINVAL;
 862				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 863				goto out_err;
 864			}
 865			rootcontext = match_strdup(&args[0]);
 866			if (!rootcontext) {
 867				rc = -ENOMEM;
 868				goto out_err;
 869			}
 870			break;
 871
 872		case Opt_defcontext:
 873			if (context || defcontext) {
 874				rc = -EINVAL;
 875				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 876				goto out_err;
 877			}
 878			defcontext = match_strdup(&args[0]);
 879			if (!defcontext) {
 880				rc = -ENOMEM;
 881				goto out_err;
 882			}
 883			break;
 884		case Opt_labelsupport:
 885			break;
 886		default:
 887			rc = -EINVAL;
 888			printk(KERN_WARNING "SELinux:  unknown mount option\n");
 889			goto out_err;
 890
 891		}
 892	}
 893
 894	rc = -ENOMEM;
 895	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
 896	if (!opts->mnt_opts)
 897		goto out_err;
 898
 899	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
 900	if (!opts->mnt_opts_flags) {
 901		kfree(opts->mnt_opts);
 902		goto out_err;
 903	}
 904
 905	if (fscontext) {
 906		opts->mnt_opts[num_mnt_opts] = fscontext;
 907		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
 908	}
 909	if (context) {
 910		opts->mnt_opts[num_mnt_opts] = context;
 911		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
 912	}
 913	if (rootcontext) {
 914		opts->mnt_opts[num_mnt_opts] = rootcontext;
 915		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
 916	}
 917	if (defcontext) {
 918		opts->mnt_opts[num_mnt_opts] = defcontext;
 919		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 
 920	}
 921
 922	opts->num_mnt_opts = num_mnt_opts;
 923	return 0;
 924
 925out_err:
 926	kfree(context);
 927	kfree(defcontext);
 928	kfree(fscontext);
 929	kfree(rootcontext);
 930	return rc;
 931}
 932/*
 933 * string mount options parsing and call set the sbsec
 934 */
 935static int superblock_doinit(struct super_block *sb, void *data)
 936{
 937	int rc = 0;
 938	char *options = data;
 939	struct security_mnt_opts opts;
 940
 941	security_init_mnt_opts(&opts);
 942
 943	if (!data)
 944		goto out;
 945
 946	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
 947
 948	rc = selinux_parse_opts_str(options, &opts);
 949	if (rc)
 950		goto out_err;
 951
 952out:
 953	rc = selinux_set_mnt_opts(sb, &opts);
 954
 955out_err:
 956	security_free_mnt_opts(&opts);
 957	return rc;
 958}
 959
 960static void selinux_write_opts(struct seq_file *m,
 961			       struct security_mnt_opts *opts)
 962{
 963	int i;
 964	char *prefix;
 965
 966	for (i = 0; i < opts->num_mnt_opts; i++) {
 967		char *has_comma;
 968
 969		if (opts->mnt_opts[i])
 970			has_comma = strchr(opts->mnt_opts[i], ',');
 971		else
 972			has_comma = NULL;
 973
 974		switch (opts->mnt_opts_flags[i]) {
 975		case CONTEXT_MNT:
 976			prefix = CONTEXT_STR;
 977			break;
 978		case FSCONTEXT_MNT:
 979			prefix = FSCONTEXT_STR;
 980			break;
 981		case ROOTCONTEXT_MNT:
 982			prefix = ROOTCONTEXT_STR;
 983			break;
 984		case DEFCONTEXT_MNT:
 985			prefix = DEFCONTEXT_STR;
 986			break;
 987		case SE_SBLABELSUPP:
 988			seq_putc(m, ',');
 989			seq_puts(m, LABELSUPP_STR);
 990			continue;
 991		default:
 992			BUG();
 993			return;
 994		};
 995		/* we need a comma before each option */
 996		seq_putc(m, ',');
 997		seq_puts(m, prefix);
 998		if (has_comma)
 999			seq_putc(m, '\"');
1000		seq_puts(m, opts->mnt_opts[i]);
1001		if (has_comma)
1002			seq_putc(m, '\"');
1003	}
 
 
1004}
1005
1006static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1007{
1008	struct security_mnt_opts opts;
1009	int rc;
1010
1011	rc = selinux_get_mnt_opts(sb, &opts);
1012	if (rc) {
1013		/* before policy load we may get EINVAL, don't show anything */
1014		if (rc == -EINVAL)
1015			rc = 0;
1016		return rc;
1017	}
1018
1019	selinux_write_opts(m, &opts);
1020
1021	security_free_mnt_opts(&opts);
 
1022
1023	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024}
1025
1026static inline u16 inode_mode_to_security_class(umode_t mode)
1027{
1028	switch (mode & S_IFMT) {
1029	case S_IFSOCK:
1030		return SECCLASS_SOCK_FILE;
1031	case S_IFLNK:
1032		return SECCLASS_LNK_FILE;
1033	case S_IFREG:
1034		return SECCLASS_FILE;
1035	case S_IFBLK:
1036		return SECCLASS_BLK_FILE;
1037	case S_IFDIR:
1038		return SECCLASS_DIR;
1039	case S_IFCHR:
1040		return SECCLASS_CHR_FILE;
1041	case S_IFIFO:
1042		return SECCLASS_FIFO_FILE;
1043
1044	}
1045
1046	return SECCLASS_FILE;
1047}
1048
1049static inline int default_protocol_stream(int protocol)
1050{
1051	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1052}
1053
1054static inline int default_protocol_dgram(int protocol)
1055{
1056	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1057}
1058
1059static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1060{
 
 
1061	switch (family) {
1062	case PF_UNIX:
1063		switch (type) {
1064		case SOCK_STREAM:
1065		case SOCK_SEQPACKET:
1066			return SECCLASS_UNIX_STREAM_SOCKET;
1067		case SOCK_DGRAM:
 
1068			return SECCLASS_UNIX_DGRAM_SOCKET;
1069		}
1070		break;
1071	case PF_INET:
1072	case PF_INET6:
1073		switch (type) {
1074		case SOCK_STREAM:
 
1075			if (default_protocol_stream(protocol))
1076				return SECCLASS_TCP_SOCKET;
 
 
1077			else
1078				return SECCLASS_RAWIP_SOCKET;
1079		case SOCK_DGRAM:
1080			if (default_protocol_dgram(protocol))
1081				return SECCLASS_UDP_SOCKET;
 
 
 
1082			else
1083				return SECCLASS_RAWIP_SOCKET;
1084		case SOCK_DCCP:
1085			return SECCLASS_DCCP_SOCKET;
1086		default:
1087			return SECCLASS_RAWIP_SOCKET;
1088		}
1089		break;
1090	case PF_NETLINK:
1091		switch (protocol) {
1092		case NETLINK_ROUTE:
1093			return SECCLASS_NETLINK_ROUTE_SOCKET;
1094		case NETLINK_FIREWALL:
1095			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1096		case NETLINK_INET_DIAG:
1097			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1098		case NETLINK_NFLOG:
1099			return SECCLASS_NETLINK_NFLOG_SOCKET;
1100		case NETLINK_XFRM:
1101			return SECCLASS_NETLINK_XFRM_SOCKET;
1102		case NETLINK_SELINUX:
1103			return SECCLASS_NETLINK_SELINUX_SOCKET;
 
 
1104		case NETLINK_AUDIT:
1105			return SECCLASS_NETLINK_AUDIT_SOCKET;
1106		case NETLINK_IP6_FW:
1107			return SECCLASS_NETLINK_IP6FW_SOCKET;
 
 
 
 
1108		case NETLINK_DNRTMSG:
1109			return SECCLASS_NETLINK_DNRT_SOCKET;
1110		case NETLINK_KOBJECT_UEVENT:
1111			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
 
 
 
 
 
 
 
 
1112		default:
1113			return SECCLASS_NETLINK_SOCKET;
1114		}
1115	case PF_PACKET:
1116		return SECCLASS_PACKET_SOCKET;
1117	case PF_KEY:
1118		return SECCLASS_KEY_SOCKET;
1119	case PF_APPLETALK:
1120		return SECCLASS_APPLETALK_SOCKET;
1121	}
1122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123	return SECCLASS_SOCKET;
1124}
1125
1126#ifdef CONFIG_PROC_FS
1127static int selinux_proc_get_sid(struct dentry *dentry,
1128				u16 tclass,
1129				u32 *sid)
1130{
1131	int rc;
 
1132	char *buffer, *path;
1133
1134	buffer = (char *)__get_free_page(GFP_KERNEL);
1135	if (!buffer)
1136		return -ENOMEM;
1137
1138	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1139	if (IS_ERR(path))
1140		rc = PTR_ERR(path);
1141	else {
1142		/* each process gets a /proc/PID/ entry. Strip off the
1143		 * PID part to get a valid selinux labeling.
1144		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1145		while (path[1] >= '0' && path[1] <= '9') {
1146			path[1] = '/';
1147			path++;
 
 
 
 
 
 
 
 
 
1148		}
1149		rc = security_genfs_sid("proc", path, tclass, sid);
1150	}
1151	free_page((unsigned long)buffer);
1152	return rc;
1153}
1154#else
1155static int selinux_proc_get_sid(struct dentry *dentry,
1156				u16 tclass,
1157				u32 *sid)
1158{
1159	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160}
1161#endif
1162
1163/* The inode's security attributes must be initialized before first use. */
1164static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1165{
1166	struct superblock_security_struct *sbsec = NULL;
1167	struct inode_security_struct *isec = inode->i_security;
1168	u32 sid;
 
1169	struct dentry *dentry;
1170#define INITCONTEXTLEN 255
1171	char *context = NULL;
1172	unsigned len = 0;
1173	int rc = 0;
1174
1175	if (isec->initialized)
1176		goto out;
1177
1178	mutex_lock(&isec->lock);
1179	if (isec->initialized)
1180		goto out_unlock;
1181
 
 
 
1182	sbsec = inode->i_sb->s_security;
1183	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1184		/* Defer initialization until selinux_complete_init,
1185		   after the initial policy is loaded and the security
1186		   server is ready to handle calls. */
1187		spin_lock(&sbsec->isec_lock);
1188		if (list_empty(&isec->list))
1189			list_add(&isec->list, &sbsec->isec_head);
1190		spin_unlock(&sbsec->isec_lock);
1191		goto out_unlock;
1192	}
1193
 
 
 
 
 
 
1194	switch (sbsec->behavior) {
 
 
1195	case SECURITY_FS_USE_XATTR:
1196		if (!inode->i_op->getxattr) {
1197			isec->sid = sbsec->def_sid;
1198			break;
1199		}
1200
1201		/* Need a dentry, since the xattr API requires one.
1202		   Life would be simpler if we could just pass the inode. */
1203		if (opt_dentry) {
1204			/* Called from d_instantiate or d_splice_alias. */
1205			dentry = dget(opt_dentry);
1206		} else {
1207			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1208			dentry = d_find_alias(inode);
 
 
1209		}
1210		if (!dentry) {
1211			/*
1212			 * this is can be hit on boot when a file is accessed
1213			 * before the policy is loaded.  When we load policy we
1214			 * may find inodes that have no dentry on the
1215			 * sbsec->isec_head list.  No reason to complain as these
1216			 * will get fixed up the next time we go through
1217			 * inode_doinit with a dentry, before these inodes could
1218			 * be used again by userspace.
1219			 */
1220			goto out_unlock;
1221		}
1222
1223		len = INITCONTEXTLEN;
1224		context = kmalloc(len+1, GFP_NOFS);
1225		if (!context) {
1226			rc = -ENOMEM;
1227			dput(dentry);
1228			goto out_unlock;
1229		}
1230		context[len] = '\0';
1231		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1232					   context, len);
1233		if (rc == -ERANGE) {
1234			kfree(context);
1235
1236			/* Need a larger buffer.  Query for the right size. */
1237			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1238						   NULL, 0);
1239			if (rc < 0) {
1240				dput(dentry);
1241				goto out_unlock;
1242			}
1243			len = rc;
1244			context = kmalloc(len+1, GFP_NOFS);
1245			if (!context) {
1246				rc = -ENOMEM;
1247				dput(dentry);
1248				goto out_unlock;
1249			}
1250			context[len] = '\0';
1251			rc = inode->i_op->getxattr(dentry,
1252						   XATTR_NAME_SELINUX,
1253						   context, len);
1254		}
1255		dput(dentry);
1256		if (rc < 0) {
1257			if (rc != -ENODATA) {
1258				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1259				       "%d for dev=%s ino=%ld\n", __func__,
1260				       -rc, inode->i_sb->s_id, inode->i_ino);
1261				kfree(context);
1262				goto out_unlock;
1263			}
1264			/* Map ENODATA to the default file SID */
1265			sid = sbsec->def_sid;
1266			rc = 0;
1267		} else {
1268			rc = security_context_to_sid_default(context, rc, &sid,
1269							     sbsec->def_sid,
1270							     GFP_NOFS);
1271			if (rc) {
1272				char *dev = inode->i_sb->s_id;
1273				unsigned long ino = inode->i_ino;
1274
1275				if (rc == -EINVAL) {
1276					if (printk_ratelimit())
1277						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1278							"context=%s.  This indicates you may need to relabel the inode or the "
1279							"filesystem in question.\n", ino, dev, context);
1280				} else {
1281					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1282					       "returned %d for dev=%s ino=%ld\n",
1283					       __func__, context, -rc, dev, ino);
1284				}
1285				kfree(context);
1286				/* Leave with the unlabeled SID */
1287				rc = 0;
1288				break;
1289			}
1290		}
1291		kfree(context);
1292		isec->sid = sid;
1293		break;
1294	case SECURITY_FS_USE_TASK:
1295		isec->sid = isec->task_sid;
1296		break;
1297	case SECURITY_FS_USE_TRANS:
1298		/* Default to the fs SID. */
1299		isec->sid = sbsec->sid;
1300
1301		/* Try to obtain a transition SID. */
1302		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1304					     isec->sclass, NULL, &sid);
1305		if (rc)
1306			goto out_unlock;
1307		isec->sid = sid;
1308		break;
1309	case SECURITY_FS_USE_MNTPOINT:
1310		isec->sid = sbsec->mntpoint_sid;
1311		break;
1312	default:
1313		/* Default to the fs superblock SID. */
1314		isec->sid = sbsec->sid;
1315
1316		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
 
 
1317			if (opt_dentry) {
1318				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1319				rc = selinux_proc_get_sid(opt_dentry,
1320							  isec->sclass,
1321							  &sid);
1322				if (rc)
1323					goto out_unlock;
1324				isec->sid = sid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1325			}
 
 
 
 
 
 
 
 
 
 
 
1326		}
1327		break;
1328	}
1329
1330	isec->initialized = 1;
 
 
 
 
 
 
 
 
 
 
1331
1332out_unlock:
1333	mutex_unlock(&isec->lock);
1334out:
1335	if (isec->sclass == SECCLASS_FILE)
1336		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1337	return rc;
1338}
1339
1340/* Convert a Linux signal to an access vector. */
1341static inline u32 signal_to_av(int sig)
1342{
1343	u32 perm = 0;
1344
1345	switch (sig) {
1346	case SIGCHLD:
1347		/* Commonly granted from child to parent. */
1348		perm = PROCESS__SIGCHLD;
1349		break;
1350	case SIGKILL:
1351		/* Cannot be caught or ignored */
1352		perm = PROCESS__SIGKILL;
1353		break;
1354	case SIGSTOP:
1355		/* Cannot be caught or ignored */
1356		perm = PROCESS__SIGSTOP;
1357		break;
1358	default:
1359		/* All other signals. */
1360		perm = PROCESS__SIGNAL;
1361		break;
1362	}
1363
1364	return perm;
1365}
1366
1367/*
1368 * Check permission between a pair of credentials
1369 * fork check, ptrace check, etc.
1370 */
1371static int cred_has_perm(const struct cred *actor,
1372			 const struct cred *target,
1373			 u32 perms)
1374{
1375	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1376
1377	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1378}
1379
1380/*
1381 * Check permission between a pair of tasks, e.g. signal checks,
1382 * fork check, ptrace check, etc.
1383 * tsk1 is the actor and tsk2 is the target
1384 * - this uses the default subjective creds of tsk1
1385 */
1386static int task_has_perm(const struct task_struct *tsk1,
1387			 const struct task_struct *tsk2,
1388			 u32 perms)
1389{
1390	const struct task_security_struct *__tsec1, *__tsec2;
1391	u32 sid1, sid2;
1392
1393	rcu_read_lock();
1394	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1395	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1396	rcu_read_unlock();
1397	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1398}
1399
1400/*
1401 * Check permission between current and another task, e.g. signal checks,
1402 * fork check, ptrace check, etc.
1403 * current is the actor and tsk2 is the target
1404 * - this uses current's subjective creds
1405 */
1406static int current_has_perm(const struct task_struct *tsk,
1407			    u32 perms)
1408{
1409	u32 sid, tsid;
1410
1411	sid = current_sid();
1412	tsid = task_sid(tsk);
1413	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1414}
1415
1416#if CAP_LAST_CAP > 63
1417#error Fix SELinux to handle capabilities > 63.
1418#endif
1419
1420/* Check whether a task is allowed to use a capability. */
1421static int task_has_capability(struct task_struct *tsk,
1422			       const struct cred *cred,
1423			       int cap, int audit)
1424{
1425	struct common_audit_data ad;
1426	struct av_decision avd;
1427	u16 sclass;
1428	u32 sid = cred_sid(cred);
1429	u32 av = CAP_TO_MASK(cap);
1430	int rc;
1431
1432	COMMON_AUDIT_DATA_INIT(&ad, CAP);
1433	ad.tsk = tsk;
1434	ad.u.cap = cap;
1435
1436	switch (CAP_TO_INDEX(cap)) {
1437	case 0:
1438		sclass = SECCLASS_CAPABILITY;
1439		break;
1440	case 1:
1441		sclass = SECCLASS_CAPABILITY2;
1442		break;
1443	default:
1444		printk(KERN_ERR
1445		       "SELinux:  out of range capability %d\n", cap);
1446		BUG();
1447		return -EINVAL;
1448	}
1449
1450	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1451	if (audit == SECURITY_CAP_AUDIT) {
1452		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
 
 
1453		if (rc2)
1454			return rc2;
1455	}
1456	return rc;
1457}
1458
1459/* Check whether a task is allowed to use a system operation. */
1460static int task_has_system(struct task_struct *tsk,
1461			   u32 perms)
1462{
1463	u32 sid = task_sid(tsk);
1464
1465	return avc_has_perm(sid, SECINITSID_KERNEL,
1466			    SECCLASS_SYSTEM, perms, NULL);
1467}
1468
1469/* Check whether a task has a particular permission to an inode.
1470   The 'adp' parameter is optional and allows other audit
1471   data to be passed (e.g. the dentry). */
1472static int inode_has_perm(const struct cred *cred,
1473			  struct inode *inode,
1474			  u32 perms,
1475			  struct common_audit_data *adp,
1476			  unsigned flags)
1477{
1478	struct inode_security_struct *isec;
1479	u32 sid;
1480
1481	validate_creds(cred);
1482
1483	if (unlikely(IS_PRIVATE(inode)))
1484		return 0;
1485
1486	sid = cred_sid(cred);
1487	isec = inode->i_security;
1488
1489	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1490}
1491
1492static int inode_has_perm_noadp(const struct cred *cred,
1493				struct inode *inode,
1494				u32 perms,
1495				unsigned flags)
1496{
1497	struct common_audit_data ad;
1498
1499	COMMON_AUDIT_DATA_INIT(&ad, INODE);
1500	ad.u.inode = inode;
1501	return inode_has_perm(cred, inode, perms, &ad, flags);
1502}
1503
1504/* Same as inode_has_perm, but pass explicit audit data containing
1505   the dentry to help the auditing code to more easily generate the
1506   pathname if needed. */
1507static inline int dentry_has_perm(const struct cred *cred,
1508				  struct dentry *dentry,
1509				  u32 av)
1510{
1511	struct inode *inode = dentry->d_inode;
1512	struct common_audit_data ad;
1513
1514	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1515	ad.u.dentry = dentry;
1516	return inode_has_perm(cred, inode, av, &ad, 0);
 
1517}
1518
1519/* Same as inode_has_perm, but pass explicit audit data containing
1520   the path to help the auditing code to more easily generate the
1521   pathname if needed. */
1522static inline int path_has_perm(const struct cred *cred,
1523				struct path *path,
1524				u32 av)
1525{
1526	struct inode *inode = path->dentry->d_inode;
1527	struct common_audit_data ad;
1528
1529	COMMON_AUDIT_DATA_INIT(&ad, PATH);
1530	ad.u.path = *path;
1531	return inode_has_perm(cred, inode, av, &ad, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
1532}
1533
 
 
 
 
1534/* Check whether a task can use an open file descriptor to
1535   access an inode in a given way.  Check access to the
1536   descriptor itself, and then use dentry_has_perm to
1537   check a particular permission to the file.
1538   Access to the descriptor is implicitly granted if it
1539   has the same SID as the process.  If av is zero, then
1540   access to the file is not checked, e.g. for cases
1541   where only the descriptor is affected like seek. */
1542static int file_has_perm(const struct cred *cred,
1543			 struct file *file,
1544			 u32 av)
1545{
1546	struct file_security_struct *fsec = file->f_security;
1547	struct inode *inode = file->f_path.dentry->d_inode;
1548	struct common_audit_data ad;
1549	u32 sid = cred_sid(cred);
1550	int rc;
1551
1552	COMMON_AUDIT_DATA_INIT(&ad, PATH);
1553	ad.u.path = file->f_path;
1554
1555	if (sid != fsec->sid) {
1556		rc = avc_has_perm(sid, fsec->sid,
 
1557				  SECCLASS_FD,
1558				  FD__USE,
1559				  &ad);
1560		if (rc)
1561			goto out;
1562	}
1563
 
 
 
 
 
 
1564	/* av is zero if only checking access to the descriptor. */
1565	rc = 0;
1566	if (av)
1567		rc = inode_has_perm(cred, inode, av, &ad, 0);
1568
1569out:
1570	return rc;
1571}
1572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573/* Check whether a task can create a file. */
1574static int may_create(struct inode *dir,
1575		      struct dentry *dentry,
1576		      u16 tclass)
1577{
1578	const struct task_security_struct *tsec = current_security();
1579	struct inode_security_struct *dsec;
1580	struct superblock_security_struct *sbsec;
1581	u32 sid, newsid;
1582	struct common_audit_data ad;
1583	int rc;
1584
1585	dsec = dir->i_security;
1586	sbsec = dir->i_sb->s_security;
1587
1588	sid = tsec->sid;
1589	newsid = tsec->create_sid;
1590
1591	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1592	ad.u.dentry = dentry;
1593
1594	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1595			  DIR__ADD_NAME | DIR__SEARCH,
1596			  &ad);
1597	if (rc)
1598		return rc;
1599
1600	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1601		rc = security_transition_sid(sid, dsec->sid, tclass,
1602					     &dentry->d_name, &newsid);
1603		if (rc)
1604			return rc;
1605	}
1606
1607	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1608	if (rc)
1609		return rc;
1610
1611	return avc_has_perm(newsid, sbsec->sid,
 
1612			    SECCLASS_FILESYSTEM,
1613			    FILESYSTEM__ASSOCIATE, &ad);
1614}
1615
1616/* Check whether a task can create a key. */
1617static int may_create_key(u32 ksid,
1618			  struct task_struct *ctx)
1619{
1620	u32 sid = task_sid(ctx);
1621
1622	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1623}
1624
1625#define MAY_LINK	0
1626#define MAY_UNLINK	1
1627#define MAY_RMDIR	2
1628
1629/* Check whether a task can link, unlink, or rmdir a file/directory. */
1630static int may_link(struct inode *dir,
1631		    struct dentry *dentry,
1632		    int kind)
1633
1634{
1635	struct inode_security_struct *dsec, *isec;
1636	struct common_audit_data ad;
1637	u32 sid = current_sid();
1638	u32 av;
1639	int rc;
1640
1641	dsec = dir->i_security;
1642	isec = dentry->d_inode->i_security;
1643
1644	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1645	ad.u.dentry = dentry;
1646
1647	av = DIR__SEARCH;
1648	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1649	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1650	if (rc)
1651		return rc;
1652
1653	switch (kind) {
1654	case MAY_LINK:
1655		av = FILE__LINK;
1656		break;
1657	case MAY_UNLINK:
1658		av = FILE__UNLINK;
1659		break;
1660	case MAY_RMDIR:
1661		av = DIR__RMDIR;
1662		break;
1663	default:
1664		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1665			__func__, kind);
1666		return 0;
1667	}
1668
1669	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1670	return rc;
1671}
1672
1673static inline int may_rename(struct inode *old_dir,
1674			     struct dentry *old_dentry,
1675			     struct inode *new_dir,
1676			     struct dentry *new_dentry)
1677{
1678	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1679	struct common_audit_data ad;
1680	u32 sid = current_sid();
1681	u32 av;
1682	int old_is_dir, new_is_dir;
1683	int rc;
1684
1685	old_dsec = old_dir->i_security;
1686	old_isec = old_dentry->d_inode->i_security;
1687	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1688	new_dsec = new_dir->i_security;
1689
1690	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1691
1692	ad.u.dentry = old_dentry;
1693	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1694			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1695	if (rc)
1696		return rc;
1697	rc = avc_has_perm(sid, old_isec->sid,
 
1698			  old_isec->sclass, FILE__RENAME, &ad);
1699	if (rc)
1700		return rc;
1701	if (old_is_dir && new_dir != old_dir) {
1702		rc = avc_has_perm(sid, old_isec->sid,
 
1703				  old_isec->sclass, DIR__REPARENT, &ad);
1704		if (rc)
1705			return rc;
1706	}
1707
1708	ad.u.dentry = new_dentry;
1709	av = DIR__ADD_NAME | DIR__SEARCH;
1710	if (new_dentry->d_inode)
1711		av |= DIR__REMOVE_NAME;
1712	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1713	if (rc)
1714		return rc;
1715	if (new_dentry->d_inode) {
1716		new_isec = new_dentry->d_inode->i_security;
1717		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1718		rc = avc_has_perm(sid, new_isec->sid,
 
1719				  new_isec->sclass,
1720				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1721		if (rc)
1722			return rc;
1723	}
1724
1725	return 0;
1726}
1727
1728/* Check whether a task can perform a filesystem operation. */
1729static int superblock_has_perm(const struct cred *cred,
1730			       struct super_block *sb,
1731			       u32 perms,
1732			       struct common_audit_data *ad)
1733{
1734	struct superblock_security_struct *sbsec;
1735	u32 sid = cred_sid(cred);
1736
1737	sbsec = sb->s_security;
1738	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1739}
1740
1741/* Convert a Linux mode and permission mask to an access vector. */
1742static inline u32 file_mask_to_av(int mode, int mask)
1743{
1744	u32 av = 0;
1745
1746	if ((mode & S_IFMT) != S_IFDIR) {
1747		if (mask & MAY_EXEC)
1748			av |= FILE__EXECUTE;
1749		if (mask & MAY_READ)
1750			av |= FILE__READ;
1751
1752		if (mask & MAY_APPEND)
1753			av |= FILE__APPEND;
1754		else if (mask & MAY_WRITE)
1755			av |= FILE__WRITE;
1756
1757	} else {
1758		if (mask & MAY_EXEC)
1759			av |= DIR__SEARCH;
1760		if (mask & MAY_WRITE)
1761			av |= DIR__WRITE;
1762		if (mask & MAY_READ)
1763			av |= DIR__READ;
1764	}
1765
1766	return av;
1767}
1768
1769/* Convert a Linux file to an access vector. */
1770static inline u32 file_to_av(struct file *file)
1771{
1772	u32 av = 0;
1773
1774	if (file->f_mode & FMODE_READ)
1775		av |= FILE__READ;
1776	if (file->f_mode & FMODE_WRITE) {
1777		if (file->f_flags & O_APPEND)
1778			av |= FILE__APPEND;
1779		else
1780			av |= FILE__WRITE;
1781	}
1782	if (!av) {
1783		/*
1784		 * Special file opened with flags 3 for ioctl-only use.
1785		 */
1786		av = FILE__IOCTL;
1787	}
1788
1789	return av;
1790}
1791
1792/*
1793 * Convert a file to an access vector and include the correct open
1794 * open permission.
1795 */
1796static inline u32 open_file_to_av(struct file *file)
1797{
1798	u32 av = file_to_av(file);
 
1799
1800	if (selinux_policycap_openperm)
 
1801		av |= FILE__OPEN;
1802
1803	return av;
1804}
1805
1806/* Hook functions begin here. */
1807
1808static int selinux_ptrace_access_check(struct task_struct *child,
1809				     unsigned int mode)
1810{
1811	int rc;
 
1812
1813	rc = cap_ptrace_access_check(child, mode);
1814	if (rc)
1815		return rc;
 
1816
1817	if (mode == PTRACE_MODE_READ) {
1818		u32 sid = current_sid();
1819		u32 csid = task_sid(child);
1820		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
 
 
 
 
 
 
 
 
 
 
1821	}
1822
1823	return current_has_perm(child, PROCESS__PTRACE);
 
 
1824}
1825
1826static int selinux_ptrace_traceme(struct task_struct *parent)
 
1827{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828	int rc;
1829
1830	rc = cap_ptrace_traceme(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831	if (rc)
1832		return rc;
 
 
 
 
1833
1834	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
 
1835}
1836
1837static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1838			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1839{
1840	int error;
 
1841
1842	error = current_has_perm(target, PROCESS__GETCAP);
1843	if (error)
1844		return error;
 
 
 
 
 
 
 
 
 
 
 
1845
1846	return cap_capget(target, effective, inheritable, permitted);
 
 
 
 
 
1847}
1848
1849static int selinux_capset(struct cred *new, const struct cred *old,
1850			  const kernel_cap_t *effective,
1851			  const kernel_cap_t *inheritable,
1852			  const kernel_cap_t *permitted)
1853{
1854	int error;
1855
1856	error = cap_capset(new, old,
1857				      effective, inheritable, permitted);
1858	if (error)
1859		return error;
1860
1861	return cred_has_perm(old, new, PROCESS__SETCAP);
1862}
1863
1864/*
1865 * (This comment used to live with the selinux_task_setuid hook,
1866 * which was removed).
1867 *
1868 * Since setuid only affects the current process, and since the SELinux
1869 * controls are not based on the Linux identity attributes, SELinux does not
1870 * need to control this operation.  However, SELinux does control the use of
1871 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1872 */
1873
1874static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1875			   struct user_namespace *ns, int cap, int audit)
1876{
1877	int rc;
1878
1879	rc = cap_capable(tsk, cred, ns, cap, audit);
1880	if (rc)
1881		return rc;
1882
1883	return task_has_capability(tsk, cred, cap, audit);
1884}
1885
1886static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1887{
1888	const struct cred *cred = current_cred();
1889	int rc = 0;
1890
1891	if (!sb)
1892		return 0;
1893
1894	switch (cmds) {
1895	case Q_SYNC:
1896	case Q_QUOTAON:
1897	case Q_QUOTAOFF:
1898	case Q_SETINFO:
1899	case Q_SETQUOTA:
1900		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1901		break;
1902	case Q_GETFMT:
1903	case Q_GETINFO:
1904	case Q_GETQUOTA:
1905		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1906		break;
1907	default:
1908		rc = 0;  /* let the kernel handle invalid cmds */
1909		break;
1910	}
1911	return rc;
1912}
1913
1914static int selinux_quota_on(struct dentry *dentry)
1915{
1916	const struct cred *cred = current_cred();
1917
1918	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1919}
1920
1921static int selinux_syslog(int type)
1922{
1923	int rc;
1924
1925	switch (type) {
1926	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1927	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1928		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1929		break;
 
1930	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1931	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1932	/* Set level of messages printed to console */
1933	case SYSLOG_ACTION_CONSOLE_LEVEL:
1934		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1935		break;
1936	case SYSLOG_ACTION_CLOSE:	/* Close log */
1937	case SYSLOG_ACTION_OPEN:	/* Open log */
1938	case SYSLOG_ACTION_READ:	/* Read from log */
1939	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1940	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1941	default:
1942		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1943		break;
1944	}
1945	return rc;
1946}
1947
1948/*
1949 * Check that a process has enough memory to allocate a new virtual
1950 * mapping. 0 means there is enough memory for the allocation to
1951 * succeed and -ENOMEM implies there is not.
1952 *
1953 * Do not audit the selinux permission check, as this is applied to all
1954 * processes that allocate mappings.
1955 */
1956static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1957{
1958	int rc, cap_sys_admin = 0;
1959
1960	rc = selinux_capable(current, current_cred(),
1961			     &init_user_ns, CAP_SYS_ADMIN,
1962			     SECURITY_CAP_NOAUDIT);
1963	if (rc == 0)
1964		cap_sys_admin = 1;
1965
1966	return __vm_enough_memory(mm, pages, cap_sys_admin);
1967}
1968
1969/* binprm security operations */
1970
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1972{
1973	const struct task_security_struct *old_tsec;
1974	struct task_security_struct *new_tsec;
1975	struct inode_security_struct *isec;
1976	struct common_audit_data ad;
1977	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1978	int rc;
1979
1980	rc = cap_bprm_set_creds(bprm);
1981	if (rc)
1982		return rc;
1983
1984	/* SELinux context only depends on initial program or script and not
1985	 * the script interpreter */
1986	if (bprm->cred_prepared)
1987		return 0;
1988
1989	old_tsec = current_security();
1990	new_tsec = bprm->cred->security;
1991	isec = inode->i_security;
1992
1993	/* Default to the current task SID. */
1994	new_tsec->sid = old_tsec->sid;
1995	new_tsec->osid = old_tsec->sid;
1996
1997	/* Reset fs, key, and sock SIDs on execve. */
1998	new_tsec->create_sid = 0;
1999	new_tsec->keycreate_sid = 0;
2000	new_tsec->sockcreate_sid = 0;
2001
2002	if (old_tsec->exec_sid) {
2003		new_tsec->sid = old_tsec->exec_sid;
2004		/* Reset exec SID on execve. */
2005		new_tsec->exec_sid = 0;
 
 
 
 
 
2006	} else {
2007		/* Check for a default transition on this program. */
2008		rc = security_transition_sid(old_tsec->sid, isec->sid,
2009					     SECCLASS_PROCESS, NULL,
2010					     &new_tsec->sid);
2011		if (rc)
2012			return rc;
2013	}
2014
2015	COMMON_AUDIT_DATA_INIT(&ad, PATH);
2016	ad.u.path = bprm->file->f_path;
 
 
 
 
 
 
2017
2018	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2019		new_tsec->sid = old_tsec->sid;
2020
2021	if (new_tsec->sid == old_tsec->sid) {
2022		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2023				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2024		if (rc)
2025			return rc;
2026	} else {
2027		/* Check permissions for the transition. */
2028		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2029				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2030		if (rc)
2031			return rc;
2032
2033		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2034				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2035		if (rc)
2036			return rc;
2037
2038		/* Check for shared state */
2039		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2040			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2041					  SECCLASS_PROCESS, PROCESS__SHARE,
2042					  NULL);
2043			if (rc)
2044				return -EPERM;
2045		}
2046
2047		/* Make sure that anyone attempting to ptrace over a task that
2048		 * changes its SID has the appropriate permit */
2049		if (bprm->unsafe &
2050		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2051			struct task_struct *tracer;
2052			struct task_security_struct *sec;
2053			u32 ptsid = 0;
2054
2055			rcu_read_lock();
2056			tracer = ptrace_parent(current);
2057			if (likely(tracer != NULL)) {
2058				sec = __task_cred(tracer)->security;
2059				ptsid = sec->sid;
2060			}
2061			rcu_read_unlock();
2062
2063			if (ptsid != 0) {
2064				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2065						  SECCLASS_PROCESS,
2066						  PROCESS__PTRACE, NULL);
2067				if (rc)
2068					return -EPERM;
2069			}
2070		}
2071
2072		/* Clear any possibly unsafe personality bits on exec: */
2073		bprm->per_clear |= PER_CLEAR_ON_SETID;
2074	}
2075
2076	return 0;
2077}
2078
2079static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2080{
2081	const struct task_security_struct *tsec = current_security();
2082	u32 sid, osid;
2083	int atsecure = 0;
2084
2085	sid = tsec->sid;
2086	osid = tsec->osid;
2087
2088	if (osid != sid) {
2089		/* Enable secure mode for SIDs transitions unless
2090		   the noatsecure permission is granted between
2091		   the two SIDs, i.e. ahp returns 0. */
2092		atsecure = avc_has_perm(osid, sid,
2093					SECCLASS_PROCESS,
2094					PROCESS__NOATSECURE, NULL);
 
 
2095	}
2096
2097	return (atsecure || cap_bprm_secureexec(bprm));
2098}
2099
2100extern struct vfsmount *selinuxfs_mount;
2101extern struct dentry *selinux_null;
 
 
2102
2103/* Derived from fs/exec.c:flush_old_files. */
2104static inline void flush_unauthorized_files(const struct cred *cred,
2105					    struct files_struct *files)
2106{
2107	struct common_audit_data ad;
2108	struct file *file, *devnull = NULL;
2109	struct tty_struct *tty;
2110	struct fdtable *fdt;
2111	long j = -1;
2112	int drop_tty = 0;
 
2113
2114	tty = get_current_tty();
2115	if (tty) {
2116		spin_lock(&tty_files_lock);
2117		if (!list_empty(&tty->tty_files)) {
2118			struct tty_file_private *file_priv;
2119			struct inode *inode;
2120
2121			/* Revalidate access to controlling tty.
2122			   Use inode_has_perm on the tty inode directly rather
2123			   than using file_has_perm, as this particular open
2124			   file may belong to another process and we are only
2125			   interested in the inode-based check here. */
2126			file_priv = list_first_entry(&tty->tty_files,
2127						struct tty_file_private, list);
2128			file = file_priv->file;
2129			inode = file->f_path.dentry->d_inode;
2130			if (inode_has_perm_noadp(cred, inode,
2131					   FILE__READ | FILE__WRITE, 0)) {
2132				drop_tty = 1;
2133			}
2134		}
2135		spin_unlock(&tty_files_lock);
2136		tty_kref_put(tty);
2137	}
2138	/* Reset controlling tty. */
2139	if (drop_tty)
2140		no_tty();
2141
2142	/* Revalidate access to inherited open files. */
 
 
 
2143
2144	COMMON_AUDIT_DATA_INIT(&ad, INODE);
2145
2146	spin_lock(&files->file_lock);
2147	for (;;) {
2148		unsigned long set, i;
2149		int fd;
2150
2151		j++;
2152		i = j * __NFDBITS;
2153		fdt = files_fdtable(files);
2154		if (i >= fdt->max_fds)
2155			break;
2156		set = fdt->open_fds->fds_bits[j];
2157		if (!set)
2158			continue;
2159		spin_unlock(&files->file_lock);
2160		for ( ; set ; i++, set >>= 1) {
2161			if (set & 1) {
2162				file = fget(i);
2163				if (!file)
2164					continue;
2165				if (file_has_perm(cred,
2166						  file,
2167						  file_to_av(file))) {
2168					sys_close(i);
2169					fd = get_unused_fd();
2170					if (fd != i) {
2171						if (fd >= 0)
2172							put_unused_fd(fd);
2173						fput(file);
2174						continue;
2175					}
2176					if (devnull) {
2177						get_file(devnull);
2178					} else {
2179						devnull = dentry_open(
2180							dget(selinux_null),
2181							mntget(selinuxfs_mount),
2182							O_RDWR, cred);
2183						if (IS_ERR(devnull)) {
2184							devnull = NULL;
2185							put_unused_fd(fd);
2186							fput(file);
2187							continue;
2188						}
2189					}
2190					fd_install(fd, devnull);
2191				}
2192				fput(file);
2193			}
2194		}
2195		spin_lock(&files->file_lock);
2196
2197	}
2198	spin_unlock(&files->file_lock);
2199}
2200
2201/*
2202 * Prepare a process for imminent new credential changes due to exec
2203 */
2204static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2205{
2206	struct task_security_struct *new_tsec;
2207	struct rlimit *rlim, *initrlim;
2208	int rc, i;
2209
2210	new_tsec = bprm->cred->security;
2211	if (new_tsec->sid == new_tsec->osid)
2212		return;
2213
2214	/* Close files for which the new task SID is not authorized. */
2215	flush_unauthorized_files(bprm->cred, current->files);
2216
2217	/* Always clear parent death signal on SID transitions. */
2218	current->pdeath_signal = 0;
2219
2220	/* Check whether the new SID can inherit resource limits from the old
2221	 * SID.  If not, reset all soft limits to the lower of the current
2222	 * task's hard limit and the init task's soft limit.
2223	 *
2224	 * Note that the setting of hard limits (even to lower them) can be
2225	 * controlled by the setrlimit check.  The inclusion of the init task's
2226	 * soft limit into the computation is to avoid resetting soft limits
2227	 * higher than the default soft limit for cases where the default is
2228	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2229	 */
2230	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2231			  PROCESS__RLIMITINH, NULL);
2232	if (rc) {
2233		/* protect against do_prlimit() */
2234		task_lock(current);
2235		for (i = 0; i < RLIM_NLIMITS; i++) {
2236			rlim = current->signal->rlim + i;
2237			initrlim = init_task.signal->rlim + i;
2238			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2239		}
2240		task_unlock(current);
2241		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
 
2242	}
2243}
2244
2245/*
2246 * Clean up the process immediately after the installation of new credentials
2247 * due to exec
2248 */
2249static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2250{
2251	const struct task_security_struct *tsec = current_security();
2252	struct itimerval itimer;
2253	u32 osid, sid;
2254	int rc, i;
2255
2256	osid = tsec->osid;
2257	sid = tsec->sid;
2258
2259	if (sid == osid)
2260		return;
2261
2262	/* Check whether the new SID can inherit signal state from the old SID.
2263	 * If not, clear itimers to avoid subsequent signal generation and
2264	 * flush and unblock signals.
2265	 *
2266	 * This must occur _after_ the task SID has been updated so that any
2267	 * kill done after the flush will be checked against the new SID.
2268	 */
2269	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2270	if (rc) {
2271		memset(&itimer, 0, sizeof itimer);
2272		for (i = 0; i < 3; i++)
2273			do_setitimer(i, &itimer, NULL);
 
 
2274		spin_lock_irq(&current->sighand->siglock);
2275		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2276			__flush_signals(current);
 
2277			flush_signal_handlers(current, 1);
2278			sigemptyset(&current->blocked);
 
2279		}
2280		spin_unlock_irq(&current->sighand->siglock);
2281	}
2282
2283	/* Wake up the parent if it is waiting so that it can recheck
2284	 * wait permission to the new task SID. */
2285	read_lock(&tasklist_lock);
2286	__wake_up_parent(current, current->real_parent);
2287	read_unlock(&tasklist_lock);
2288}
2289
2290/* superblock security operations */
2291
2292static int selinux_sb_alloc_security(struct super_block *sb)
2293{
2294	return superblock_alloc_security(sb);
2295}
2296
2297static void selinux_sb_free_security(struct super_block *sb)
2298{
2299	superblock_free_security(sb);
2300}
2301
2302static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2303{
2304	if (plen > olen)
2305		return 0;
 
2306
2307	return !memcmp(prefix, option, plen);
 
 
 
 
 
 
2308}
2309
2310static inline int selinux_option(char *option, int len)
2311{
2312	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2313		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2314		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2315		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2316		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2317}
2318
2319static inline void take_option(char **to, char *from, int *first, int len)
2320{
2321	if (!*first) {
2322		**to = ',';
2323		*to += 1;
2324	} else
2325		*first = 0;
2326	memcpy(*to, from, len);
2327	*to += len;
2328}
2329
2330static inline void take_selinux_option(char **to, char *from, int *first,
2331				       int len)
2332{
2333	int current_size = 0;
2334
2335	if (!*first) {
2336		**to = '|';
2337		*to += 1;
2338	} else
2339		*first = 0;
2340
2341	while (current_size < len) {
2342		if (*from != '"') {
2343			**to = *from;
2344			*to += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345		}
2346		from += 1;
2347		current_size += 1;
 
2348	}
2349}
2350
2351static int selinux_sb_copy_data(char *orig, char *copy)
2352{
2353	int fnosec, fsec, rc = 0;
2354	char *in_save, *in_curr, *in_end;
2355	char *sec_curr, *nosec_save, *nosec;
2356	int open_quote = 0;
2357
2358	in_curr = orig;
2359	sec_curr = copy;
2360
2361	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2362	if (!nosec) {
2363		rc = -ENOMEM;
2364		goto out;
2365	}
2366
2367	nosec_save = nosec;
2368	fnosec = fsec = 1;
2369	in_save = in_end = orig;
2370
2371	do {
2372		if (*in_end == '"')
2373			open_quote = !open_quote;
2374		if ((*in_end == ',' && open_quote == 0) ||
2375				*in_end == '\0') {
2376			int len = in_end - in_curr;
2377
2378			if (selinux_option(in_curr, len))
2379				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2380			else
2381				take_option(&nosec, in_curr, &fnosec, len);
2382
2383			in_curr = in_end + 1;
2384		}
2385	} while (*in_end++);
2386
2387	strcpy(in_save, nosec_save);
2388	free_page((unsigned long)nosec_save);
2389out:
2390	return rc;
2391}
2392
2393static int selinux_sb_remount(struct super_block *sb, void *data)
2394{
2395	int rc, i, *flags;
2396	struct security_mnt_opts opts;
2397	char *secdata, **mount_options;
2398	struct superblock_security_struct *sbsec = sb->s_security;
 
 
2399
2400	if (!(sbsec->flags & SE_SBINITIALIZED))
2401		return 0;
2402
2403	if (!data)
2404		return 0;
2405
2406	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2407		return 0;
2408
2409	security_init_mnt_opts(&opts);
2410	secdata = alloc_secdata();
2411	if (!secdata)
2412		return -ENOMEM;
2413	rc = selinux_sb_copy_data(data, secdata);
2414	if (rc)
2415		goto out_free_secdata;
2416
2417	rc = selinux_parse_opts_str(secdata, &opts);
2418	if (rc)
2419		goto out_free_secdata;
2420
2421	mount_options = opts.mnt_opts;
2422	flags = opts.mnt_opts_flags;
2423
2424	for (i = 0; i < opts.num_mnt_opts; i++) {
2425		u32 sid;
2426		size_t len;
2427
2428		if (flags[i] == SE_SBLABELSUPP)
2429			continue;
2430		len = strlen(mount_options[i]);
2431		rc = security_context_to_sid(mount_options[i], len, &sid);
2432		if (rc) {
2433			printk(KERN_WARNING "SELinux: security_context_to_sid"
2434			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2435			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2436			goto out_free_opts;
2437		}
2438		rc = -EINVAL;
2439		switch (flags[i]) {
2440		case FSCONTEXT_MNT:
2441			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2442				goto out_bad_option;
2443			break;
2444		case CONTEXT_MNT:
2445			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2446				goto out_bad_option;
2447			break;
2448		case ROOTCONTEXT_MNT: {
2449			struct inode_security_struct *root_isec;
2450			root_isec = sb->s_root->d_inode->i_security;
2451
2452			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2453				goto out_bad_option;
2454			break;
2455		}
2456		case DEFCONTEXT_MNT:
2457			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2458				goto out_bad_option;
2459			break;
2460		default:
2461			goto out_free_opts;
2462		}
2463	}
 
 
 
 
 
 
 
 
2464
2465	rc = 0;
2466out_free_opts:
2467	security_free_mnt_opts(&opts);
2468out_free_secdata:
2469	free_secdata(secdata);
2470	return rc;
2471out_bad_option:
2472	printk(KERN_WARNING "SELinux: unable to change security options "
2473	       "during remount (dev %s, type=%s)\n", sb->s_id,
2474	       sb->s_type->name);
2475	goto out_free_opts;
2476}
2477
2478static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2479{
2480	const struct cred *cred = current_cred();
2481	struct common_audit_data ad;
2482	int rc;
2483
2484	rc = superblock_doinit(sb, data);
2485	if (rc)
2486		return rc;
2487
2488	/* Allow all mounts performed by the kernel */
2489	if (flags & MS_KERNMOUNT)
2490		return 0;
2491
2492	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2493	ad.u.dentry = sb->s_root;
2494	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2495}
2496
2497static int selinux_sb_statfs(struct dentry *dentry)
2498{
2499	const struct cred *cred = current_cred();
2500	struct common_audit_data ad;
2501
2502	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2503	ad.u.dentry = dentry->d_sb->s_root;
2504	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2505}
2506
2507static int selinux_mount(char *dev_name,
2508			 struct path *path,
2509			 char *type,
2510			 unsigned long flags,
2511			 void *data)
2512{
2513	const struct cred *cred = current_cred();
2514
2515	if (flags & MS_REMOUNT)
2516		return superblock_has_perm(cred, path->mnt->mnt_sb,
2517					   FILESYSTEM__REMOUNT, NULL);
2518	else
2519		return path_has_perm(cred, path, FILE__MOUNTON);
2520}
2521
2522static int selinux_umount(struct vfsmount *mnt, int flags)
2523{
2524	const struct cred *cred = current_cred();
2525
2526	return superblock_has_perm(cred, mnt->mnt_sb,
2527				   FILESYSTEM__UNMOUNT, NULL);
2528}
2529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2530/* inode security operations */
2531
2532static int selinux_inode_alloc_security(struct inode *inode)
2533{
2534	return inode_alloc_security(inode);
2535}
2536
2537static void selinux_inode_free_security(struct inode *inode)
2538{
2539	inode_free_security(inode);
2540}
2541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2542static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2543				       const struct qstr *qstr, char **name,
 
2544				       void **value, size_t *len)
2545{
2546	const struct task_security_struct *tsec = current_security();
2547	struct inode_security_struct *dsec;
2548	struct superblock_security_struct *sbsec;
2549	u32 sid, newsid, clen;
2550	int rc;
2551	char *namep = NULL, *context;
2552
2553	dsec = dir->i_security;
2554	sbsec = dir->i_sb->s_security;
2555
2556	sid = tsec->sid;
2557	newsid = tsec->create_sid;
2558
2559	if ((sbsec->flags & SE_SBINITIALIZED) &&
2560	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2561		newsid = sbsec->mntpoint_sid;
2562	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2563		rc = security_transition_sid(sid, dsec->sid,
2564					     inode_mode_to_security_class(inode->i_mode),
2565					     qstr, &newsid);
2566		if (rc) {
2567			printk(KERN_WARNING "%s:  "
2568			       "security_transition_sid failed, rc=%d (dev=%s "
2569			       "ino=%ld)\n",
2570			       __func__,
2571			       -rc, inode->i_sb->s_id, inode->i_ino);
2572			return rc;
2573		}
2574	}
2575
2576	/* Possibly defer initialization to selinux_complete_init. */
2577	if (sbsec->flags & SE_SBINITIALIZED) {
2578		struct inode_security_struct *isec = inode->i_security;
2579		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2580		isec->sid = newsid;
2581		isec->initialized = 1;
2582	}
2583
2584	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2585		return -EOPNOTSUPP;
2586
2587	if (name) {
2588		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2589		if (!namep)
2590			return -ENOMEM;
2591		*name = namep;
2592	}
2593
2594	if (value && len) {
2595		rc = security_sid_to_context_force(newsid, &context, &clen);
2596		if (rc) {
2597			kfree(namep);
2598			return rc;
2599		}
2600		*value = context;
2601		*len = clen;
2602	}
2603
2604	return 0;
2605}
2606
2607static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2608{
2609	return may_create(dir, dentry, SECCLASS_FILE);
2610}
2611
2612static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2613{
2614	return may_link(dir, old_dentry, MAY_LINK);
2615}
2616
2617static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2618{
2619	return may_link(dir, dentry, MAY_UNLINK);
2620}
2621
2622static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2623{
2624	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2625}
2626
2627static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2628{
2629	return may_create(dir, dentry, SECCLASS_DIR);
2630}
2631
2632static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2633{
2634	return may_link(dir, dentry, MAY_RMDIR);
2635}
2636
2637static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2638{
2639	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2640}
2641
2642static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2643				struct inode *new_inode, struct dentry *new_dentry)
2644{
2645	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2646}
2647
2648static int selinux_inode_readlink(struct dentry *dentry)
2649{
2650	const struct cred *cred = current_cred();
2651
2652	return dentry_has_perm(cred, dentry, FILE__READ);
2653}
2654
2655static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
 
2656{
2657	const struct cred *cred = current_cred();
 
 
 
2658
2659	return dentry_has_perm(cred, dentry, FILE__READ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660}
2661
2662static int selinux_inode_permission(struct inode *inode, int mask)
2663{
2664	const struct cred *cred = current_cred();
2665	struct common_audit_data ad;
2666	u32 perms;
2667	bool from_access;
2668	unsigned flags = mask & MAY_NOT_BLOCK;
 
 
 
 
 
2669
2670	from_access = mask & MAY_ACCESS;
2671	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2672
2673	/* No permission to check.  Existence test. */
2674	if (!mask)
2675		return 0;
2676
2677	COMMON_AUDIT_DATA_INIT(&ad, INODE);
2678	ad.u.inode = inode;
2679
2680	if (from_access)
2681		ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2682
2683	perms = file_mask_to_av(inode->i_mode, mask);
2684
2685	return inode_has_perm(cred, inode, perms, &ad, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686}
2687
2688static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2689{
2690	const struct cred *cred = current_cred();
 
2691	unsigned int ia_valid = iattr->ia_valid;
 
2692
2693	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2694	if (ia_valid & ATTR_FORCE) {
2695		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2696			      ATTR_FORCE);
2697		if (!ia_valid)
2698			return 0;
2699	}
2700
2701	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2702			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2703		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2704
2705	return dentry_has_perm(cred, dentry, FILE__WRITE);
 
 
 
 
 
 
2706}
2707
2708static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2709{
2710	const struct cred *cred = current_cred();
2711	struct path path;
2712
2713	path.dentry = dentry;
2714	path.mnt = mnt;
2715
2716	return path_has_perm(cred, &path, FILE__GETATTR);
2717}
2718
2719static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2720{
2721	const struct cred *cred = current_cred();
 
2722
2723	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2724		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2725		if (!strcmp(name, XATTR_NAME_CAPS)) {
2726			if (!capable(CAP_SETFCAP))
2727				return -EPERM;
2728		} else if (!capable(CAP_SYS_ADMIN)) {
2729			/* A different attribute in the security namespace.
2730			   Restrict to administrator. */
2731			return -EPERM;
2732		}
2733	}
2734
2735	/* Not an attribute we recognize, so just check the
2736	   ordinary setattr permission. */
2737	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2738}
2739
2740static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2741				  const void *value, size_t size, int flags)
2742{
2743	struct inode *inode = dentry->d_inode;
2744	struct inode_security_struct *isec = inode->i_security;
2745	struct superblock_security_struct *sbsec;
2746	struct common_audit_data ad;
2747	u32 newsid, sid = current_sid();
2748	int rc = 0;
2749
2750	if (strcmp(name, XATTR_NAME_SELINUX))
2751		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
2752
2753	sbsec = inode->i_sb->s_security;
2754	if (!(sbsec->flags & SE_SBLABELSUPP))
2755		return -EOPNOTSUPP;
2756
2757	if (!inode_owner_or_capable(inode))
2758		return -EPERM;
2759
2760	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2761	ad.u.dentry = dentry;
2762
2763	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
 
2764			  FILE__RELABELFROM, &ad);
2765	if (rc)
2766		return rc;
2767
2768	rc = security_context_to_sid(value, size, &newsid);
 
2769	if (rc == -EINVAL) {
2770		if (!capable(CAP_MAC_ADMIN))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2771			return rc;
2772		rc = security_context_to_sid_force(value, size, &newsid);
 
 
2773	}
2774	if (rc)
2775		return rc;
2776
2777	rc = avc_has_perm(sid, newsid, isec->sclass,
 
2778			  FILE__RELABELTO, &ad);
2779	if (rc)
2780		return rc;
2781
2782	rc = security_validate_transition(isec->sid, newsid, sid,
2783					  isec->sclass);
2784	if (rc)
2785		return rc;
2786
2787	return avc_has_perm(newsid,
 
2788			    sbsec->sid,
2789			    SECCLASS_FILESYSTEM,
2790			    FILESYSTEM__ASSOCIATE,
2791			    &ad);
2792}
2793
2794static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2795					const void *value, size_t size,
2796					int flags)
2797{
2798	struct inode *inode = dentry->d_inode;
2799	struct inode_security_struct *isec = inode->i_security;
2800	u32 newsid;
2801	int rc;
2802
2803	if (strcmp(name, XATTR_NAME_SELINUX)) {
2804		/* Not an attribute we recognize, so nothing to do. */
2805		return;
2806	}
2807
2808	rc = security_context_to_sid_force(value, size, &newsid);
 
2809	if (rc) {
2810		printk(KERN_ERR "SELinux:  unable to map context to SID"
2811		       "for (%s, %lu), rc=%d\n",
2812		       inode->i_sb->s_id, inode->i_ino, -rc);
2813		return;
2814	}
2815
 
 
 
2816	isec->sid = newsid;
 
 
 
2817	return;
2818}
2819
2820static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2821{
2822	const struct cred *cred = current_cred();
2823
2824	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2825}
2826
2827static int selinux_inode_listxattr(struct dentry *dentry)
2828{
2829	const struct cred *cred = current_cred();
2830
2831	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2832}
2833
2834static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2835{
2836	if (strcmp(name, XATTR_NAME_SELINUX))
2837		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
2838
2839	/* No one is allowed to remove a SELinux security label.
2840	   You can change the label, but all data must be labeled. */
2841	return -EACCES;
2842}
2843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2844/*
2845 * Copy the inode security context value to the user.
2846 *
2847 * Permission check is handled by selinux_inode_getxattr hook.
2848 */
2849static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2850{
2851	u32 size;
2852	int error;
2853	char *context = NULL;
2854	struct inode_security_struct *isec = inode->i_security;
2855
2856	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2857		return -EOPNOTSUPP;
2858
2859	/*
2860	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2861	 * value even if it is not defined by current policy; otherwise,
2862	 * use the in-core value under current policy.
2863	 * Use the non-auditing forms of the permission checks since
2864	 * getxattr may be called by unprivileged processes commonly
2865	 * and lack of permission just means that we fall back to the
2866	 * in-core context value, not a denial.
2867	 */
2868	error = selinux_capable(current, current_cred(),
2869				&init_user_ns, CAP_MAC_ADMIN,
2870				SECURITY_CAP_NOAUDIT);
2871	if (!error)
2872		error = security_sid_to_context_force(isec->sid, &context,
2873						      &size);
2874	else
2875		error = security_sid_to_context(isec->sid, &context, &size);
 
2876	if (error)
2877		return error;
2878	error = size;
2879	if (alloc) {
2880		*buffer = context;
2881		goto out_nofree;
2882	}
2883	kfree(context);
2884out_nofree:
2885	return error;
2886}
2887
2888static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2889				     const void *value, size_t size, int flags)
2890{
2891	struct inode_security_struct *isec = inode->i_security;
 
2892	u32 newsid;
2893	int rc;
2894
2895	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2896		return -EOPNOTSUPP;
2897
 
 
 
2898	if (!value || !size)
2899		return -EACCES;
2900
2901	rc = security_context_to_sid((void *)value, size, &newsid);
 
2902	if (rc)
2903		return rc;
2904
 
 
2905	isec->sid = newsid;
2906	isec->initialized = 1;
 
2907	return 0;
2908}
2909
2910static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2911{
2912	const int len = sizeof(XATTR_NAME_SELINUX);
2913	if (buffer && len <= buffer_size)
2914		memcpy(buffer, XATTR_NAME_SELINUX, len);
2915	return len;
2916}
2917
2918static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2919{
2920	struct inode_security_struct *isec = inode->i_security;
2921	*secid = isec->sid;
2922}
2923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924/* file security operations */
2925
2926static int selinux_revalidate_file_permission(struct file *file, int mask)
2927{
2928	const struct cred *cred = current_cred();
2929	struct inode *inode = file->f_path.dentry->d_inode;
2930
2931	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2932	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2933		mask |= MAY_APPEND;
2934
2935	return file_has_perm(cred, file,
2936			     file_mask_to_av(inode->i_mode, mask));
2937}
2938
2939static int selinux_file_permission(struct file *file, int mask)
2940{
2941	struct inode *inode = file->f_path.dentry->d_inode;
2942	struct file_security_struct *fsec = file->f_security;
2943	struct inode_security_struct *isec = inode->i_security;
2944	u32 sid = current_sid();
2945
2946	if (!mask)
2947		/* No permission to check.  Existence test. */
2948		return 0;
2949
 
2950	if (sid == fsec->sid && fsec->isid == isec->sid &&
2951	    fsec->pseqno == avc_policy_seqno())
2952		/* No change since dentry_open check. */
2953		return 0;
2954
2955	return selinux_revalidate_file_permission(file, mask);
2956}
2957
2958static int selinux_file_alloc_security(struct file *file)
2959{
2960	return file_alloc_security(file);
2961}
2962
2963static void selinux_file_free_security(struct file *file)
 
 
 
 
 
2964{
2965	file_free_security(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2966}
2967
2968static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2969			      unsigned long arg)
2970{
2971	const struct cred *cred = current_cred();
2972	int error = 0;
2973
2974	switch (cmd) {
2975	case FIONREAD:
2976	/* fall through */
2977	case FIBMAP:
2978	/* fall through */
2979	case FIGETBSZ:
2980	/* fall through */
2981	case EXT2_IOC_GETFLAGS:
2982	/* fall through */
2983	case EXT2_IOC_GETVERSION:
2984		error = file_has_perm(cred, file, FILE__GETATTR);
2985		break;
2986
2987	case EXT2_IOC_SETFLAGS:
2988	/* fall through */
2989	case EXT2_IOC_SETVERSION:
2990		error = file_has_perm(cred, file, FILE__SETATTR);
2991		break;
2992
2993	/* sys_ioctl() checks */
2994	case FIONBIO:
2995	/* fall through */
2996	case FIOASYNC:
2997		error = file_has_perm(cred, file, 0);
2998		break;
2999
3000	case KDSKBENT:
3001	case KDSKBSENT:
3002		error = task_has_capability(current, cred, CAP_SYS_TTY_CONFIG,
3003					SECURITY_CAP_AUDIT);
3004		break;
3005
3006	/* default case assumes that the command will go
3007	 * to the file's ioctl() function.
3008	 */
3009	default:
3010		error = file_has_perm(cred, file, FILE__IOCTL);
3011	}
3012	return error;
3013}
3014
3015static int default_noexec;
3016
3017static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3018{
3019	const struct cred *cred = current_cred();
 
3020	int rc = 0;
3021
3022	if (default_noexec &&
3023	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
 
3024		/*
3025		 * We are making executable an anonymous mapping or a
3026		 * private file mapping that will also be writable.
3027		 * This has an additional check.
3028		 */
3029		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3030		if (rc)
3031			goto error;
3032	}
3033
3034	if (file) {
3035		/* read access is always possible with a mapping */
3036		u32 av = FILE__READ;
3037
3038		/* write access only matters if the mapping is shared */
3039		if (shared && (prot & PROT_WRITE))
3040			av |= FILE__WRITE;
3041
3042		if (prot & PROT_EXEC)
3043			av |= FILE__EXECUTE;
3044
3045		return file_has_perm(cred, file, av);
3046	}
3047
3048error:
3049	return rc;
3050}
3051
3052static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3053			     unsigned long prot, unsigned long flags,
3054			     unsigned long addr, unsigned long addr_only)
3055{
3056	int rc = 0;
3057	u32 sid = current_sid();
3058
3059	/*
3060	 * notice that we are intentionally putting the SELinux check before
3061	 * the secondary cap_file_mmap check.  This is such a likely attempt
3062	 * at bad behaviour/exploit that we always want to get the AVC, even
3063	 * if DAC would have also denied the operation.
3064	 */
3065	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3066		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
 
3067				  MEMPROTECT__MMAP_ZERO, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3068		if (rc)
3069			return rc;
3070	}
3071
3072	/* do DAC check on address space usage */
3073	rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3074	if (rc || addr_only)
3075		return rc;
3076
3077	if (selinux_checkreqprot)
3078		prot = reqprot;
3079
3080	return file_map_prot_check(file, prot,
3081				   (flags & MAP_TYPE) == MAP_SHARED);
3082}
3083
3084static int selinux_file_mprotect(struct vm_area_struct *vma,
3085				 unsigned long reqprot,
3086				 unsigned long prot)
3087{
3088	const struct cred *cred = current_cred();
 
3089
3090	if (selinux_checkreqprot)
3091		prot = reqprot;
3092
3093	if (default_noexec &&
3094	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3095		int rc = 0;
3096		if (vma->vm_start >= vma->vm_mm->start_brk &&
3097		    vma->vm_end <= vma->vm_mm->brk) {
3098			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3099		} else if (!vma->vm_file &&
3100			   vma->vm_start <= vma->vm_mm->start_stack &&
3101			   vma->vm_end >= vma->vm_mm->start_stack) {
3102			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
 
3103		} else if (vma->vm_file && vma->anon_vma) {
3104			/*
3105			 * We are making executable a file mapping that has
3106			 * had some COW done. Since pages might have been
3107			 * written, check ability to execute the possibly
3108			 * modified content.  This typically should only
3109			 * occur for text relocations.
3110			 */
3111			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3112		}
3113		if (rc)
3114			return rc;
3115	}
3116
3117	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3118}
3119
3120static int selinux_file_lock(struct file *file, unsigned int cmd)
3121{
3122	const struct cred *cred = current_cred();
3123
3124	return file_has_perm(cred, file, FILE__LOCK);
3125}
3126
3127static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3128			      unsigned long arg)
3129{
3130	const struct cred *cred = current_cred();
3131	int err = 0;
3132
3133	switch (cmd) {
3134	case F_SETFL:
3135		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3136			err = -EINVAL;
3137			break;
3138		}
3139
3140		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3141			err = file_has_perm(cred, file, FILE__WRITE);
3142			break;
3143		}
3144		/* fall through */
3145	case F_SETOWN:
3146	case F_SETSIG:
3147	case F_GETFL:
3148	case F_GETOWN:
3149	case F_GETSIG:
 
3150		/* Just check FD__USE permission */
3151		err = file_has_perm(cred, file, 0);
3152		break;
3153	case F_GETLK:
3154	case F_SETLK:
3155	case F_SETLKW:
 
 
 
3156#if BITS_PER_LONG == 32
3157	case F_GETLK64:
3158	case F_SETLK64:
3159	case F_SETLKW64:
3160#endif
3161		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3162			err = -EINVAL;
3163			break;
3164		}
3165		err = file_has_perm(cred, file, FILE__LOCK);
3166		break;
3167	}
3168
3169	return err;
3170}
3171
3172static int selinux_file_set_fowner(struct file *file)
3173{
3174	struct file_security_struct *fsec;
3175
3176	fsec = file->f_security;
3177	fsec->fown_sid = current_sid();
3178
3179	return 0;
3180}
3181
3182static int selinux_file_send_sigiotask(struct task_struct *tsk,
3183				       struct fown_struct *fown, int signum)
3184{
3185	struct file *file;
3186	u32 sid = task_sid(tsk);
3187	u32 perm;
3188	struct file_security_struct *fsec;
3189
3190	/* struct fown_struct is never outside the context of a struct file */
3191	file = container_of(fown, struct file, f_owner);
3192
3193	fsec = file->f_security;
3194
3195	if (!signum)
3196		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3197	else
3198		perm = signal_to_av(signum);
3199
3200	return avc_has_perm(fsec->fown_sid, sid,
 
3201			    SECCLASS_PROCESS, perm, NULL);
3202}
3203
3204static int selinux_file_receive(struct file *file)
3205{
3206	const struct cred *cred = current_cred();
3207
3208	return file_has_perm(cred, file, file_to_av(file));
3209}
3210
3211static int selinux_dentry_open(struct file *file, const struct cred *cred)
3212{
3213	struct file_security_struct *fsec;
3214	struct inode *inode;
3215	struct inode_security_struct *isec;
3216
3217	inode = file->f_path.dentry->d_inode;
3218	fsec = file->f_security;
3219	isec = inode->i_security;
3220	/*
3221	 * Save inode label and policy sequence number
3222	 * at open-time so that selinux_file_permission
3223	 * can determine whether revalidation is necessary.
3224	 * Task label is already saved in the file security
3225	 * struct as its SID.
3226	 */
3227	fsec->isid = isec->sid;
3228	fsec->pseqno = avc_policy_seqno();
3229	/*
3230	 * Since the inode label or policy seqno may have changed
3231	 * between the selinux_inode_permission check and the saving
3232	 * of state above, recheck that access is still permitted.
3233	 * Otherwise, access might never be revalidated against the
3234	 * new inode label or new policy.
3235	 * This check is not redundant - do not remove.
3236	 */
3237	return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0);
3238}
3239
3240/* task security operations */
3241
3242static int selinux_task_create(unsigned long clone_flags)
3243{
3244	return current_has_perm(current, PROCESS__FORK);
3245}
3246
3247/*
3248 * allocate the SELinux part of blank credentials
3249 */
3250static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3251{
3252	struct task_security_struct *tsec;
3253
3254	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3255	if (!tsec)
3256		return -ENOMEM;
3257
3258	cred->security = tsec;
3259	return 0;
3260}
3261
3262/*
3263 * detach and free the LSM part of a set of credentials
3264 */
3265static void selinux_cred_free(struct cred *cred)
3266{
3267	struct task_security_struct *tsec = cred->security;
3268
3269	/*
3270	 * cred->security == NULL if security_cred_alloc_blank() or
3271	 * security_prepare_creds() returned an error.
3272	 */
3273	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3274	cred->security = (void *) 0x7UL;
3275	kfree(tsec);
3276}
3277
3278/*
3279 * prepare a new set of credentials for modification
3280 */
3281static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3282				gfp_t gfp)
3283{
3284	const struct task_security_struct *old_tsec;
3285	struct task_security_struct *tsec;
3286
3287	old_tsec = old->security;
3288
3289	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3290	if (!tsec)
3291		return -ENOMEM;
3292
3293	new->security = tsec;
3294	return 0;
3295}
3296
3297/*
3298 * transfer the SELinux data to a blank set of creds
3299 */
3300static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3301{
3302	const struct task_security_struct *old_tsec = old->security;
3303	struct task_security_struct *tsec = new->security;
3304
3305	*tsec = *old_tsec;
3306}
3307
 
 
 
 
 
3308/*
3309 * set the security data for a kernel service
3310 * - all the creation contexts are set to unlabelled
3311 */
3312static int selinux_kernel_act_as(struct cred *new, u32 secid)
3313{
3314	struct task_security_struct *tsec = new->security;
3315	u32 sid = current_sid();
3316	int ret;
3317
3318	ret = avc_has_perm(sid, secid,
 
3319			   SECCLASS_KERNEL_SERVICE,
3320			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3321			   NULL);
3322	if (ret == 0) {
3323		tsec->sid = secid;
3324		tsec->create_sid = 0;
3325		tsec->keycreate_sid = 0;
3326		tsec->sockcreate_sid = 0;
3327	}
3328	return ret;
3329}
3330
3331/*
3332 * set the file creation context in a security record to the same as the
3333 * objective context of the specified inode
3334 */
3335static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3336{
3337	struct inode_security_struct *isec = inode->i_security;
3338	struct task_security_struct *tsec = new->security;
3339	u32 sid = current_sid();
3340	int ret;
3341
3342	ret = avc_has_perm(sid, isec->sid,
 
3343			   SECCLASS_KERNEL_SERVICE,
3344			   KERNEL_SERVICE__CREATE_FILES_AS,
3345			   NULL);
3346
3347	if (ret == 0)
3348		tsec->create_sid = isec->sid;
3349	return ret;
3350}
3351
3352static int selinux_kernel_module_request(char *kmod_name)
3353{
3354	u32 sid;
3355	struct common_audit_data ad;
3356
3357	sid = task_sid(current);
3358
3359	COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3360	ad.u.kmod_name = kmod_name;
3361
3362	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3363			    SYSTEM__MODULE_REQUEST, &ad);
3364}
3365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3366static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3367{
3368	return current_has_perm(p, PROCESS__SETPGID);
 
 
3369}
3370
3371static int selinux_task_getpgid(struct task_struct *p)
3372{
3373	return current_has_perm(p, PROCESS__GETPGID);
 
 
3374}
3375
3376static int selinux_task_getsid(struct task_struct *p)
3377{
3378	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3379}
3380
3381static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3382{
3383	*secid = task_sid(p);
3384}
3385
3386static int selinux_task_setnice(struct task_struct *p, int nice)
3387{
3388	int rc;
3389
3390	rc = cap_task_setnice(p, nice);
3391	if (rc)
3392		return rc;
3393
3394	return current_has_perm(p, PROCESS__SETSCHED);
3395}
3396
3397static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3398{
3399	int rc;
3400
3401	rc = cap_task_setioprio(p, ioprio);
3402	if (rc)
3403		return rc;
3404
3405	return current_has_perm(p, PROCESS__SETSCHED);
3406}
3407
3408static int selinux_task_getioprio(struct task_struct *p)
3409{
3410	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3411}
3412
3413static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3414		struct rlimit *new_rlim)
3415{
3416	struct rlimit *old_rlim = p->signal->rlim + resource;
3417
3418	/* Control the ability to change the hard limit (whether
3419	   lowering or raising it), so that the hard limit can
3420	   later be used as a safe reset point for the soft limit
3421	   upon context transitions.  See selinux_bprm_committing_creds. */
3422	if (old_rlim->rlim_max != new_rlim->rlim_max)
3423		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3424
3425	return 0;
3426}
3427
3428static int selinux_task_setscheduler(struct task_struct *p)
3429{
3430	int rc;
3431
3432	rc = cap_task_setscheduler(p);
3433	if (rc)
3434		return rc;
3435
3436	return current_has_perm(p, PROCESS__SETSCHED);
3437}
3438
3439static int selinux_task_getscheduler(struct task_struct *p)
3440{
3441	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3442}
3443
3444static int selinux_task_movememory(struct task_struct *p)
3445{
3446	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3447}
3448
3449static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3450				int sig, u32 secid)
3451{
 
3452	u32 perm;
3453	int rc;
3454
3455	if (!sig)
3456		perm = PROCESS__SIGNULL; /* null signal; existence test */
3457	else
3458		perm = signal_to_av(sig);
3459	if (secid)
3460		rc = avc_has_perm(secid, task_sid(p),
3461				  SECCLASS_PROCESS, perm, NULL);
3462	else
3463		rc = current_has_perm(p, perm);
3464	return rc;
3465}
3466
3467static int selinux_task_wait(struct task_struct *p)
3468{
3469	return task_has_perm(p, current, PROCESS__SIGCHLD);
3470}
3471
3472static void selinux_task_to_inode(struct task_struct *p,
3473				  struct inode *inode)
3474{
3475	struct inode_security_struct *isec = inode->i_security;
3476	u32 sid = task_sid(p);
3477
 
 
3478	isec->sid = sid;
3479	isec->initialized = 1;
 
3480}
3481
3482/* Returns error only if unable to parse addresses */
3483static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3484			struct common_audit_data *ad, u8 *proto)
3485{
3486	int offset, ihlen, ret = -EINVAL;
3487	struct iphdr _iph, *ih;
3488
3489	offset = skb_network_offset(skb);
3490	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3491	if (ih == NULL)
3492		goto out;
3493
3494	ihlen = ih->ihl * 4;
3495	if (ihlen < sizeof(_iph))
3496		goto out;
3497
3498	ad->u.net.v4info.saddr = ih->saddr;
3499	ad->u.net.v4info.daddr = ih->daddr;
3500	ret = 0;
3501
3502	if (proto)
3503		*proto = ih->protocol;
3504
3505	switch (ih->protocol) {
3506	case IPPROTO_TCP: {
3507		struct tcphdr _tcph, *th;
3508
3509		if (ntohs(ih->frag_off) & IP_OFFSET)
3510			break;
3511
3512		offset += ihlen;
3513		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3514		if (th == NULL)
3515			break;
3516
3517		ad->u.net.sport = th->source;
3518		ad->u.net.dport = th->dest;
3519		break;
3520	}
3521
3522	case IPPROTO_UDP: {
3523		struct udphdr _udph, *uh;
3524
3525		if (ntohs(ih->frag_off) & IP_OFFSET)
3526			break;
3527
3528		offset += ihlen;
3529		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3530		if (uh == NULL)
3531			break;
3532
3533		ad->u.net.sport = uh->source;
3534		ad->u.net.dport = uh->dest;
3535		break;
3536	}
3537
3538	case IPPROTO_DCCP: {
3539		struct dccp_hdr _dccph, *dh;
3540
3541		if (ntohs(ih->frag_off) & IP_OFFSET)
3542			break;
3543
3544		offset += ihlen;
3545		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3546		if (dh == NULL)
3547			break;
3548
3549		ad->u.net.sport = dh->dccph_sport;
3550		ad->u.net.dport = dh->dccph_dport;
3551		break;
3552	}
3553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3554	default:
3555		break;
3556	}
3557out:
3558	return ret;
3559}
3560
3561#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3562
3563/* Returns error only if unable to parse addresses */
3564static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3565			struct common_audit_data *ad, u8 *proto)
3566{
3567	u8 nexthdr;
3568	int ret = -EINVAL, offset;
3569	struct ipv6hdr _ipv6h, *ip6;
 
3570
3571	offset = skb_network_offset(skb);
3572	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3573	if (ip6 == NULL)
3574		goto out;
3575
3576	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3577	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3578	ret = 0;
3579
3580	nexthdr = ip6->nexthdr;
3581	offset += sizeof(_ipv6h);
3582	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3583	if (offset < 0)
3584		goto out;
3585
3586	if (proto)
3587		*proto = nexthdr;
3588
3589	switch (nexthdr) {
3590	case IPPROTO_TCP: {
3591		struct tcphdr _tcph, *th;
3592
3593		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3594		if (th == NULL)
3595			break;
3596
3597		ad->u.net.sport = th->source;
3598		ad->u.net.dport = th->dest;
3599		break;
3600	}
3601
3602	case IPPROTO_UDP: {
3603		struct udphdr _udph, *uh;
3604
3605		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3606		if (uh == NULL)
3607			break;
3608
3609		ad->u.net.sport = uh->source;
3610		ad->u.net.dport = uh->dest;
3611		break;
3612	}
3613
3614	case IPPROTO_DCCP: {
3615		struct dccp_hdr _dccph, *dh;
3616
3617		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3618		if (dh == NULL)
3619			break;
3620
3621		ad->u.net.sport = dh->dccph_sport;
3622		ad->u.net.dport = dh->dccph_dport;
3623		break;
3624	}
3625
 
 
 
 
 
 
 
 
 
 
 
 
 
3626	/* includes fragments */
3627	default:
3628		break;
3629	}
3630out:
3631	return ret;
3632}
3633
3634#endif /* IPV6 */
3635
3636static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3637			     char **_addrp, int src, u8 *proto)
3638{
3639	char *addrp;
3640	int ret;
3641
3642	switch (ad->u.net.family) {
3643	case PF_INET:
3644		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3645		if (ret)
3646			goto parse_error;
3647		addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3648				       &ad->u.net.v4info.daddr);
3649		goto okay;
3650
3651#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3652	case PF_INET6:
3653		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3654		if (ret)
3655			goto parse_error;
3656		addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3657				       &ad->u.net.v6info.daddr);
3658		goto okay;
3659#endif	/* IPV6 */
3660	default:
3661		addrp = NULL;
3662		goto okay;
3663	}
3664
3665parse_error:
3666	printk(KERN_WARNING
3667	       "SELinux: failure in selinux_parse_skb(),"
3668	       " unable to parse packet\n");
3669	return ret;
3670
3671okay:
3672	if (_addrp)
3673		*_addrp = addrp;
3674	return 0;
3675}
3676
3677/**
3678 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3679 * @skb: the packet
3680 * @family: protocol family
3681 * @sid: the packet's peer label SID
3682 *
3683 * Description:
3684 * Check the various different forms of network peer labeling and determine
3685 * the peer label/SID for the packet; most of the magic actually occurs in
3686 * the security server function security_net_peersid_cmp().  The function
3687 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3688 * or -EACCES if @sid is invalid due to inconsistencies with the different
3689 * peer labels.
3690 *
3691 */
3692static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3693{
3694	int err;
3695	u32 xfrm_sid;
3696	u32 nlbl_sid;
3697	u32 nlbl_type;
3698
3699	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3700	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
 
 
 
 
3701
3702	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
3703	if (unlikely(err)) {
3704		printk(KERN_WARNING
3705		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3706		       " unable to determine packet's peer label\n");
3707		return -EACCES;
3708	}
3709
3710	return 0;
3711}
3712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3713/* socket security operations */
3714
3715static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3716				 u16 secclass, u32 *socksid)
3717{
3718	if (tsec->sockcreate_sid > SECSID_NULL) {
3719		*socksid = tsec->sockcreate_sid;
3720		return 0;
3721	}
3722
3723	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3724				       socksid);
3725}
3726
3727static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3728{
3729	struct sk_security_struct *sksec = sk->sk_security;
3730	struct common_audit_data ad;
3731	u32 tsid = task_sid(task);
3732
3733	if (sksec->sid == SECINITSID_KERNEL)
3734		return 0;
3735
3736	COMMON_AUDIT_DATA_INIT(&ad, NET);
3737	ad.u.net.sk = sk;
 
3738
3739	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
3740}
3741
3742static int selinux_socket_create(int family, int type,
3743				 int protocol, int kern)
3744{
3745	const struct task_security_struct *tsec = current_security();
3746	u32 newsid;
3747	u16 secclass;
3748	int rc;
3749
3750	if (kern)
3751		return 0;
3752
3753	secclass = socket_type_to_security_class(family, type, protocol);
3754	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3755	if (rc)
3756		return rc;
3757
3758	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
3759}
3760
3761static int selinux_socket_post_create(struct socket *sock, int family,
3762				      int type, int protocol, int kern)
3763{
3764	const struct task_security_struct *tsec = current_security();
3765	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3766	struct sk_security_struct *sksec;
 
 
3767	int err = 0;
3768
3769	isec->sclass = socket_type_to_security_class(family, type, protocol);
3770
3771	if (kern)
3772		isec->sid = SECINITSID_KERNEL;
3773	else {
3774		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3775		if (err)
3776			return err;
3777	}
3778
3779	isec->initialized = 1;
 
 
3780
3781	if (sock->sk) {
3782		sksec = sock->sk->sk_security;
3783		sksec->sid = isec->sid;
3784		sksec->sclass = isec->sclass;
 
 
 
 
3785		err = selinux_netlbl_socket_post_create(sock->sk, family);
3786	}
3787
3788	return err;
3789}
3790
 
 
 
 
 
 
 
 
 
 
 
 
3791/* Range of port numbers used to automatically bind.
3792   Need to determine whether we should perform a name_bind
3793   permission check between the socket and the port number. */
3794
3795static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3796{
3797	struct sock *sk = sock->sk;
 
3798	u16 family;
3799	int err;
3800
3801	err = sock_has_perm(current, sk, SOCKET__BIND);
3802	if (err)
3803		goto out;
3804
3805	/*
3806	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3807	 * Multiple address binding for SCTP is not supported yet: we just
3808	 * check the first address now.
3809	 */
3810	family = sk->sk_family;
3811	if (family == PF_INET || family == PF_INET6) {
3812		char *addrp;
3813		struct sk_security_struct *sksec = sk->sk_security;
3814		struct common_audit_data ad;
 
3815		struct sockaddr_in *addr4 = NULL;
3816		struct sockaddr_in6 *addr6 = NULL;
 
3817		unsigned short snum;
3818		u32 sid, node_perm;
3819
3820		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
3821			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
3822			snum = ntohs(addr4->sin_port);
3823			addrp = (char *)&addr4->sin_addr.s_addr;
3824		} else {
 
 
 
3825			addr6 = (struct sockaddr_in6 *)address;
3826			snum = ntohs(addr6->sin6_port);
3827			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
3828		}
3829
 
 
 
 
 
3830		if (snum) {
3831			int low, high;
3832
3833			inet_get_local_port_range(&low, &high);
3834
3835			if (snum < max(PROT_SOCK, low) || snum > high) {
 
3836				err = sel_netport_sid(sk->sk_protocol,
3837						      snum, &sid);
3838				if (err)
3839					goto out;
3840				COMMON_AUDIT_DATA_INIT(&ad, NET);
3841				ad.u.net.sport = htons(snum);
3842				ad.u.net.family = family;
3843				err = avc_has_perm(sksec->sid, sid,
3844						   sksec->sclass,
3845						   SOCKET__NAME_BIND, &ad);
3846				if (err)
3847					goto out;
3848			}
3849		}
3850
3851		switch (sksec->sclass) {
3852		case SECCLASS_TCP_SOCKET:
3853			node_perm = TCP_SOCKET__NODE_BIND;
3854			break;
3855
3856		case SECCLASS_UDP_SOCKET:
3857			node_perm = UDP_SOCKET__NODE_BIND;
3858			break;
3859
3860		case SECCLASS_DCCP_SOCKET:
3861			node_perm = DCCP_SOCKET__NODE_BIND;
3862			break;
3863
 
 
 
 
3864		default:
3865			node_perm = RAWIP_SOCKET__NODE_BIND;
3866			break;
3867		}
3868
3869		err = sel_netnode_sid(addrp, family, &sid);
3870		if (err)
3871			goto out;
3872
3873		COMMON_AUDIT_DATA_INIT(&ad, NET);
3874		ad.u.net.sport = htons(snum);
3875		ad.u.net.family = family;
3876
3877		if (family == PF_INET)
3878			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3879		else
3880			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3881
3882		err = avc_has_perm(sksec->sid, sid,
 
3883				   sksec->sclass, node_perm, &ad);
3884		if (err)
3885			goto out;
3886	}
3887out:
3888	return err;
 
 
 
 
 
3889}
3890
3891static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
3892{
3893	struct sock *sk = sock->sk;
3894	struct sk_security_struct *sksec = sk->sk_security;
3895	int err;
3896
3897	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3898	if (err)
3899		return err;
 
 
 
 
 
 
 
 
3900
3901	/*
3902	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
3903	 */
3904	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3905	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
3906		struct common_audit_data ad;
 
3907		struct sockaddr_in *addr4 = NULL;
3908		struct sockaddr_in6 *addr6 = NULL;
3909		unsigned short snum;
3910		u32 sid, perm;
3911
3912		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
3913			addr4 = (struct sockaddr_in *)address;
3914			if (addrlen < sizeof(struct sockaddr_in))
3915				return -EINVAL;
3916			snum = ntohs(addr4->sin_port);
3917		} else {
 
3918			addr6 = (struct sockaddr_in6 *)address;
3919			if (addrlen < SIN6_LEN_RFC2133)
3920				return -EINVAL;
3921			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
3922		}
3923
3924		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3925		if (err)
3926			goto out;
3927
3928		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3929		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
3930
3931		COMMON_AUDIT_DATA_INIT(&ad, NET);
3932		ad.u.net.dport = htons(snum);
3933		ad.u.net.family = sk->sk_family;
3934		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
 
3935		if (err)
3936			goto out;
3937	}
3938
3939	err = selinux_netlbl_socket_connect(sk, address);
 
3940
3941out:
3942	return err;
 
 
 
 
 
 
 
 
 
 
3943}
3944
3945static int selinux_socket_listen(struct socket *sock, int backlog)
3946{
3947	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3948}
3949
3950static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3951{
3952	int err;
3953	struct inode_security_struct *isec;
3954	struct inode_security_struct *newisec;
 
 
3955
3956	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3957	if (err)
3958		return err;
3959
3960	newisec = SOCK_INODE(newsock)->i_security;
3961
3962	isec = SOCK_INODE(sock)->i_security;
3963	newisec->sclass = isec->sclass;
3964	newisec->sid = isec->sid;
3965	newisec->initialized = 1;
 
 
 
 
3966
3967	return 0;
3968}
3969
3970static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3971				  int size)
3972{
3973	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3974}
3975
3976static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3977				  int size, int flags)
3978{
3979	return sock_has_perm(current, sock->sk, SOCKET__READ);
3980}
3981
3982static int selinux_socket_getsockname(struct socket *sock)
3983{
3984	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3985}
3986
3987static int selinux_socket_getpeername(struct socket *sock)
3988{
3989	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3990}
3991
3992static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3993{
3994	int err;
3995
3996	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3997	if (err)
3998		return err;
3999
4000	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4001}
4002
4003static int selinux_socket_getsockopt(struct socket *sock, int level,
4004				     int optname)
4005{
4006	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4007}
4008
4009static int selinux_socket_shutdown(struct socket *sock, int how)
4010{
4011	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4012}
4013
4014static int selinux_socket_unix_stream_connect(struct sock *sock,
4015					      struct sock *other,
4016					      struct sock *newsk)
4017{
4018	struct sk_security_struct *sksec_sock = sock->sk_security;
4019	struct sk_security_struct *sksec_other = other->sk_security;
4020	struct sk_security_struct *sksec_new = newsk->sk_security;
4021	struct common_audit_data ad;
 
4022	int err;
4023
4024	COMMON_AUDIT_DATA_INIT(&ad, NET);
4025	ad.u.net.sk = other;
 
4026
4027	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4028			   sksec_other->sclass,
4029			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4030	if (err)
4031		return err;
4032
4033	/* server child socket */
4034	sksec_new->peer_sid = sksec_sock->sid;
4035	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4036				    &sksec_new->sid);
4037	if (err)
4038		return err;
4039
4040	/* connecting socket */
4041	sksec_sock->peer_sid = sksec_new->sid;
4042
4043	return 0;
4044}
4045
4046static int selinux_socket_unix_may_send(struct socket *sock,
4047					struct socket *other)
4048{
4049	struct sk_security_struct *ssec = sock->sk->sk_security;
4050	struct sk_security_struct *osec = other->sk->sk_security;
4051	struct common_audit_data ad;
 
4052
4053	COMMON_AUDIT_DATA_INIT(&ad, NET);
4054	ad.u.net.sk = other->sk;
 
4055
4056	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4057			    &ad);
4058}
4059
4060static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4061				    u32 peer_sid,
4062				    struct common_audit_data *ad)
4063{
4064	int err;
4065	u32 if_sid;
4066	u32 node_sid;
4067
4068	err = sel_netif_sid(ifindex, &if_sid);
4069	if (err)
4070		return err;
4071	err = avc_has_perm(peer_sid, if_sid,
 
4072			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4073	if (err)
4074		return err;
4075
4076	err = sel_netnode_sid(addrp, family, &node_sid);
4077	if (err)
4078		return err;
4079	return avc_has_perm(peer_sid, node_sid,
 
4080			    SECCLASS_NODE, NODE__RECVFROM, ad);
4081}
4082
4083static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4084				       u16 family)
4085{
4086	int err = 0;
4087	struct sk_security_struct *sksec = sk->sk_security;
4088	u32 sk_sid = sksec->sid;
4089	struct common_audit_data ad;
 
4090	char *addrp;
4091
4092	COMMON_AUDIT_DATA_INIT(&ad, NET);
4093	ad.u.net.netif = skb->skb_iif;
4094	ad.u.net.family = family;
 
4095	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4096	if (err)
4097		return err;
4098
4099	if (selinux_secmark_enabled()) {
4100		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4101				   PACKET__RECV, &ad);
4102		if (err)
4103			return err;
4104	}
4105
4106	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4107	if (err)
4108		return err;
4109	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4110
4111	return err;
4112}
4113
4114static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4115{
4116	int err;
4117	struct sk_security_struct *sksec = sk->sk_security;
4118	u16 family = sk->sk_family;
4119	u32 sk_sid = sksec->sid;
4120	struct common_audit_data ad;
 
4121	char *addrp;
4122	u8 secmark_active;
4123	u8 peerlbl_active;
4124
4125	if (family != PF_INET && family != PF_INET6)
4126		return 0;
4127
4128	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4129	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4130		family = PF_INET;
4131
4132	/* If any sort of compatibility mode is enabled then handoff processing
4133	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4134	 * special handling.  We do this in an attempt to keep this function
4135	 * as fast and as clean as possible. */
4136	if (!selinux_policycap_netpeer)
4137		return selinux_sock_rcv_skb_compat(sk, skb, family);
4138
4139	secmark_active = selinux_secmark_enabled();
4140	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4141	if (!secmark_active && !peerlbl_active)
4142		return 0;
4143
4144	COMMON_AUDIT_DATA_INIT(&ad, NET);
4145	ad.u.net.netif = skb->skb_iif;
4146	ad.u.net.family = family;
 
4147	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4148	if (err)
4149		return err;
4150
4151	if (peerlbl_active) {
4152		u32 peer_sid;
4153
4154		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4155		if (err)
4156			return err;
4157		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4158					       peer_sid, &ad);
4159		if (err) {
4160			selinux_netlbl_err(skb, err, 0);
4161			return err;
4162		}
4163		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4164				   PEER__RECV, &ad);
4165		if (err)
4166			selinux_netlbl_err(skb, err, 0);
 
 
4167	}
4168
4169	if (secmark_active) {
4170		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4171				   PACKET__RECV, &ad);
4172		if (err)
4173			return err;
4174	}
4175
4176	return err;
4177}
4178
4179static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4180					    int __user *optlen, unsigned len)
4181{
4182	int err = 0;
4183	char *scontext;
4184	u32 scontext_len;
4185	struct sk_security_struct *sksec = sock->sk->sk_security;
4186	u32 peer_sid = SECSID_NULL;
4187
4188	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4189	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4190		peer_sid = sksec->peer_sid;
4191	if (peer_sid == SECSID_NULL)
4192		return -ENOPROTOOPT;
4193
4194	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4195	if (err)
4196		return err;
4197
4198	if (scontext_len > len) {
4199		err = -ERANGE;
4200		goto out_len;
4201	}
4202
4203	if (copy_to_user(optval, scontext, scontext_len))
4204		err = -EFAULT;
4205
4206out_len:
4207	if (put_user(scontext_len, optlen))
4208		err = -EFAULT;
4209	kfree(scontext);
4210	return err;
4211}
4212
4213static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4214{
4215	u32 peer_secid = SECSID_NULL;
4216	u16 family;
 
4217
4218	if (skb && skb->protocol == htons(ETH_P_IP))
4219		family = PF_INET;
4220	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4221		family = PF_INET6;
4222	else if (sock)
4223		family = sock->sk->sk_family;
4224	else
4225		goto out;
4226
4227	if (sock && family == PF_UNIX)
4228		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4229	else if (skb)
 
4230		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4231
4232out:
4233	*secid = peer_secid;
4234	if (peer_secid == SECSID_NULL)
4235		return -EINVAL;
4236	return 0;
4237}
4238
4239static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4240{
4241	struct sk_security_struct *sksec;
4242
4243	sksec = kzalloc(sizeof(*sksec), priority);
4244	if (!sksec)
4245		return -ENOMEM;
4246
4247	sksec->peer_sid = SECINITSID_UNLABELED;
4248	sksec->sid = SECINITSID_UNLABELED;
 
4249	selinux_netlbl_sk_security_reset(sksec);
4250	sk->sk_security = sksec;
4251
4252	return 0;
4253}
4254
4255static void selinux_sk_free_security(struct sock *sk)
4256{
4257	struct sk_security_struct *sksec = sk->sk_security;
4258
4259	sk->sk_security = NULL;
4260	selinux_netlbl_sk_security_free(sksec);
4261	kfree(sksec);
4262}
4263
4264static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4265{
4266	struct sk_security_struct *sksec = sk->sk_security;
4267	struct sk_security_struct *newsksec = newsk->sk_security;
4268
4269	newsksec->sid = sksec->sid;
4270	newsksec->peer_sid = sksec->peer_sid;
4271	newsksec->sclass = sksec->sclass;
4272
4273	selinux_netlbl_sk_security_reset(newsksec);
4274}
4275
4276static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4277{
4278	if (!sk)
4279		*secid = SECINITSID_ANY_SOCKET;
4280	else {
4281		struct sk_security_struct *sksec = sk->sk_security;
4282
4283		*secid = sksec->sid;
4284	}
4285}
4286
4287static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4288{
4289	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
 
4290	struct sk_security_struct *sksec = sk->sk_security;
4291
4292	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4293	    sk->sk_family == PF_UNIX)
4294		isec->sid = sksec->sid;
4295	sksec->sclass = isec->sclass;
4296}
4297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4298static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4299				     struct request_sock *req)
4300{
4301	struct sk_security_struct *sksec = sk->sk_security;
4302	int err;
4303	u16 family = sk->sk_family;
4304	u32 newsid;
4305	u32 peersid;
4306
4307	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4308	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4309		family = PF_INET;
4310
4311	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4312	if (err)
4313		return err;
4314	if (peersid == SECSID_NULL) {
4315		req->secid = sksec->sid;
4316		req->peer_secid = SECSID_NULL;
4317	} else {
4318		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4319		if (err)
4320			return err;
4321		req->secid = newsid;
4322		req->peer_secid = peersid;
4323	}
4324
4325	return selinux_netlbl_inet_conn_request(req, family);
4326}
4327
4328static void selinux_inet_csk_clone(struct sock *newsk,
4329				   const struct request_sock *req)
4330{
4331	struct sk_security_struct *newsksec = newsk->sk_security;
4332
4333	newsksec->sid = req->secid;
4334	newsksec->peer_sid = req->peer_secid;
4335	/* NOTE: Ideally, we should also get the isec->sid for the
4336	   new socket in sync, but we don't have the isec available yet.
4337	   So we will wait until sock_graft to do it, by which
4338	   time it will have been created and available. */
4339
4340	/* We don't need to take any sort of lock here as we are the only
4341	 * thread with access to newsksec */
4342	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4343}
4344
4345static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4346{
4347	u16 family = sk->sk_family;
4348	struct sk_security_struct *sksec = sk->sk_security;
4349
4350	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4351	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4352		family = PF_INET;
4353
4354	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4355}
4356
4357static int selinux_secmark_relabel_packet(u32 sid)
4358{
4359	const struct task_security_struct *__tsec;
4360	u32 tsid;
4361
4362	__tsec = current_security();
4363	tsid = __tsec->sid;
4364
4365	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4366}
4367
4368static void selinux_secmark_refcount_inc(void)
4369{
4370	atomic_inc(&selinux_secmark_refcount);
4371}
4372
4373static void selinux_secmark_refcount_dec(void)
4374{
4375	atomic_dec(&selinux_secmark_refcount);
4376}
4377
4378static void selinux_req_classify_flow(const struct request_sock *req,
4379				      struct flowi *fl)
4380{
4381	fl->flowi_secid = req->secid;
4382}
4383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4384static int selinux_tun_dev_create(void)
4385{
4386	u32 sid = current_sid();
4387
4388	/* we aren't taking into account the "sockcreate" SID since the socket
4389	 * that is being created here is not a socket in the traditional sense,
4390	 * instead it is a private sock, accessible only to the kernel, and
4391	 * representing a wide range of network traffic spanning multiple
4392	 * connections unlike traditional sockets - check the TUN driver to
4393	 * get a better understanding of why this socket is special */
4394
4395	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4396			    NULL);
4397}
4398
4399static void selinux_tun_dev_post_create(struct sock *sk)
 
 
 
 
 
 
 
 
 
4400{
 
4401	struct sk_security_struct *sksec = sk->sk_security;
4402
4403	/* we don't currently perform any NetLabel based labeling here and it
4404	 * isn't clear that we would want to do so anyway; while we could apply
4405	 * labeling without the support of the TUN user the resulting labeled
4406	 * traffic from the other end of the connection would almost certainly
4407	 * cause confusion to the TUN user that had no idea network labeling
4408	 * protocols were being used */
4409
4410	/* see the comments in selinux_tun_dev_create() about why we don't use
4411	 * the sockcreate SID here */
4412
4413	sksec->sid = current_sid();
4414	sksec->sclass = SECCLASS_TUN_SOCKET;
 
 
4415}
4416
4417static int selinux_tun_dev_attach(struct sock *sk)
4418{
4419	struct sk_security_struct *sksec = sk->sk_security;
4420	u32 sid = current_sid();
4421	int err;
4422
4423	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
 
4424			   TUN_SOCKET__RELABELFROM, NULL);
4425	if (err)
4426		return err;
4427	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
4428			   TUN_SOCKET__RELABELTO, NULL);
4429	if (err)
4430		return err;
4431
4432	sksec->sid = sid;
4433
4434	return 0;
4435}
4436
4437static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4438{
4439	int err = 0;
4440	u32 perm;
4441	struct nlmsghdr *nlh;
4442	struct sk_security_struct *sksec = sk->sk_security;
4443
4444	if (skb->len < NLMSG_SPACE(0)) {
4445		err = -EINVAL;
4446		goto out;
4447	}
4448	nlh = nlmsg_hdr(skb);
4449
4450	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4451	if (err) {
4452		if (err == -EINVAL) {
4453			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4454				  "SELinux:  unrecognized netlink message"
4455				  " type=%hu for sclass=%hu\n",
4456				  nlh->nlmsg_type, sksec->sclass);
4457			if (!selinux_enforcing || security_get_allow_unknown())
 
 
 
4458				err = 0;
4459		}
4460
4461		/* Ignore */
4462		if (err == -ENOENT)
4463			err = 0;
4464		goto out;
4465	}
4466
4467	err = sock_has_perm(current, sk, perm);
4468out:
4469	return err;
4470}
4471
4472#ifdef CONFIG_NETFILTER
4473
4474static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
 
4475				       u16 family)
4476{
4477	int err;
4478	char *addrp;
4479	u32 peer_sid;
4480	struct common_audit_data ad;
 
4481	u8 secmark_active;
4482	u8 netlbl_active;
4483	u8 peerlbl_active;
4484
4485	if (!selinux_policycap_netpeer)
4486		return NF_ACCEPT;
4487
4488	secmark_active = selinux_secmark_enabled();
4489	netlbl_active = netlbl_enabled();
4490	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4491	if (!secmark_active && !peerlbl_active)
4492		return NF_ACCEPT;
4493
4494	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4495		return NF_DROP;
4496
4497	COMMON_AUDIT_DATA_INIT(&ad, NET);
4498	ad.u.net.netif = ifindex;
4499	ad.u.net.family = family;
 
4500	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4501		return NF_DROP;
4502
4503	if (peerlbl_active) {
4504		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4505					       peer_sid, &ad);
4506		if (err) {
4507			selinux_netlbl_err(skb, err, 1);
4508			return NF_DROP;
4509		}
4510	}
4511
4512	if (secmark_active)
4513		if (avc_has_perm(peer_sid, skb->secmark,
 
4514				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4515			return NF_DROP;
4516
4517	if (netlbl_active)
4518		/* we do this in the FORWARD path and not the POST_ROUTING
4519		 * path because we want to make sure we apply the necessary
4520		 * labeling before IPsec is applied so we can leverage AH
4521		 * protection */
4522		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4523			return NF_DROP;
4524
4525	return NF_ACCEPT;
4526}
4527
4528static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4529					 struct sk_buff *skb,
4530					 const struct net_device *in,
4531					 const struct net_device *out,
4532					 int (*okfn)(struct sk_buff *))
4533{
4534	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4535}
4536
4537#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4538static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4539					 struct sk_buff *skb,
4540					 const struct net_device *in,
4541					 const struct net_device *out,
4542					 int (*okfn)(struct sk_buff *))
4543{
4544	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4545}
4546#endif	/* IPV6 */
4547
4548static unsigned int selinux_ip_output(struct sk_buff *skb,
4549				      u16 family)
4550{
 
4551	u32 sid;
4552
4553	if (!netlbl_enabled())
4554		return NF_ACCEPT;
4555
4556	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4557	 * because we want to make sure we apply the necessary labeling
4558	 * before IPsec is applied so we can leverage AH protection */
4559	if (skb->sk) {
4560		struct sk_security_struct *sksec = skb->sk->sk_security;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4561		sid = sksec->sid;
4562	} else
4563		sid = SECINITSID_KERNEL;
4564	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4565		return NF_DROP;
4566
4567	return NF_ACCEPT;
4568}
4569
4570static unsigned int selinux_ipv4_output(unsigned int hooknum,
4571					struct sk_buff *skb,
4572					const struct net_device *in,
4573					const struct net_device *out,
4574					int (*okfn)(struct sk_buff *))
4575{
4576	return selinux_ip_output(skb, PF_INET);
4577}
4578
 
 
 
 
 
 
 
 
 
4579static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4580						int ifindex,
4581						u16 family)
4582{
4583	struct sock *sk = skb->sk;
4584	struct sk_security_struct *sksec;
4585	struct common_audit_data ad;
 
4586	char *addrp;
4587	u8 proto;
4588
4589	if (sk == NULL)
4590		return NF_ACCEPT;
4591	sksec = sk->sk_security;
4592
4593	COMMON_AUDIT_DATA_INIT(&ad, NET);
4594	ad.u.net.netif = ifindex;
4595	ad.u.net.family = family;
 
4596	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4597		return NF_DROP;
4598
4599	if (selinux_secmark_enabled())
4600		if (avc_has_perm(sksec->sid, skb->secmark,
 
4601				 SECCLASS_PACKET, PACKET__SEND, &ad))
4602			return NF_DROP_ERR(-ECONNREFUSED);
4603
4604	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4605		return NF_DROP_ERR(-ECONNREFUSED);
4606
4607	return NF_ACCEPT;
4608}
4609
4610static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
 
4611					 u16 family)
4612{
4613	u32 secmark_perm;
4614	u32 peer_sid;
 
4615	struct sock *sk;
4616	struct common_audit_data ad;
 
4617	char *addrp;
4618	u8 secmark_active;
4619	u8 peerlbl_active;
4620
4621	/* If any sort of compatibility mode is enabled then handoff processing
4622	 * to the selinux_ip_postroute_compat() function to deal with the
4623	 * special handling.  We do this in an attempt to keep this function
4624	 * as fast and as clean as possible. */
4625	if (!selinux_policycap_netpeer)
4626		return selinux_ip_postroute_compat(skb, ifindex, family);
 
 
 
 
 
 
 
 
4627#ifdef CONFIG_XFRM
4628	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4629	 * packet transformation so allow the packet to pass without any checks
4630	 * since we'll have another chance to perform access control checks
4631	 * when the packet is on it's final way out.
4632	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4633	 *       is NULL, in this case go ahead and apply access control. */
4634	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
 
 
 
 
 
 
4635		return NF_ACCEPT;
4636#endif
4637	secmark_active = selinux_secmark_enabled();
4638	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4639	if (!secmark_active && !peerlbl_active)
4640		return NF_ACCEPT;
4641
4642	/* if the packet is being forwarded then get the peer label from the
4643	 * packet itself; otherwise check to see if it is from a local
4644	 * application or the kernel, if from an application get the peer label
4645	 * from the sending socket, otherwise use the kernel's sid */
4646	sk = skb->sk;
4647	if (sk == NULL) {
 
 
 
 
4648		if (skb->skb_iif) {
4649			secmark_perm = PACKET__FORWARD_OUT;
4650			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4651				return NF_DROP;
4652		} else {
4653			secmark_perm = PACKET__SEND;
4654			peer_sid = SECINITSID_KERNEL;
4655		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4656	} else {
 
 
4657		struct sk_security_struct *sksec = sk->sk_security;
4658		peer_sid = sksec->sid;
4659		secmark_perm = PACKET__SEND;
4660	}
4661
4662	COMMON_AUDIT_DATA_INIT(&ad, NET);
4663	ad.u.net.netif = ifindex;
4664	ad.u.net.family = family;
 
4665	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4666		return NF_DROP;
4667
4668	if (secmark_active)
4669		if (avc_has_perm(peer_sid, skb->secmark,
 
4670				 SECCLASS_PACKET, secmark_perm, &ad))
4671			return NF_DROP_ERR(-ECONNREFUSED);
4672
4673	if (peerlbl_active) {
4674		u32 if_sid;
4675		u32 node_sid;
4676
4677		if (sel_netif_sid(ifindex, &if_sid))
4678			return NF_DROP;
4679		if (avc_has_perm(peer_sid, if_sid,
 
4680				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4681			return NF_DROP_ERR(-ECONNREFUSED);
4682
4683		if (sel_netnode_sid(addrp, family, &node_sid))
4684			return NF_DROP;
4685		if (avc_has_perm(peer_sid, node_sid,
 
4686				 SECCLASS_NODE, NODE__SENDTO, &ad))
4687			return NF_DROP_ERR(-ECONNREFUSED);
4688	}
4689
4690	return NF_ACCEPT;
4691}
4692
4693static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4694					   struct sk_buff *skb,
4695					   const struct net_device *in,
4696					   const struct net_device *out,
4697					   int (*okfn)(struct sk_buff *))
4698{
4699	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4700}
4701
4702#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4703static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4704					   struct sk_buff *skb,
4705					   const struct net_device *in,
4706					   const struct net_device *out,
4707					   int (*okfn)(struct sk_buff *))
4708{
4709	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4710}
4711#endif	/* IPV6 */
4712
4713#endif	/* CONFIG_NETFILTER */
4714
4715static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4716{
4717	int err;
4718
4719	err = cap_netlink_send(sk, skb);
4720	if (err)
4721		return err;
4722
4723	return selinux_nlmsg_perm(sk, skb);
4724}
4725
4726static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4727{
4728	int err;
4729	struct common_audit_data ad;
4730	u32 sid;
4731
4732	err = cap_netlink_recv(skb, capability);
4733	if (err)
4734		return err;
4735
4736	COMMON_AUDIT_DATA_INIT(&ad, CAP);
4737	ad.u.cap = capability;
4738
4739	security_task_getsecid(current, &sid);
4740	return avc_has_perm(sid, sid, SECCLASS_CAPABILITY,
4741			    CAP_TO_MASK(capability), &ad);
4742}
4743
4744static int ipc_alloc_security(struct task_struct *task,
4745			      struct kern_ipc_perm *perm,
4746			      u16 sclass)
4747{
4748	struct ipc_security_struct *isec;
4749	u32 sid;
4750
4751	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4752	if (!isec)
4753		return -ENOMEM;
4754
4755	sid = task_sid(task);
4756	isec->sclass = sclass;
4757	isec->sid = sid;
4758	perm->security = isec;
4759
4760	return 0;
4761}
4762
4763static void ipc_free_security(struct kern_ipc_perm *perm)
4764{
4765	struct ipc_security_struct *isec = perm->security;
4766	perm->security = NULL;
4767	kfree(isec);
4768}
4769
4770static int msg_msg_alloc_security(struct msg_msg *msg)
4771{
4772	struct msg_security_struct *msec;
4773
4774	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4775	if (!msec)
4776		return -ENOMEM;
4777
4778	msec->sid = SECINITSID_UNLABELED;
4779	msg->security = msec;
4780
4781	return 0;
4782}
4783
4784static void msg_msg_free_security(struct msg_msg *msg)
4785{
4786	struct msg_security_struct *msec = msg->security;
4787
4788	msg->security = NULL;
4789	kfree(msec);
4790}
4791
4792static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4793			u32 perms)
4794{
4795	struct ipc_security_struct *isec;
4796	struct common_audit_data ad;
4797	u32 sid = current_sid();
4798
4799	isec = ipc_perms->security;
4800
4801	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4802	ad.u.ipc_id = ipc_perms->key;
4803
4804	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
4805}
4806
4807static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4808{
4809	return msg_msg_alloc_security(msg);
4810}
4811
4812static void selinux_msg_msg_free_security(struct msg_msg *msg)
4813{
4814	msg_msg_free_security(msg);
4815}
4816
4817/* message queue security operations */
4818static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4819{
4820	struct ipc_security_struct *isec;
4821	struct common_audit_data ad;
4822	u32 sid = current_sid();
4823	int rc;
4824
4825	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4826	if (rc)
4827		return rc;
4828
4829	isec = msq->q_perm.security;
4830
4831	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4832	ad.u.ipc_id = msq->q_perm.key;
4833
4834	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4835			  MSGQ__CREATE, &ad);
4836	if (rc) {
4837		ipc_free_security(&msq->q_perm);
4838		return rc;
4839	}
4840	return 0;
4841}
4842
4843static void selinux_msg_queue_free_security(struct msg_queue *msq)
4844{
4845	ipc_free_security(&msq->q_perm);
4846}
4847
4848static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4849{
4850	struct ipc_security_struct *isec;
4851	struct common_audit_data ad;
4852	u32 sid = current_sid();
4853
4854	isec = msq->q_perm.security;
4855
4856	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4857	ad.u.ipc_id = msq->q_perm.key;
4858
4859	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4860			    MSGQ__ASSOCIATE, &ad);
4861}
4862
4863static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4864{
4865	int err;
4866	int perms;
4867
4868	switch (cmd) {
4869	case IPC_INFO:
4870	case MSG_INFO:
4871		/* No specific object, just general system-wide information. */
4872		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
4873	case IPC_STAT:
4874	case MSG_STAT:
 
4875		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4876		break;
4877	case IPC_SET:
4878		perms = MSGQ__SETATTR;
4879		break;
4880	case IPC_RMID:
4881		perms = MSGQ__DESTROY;
4882		break;
4883	default:
4884		return 0;
4885	}
4886
4887	err = ipc_has_perm(&msq->q_perm, perms);
4888	return err;
4889}
4890
4891static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4892{
4893	struct ipc_security_struct *isec;
4894	struct msg_security_struct *msec;
4895	struct common_audit_data ad;
4896	u32 sid = current_sid();
4897	int rc;
4898
4899	isec = msq->q_perm.security;
4900	msec = msg->security;
4901
4902	/*
4903	 * First time through, need to assign label to the message
4904	 */
4905	if (msec->sid == SECINITSID_UNLABELED) {
4906		/*
4907		 * Compute new sid based on current process and
4908		 * message queue this message will be stored in
4909		 */
4910		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4911					     NULL, &msec->sid);
4912		if (rc)
4913			return rc;
4914	}
4915
4916	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4917	ad.u.ipc_id = msq->q_perm.key;
4918
4919	/* Can this process write to the queue? */
4920	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4921			  MSGQ__WRITE, &ad);
4922	if (!rc)
4923		/* Can this process send the message */
4924		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
4925				  MSG__SEND, &ad);
4926	if (!rc)
4927		/* Can the message be put in the queue? */
4928		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
4929				  MSGQ__ENQUEUE, &ad);
4930
4931	return rc;
4932}
4933
4934static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4935				    struct task_struct *target,
4936				    long type, int mode)
4937{
4938	struct ipc_security_struct *isec;
4939	struct msg_security_struct *msec;
4940	struct common_audit_data ad;
4941	u32 sid = task_sid(target);
4942	int rc;
4943
4944	isec = msq->q_perm.security;
4945	msec = msg->security;
4946
4947	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4948	ad.u.ipc_id = msq->q_perm.key;
4949
4950	rc = avc_has_perm(sid, isec->sid,
 
4951			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4952	if (!rc)
4953		rc = avc_has_perm(sid, msec->sid,
 
4954				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4955	return rc;
4956}
4957
4958/* Shared Memory security operations */
4959static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4960{
4961	struct ipc_security_struct *isec;
4962	struct common_audit_data ad;
4963	u32 sid = current_sid();
4964	int rc;
4965
4966	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4967	if (rc)
4968		return rc;
4969
4970	isec = shp->shm_perm.security;
4971
4972	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4973	ad.u.ipc_id = shp->shm_perm.key;
4974
4975	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
4976			  SHM__CREATE, &ad);
4977	if (rc) {
4978		ipc_free_security(&shp->shm_perm);
4979		return rc;
4980	}
4981	return 0;
4982}
4983
4984static void selinux_shm_free_security(struct shmid_kernel *shp)
4985{
4986	ipc_free_security(&shp->shm_perm);
4987}
4988
4989static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4990{
4991	struct ipc_security_struct *isec;
4992	struct common_audit_data ad;
4993	u32 sid = current_sid();
4994
4995	isec = shp->shm_perm.security;
4996
4997	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4998	ad.u.ipc_id = shp->shm_perm.key;
4999
5000	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5001			    SHM__ASSOCIATE, &ad);
5002}
5003
5004/* Note, at this point, shp is locked down */
5005static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5006{
5007	int perms;
5008	int err;
5009
5010	switch (cmd) {
5011	case IPC_INFO:
5012	case SHM_INFO:
5013		/* No specific object, just general system-wide information. */
5014		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5015	case IPC_STAT:
5016	case SHM_STAT:
 
5017		perms = SHM__GETATTR | SHM__ASSOCIATE;
5018		break;
5019	case IPC_SET:
5020		perms = SHM__SETATTR;
5021		break;
5022	case SHM_LOCK:
5023	case SHM_UNLOCK:
5024		perms = SHM__LOCK;
5025		break;
5026	case IPC_RMID:
5027		perms = SHM__DESTROY;
5028		break;
5029	default:
5030		return 0;
5031	}
5032
5033	err = ipc_has_perm(&shp->shm_perm, perms);
5034	return err;
5035}
5036
5037static int selinux_shm_shmat(struct shmid_kernel *shp,
5038			     char __user *shmaddr, int shmflg)
5039{
5040	u32 perms;
5041
5042	if (shmflg & SHM_RDONLY)
5043		perms = SHM__READ;
5044	else
5045		perms = SHM__READ | SHM__WRITE;
5046
5047	return ipc_has_perm(&shp->shm_perm, perms);
5048}
5049
5050/* Semaphore security operations */
5051static int selinux_sem_alloc_security(struct sem_array *sma)
5052{
5053	struct ipc_security_struct *isec;
5054	struct common_audit_data ad;
5055	u32 sid = current_sid();
5056	int rc;
5057
5058	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5059	if (rc)
5060		return rc;
5061
5062	isec = sma->sem_perm.security;
5063
5064	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5065	ad.u.ipc_id = sma->sem_perm.key;
5066
5067	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5068			  SEM__CREATE, &ad);
5069	if (rc) {
5070		ipc_free_security(&sma->sem_perm);
5071		return rc;
5072	}
5073	return 0;
5074}
5075
5076static void selinux_sem_free_security(struct sem_array *sma)
5077{
5078	ipc_free_security(&sma->sem_perm);
5079}
5080
5081static int selinux_sem_associate(struct sem_array *sma, int semflg)
5082{
5083	struct ipc_security_struct *isec;
5084	struct common_audit_data ad;
5085	u32 sid = current_sid();
5086
5087	isec = sma->sem_perm.security;
5088
5089	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5090	ad.u.ipc_id = sma->sem_perm.key;
5091
5092	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5093			    SEM__ASSOCIATE, &ad);
5094}
5095
5096/* Note, at this point, sma is locked down */
5097static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5098{
5099	int err;
5100	u32 perms;
5101
5102	switch (cmd) {
5103	case IPC_INFO:
5104	case SEM_INFO:
5105		/* No specific object, just general system-wide information. */
5106		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5107	case GETPID:
5108	case GETNCNT:
5109	case GETZCNT:
5110		perms = SEM__GETATTR;
5111		break;
5112	case GETVAL:
5113	case GETALL:
5114		perms = SEM__READ;
5115		break;
5116	case SETVAL:
5117	case SETALL:
5118		perms = SEM__WRITE;
5119		break;
5120	case IPC_RMID:
5121		perms = SEM__DESTROY;
5122		break;
5123	case IPC_SET:
5124		perms = SEM__SETATTR;
5125		break;
5126	case IPC_STAT:
5127	case SEM_STAT:
 
5128		perms = SEM__GETATTR | SEM__ASSOCIATE;
5129		break;
5130	default:
5131		return 0;
5132	}
5133
5134	err = ipc_has_perm(&sma->sem_perm, perms);
5135	return err;
5136}
5137
5138static int selinux_sem_semop(struct sem_array *sma,
5139			     struct sembuf *sops, unsigned nsops, int alter)
5140{
5141	u32 perms;
5142
5143	if (alter)
5144		perms = SEM__READ | SEM__WRITE;
5145	else
5146		perms = SEM__READ;
5147
5148	return ipc_has_perm(&sma->sem_perm, perms);
5149}
5150
5151static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5152{
5153	u32 av = 0;
5154
5155	av = 0;
5156	if (flag & S_IRUGO)
5157		av |= IPC__UNIX_READ;
5158	if (flag & S_IWUGO)
5159		av |= IPC__UNIX_WRITE;
5160
5161	if (av == 0)
5162		return 0;
5163
5164	return ipc_has_perm(ipcp, av);
5165}
5166
5167static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5168{
5169	struct ipc_security_struct *isec = ipcp->security;
5170	*secid = isec->sid;
5171}
5172
5173static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5174{
5175	if (inode)
5176		inode_doinit_with_dentry(inode, dentry);
5177}
5178
5179static int selinux_getprocattr(struct task_struct *p,
5180			       char *name, char **value)
5181{
5182	const struct task_security_struct *__tsec;
5183	u32 sid;
5184	int error;
5185	unsigned len;
5186
 
 
 
5187	if (current != p) {
5188		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5189		if (error)
5190			return error;
5191	}
5192
5193	rcu_read_lock();
5194	__tsec = __task_cred(p)->security;
5195
5196	if (!strcmp(name, "current"))
5197		sid = __tsec->sid;
5198	else if (!strcmp(name, "prev"))
5199		sid = __tsec->osid;
5200	else if (!strcmp(name, "exec"))
5201		sid = __tsec->exec_sid;
5202	else if (!strcmp(name, "fscreate"))
5203		sid = __tsec->create_sid;
5204	else if (!strcmp(name, "keycreate"))
5205		sid = __tsec->keycreate_sid;
5206	else if (!strcmp(name, "sockcreate"))
5207		sid = __tsec->sockcreate_sid;
5208	else
5209		goto invalid;
 
 
5210	rcu_read_unlock();
5211
5212	if (!sid)
5213		return 0;
5214
5215	error = security_sid_to_context(sid, value, &len);
5216	if (error)
5217		return error;
5218	return len;
5219
5220invalid:
5221	rcu_read_unlock();
5222	return -EINVAL;
5223}
5224
5225static int selinux_setprocattr(struct task_struct *p,
5226			       char *name, void *value, size_t size)
5227{
5228	struct task_security_struct *tsec;
5229	struct task_struct *tracer;
5230	struct cred *new;
5231	u32 sid = 0, ptsid;
5232	int error;
5233	char *str = value;
5234
5235	if (current != p) {
5236		/* SELinux only allows a process to change its own
5237		   security attributes. */
5238		return -EACCES;
5239	}
5240
5241	/*
5242	 * Basic control over ability to set these attributes at all.
5243	 * current == p, but we'll pass them separately in case the
5244	 * above restriction is ever removed.
5245	 */
5246	if (!strcmp(name, "exec"))
5247		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5248	else if (!strcmp(name, "fscreate"))
5249		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5250	else if (!strcmp(name, "keycreate"))
5251		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5252	else if (!strcmp(name, "sockcreate"))
5253		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5254	else if (!strcmp(name, "current"))
5255		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5256	else
5257		error = -EINVAL;
5258	if (error)
5259		return error;
5260
5261	/* Obtain a SID for the context, if one was specified. */
5262	if (size && str[1] && str[1] != '\n') {
5263		if (str[size-1] == '\n') {
5264			str[size-1] = 0;
5265			size--;
5266		}
5267		error = security_context_to_sid(value, size, &sid);
 
5268		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5269			if (!capable(CAP_MAC_ADMIN))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5270				return error;
5271			error = security_context_to_sid_force(value, size,
5272							      &sid);
 
 
5273		}
5274		if (error)
5275			return error;
5276	}
5277
5278	new = prepare_creds();
5279	if (!new)
5280		return -ENOMEM;
5281
5282	/* Permission checking based on the specified context is
5283	   performed during the actual operation (execve,
5284	   open/mkdir/...), when we know the full context of the
5285	   operation.  See selinux_bprm_set_creds for the execve
5286	   checks and may_create for the file creation checks. The
5287	   operation will then fail if the context is not permitted. */
5288	tsec = new->security;
5289	if (!strcmp(name, "exec")) {
5290		tsec->exec_sid = sid;
5291	} else if (!strcmp(name, "fscreate")) {
5292		tsec->create_sid = sid;
5293	} else if (!strcmp(name, "keycreate")) {
5294		error = may_create_key(sid, p);
5295		if (error)
5296			goto abort_change;
 
 
 
5297		tsec->keycreate_sid = sid;
5298	} else if (!strcmp(name, "sockcreate")) {
5299		tsec->sockcreate_sid = sid;
5300	} else if (!strcmp(name, "current")) {
5301		error = -EINVAL;
5302		if (sid == 0)
5303			goto abort_change;
5304
5305		/* Only allow single threaded processes to change context */
5306		error = -EPERM;
5307		if (!current_is_single_threaded()) {
5308			error = security_bounded_transition(tsec->sid, sid);
 
5309			if (error)
5310				goto abort_change;
5311		}
5312
5313		/* Check permissions for the transition. */
5314		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5315				     PROCESS__DYNTRANSITION, NULL);
5316		if (error)
5317			goto abort_change;
5318
5319		/* Check for ptracing, and update the task SID if ok.
5320		   Otherwise, leave SID unchanged and fail. */
5321		ptsid = 0;
5322		task_lock(p);
5323		tracer = ptrace_parent(p);
5324		if (tracer)
5325			ptsid = task_sid(tracer);
5326		task_unlock(p);
5327
5328		if (tracer) {
5329			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5330					     PROCESS__PTRACE, NULL);
5331			if (error)
5332				goto abort_change;
5333		}
5334
5335		tsec->sid = sid;
5336	} else {
5337		error = -EINVAL;
5338		goto abort_change;
5339	}
5340
5341	commit_creds(new);
5342	return size;
5343
5344abort_change:
5345	abort_creds(new);
5346	return error;
5347}
5348
 
 
 
 
 
5349static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5350{
5351	return security_sid_to_context(secid, secdata, seclen);
 
5352}
5353
5354static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5355{
5356	return security_context_to_sid(secdata, seclen, secid);
 
5357}
5358
5359static void selinux_release_secctx(char *secdata, u32 seclen)
5360{
5361	kfree(secdata);
5362}
5363
 
 
 
 
 
 
 
 
 
5364/*
5365 *	called with inode->i_mutex locked
5366 */
5367static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5368{
5369	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
5370}
5371
5372/*
5373 *	called with inode->i_mutex locked
5374 */
5375static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5376{
5377	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5378}
5379
5380static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5381{
5382	int len = 0;
5383	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5384						ctx, true);
5385	if (len < 0)
5386		return len;
5387	*ctxlen = len;
5388	return 0;
5389}
5390#ifdef CONFIG_KEYS
5391
5392static int selinux_key_alloc(struct key *k, const struct cred *cred,
5393			     unsigned long flags)
5394{
5395	const struct task_security_struct *tsec;
5396	struct key_security_struct *ksec;
5397
5398	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5399	if (!ksec)
5400		return -ENOMEM;
5401
5402	tsec = cred->security;
5403	if (tsec->keycreate_sid)
5404		ksec->sid = tsec->keycreate_sid;
5405	else
5406		ksec->sid = tsec->sid;
5407
5408	k->security = ksec;
5409	return 0;
5410}
5411
5412static void selinux_key_free(struct key *k)
5413{
5414	struct key_security_struct *ksec = k->security;
5415
5416	k->security = NULL;
5417	kfree(ksec);
5418}
5419
5420static int selinux_key_permission(key_ref_t key_ref,
5421				  const struct cred *cred,
5422				  key_perm_t perm)
5423{
5424	struct key *key;
5425	struct key_security_struct *ksec;
5426	u32 sid;
5427
5428	/* if no specific permissions are requested, we skip the
5429	   permission check. No serious, additional covert channels
5430	   appear to be created. */
5431	if (perm == 0)
5432		return 0;
5433
5434	sid = cred_sid(cred);
5435
5436	key = key_ref_to_ptr(key_ref);
5437	ksec = key->security;
5438
5439	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
5440}
5441
5442static int selinux_key_getsecurity(struct key *key, char **_buffer)
5443{
5444	struct key_security_struct *ksec = key->security;
5445	char *context = NULL;
5446	unsigned len;
5447	int rc;
5448
5449	rc = security_sid_to_context(ksec->sid, &context, &len);
 
5450	if (!rc)
5451		rc = len;
5452	*_buffer = context;
5453	return rc;
5454}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5455
 
 
 
 
5456#endif
5457
5458static struct security_operations selinux_ops = {
5459	.name =				"selinux",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5460
5461	.ptrace_access_check =		selinux_ptrace_access_check,
5462	.ptrace_traceme =		selinux_ptrace_traceme,
5463	.capget =			selinux_capget,
5464	.capset =			selinux_capset,
5465	.capable =			selinux_capable,
5466	.quotactl =			selinux_quotactl,
5467	.quota_on =			selinux_quota_on,
5468	.syslog =			selinux_syslog,
5469	.vm_enough_memory =		selinux_vm_enough_memory,
5470
5471	.netlink_send =			selinux_netlink_send,
5472	.netlink_recv =			selinux_netlink_recv,
5473
5474	.bprm_set_creds =		selinux_bprm_set_creds,
5475	.bprm_committing_creds =	selinux_bprm_committing_creds,
5476	.bprm_committed_creds =		selinux_bprm_committed_creds,
5477	.bprm_secureexec =		selinux_bprm_secureexec,
5478
5479	.sb_alloc_security =		selinux_sb_alloc_security,
5480	.sb_free_security =		selinux_sb_free_security,
5481	.sb_copy_data =			selinux_sb_copy_data,
5482	.sb_remount =			selinux_sb_remount,
5483	.sb_kern_mount =		selinux_sb_kern_mount,
5484	.sb_show_options =		selinux_sb_show_options,
5485	.sb_statfs =			selinux_sb_statfs,
5486	.sb_mount =			selinux_mount,
5487	.sb_umount =			selinux_umount,
5488	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5489	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5490	.sb_parse_opts_str = 		selinux_parse_opts_str,
5491
5492
5493	.inode_alloc_security =		selinux_inode_alloc_security,
5494	.inode_free_security =		selinux_inode_free_security,
5495	.inode_init_security =		selinux_inode_init_security,
5496	.inode_create =			selinux_inode_create,
5497	.inode_link =			selinux_inode_link,
5498	.inode_unlink =			selinux_inode_unlink,
5499	.inode_symlink =		selinux_inode_symlink,
5500	.inode_mkdir =			selinux_inode_mkdir,
5501	.inode_rmdir =			selinux_inode_rmdir,
5502	.inode_mknod =			selinux_inode_mknod,
5503	.inode_rename =			selinux_inode_rename,
5504	.inode_readlink =		selinux_inode_readlink,
5505	.inode_follow_link =		selinux_inode_follow_link,
5506	.inode_permission =		selinux_inode_permission,
5507	.inode_setattr =		selinux_inode_setattr,
5508	.inode_getattr =		selinux_inode_getattr,
5509	.inode_setxattr =		selinux_inode_setxattr,
5510	.inode_post_setxattr =		selinux_inode_post_setxattr,
5511	.inode_getxattr =		selinux_inode_getxattr,
5512	.inode_listxattr =		selinux_inode_listxattr,
5513	.inode_removexattr =		selinux_inode_removexattr,
5514	.inode_getsecurity =		selinux_inode_getsecurity,
5515	.inode_setsecurity =		selinux_inode_setsecurity,
5516	.inode_listsecurity =		selinux_inode_listsecurity,
5517	.inode_getsecid =		selinux_inode_getsecid,
5518
5519	.file_permission =		selinux_file_permission,
5520	.file_alloc_security =		selinux_file_alloc_security,
5521	.file_free_security =		selinux_file_free_security,
5522	.file_ioctl =			selinux_file_ioctl,
5523	.file_mmap =			selinux_file_mmap,
5524	.file_mprotect =		selinux_file_mprotect,
5525	.file_lock =			selinux_file_lock,
5526	.file_fcntl =			selinux_file_fcntl,
5527	.file_set_fowner =		selinux_file_set_fowner,
5528	.file_send_sigiotask =		selinux_file_send_sigiotask,
5529	.file_receive =			selinux_file_receive,
5530
5531	.dentry_open =			selinux_dentry_open,
5532
5533	.task_create =			selinux_task_create,
5534	.cred_alloc_blank =		selinux_cred_alloc_blank,
5535	.cred_free =			selinux_cred_free,
5536	.cred_prepare =			selinux_cred_prepare,
5537	.cred_transfer =		selinux_cred_transfer,
5538	.kernel_act_as =		selinux_kernel_act_as,
5539	.kernel_create_files_as =	selinux_kernel_create_files_as,
5540	.kernel_module_request =	selinux_kernel_module_request,
5541	.task_setpgid =			selinux_task_setpgid,
5542	.task_getpgid =			selinux_task_getpgid,
5543	.task_getsid =			selinux_task_getsid,
5544	.task_getsecid =		selinux_task_getsecid,
5545	.task_setnice =			selinux_task_setnice,
5546	.task_setioprio =		selinux_task_setioprio,
5547	.task_getioprio =		selinux_task_getioprio,
5548	.task_setrlimit =		selinux_task_setrlimit,
5549	.task_setscheduler =		selinux_task_setscheduler,
5550	.task_getscheduler =		selinux_task_getscheduler,
5551	.task_movememory =		selinux_task_movememory,
5552	.task_kill =			selinux_task_kill,
5553	.task_wait =			selinux_task_wait,
5554	.task_to_inode =		selinux_task_to_inode,
5555
5556	.ipc_permission =		selinux_ipc_permission,
5557	.ipc_getsecid =			selinux_ipc_getsecid,
5558
5559	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5560	.msg_msg_free_security =	selinux_msg_msg_free_security,
5561
5562	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5563	.msg_queue_free_security =	selinux_msg_queue_free_security,
5564	.msg_queue_associate =		selinux_msg_queue_associate,
5565	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5566	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5567	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5568
5569	.shm_alloc_security =		selinux_shm_alloc_security,
5570	.shm_free_security =		selinux_shm_free_security,
5571	.shm_associate =		selinux_shm_associate,
5572	.shm_shmctl =			selinux_shm_shmctl,
5573	.shm_shmat =			selinux_shm_shmat,
5574
5575	.sem_alloc_security =		selinux_sem_alloc_security,
5576	.sem_free_security =		selinux_sem_free_security,
5577	.sem_associate =		selinux_sem_associate,
5578	.sem_semctl =			selinux_sem_semctl,
5579	.sem_semop =			selinux_sem_semop,
5580
5581	.d_instantiate =		selinux_d_instantiate,
5582
5583	.getprocattr =			selinux_getprocattr,
5584	.setprocattr =			selinux_setprocattr,
5585
5586	.secid_to_secctx =		selinux_secid_to_secctx,
5587	.secctx_to_secid =		selinux_secctx_to_secid,
5588	.release_secctx =		selinux_release_secctx,
5589	.inode_notifysecctx =		selinux_inode_notifysecctx,
5590	.inode_setsecctx =		selinux_inode_setsecctx,
5591	.inode_getsecctx =		selinux_inode_getsecctx,
5592
5593	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5594	.unix_may_send =		selinux_socket_unix_may_send,
5595
5596	.socket_create =		selinux_socket_create,
5597	.socket_post_create =		selinux_socket_post_create,
5598	.socket_bind =			selinux_socket_bind,
5599	.socket_connect =		selinux_socket_connect,
5600	.socket_listen =		selinux_socket_listen,
5601	.socket_accept =		selinux_socket_accept,
5602	.socket_sendmsg =		selinux_socket_sendmsg,
5603	.socket_recvmsg =		selinux_socket_recvmsg,
5604	.socket_getsockname =		selinux_socket_getsockname,
5605	.socket_getpeername =		selinux_socket_getpeername,
5606	.socket_getsockopt =		selinux_socket_getsockopt,
5607	.socket_setsockopt =		selinux_socket_setsockopt,
5608	.socket_shutdown =		selinux_socket_shutdown,
5609	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5610	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5611	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5612	.sk_alloc_security =		selinux_sk_alloc_security,
5613	.sk_free_security =		selinux_sk_free_security,
5614	.sk_clone_security =		selinux_sk_clone_security,
5615	.sk_getsecid =			selinux_sk_getsecid,
5616	.sock_graft =			selinux_sock_graft,
5617	.inet_conn_request =		selinux_inet_conn_request,
5618	.inet_csk_clone =		selinux_inet_csk_clone,
5619	.inet_conn_established =	selinux_inet_conn_established,
5620	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5621	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5622	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5623	.req_classify_flow =		selinux_req_classify_flow,
5624	.tun_dev_create =		selinux_tun_dev_create,
5625	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5626	.tun_dev_attach =		selinux_tun_dev_attach,
5627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5628#ifdef CONFIG_SECURITY_NETWORK_XFRM
5629	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5630	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5631	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5632	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5633	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5634	.xfrm_state_free_security =	selinux_xfrm_state_free,
5635	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5636	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5637	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5638	.xfrm_decode_session =		selinux_xfrm_decode_session,
 
 
 
5639#endif
5640
5641#ifdef CONFIG_KEYS
5642	.key_alloc =			selinux_key_alloc,
5643	.key_free =			selinux_key_free,
5644	.key_permission =		selinux_key_permission,
5645	.key_getsecurity =		selinux_key_getsecurity,
5646#endif
5647
5648#ifdef CONFIG_AUDIT
5649	.audit_rule_init =		selinux_audit_rule_init,
5650	.audit_rule_known =		selinux_audit_rule_known,
5651	.audit_rule_match =		selinux_audit_rule_match,
5652	.audit_rule_free =		selinux_audit_rule_free,
 
 
 
 
 
 
 
 
 
 
5653#endif
5654};
5655
5656static __init int selinux_init(void)
5657{
5658	if (!security_module_enable(&selinux_ops)) {
5659		selinux_enabled = 0;
5660		return 0;
5661	}
5662
5663	if (!selinux_enabled) {
5664		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5665		return 0;
5666	}
5667
5668	printk(KERN_INFO "SELinux:  Initializing.\n");
 
 
 
 
5669
5670	/* Set the security state for the initial task. */
5671	cred_init_security();
5672
5673	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5674
5675	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5676					    sizeof(struct inode_security_struct),
5677					    0, SLAB_PANIC, NULL);
5678	avc_init();
5679
5680	if (register_security(&selinux_ops))
5681		panic("SELinux: Unable to register with kernel.\n");
5682
5683	if (selinux_enforcing)
5684		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
 
 
 
 
 
 
 
 
 
 
 
 
5685	else
5686		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
5687
5688	return 0;
5689}
5690
5691static void delayed_superblock_init(struct super_block *sb, void *unused)
5692{
5693	superblock_doinit(sb, NULL);
5694}
5695
5696void selinux_complete_init(void)
5697{
5698	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5699
5700	/* Set up any superblocks initialized prior to the policy load. */
5701	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5702	iterate_supers(delayed_superblock_init, NULL);
5703}
5704
5705/* SELinux requires early initialization in order to label
5706   all processes and objects when they are created. */
5707security_initcall(selinux_init);
 
 
 
 
 
 
5708
5709#if defined(CONFIG_NETFILTER)
5710
5711static struct nf_hook_ops selinux_ipv4_ops[] = {
5712	{
5713		.hook =		selinux_ipv4_postroute,
5714		.owner =	THIS_MODULE,
5715		.pf =		PF_INET,
5716		.hooknum =	NF_INET_POST_ROUTING,
5717		.priority =	NF_IP_PRI_SELINUX_LAST,
5718	},
5719	{
5720		.hook =		selinux_ipv4_forward,
5721		.owner =	THIS_MODULE,
5722		.pf =		PF_INET,
5723		.hooknum =	NF_INET_FORWARD,
5724		.priority =	NF_IP_PRI_SELINUX_FIRST,
5725	},
5726	{
5727		.hook =		selinux_ipv4_output,
5728		.owner =	THIS_MODULE,
5729		.pf =		PF_INET,
5730		.hooknum =	NF_INET_LOCAL_OUT,
5731		.priority =	NF_IP_PRI_SELINUX_FIRST,
5732	}
5733};
5734
5735#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5736
5737static struct nf_hook_ops selinux_ipv6_ops[] = {
5738	{
5739		.hook =		selinux_ipv6_postroute,
5740		.owner =	THIS_MODULE,
5741		.pf =		PF_INET6,
5742		.hooknum =	NF_INET_POST_ROUTING,
5743		.priority =	NF_IP6_PRI_SELINUX_LAST,
5744	},
5745	{
5746		.hook =		selinux_ipv6_forward,
5747		.owner =	THIS_MODULE,
5748		.pf =		PF_INET6,
5749		.hooknum =	NF_INET_FORWARD,
5750		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5751	}
 
 
 
 
 
 
 
5752};
5753
5754#endif	/* IPV6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5755
5756static int __init selinux_nf_ip_init(void)
5757{
5758	int err = 0;
5759
5760	if (!selinux_enabled)
5761		goto out;
5762
5763	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5764
5765	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5766	if (err)
5767		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5768
5769#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5770	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5771	if (err)
5772		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5773#endif	/* IPV6 */
5774
5775out:
5776	return err;
5777}
5778
5779__initcall(selinux_nf_ip_init);
5780
5781#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5782static void selinux_nf_ip_exit(void)
5783{
5784	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5785
5786	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5787#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5788	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5789#endif	/* IPV6 */
5790}
5791#endif
5792
5793#else /* CONFIG_NETFILTER */
5794
5795#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5796#define selinux_nf_ip_exit()
5797#endif
5798
5799#endif /* CONFIG_NETFILTER */
5800
5801#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5802static int selinux_disabled;
5803
5804int selinux_disable(void)
5805{
5806	extern void exit_sel_fs(void);
5807
5808	if (ss_initialized) {
5809		/* Not permitted after initial policy load. */
5810		return -EINVAL;
5811	}
5812
5813	if (selinux_disabled) {
5814		/* Only do this once. */
5815		return -EINVAL;
5816	}
5817
5818	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
 
 
5819
5820	selinux_disabled = 1;
5821	selinux_enabled = 0;
5822
5823	reset_security_ops();
5824
5825	/* Try to destroy the avc node cache */
5826	avc_disable();
5827
5828	/* Unregister netfilter hooks. */
5829	selinux_nf_ip_exit();
5830
5831	/* Unregister selinuxfs. */
5832	exit_sel_fs();
5833
5834	return 0;
5835}
5836#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/tracehook.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
 
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94
  95#include "avc.h"
  96#include "objsec.h"
  97#include "netif.h"
  98#include "netnode.h"
  99#include "netport.h"
 100#include "ibpkey.h"
 101#include "xfrm.h"
 102#include "netlabel.h"
 103#include "audit.h"
 104#include "avc_ss.h"
 105
 106struct selinux_state selinux_state;
 
 
 
 107
 108/* SECMARK reference count */
 109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 110
 111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 112static int selinux_enforcing_boot;
 113
 114static int __init enforcing_setup(char *str)
 115{
 116	unsigned long enforcing;
 117	if (!kstrtoul(str, 0, &enforcing))
 118		selinux_enforcing_boot = enforcing ? 1 : 0;
 119	return 1;
 120}
 121__setup("enforcing=", enforcing_setup);
 122#else
 123#define selinux_enforcing_boot 1
 124#endif
 125
 126int selinux_enabled __lsm_ro_after_init = 1;
 127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 128static int __init selinux_enabled_setup(char *str)
 129{
 130	unsigned long enabled;
 131	if (!kstrtoul(str, 0, &enabled))
 132		selinux_enabled = enabled ? 1 : 0;
 133	return 1;
 134}
 135__setup("selinux=", selinux_enabled_setup);
 
 
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot))
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 147	return 1;
 148}
 149__setup("checkreqprot=", checkreqprot_setup);
 150
 151/**
 152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 153 *
 154 * Description:
 155 * This function checks the SECMARK reference counter to see if any SECMARK
 156 * targets are currently configured, if the reference counter is greater than
 157 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 158 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 159 * policy capability is enabled, SECMARK is always considered enabled.
 160 *
 161 */
 162static int selinux_secmark_enabled(void)
 163{
 164	return (selinux_policycap_alwaysnetwork() ||
 165		atomic_read(&selinux_secmark_refcount));
 166}
 167
 168/**
 169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 170 *
 171 * Description:
 172 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 173 * (1) if any are enabled or false (0) if neither are enabled.  If the
 174 * always_check_network policy capability is enabled, peer labeling
 175 * is always considered enabled.
 176 *
 177 */
 178static int selinux_peerlbl_enabled(void)
 179{
 180	return (selinux_policycap_alwaysnetwork() ||
 181		netlbl_enabled() || selinux_xfrm_enabled());
 182}
 183
 184static int selinux_netcache_avc_callback(u32 event)
 185{
 186	if (event == AVC_CALLBACK_RESET) {
 187		sel_netif_flush();
 188		sel_netnode_flush();
 189		sel_netport_flush();
 190		synchronize_net();
 191	}
 192	return 0;
 193}
 194
 195static int selinux_lsm_notifier_avc_callback(u32 event)
 196{
 197	if (event == AVC_CALLBACK_RESET) {
 198		sel_ib_pkey_flush();
 199		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 200	}
 201
 202	return 0;
 203}
 204
 205/*
 206 * initialise the security for the init task
 207 */
 208static void cred_init_security(void)
 209{
 210	struct cred *cred = (struct cred *) current->real_cred;
 211	struct task_security_struct *tsec;
 212
 213	tsec = selinux_cred(cred);
 
 
 
 214	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 215}
 216
 217/*
 218 * get the security ID of a set of credentials
 219 */
 220static inline u32 cred_sid(const struct cred *cred)
 221{
 222	const struct task_security_struct *tsec;
 223
 224	tsec = selinux_cred(cred);
 225	return tsec->sid;
 226}
 227
 228/*
 229 * get the objective security ID of a task
 230 */
 231static inline u32 task_sid(const struct task_struct *task)
 232{
 233	u32 sid;
 234
 235	rcu_read_lock();
 236	sid = cred_sid(__task_cred(task));
 237	rcu_read_unlock();
 238	return sid;
 239}
 240
 
 
 
 
 
 
 
 
 
 
 241/* Allocate and free functions for each kind of security blob. */
 242
 243static int inode_alloc_security(struct inode *inode)
 244{
 245	struct inode_security_struct *isec = selinux_inode(inode);
 246	u32 sid = current_sid();
 247
 248	spin_lock_init(&isec->lock);
 
 
 
 
 249	INIT_LIST_HEAD(&isec->list);
 250	isec->inode = inode;
 251	isec->sid = SECINITSID_UNLABELED;
 252	isec->sclass = SECCLASS_FILE;
 253	isec->task_sid = sid;
 254	isec->initialized = LABEL_INVALID;
 255
 256	return 0;
 257}
 258
 259static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 260
 261/*
 262 * Try reloading inode security labels that have been marked as invalid.  The
 263 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 264 * allowed; when set to false, returns -ECHILD when the label is
 265 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 266 */
 267static int __inode_security_revalidate(struct inode *inode,
 268				       struct dentry *dentry,
 269				       bool may_sleep)
 270{
 271	struct inode_security_struct *isec = selinux_inode(inode);
 272
 273	might_sleep_if(may_sleep);
 274
 275	if (selinux_state.initialized &&
 276	    isec->initialized != LABEL_INITIALIZED) {
 277		if (!may_sleep)
 278			return -ECHILD;
 279
 280		/*
 281		 * Try reloading the inode security label.  This will fail if
 282		 * @opt_dentry is NULL and no dentry for this inode can be
 283		 * found; in that case, continue using the old label.
 284		 */
 285		inode_doinit_with_dentry(inode, dentry);
 286	}
 287	return 0;
 288}
 289
 290static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 291{
 292	return selinux_inode(inode);
 293}
 294
 295static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 296{
 297	int error;
 298
 299	error = __inode_security_revalidate(inode, NULL, !rcu);
 300	if (error)
 301		return ERR_PTR(error);
 302	return selinux_inode(inode);
 303}
 304
 305/*
 306 * Get the security label of an inode.
 307 */
 308static struct inode_security_struct *inode_security(struct inode *inode)
 309{
 310	__inode_security_revalidate(inode, NULL, true);
 311	return selinux_inode(inode);
 312}
 313
 314static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 315{
 316	struct inode *inode = d_backing_inode(dentry);
 317
 318	return selinux_inode(inode);
 319}
 320
 321/*
 322 * Get the security label of a dentry's backing inode.
 323 */
 324static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 325{
 326	struct inode *inode = d_backing_inode(dentry);
 327
 328	__inode_security_revalidate(inode, dentry, true);
 329	return selinux_inode(inode);
 330}
 331
 332static void inode_free_security(struct inode *inode)
 333{
 334	struct inode_security_struct *isec = selinux_inode(inode);
 335	struct superblock_security_struct *sbsec;
 336
 337	if (!isec)
 338		return;
 339	sbsec = inode->i_sb->s_security;
 340	/*
 341	 * As not all inode security structures are in a list, we check for
 342	 * empty list outside of the lock to make sure that we won't waste
 343	 * time taking a lock doing nothing.
 344	 *
 345	 * The list_del_init() function can be safely called more than once.
 346	 * It should not be possible for this function to be called with
 347	 * concurrent list_add(), but for better safety against future changes
 348	 * in the code, we use list_empty_careful() here.
 349	 */
 350	if (!list_empty_careful(&isec->list)) {
 351		spin_lock(&sbsec->isec_lock);
 352		list_del_init(&isec->list);
 353		spin_unlock(&sbsec->isec_lock);
 354	}
 
 
 355}
 356
 357static int file_alloc_security(struct file *file)
 358{
 359	struct file_security_struct *fsec = selinux_file(file);
 360	u32 sid = current_sid();
 361
 
 
 
 
 362	fsec->sid = sid;
 363	fsec->fown_sid = sid;
 
 364
 365	return 0;
 366}
 367
 
 
 
 
 
 
 
 368static int superblock_alloc_security(struct super_block *sb)
 369{
 370	struct superblock_security_struct *sbsec;
 371
 372	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 373	if (!sbsec)
 374		return -ENOMEM;
 375
 376	mutex_init(&sbsec->lock);
 377	INIT_LIST_HEAD(&sbsec->isec_head);
 378	spin_lock_init(&sbsec->isec_lock);
 379	sbsec->sb = sb;
 380	sbsec->sid = SECINITSID_UNLABELED;
 381	sbsec->def_sid = SECINITSID_FILE;
 382	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 383	sb->s_security = sbsec;
 384
 385	return 0;
 386}
 387
 388static void superblock_free_security(struct super_block *sb)
 389{
 390	struct superblock_security_struct *sbsec = sb->s_security;
 391	sb->s_security = NULL;
 392	kfree(sbsec);
 393}
 394
 395struct selinux_mnt_opts {
 396	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 
 
 
 
 
 
 
 
 397};
 398
 399static void selinux_free_mnt_opts(void *mnt_opts)
 400{
 401	struct selinux_mnt_opts *opts = mnt_opts;
 402	kfree(opts->fscontext);
 403	kfree(opts->context);
 404	kfree(opts->rootcontext);
 405	kfree(opts->defcontext);
 406	kfree(opts);
 407}
 408
 409static inline int inode_doinit(struct inode *inode)
 410{
 411	return inode_doinit_with_dentry(inode, NULL);
 412}
 413
 414enum {
 415	Opt_error = -1,
 416	Opt_context = 0,
 417	Opt_defcontext = 1,
 418	Opt_fscontext = 2,
 419	Opt_rootcontext = 3,
 420	Opt_seclabel = 4,
 
 421};
 422
 423#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 424static struct {
 425	const char *name;
 426	int len;
 427	int opt;
 428	bool has_arg;
 429} tokens[] = {
 430	A(context, true),
 431	A(fscontext, true),
 432	A(defcontext, true),
 433	A(rootcontext, true),
 434	A(seclabel, false),
 435};
 436#undef A
 437
 438static int match_opt_prefix(char *s, int l, char **arg)
 439{
 440	int i;
 441
 442	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 443		size_t len = tokens[i].len;
 444		if (len > l || memcmp(s, tokens[i].name, len))
 445			continue;
 446		if (tokens[i].has_arg) {
 447			if (len == l || s[len] != '=')
 448				continue;
 449			*arg = s + len + 1;
 450		} else if (len != l)
 451			continue;
 452		return tokens[i].opt;
 453	}
 454	return Opt_error;
 455}
 456
 457#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 458
 459static int may_context_mount_sb_relabel(u32 sid,
 460			struct superblock_security_struct *sbsec,
 461			const struct cred *cred)
 462{
 463	const struct task_security_struct *tsec = selinux_cred(cred);
 464	int rc;
 465
 466	rc = avc_has_perm(&selinux_state,
 467			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 468			  FILESYSTEM__RELABELFROM, NULL);
 469	if (rc)
 470		return rc;
 471
 472	rc = avc_has_perm(&selinux_state,
 473			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 474			  FILESYSTEM__RELABELTO, NULL);
 475	return rc;
 476}
 477
 478static int may_context_mount_inode_relabel(u32 sid,
 479			struct superblock_security_struct *sbsec,
 480			const struct cred *cred)
 481{
 482	const struct task_security_struct *tsec = selinux_cred(cred);
 483	int rc;
 484	rc = avc_has_perm(&selinux_state,
 485			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 486			  FILESYSTEM__RELABELFROM, NULL);
 487	if (rc)
 488		return rc;
 489
 490	rc = avc_has_perm(&selinux_state,
 491			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 492			  FILESYSTEM__ASSOCIATE, NULL);
 493	return rc;
 494}
 495
 496static int selinux_is_genfs_special_handling(struct super_block *sb)
 497{
 498	/* Special handling. Genfs but also in-core setxattr handler */
 499	return	!strcmp(sb->s_type->name, "sysfs") ||
 500		!strcmp(sb->s_type->name, "pstore") ||
 501		!strcmp(sb->s_type->name, "debugfs") ||
 502		!strcmp(sb->s_type->name, "tracefs") ||
 503		!strcmp(sb->s_type->name, "rootfs") ||
 504		(selinux_policycap_cgroupseclabel() &&
 505		 (!strcmp(sb->s_type->name, "cgroup") ||
 506		  !strcmp(sb->s_type->name, "cgroup2")));
 507}
 508
 509static int selinux_is_sblabel_mnt(struct super_block *sb)
 510{
 511	struct superblock_security_struct *sbsec = sb->s_security;
 512
 513	/*
 514	 * IMPORTANT: Double-check logic in this function when adding a new
 515	 * SECURITY_FS_USE_* definition!
 516	 */
 517	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 518
 519	switch (sbsec->behavior) {
 520	case SECURITY_FS_USE_XATTR:
 521	case SECURITY_FS_USE_TRANS:
 522	case SECURITY_FS_USE_TASK:
 523	case SECURITY_FS_USE_NATIVE:
 524		return 1;
 525
 526	case SECURITY_FS_USE_GENFS:
 527		return selinux_is_genfs_special_handling(sb);
 528
 529	/* Never allow relabeling on context mounts */
 530	case SECURITY_FS_USE_MNTPOINT:
 531	case SECURITY_FS_USE_NONE:
 532	default:
 533		return 0;
 534	}
 535}
 536
 537static int sb_finish_set_opts(struct super_block *sb)
 538{
 539	struct superblock_security_struct *sbsec = sb->s_security;
 540	struct dentry *root = sb->s_root;
 541	struct inode *root_inode = d_backing_inode(root);
 542	int rc = 0;
 543
 544	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 545		/* Make sure that the xattr handler exists and that no
 546		   error other than -ENODATA is returned by getxattr on
 547		   the root directory.  -ENODATA is ok, as this may be
 548		   the first boot of the SELinux kernel before we have
 549		   assigned xattr values to the filesystem. */
 550		if (!(root_inode->i_opflags & IOP_XATTR)) {
 551			pr_warn("SELinux: (dev %s, type %s) has no "
 552			       "xattr support\n", sb->s_id, sb->s_type->name);
 553			rc = -EOPNOTSUPP;
 554			goto out;
 555		}
 556
 557		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 558		if (rc < 0 && rc != -ENODATA) {
 559			if (rc == -EOPNOTSUPP)
 560				pr_warn("SELinux: (dev %s, type "
 561				       "%s) has no security xattr handler\n",
 562				       sb->s_id, sb->s_type->name);
 563			else
 564				pr_warn("SELinux: (dev %s, type "
 565				       "%s) getxattr errno %d\n", sb->s_id,
 566				       sb->s_type->name, -rc);
 567			goto out;
 568		}
 569	}
 570
 571	sbsec->flags |= SE_SBINITIALIZED;
 572
 573	/*
 574	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 575	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 576	 * us a superblock that needs the flag to be cleared.
 577	 */
 578	if (selinux_is_sblabel_mnt(sb))
 579		sbsec->flags |= SBLABEL_MNT;
 580	else
 581		sbsec->flags &= ~SBLABEL_MNT;
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583	/* Initialize the root inode. */
 584	rc = inode_doinit_with_dentry(root_inode, root);
 585
 586	/* Initialize any other inodes associated with the superblock, e.g.
 587	   inodes created prior to initial policy load or inodes created
 588	   during get_sb by a pseudo filesystem that directly
 589	   populates itself. */
 590	spin_lock(&sbsec->isec_lock);
 591	while (!list_empty(&sbsec->isec_head)) {
 
 592		struct inode_security_struct *isec =
 593				list_first_entry(&sbsec->isec_head,
 594					   struct inode_security_struct, list);
 595		struct inode *inode = isec->inode;
 596		list_del_init(&isec->list);
 597		spin_unlock(&sbsec->isec_lock);
 598		inode = igrab(inode);
 599		if (inode) {
 600			if (!IS_PRIVATE(inode))
 601				inode_doinit(inode);
 602			iput(inode);
 603		}
 604		spin_lock(&sbsec->isec_lock);
 
 
 605	}
 606	spin_unlock(&sbsec->isec_lock);
 607out:
 608	return rc;
 609}
 610
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 611static int bad_option(struct superblock_security_struct *sbsec, char flag,
 612		      u32 old_sid, u32 new_sid)
 613{
 614	char mnt_flags = sbsec->flags & SE_MNTMASK;
 615
 616	/* check if the old mount command had the same options */
 617	if (sbsec->flags & SE_SBINITIALIZED)
 618		if (!(sbsec->flags & flag) ||
 619		    (old_sid != new_sid))
 620			return 1;
 621
 622	/* check if we were passed the same options twice,
 623	 * aka someone passed context=a,context=b
 624	 */
 625	if (!(sbsec->flags & SE_SBINITIALIZED))
 626		if (mnt_flags & flag)
 627			return 1;
 628	return 0;
 629}
 630
 631static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 632{
 633	int rc = security_context_str_to_sid(&selinux_state, s,
 634					     sid, GFP_KERNEL);
 635	if (rc)
 636		pr_warn("SELinux: security_context_str_to_sid"
 637		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 638		       s, sb->s_id, sb->s_type->name, rc);
 639	return rc;
 640}
 641
 642/*
 643 * Allow filesystems with binary mount data to explicitly set mount point
 644 * labeling information.
 645 */
 646static int selinux_set_mnt_opts(struct super_block *sb,
 647				void *mnt_opts,
 648				unsigned long kern_flags,
 649				unsigned long *set_kern_flags)
 650{
 651	const struct cred *cred = current_cred();
 
 652	struct superblock_security_struct *sbsec = sb->s_security;
 653	struct dentry *root = sbsec->sb->s_root;
 654	struct selinux_mnt_opts *opts = mnt_opts;
 655	struct inode_security_struct *root_isec;
 656	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 657	u32 defcontext_sid = 0;
 658	int rc = 0;
 
 
 659
 660	mutex_lock(&sbsec->lock);
 661
 662	if (!selinux_state.initialized) {
 663		if (!opts) {
 664			/* Defer initialization until selinux_complete_init,
 665			   after the initial policy is loaded and the security
 666			   server is ready to handle calls. */
 667			goto out;
 668		}
 669		rc = -EINVAL;
 670		pr_warn("SELinux: Unable to set superblock options "
 671			"before the security server is initialized\n");
 672		goto out;
 673	}
 674	if (kern_flags && !set_kern_flags) {
 675		/* Specifying internal flags without providing a place to
 676		 * place the results is not allowed */
 677		rc = -EINVAL;
 678		goto out;
 679	}
 680
 681	/*
 682	 * Binary mount data FS will come through this function twice.  Once
 683	 * from an explicit call and once from the generic calls from the vfs.
 684	 * Since the generic VFS calls will not contain any security mount data
 685	 * we need to skip the double mount verification.
 686	 *
 687	 * This does open a hole in which we will not notice if the first
 688	 * mount using this sb set explict options and a second mount using
 689	 * this sb does not set any security options.  (The first options
 690	 * will be used for both mounts)
 691	 */
 692	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 693	    && !opts)
 694		goto out;
 695
 696	root_isec = backing_inode_security_novalidate(root);
 697
 698	/*
 699	 * parse the mount options, check if they are valid sids.
 700	 * also check if someone is trying to mount the same sb more
 701	 * than once with different security options.
 702	 */
 703	if (opts) {
 704		if (opts->fscontext) {
 705			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 706			if (rc)
 707				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 708			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 709					fscontext_sid))
 710				goto out_double_mount;
 
 711			sbsec->flags |= FSCONTEXT_MNT;
 712		}
 713		if (opts->context) {
 714			rc = parse_sid(sb, opts->context, &context_sid);
 715			if (rc)
 716				goto out;
 717			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 718					context_sid))
 719				goto out_double_mount;
 
 720			sbsec->flags |= CONTEXT_MNT;
 721		}
 722		if (opts->rootcontext) {
 723			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 724			if (rc)
 725				goto out;
 726			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 727					rootcontext_sid))
 728				goto out_double_mount;
 
 729			sbsec->flags |= ROOTCONTEXT_MNT;
 730		}
 731		if (opts->defcontext) {
 732			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 733			if (rc)
 734				goto out;
 735			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 736					defcontext_sid))
 737				goto out_double_mount;
 
 738			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 739		}
 740	}
 741
 742	if (sbsec->flags & SE_SBINITIALIZED) {
 743		/* previously mounted with options, but not on this attempt? */
 744		if ((sbsec->flags & SE_MNTMASK) && !opts)
 745			goto out_double_mount;
 746		rc = 0;
 747		goto out;
 748	}
 749
 750	if (strcmp(sb->s_type->name, "proc") == 0)
 751		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 752
 753	if (!strcmp(sb->s_type->name, "debugfs") ||
 754	    !strcmp(sb->s_type->name, "tracefs") ||
 755	    !strcmp(sb->s_type->name, "pstore"))
 756		sbsec->flags |= SE_SBGENFS;
 757
 758	if (!strcmp(sb->s_type->name, "sysfs") ||
 759	    !strcmp(sb->s_type->name, "cgroup") ||
 760	    !strcmp(sb->s_type->name, "cgroup2"))
 761		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 762
 763	if (!sbsec->behavior) {
 764		/*
 765		 * Determine the labeling behavior to use for this
 766		 * filesystem type.
 767		 */
 768		rc = security_fs_use(&selinux_state, sb);
 769		if (rc) {
 770			pr_warn("%s: security_fs_use(%s) returned %d\n",
 771					__func__, sb->s_type->name, rc);
 772			goto out;
 773		}
 774	}
 775
 776	/*
 777	 * If this is a user namespace mount and the filesystem type is not
 778	 * explicitly whitelisted, then no contexts are allowed on the command
 779	 * line and security labels must be ignored.
 780	 */
 781	if (sb->s_user_ns != &init_user_ns &&
 782	    strcmp(sb->s_type->name, "tmpfs") &&
 783	    strcmp(sb->s_type->name, "ramfs") &&
 784	    strcmp(sb->s_type->name, "devpts")) {
 785		if (context_sid || fscontext_sid || rootcontext_sid ||
 786		    defcontext_sid) {
 787			rc = -EACCES;
 788			goto out;
 789		}
 790		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 791			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 792			rc = security_transition_sid(&selinux_state,
 793						     current_sid(),
 794						     current_sid(),
 795						     SECCLASS_FILE, NULL,
 796						     &sbsec->mntpoint_sid);
 797			if (rc)
 798				goto out;
 799		}
 800		goto out_set_opts;
 801	}
 802
 803	/* sets the context of the superblock for the fs being mounted. */
 804	if (fscontext_sid) {
 805		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 806		if (rc)
 807			goto out;
 808
 809		sbsec->sid = fscontext_sid;
 810	}
 811
 812	/*
 813	 * Switch to using mount point labeling behavior.
 814	 * sets the label used on all file below the mountpoint, and will set
 815	 * the superblock context if not already set.
 816	 */
 817	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 818		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 819		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 820	}
 821
 822	if (context_sid) {
 823		if (!fscontext_sid) {
 824			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 825							  cred);
 826			if (rc)
 827				goto out;
 828			sbsec->sid = context_sid;
 829		} else {
 830			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 831							     cred);
 832			if (rc)
 833				goto out;
 834		}
 835		if (!rootcontext_sid)
 836			rootcontext_sid = context_sid;
 837
 838		sbsec->mntpoint_sid = context_sid;
 839		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 840	}
 841
 842	if (rootcontext_sid) {
 843		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 844						     cred);
 845		if (rc)
 846			goto out;
 847
 848		root_isec->sid = rootcontext_sid;
 849		root_isec->initialized = LABEL_INITIALIZED;
 850	}
 851
 852	if (defcontext_sid) {
 853		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 854			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 855			rc = -EINVAL;
 856			pr_warn("SELinux: defcontext option is "
 857			       "invalid for this filesystem type\n");
 858			goto out;
 859		}
 860
 861		if (defcontext_sid != sbsec->def_sid) {
 862			rc = may_context_mount_inode_relabel(defcontext_sid,
 863							     sbsec, cred);
 864			if (rc)
 865				goto out;
 866		}
 867
 868		sbsec->def_sid = defcontext_sid;
 869	}
 870
 871out_set_opts:
 872	rc = sb_finish_set_opts(sb);
 873out:
 874	mutex_unlock(&sbsec->lock);
 875	return rc;
 876out_double_mount:
 877	rc = -EINVAL;
 878	pr_warn("SELinux: mount invalid.  Same superblock, different "
 879	       "security settings for (dev %s, type %s)\n", sb->s_id,
 880	       sb->s_type->name);
 881	goto out;
 882}
 883
 884static int selinux_cmp_sb_context(const struct super_block *oldsb,
 885				    const struct super_block *newsb)
 886{
 887	struct superblock_security_struct *old = oldsb->s_security;
 888	struct superblock_security_struct *new = newsb->s_security;
 889	char oldflags = old->flags & SE_MNTMASK;
 890	char newflags = new->flags & SE_MNTMASK;
 891
 892	if (oldflags != newflags)
 893		goto mismatch;
 894	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 895		goto mismatch;
 896	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 897		goto mismatch;
 898	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 899		goto mismatch;
 900	if (oldflags & ROOTCONTEXT_MNT) {
 901		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 902		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 903		if (oldroot->sid != newroot->sid)
 904			goto mismatch;
 905	}
 906	return 0;
 907mismatch:
 908	pr_warn("SELinux: mount invalid.  Same superblock, "
 909			    "different security settings for (dev %s, "
 910			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 911	return -EBUSY;
 912}
 913
 914static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 915					struct super_block *newsb,
 916					unsigned long kern_flags,
 917					unsigned long *set_kern_flags)
 918{
 919	int rc = 0;
 920	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 921	struct superblock_security_struct *newsbsec = newsb->s_security;
 922
 923	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 924	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 925	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 926
 927	/*
 928	 * if the parent was able to be mounted it clearly had no special lsm
 929	 * mount options.  thus we can safely deal with this superblock later
 930	 */
 931	if (!selinux_state.initialized)
 932		return 0;
 933
 934	/*
 935	 * Specifying internal flags without providing a place to
 936	 * place the results is not allowed.
 937	 */
 938	if (kern_flags && !set_kern_flags)
 939		return -EINVAL;
 940
 941	/* how can we clone if the old one wasn't set up?? */
 942	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 943
 944	/* if fs is reusing a sb, make sure that the contexts match */
 945	if (newsbsec->flags & SE_SBINITIALIZED) {
 946		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 947			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 948		return selinux_cmp_sb_context(oldsb, newsb);
 949	}
 950
 951	mutex_lock(&newsbsec->lock);
 952
 953	newsbsec->flags = oldsbsec->flags;
 954
 955	newsbsec->sid = oldsbsec->sid;
 956	newsbsec->def_sid = oldsbsec->def_sid;
 957	newsbsec->behavior = oldsbsec->behavior;
 958
 959	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 960		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 961		rc = security_fs_use(&selinux_state, newsb);
 962		if (rc)
 963			goto out;
 964	}
 965
 966	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 967		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 968		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 969	}
 970
 971	if (set_context) {
 972		u32 sid = oldsbsec->mntpoint_sid;
 973
 974		if (!set_fscontext)
 975			newsbsec->sid = sid;
 976		if (!set_rootcontext) {
 977			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 978			newisec->sid = sid;
 979		}
 980		newsbsec->mntpoint_sid = sid;
 981	}
 982	if (set_rootcontext) {
 983		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 984		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 
 985
 986		newisec->sid = oldisec->sid;
 987	}
 988
 989	sb_finish_set_opts(newsb);
 990out:
 991	mutex_unlock(&newsbsec->lock);
 992	return rc;
 993}
 994
 995static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 
 996{
 997	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 
 998
 999	if (token == Opt_seclabel)	/* eaten and completely ignored */
1000		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001
1002	if (!opts) {
1003		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1004		if (!opts)
1005			return -ENOMEM;
1006		*mnt_opts = opts;
1007	}
1008	if (!s)
1009		return -ENOMEM;
1010	switch (token) {
1011	case Opt_context:
1012		if (opts->context || opts->defcontext)
1013			goto Einval;
1014		opts->context = s;
1015		break;
1016	case Opt_fscontext:
1017		if (opts->fscontext)
1018			goto Einval;
1019		opts->fscontext = s;
1020		break;
1021	case Opt_rootcontext:
1022		if (opts->rootcontext)
1023			goto Einval;
1024		opts->rootcontext = s;
1025		break;
1026	case Opt_defcontext:
1027		if (opts->context || opts->defcontext)
1028			goto Einval;
1029		opts->defcontext = s;
1030		break;
1031	}
1032	return 0;
1033Einval:
1034	pr_warn(SEL_MOUNT_FAIL_MSG);
1035	return -EINVAL;
1036}
1037
1038static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1039			       void **mnt_opts)
1040{
1041	int token = Opt_error;
1042	int rc, i;
 
 
 
 
 
 
 
1043
1044	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1045		if (strcmp(option, tokens[i].name) == 0) {
1046			token = tokens[i].opt;
 
 
 
 
 
 
 
 
 
 
1047			break;
 
 
 
 
 
1048		}
1049	}
1050
1051	if (token == Opt_error)
1052		return -EINVAL;
 
 
 
 
 
 
 
 
1053
1054	if (token != Opt_seclabel) {
1055		val = kmemdup_nul(val, len, GFP_KERNEL);
1056		if (!val) {
1057			rc = -ENOMEM;
1058			goto free_opt;
1059		}
 
 
 
 
 
1060	}
1061	rc = selinux_add_opt(token, val, mnt_opts);
1062	if (unlikely(rc)) {
1063		kfree(val);
1064		goto free_opt;
1065	}
 
 
 
 
 
 
 
 
 
1066	return rc;
 
 
 
 
 
 
 
 
 
1067
1068free_opt:
1069	if (*mnt_opts) {
1070		selinux_free_mnt_opts(*mnt_opts);
1071		*mnt_opts = NULL;
1072	}
 
 
 
 
 
 
 
 
 
 
 
1073	return rc;
1074}
1075
1076static int show_sid(struct seq_file *m, u32 sid)
 
1077{
1078	char *context = NULL;
1079	u32 len;
1080	int rc;
 
 
1081
1082	rc = security_sid_to_context(&selinux_state, sid,
1083					     &context, &len);
1084	if (!rc) {
1085		bool has_comma = context && strchr(context, ',');
1086
1087		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088		if (has_comma)
1089			seq_putc(m, '\"');
1090		seq_escape(m, context, "\"\n\\");
1091		if (has_comma)
1092			seq_putc(m, '\"');
1093	}
1094	kfree(context);
1095	return rc;
1096}
1097
1098static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1099{
1100	struct superblock_security_struct *sbsec = sb->s_security;
1101	int rc;
1102
1103	if (!(sbsec->flags & SE_SBINITIALIZED))
1104		return 0;
 
 
 
 
 
 
 
1105
1106	if (!selinux_state.initialized)
1107		return 0;
1108
1109	if (sbsec->flags & FSCONTEXT_MNT) {
1110		seq_putc(m, ',');
1111		seq_puts(m, FSCONTEXT_STR);
1112		rc = show_sid(m, sbsec->sid);
1113		if (rc)
1114			return rc;
1115	}
1116	if (sbsec->flags & CONTEXT_MNT) {
1117		seq_putc(m, ',');
1118		seq_puts(m, CONTEXT_STR);
1119		rc = show_sid(m, sbsec->mntpoint_sid);
1120		if (rc)
1121			return rc;
1122	}
1123	if (sbsec->flags & DEFCONTEXT_MNT) {
1124		seq_putc(m, ',');
1125		seq_puts(m, DEFCONTEXT_STR);
1126		rc = show_sid(m, sbsec->def_sid);
1127		if (rc)
1128			return rc;
1129	}
1130	if (sbsec->flags & ROOTCONTEXT_MNT) {
1131		struct dentry *root = sbsec->sb->s_root;
1132		struct inode_security_struct *isec = backing_inode_security(root);
1133		seq_putc(m, ',');
1134		seq_puts(m, ROOTCONTEXT_STR);
1135		rc = show_sid(m, isec->sid);
1136		if (rc)
1137			return rc;
1138	}
1139	if (sbsec->flags & SBLABEL_MNT) {
1140		seq_putc(m, ',');
1141		seq_puts(m, SECLABEL_STR);
1142	}
1143	return 0;
1144}
1145
1146static inline u16 inode_mode_to_security_class(umode_t mode)
1147{
1148	switch (mode & S_IFMT) {
1149	case S_IFSOCK:
1150		return SECCLASS_SOCK_FILE;
1151	case S_IFLNK:
1152		return SECCLASS_LNK_FILE;
1153	case S_IFREG:
1154		return SECCLASS_FILE;
1155	case S_IFBLK:
1156		return SECCLASS_BLK_FILE;
1157	case S_IFDIR:
1158		return SECCLASS_DIR;
1159	case S_IFCHR:
1160		return SECCLASS_CHR_FILE;
1161	case S_IFIFO:
1162		return SECCLASS_FIFO_FILE;
1163
1164	}
1165
1166	return SECCLASS_FILE;
1167}
1168
1169static inline int default_protocol_stream(int protocol)
1170{
1171	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1172}
1173
1174static inline int default_protocol_dgram(int protocol)
1175{
1176	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1177}
1178
1179static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1180{
1181	int extsockclass = selinux_policycap_extsockclass();
1182
1183	switch (family) {
1184	case PF_UNIX:
1185		switch (type) {
1186		case SOCK_STREAM:
1187		case SOCK_SEQPACKET:
1188			return SECCLASS_UNIX_STREAM_SOCKET;
1189		case SOCK_DGRAM:
1190		case SOCK_RAW:
1191			return SECCLASS_UNIX_DGRAM_SOCKET;
1192		}
1193		break;
1194	case PF_INET:
1195	case PF_INET6:
1196		switch (type) {
1197		case SOCK_STREAM:
1198		case SOCK_SEQPACKET:
1199			if (default_protocol_stream(protocol))
1200				return SECCLASS_TCP_SOCKET;
1201			else if (extsockclass && protocol == IPPROTO_SCTP)
1202				return SECCLASS_SCTP_SOCKET;
1203			else
1204				return SECCLASS_RAWIP_SOCKET;
1205		case SOCK_DGRAM:
1206			if (default_protocol_dgram(protocol))
1207				return SECCLASS_UDP_SOCKET;
1208			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1209						  protocol == IPPROTO_ICMPV6))
1210				return SECCLASS_ICMP_SOCKET;
1211			else
1212				return SECCLASS_RAWIP_SOCKET;
1213		case SOCK_DCCP:
1214			return SECCLASS_DCCP_SOCKET;
1215		default:
1216			return SECCLASS_RAWIP_SOCKET;
1217		}
1218		break;
1219	case PF_NETLINK:
1220		switch (protocol) {
1221		case NETLINK_ROUTE:
1222			return SECCLASS_NETLINK_ROUTE_SOCKET;
1223		case NETLINK_SOCK_DIAG:
 
 
1224			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1225		case NETLINK_NFLOG:
1226			return SECCLASS_NETLINK_NFLOG_SOCKET;
1227		case NETLINK_XFRM:
1228			return SECCLASS_NETLINK_XFRM_SOCKET;
1229		case NETLINK_SELINUX:
1230			return SECCLASS_NETLINK_SELINUX_SOCKET;
1231		case NETLINK_ISCSI:
1232			return SECCLASS_NETLINK_ISCSI_SOCKET;
1233		case NETLINK_AUDIT:
1234			return SECCLASS_NETLINK_AUDIT_SOCKET;
1235		case NETLINK_FIB_LOOKUP:
1236			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1237		case NETLINK_CONNECTOR:
1238			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1239		case NETLINK_NETFILTER:
1240			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1241		case NETLINK_DNRTMSG:
1242			return SECCLASS_NETLINK_DNRT_SOCKET;
1243		case NETLINK_KOBJECT_UEVENT:
1244			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1245		case NETLINK_GENERIC:
1246			return SECCLASS_NETLINK_GENERIC_SOCKET;
1247		case NETLINK_SCSITRANSPORT:
1248			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1249		case NETLINK_RDMA:
1250			return SECCLASS_NETLINK_RDMA_SOCKET;
1251		case NETLINK_CRYPTO:
1252			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1253		default:
1254			return SECCLASS_NETLINK_SOCKET;
1255		}
1256	case PF_PACKET:
1257		return SECCLASS_PACKET_SOCKET;
1258	case PF_KEY:
1259		return SECCLASS_KEY_SOCKET;
1260	case PF_APPLETALK:
1261		return SECCLASS_APPLETALK_SOCKET;
1262	}
1263
1264	if (extsockclass) {
1265		switch (family) {
1266		case PF_AX25:
1267			return SECCLASS_AX25_SOCKET;
1268		case PF_IPX:
1269			return SECCLASS_IPX_SOCKET;
1270		case PF_NETROM:
1271			return SECCLASS_NETROM_SOCKET;
1272		case PF_ATMPVC:
1273			return SECCLASS_ATMPVC_SOCKET;
1274		case PF_X25:
1275			return SECCLASS_X25_SOCKET;
1276		case PF_ROSE:
1277			return SECCLASS_ROSE_SOCKET;
1278		case PF_DECnet:
1279			return SECCLASS_DECNET_SOCKET;
1280		case PF_ATMSVC:
1281			return SECCLASS_ATMSVC_SOCKET;
1282		case PF_RDS:
1283			return SECCLASS_RDS_SOCKET;
1284		case PF_IRDA:
1285			return SECCLASS_IRDA_SOCKET;
1286		case PF_PPPOX:
1287			return SECCLASS_PPPOX_SOCKET;
1288		case PF_LLC:
1289			return SECCLASS_LLC_SOCKET;
1290		case PF_CAN:
1291			return SECCLASS_CAN_SOCKET;
1292		case PF_TIPC:
1293			return SECCLASS_TIPC_SOCKET;
1294		case PF_BLUETOOTH:
1295			return SECCLASS_BLUETOOTH_SOCKET;
1296		case PF_IUCV:
1297			return SECCLASS_IUCV_SOCKET;
1298		case PF_RXRPC:
1299			return SECCLASS_RXRPC_SOCKET;
1300		case PF_ISDN:
1301			return SECCLASS_ISDN_SOCKET;
1302		case PF_PHONET:
1303			return SECCLASS_PHONET_SOCKET;
1304		case PF_IEEE802154:
1305			return SECCLASS_IEEE802154_SOCKET;
1306		case PF_CAIF:
1307			return SECCLASS_CAIF_SOCKET;
1308		case PF_ALG:
1309			return SECCLASS_ALG_SOCKET;
1310		case PF_NFC:
1311			return SECCLASS_NFC_SOCKET;
1312		case PF_VSOCK:
1313			return SECCLASS_VSOCK_SOCKET;
1314		case PF_KCM:
1315			return SECCLASS_KCM_SOCKET;
1316		case PF_QIPCRTR:
1317			return SECCLASS_QIPCRTR_SOCKET;
1318		case PF_SMC:
1319			return SECCLASS_SMC_SOCKET;
1320		case PF_XDP:
1321			return SECCLASS_XDP_SOCKET;
1322#if PF_MAX > 45
1323#error New address family defined, please update this function.
1324#endif
1325		}
1326	}
1327
1328	return SECCLASS_SOCKET;
1329}
1330
1331static int selinux_genfs_get_sid(struct dentry *dentry,
1332				 u16 tclass,
1333				 u16 flags,
1334				 u32 *sid)
1335{
1336	int rc;
1337	struct super_block *sb = dentry->d_sb;
1338	char *buffer, *path;
1339
1340	buffer = (char *)__get_free_page(GFP_KERNEL);
1341	if (!buffer)
1342		return -ENOMEM;
1343
1344	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1345	if (IS_ERR(path))
1346		rc = PTR_ERR(path);
1347	else {
1348		if (flags & SE_SBPROC) {
1349			/* each process gets a /proc/PID/ entry. Strip off the
1350			 * PID part to get a valid selinux labeling.
1351			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1352			while (path[1] >= '0' && path[1] <= '9') {
1353				path[1] = '/';
1354				path++;
1355			}
1356		}
1357		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1358					path, tclass, sid);
1359		if (rc == -ENOENT) {
1360			/* No match in policy, mark as unlabeled. */
1361			*sid = SECINITSID_UNLABELED;
1362			rc = 0;
1363		}
 
1364	}
1365	free_page((unsigned long)buffer);
1366	return rc;
1367}
1368
1369static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1370				  u32 def_sid, u32 *sid)
 
1371{
1372#define INITCONTEXTLEN 255
1373	char *context;
1374	unsigned int len;
1375	int rc;
1376
1377	len = INITCONTEXTLEN;
1378	context = kmalloc(len + 1, GFP_NOFS);
1379	if (!context)
1380		return -ENOMEM;
1381
1382	context[len] = '\0';
1383	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1384	if (rc == -ERANGE) {
1385		kfree(context);
1386
1387		/* Need a larger buffer.  Query for the right size. */
1388		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1389		if (rc < 0)
1390			return rc;
1391
1392		len = rc;
1393		context = kmalloc(len + 1, GFP_NOFS);
1394		if (!context)
1395			return -ENOMEM;
1396
1397		context[len] = '\0';
1398		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1399				    context, len);
1400	}
1401	if (rc < 0) {
1402		kfree(context);
1403		if (rc != -ENODATA) {
1404			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1405				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1406			return rc;
1407		}
1408		*sid = def_sid;
1409		return 0;
1410	}
1411
1412	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1413					     def_sid, GFP_NOFS);
1414	if (rc) {
1415		char *dev = inode->i_sb->s_id;
1416		unsigned long ino = inode->i_ino;
1417
1418		if (rc == -EINVAL) {
1419			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1420					      ino, dev, context);
1421		} else {
1422			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1423				__func__, context, -rc, dev, ino);
1424		}
1425	}
1426	kfree(context);
1427	return 0;
1428}
 
1429
1430/* The inode's security attributes must be initialized before first use. */
1431static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1432{
1433	struct superblock_security_struct *sbsec = NULL;
1434	struct inode_security_struct *isec = selinux_inode(inode);
1435	u32 task_sid, sid = 0;
1436	u16 sclass;
1437	struct dentry *dentry;
 
 
 
1438	int rc = 0;
1439
1440	if (isec->initialized == LABEL_INITIALIZED)
1441		return 0;
1442
1443	spin_lock(&isec->lock);
1444	if (isec->initialized == LABEL_INITIALIZED)
1445		goto out_unlock;
1446
1447	if (isec->sclass == SECCLASS_FILE)
1448		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1449
1450	sbsec = inode->i_sb->s_security;
1451	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1452		/* Defer initialization until selinux_complete_init,
1453		   after the initial policy is loaded and the security
1454		   server is ready to handle calls. */
1455		spin_lock(&sbsec->isec_lock);
1456		if (list_empty(&isec->list))
1457			list_add(&isec->list, &sbsec->isec_head);
1458		spin_unlock(&sbsec->isec_lock);
1459		goto out_unlock;
1460	}
1461
1462	sclass = isec->sclass;
1463	task_sid = isec->task_sid;
1464	sid = isec->sid;
1465	isec->initialized = LABEL_PENDING;
1466	spin_unlock(&isec->lock);
1467
1468	switch (sbsec->behavior) {
1469	case SECURITY_FS_USE_NATIVE:
1470		break;
1471	case SECURITY_FS_USE_XATTR:
1472		if (!(inode->i_opflags & IOP_XATTR)) {
1473			sid = sbsec->def_sid;
1474			break;
1475		}
 
1476		/* Need a dentry, since the xattr API requires one.
1477		   Life would be simpler if we could just pass the inode. */
1478		if (opt_dentry) {
1479			/* Called from d_instantiate or d_splice_alias. */
1480			dentry = dget(opt_dentry);
1481		} else {
1482			/*
1483			 * Called from selinux_complete_init, try to find a dentry.
1484			 * Some filesystems really want a connected one, so try
1485			 * that first.  We could split SECURITY_FS_USE_XATTR in
1486			 * two, depending upon that...
1487			 */
1488			dentry = d_find_alias(inode);
1489			if (!dentry)
1490				dentry = d_find_any_alias(inode);
1491		}
1492		if (!dentry) {
1493			/*
1494			 * this is can be hit on boot when a file is accessed
1495			 * before the policy is loaded.  When we load policy we
1496			 * may find inodes that have no dentry on the
1497			 * sbsec->isec_head list.  No reason to complain as these
1498			 * will get fixed up the next time we go through
1499			 * inode_doinit with a dentry, before these inodes could
1500			 * be used again by userspace.
1501			 */
1502			goto out;
1503		}
1504
1505		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1506					    &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507		dput(dentry);
1508		if (rc)
1509			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510		break;
1511	case SECURITY_FS_USE_TASK:
1512		sid = task_sid;
1513		break;
1514	case SECURITY_FS_USE_TRANS:
1515		/* Default to the fs SID. */
1516		sid = sbsec->sid;
1517
1518		/* Try to obtain a transition SID. */
1519		rc = security_transition_sid(&selinux_state, task_sid, sid,
1520					     sclass, NULL, &sid);
 
1521		if (rc)
1522			goto out;
 
1523		break;
1524	case SECURITY_FS_USE_MNTPOINT:
1525		sid = sbsec->mntpoint_sid;
1526		break;
1527	default:
1528		/* Default to the fs superblock SID. */
1529		sid = sbsec->sid;
1530
1531		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1532			/* We must have a dentry to determine the label on
1533			 * procfs inodes */
1534			if (opt_dentry) {
1535				/* Called from d_instantiate or
1536				 * d_splice_alias. */
1537				dentry = dget(opt_dentry);
1538			} else {
1539				/* Called from selinux_complete_init, try to
1540				 * find a dentry.  Some filesystems really want
1541				 * a connected one, so try that first.
1542				 */
1543				dentry = d_find_alias(inode);
1544				if (!dentry)
1545					dentry = d_find_any_alias(inode);
1546			}
1547			/*
1548			 * This can be hit on boot when a file is accessed
1549			 * before the policy is loaded.  When we load policy we
1550			 * may find inodes that have no dentry on the
1551			 * sbsec->isec_head list.  No reason to complain as
1552			 * these will get fixed up the next time we go through
1553			 * inode_doinit() with a dentry, before these inodes
1554			 * could be used again by userspace.
1555			 */
1556			if (!dentry)
1557				goto out;
1558			rc = selinux_genfs_get_sid(dentry, sclass,
1559						   sbsec->flags, &sid);
1560			if (rc) {
1561				dput(dentry);
1562				goto out;
1563			}
1564
1565			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1566			    (inode->i_opflags & IOP_XATTR)) {
1567				rc = inode_doinit_use_xattr(inode, dentry,
1568							    sid, &sid);
1569				if (rc) {
1570					dput(dentry);
1571					goto out;
1572				}
1573			}
1574			dput(dentry);
1575		}
1576		break;
1577	}
1578
1579out:
1580	spin_lock(&isec->lock);
1581	if (isec->initialized == LABEL_PENDING) {
1582		if (!sid || rc) {
1583			isec->initialized = LABEL_INVALID;
1584			goto out_unlock;
1585		}
1586
1587		isec->initialized = LABEL_INITIALIZED;
1588		isec->sid = sid;
1589	}
1590
1591out_unlock:
1592	spin_unlock(&isec->lock);
 
 
 
1593	return rc;
1594}
1595
1596/* Convert a Linux signal to an access vector. */
1597static inline u32 signal_to_av(int sig)
1598{
1599	u32 perm = 0;
1600
1601	switch (sig) {
1602	case SIGCHLD:
1603		/* Commonly granted from child to parent. */
1604		perm = PROCESS__SIGCHLD;
1605		break;
1606	case SIGKILL:
1607		/* Cannot be caught or ignored */
1608		perm = PROCESS__SIGKILL;
1609		break;
1610	case SIGSTOP:
1611		/* Cannot be caught or ignored */
1612		perm = PROCESS__SIGSTOP;
1613		break;
1614	default:
1615		/* All other signals. */
1616		perm = PROCESS__SIGNAL;
1617		break;
1618	}
1619
1620	return perm;
1621}
1622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623#if CAP_LAST_CAP > 63
1624#error Fix SELinux to handle capabilities > 63.
1625#endif
1626
1627/* Check whether a task is allowed to use a capability. */
1628static int cred_has_capability(const struct cred *cred,
1629			       int cap, unsigned int opts, bool initns)
 
1630{
1631	struct common_audit_data ad;
1632	struct av_decision avd;
1633	u16 sclass;
1634	u32 sid = cred_sid(cred);
1635	u32 av = CAP_TO_MASK(cap);
1636	int rc;
1637
1638	ad.type = LSM_AUDIT_DATA_CAP;
 
1639	ad.u.cap = cap;
1640
1641	switch (CAP_TO_INDEX(cap)) {
1642	case 0:
1643		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1644		break;
1645	case 1:
1646		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1647		break;
1648	default:
1649		pr_err("SELinux:  out of range capability %d\n", cap);
 
1650		BUG();
1651		return -EINVAL;
1652	}
1653
1654	rc = avc_has_perm_noaudit(&selinux_state,
1655				  sid, sid, sclass, av, 0, &avd);
1656	if (!(opts & CAP_OPT_NOAUDIT)) {
1657		int rc2 = avc_audit(&selinux_state,
1658				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1659		if (rc2)
1660			return rc2;
1661	}
1662	return rc;
1663}
1664
 
 
 
 
 
 
 
 
 
 
1665/* Check whether a task has a particular permission to an inode.
1666   The 'adp' parameter is optional and allows other audit
1667   data to be passed (e.g. the dentry). */
1668static int inode_has_perm(const struct cred *cred,
1669			  struct inode *inode,
1670			  u32 perms,
1671			  struct common_audit_data *adp)
 
1672{
1673	struct inode_security_struct *isec;
1674	u32 sid;
1675
1676	validate_creds(cred);
1677
1678	if (unlikely(IS_PRIVATE(inode)))
1679		return 0;
1680
1681	sid = cred_sid(cred);
1682	isec = selinux_inode(inode);
 
 
 
 
 
 
 
 
 
 
1683
1684	return avc_has_perm(&selinux_state,
1685			    sid, isec->sid, isec->sclass, perms, adp);
 
1686}
1687
1688/* Same as inode_has_perm, but pass explicit audit data containing
1689   the dentry to help the auditing code to more easily generate the
1690   pathname if needed. */
1691static inline int dentry_has_perm(const struct cred *cred,
1692				  struct dentry *dentry,
1693				  u32 av)
1694{
1695	struct inode *inode = d_backing_inode(dentry);
1696	struct common_audit_data ad;
1697
1698	ad.type = LSM_AUDIT_DATA_DENTRY;
1699	ad.u.dentry = dentry;
1700	__inode_security_revalidate(inode, dentry, true);
1701	return inode_has_perm(cred, inode, av, &ad);
1702}
1703
1704/* Same as inode_has_perm, but pass explicit audit data containing
1705   the path to help the auditing code to more easily generate the
1706   pathname if needed. */
1707static inline int path_has_perm(const struct cred *cred,
1708				const struct path *path,
1709				u32 av)
1710{
1711	struct inode *inode = d_backing_inode(path->dentry);
1712	struct common_audit_data ad;
1713
1714	ad.type = LSM_AUDIT_DATA_PATH;
1715	ad.u.path = *path;
1716	__inode_security_revalidate(inode, path->dentry, true);
1717	return inode_has_perm(cred, inode, av, &ad);
1718}
1719
1720/* Same as path_has_perm, but uses the inode from the file struct. */
1721static inline int file_path_has_perm(const struct cred *cred,
1722				     struct file *file,
1723				     u32 av)
1724{
1725	struct common_audit_data ad;
1726
1727	ad.type = LSM_AUDIT_DATA_FILE;
1728	ad.u.file = file;
1729	return inode_has_perm(cred, file_inode(file), av, &ad);
1730}
1731
1732#ifdef CONFIG_BPF_SYSCALL
1733static int bpf_fd_pass(struct file *file, u32 sid);
1734#endif
1735
1736/* Check whether a task can use an open file descriptor to
1737   access an inode in a given way.  Check access to the
1738   descriptor itself, and then use dentry_has_perm to
1739   check a particular permission to the file.
1740   Access to the descriptor is implicitly granted if it
1741   has the same SID as the process.  If av is zero, then
1742   access to the file is not checked, e.g. for cases
1743   where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745			 struct file *file,
1746			 u32 av)
1747{
1748	struct file_security_struct *fsec = selinux_file(file);
1749	struct inode *inode = file_inode(file);
1750	struct common_audit_data ad;
1751	u32 sid = cred_sid(cred);
1752	int rc;
1753
1754	ad.type = LSM_AUDIT_DATA_FILE;
1755	ad.u.file = file;
1756
1757	if (sid != fsec->sid) {
1758		rc = avc_has_perm(&selinux_state,
1759				  sid, fsec->sid,
1760				  SECCLASS_FD,
1761				  FD__USE,
1762				  &ad);
1763		if (rc)
1764			goto out;
1765	}
1766
1767#ifdef CONFIG_BPF_SYSCALL
1768	rc = bpf_fd_pass(file, cred_sid(cred));
1769	if (rc)
1770		return rc;
1771#endif
1772
1773	/* av is zero if only checking access to the descriptor. */
1774	rc = 0;
1775	if (av)
1776		rc = inode_has_perm(cred, inode, av, &ad);
1777
1778out:
1779	return rc;
1780}
1781
1782/*
1783 * Determine the label for an inode that might be unioned.
1784 */
1785static int
1786selinux_determine_inode_label(const struct task_security_struct *tsec,
1787				 struct inode *dir,
1788				 const struct qstr *name, u16 tclass,
1789				 u32 *_new_isid)
1790{
1791	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1792
1793	if ((sbsec->flags & SE_SBINITIALIZED) &&
1794	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1795		*_new_isid = sbsec->mntpoint_sid;
1796	} else if ((sbsec->flags & SBLABEL_MNT) &&
1797		   tsec->create_sid) {
1798		*_new_isid = tsec->create_sid;
1799	} else {
1800		const struct inode_security_struct *dsec = inode_security(dir);
1801		return security_transition_sid(&selinux_state, tsec->sid,
1802					       dsec->sid, tclass,
1803					       name, _new_isid);
1804	}
1805
1806	return 0;
1807}
1808
1809/* Check whether a task can create a file. */
1810static int may_create(struct inode *dir,
1811		      struct dentry *dentry,
1812		      u16 tclass)
1813{
1814	const struct task_security_struct *tsec = selinux_cred(current_cred());
1815	struct inode_security_struct *dsec;
1816	struct superblock_security_struct *sbsec;
1817	u32 sid, newsid;
1818	struct common_audit_data ad;
1819	int rc;
1820
1821	dsec = inode_security(dir);
1822	sbsec = dir->i_sb->s_security;
1823
1824	sid = tsec->sid;
 
1825
1826	ad.type = LSM_AUDIT_DATA_DENTRY;
1827	ad.u.dentry = dentry;
1828
1829	rc = avc_has_perm(&selinux_state,
1830			  sid, dsec->sid, SECCLASS_DIR,
1831			  DIR__ADD_NAME | DIR__SEARCH,
1832			  &ad);
1833	if (rc)
1834		return rc;
1835
1836	rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir,
1837					   &dentry->d_name, tclass, &newsid);
1838	if (rc)
1839		return rc;
 
 
1840
1841	rc = avc_has_perm(&selinux_state,
1842			  sid, newsid, tclass, FILE__CREATE, &ad);
1843	if (rc)
1844		return rc;
1845
1846	return avc_has_perm(&selinux_state,
1847			    newsid, sbsec->sid,
1848			    SECCLASS_FILESYSTEM,
1849			    FILESYSTEM__ASSOCIATE, &ad);
1850}
1851
 
 
 
 
 
 
 
 
 
1852#define MAY_LINK	0
1853#define MAY_UNLINK	1
1854#define MAY_RMDIR	2
1855
1856/* Check whether a task can link, unlink, or rmdir a file/directory. */
1857static int may_link(struct inode *dir,
1858		    struct dentry *dentry,
1859		    int kind)
1860
1861{
1862	struct inode_security_struct *dsec, *isec;
1863	struct common_audit_data ad;
1864	u32 sid = current_sid();
1865	u32 av;
1866	int rc;
1867
1868	dsec = inode_security(dir);
1869	isec = backing_inode_security(dentry);
1870
1871	ad.type = LSM_AUDIT_DATA_DENTRY;
1872	ad.u.dentry = dentry;
1873
1874	av = DIR__SEARCH;
1875	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1876	rc = avc_has_perm(&selinux_state,
1877			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1878	if (rc)
1879		return rc;
1880
1881	switch (kind) {
1882	case MAY_LINK:
1883		av = FILE__LINK;
1884		break;
1885	case MAY_UNLINK:
1886		av = FILE__UNLINK;
1887		break;
1888	case MAY_RMDIR:
1889		av = DIR__RMDIR;
1890		break;
1891	default:
1892		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1893			__func__, kind);
1894		return 0;
1895	}
1896
1897	rc = avc_has_perm(&selinux_state,
1898			  sid, isec->sid, isec->sclass, av, &ad);
1899	return rc;
1900}
1901
1902static inline int may_rename(struct inode *old_dir,
1903			     struct dentry *old_dentry,
1904			     struct inode *new_dir,
1905			     struct dentry *new_dentry)
1906{
1907	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1908	struct common_audit_data ad;
1909	u32 sid = current_sid();
1910	u32 av;
1911	int old_is_dir, new_is_dir;
1912	int rc;
1913
1914	old_dsec = inode_security(old_dir);
1915	old_isec = backing_inode_security(old_dentry);
1916	old_is_dir = d_is_dir(old_dentry);
1917	new_dsec = inode_security(new_dir);
1918
1919	ad.type = LSM_AUDIT_DATA_DENTRY;
1920
1921	ad.u.dentry = old_dentry;
1922	rc = avc_has_perm(&selinux_state,
1923			  sid, old_dsec->sid, SECCLASS_DIR,
1924			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1925	if (rc)
1926		return rc;
1927	rc = avc_has_perm(&selinux_state,
1928			  sid, old_isec->sid,
1929			  old_isec->sclass, FILE__RENAME, &ad);
1930	if (rc)
1931		return rc;
1932	if (old_is_dir && new_dir != old_dir) {
1933		rc = avc_has_perm(&selinux_state,
1934				  sid, old_isec->sid,
1935				  old_isec->sclass, DIR__REPARENT, &ad);
1936		if (rc)
1937			return rc;
1938	}
1939
1940	ad.u.dentry = new_dentry;
1941	av = DIR__ADD_NAME | DIR__SEARCH;
1942	if (d_is_positive(new_dentry))
1943		av |= DIR__REMOVE_NAME;
1944	rc = avc_has_perm(&selinux_state,
1945			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1946	if (rc)
1947		return rc;
1948	if (d_is_positive(new_dentry)) {
1949		new_isec = backing_inode_security(new_dentry);
1950		new_is_dir = d_is_dir(new_dentry);
1951		rc = avc_has_perm(&selinux_state,
1952				  sid, new_isec->sid,
1953				  new_isec->sclass,
1954				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1955		if (rc)
1956			return rc;
1957	}
1958
1959	return 0;
1960}
1961
1962/* Check whether a task can perform a filesystem operation. */
1963static int superblock_has_perm(const struct cred *cred,
1964			       struct super_block *sb,
1965			       u32 perms,
1966			       struct common_audit_data *ad)
1967{
1968	struct superblock_security_struct *sbsec;
1969	u32 sid = cred_sid(cred);
1970
1971	sbsec = sb->s_security;
1972	return avc_has_perm(&selinux_state,
1973			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1974}
1975
1976/* Convert a Linux mode and permission mask to an access vector. */
1977static inline u32 file_mask_to_av(int mode, int mask)
1978{
1979	u32 av = 0;
1980
1981	if (!S_ISDIR(mode)) {
1982		if (mask & MAY_EXEC)
1983			av |= FILE__EXECUTE;
1984		if (mask & MAY_READ)
1985			av |= FILE__READ;
1986
1987		if (mask & MAY_APPEND)
1988			av |= FILE__APPEND;
1989		else if (mask & MAY_WRITE)
1990			av |= FILE__WRITE;
1991
1992	} else {
1993		if (mask & MAY_EXEC)
1994			av |= DIR__SEARCH;
1995		if (mask & MAY_WRITE)
1996			av |= DIR__WRITE;
1997		if (mask & MAY_READ)
1998			av |= DIR__READ;
1999	}
2000
2001	return av;
2002}
2003
2004/* Convert a Linux file to an access vector. */
2005static inline u32 file_to_av(struct file *file)
2006{
2007	u32 av = 0;
2008
2009	if (file->f_mode & FMODE_READ)
2010		av |= FILE__READ;
2011	if (file->f_mode & FMODE_WRITE) {
2012		if (file->f_flags & O_APPEND)
2013			av |= FILE__APPEND;
2014		else
2015			av |= FILE__WRITE;
2016	}
2017	if (!av) {
2018		/*
2019		 * Special file opened with flags 3 for ioctl-only use.
2020		 */
2021		av = FILE__IOCTL;
2022	}
2023
2024	return av;
2025}
2026
2027/*
2028 * Convert a file to an access vector and include the correct open
2029 * open permission.
2030 */
2031static inline u32 open_file_to_av(struct file *file)
2032{
2033	u32 av = file_to_av(file);
2034	struct inode *inode = file_inode(file);
2035
2036	if (selinux_policycap_openperm() &&
2037	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2038		av |= FILE__OPEN;
2039
2040	return av;
2041}
2042
2043/* Hook functions begin here. */
2044
2045static int selinux_binder_set_context_mgr(struct task_struct *mgr)
 
2046{
2047	u32 mysid = current_sid();
2048	u32 mgrsid = task_sid(mgr);
2049
2050	return avc_has_perm(&selinux_state,
2051			    mysid, mgrsid, SECCLASS_BINDER,
2052			    BINDER__SET_CONTEXT_MGR, NULL);
2053}
2054
2055static int selinux_binder_transaction(struct task_struct *from,
2056				      struct task_struct *to)
2057{
2058	u32 mysid = current_sid();
2059	u32 fromsid = task_sid(from);
2060	u32 tosid = task_sid(to);
2061	int rc;
2062
2063	if (mysid != fromsid) {
2064		rc = avc_has_perm(&selinux_state,
2065				  mysid, fromsid, SECCLASS_BINDER,
2066				  BINDER__IMPERSONATE, NULL);
2067		if (rc)
2068			return rc;
2069	}
2070
2071	return avc_has_perm(&selinux_state,
2072			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2073			    NULL);
2074}
2075
2076static int selinux_binder_transfer_binder(struct task_struct *from,
2077					  struct task_struct *to)
2078{
2079	u32 fromsid = task_sid(from);
2080	u32 tosid = task_sid(to);
2081
2082	return avc_has_perm(&selinux_state,
2083			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2084			    NULL);
2085}
2086
2087static int selinux_binder_transfer_file(struct task_struct *from,
2088					struct task_struct *to,
2089					struct file *file)
2090{
2091	u32 sid = task_sid(to);
2092	struct file_security_struct *fsec = selinux_file(file);
2093	struct dentry *dentry = file->f_path.dentry;
2094	struct inode_security_struct *isec;
2095	struct common_audit_data ad;
2096	int rc;
2097
2098	ad.type = LSM_AUDIT_DATA_PATH;
2099	ad.u.path = file->f_path;
2100
2101	if (sid != fsec->sid) {
2102		rc = avc_has_perm(&selinux_state,
2103				  sid, fsec->sid,
2104				  SECCLASS_FD,
2105				  FD__USE,
2106				  &ad);
2107		if (rc)
2108			return rc;
2109	}
2110
2111#ifdef CONFIG_BPF_SYSCALL
2112	rc = bpf_fd_pass(file, sid);
2113	if (rc)
2114		return rc;
2115#endif
2116
2117	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2118		return 0;
2119
2120	isec = backing_inode_security(dentry);
2121	return avc_has_perm(&selinux_state,
2122			    sid, isec->sid, isec->sclass, file_to_av(file),
2123			    &ad);
2124}
2125
2126static int selinux_ptrace_access_check(struct task_struct *child,
2127				     unsigned int mode)
2128{
2129	u32 sid = current_sid();
2130	u32 csid = task_sid(child);
2131
2132	if (mode & PTRACE_MODE_READ)
2133		return avc_has_perm(&selinux_state,
2134				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2135
2136	return avc_has_perm(&selinux_state,
2137			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2138}
2139
2140static int selinux_ptrace_traceme(struct task_struct *parent)
2141{
2142	return avc_has_perm(&selinux_state,
2143			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2144			    PROCESS__PTRACE, NULL);
2145}
2146
2147static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2148			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2149{
2150	return avc_has_perm(&selinux_state,
2151			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2152			    PROCESS__GETCAP, NULL);
2153}
2154
2155static int selinux_capset(struct cred *new, const struct cred *old,
2156			  const kernel_cap_t *effective,
2157			  const kernel_cap_t *inheritable,
2158			  const kernel_cap_t *permitted)
2159{
2160	return avc_has_perm(&selinux_state,
2161			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2162			    PROCESS__SETCAP, NULL);
 
 
 
 
 
2163}
2164
2165/*
2166 * (This comment used to live with the selinux_task_setuid hook,
2167 * which was removed).
2168 *
2169 * Since setuid only affects the current process, and since the SELinux
2170 * controls are not based on the Linux identity attributes, SELinux does not
2171 * need to control this operation.  However, SELinux does control the use of
2172 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2173 */
2174
2175static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2176			   int cap, unsigned int opts)
2177{
2178	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
 
 
 
 
 
 
2179}
2180
2181static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2182{
2183	const struct cred *cred = current_cred();
2184	int rc = 0;
2185
2186	if (!sb)
2187		return 0;
2188
2189	switch (cmds) {
2190	case Q_SYNC:
2191	case Q_QUOTAON:
2192	case Q_QUOTAOFF:
2193	case Q_SETINFO:
2194	case Q_SETQUOTA:
2195		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2196		break;
2197	case Q_GETFMT:
2198	case Q_GETINFO:
2199	case Q_GETQUOTA:
2200		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2201		break;
2202	default:
2203		rc = 0;  /* let the kernel handle invalid cmds */
2204		break;
2205	}
2206	return rc;
2207}
2208
2209static int selinux_quota_on(struct dentry *dentry)
2210{
2211	const struct cred *cred = current_cred();
2212
2213	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2214}
2215
2216static int selinux_syslog(int type)
2217{
 
 
2218	switch (type) {
2219	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2220	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2221		return avc_has_perm(&selinux_state,
2222				    current_sid(), SECINITSID_KERNEL,
2223				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2224	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2225	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2226	/* Set level of messages printed to console */
2227	case SYSLOG_ACTION_CONSOLE_LEVEL:
2228		return avc_has_perm(&selinux_state,
2229				    current_sid(), SECINITSID_KERNEL,
2230				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2231				    NULL);
2232	}
2233	/* All other syslog types */
2234	return avc_has_perm(&selinux_state,
2235			    current_sid(), SECINITSID_KERNEL,
2236			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2237}
2238
2239/*
2240 * Check that a process has enough memory to allocate a new virtual
2241 * mapping. 0 means there is enough memory for the allocation to
2242 * succeed and -ENOMEM implies there is not.
2243 *
2244 * Do not audit the selinux permission check, as this is applied to all
2245 * processes that allocate mappings.
2246 */
2247static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2248{
2249	int rc, cap_sys_admin = 0;
2250
2251	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2252				 CAP_OPT_NOAUDIT, true);
 
2253	if (rc == 0)
2254		cap_sys_admin = 1;
2255
2256	return cap_sys_admin;
2257}
2258
2259/* binprm security operations */
2260
2261static u32 ptrace_parent_sid(void)
2262{
2263	u32 sid = 0;
2264	struct task_struct *tracer;
2265
2266	rcu_read_lock();
2267	tracer = ptrace_parent(current);
2268	if (tracer)
2269		sid = task_sid(tracer);
2270	rcu_read_unlock();
2271
2272	return sid;
2273}
2274
2275static int check_nnp_nosuid(const struct linux_binprm *bprm,
2276			    const struct task_security_struct *old_tsec,
2277			    const struct task_security_struct *new_tsec)
2278{
2279	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2280	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2281	int rc;
2282	u32 av;
2283
2284	if (!nnp && !nosuid)
2285		return 0; /* neither NNP nor nosuid */
2286
2287	if (new_tsec->sid == old_tsec->sid)
2288		return 0; /* No change in credentials */
2289
2290	/*
2291	 * If the policy enables the nnp_nosuid_transition policy capability,
2292	 * then we permit transitions under NNP or nosuid if the
2293	 * policy allows the corresponding permission between
2294	 * the old and new contexts.
2295	 */
2296	if (selinux_policycap_nnp_nosuid_transition()) {
2297		av = 0;
2298		if (nnp)
2299			av |= PROCESS2__NNP_TRANSITION;
2300		if (nosuid)
2301			av |= PROCESS2__NOSUID_TRANSITION;
2302		rc = avc_has_perm(&selinux_state,
2303				  old_tsec->sid, new_tsec->sid,
2304				  SECCLASS_PROCESS2, av, NULL);
2305		if (!rc)
2306			return 0;
2307	}
2308
2309	/*
2310	 * We also permit NNP or nosuid transitions to bounded SIDs,
2311	 * i.e. SIDs that are guaranteed to only be allowed a subset
2312	 * of the permissions of the current SID.
2313	 */
2314	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2315					 new_tsec->sid);
2316	if (!rc)
2317		return 0;
2318
2319	/*
2320	 * On failure, preserve the errno values for NNP vs nosuid.
2321	 * NNP:  Operation not permitted for caller.
2322	 * nosuid:  Permission denied to file.
2323	 */
2324	if (nnp)
2325		return -EPERM;
2326	return -EACCES;
2327}
2328
2329static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2330{
2331	const struct task_security_struct *old_tsec;
2332	struct task_security_struct *new_tsec;
2333	struct inode_security_struct *isec;
2334	struct common_audit_data ad;
2335	struct inode *inode = file_inode(bprm->file);
2336	int rc;
2337
 
 
 
 
2338	/* SELinux context only depends on initial program or script and not
2339	 * the script interpreter */
2340	if (bprm->called_set_creds)
2341		return 0;
2342
2343	old_tsec = selinux_cred(current_cred());
2344	new_tsec = selinux_cred(bprm->cred);
2345	isec = inode_security(inode);
2346
2347	/* Default to the current task SID. */
2348	new_tsec->sid = old_tsec->sid;
2349	new_tsec->osid = old_tsec->sid;
2350
2351	/* Reset fs, key, and sock SIDs on execve. */
2352	new_tsec->create_sid = 0;
2353	new_tsec->keycreate_sid = 0;
2354	new_tsec->sockcreate_sid = 0;
2355
2356	if (old_tsec->exec_sid) {
2357		new_tsec->sid = old_tsec->exec_sid;
2358		/* Reset exec SID on execve. */
2359		new_tsec->exec_sid = 0;
2360
2361		/* Fail on NNP or nosuid if not an allowed transition. */
2362		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2363		if (rc)
2364			return rc;
2365	} else {
2366		/* Check for a default transition on this program. */
2367		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2368					     isec->sid, SECCLASS_PROCESS, NULL,
2369					     &new_tsec->sid);
2370		if (rc)
2371			return rc;
 
2372
2373		/*
2374		 * Fallback to old SID on NNP or nosuid if not an allowed
2375		 * transition.
2376		 */
2377		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2378		if (rc)
2379			new_tsec->sid = old_tsec->sid;
2380	}
2381
2382	ad.type = LSM_AUDIT_DATA_FILE;
2383	ad.u.file = bprm->file;
2384
2385	if (new_tsec->sid == old_tsec->sid) {
2386		rc = avc_has_perm(&selinux_state,
2387				  old_tsec->sid, isec->sid,
2388				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2389		if (rc)
2390			return rc;
2391	} else {
2392		/* Check permissions for the transition. */
2393		rc = avc_has_perm(&selinux_state,
2394				  old_tsec->sid, new_tsec->sid,
2395				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2396		if (rc)
2397			return rc;
2398
2399		rc = avc_has_perm(&selinux_state,
2400				  new_tsec->sid, isec->sid,
2401				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2402		if (rc)
2403			return rc;
2404
2405		/* Check for shared state */
2406		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2407			rc = avc_has_perm(&selinux_state,
2408					  old_tsec->sid, new_tsec->sid,
2409					  SECCLASS_PROCESS, PROCESS__SHARE,
2410					  NULL);
2411			if (rc)
2412				return -EPERM;
2413		}
2414
2415		/* Make sure that anyone attempting to ptrace over a task that
2416		 * changes its SID has the appropriate permit */
2417		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2418			u32 ptsid = ptrace_parent_sid();
 
 
 
 
 
 
 
 
 
 
 
 
2419			if (ptsid != 0) {
2420				rc = avc_has_perm(&selinux_state,
2421						  ptsid, new_tsec->sid,
2422						  SECCLASS_PROCESS,
2423						  PROCESS__PTRACE, NULL);
2424				if (rc)
2425					return -EPERM;
2426			}
2427		}
2428
2429		/* Clear any possibly unsafe personality bits on exec: */
2430		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
 
 
 
 
 
 
 
 
 
 
 
 
2431
 
2432		/* Enable secure mode for SIDs transitions unless
2433		   the noatsecure permission is granted between
2434		   the two SIDs, i.e. ahp returns 0. */
2435		rc = avc_has_perm(&selinux_state,
2436				  old_tsec->sid, new_tsec->sid,
2437				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2438				  NULL);
2439		bprm->secureexec |= !!rc;
2440	}
2441
2442	return 0;
2443}
2444
2445static int match_file(const void *p, struct file *file, unsigned fd)
2446{
2447	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2448}
2449
2450/* Derived from fs/exec.c:flush_old_files. */
2451static inline void flush_unauthorized_files(const struct cred *cred,
2452					    struct files_struct *files)
2453{
 
2454	struct file *file, *devnull = NULL;
2455	struct tty_struct *tty;
 
 
2456	int drop_tty = 0;
2457	unsigned n;
2458
2459	tty = get_current_tty();
2460	if (tty) {
2461		spin_lock(&tty->files_lock);
2462		if (!list_empty(&tty->tty_files)) {
2463			struct tty_file_private *file_priv;
 
2464
2465			/* Revalidate access to controlling tty.
2466			   Use file_path_has_perm on the tty path directly
2467			   rather than using file_has_perm, as this particular
2468			   open file may belong to another process and we are
2469			   only interested in the inode-based check here. */
2470			file_priv = list_first_entry(&tty->tty_files,
2471						struct tty_file_private, list);
2472			file = file_priv->file;
2473			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
 
 
2474				drop_tty = 1;
 
2475		}
2476		spin_unlock(&tty->files_lock);
2477		tty_kref_put(tty);
2478	}
2479	/* Reset controlling tty. */
2480	if (drop_tty)
2481		no_tty();
2482
2483	/* Revalidate access to inherited open files. */
2484	n = iterate_fd(files, 0, match_file, cred);
2485	if (!n) /* none found? */
2486		return;
2487
2488	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2489	if (IS_ERR(devnull))
2490		devnull = NULL;
2491	/* replace all the matching ones with this */
2492	do {
2493		replace_fd(n - 1, devnull, 0);
2494	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2495	if (devnull)
2496		fput(devnull);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497}
2498
2499/*
2500 * Prepare a process for imminent new credential changes due to exec
2501 */
2502static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2503{
2504	struct task_security_struct *new_tsec;
2505	struct rlimit *rlim, *initrlim;
2506	int rc, i;
2507
2508	new_tsec = selinux_cred(bprm->cred);
2509	if (new_tsec->sid == new_tsec->osid)
2510		return;
2511
2512	/* Close files for which the new task SID is not authorized. */
2513	flush_unauthorized_files(bprm->cred, current->files);
2514
2515	/* Always clear parent death signal on SID transitions. */
2516	current->pdeath_signal = 0;
2517
2518	/* Check whether the new SID can inherit resource limits from the old
2519	 * SID.  If not, reset all soft limits to the lower of the current
2520	 * task's hard limit and the init task's soft limit.
2521	 *
2522	 * Note that the setting of hard limits (even to lower them) can be
2523	 * controlled by the setrlimit check.  The inclusion of the init task's
2524	 * soft limit into the computation is to avoid resetting soft limits
2525	 * higher than the default soft limit for cases where the default is
2526	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2527	 */
2528	rc = avc_has_perm(&selinux_state,
2529			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530			  PROCESS__RLIMITINH, NULL);
2531	if (rc) {
2532		/* protect against do_prlimit() */
2533		task_lock(current);
2534		for (i = 0; i < RLIM_NLIMITS; i++) {
2535			rlim = current->signal->rlim + i;
2536			initrlim = init_task.signal->rlim + i;
2537			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538		}
2539		task_unlock(current);
2540		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542	}
2543}
2544
2545/*
2546 * Clean up the process immediately after the installation of new credentials
2547 * due to exec
2548 */
2549static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550{
2551	const struct task_security_struct *tsec = selinux_cred(current_cred());
2552	struct itimerval itimer;
2553	u32 osid, sid;
2554	int rc, i;
2555
2556	osid = tsec->osid;
2557	sid = tsec->sid;
2558
2559	if (sid == osid)
2560		return;
2561
2562	/* Check whether the new SID can inherit signal state from the old SID.
2563	 * If not, clear itimers to avoid subsequent signal generation and
2564	 * flush and unblock signals.
2565	 *
2566	 * This must occur _after_ the task SID has been updated so that any
2567	 * kill done after the flush will be checked against the new SID.
2568	 */
2569	rc = avc_has_perm(&selinux_state,
2570			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571	if (rc) {
2572		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573			memset(&itimer, 0, sizeof itimer);
2574			for (i = 0; i < 3; i++)
2575				do_setitimer(i, &itimer, NULL);
2576		}
2577		spin_lock_irq(&current->sighand->siglock);
2578		if (!fatal_signal_pending(current)) {
2579			flush_sigqueue(&current->pending);
2580			flush_sigqueue(&current->signal->shared_pending);
2581			flush_signal_handlers(current, 1);
2582			sigemptyset(&current->blocked);
2583			recalc_sigpending();
2584		}
2585		spin_unlock_irq(&current->sighand->siglock);
2586	}
2587
2588	/* Wake up the parent if it is waiting so that it can recheck
2589	 * wait permission to the new task SID. */
2590	read_lock(&tasklist_lock);
2591	__wake_up_parent(current, current->real_parent);
2592	read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599	return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604	superblock_free_security(sb);
2605}
2606
2607static inline int opt_len(const char *s)
2608{
2609	bool open_quote = false;
2610	int len;
2611	char c;
2612
2613	for (len = 0; (c = s[len]) != '\0'; len++) {
2614		if (c == '"')
2615			open_quote = !open_quote;
2616		if (c == ',' && !open_quote)
2617			break;
2618	}
2619	return len;
2620}
2621
2622static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2623{
2624	char *from = options;
2625	char *to = options;
2626	bool first = true;
2627	int rc;
 
 
2628
2629	while (1) {
2630		int len = opt_len(from);
2631		int token;
2632		char *arg = NULL;
 
 
 
 
 
 
2633
2634		token = match_opt_prefix(from, len, &arg);
 
 
 
2635
2636		if (token != Opt_error) {
2637			char *p, *q;
 
 
 
2638
2639			/* strip quotes */
2640			if (arg) {
2641				for (p = q = arg; p < from + len; p++) {
2642					char c = *p;
2643					if (c != '"')
2644						*q++ = c;
2645				}
2646				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2647				if (!arg) {
2648					rc = -ENOMEM;
2649					goto free_opt;
2650				}
2651			}
2652			rc = selinux_add_opt(token, arg, mnt_opts);
2653			if (unlikely(rc)) {
2654				kfree(arg);
2655				goto free_opt;
2656			}
2657		} else {
2658			if (!first) {	// copy with preceding comma
2659				from--;
2660				len++;
2661			}
2662			if (to != from)
2663				memmove(to, from, len);
2664			to += len;
2665			first = false;
2666		}
2667		if (!from[len])
2668			break;
2669		from += len + 1;
2670	}
2671	*to = '\0';
2672	return 0;
 
 
 
 
 
 
 
 
 
2673
2674free_opt:
2675	if (*mnt_opts) {
2676		selinux_free_mnt_opts(*mnt_opts);
2677		*mnt_opts = NULL;
2678	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2679	return rc;
2680}
2681
2682static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2683{
2684	struct selinux_mnt_opts *opts = mnt_opts;
 
 
2685	struct superblock_security_struct *sbsec = sb->s_security;
2686	u32 sid;
2687	int rc;
2688
2689	if (!(sbsec->flags & SE_SBINITIALIZED))
2690		return 0;
2691
2692	if (!opts)
 
 
 
2693		return 0;
2694
2695	if (opts->fscontext) {
2696		rc = parse_sid(sb, opts->fscontext, &sid);
2697		if (rc)
2698			return rc;
2699		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2700			goto out_bad_option;
2701	}
2702	if (opts->context) {
2703		rc = parse_sid(sb, opts->context, &sid);
2704		if (rc)
2705			return rc;
2706		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2707			goto out_bad_option;
2708	}
2709	if (opts->rootcontext) {
2710		struct inode_security_struct *root_isec;
2711		root_isec = backing_inode_security(sb->s_root);
2712		rc = parse_sid(sb, opts->rootcontext, &sid);
2713		if (rc)
2714			return rc;
2715		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2716			goto out_bad_option;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2717	}
2718	if (opts->defcontext) {
2719		rc = parse_sid(sb, opts->defcontext, &sid);
2720		if (rc)
2721			return rc;
2722		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2723			goto out_bad_option;
2724	}
2725	return 0;
2726
 
 
 
 
 
 
2727out_bad_option:
2728	pr_warn("SELinux: unable to change security options "
2729	       "during remount (dev %s, type=%s)\n", sb->s_id,
2730	       sb->s_type->name);
2731	return -EINVAL;
2732}
2733
2734static int selinux_sb_kern_mount(struct super_block *sb)
2735{
2736	const struct cred *cred = current_cred();
2737	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2738
2739	ad.type = LSM_AUDIT_DATA_DENTRY;
2740	ad.u.dentry = sb->s_root;
2741	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2742}
2743
2744static int selinux_sb_statfs(struct dentry *dentry)
2745{
2746	const struct cred *cred = current_cred();
2747	struct common_audit_data ad;
2748
2749	ad.type = LSM_AUDIT_DATA_DENTRY;
2750	ad.u.dentry = dentry->d_sb->s_root;
2751	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2752}
2753
2754static int selinux_mount(const char *dev_name,
2755			 const struct path *path,
2756			 const char *type,
2757			 unsigned long flags,
2758			 void *data)
2759{
2760	const struct cred *cred = current_cred();
2761
2762	if (flags & MS_REMOUNT)
2763		return superblock_has_perm(cred, path->dentry->d_sb,
2764					   FILESYSTEM__REMOUNT, NULL);
2765	else
2766		return path_has_perm(cred, path, FILE__MOUNTON);
2767}
2768
2769static int selinux_umount(struct vfsmount *mnt, int flags)
2770{
2771	const struct cred *cred = current_cred();
2772
2773	return superblock_has_perm(cred, mnt->mnt_sb,
2774				   FILESYSTEM__UNMOUNT, NULL);
2775}
2776
2777static int selinux_fs_context_dup(struct fs_context *fc,
2778				  struct fs_context *src_fc)
2779{
2780	const struct selinux_mnt_opts *src = src_fc->security;
2781	struct selinux_mnt_opts *opts;
2782
2783	if (!src)
2784		return 0;
2785
2786	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2787	if (!fc->security)
2788		return -ENOMEM;
2789
2790	opts = fc->security;
2791
2792	if (src->fscontext) {
2793		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2794		if (!opts->fscontext)
2795			return -ENOMEM;
2796	}
2797	if (src->context) {
2798		opts->context = kstrdup(src->context, GFP_KERNEL);
2799		if (!opts->context)
2800			return -ENOMEM;
2801	}
2802	if (src->rootcontext) {
2803		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2804		if (!opts->rootcontext)
2805			return -ENOMEM;
2806	}
2807	if (src->defcontext) {
2808		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2809		if (!opts->defcontext)
2810			return -ENOMEM;
2811	}
2812	return 0;
2813}
2814
2815static const struct fs_parameter_spec selinux_param_specs[] = {
2816	fsparam_string(CONTEXT_STR,	Opt_context),
2817	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2818	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2819	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2820	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2821	{}
2822};
2823
2824static const struct fs_parameter_description selinux_fs_parameters = {
2825	.name		= "SELinux",
2826	.specs		= selinux_param_specs,
2827};
2828
2829static int selinux_fs_context_parse_param(struct fs_context *fc,
2830					  struct fs_parameter *param)
2831{
2832	struct fs_parse_result result;
2833	int opt, rc;
2834
2835	opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2836	if (opt < 0)
2837		return opt;
2838
2839	rc = selinux_add_opt(opt, param->string, &fc->security);
2840	if (!rc) {
2841		param->string = NULL;
2842		rc = 1;
2843	}
2844	return rc;
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851	return inode_alloc_security(inode);
2852}
2853
2854static void selinux_inode_free_security(struct inode *inode)
2855{
2856	inode_free_security(inode);
2857}
2858
2859static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2860					const struct qstr *name, void **ctx,
2861					u32 *ctxlen)
2862{
2863	u32 newsid;
2864	int rc;
2865
2866	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2867					   d_inode(dentry->d_parent), name,
2868					   inode_mode_to_security_class(mode),
2869					   &newsid);
2870	if (rc)
2871		return rc;
2872
2873	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2874				       ctxlen);
2875}
2876
2877static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2878					  struct qstr *name,
2879					  const struct cred *old,
2880					  struct cred *new)
2881{
2882	u32 newsid;
2883	int rc;
2884	struct task_security_struct *tsec;
2885
2886	rc = selinux_determine_inode_label(selinux_cred(old),
2887					   d_inode(dentry->d_parent), name,
2888					   inode_mode_to_security_class(mode),
2889					   &newsid);
2890	if (rc)
2891		return rc;
2892
2893	tsec = selinux_cred(new);
2894	tsec->create_sid = newsid;
2895	return 0;
2896}
2897
2898static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2899				       const struct qstr *qstr,
2900				       const char **name,
2901				       void **value, size_t *len)
2902{
2903	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2904	struct superblock_security_struct *sbsec;
2905	u32 newsid, clen;
2906	int rc;
2907	char *context;
2908
 
2909	sbsec = dir->i_sb->s_security;
2910
 
2911	newsid = tsec->create_sid;
2912
2913	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2914		dir, qstr,
2915		inode_mode_to_security_class(inode->i_mode),
2916		&newsid);
2917	if (rc)
2918		return rc;
 
 
 
 
 
 
 
 
 
 
2919
2920	/* Possibly defer initialization to selinux_complete_init. */
2921	if (sbsec->flags & SE_SBINITIALIZED) {
2922		struct inode_security_struct *isec = selinux_inode(inode);
2923		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2924		isec->sid = newsid;
2925		isec->initialized = LABEL_INITIALIZED;
2926	}
2927
2928	if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
2929		return -EOPNOTSUPP;
2930
2931	if (name)
2932		*name = XATTR_SELINUX_SUFFIX;
 
 
 
 
2933
2934	if (value && len) {
2935		rc = security_sid_to_context_force(&selinux_state, newsid,
2936						   &context, &clen);
2937		if (rc)
2938			return rc;
 
2939		*value = context;
2940		*len = clen;
2941	}
2942
2943	return 0;
2944}
2945
2946static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2947{
2948	return may_create(dir, dentry, SECCLASS_FILE);
2949}
2950
2951static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2952{
2953	return may_link(dir, old_dentry, MAY_LINK);
2954}
2955
2956static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2957{
2958	return may_link(dir, dentry, MAY_UNLINK);
2959}
2960
2961static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2962{
2963	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2964}
2965
2966static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2967{
2968	return may_create(dir, dentry, SECCLASS_DIR);
2969}
2970
2971static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2972{
2973	return may_link(dir, dentry, MAY_RMDIR);
2974}
2975
2976static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2977{
2978	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2979}
2980
2981static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2982				struct inode *new_inode, struct dentry *new_dentry)
2983{
2984	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2985}
2986
2987static int selinux_inode_readlink(struct dentry *dentry)
2988{
2989	const struct cred *cred = current_cred();
2990
2991	return dentry_has_perm(cred, dentry, FILE__READ);
2992}
2993
2994static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2995				     bool rcu)
2996{
2997	const struct cred *cred = current_cred();
2998	struct common_audit_data ad;
2999	struct inode_security_struct *isec;
3000	u32 sid;
3001
3002	validate_creds(cred);
3003
3004	ad.type = LSM_AUDIT_DATA_DENTRY;
3005	ad.u.dentry = dentry;
3006	sid = cred_sid(cred);
3007	isec = inode_security_rcu(inode, rcu);
3008	if (IS_ERR(isec))
3009		return PTR_ERR(isec);
3010
3011	return avc_has_perm(&selinux_state,
3012			    sid, isec->sid, isec->sclass, FILE__READ, &ad);
3013}
3014
3015static noinline int audit_inode_permission(struct inode *inode,
3016					   u32 perms, u32 audited, u32 denied,
3017					   int result,
3018					   unsigned flags)
3019{
3020	struct common_audit_data ad;
3021	struct inode_security_struct *isec = selinux_inode(inode);
3022	int rc;
3023
3024	ad.type = LSM_AUDIT_DATA_INODE;
3025	ad.u.inode = inode;
3026
3027	rc = slow_avc_audit(&selinux_state,
3028			    current_sid(), isec->sid, isec->sclass, perms,
3029			    audited, denied, result, &ad, flags);
3030	if (rc)
3031		return rc;
3032	return 0;
3033}
3034
3035static int selinux_inode_permission(struct inode *inode, int mask)
3036{
3037	const struct cred *cred = current_cred();
 
3038	u32 perms;
3039	bool from_access;
3040	unsigned flags = mask & MAY_NOT_BLOCK;
3041	struct inode_security_struct *isec;
3042	u32 sid;
3043	struct av_decision avd;
3044	int rc, rc2;
3045	u32 audited, denied;
3046
3047	from_access = mask & MAY_ACCESS;
3048	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3049
3050	/* No permission to check.  Existence test. */
3051	if (!mask)
3052		return 0;
3053
3054	validate_creds(cred);
 
3055
3056	if (unlikely(IS_PRIVATE(inode)))
3057		return 0;
3058
3059	perms = file_mask_to_av(inode->i_mode, mask);
3060
3061	sid = cred_sid(cred);
3062	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3063	if (IS_ERR(isec))
3064		return PTR_ERR(isec);
3065
3066	rc = avc_has_perm_noaudit(&selinux_state,
3067				  sid, isec->sid, isec->sclass, perms,
3068				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
3069				  &avd);
3070	audited = avc_audit_required(perms, &avd, rc,
3071				     from_access ? FILE__AUDIT_ACCESS : 0,
3072				     &denied);
3073	if (likely(!audited))
3074		return rc;
3075
3076	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3077	if (rc2)
3078		return rc2;
3079	return rc;
3080}
3081
3082static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3083{
3084	const struct cred *cred = current_cred();
3085	struct inode *inode = d_backing_inode(dentry);
3086	unsigned int ia_valid = iattr->ia_valid;
3087	__u32 av = FILE__WRITE;
3088
3089	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3090	if (ia_valid & ATTR_FORCE) {
3091		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3092			      ATTR_FORCE);
3093		if (!ia_valid)
3094			return 0;
3095	}
3096
3097	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3098			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3099		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3100
3101	if (selinux_policycap_openperm() &&
3102	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3103	    (ia_valid & ATTR_SIZE) &&
3104	    !(ia_valid & ATTR_FILE))
3105		av |= FILE__OPEN;
3106
3107	return dentry_has_perm(cred, dentry, av);
3108}
3109
3110static int selinux_inode_getattr(const struct path *path)
3111{
3112	return path_has_perm(current_cred(), path, FILE__GETATTR);
 
 
 
 
 
 
3113}
3114
3115static bool has_cap_mac_admin(bool audit)
3116{
3117	const struct cred *cred = current_cred();
3118	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3119
3120	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3121		return false;
3122	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3123		return false;
3124	return true;
 
 
 
 
 
 
 
 
 
 
3125}
3126
3127static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3128				  const void *value, size_t size, int flags)
3129{
3130	struct inode *inode = d_backing_inode(dentry);
3131	struct inode_security_struct *isec;
3132	struct superblock_security_struct *sbsec;
3133	struct common_audit_data ad;
3134	u32 newsid, sid = current_sid();
3135	int rc = 0;
3136
3137	if (strcmp(name, XATTR_NAME_SELINUX)) {
3138		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3139		if (rc)
3140			return rc;
3141
3142		/* Not an attribute we recognize, so just check the
3143		   ordinary setattr permission. */
3144		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3145	}
3146
3147	sbsec = inode->i_sb->s_security;
3148	if (!(sbsec->flags & SBLABEL_MNT))
3149		return -EOPNOTSUPP;
3150
3151	if (!inode_owner_or_capable(inode))
3152		return -EPERM;
3153
3154	ad.type = LSM_AUDIT_DATA_DENTRY;
3155	ad.u.dentry = dentry;
3156
3157	isec = backing_inode_security(dentry);
3158	rc = avc_has_perm(&selinux_state,
3159			  sid, isec->sid, isec->sclass,
3160			  FILE__RELABELFROM, &ad);
3161	if (rc)
3162		return rc;
3163
3164	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3165				     GFP_KERNEL);
3166	if (rc == -EINVAL) {
3167		if (!has_cap_mac_admin(true)) {
3168			struct audit_buffer *ab;
3169			size_t audit_size;
3170
3171			/* We strip a nul only if it is at the end, otherwise the
3172			 * context contains a nul and we should audit that */
3173			if (value) {
3174				const char *str = value;
3175
3176				if (str[size - 1] == '\0')
3177					audit_size = size - 1;
3178				else
3179					audit_size = size;
3180			} else {
3181				audit_size = 0;
3182			}
3183			ab = audit_log_start(audit_context(),
3184					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3185			audit_log_format(ab, "op=setxattr invalid_context=");
3186			audit_log_n_untrustedstring(ab, value, audit_size);
3187			audit_log_end(ab);
3188
3189			return rc;
3190		}
3191		rc = security_context_to_sid_force(&selinux_state, value,
3192						   size, &newsid);
3193	}
3194	if (rc)
3195		return rc;
3196
3197	rc = avc_has_perm(&selinux_state,
3198			  sid, newsid, isec->sclass,
3199			  FILE__RELABELTO, &ad);
3200	if (rc)
3201		return rc;
3202
3203	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3204					  sid, isec->sclass);
3205	if (rc)
3206		return rc;
3207
3208	return avc_has_perm(&selinux_state,
3209			    newsid,
3210			    sbsec->sid,
3211			    SECCLASS_FILESYSTEM,
3212			    FILESYSTEM__ASSOCIATE,
3213			    &ad);
3214}
3215
3216static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3217					const void *value, size_t size,
3218					int flags)
3219{
3220	struct inode *inode = d_backing_inode(dentry);
3221	struct inode_security_struct *isec;
3222	u32 newsid;
3223	int rc;
3224
3225	if (strcmp(name, XATTR_NAME_SELINUX)) {
3226		/* Not an attribute we recognize, so nothing to do. */
3227		return;
3228	}
3229
3230	rc = security_context_to_sid_force(&selinux_state, value, size,
3231					   &newsid);
3232	if (rc) {
3233		pr_err("SELinux:  unable to map context to SID"
3234		       "for (%s, %lu), rc=%d\n",
3235		       inode->i_sb->s_id, inode->i_ino, -rc);
3236		return;
3237	}
3238
3239	isec = backing_inode_security(dentry);
3240	spin_lock(&isec->lock);
3241	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3242	isec->sid = newsid;
3243	isec->initialized = LABEL_INITIALIZED;
3244	spin_unlock(&isec->lock);
3245
3246	return;
3247}
3248
3249static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3250{
3251	const struct cred *cred = current_cred();
3252
3253	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_listxattr(struct dentry *dentry)
3257{
3258	const struct cred *cred = current_cred();
3259
3260	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3261}
3262
3263static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3264{
3265	if (strcmp(name, XATTR_NAME_SELINUX)) {
3266		int rc = cap_inode_removexattr(dentry, name);
3267		if (rc)
3268			return rc;
3269
3270		/* Not an attribute we recognize, so just check the
3271		   ordinary setattr permission. */
3272		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3273	}
3274
3275	/* No one is allowed to remove a SELinux security label.
3276	   You can change the label, but all data must be labeled. */
3277	return -EACCES;
3278}
3279
3280static int selinux_path_notify(const struct path *path, u64 mask,
3281						unsigned int obj_type)
3282{
3283	int ret;
3284	u32 perm;
3285
3286	struct common_audit_data ad;
3287
3288	ad.type = LSM_AUDIT_DATA_PATH;
3289	ad.u.path = *path;
3290
3291	/*
3292	 * Set permission needed based on the type of mark being set.
3293	 * Performs an additional check for sb watches.
3294	 */
3295	switch (obj_type) {
3296	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3297		perm = FILE__WATCH_MOUNT;
3298		break;
3299	case FSNOTIFY_OBJ_TYPE_SB:
3300		perm = FILE__WATCH_SB;
3301		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3302						FILESYSTEM__WATCH, &ad);
3303		if (ret)
3304			return ret;
3305		break;
3306	case FSNOTIFY_OBJ_TYPE_INODE:
3307		perm = FILE__WATCH;
3308		break;
3309	default:
3310		return -EINVAL;
3311	}
3312
3313	/* blocking watches require the file:watch_with_perm permission */
3314	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3315		perm |= FILE__WATCH_WITH_PERM;
3316
3317	/* watches on read-like events need the file:watch_reads permission */
3318	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3319		perm |= FILE__WATCH_READS;
3320
3321	return path_has_perm(current_cred(), path, perm);
3322}
3323
3324/*
3325 * Copy the inode security context value to the user.
3326 *
3327 * Permission check is handled by selinux_inode_getxattr hook.
3328 */
3329static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3330{
3331	u32 size;
3332	int error;
3333	char *context = NULL;
3334	struct inode_security_struct *isec;
3335
3336	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3337		return -EOPNOTSUPP;
3338
3339	/*
3340	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3341	 * value even if it is not defined by current policy; otherwise,
3342	 * use the in-core value under current policy.
3343	 * Use the non-auditing forms of the permission checks since
3344	 * getxattr may be called by unprivileged processes commonly
3345	 * and lack of permission just means that we fall back to the
3346	 * in-core context value, not a denial.
3347	 */
3348	isec = inode_security(inode);
3349	if (has_cap_mac_admin(false))
3350		error = security_sid_to_context_force(&selinux_state,
3351						      isec->sid, &context,
 
3352						      &size);
3353	else
3354		error = security_sid_to_context(&selinux_state, isec->sid,
3355						&context, &size);
3356	if (error)
3357		return error;
3358	error = size;
3359	if (alloc) {
3360		*buffer = context;
3361		goto out_nofree;
3362	}
3363	kfree(context);
3364out_nofree:
3365	return error;
3366}
3367
3368static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3369				     const void *value, size_t size, int flags)
3370{
3371	struct inode_security_struct *isec = inode_security_novalidate(inode);
3372	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3373	u32 newsid;
3374	int rc;
3375
3376	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3377		return -EOPNOTSUPP;
3378
3379	if (!(sbsec->flags & SBLABEL_MNT))
3380		return -EOPNOTSUPP;
3381
3382	if (!value || !size)
3383		return -EACCES;
3384
3385	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3386				     GFP_KERNEL);
3387	if (rc)
3388		return rc;
3389
3390	spin_lock(&isec->lock);
3391	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3392	isec->sid = newsid;
3393	isec->initialized = LABEL_INITIALIZED;
3394	spin_unlock(&isec->lock);
3395	return 0;
3396}
3397
3398static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3399{
3400	const int len = sizeof(XATTR_NAME_SELINUX);
3401	if (buffer && len <= buffer_size)
3402		memcpy(buffer, XATTR_NAME_SELINUX, len);
3403	return len;
3404}
3405
3406static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3407{
3408	struct inode_security_struct *isec = inode_security_novalidate(inode);
3409	*secid = isec->sid;
3410}
3411
3412static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3413{
3414	u32 sid;
3415	struct task_security_struct *tsec;
3416	struct cred *new_creds = *new;
3417
3418	if (new_creds == NULL) {
3419		new_creds = prepare_creds();
3420		if (!new_creds)
3421			return -ENOMEM;
3422	}
3423
3424	tsec = selinux_cred(new_creds);
3425	/* Get label from overlay inode and set it in create_sid */
3426	selinux_inode_getsecid(d_inode(src), &sid);
3427	tsec->create_sid = sid;
3428	*new = new_creds;
3429	return 0;
3430}
3431
3432static int selinux_inode_copy_up_xattr(const char *name)
3433{
3434	/* The copy_up hook above sets the initial context on an inode, but we
3435	 * don't then want to overwrite it by blindly copying all the lower
3436	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3437	 */
3438	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3439		return 1; /* Discard */
3440	/*
3441	 * Any other attribute apart from SELINUX is not claimed, supported
3442	 * by selinux.
3443	 */
3444	return -EOPNOTSUPP;
3445}
3446
3447/* kernfs node operations */
3448
3449static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3450					struct kernfs_node *kn)
3451{
3452	const struct task_security_struct *tsec = selinux_cred(current_cred());
3453	u32 parent_sid, newsid, clen;
3454	int rc;
3455	char *context;
3456
3457	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3458	if (rc == -ENODATA)
3459		return 0;
3460	else if (rc < 0)
3461		return rc;
3462
3463	clen = (u32)rc;
3464	context = kmalloc(clen, GFP_KERNEL);
3465	if (!context)
3466		return -ENOMEM;
3467
3468	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3469	if (rc < 0) {
3470		kfree(context);
3471		return rc;
3472	}
3473
3474	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3475				     GFP_KERNEL);
3476	kfree(context);
3477	if (rc)
3478		return rc;
3479
3480	if (tsec->create_sid) {
3481		newsid = tsec->create_sid;
3482	} else {
3483		u16 secclass = inode_mode_to_security_class(kn->mode);
3484		struct qstr q;
3485
3486		q.name = kn->name;
3487		q.hash_len = hashlen_string(kn_dir, kn->name);
3488
3489		rc = security_transition_sid(&selinux_state, tsec->sid,
3490					     parent_sid, secclass, &q,
3491					     &newsid);
3492		if (rc)
3493			return rc;
3494	}
3495
3496	rc = security_sid_to_context_force(&selinux_state, newsid,
3497					   &context, &clen);
3498	if (rc)
3499		return rc;
3500
3501	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3502			      XATTR_CREATE);
3503	kfree(context);
3504	return rc;
3505}
3506
3507
3508/* file security operations */
3509
3510static int selinux_revalidate_file_permission(struct file *file, int mask)
3511{
3512	const struct cred *cred = current_cred();
3513	struct inode *inode = file_inode(file);
3514
3515	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3516	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3517		mask |= MAY_APPEND;
3518
3519	return file_has_perm(cred, file,
3520			     file_mask_to_av(inode->i_mode, mask));
3521}
3522
3523static int selinux_file_permission(struct file *file, int mask)
3524{
3525	struct inode *inode = file_inode(file);
3526	struct file_security_struct *fsec = selinux_file(file);
3527	struct inode_security_struct *isec;
3528	u32 sid = current_sid();
3529
3530	if (!mask)
3531		/* No permission to check.  Existence test. */
3532		return 0;
3533
3534	isec = inode_security(inode);
3535	if (sid == fsec->sid && fsec->isid == isec->sid &&
3536	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3537		/* No change since file_open check. */
3538		return 0;
3539
3540	return selinux_revalidate_file_permission(file, mask);
3541}
3542
3543static int selinux_file_alloc_security(struct file *file)
3544{
3545	return file_alloc_security(file);
3546}
3547
3548/*
3549 * Check whether a task has the ioctl permission and cmd
3550 * operation to an inode.
3551 */
3552static int ioctl_has_perm(const struct cred *cred, struct file *file,
3553		u32 requested, u16 cmd)
3554{
3555	struct common_audit_data ad;
3556	struct file_security_struct *fsec = selinux_file(file);
3557	struct inode *inode = file_inode(file);
3558	struct inode_security_struct *isec;
3559	struct lsm_ioctlop_audit ioctl;
3560	u32 ssid = cred_sid(cred);
3561	int rc;
3562	u8 driver = cmd >> 8;
3563	u8 xperm = cmd & 0xff;
3564
3565	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3566	ad.u.op = &ioctl;
3567	ad.u.op->cmd = cmd;
3568	ad.u.op->path = file->f_path;
3569
3570	if (ssid != fsec->sid) {
3571		rc = avc_has_perm(&selinux_state,
3572				  ssid, fsec->sid,
3573				SECCLASS_FD,
3574				FD__USE,
3575				&ad);
3576		if (rc)
3577			goto out;
3578	}
3579
3580	if (unlikely(IS_PRIVATE(inode)))
3581		return 0;
3582
3583	isec = inode_security(inode);
3584	rc = avc_has_extended_perms(&selinux_state,
3585				    ssid, isec->sid, isec->sclass,
3586				    requested, driver, xperm, &ad);
3587out:
3588	return rc;
3589}
3590
3591static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3592			      unsigned long arg)
3593{
3594	const struct cred *cred = current_cred();
3595	int error = 0;
3596
3597	switch (cmd) {
3598	case FIONREAD:
3599	/* fall through */
3600	case FIBMAP:
3601	/* fall through */
3602	case FIGETBSZ:
3603	/* fall through */
3604	case FS_IOC_GETFLAGS:
3605	/* fall through */
3606	case FS_IOC_GETVERSION:
3607		error = file_has_perm(cred, file, FILE__GETATTR);
3608		break;
3609
3610	case FS_IOC_SETFLAGS:
3611	/* fall through */
3612	case FS_IOC_SETVERSION:
3613		error = file_has_perm(cred, file, FILE__SETATTR);
3614		break;
3615
3616	/* sys_ioctl() checks */
3617	case FIONBIO:
3618	/* fall through */
3619	case FIOASYNC:
3620		error = file_has_perm(cred, file, 0);
3621		break;
3622
3623	case KDSKBENT:
3624	case KDSKBSENT:
3625		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3626					    CAP_OPT_NONE, true);
3627		break;
3628
3629	/* default case assumes that the command will go
3630	 * to the file's ioctl() function.
3631	 */
3632	default:
3633		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3634	}
3635	return error;
3636}
3637
3638static int default_noexec;
3639
3640static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3641{
3642	const struct cred *cred = current_cred();
3643	u32 sid = cred_sid(cred);
3644	int rc = 0;
3645
3646	if (default_noexec &&
3647	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3648				   (!shared && (prot & PROT_WRITE)))) {
3649		/*
3650		 * We are making executable an anonymous mapping or a
3651		 * private file mapping that will also be writable.
3652		 * This has an additional check.
3653		 */
3654		rc = avc_has_perm(&selinux_state,
3655				  sid, sid, SECCLASS_PROCESS,
3656				  PROCESS__EXECMEM, NULL);
3657		if (rc)
3658			goto error;
3659	}
3660
3661	if (file) {
3662		/* read access is always possible with a mapping */
3663		u32 av = FILE__READ;
3664
3665		/* write access only matters if the mapping is shared */
3666		if (shared && (prot & PROT_WRITE))
3667			av |= FILE__WRITE;
3668
3669		if (prot & PROT_EXEC)
3670			av |= FILE__EXECUTE;
3671
3672		return file_has_perm(cred, file, av);
3673	}
3674
3675error:
3676	return rc;
3677}
3678
3679static int selinux_mmap_addr(unsigned long addr)
 
 
3680{
3681	int rc = 0;
 
3682
 
 
 
 
 
 
3683	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3684		u32 sid = current_sid();
3685		rc = avc_has_perm(&selinux_state,
3686				  sid, sid, SECCLASS_MEMPROTECT,
3687				  MEMPROTECT__MMAP_ZERO, NULL);
3688	}
3689
3690	return rc;
3691}
3692
3693static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3694			     unsigned long prot, unsigned long flags)
3695{
3696	struct common_audit_data ad;
3697	int rc;
3698
3699	if (file) {
3700		ad.type = LSM_AUDIT_DATA_FILE;
3701		ad.u.file = file;
3702		rc = inode_has_perm(current_cred(), file_inode(file),
3703				    FILE__MAP, &ad);
3704		if (rc)
3705			return rc;
3706	}
3707
3708	if (selinux_state.checkreqprot)
 
 
 
 
 
3709		prot = reqprot;
3710
3711	return file_map_prot_check(file, prot,
3712				   (flags & MAP_TYPE) == MAP_SHARED);
3713}
3714
3715static int selinux_file_mprotect(struct vm_area_struct *vma,
3716				 unsigned long reqprot,
3717				 unsigned long prot)
3718{
3719	const struct cred *cred = current_cred();
3720	u32 sid = cred_sid(cred);
3721
3722	if (selinux_state.checkreqprot)
3723		prot = reqprot;
3724
3725	if (default_noexec &&
3726	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3727		int rc = 0;
3728		if (vma->vm_start >= vma->vm_mm->start_brk &&
3729		    vma->vm_end <= vma->vm_mm->brk) {
3730			rc = avc_has_perm(&selinux_state,
3731					  sid, sid, SECCLASS_PROCESS,
3732					  PROCESS__EXECHEAP, NULL);
3733		} else if (!vma->vm_file &&
3734			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3735			     vma->vm_end >= vma->vm_mm->start_stack) ||
3736			    vma_is_stack_for_current(vma))) {
3737			rc = avc_has_perm(&selinux_state,
3738					  sid, sid, SECCLASS_PROCESS,
3739					  PROCESS__EXECSTACK, NULL);
3740		} else if (vma->vm_file && vma->anon_vma) {
3741			/*
3742			 * We are making executable a file mapping that has
3743			 * had some COW done. Since pages might have been
3744			 * written, check ability to execute the possibly
3745			 * modified content.  This typically should only
3746			 * occur for text relocations.
3747			 */
3748			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3749		}
3750		if (rc)
3751			return rc;
3752	}
3753
3754	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3755}
3756
3757static int selinux_file_lock(struct file *file, unsigned int cmd)
3758{
3759	const struct cred *cred = current_cred();
3760
3761	return file_has_perm(cred, file, FILE__LOCK);
3762}
3763
3764static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3765			      unsigned long arg)
3766{
3767	const struct cred *cred = current_cred();
3768	int err = 0;
3769
3770	switch (cmd) {
3771	case F_SETFL:
 
 
 
 
 
3772		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3773			err = file_has_perm(cred, file, FILE__WRITE);
3774			break;
3775		}
3776		/* fall through */
3777	case F_SETOWN:
3778	case F_SETSIG:
3779	case F_GETFL:
3780	case F_GETOWN:
3781	case F_GETSIG:
3782	case F_GETOWNER_UIDS:
3783		/* Just check FD__USE permission */
3784		err = file_has_perm(cred, file, 0);
3785		break;
3786	case F_GETLK:
3787	case F_SETLK:
3788	case F_SETLKW:
3789	case F_OFD_GETLK:
3790	case F_OFD_SETLK:
3791	case F_OFD_SETLKW:
3792#if BITS_PER_LONG == 32
3793	case F_GETLK64:
3794	case F_SETLK64:
3795	case F_SETLKW64:
3796#endif
 
 
 
 
3797		err = file_has_perm(cred, file, FILE__LOCK);
3798		break;
3799	}
3800
3801	return err;
3802}
3803
3804static void selinux_file_set_fowner(struct file *file)
3805{
3806	struct file_security_struct *fsec;
3807
3808	fsec = selinux_file(file);
3809	fsec->fown_sid = current_sid();
 
 
3810}
3811
3812static int selinux_file_send_sigiotask(struct task_struct *tsk,
3813				       struct fown_struct *fown, int signum)
3814{
3815	struct file *file;
3816	u32 sid = task_sid(tsk);
3817	u32 perm;
3818	struct file_security_struct *fsec;
3819
3820	/* struct fown_struct is never outside the context of a struct file */
3821	file = container_of(fown, struct file, f_owner);
3822
3823	fsec = selinux_file(file);
3824
3825	if (!signum)
3826		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3827	else
3828		perm = signal_to_av(signum);
3829
3830	return avc_has_perm(&selinux_state,
3831			    fsec->fown_sid, sid,
3832			    SECCLASS_PROCESS, perm, NULL);
3833}
3834
3835static int selinux_file_receive(struct file *file)
3836{
3837	const struct cred *cred = current_cred();
3838
3839	return file_has_perm(cred, file, file_to_av(file));
3840}
3841
3842static int selinux_file_open(struct file *file)
3843{
3844	struct file_security_struct *fsec;
 
3845	struct inode_security_struct *isec;
3846
3847	fsec = selinux_file(file);
3848	isec = inode_security(file_inode(file));
 
3849	/*
3850	 * Save inode label and policy sequence number
3851	 * at open-time so that selinux_file_permission
3852	 * can determine whether revalidation is necessary.
3853	 * Task label is already saved in the file security
3854	 * struct as its SID.
3855	 */
3856	fsec->isid = isec->sid;
3857	fsec->pseqno = avc_policy_seqno(&selinux_state);
3858	/*
3859	 * Since the inode label or policy seqno may have changed
3860	 * between the selinux_inode_permission check and the saving
3861	 * of state above, recheck that access is still permitted.
3862	 * Otherwise, access might never be revalidated against the
3863	 * new inode label or new policy.
3864	 * This check is not redundant - do not remove.
3865	 */
3866	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3867}
3868
3869/* task security operations */
3870
3871static int selinux_task_alloc(struct task_struct *task,
3872			      unsigned long clone_flags)
 
 
 
 
 
 
 
3873{
3874	u32 sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3875
3876	return avc_has_perm(&selinux_state,
3877			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
3878}
3879
3880/*
3881 * prepare a new set of credentials for modification
3882 */
3883static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3884				gfp_t gfp)
3885{
3886	const struct task_security_struct *old_tsec = selinux_cred(old);
3887	struct task_security_struct *tsec = selinux_cred(new);
 
 
 
 
 
 
3888
3889	*tsec = *old_tsec;
3890	return 0;
3891}
3892
3893/*
3894 * transfer the SELinux data to a blank set of creds
3895 */
3896static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3897{
3898	const struct task_security_struct *old_tsec = selinux_cred(old);
3899	struct task_security_struct *tsec = selinux_cred(new);
3900
3901	*tsec = *old_tsec;
3902}
3903
3904static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3905{
3906	*secid = cred_sid(c);
3907}
3908
3909/*
3910 * set the security data for a kernel service
3911 * - all the creation contexts are set to unlabelled
3912 */
3913static int selinux_kernel_act_as(struct cred *new, u32 secid)
3914{
3915	struct task_security_struct *tsec = selinux_cred(new);
3916	u32 sid = current_sid();
3917	int ret;
3918
3919	ret = avc_has_perm(&selinux_state,
3920			   sid, secid,
3921			   SECCLASS_KERNEL_SERVICE,
3922			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3923			   NULL);
3924	if (ret == 0) {
3925		tsec->sid = secid;
3926		tsec->create_sid = 0;
3927		tsec->keycreate_sid = 0;
3928		tsec->sockcreate_sid = 0;
3929	}
3930	return ret;
3931}
3932
3933/*
3934 * set the file creation context in a security record to the same as the
3935 * objective context of the specified inode
3936 */
3937static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3938{
3939	struct inode_security_struct *isec = inode_security(inode);
3940	struct task_security_struct *tsec = selinux_cred(new);
3941	u32 sid = current_sid();
3942	int ret;
3943
3944	ret = avc_has_perm(&selinux_state,
3945			   sid, isec->sid,
3946			   SECCLASS_KERNEL_SERVICE,
3947			   KERNEL_SERVICE__CREATE_FILES_AS,
3948			   NULL);
3949
3950	if (ret == 0)
3951		tsec->create_sid = isec->sid;
3952	return ret;
3953}
3954
3955static int selinux_kernel_module_request(char *kmod_name)
3956{
 
3957	struct common_audit_data ad;
3958
3959	ad.type = LSM_AUDIT_DATA_KMOD;
 
 
3960	ad.u.kmod_name = kmod_name;
3961
3962	return avc_has_perm(&selinux_state,
3963			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3964			    SYSTEM__MODULE_REQUEST, &ad);
3965}
3966
3967static int selinux_kernel_module_from_file(struct file *file)
3968{
3969	struct common_audit_data ad;
3970	struct inode_security_struct *isec;
3971	struct file_security_struct *fsec;
3972	u32 sid = current_sid();
3973	int rc;
3974
3975	/* init_module */
3976	if (file == NULL)
3977		return avc_has_perm(&selinux_state,
3978				    sid, sid, SECCLASS_SYSTEM,
3979					SYSTEM__MODULE_LOAD, NULL);
3980
3981	/* finit_module */
3982
3983	ad.type = LSM_AUDIT_DATA_FILE;
3984	ad.u.file = file;
3985
3986	fsec = selinux_file(file);
3987	if (sid != fsec->sid) {
3988		rc = avc_has_perm(&selinux_state,
3989				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3990		if (rc)
3991			return rc;
3992	}
3993
3994	isec = inode_security(file_inode(file));
3995	return avc_has_perm(&selinux_state,
3996			    sid, isec->sid, SECCLASS_SYSTEM,
3997				SYSTEM__MODULE_LOAD, &ad);
3998}
3999
4000static int selinux_kernel_read_file(struct file *file,
4001				    enum kernel_read_file_id id)
4002{
4003	int rc = 0;
4004
4005	switch (id) {
4006	case READING_MODULE:
4007		rc = selinux_kernel_module_from_file(file);
4008		break;
4009	default:
4010		break;
4011	}
4012
4013	return rc;
4014}
4015
4016static int selinux_kernel_load_data(enum kernel_load_data_id id)
4017{
4018	int rc = 0;
4019
4020	switch (id) {
4021	case LOADING_MODULE:
4022		rc = selinux_kernel_module_from_file(NULL);
4023	default:
4024		break;
4025	}
4026
4027	return rc;
4028}
4029
4030static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4031{
4032	return avc_has_perm(&selinux_state,
4033			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4034			    PROCESS__SETPGID, NULL);
4035}
4036
4037static int selinux_task_getpgid(struct task_struct *p)
4038{
4039	return avc_has_perm(&selinux_state,
4040			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4041			    PROCESS__GETPGID, NULL);
4042}
4043
4044static int selinux_task_getsid(struct task_struct *p)
4045{
4046	return avc_has_perm(&selinux_state,
4047			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4048			    PROCESS__GETSESSION, NULL);
4049}
4050
4051static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4052{
4053	*secid = task_sid(p);
4054}
4055
4056static int selinux_task_setnice(struct task_struct *p, int nice)
4057{
4058	return avc_has_perm(&selinux_state,
4059			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4060			    PROCESS__SETSCHED, NULL);
 
 
 
 
4061}
4062
4063static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4064{
4065	return avc_has_perm(&selinux_state,
4066			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4067			    PROCESS__SETSCHED, NULL);
 
 
 
 
4068}
4069
4070static int selinux_task_getioprio(struct task_struct *p)
4071{
4072	return avc_has_perm(&selinux_state,
4073			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4074			    PROCESS__GETSCHED, NULL);
4075}
4076
4077static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4078				unsigned int flags)
4079{
4080	u32 av = 0;
4081
4082	if (!flags)
4083		return 0;
4084	if (flags & LSM_PRLIMIT_WRITE)
4085		av |= PROCESS__SETRLIMIT;
4086	if (flags & LSM_PRLIMIT_READ)
4087		av |= PROCESS__GETRLIMIT;
4088	return avc_has_perm(&selinux_state,
4089			    cred_sid(cred), cred_sid(tcred),
4090			    SECCLASS_PROCESS, av, NULL);
4091}
4092
4093static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4094		struct rlimit *new_rlim)
4095{
4096	struct rlimit *old_rlim = p->signal->rlim + resource;
4097
4098	/* Control the ability to change the hard limit (whether
4099	   lowering or raising it), so that the hard limit can
4100	   later be used as a safe reset point for the soft limit
4101	   upon context transitions.  See selinux_bprm_committing_creds. */
4102	if (old_rlim->rlim_max != new_rlim->rlim_max)
4103		return avc_has_perm(&selinux_state,
4104				    current_sid(), task_sid(p),
4105				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4106
4107	return 0;
4108}
4109
4110static int selinux_task_setscheduler(struct task_struct *p)
4111{
4112	return avc_has_perm(&selinux_state,
4113			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4114			    PROCESS__SETSCHED, NULL);
 
 
 
 
4115}
4116
4117static int selinux_task_getscheduler(struct task_struct *p)
4118{
4119	return avc_has_perm(&selinux_state,
4120			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4121			    PROCESS__GETSCHED, NULL);
4122}
4123
4124static int selinux_task_movememory(struct task_struct *p)
4125{
4126	return avc_has_perm(&selinux_state,
4127			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4128			    PROCESS__SETSCHED, NULL);
4129}
4130
4131static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4132				int sig, const struct cred *cred)
4133{
4134	u32 secid;
4135	u32 perm;
 
4136
4137	if (!sig)
4138		perm = PROCESS__SIGNULL; /* null signal; existence test */
4139	else
4140		perm = signal_to_av(sig);
4141	if (!cred)
4142		secid = current_sid();
 
4143	else
4144		secid = cred_sid(cred);
4145	return avc_has_perm(&selinux_state,
4146			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4147}
4148
4149static void selinux_task_to_inode(struct task_struct *p,
4150				  struct inode *inode)
4151{
4152	struct inode_security_struct *isec = selinux_inode(inode);
4153	u32 sid = task_sid(p);
4154
4155	spin_lock(&isec->lock);
4156	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4157	isec->sid = sid;
4158	isec->initialized = LABEL_INITIALIZED;
4159	spin_unlock(&isec->lock);
4160}
4161
4162/* Returns error only if unable to parse addresses */
4163static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4164			struct common_audit_data *ad, u8 *proto)
4165{
4166	int offset, ihlen, ret = -EINVAL;
4167	struct iphdr _iph, *ih;
4168
4169	offset = skb_network_offset(skb);
4170	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4171	if (ih == NULL)
4172		goto out;
4173
4174	ihlen = ih->ihl * 4;
4175	if (ihlen < sizeof(_iph))
4176		goto out;
4177
4178	ad->u.net->v4info.saddr = ih->saddr;
4179	ad->u.net->v4info.daddr = ih->daddr;
4180	ret = 0;
4181
4182	if (proto)
4183		*proto = ih->protocol;
4184
4185	switch (ih->protocol) {
4186	case IPPROTO_TCP: {
4187		struct tcphdr _tcph, *th;
4188
4189		if (ntohs(ih->frag_off) & IP_OFFSET)
4190			break;
4191
4192		offset += ihlen;
4193		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4194		if (th == NULL)
4195			break;
4196
4197		ad->u.net->sport = th->source;
4198		ad->u.net->dport = th->dest;
4199		break;
4200	}
4201
4202	case IPPROTO_UDP: {
4203		struct udphdr _udph, *uh;
4204
4205		if (ntohs(ih->frag_off) & IP_OFFSET)
4206			break;
4207
4208		offset += ihlen;
4209		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4210		if (uh == NULL)
4211			break;
4212
4213		ad->u.net->sport = uh->source;
4214		ad->u.net->dport = uh->dest;
4215		break;
4216	}
4217
4218	case IPPROTO_DCCP: {
4219		struct dccp_hdr _dccph, *dh;
4220
4221		if (ntohs(ih->frag_off) & IP_OFFSET)
4222			break;
4223
4224		offset += ihlen;
4225		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4226		if (dh == NULL)
4227			break;
4228
4229		ad->u.net->sport = dh->dccph_sport;
4230		ad->u.net->dport = dh->dccph_dport;
4231		break;
4232	}
4233
4234#if IS_ENABLED(CONFIG_IP_SCTP)
4235	case IPPROTO_SCTP: {
4236		struct sctphdr _sctph, *sh;
4237
4238		if (ntohs(ih->frag_off) & IP_OFFSET)
4239			break;
4240
4241		offset += ihlen;
4242		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4243		if (sh == NULL)
4244			break;
4245
4246		ad->u.net->sport = sh->source;
4247		ad->u.net->dport = sh->dest;
4248		break;
4249	}
4250#endif
4251	default:
4252		break;
4253	}
4254out:
4255	return ret;
4256}
4257
4258#if IS_ENABLED(CONFIG_IPV6)
4259
4260/* Returns error only if unable to parse addresses */
4261static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4262			struct common_audit_data *ad, u8 *proto)
4263{
4264	u8 nexthdr;
4265	int ret = -EINVAL, offset;
4266	struct ipv6hdr _ipv6h, *ip6;
4267	__be16 frag_off;
4268
4269	offset = skb_network_offset(skb);
4270	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4271	if (ip6 == NULL)
4272		goto out;
4273
4274	ad->u.net->v6info.saddr = ip6->saddr;
4275	ad->u.net->v6info.daddr = ip6->daddr;
4276	ret = 0;
4277
4278	nexthdr = ip6->nexthdr;
4279	offset += sizeof(_ipv6h);
4280	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4281	if (offset < 0)
4282		goto out;
4283
4284	if (proto)
4285		*proto = nexthdr;
4286
4287	switch (nexthdr) {
4288	case IPPROTO_TCP: {
4289		struct tcphdr _tcph, *th;
4290
4291		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4292		if (th == NULL)
4293			break;
4294
4295		ad->u.net->sport = th->source;
4296		ad->u.net->dport = th->dest;
4297		break;
4298	}
4299
4300	case IPPROTO_UDP: {
4301		struct udphdr _udph, *uh;
4302
4303		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4304		if (uh == NULL)
4305			break;
4306
4307		ad->u.net->sport = uh->source;
4308		ad->u.net->dport = uh->dest;
4309		break;
4310	}
4311
4312	case IPPROTO_DCCP: {
4313		struct dccp_hdr _dccph, *dh;
4314
4315		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316		if (dh == NULL)
4317			break;
4318
4319		ad->u.net->sport = dh->dccph_sport;
4320		ad->u.net->dport = dh->dccph_dport;
4321		break;
4322	}
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325	case IPPROTO_SCTP: {
4326		struct sctphdr _sctph, *sh;
4327
4328		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4329		if (sh == NULL)
4330			break;
4331
4332		ad->u.net->sport = sh->source;
4333		ad->u.net->dport = sh->dest;
4334		break;
4335	}
4336#endif
4337	/* includes fragments */
4338	default:
4339		break;
4340	}
4341out:
4342	return ret;
4343}
4344
4345#endif /* IPV6 */
4346
4347static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4348			     char **_addrp, int src, u8 *proto)
4349{
4350	char *addrp;
4351	int ret;
4352
4353	switch (ad->u.net->family) {
4354	case PF_INET:
4355		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4356		if (ret)
4357			goto parse_error;
4358		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4359				       &ad->u.net->v4info.daddr);
4360		goto okay;
4361
4362#if IS_ENABLED(CONFIG_IPV6)
4363	case PF_INET6:
4364		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4365		if (ret)
4366			goto parse_error;
4367		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4368				       &ad->u.net->v6info.daddr);
4369		goto okay;
4370#endif	/* IPV6 */
4371	default:
4372		addrp = NULL;
4373		goto okay;
4374	}
4375
4376parse_error:
4377	pr_warn(
4378	       "SELinux: failure in selinux_parse_skb(),"
4379	       " unable to parse packet\n");
4380	return ret;
4381
4382okay:
4383	if (_addrp)
4384		*_addrp = addrp;
4385	return 0;
4386}
4387
4388/**
4389 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4390 * @skb: the packet
4391 * @family: protocol family
4392 * @sid: the packet's peer label SID
4393 *
4394 * Description:
4395 * Check the various different forms of network peer labeling and determine
4396 * the peer label/SID for the packet; most of the magic actually occurs in
4397 * the security server function security_net_peersid_cmp().  The function
4398 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4399 * or -EACCES if @sid is invalid due to inconsistencies with the different
4400 * peer labels.
4401 *
4402 */
4403static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4404{
4405	int err;
4406	u32 xfrm_sid;
4407	u32 nlbl_sid;
4408	u32 nlbl_type;
4409
4410	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4411	if (unlikely(err))
4412		return -EACCES;
4413	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4414	if (unlikely(err))
4415		return -EACCES;
4416
4417	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4418					   nlbl_type, xfrm_sid, sid);
4419	if (unlikely(err)) {
4420		pr_warn(
4421		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4422		       " unable to determine packet's peer label\n");
4423		return -EACCES;
4424	}
4425
4426	return 0;
4427}
4428
4429/**
4430 * selinux_conn_sid - Determine the child socket label for a connection
4431 * @sk_sid: the parent socket's SID
4432 * @skb_sid: the packet's SID
4433 * @conn_sid: the resulting connection SID
4434 *
4435 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4436 * combined with the MLS information from @skb_sid in order to create
4437 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4438 * of @sk_sid.  Returns zero on success, negative values on failure.
4439 *
4440 */
4441static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4442{
4443	int err = 0;
4444
4445	if (skb_sid != SECSID_NULL)
4446		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4447					    conn_sid);
4448	else
4449		*conn_sid = sk_sid;
4450
4451	return err;
4452}
4453
4454/* socket security operations */
4455
4456static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4457				 u16 secclass, u32 *socksid)
4458{
4459	if (tsec->sockcreate_sid > SECSID_NULL) {
4460		*socksid = tsec->sockcreate_sid;
4461		return 0;
4462	}
4463
4464	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4465				       secclass, NULL, socksid);
4466}
4467
4468static int sock_has_perm(struct sock *sk, u32 perms)
4469{
4470	struct sk_security_struct *sksec = sk->sk_security;
4471	struct common_audit_data ad;
4472	struct lsm_network_audit net = {0,};
4473
4474	if (sksec->sid == SECINITSID_KERNEL)
4475		return 0;
4476
4477	ad.type = LSM_AUDIT_DATA_NET;
4478	ad.u.net = &net;
4479	ad.u.net->sk = sk;
4480
4481	return avc_has_perm(&selinux_state,
4482			    current_sid(), sksec->sid, sksec->sclass, perms,
4483			    &ad);
4484}
4485
4486static int selinux_socket_create(int family, int type,
4487				 int protocol, int kern)
4488{
4489	const struct task_security_struct *tsec = selinux_cred(current_cred());
4490	u32 newsid;
4491	u16 secclass;
4492	int rc;
4493
4494	if (kern)
4495		return 0;
4496
4497	secclass = socket_type_to_security_class(family, type, protocol);
4498	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4499	if (rc)
4500		return rc;
4501
4502	return avc_has_perm(&selinux_state,
4503			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4504}
4505
4506static int selinux_socket_post_create(struct socket *sock, int family,
4507				      int type, int protocol, int kern)
4508{
4509	const struct task_security_struct *tsec = selinux_cred(current_cred());
4510	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4511	struct sk_security_struct *sksec;
4512	u16 sclass = socket_type_to_security_class(family, type, protocol);
4513	u32 sid = SECINITSID_KERNEL;
4514	int err = 0;
4515
4516	if (!kern) {
4517		err = socket_sockcreate_sid(tsec, sclass, &sid);
 
 
 
 
4518		if (err)
4519			return err;
4520	}
4521
4522	isec->sclass = sclass;
4523	isec->sid = sid;
4524	isec->initialized = LABEL_INITIALIZED;
4525
4526	if (sock->sk) {
4527		sksec = sock->sk->sk_security;
4528		sksec->sclass = sclass;
4529		sksec->sid = sid;
4530		/* Allows detection of the first association on this socket */
4531		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4532			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4533
4534		err = selinux_netlbl_socket_post_create(sock->sk, family);
4535	}
4536
4537	return err;
4538}
4539
4540static int selinux_socket_socketpair(struct socket *socka,
4541				     struct socket *sockb)
4542{
4543	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4544	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4545
4546	sksec_a->peer_sid = sksec_b->sid;
4547	sksec_b->peer_sid = sksec_a->sid;
4548
4549	return 0;
4550}
4551
4552/* Range of port numbers used to automatically bind.
4553   Need to determine whether we should perform a name_bind
4554   permission check between the socket and the port number. */
4555
4556static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4557{
4558	struct sock *sk = sock->sk;
4559	struct sk_security_struct *sksec = sk->sk_security;
4560	u16 family;
4561	int err;
4562
4563	err = sock_has_perm(sk, SOCKET__BIND);
4564	if (err)
4565		goto out;
4566
4567	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4568	family = sk->sk_family;
4569	if (family == PF_INET || family == PF_INET6) {
4570		char *addrp;
 
4571		struct common_audit_data ad;
4572		struct lsm_network_audit net = {0,};
4573		struct sockaddr_in *addr4 = NULL;
4574		struct sockaddr_in6 *addr6 = NULL;
4575		u16 family_sa;
4576		unsigned short snum;
4577		u32 sid, node_perm;
4578
4579		/*
4580		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4581		 * that validates multiple binding addresses. Because of this
4582		 * need to check address->sa_family as it is possible to have
4583		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4584		 */
4585		if (addrlen < offsetofend(struct sockaddr, sa_family))
4586			return -EINVAL;
4587		family_sa = address->sa_family;
4588		switch (family_sa) {
4589		case AF_UNSPEC:
4590		case AF_INET:
4591			if (addrlen < sizeof(struct sockaddr_in))
4592				return -EINVAL;
4593			addr4 = (struct sockaddr_in *)address;
4594			if (family_sa == AF_UNSPEC) {
4595				/* see __inet_bind(), we only want to allow
4596				 * AF_UNSPEC if the address is INADDR_ANY
4597				 */
4598				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4599					goto err_af;
4600				family_sa = AF_INET;
4601			}
4602			snum = ntohs(addr4->sin_port);
4603			addrp = (char *)&addr4->sin_addr.s_addr;
4604			break;
4605		case AF_INET6:
4606			if (addrlen < SIN6_LEN_RFC2133)
4607				return -EINVAL;
4608			addr6 = (struct sockaddr_in6 *)address;
4609			snum = ntohs(addr6->sin6_port);
4610			addrp = (char *)&addr6->sin6_addr.s6_addr;
4611			break;
4612		default:
4613			goto err_af;
4614		}
4615
4616		ad.type = LSM_AUDIT_DATA_NET;
4617		ad.u.net = &net;
4618		ad.u.net->sport = htons(snum);
4619		ad.u.net->family = family_sa;
4620
4621		if (snum) {
4622			int low, high;
4623
4624			inet_get_local_port_range(sock_net(sk), &low, &high);
4625
4626			if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4627			    snum > high) {
4628				err = sel_netport_sid(sk->sk_protocol,
4629						      snum, &sid);
4630				if (err)
4631					goto out;
4632				err = avc_has_perm(&selinux_state,
4633						   sksec->sid, sid,
 
 
4634						   sksec->sclass,
4635						   SOCKET__NAME_BIND, &ad);
4636				if (err)
4637					goto out;
4638			}
4639		}
4640
4641		switch (sksec->sclass) {
4642		case SECCLASS_TCP_SOCKET:
4643			node_perm = TCP_SOCKET__NODE_BIND;
4644			break;
4645
4646		case SECCLASS_UDP_SOCKET:
4647			node_perm = UDP_SOCKET__NODE_BIND;
4648			break;
4649
4650		case SECCLASS_DCCP_SOCKET:
4651			node_perm = DCCP_SOCKET__NODE_BIND;
4652			break;
4653
4654		case SECCLASS_SCTP_SOCKET:
4655			node_perm = SCTP_SOCKET__NODE_BIND;
4656			break;
4657
4658		default:
4659			node_perm = RAWIP_SOCKET__NODE_BIND;
4660			break;
4661		}
4662
4663		err = sel_netnode_sid(addrp, family_sa, &sid);
4664		if (err)
4665			goto out;
4666
4667		if (family_sa == AF_INET)
4668			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
 
 
 
 
4669		else
4670			ad.u.net->v6info.saddr = addr6->sin6_addr;
4671
4672		err = avc_has_perm(&selinux_state,
4673				   sksec->sid, sid,
4674				   sksec->sclass, node_perm, &ad);
4675		if (err)
4676			goto out;
4677	}
4678out:
4679	return err;
4680err_af:
4681	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4682	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683		return -EINVAL;
4684	return -EAFNOSUPPORT;
4685}
4686
4687/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4688 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4689 */
4690static int selinux_socket_connect_helper(struct socket *sock,
4691					 struct sockaddr *address, int addrlen)
4692{
4693	struct sock *sk = sock->sk;
4694	struct sk_security_struct *sksec = sk->sk_security;
4695	int err;
4696
4697	err = sock_has_perm(sk, SOCKET__CONNECT);
4698	if (err)
4699		return err;
4700	if (addrlen < offsetofend(struct sockaddr, sa_family))
4701		return -EINVAL;
4702
4703	/* connect(AF_UNSPEC) has special handling, as it is a documented
4704	 * way to disconnect the socket
4705	 */
4706	if (address->sa_family == AF_UNSPEC)
4707		return 0;
4708
4709	/*
4710	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4711	 * for the port.
4712	 */
4713	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4714	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4715	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4716		struct common_audit_data ad;
4717		struct lsm_network_audit net = {0,};
4718		struct sockaddr_in *addr4 = NULL;
4719		struct sockaddr_in6 *addr6 = NULL;
4720		unsigned short snum;
4721		u32 sid, perm;
4722
4723		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4724		 * that validates multiple connect addresses. Because of this
4725		 * need to check address->sa_family as it is possible to have
4726		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4727		 */
4728		switch (address->sa_family) {
4729		case AF_INET:
4730			addr4 = (struct sockaddr_in *)address;
4731			if (addrlen < sizeof(struct sockaddr_in))
4732				return -EINVAL;
4733			snum = ntohs(addr4->sin_port);
4734			break;
4735		case AF_INET6:
4736			addr6 = (struct sockaddr_in6 *)address;
4737			if (addrlen < SIN6_LEN_RFC2133)
4738				return -EINVAL;
4739			snum = ntohs(addr6->sin6_port);
4740			break;
4741		default:
4742			/* Note that SCTP services expect -EINVAL, whereas
4743			 * others expect -EAFNOSUPPORT.
4744			 */
4745			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4746				return -EINVAL;
4747			else
4748				return -EAFNOSUPPORT;
4749		}
4750
4751		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4752		if (err)
4753			return err;
4754
4755		switch (sksec->sclass) {
4756		case SECCLASS_TCP_SOCKET:
4757			perm = TCP_SOCKET__NAME_CONNECT;
4758			break;
4759		case SECCLASS_DCCP_SOCKET:
4760			perm = DCCP_SOCKET__NAME_CONNECT;
4761			break;
4762		case SECCLASS_SCTP_SOCKET:
4763			perm = SCTP_SOCKET__NAME_CONNECT;
4764			break;
4765		}
4766
4767		ad.type = LSM_AUDIT_DATA_NET;
4768		ad.u.net = &net;
4769		ad.u.net->dport = htons(snum);
4770		ad.u.net->family = address->sa_family;
4771		err = avc_has_perm(&selinux_state,
4772				   sksec->sid, sid, sksec->sclass, perm, &ad);
4773		if (err)
4774			return err;
4775	}
4776
4777	return 0;
4778}
4779
4780/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4781static int selinux_socket_connect(struct socket *sock,
4782				  struct sockaddr *address, int addrlen)
4783{
4784	int err;
4785	struct sock *sk = sock->sk;
4786
4787	err = selinux_socket_connect_helper(sock, address, addrlen);
4788	if (err)
4789		return err;
4790
4791	return selinux_netlbl_socket_connect(sk, address);
4792}
4793
4794static int selinux_socket_listen(struct socket *sock, int backlog)
4795{
4796	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4797}
4798
4799static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4800{
4801	int err;
4802	struct inode_security_struct *isec;
4803	struct inode_security_struct *newisec;
4804	u16 sclass;
4805	u32 sid;
4806
4807	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4808	if (err)
4809		return err;
4810
4811	isec = inode_security_novalidate(SOCK_INODE(sock));
4812	spin_lock(&isec->lock);
4813	sclass = isec->sclass;
4814	sid = isec->sid;
4815	spin_unlock(&isec->lock);
4816
4817	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4818	newisec->sclass = sclass;
4819	newisec->sid = sid;
4820	newisec->initialized = LABEL_INITIALIZED;
4821
4822	return 0;
4823}
4824
4825static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4826				  int size)
4827{
4828	return sock_has_perm(sock->sk, SOCKET__WRITE);
4829}
4830
4831static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4832				  int size, int flags)
4833{
4834	return sock_has_perm(sock->sk, SOCKET__READ);
4835}
4836
4837static int selinux_socket_getsockname(struct socket *sock)
4838{
4839	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4840}
4841
4842static int selinux_socket_getpeername(struct socket *sock)
4843{
4844	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4845}
4846
4847static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4848{
4849	int err;
4850
4851	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4852	if (err)
4853		return err;
4854
4855	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4856}
4857
4858static int selinux_socket_getsockopt(struct socket *sock, int level,
4859				     int optname)
4860{
4861	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4862}
4863
4864static int selinux_socket_shutdown(struct socket *sock, int how)
4865{
4866	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4867}
4868
4869static int selinux_socket_unix_stream_connect(struct sock *sock,
4870					      struct sock *other,
4871					      struct sock *newsk)
4872{
4873	struct sk_security_struct *sksec_sock = sock->sk_security;
4874	struct sk_security_struct *sksec_other = other->sk_security;
4875	struct sk_security_struct *sksec_new = newsk->sk_security;
4876	struct common_audit_data ad;
4877	struct lsm_network_audit net = {0,};
4878	int err;
4879
4880	ad.type = LSM_AUDIT_DATA_NET;
4881	ad.u.net = &net;
4882	ad.u.net->sk = other;
4883
4884	err = avc_has_perm(&selinux_state,
4885			   sksec_sock->sid, sksec_other->sid,
4886			   sksec_other->sclass,
4887			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4888	if (err)
4889		return err;
4890
4891	/* server child socket */
4892	sksec_new->peer_sid = sksec_sock->sid;
4893	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4894				    sksec_sock->sid, &sksec_new->sid);
4895	if (err)
4896		return err;
4897
4898	/* connecting socket */
4899	sksec_sock->peer_sid = sksec_new->sid;
4900
4901	return 0;
4902}
4903
4904static int selinux_socket_unix_may_send(struct socket *sock,
4905					struct socket *other)
4906{
4907	struct sk_security_struct *ssec = sock->sk->sk_security;
4908	struct sk_security_struct *osec = other->sk->sk_security;
4909	struct common_audit_data ad;
4910	struct lsm_network_audit net = {0,};
4911
4912	ad.type = LSM_AUDIT_DATA_NET;
4913	ad.u.net = &net;
4914	ad.u.net->sk = other->sk;
4915
4916	return avc_has_perm(&selinux_state,
4917			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4918			    &ad);
4919}
4920
4921static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4922				    char *addrp, u16 family, u32 peer_sid,
4923				    struct common_audit_data *ad)
4924{
4925	int err;
4926	u32 if_sid;
4927	u32 node_sid;
4928
4929	err = sel_netif_sid(ns, ifindex, &if_sid);
4930	if (err)
4931		return err;
4932	err = avc_has_perm(&selinux_state,
4933			   peer_sid, if_sid,
4934			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4935	if (err)
4936		return err;
4937
4938	err = sel_netnode_sid(addrp, family, &node_sid);
4939	if (err)
4940		return err;
4941	return avc_has_perm(&selinux_state,
4942			    peer_sid, node_sid,
4943			    SECCLASS_NODE, NODE__RECVFROM, ad);
4944}
4945
4946static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4947				       u16 family)
4948{
4949	int err = 0;
4950	struct sk_security_struct *sksec = sk->sk_security;
4951	u32 sk_sid = sksec->sid;
4952	struct common_audit_data ad;
4953	struct lsm_network_audit net = {0,};
4954	char *addrp;
4955
4956	ad.type = LSM_AUDIT_DATA_NET;
4957	ad.u.net = &net;
4958	ad.u.net->netif = skb->skb_iif;
4959	ad.u.net->family = family;
4960	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4961	if (err)
4962		return err;
4963
4964	if (selinux_secmark_enabled()) {
4965		err = avc_has_perm(&selinux_state,
4966				   sk_sid, skb->secmark, SECCLASS_PACKET,
4967				   PACKET__RECV, &ad);
4968		if (err)
4969			return err;
4970	}
4971
4972	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4973	if (err)
4974		return err;
4975	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4976
4977	return err;
4978}
4979
4980static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4981{
4982	int err;
4983	struct sk_security_struct *sksec = sk->sk_security;
4984	u16 family = sk->sk_family;
4985	u32 sk_sid = sksec->sid;
4986	struct common_audit_data ad;
4987	struct lsm_network_audit net = {0,};
4988	char *addrp;
4989	u8 secmark_active;
4990	u8 peerlbl_active;
4991
4992	if (family != PF_INET && family != PF_INET6)
4993		return 0;
4994
4995	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4996	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4997		family = PF_INET;
4998
4999	/* If any sort of compatibility mode is enabled then handoff processing
5000	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5001	 * special handling.  We do this in an attempt to keep this function
5002	 * as fast and as clean as possible. */
5003	if (!selinux_policycap_netpeer())
5004		return selinux_sock_rcv_skb_compat(sk, skb, family);
5005
5006	secmark_active = selinux_secmark_enabled();
5007	peerlbl_active = selinux_peerlbl_enabled();
5008	if (!secmark_active && !peerlbl_active)
5009		return 0;
5010
5011	ad.type = LSM_AUDIT_DATA_NET;
5012	ad.u.net = &net;
5013	ad.u.net->netif = skb->skb_iif;
5014	ad.u.net->family = family;
5015	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5016	if (err)
5017		return err;
5018
5019	if (peerlbl_active) {
5020		u32 peer_sid;
5021
5022		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5023		if (err)
5024			return err;
5025		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5026					       addrp, family, peer_sid, &ad);
5027		if (err) {
5028			selinux_netlbl_err(skb, family, err, 0);
5029			return err;
5030		}
5031		err = avc_has_perm(&selinux_state,
5032				   sk_sid, peer_sid, SECCLASS_PEER,
5033				   PEER__RECV, &ad);
5034		if (err) {
5035			selinux_netlbl_err(skb, family, err, 0);
5036			return err;
5037		}
5038	}
5039
5040	if (secmark_active) {
5041		err = avc_has_perm(&selinux_state,
5042				   sk_sid, skb->secmark, SECCLASS_PACKET,
5043				   PACKET__RECV, &ad);
5044		if (err)
5045			return err;
5046	}
5047
5048	return err;
5049}
5050
5051static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5052					    int __user *optlen, unsigned len)
5053{
5054	int err = 0;
5055	char *scontext;
5056	u32 scontext_len;
5057	struct sk_security_struct *sksec = sock->sk->sk_security;
5058	u32 peer_sid = SECSID_NULL;
5059
5060	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5061	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5062	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5063		peer_sid = sksec->peer_sid;
5064	if (peer_sid == SECSID_NULL)
5065		return -ENOPROTOOPT;
5066
5067	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5068				      &scontext_len);
5069	if (err)
5070		return err;
5071
5072	if (scontext_len > len) {
5073		err = -ERANGE;
5074		goto out_len;
5075	}
5076
5077	if (copy_to_user(optval, scontext, scontext_len))
5078		err = -EFAULT;
5079
5080out_len:
5081	if (put_user(scontext_len, optlen))
5082		err = -EFAULT;
5083	kfree(scontext);
5084	return err;
5085}
5086
5087static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5088{
5089	u32 peer_secid = SECSID_NULL;
5090	u16 family;
5091	struct inode_security_struct *isec;
5092
5093	if (skb && skb->protocol == htons(ETH_P_IP))
5094		family = PF_INET;
5095	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5096		family = PF_INET6;
5097	else if (sock)
5098		family = sock->sk->sk_family;
5099	else
5100		goto out;
5101
5102	if (sock && family == PF_UNIX) {
5103		isec = inode_security_novalidate(SOCK_INODE(sock));
5104		peer_secid = isec->sid;
5105	} else if (skb)
5106		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5107
5108out:
5109	*secid = peer_secid;
5110	if (peer_secid == SECSID_NULL)
5111		return -EINVAL;
5112	return 0;
5113}
5114
5115static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5116{
5117	struct sk_security_struct *sksec;
5118
5119	sksec = kzalloc(sizeof(*sksec), priority);
5120	if (!sksec)
5121		return -ENOMEM;
5122
5123	sksec->peer_sid = SECINITSID_UNLABELED;
5124	sksec->sid = SECINITSID_UNLABELED;
5125	sksec->sclass = SECCLASS_SOCKET;
5126	selinux_netlbl_sk_security_reset(sksec);
5127	sk->sk_security = sksec;
5128
5129	return 0;
5130}
5131
5132static void selinux_sk_free_security(struct sock *sk)
5133{
5134	struct sk_security_struct *sksec = sk->sk_security;
5135
5136	sk->sk_security = NULL;
5137	selinux_netlbl_sk_security_free(sksec);
5138	kfree(sksec);
5139}
5140
5141static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5142{
5143	struct sk_security_struct *sksec = sk->sk_security;
5144	struct sk_security_struct *newsksec = newsk->sk_security;
5145
5146	newsksec->sid = sksec->sid;
5147	newsksec->peer_sid = sksec->peer_sid;
5148	newsksec->sclass = sksec->sclass;
5149
5150	selinux_netlbl_sk_security_reset(newsksec);
5151}
5152
5153static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5154{
5155	if (!sk)
5156		*secid = SECINITSID_ANY_SOCKET;
5157	else {
5158		struct sk_security_struct *sksec = sk->sk_security;
5159
5160		*secid = sksec->sid;
5161	}
5162}
5163
5164static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5165{
5166	struct inode_security_struct *isec =
5167		inode_security_novalidate(SOCK_INODE(parent));
5168	struct sk_security_struct *sksec = sk->sk_security;
5169
5170	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5171	    sk->sk_family == PF_UNIX)
5172		isec->sid = sksec->sid;
5173	sksec->sclass = isec->sclass;
5174}
5175
5176/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5177 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5178 * already present).
5179 */
5180static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5181				      struct sk_buff *skb)
5182{
5183	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5184	struct common_audit_data ad;
5185	struct lsm_network_audit net = {0,};
5186	u8 peerlbl_active;
5187	u32 peer_sid = SECINITSID_UNLABELED;
5188	u32 conn_sid;
5189	int err = 0;
5190
5191	if (!selinux_policycap_extsockclass())
5192		return 0;
5193
5194	peerlbl_active = selinux_peerlbl_enabled();
5195
5196	if (peerlbl_active) {
5197		/* This will return peer_sid = SECSID_NULL if there are
5198		 * no peer labels, see security_net_peersid_resolve().
5199		 */
5200		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5201					      &peer_sid);
5202		if (err)
5203			return err;
5204
5205		if (peer_sid == SECSID_NULL)
5206			peer_sid = SECINITSID_UNLABELED;
5207	}
5208
5209	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5210		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5211
5212		/* Here as first association on socket. As the peer SID
5213		 * was allowed by peer recv (and the netif/node checks),
5214		 * then it is approved by policy and used as the primary
5215		 * peer SID for getpeercon(3).
5216		 */
5217		sksec->peer_sid = peer_sid;
5218	} else if  (sksec->peer_sid != peer_sid) {
5219		/* Other association peer SIDs are checked to enforce
5220		 * consistency among the peer SIDs.
5221		 */
5222		ad.type = LSM_AUDIT_DATA_NET;
5223		ad.u.net = &net;
5224		ad.u.net->sk = ep->base.sk;
5225		err = avc_has_perm(&selinux_state,
5226				   sksec->peer_sid, peer_sid, sksec->sclass,
5227				   SCTP_SOCKET__ASSOCIATION, &ad);
5228		if (err)
5229			return err;
5230	}
5231
5232	/* Compute the MLS component for the connection and store
5233	 * the information in ep. This will be used by SCTP TCP type
5234	 * sockets and peeled off connections as they cause a new
5235	 * socket to be generated. selinux_sctp_sk_clone() will then
5236	 * plug this into the new socket.
5237	 */
5238	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5239	if (err)
5240		return err;
5241
5242	ep->secid = conn_sid;
5243	ep->peer_secid = peer_sid;
5244
5245	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5246	return selinux_netlbl_sctp_assoc_request(ep, skb);
5247}
5248
5249/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5250 * based on their @optname.
5251 */
5252static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5253				     struct sockaddr *address,
5254				     int addrlen)
5255{
5256	int len, err = 0, walk_size = 0;
5257	void *addr_buf;
5258	struct sockaddr *addr;
5259	struct socket *sock;
5260
5261	if (!selinux_policycap_extsockclass())
5262		return 0;
5263
5264	/* Process one or more addresses that may be IPv4 or IPv6 */
5265	sock = sk->sk_socket;
5266	addr_buf = address;
5267
5268	while (walk_size < addrlen) {
5269		if (walk_size + sizeof(sa_family_t) > addrlen)
5270			return -EINVAL;
5271
5272		addr = addr_buf;
5273		switch (addr->sa_family) {
5274		case AF_UNSPEC:
5275		case AF_INET:
5276			len = sizeof(struct sockaddr_in);
5277			break;
5278		case AF_INET6:
5279			len = sizeof(struct sockaddr_in6);
5280			break;
5281		default:
5282			return -EINVAL;
5283		}
5284
5285		if (walk_size + len > addrlen)
5286			return -EINVAL;
5287
5288		err = -EINVAL;
5289		switch (optname) {
5290		/* Bind checks */
5291		case SCTP_PRIMARY_ADDR:
5292		case SCTP_SET_PEER_PRIMARY_ADDR:
5293		case SCTP_SOCKOPT_BINDX_ADD:
5294			err = selinux_socket_bind(sock, addr, len);
5295			break;
5296		/* Connect checks */
5297		case SCTP_SOCKOPT_CONNECTX:
5298		case SCTP_PARAM_SET_PRIMARY:
5299		case SCTP_PARAM_ADD_IP:
5300		case SCTP_SENDMSG_CONNECT:
5301			err = selinux_socket_connect_helper(sock, addr, len);
5302			if (err)
5303				return err;
5304
5305			/* As selinux_sctp_bind_connect() is called by the
5306			 * SCTP protocol layer, the socket is already locked,
5307			 * therefore selinux_netlbl_socket_connect_locked() is
5308			 * is called here. The situations handled are:
5309			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5310			 * whenever a new IP address is added or when a new
5311			 * primary address is selected.
5312			 * Note that an SCTP connect(2) call happens before
5313			 * the SCTP protocol layer and is handled via
5314			 * selinux_socket_connect().
5315			 */
5316			err = selinux_netlbl_socket_connect_locked(sk, addr);
5317			break;
5318		}
5319
5320		if (err)
5321			return err;
5322
5323		addr_buf += len;
5324		walk_size += len;
5325	}
5326
5327	return 0;
5328}
5329
5330/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5331static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5332				  struct sock *newsk)
5333{
5334	struct sk_security_struct *sksec = sk->sk_security;
5335	struct sk_security_struct *newsksec = newsk->sk_security;
5336
5337	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5338	 * the non-sctp clone version.
5339	 */
5340	if (!selinux_policycap_extsockclass())
5341		return selinux_sk_clone_security(sk, newsk);
5342
5343	newsksec->sid = ep->secid;
5344	newsksec->peer_sid = ep->peer_secid;
5345	newsksec->sclass = sksec->sclass;
5346	selinux_netlbl_sctp_sk_clone(sk, newsk);
5347}
5348
5349static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5350				     struct request_sock *req)
5351{
5352	struct sk_security_struct *sksec = sk->sk_security;
5353	int err;
5354	u16 family = req->rsk_ops->family;
5355	u32 connsid;
5356	u32 peersid;
5357
 
 
 
 
5358	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5359	if (err)
5360		return err;
5361	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5362	if (err)
5363		return err;
5364	req->secid = connsid;
5365	req->peer_secid = peersid;
 
 
 
 
 
5366
5367	return selinux_netlbl_inet_conn_request(req, family);
5368}
5369
5370static void selinux_inet_csk_clone(struct sock *newsk,
5371				   const struct request_sock *req)
5372{
5373	struct sk_security_struct *newsksec = newsk->sk_security;
5374
5375	newsksec->sid = req->secid;
5376	newsksec->peer_sid = req->peer_secid;
5377	/* NOTE: Ideally, we should also get the isec->sid for the
5378	   new socket in sync, but we don't have the isec available yet.
5379	   So we will wait until sock_graft to do it, by which
5380	   time it will have been created and available. */
5381
5382	/* We don't need to take any sort of lock here as we are the only
5383	 * thread with access to newsksec */
5384	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5385}
5386
5387static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5388{
5389	u16 family = sk->sk_family;
5390	struct sk_security_struct *sksec = sk->sk_security;
5391
5392	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5393	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5394		family = PF_INET;
5395
5396	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5397}
5398
5399static int selinux_secmark_relabel_packet(u32 sid)
5400{
5401	const struct task_security_struct *__tsec;
5402	u32 tsid;
5403
5404	__tsec = selinux_cred(current_cred());
5405	tsid = __tsec->sid;
5406
5407	return avc_has_perm(&selinux_state,
5408			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5409			    NULL);
5410}
5411
5412static void selinux_secmark_refcount_inc(void)
5413{
5414	atomic_inc(&selinux_secmark_refcount);
5415}
5416
5417static void selinux_secmark_refcount_dec(void)
5418{
5419	atomic_dec(&selinux_secmark_refcount);
5420}
5421
5422static void selinux_req_classify_flow(const struct request_sock *req,
5423				      struct flowi *fl)
5424{
5425	fl->flowi_secid = req->secid;
5426}
5427
5428static int selinux_tun_dev_alloc_security(void **security)
5429{
5430	struct tun_security_struct *tunsec;
5431
5432	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5433	if (!tunsec)
5434		return -ENOMEM;
5435	tunsec->sid = current_sid();
5436
5437	*security = tunsec;
5438	return 0;
5439}
5440
5441static void selinux_tun_dev_free_security(void *security)
5442{
5443	kfree(security);
5444}
5445
5446static int selinux_tun_dev_create(void)
5447{
5448	u32 sid = current_sid();
5449
5450	/* we aren't taking into account the "sockcreate" SID since the socket
5451	 * that is being created here is not a socket in the traditional sense,
5452	 * instead it is a private sock, accessible only to the kernel, and
5453	 * representing a wide range of network traffic spanning multiple
5454	 * connections unlike traditional sockets - check the TUN driver to
5455	 * get a better understanding of why this socket is special */
5456
5457	return avc_has_perm(&selinux_state,
5458			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5459			    NULL);
5460}
5461
5462static int selinux_tun_dev_attach_queue(void *security)
5463{
5464	struct tun_security_struct *tunsec = security;
5465
5466	return avc_has_perm(&selinux_state,
5467			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5468			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5469}
5470
5471static int selinux_tun_dev_attach(struct sock *sk, void *security)
5472{
5473	struct tun_security_struct *tunsec = security;
5474	struct sk_security_struct *sksec = sk->sk_security;
5475
5476	/* we don't currently perform any NetLabel based labeling here and it
5477	 * isn't clear that we would want to do so anyway; while we could apply
5478	 * labeling without the support of the TUN user the resulting labeled
5479	 * traffic from the other end of the connection would almost certainly
5480	 * cause confusion to the TUN user that had no idea network labeling
5481	 * protocols were being used */
5482
5483	sksec->sid = tunsec->sid;
 
 
 
5484	sksec->sclass = SECCLASS_TUN_SOCKET;
5485
5486	return 0;
5487}
5488
5489static int selinux_tun_dev_open(void *security)
5490{
5491	struct tun_security_struct *tunsec = security;
5492	u32 sid = current_sid();
5493	int err;
5494
5495	err = avc_has_perm(&selinux_state,
5496			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5497			   TUN_SOCKET__RELABELFROM, NULL);
5498	if (err)
5499		return err;
5500	err = avc_has_perm(&selinux_state,
5501			   sid, sid, SECCLASS_TUN_SOCKET,
5502			   TUN_SOCKET__RELABELTO, NULL);
5503	if (err)
5504		return err;
5505	tunsec->sid = sid;
 
5506
5507	return 0;
5508}
5509
5510static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5511{
5512	int err = 0;
5513	u32 perm;
5514	struct nlmsghdr *nlh;
5515	struct sk_security_struct *sksec = sk->sk_security;
5516
5517	if (skb->len < NLMSG_HDRLEN) {
5518		err = -EINVAL;
5519		goto out;
5520	}
5521	nlh = nlmsg_hdr(skb);
5522
5523	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5524	if (err) {
5525		if (err == -EINVAL) {
5526			pr_warn_ratelimited("SELinux: unrecognized netlink"
5527			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5528			       " pig=%d comm=%s\n",
5529			       sk->sk_protocol, nlh->nlmsg_type,
5530			       secclass_map[sksec->sclass - 1].name,
5531			       task_pid_nr(current), current->comm);
5532			if (!enforcing_enabled(&selinux_state) ||
5533			    security_get_allow_unknown(&selinux_state))
5534				err = 0;
5535		}
5536
5537		/* Ignore */
5538		if (err == -ENOENT)
5539			err = 0;
5540		goto out;
5541	}
5542
5543	err = sock_has_perm(sk, perm);
5544out:
5545	return err;
5546}
5547
5548#ifdef CONFIG_NETFILTER
5549
5550static unsigned int selinux_ip_forward(struct sk_buff *skb,
5551				       const struct net_device *indev,
5552				       u16 family)
5553{
5554	int err;
5555	char *addrp;
5556	u32 peer_sid;
5557	struct common_audit_data ad;
5558	struct lsm_network_audit net = {0,};
5559	u8 secmark_active;
5560	u8 netlbl_active;
5561	u8 peerlbl_active;
5562
5563	if (!selinux_policycap_netpeer())
5564		return NF_ACCEPT;
5565
5566	secmark_active = selinux_secmark_enabled();
5567	netlbl_active = netlbl_enabled();
5568	peerlbl_active = selinux_peerlbl_enabled();
5569	if (!secmark_active && !peerlbl_active)
5570		return NF_ACCEPT;
5571
5572	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5573		return NF_DROP;
5574
5575	ad.type = LSM_AUDIT_DATA_NET;
5576	ad.u.net = &net;
5577	ad.u.net->netif = indev->ifindex;
5578	ad.u.net->family = family;
5579	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5580		return NF_DROP;
5581
5582	if (peerlbl_active) {
5583		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5584					       addrp, family, peer_sid, &ad);
5585		if (err) {
5586			selinux_netlbl_err(skb, family, err, 1);
5587			return NF_DROP;
5588		}
5589	}
5590
5591	if (secmark_active)
5592		if (avc_has_perm(&selinux_state,
5593				 peer_sid, skb->secmark,
5594				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5595			return NF_DROP;
5596
5597	if (netlbl_active)
5598		/* we do this in the FORWARD path and not the POST_ROUTING
5599		 * path because we want to make sure we apply the necessary
5600		 * labeling before IPsec is applied so we can leverage AH
5601		 * protection */
5602		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5603			return NF_DROP;
5604
5605	return NF_ACCEPT;
5606}
5607
5608static unsigned int selinux_ipv4_forward(void *priv,
5609					 struct sk_buff *skb,
5610					 const struct nf_hook_state *state)
 
 
5611{
5612	return selinux_ip_forward(skb, state->in, PF_INET);
5613}
5614
5615#if IS_ENABLED(CONFIG_IPV6)
5616static unsigned int selinux_ipv6_forward(void *priv,
5617					 struct sk_buff *skb,
5618					 const struct nf_hook_state *state)
 
 
5619{
5620	return selinux_ip_forward(skb, state->in, PF_INET6);
5621}
5622#endif	/* IPV6 */
5623
5624static unsigned int selinux_ip_output(struct sk_buff *skb,
5625				      u16 family)
5626{
5627	struct sock *sk;
5628	u32 sid;
5629
5630	if (!netlbl_enabled())
5631		return NF_ACCEPT;
5632
5633	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5634	 * because we want to make sure we apply the necessary labeling
5635	 * before IPsec is applied so we can leverage AH protection */
5636	sk = skb->sk;
5637	if (sk) {
5638		struct sk_security_struct *sksec;
5639
5640		if (sk_listener(sk))
5641			/* if the socket is the listening state then this
5642			 * packet is a SYN-ACK packet which means it needs to
5643			 * be labeled based on the connection/request_sock and
5644			 * not the parent socket.  unfortunately, we can't
5645			 * lookup the request_sock yet as it isn't queued on
5646			 * the parent socket until after the SYN-ACK is sent.
5647			 * the "solution" is to simply pass the packet as-is
5648			 * as any IP option based labeling should be copied
5649			 * from the initial connection request (in the IP
5650			 * layer).  it is far from ideal, but until we get a
5651			 * security label in the packet itself this is the
5652			 * best we can do. */
5653			return NF_ACCEPT;
5654
5655		/* standard practice, label using the parent socket */
5656		sksec = sk->sk_security;
5657		sid = sksec->sid;
5658	} else
5659		sid = SECINITSID_KERNEL;
5660	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5661		return NF_DROP;
5662
5663	return NF_ACCEPT;
5664}
5665
5666static unsigned int selinux_ipv4_output(void *priv,
5667					struct sk_buff *skb,
5668					const struct nf_hook_state *state)
 
 
5669{
5670	return selinux_ip_output(skb, PF_INET);
5671}
5672
5673#if IS_ENABLED(CONFIG_IPV6)
5674static unsigned int selinux_ipv6_output(void *priv,
5675					struct sk_buff *skb,
5676					const struct nf_hook_state *state)
5677{
5678	return selinux_ip_output(skb, PF_INET6);
5679}
5680#endif	/* IPV6 */
5681
5682static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5683						int ifindex,
5684						u16 family)
5685{
5686	struct sock *sk = skb_to_full_sk(skb);
5687	struct sk_security_struct *sksec;
5688	struct common_audit_data ad;
5689	struct lsm_network_audit net = {0,};
5690	char *addrp;
5691	u8 proto;
5692
5693	if (sk == NULL)
5694		return NF_ACCEPT;
5695	sksec = sk->sk_security;
5696
5697	ad.type = LSM_AUDIT_DATA_NET;
5698	ad.u.net = &net;
5699	ad.u.net->netif = ifindex;
5700	ad.u.net->family = family;
5701	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5702		return NF_DROP;
5703
5704	if (selinux_secmark_enabled())
5705		if (avc_has_perm(&selinux_state,
5706				 sksec->sid, skb->secmark,
5707				 SECCLASS_PACKET, PACKET__SEND, &ad))
5708			return NF_DROP_ERR(-ECONNREFUSED);
5709
5710	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5711		return NF_DROP_ERR(-ECONNREFUSED);
5712
5713	return NF_ACCEPT;
5714}
5715
5716static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5717					 const struct net_device *outdev,
5718					 u16 family)
5719{
5720	u32 secmark_perm;
5721	u32 peer_sid;
5722	int ifindex = outdev->ifindex;
5723	struct sock *sk;
5724	struct common_audit_data ad;
5725	struct lsm_network_audit net = {0,};
5726	char *addrp;
5727	u8 secmark_active;
5728	u8 peerlbl_active;
5729
5730	/* If any sort of compatibility mode is enabled then handoff processing
5731	 * to the selinux_ip_postroute_compat() function to deal with the
5732	 * special handling.  We do this in an attempt to keep this function
5733	 * as fast and as clean as possible. */
5734	if (!selinux_policycap_netpeer())
5735		return selinux_ip_postroute_compat(skb, ifindex, family);
5736
5737	secmark_active = selinux_secmark_enabled();
5738	peerlbl_active = selinux_peerlbl_enabled();
5739	if (!secmark_active && !peerlbl_active)
5740		return NF_ACCEPT;
5741
5742	sk = skb_to_full_sk(skb);
5743
5744#ifdef CONFIG_XFRM
5745	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5746	 * packet transformation so allow the packet to pass without any checks
5747	 * since we'll have another chance to perform access control checks
5748	 * when the packet is on it's final way out.
5749	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5750	 *       is NULL, in this case go ahead and apply access control.
5751	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5752	 *       TCP listening state we cannot wait until the XFRM processing
5753	 *       is done as we will miss out on the SA label if we do;
5754	 *       unfortunately, this means more work, but it is only once per
5755	 *       connection. */
5756	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5757	    !(sk && sk_listener(sk)))
5758		return NF_ACCEPT;
5759#endif
 
 
 
 
5760
 
 
 
 
 
5761	if (sk == NULL) {
5762		/* Without an associated socket the packet is either coming
5763		 * from the kernel or it is being forwarded; check the packet
5764		 * to determine which and if the packet is being forwarded
5765		 * query the packet directly to determine the security label. */
5766		if (skb->skb_iif) {
5767			secmark_perm = PACKET__FORWARD_OUT;
5768			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5769				return NF_DROP;
5770		} else {
5771			secmark_perm = PACKET__SEND;
5772			peer_sid = SECINITSID_KERNEL;
5773		}
5774	} else if (sk_listener(sk)) {
5775		/* Locally generated packet but the associated socket is in the
5776		 * listening state which means this is a SYN-ACK packet.  In
5777		 * this particular case the correct security label is assigned
5778		 * to the connection/request_sock but unfortunately we can't
5779		 * query the request_sock as it isn't queued on the parent
5780		 * socket until after the SYN-ACK packet is sent; the only
5781		 * viable choice is to regenerate the label like we do in
5782		 * selinux_inet_conn_request().  See also selinux_ip_output()
5783		 * for similar problems. */
5784		u32 skb_sid;
5785		struct sk_security_struct *sksec;
5786
5787		sksec = sk->sk_security;
5788		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5789			return NF_DROP;
5790		/* At this point, if the returned skb peerlbl is SECSID_NULL
5791		 * and the packet has been through at least one XFRM
5792		 * transformation then we must be dealing with the "final"
5793		 * form of labeled IPsec packet; since we've already applied
5794		 * all of our access controls on this packet we can safely
5795		 * pass the packet. */
5796		if (skb_sid == SECSID_NULL) {
5797			switch (family) {
5798			case PF_INET:
5799				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5800					return NF_ACCEPT;
5801				break;
5802			case PF_INET6:
5803				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5804					return NF_ACCEPT;
5805				break;
5806			default:
5807				return NF_DROP_ERR(-ECONNREFUSED);
5808			}
5809		}
5810		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5811			return NF_DROP;
5812		secmark_perm = PACKET__SEND;
5813	} else {
5814		/* Locally generated packet, fetch the security label from the
5815		 * associated socket. */
5816		struct sk_security_struct *sksec = sk->sk_security;
5817		peer_sid = sksec->sid;
5818		secmark_perm = PACKET__SEND;
5819	}
5820
5821	ad.type = LSM_AUDIT_DATA_NET;
5822	ad.u.net = &net;
5823	ad.u.net->netif = ifindex;
5824	ad.u.net->family = family;
5825	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5826		return NF_DROP;
5827
5828	if (secmark_active)
5829		if (avc_has_perm(&selinux_state,
5830				 peer_sid, skb->secmark,
5831				 SECCLASS_PACKET, secmark_perm, &ad))
5832			return NF_DROP_ERR(-ECONNREFUSED);
5833
5834	if (peerlbl_active) {
5835		u32 if_sid;
5836		u32 node_sid;
5837
5838		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5839			return NF_DROP;
5840		if (avc_has_perm(&selinux_state,
5841				 peer_sid, if_sid,
5842				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5843			return NF_DROP_ERR(-ECONNREFUSED);
5844
5845		if (sel_netnode_sid(addrp, family, &node_sid))
5846			return NF_DROP;
5847		if (avc_has_perm(&selinux_state,
5848				 peer_sid, node_sid,
5849				 SECCLASS_NODE, NODE__SENDTO, &ad))
5850			return NF_DROP_ERR(-ECONNREFUSED);
5851	}
5852
5853	return NF_ACCEPT;
5854}
5855
5856static unsigned int selinux_ipv4_postroute(void *priv,
5857					   struct sk_buff *skb,
5858					   const struct nf_hook_state *state)
 
 
5859{
5860	return selinux_ip_postroute(skb, state->out, PF_INET);
5861}
5862
5863#if IS_ENABLED(CONFIG_IPV6)
5864static unsigned int selinux_ipv6_postroute(void *priv,
5865					   struct sk_buff *skb,
5866					   const struct nf_hook_state *state)
 
 
5867{
5868	return selinux_ip_postroute(skb, state->out, PF_INET6);
5869}
5870#endif	/* IPV6 */
5871
5872#endif	/* CONFIG_NETFILTER */
5873
5874static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5875{
 
 
 
 
 
 
5876	return selinux_nlmsg_perm(sk, skb);
5877}
5878
5879static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5880{
 
 
 
 
 
 
 
 
5881	isec->sclass = sclass;
5882	isec->sid = current_sid();
 
 
 
 
 
 
 
 
 
 
5883}
5884
5885static int msg_msg_alloc_security(struct msg_msg *msg)
5886{
5887	struct msg_security_struct *msec;
5888
5889	msec = selinux_msg_msg(msg);
 
 
 
5890	msec->sid = SECINITSID_UNLABELED;
 
5891
5892	return 0;
5893}
5894
 
 
 
 
 
 
 
 
5895static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5896			u32 perms)
5897{
5898	struct ipc_security_struct *isec;
5899	struct common_audit_data ad;
5900	u32 sid = current_sid();
5901
5902	isec = selinux_ipc(ipc_perms);
5903
5904	ad.type = LSM_AUDIT_DATA_IPC;
5905	ad.u.ipc_id = ipc_perms->key;
5906
5907	return avc_has_perm(&selinux_state,
5908			    sid, isec->sid, isec->sclass, perms, &ad);
5909}
5910
5911static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5912{
5913	return msg_msg_alloc_security(msg);
5914}
5915
 
 
 
 
 
5916/* message queue security operations */
5917static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5918{
5919	struct ipc_security_struct *isec;
5920	struct common_audit_data ad;
5921	u32 sid = current_sid();
5922	int rc;
5923
5924	isec = selinux_ipc(msq);
5925	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
5926
5927	ad.type = LSM_AUDIT_DATA_IPC;
5928	ad.u.ipc_id = msq->key;
5929
5930	rc = avc_has_perm(&selinux_state,
5931			  sid, isec->sid, SECCLASS_MSGQ,
5932			  MSGQ__CREATE, &ad);
5933	return rc;
 
 
 
 
 
 
 
 
 
5934}
5935
5936static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5937{
5938	struct ipc_security_struct *isec;
5939	struct common_audit_data ad;
5940	u32 sid = current_sid();
5941
5942	isec = selinux_ipc(msq);
5943
5944	ad.type = LSM_AUDIT_DATA_IPC;
5945	ad.u.ipc_id = msq->key;
5946
5947	return avc_has_perm(&selinux_state,
5948			    sid, isec->sid, SECCLASS_MSGQ,
5949			    MSGQ__ASSOCIATE, &ad);
5950}
5951
5952static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5953{
5954	int err;
5955	int perms;
5956
5957	switch (cmd) {
5958	case IPC_INFO:
5959	case MSG_INFO:
5960		/* No specific object, just general system-wide information. */
5961		return avc_has_perm(&selinux_state,
5962				    current_sid(), SECINITSID_KERNEL,
5963				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5964	case IPC_STAT:
5965	case MSG_STAT:
5966	case MSG_STAT_ANY:
5967		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5968		break;
5969	case IPC_SET:
5970		perms = MSGQ__SETATTR;
5971		break;
5972	case IPC_RMID:
5973		perms = MSGQ__DESTROY;
5974		break;
5975	default:
5976		return 0;
5977	}
5978
5979	err = ipc_has_perm(msq, perms);
5980	return err;
5981}
5982
5983static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5984{
5985	struct ipc_security_struct *isec;
5986	struct msg_security_struct *msec;
5987	struct common_audit_data ad;
5988	u32 sid = current_sid();
5989	int rc;
5990
5991	isec = selinux_ipc(msq);
5992	msec = selinux_msg_msg(msg);
5993
5994	/*
5995	 * First time through, need to assign label to the message
5996	 */
5997	if (msec->sid == SECINITSID_UNLABELED) {
5998		/*
5999		 * Compute new sid based on current process and
6000		 * message queue this message will be stored in
6001		 */
6002		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6003					     SECCLASS_MSG, NULL, &msec->sid);
6004		if (rc)
6005			return rc;
6006	}
6007
6008	ad.type = LSM_AUDIT_DATA_IPC;
6009	ad.u.ipc_id = msq->key;
6010
6011	/* Can this process write to the queue? */
6012	rc = avc_has_perm(&selinux_state,
6013			  sid, isec->sid, SECCLASS_MSGQ,
6014			  MSGQ__WRITE, &ad);
6015	if (!rc)
6016		/* Can this process send the message */
6017		rc = avc_has_perm(&selinux_state,
6018				  sid, msec->sid, SECCLASS_MSG,
6019				  MSG__SEND, &ad);
6020	if (!rc)
6021		/* Can the message be put in the queue? */
6022		rc = avc_has_perm(&selinux_state,
6023				  msec->sid, isec->sid, SECCLASS_MSGQ,
6024				  MSGQ__ENQUEUE, &ad);
6025
6026	return rc;
6027}
6028
6029static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6030				    struct task_struct *target,
6031				    long type, int mode)
6032{
6033	struct ipc_security_struct *isec;
6034	struct msg_security_struct *msec;
6035	struct common_audit_data ad;
6036	u32 sid = task_sid(target);
6037	int rc;
6038
6039	isec = selinux_ipc(msq);
6040	msec = selinux_msg_msg(msg);
6041
6042	ad.type = LSM_AUDIT_DATA_IPC;
6043	ad.u.ipc_id = msq->key;
6044
6045	rc = avc_has_perm(&selinux_state,
6046			  sid, isec->sid,
6047			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6048	if (!rc)
6049		rc = avc_has_perm(&selinux_state,
6050				  sid, msec->sid,
6051				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6052	return rc;
6053}
6054
6055/* Shared Memory security operations */
6056static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6057{
6058	struct ipc_security_struct *isec;
6059	struct common_audit_data ad;
6060	u32 sid = current_sid();
6061	int rc;
6062
6063	isec = selinux_ipc(shp);
6064	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6065
6066	ad.type = LSM_AUDIT_DATA_IPC;
6067	ad.u.ipc_id = shp->key;
6068
6069	rc = avc_has_perm(&selinux_state,
6070			  sid, isec->sid, SECCLASS_SHM,
6071			  SHM__CREATE, &ad);
6072	return rc;
 
 
 
 
 
 
 
 
 
6073}
6074
6075static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6076{
6077	struct ipc_security_struct *isec;
6078	struct common_audit_data ad;
6079	u32 sid = current_sid();
6080
6081	isec = selinux_ipc(shp);
6082
6083	ad.type = LSM_AUDIT_DATA_IPC;
6084	ad.u.ipc_id = shp->key;
6085
6086	return avc_has_perm(&selinux_state,
6087			    sid, isec->sid, SECCLASS_SHM,
6088			    SHM__ASSOCIATE, &ad);
6089}
6090
6091/* Note, at this point, shp is locked down */
6092static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6093{
6094	int perms;
6095	int err;
6096
6097	switch (cmd) {
6098	case IPC_INFO:
6099	case SHM_INFO:
6100		/* No specific object, just general system-wide information. */
6101		return avc_has_perm(&selinux_state,
6102				    current_sid(), SECINITSID_KERNEL,
6103				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6104	case IPC_STAT:
6105	case SHM_STAT:
6106	case SHM_STAT_ANY:
6107		perms = SHM__GETATTR | SHM__ASSOCIATE;
6108		break;
6109	case IPC_SET:
6110		perms = SHM__SETATTR;
6111		break;
6112	case SHM_LOCK:
6113	case SHM_UNLOCK:
6114		perms = SHM__LOCK;
6115		break;
6116	case IPC_RMID:
6117		perms = SHM__DESTROY;
6118		break;
6119	default:
6120		return 0;
6121	}
6122
6123	err = ipc_has_perm(shp, perms);
6124	return err;
6125}
6126
6127static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6128			     char __user *shmaddr, int shmflg)
6129{
6130	u32 perms;
6131
6132	if (shmflg & SHM_RDONLY)
6133		perms = SHM__READ;
6134	else
6135		perms = SHM__READ | SHM__WRITE;
6136
6137	return ipc_has_perm(shp, perms);
6138}
6139
6140/* Semaphore security operations */
6141static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6142{
6143	struct ipc_security_struct *isec;
6144	struct common_audit_data ad;
6145	u32 sid = current_sid();
6146	int rc;
6147
6148	isec = selinux_ipc(sma);
6149	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6150
6151	ad.type = LSM_AUDIT_DATA_IPC;
6152	ad.u.ipc_id = sma->key;
6153
6154	rc = avc_has_perm(&selinux_state,
6155			  sid, isec->sid, SECCLASS_SEM,
6156			  SEM__CREATE, &ad);
6157	return rc;
 
 
 
 
 
 
 
 
 
6158}
6159
6160static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6161{
6162	struct ipc_security_struct *isec;
6163	struct common_audit_data ad;
6164	u32 sid = current_sid();
6165
6166	isec = selinux_ipc(sma);
6167
6168	ad.type = LSM_AUDIT_DATA_IPC;
6169	ad.u.ipc_id = sma->key;
6170
6171	return avc_has_perm(&selinux_state,
6172			    sid, isec->sid, SECCLASS_SEM,
6173			    SEM__ASSOCIATE, &ad);
6174}
6175
6176/* Note, at this point, sma is locked down */
6177static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6178{
6179	int err;
6180	u32 perms;
6181
6182	switch (cmd) {
6183	case IPC_INFO:
6184	case SEM_INFO:
6185		/* No specific object, just general system-wide information. */
6186		return avc_has_perm(&selinux_state,
6187				    current_sid(), SECINITSID_KERNEL,
6188				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6189	case GETPID:
6190	case GETNCNT:
6191	case GETZCNT:
6192		perms = SEM__GETATTR;
6193		break;
6194	case GETVAL:
6195	case GETALL:
6196		perms = SEM__READ;
6197		break;
6198	case SETVAL:
6199	case SETALL:
6200		perms = SEM__WRITE;
6201		break;
6202	case IPC_RMID:
6203		perms = SEM__DESTROY;
6204		break;
6205	case IPC_SET:
6206		perms = SEM__SETATTR;
6207		break;
6208	case IPC_STAT:
6209	case SEM_STAT:
6210	case SEM_STAT_ANY:
6211		perms = SEM__GETATTR | SEM__ASSOCIATE;
6212		break;
6213	default:
6214		return 0;
6215	}
6216
6217	err = ipc_has_perm(sma, perms);
6218	return err;
6219}
6220
6221static int selinux_sem_semop(struct kern_ipc_perm *sma,
6222			     struct sembuf *sops, unsigned nsops, int alter)
6223{
6224	u32 perms;
6225
6226	if (alter)
6227		perms = SEM__READ | SEM__WRITE;
6228	else
6229		perms = SEM__READ;
6230
6231	return ipc_has_perm(sma, perms);
6232}
6233
6234static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6235{
6236	u32 av = 0;
6237
6238	av = 0;
6239	if (flag & S_IRUGO)
6240		av |= IPC__UNIX_READ;
6241	if (flag & S_IWUGO)
6242		av |= IPC__UNIX_WRITE;
6243
6244	if (av == 0)
6245		return 0;
6246
6247	return ipc_has_perm(ipcp, av);
6248}
6249
6250static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6251{
6252	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6253	*secid = isec->sid;
6254}
6255
6256static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6257{
6258	if (inode)
6259		inode_doinit_with_dentry(inode, dentry);
6260}
6261
6262static int selinux_getprocattr(struct task_struct *p,
6263			       char *name, char **value)
6264{
6265	const struct task_security_struct *__tsec;
6266	u32 sid;
6267	int error;
6268	unsigned len;
6269
6270	rcu_read_lock();
6271	__tsec = selinux_cred(__task_cred(p));
6272
6273	if (current != p) {
6274		error = avc_has_perm(&selinux_state,
6275				     current_sid(), __tsec->sid,
6276				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6277		if (error)
6278			goto bad;
6279	}
6280
 
 
 
6281	if (!strcmp(name, "current"))
6282		sid = __tsec->sid;
6283	else if (!strcmp(name, "prev"))
6284		sid = __tsec->osid;
6285	else if (!strcmp(name, "exec"))
6286		sid = __tsec->exec_sid;
6287	else if (!strcmp(name, "fscreate"))
6288		sid = __tsec->create_sid;
6289	else if (!strcmp(name, "keycreate"))
6290		sid = __tsec->keycreate_sid;
6291	else if (!strcmp(name, "sockcreate"))
6292		sid = __tsec->sockcreate_sid;
6293	else {
6294		error = -EINVAL;
6295		goto bad;
6296	}
6297	rcu_read_unlock();
6298
6299	if (!sid)
6300		return 0;
6301
6302	error = security_sid_to_context(&selinux_state, sid, value, &len);
6303	if (error)
6304		return error;
6305	return len;
6306
6307bad:
6308	rcu_read_unlock();
6309	return error;
6310}
6311
6312static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6313{
6314	struct task_security_struct *tsec;
 
6315	struct cred *new;
6316	u32 mysid = current_sid(), sid = 0, ptsid;
6317	int error;
6318	char *str = value;
6319
 
 
 
 
 
 
6320	/*
6321	 * Basic control over ability to set these attributes at all.
 
 
6322	 */
6323	if (!strcmp(name, "exec"))
6324		error = avc_has_perm(&selinux_state,
6325				     mysid, mysid, SECCLASS_PROCESS,
6326				     PROCESS__SETEXEC, NULL);
6327	else if (!strcmp(name, "fscreate"))
6328		error = avc_has_perm(&selinux_state,
6329				     mysid, mysid, SECCLASS_PROCESS,
6330				     PROCESS__SETFSCREATE, NULL);
6331	else if (!strcmp(name, "keycreate"))
6332		error = avc_has_perm(&selinux_state,
6333				     mysid, mysid, SECCLASS_PROCESS,
6334				     PROCESS__SETKEYCREATE, NULL);
6335	else if (!strcmp(name, "sockcreate"))
6336		error = avc_has_perm(&selinux_state,
6337				     mysid, mysid, SECCLASS_PROCESS,
6338				     PROCESS__SETSOCKCREATE, NULL);
6339	else if (!strcmp(name, "current"))
6340		error = avc_has_perm(&selinux_state,
6341				     mysid, mysid, SECCLASS_PROCESS,
6342				     PROCESS__SETCURRENT, NULL);
6343	else
6344		error = -EINVAL;
6345	if (error)
6346		return error;
6347
6348	/* Obtain a SID for the context, if one was specified. */
6349	if (size && str[0] && str[0] != '\n') {
6350		if (str[size-1] == '\n') {
6351			str[size-1] = 0;
6352			size--;
6353		}
6354		error = security_context_to_sid(&selinux_state, value, size,
6355						&sid, GFP_KERNEL);
6356		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6357			if (!has_cap_mac_admin(true)) {
6358				struct audit_buffer *ab;
6359				size_t audit_size;
6360
6361				/* We strip a nul only if it is at the end, otherwise the
6362				 * context contains a nul and we should audit that */
6363				if (str[size - 1] == '\0')
6364					audit_size = size - 1;
6365				else
6366					audit_size = size;
6367				ab = audit_log_start(audit_context(),
6368						     GFP_ATOMIC,
6369						     AUDIT_SELINUX_ERR);
6370				audit_log_format(ab, "op=fscreate invalid_context=");
6371				audit_log_n_untrustedstring(ab, value, audit_size);
6372				audit_log_end(ab);
6373
6374				return error;
6375			}
6376			error = security_context_to_sid_force(
6377						      &selinux_state,
6378						      value, size, &sid);
6379		}
6380		if (error)
6381			return error;
6382	}
6383
6384	new = prepare_creds();
6385	if (!new)
6386		return -ENOMEM;
6387
6388	/* Permission checking based on the specified context is
6389	   performed during the actual operation (execve,
6390	   open/mkdir/...), when we know the full context of the
6391	   operation.  See selinux_bprm_set_creds for the execve
6392	   checks and may_create for the file creation checks. The
6393	   operation will then fail if the context is not permitted. */
6394	tsec = selinux_cred(new);
6395	if (!strcmp(name, "exec")) {
6396		tsec->exec_sid = sid;
6397	} else if (!strcmp(name, "fscreate")) {
6398		tsec->create_sid = sid;
6399	} else if (!strcmp(name, "keycreate")) {
6400		if (sid) {
6401			error = avc_has_perm(&selinux_state, mysid, sid,
6402					     SECCLASS_KEY, KEY__CREATE, NULL);
6403			if (error)
6404				goto abort_change;
6405		}
6406		tsec->keycreate_sid = sid;
6407	} else if (!strcmp(name, "sockcreate")) {
6408		tsec->sockcreate_sid = sid;
6409	} else if (!strcmp(name, "current")) {
6410		error = -EINVAL;
6411		if (sid == 0)
6412			goto abort_change;
6413
6414		/* Only allow single threaded processes to change context */
6415		error = -EPERM;
6416		if (!current_is_single_threaded()) {
6417			error = security_bounded_transition(&selinux_state,
6418							    tsec->sid, sid);
6419			if (error)
6420				goto abort_change;
6421		}
6422
6423		/* Check permissions for the transition. */
6424		error = avc_has_perm(&selinux_state,
6425				     tsec->sid, sid, SECCLASS_PROCESS,
6426				     PROCESS__DYNTRANSITION, NULL);
6427		if (error)
6428			goto abort_change;
6429
6430		/* Check for ptracing, and update the task SID if ok.
6431		   Otherwise, leave SID unchanged and fail. */
6432		ptsid = ptrace_parent_sid();
6433		if (ptsid != 0) {
6434			error = avc_has_perm(&selinux_state,
6435					     ptsid, sid, SECCLASS_PROCESS,
 
 
 
 
 
6436					     PROCESS__PTRACE, NULL);
6437			if (error)
6438				goto abort_change;
6439		}
6440
6441		tsec->sid = sid;
6442	} else {
6443		error = -EINVAL;
6444		goto abort_change;
6445	}
6446
6447	commit_creds(new);
6448	return size;
6449
6450abort_change:
6451	abort_creds(new);
6452	return error;
6453}
6454
6455static int selinux_ismaclabel(const char *name)
6456{
6457	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6458}
6459
6460static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6461{
6462	return security_sid_to_context(&selinux_state, secid,
6463				       secdata, seclen);
6464}
6465
6466static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6467{
6468	return security_context_to_sid(&selinux_state, secdata, seclen,
6469				       secid, GFP_KERNEL);
6470}
6471
6472static void selinux_release_secctx(char *secdata, u32 seclen)
6473{
6474	kfree(secdata);
6475}
6476
6477static void selinux_inode_invalidate_secctx(struct inode *inode)
6478{
6479	struct inode_security_struct *isec = selinux_inode(inode);
6480
6481	spin_lock(&isec->lock);
6482	isec->initialized = LABEL_INVALID;
6483	spin_unlock(&isec->lock);
6484}
6485
6486/*
6487 *	called with inode->i_mutex locked
6488 */
6489static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6490{
6491	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6492					   ctx, ctxlen, 0);
6493	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6494	return rc == -EOPNOTSUPP ? 0 : rc;
6495}
6496
6497/*
6498 *	called with inode->i_mutex locked
6499 */
6500static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6501{
6502	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6503}
6504
6505static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6506{
6507	int len = 0;
6508	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6509						ctx, true);
6510	if (len < 0)
6511		return len;
6512	*ctxlen = len;
6513	return 0;
6514}
6515#ifdef CONFIG_KEYS
6516
6517static int selinux_key_alloc(struct key *k, const struct cred *cred,
6518			     unsigned long flags)
6519{
6520	const struct task_security_struct *tsec;
6521	struct key_security_struct *ksec;
6522
6523	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6524	if (!ksec)
6525		return -ENOMEM;
6526
6527	tsec = selinux_cred(cred);
6528	if (tsec->keycreate_sid)
6529		ksec->sid = tsec->keycreate_sid;
6530	else
6531		ksec->sid = tsec->sid;
6532
6533	k->security = ksec;
6534	return 0;
6535}
6536
6537static void selinux_key_free(struct key *k)
6538{
6539	struct key_security_struct *ksec = k->security;
6540
6541	k->security = NULL;
6542	kfree(ksec);
6543}
6544
6545static int selinux_key_permission(key_ref_t key_ref,
6546				  const struct cred *cred,
6547				  unsigned perm)
6548{
6549	struct key *key;
6550	struct key_security_struct *ksec;
6551	u32 sid;
6552
6553	/* if no specific permissions are requested, we skip the
6554	   permission check. No serious, additional covert channels
6555	   appear to be created. */
6556	if (perm == 0)
6557		return 0;
6558
6559	sid = cred_sid(cred);
6560
6561	key = key_ref_to_ptr(key_ref);
6562	ksec = key->security;
6563
6564	return avc_has_perm(&selinux_state,
6565			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6566}
6567
6568static int selinux_key_getsecurity(struct key *key, char **_buffer)
6569{
6570	struct key_security_struct *ksec = key->security;
6571	char *context = NULL;
6572	unsigned len;
6573	int rc;
6574
6575	rc = security_sid_to_context(&selinux_state, ksec->sid,
6576				     &context, &len);
6577	if (!rc)
6578		rc = len;
6579	*_buffer = context;
6580	return rc;
6581}
6582#endif
6583
6584#ifdef CONFIG_SECURITY_INFINIBAND
6585static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6586{
6587	struct common_audit_data ad;
6588	int err;
6589	u32 sid = 0;
6590	struct ib_security_struct *sec = ib_sec;
6591	struct lsm_ibpkey_audit ibpkey;
6592
6593	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6594	if (err)
6595		return err;
6596
6597	ad.type = LSM_AUDIT_DATA_IBPKEY;
6598	ibpkey.subnet_prefix = subnet_prefix;
6599	ibpkey.pkey = pkey_val;
6600	ad.u.ibpkey = &ibpkey;
6601	return avc_has_perm(&selinux_state,
6602			    sec->sid, sid,
6603			    SECCLASS_INFINIBAND_PKEY,
6604			    INFINIBAND_PKEY__ACCESS, &ad);
6605}
6606
6607static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6608					    u8 port_num)
6609{
6610	struct common_audit_data ad;
6611	int err;
6612	u32 sid = 0;
6613	struct ib_security_struct *sec = ib_sec;
6614	struct lsm_ibendport_audit ibendport;
6615
6616	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6617				      &sid);
6618
6619	if (err)
6620		return err;
6621
6622	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6623	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6624	ibendport.port = port_num;
6625	ad.u.ibendport = &ibendport;
6626	return avc_has_perm(&selinux_state,
6627			    sec->sid, sid,
6628			    SECCLASS_INFINIBAND_ENDPORT,
6629			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6630}
6631
6632static int selinux_ib_alloc_security(void **ib_sec)
6633{
6634	struct ib_security_struct *sec;
6635
6636	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6637	if (!sec)
6638		return -ENOMEM;
6639	sec->sid = current_sid();
6640
6641	*ib_sec = sec;
6642	return 0;
6643}
6644
6645static void selinux_ib_free_security(void *ib_sec)
6646{
6647	kfree(ib_sec);
6648}
6649#endif
6650
6651#ifdef CONFIG_BPF_SYSCALL
6652static int selinux_bpf(int cmd, union bpf_attr *attr,
6653				     unsigned int size)
6654{
6655	u32 sid = current_sid();
6656	int ret;
6657
6658	switch (cmd) {
6659	case BPF_MAP_CREATE:
6660		ret = avc_has_perm(&selinux_state,
6661				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6662				   NULL);
6663		break;
6664	case BPF_PROG_LOAD:
6665		ret = avc_has_perm(&selinux_state,
6666				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6667				   NULL);
6668		break;
6669	default:
6670		ret = 0;
6671		break;
6672	}
6673
6674	return ret;
6675}
6676
6677static u32 bpf_map_fmode_to_av(fmode_t fmode)
6678{
6679	u32 av = 0;
6680
6681	if (fmode & FMODE_READ)
6682		av |= BPF__MAP_READ;
6683	if (fmode & FMODE_WRITE)
6684		av |= BPF__MAP_WRITE;
6685	return av;
6686}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6687
6688/* This function will check the file pass through unix socket or binder to see
6689 * if it is a bpf related object. And apply correspinding checks on the bpf
6690 * object based on the type. The bpf maps and programs, not like other files and
6691 * socket, are using a shared anonymous inode inside the kernel as their inode.
6692 * So checking that inode cannot identify if the process have privilege to
6693 * access the bpf object and that's why we have to add this additional check in
6694 * selinux_file_receive and selinux_binder_transfer_files.
6695 */
6696static int bpf_fd_pass(struct file *file, u32 sid)
6697{
6698	struct bpf_security_struct *bpfsec;
6699	struct bpf_prog *prog;
6700	struct bpf_map *map;
6701	int ret;
6702
6703	if (file->f_op == &bpf_map_fops) {
6704		map = file->private_data;
6705		bpfsec = map->security;
6706		ret = avc_has_perm(&selinux_state,
6707				   sid, bpfsec->sid, SECCLASS_BPF,
6708				   bpf_map_fmode_to_av(file->f_mode), NULL);
6709		if (ret)
6710			return ret;
6711	} else if (file->f_op == &bpf_prog_fops) {
6712		prog = file->private_data;
6713		bpfsec = prog->aux->security;
6714		ret = avc_has_perm(&selinux_state,
6715				   sid, bpfsec->sid, SECCLASS_BPF,
6716				   BPF__PROG_RUN, NULL);
6717		if (ret)
6718			return ret;
6719	}
6720	return 0;
6721}
6722
6723static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6724{
6725	u32 sid = current_sid();
6726	struct bpf_security_struct *bpfsec;
6727
6728	bpfsec = map->security;
6729	return avc_has_perm(&selinux_state,
6730			    sid, bpfsec->sid, SECCLASS_BPF,
6731			    bpf_map_fmode_to_av(fmode), NULL);
6732}
6733
6734static int selinux_bpf_prog(struct bpf_prog *prog)
6735{
6736	u32 sid = current_sid();
6737	struct bpf_security_struct *bpfsec;
6738
6739	bpfsec = prog->aux->security;
6740	return avc_has_perm(&selinux_state,
6741			    sid, bpfsec->sid, SECCLASS_BPF,
6742			    BPF__PROG_RUN, NULL);
6743}
6744
6745static int selinux_bpf_map_alloc(struct bpf_map *map)
6746{
6747	struct bpf_security_struct *bpfsec;
6748
6749	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6750	if (!bpfsec)
6751		return -ENOMEM;
6752
6753	bpfsec->sid = current_sid();
6754	map->security = bpfsec;
6755
6756	return 0;
6757}
6758
6759static void selinux_bpf_map_free(struct bpf_map *map)
6760{
6761	struct bpf_security_struct *bpfsec = map->security;
6762
6763	map->security = NULL;
6764	kfree(bpfsec);
6765}
6766
6767static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6768{
6769	struct bpf_security_struct *bpfsec;
6770
6771	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6772	if (!bpfsec)
6773		return -ENOMEM;
6774
6775	bpfsec->sid = current_sid();
6776	aux->security = bpfsec;
6777
6778	return 0;
6779}
6780
6781static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6782{
6783	struct bpf_security_struct *bpfsec = aux->security;
6784
6785	aux->security = NULL;
6786	kfree(bpfsec);
6787}
6788#endif
6789
6790struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6791	.lbs_cred = sizeof(struct task_security_struct),
6792	.lbs_file = sizeof(struct file_security_struct),
6793	.lbs_inode = sizeof(struct inode_security_struct),
6794	.lbs_ipc = sizeof(struct ipc_security_struct),
6795	.lbs_msg_msg = sizeof(struct msg_security_struct),
6796};
6797
6798static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6799	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6800	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6801	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6802	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6803
6804	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6805	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6806	LSM_HOOK_INIT(capget, selinux_capget),
6807	LSM_HOOK_INIT(capset, selinux_capset),
6808	LSM_HOOK_INIT(capable, selinux_capable),
6809	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6810	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6811	LSM_HOOK_INIT(syslog, selinux_syslog),
6812	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6813
6814	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6815
6816	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6817	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6818	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6819
6820	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6821	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6822
6823	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6824	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6825	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6826	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6827	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6828	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6829	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6830	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6831	LSM_HOOK_INIT(sb_mount, selinux_mount),
6832	LSM_HOOK_INIT(sb_umount, selinux_umount),
6833	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6834	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6835	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
6836
6837	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6838	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6839
6840	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6841	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6842	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6843	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6844	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6845	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6846	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6847	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6848	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6849	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6850	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6851	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6852	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6853	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6854	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6855	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6856	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6857	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6858	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6859	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6860	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6861	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6862	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6863	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6864	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6865	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6866	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6867	LSM_HOOK_INIT(path_notify, selinux_path_notify),
6868
6869	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6870
6871	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6872	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6873	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6874	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6875	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6876	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6877	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6878	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6879	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6880	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6881	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6882
6883	LSM_HOOK_INIT(file_open, selinux_file_open),
6884
6885	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6886	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6887	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6888	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6889	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6890	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6891	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6892	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6893	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6894	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6895	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6896	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6897	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6898	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6899	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6900	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6901	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6902	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6903	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6904	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6905	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6906	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6907	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6908
6909	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6910	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6911
6912	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6913
6914	LSM_HOOK_INIT(msg_queue_alloc_security,
6915			selinux_msg_queue_alloc_security),
6916	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6917	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6918	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6919	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6920
6921	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6922	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6923	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6924	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6925
6926	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6927	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6928	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6929	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6930
6931	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6932
6933	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6934	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6935
6936	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6937	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6938	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6939	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6940	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6941	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6942	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6943	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6944
6945	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6946	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6947
6948	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6949	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6950	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
6951	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6952	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6953	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6954	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6955	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6956	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6957	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6958	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6959	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6960	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6961	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6962	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6963	LSM_HOOK_INIT(socket_getpeersec_stream,
6964			selinux_socket_getpeersec_stream),
6965	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6966	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6967	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6968	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6969	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6970	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6971	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
6972	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
6973	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
6974	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6975	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6976	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6977	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6978	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6979	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6980	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6981	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6982	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6983	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6984	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6985	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6986	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6987#ifdef CONFIG_SECURITY_INFINIBAND
6988	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
6989	LSM_HOOK_INIT(ib_endport_manage_subnet,
6990		      selinux_ib_endport_manage_subnet),
6991	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
6992	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
6993#endif
6994#ifdef CONFIG_SECURITY_NETWORK_XFRM
6995	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6996	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6997	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6998	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6999	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7000	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7001			selinux_xfrm_state_alloc_acquire),
7002	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7003	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7004	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7005	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7006			selinux_xfrm_state_pol_flow_match),
7007	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7008#endif
7009
7010#ifdef CONFIG_KEYS
7011	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7012	LSM_HOOK_INIT(key_free, selinux_key_free),
7013	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7014	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7015#endif
7016
7017#ifdef CONFIG_AUDIT
7018	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7019	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7020	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7021	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7022#endif
7023
7024#ifdef CONFIG_BPF_SYSCALL
7025	LSM_HOOK_INIT(bpf, selinux_bpf),
7026	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7027	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7028	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7029	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7030	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7031	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7032#endif
7033};
7034
7035static __init int selinux_init(void)
7036{
7037	pr_info("SELinux:  Initializing.\n");
 
 
 
 
 
 
 
 
7038
7039	memset(&selinux_state, 0, sizeof(selinux_state));
7040	enforcing_set(&selinux_state, selinux_enforcing_boot);
7041	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7042	selinux_ss_init(&selinux_state.ss);
7043	selinux_avc_init(&selinux_state.avc);
7044
7045	/* Set the security state for the initial task. */
7046	cred_init_security();
7047
7048	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7049
 
 
 
7050	avc_init();
7051
7052	avtab_cache_init();
 
7053
7054	ebitmap_cache_init();
7055
7056	hashtab_cache_init();
7057
7058	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7059
7060	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7061		panic("SELinux: Unable to register AVC netcache callback\n");
7062
7063	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7064		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7065
7066	if (selinux_enforcing_boot)
7067		pr_debug("SELinux:  Starting in enforcing mode\n");
7068	else
7069		pr_debug("SELinux:  Starting in permissive mode\n");
7070
7071	fs_validate_description(&selinux_fs_parameters);
7072
7073	return 0;
7074}
7075
7076static void delayed_superblock_init(struct super_block *sb, void *unused)
7077{
7078	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7079}
7080
7081void selinux_complete_init(void)
7082{
7083	pr_debug("SELinux:  Completing initialization.\n");
7084
7085	/* Set up any superblocks initialized prior to the policy load. */
7086	pr_debug("SELinux:  Setting up existing superblocks.\n");
7087	iterate_supers(delayed_superblock_init, NULL);
7088}
7089
7090/* SELinux requires early initialization in order to label
7091   all processes and objects when they are created. */
7092DEFINE_LSM(selinux) = {
7093	.name = "selinux",
7094	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7095	.enabled = &selinux_enabled,
7096	.blobs = &selinux_blob_sizes,
7097	.init = selinux_init,
7098};
7099
7100#if defined(CONFIG_NETFILTER)
7101
7102static const struct nf_hook_ops selinux_nf_ops[] = {
7103	{
7104		.hook =		selinux_ipv4_postroute,
7105		.pf =		NFPROTO_IPV4,
 
7106		.hooknum =	NF_INET_POST_ROUTING,
7107		.priority =	NF_IP_PRI_SELINUX_LAST,
7108	},
7109	{
7110		.hook =		selinux_ipv4_forward,
7111		.pf =		NFPROTO_IPV4,
 
7112		.hooknum =	NF_INET_FORWARD,
7113		.priority =	NF_IP_PRI_SELINUX_FIRST,
7114	},
7115	{
7116		.hook =		selinux_ipv4_output,
7117		.pf =		NFPROTO_IPV4,
 
7118		.hooknum =	NF_INET_LOCAL_OUT,
7119		.priority =	NF_IP_PRI_SELINUX_FIRST,
7120	},
7121#if IS_ENABLED(CONFIG_IPV6)
 
 
 
 
7122	{
7123		.hook =		selinux_ipv6_postroute,
7124		.pf =		NFPROTO_IPV6,
 
7125		.hooknum =	NF_INET_POST_ROUTING,
7126		.priority =	NF_IP6_PRI_SELINUX_LAST,
7127	},
7128	{
7129		.hook =		selinux_ipv6_forward,
7130		.pf =		NFPROTO_IPV6,
 
7131		.hooknum =	NF_INET_FORWARD,
7132		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7133	},
7134	{
7135		.hook =		selinux_ipv6_output,
7136		.pf =		NFPROTO_IPV6,
7137		.hooknum =	NF_INET_LOCAL_OUT,
7138		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7139	},
7140#endif	/* IPV6 */
7141};
7142
7143static int __net_init selinux_nf_register(struct net *net)
7144{
7145	return nf_register_net_hooks(net, selinux_nf_ops,
7146				     ARRAY_SIZE(selinux_nf_ops));
7147}
7148
7149static void __net_exit selinux_nf_unregister(struct net *net)
7150{
7151	nf_unregister_net_hooks(net, selinux_nf_ops,
7152				ARRAY_SIZE(selinux_nf_ops));
7153}
7154
7155static struct pernet_operations selinux_net_ops = {
7156	.init = selinux_nf_register,
7157	.exit = selinux_nf_unregister,
7158};
7159
7160static int __init selinux_nf_ip_init(void)
7161{
7162	int err;
7163
7164	if (!selinux_enabled)
7165		return 0;
 
 
7166
7167	pr_debug("SELinux:  Registering netfilter hooks\n");
 
 
7168
7169	err = register_pernet_subsys(&selinux_net_ops);
 
7170	if (err)
7171		panic("SELinux: register_pernet_subsys: error %d\n", err);
 
7172
7173	return 0;
 
7174}
 
7175__initcall(selinux_nf_ip_init);
7176
7177#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7178static void selinux_nf_ip_exit(void)
7179{
7180	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7181
7182	unregister_pernet_subsys(&selinux_net_ops);
 
 
 
7183}
7184#endif
7185
7186#else /* CONFIG_NETFILTER */
7187
7188#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7189#define selinux_nf_ip_exit()
7190#endif
7191
7192#endif /* CONFIG_NETFILTER */
7193
7194#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7195int selinux_disable(struct selinux_state *state)
 
 
7196{
7197	if (state->initialized) {
 
 
7198		/* Not permitted after initial policy load. */
7199		return -EINVAL;
7200	}
7201
7202	if (state->disabled) {
7203		/* Only do this once. */
7204		return -EINVAL;
7205	}
7206
7207	state->disabled = 1;
7208
7209	pr_info("SELinux:  Disabled at runtime.\n");
7210
 
7211	selinux_enabled = 0;
7212
7213	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7214
7215	/* Try to destroy the avc node cache */
7216	avc_disable();
7217
7218	/* Unregister netfilter hooks. */
7219	selinux_nf_ip_exit();
7220
7221	/* Unregister selinuxfs. */
7222	exit_sel_fs();
7223
7224	return 0;
7225}
7226#endif