Loading...
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/ext2_fs.h>
32#include <linux/sched.h>
33#include <linux/security.h>
34#include <linux/xattr.h>
35#include <linux/capability.h>
36#include <linux/unistd.h>
37#include <linux/mm.h>
38#include <linux/mman.h>
39#include <linux/slab.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
42#include <linux/swap.h>
43#include <linux/spinlock.h>
44#include <linux/syscalls.h>
45#include <linux/dcache.h>
46#include <linux/file.h>
47#include <linux/fdtable.h>
48#include <linux/namei.h>
49#include <linux/mount.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <linux/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83
84#include "avc.h"
85#include "objsec.h"
86#include "netif.h"
87#include "netnode.h"
88#include "netport.h"
89#include "xfrm.h"
90#include "netlabel.h"
91#include "audit.h"
92
93#define NUM_SEL_MNT_OPTS 5
94
95extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96extern struct security_operations *security_ops;
97
98/* SECMARK reference count */
99atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102int selinux_enforcing;
103
104static int __init enforcing_setup(char *str)
105{
106 unsigned long enforcing;
107 if (!strict_strtoul(str, 0, &enforcing))
108 selinux_enforcing = enforcing ? 1 : 0;
109 return 1;
110}
111__setup("enforcing=", enforcing_setup);
112#endif
113
114#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117static int __init selinux_enabled_setup(char *str)
118{
119 unsigned long enabled;
120 if (!strict_strtoul(str, 0, &enabled))
121 selinux_enabled = enabled ? 1 : 0;
122 return 1;
123}
124__setup("selinux=", selinux_enabled_setup);
125#else
126int selinux_enabled = 1;
127#endif
128
129static struct kmem_cache *sel_inode_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled.
139 *
140 */
141static int selinux_secmark_enabled(void)
142{
143 return (atomic_read(&selinux_secmark_refcount) > 0);
144}
145
146/*
147 * initialise the security for the init task
148 */
149static void cred_init_security(void)
150{
151 struct cred *cred = (struct cred *) current->real_cred;
152 struct task_security_struct *tsec;
153
154 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
155 if (!tsec)
156 panic("SELinux: Failed to initialize initial task.\n");
157
158 tsec->osid = tsec->sid = SECINITSID_KERNEL;
159 cred->security = tsec;
160}
161
162/*
163 * get the security ID of a set of credentials
164 */
165static inline u32 cred_sid(const struct cred *cred)
166{
167 const struct task_security_struct *tsec;
168
169 tsec = cred->security;
170 return tsec->sid;
171}
172
173/*
174 * get the objective security ID of a task
175 */
176static inline u32 task_sid(const struct task_struct *task)
177{
178 u32 sid;
179
180 rcu_read_lock();
181 sid = cred_sid(__task_cred(task));
182 rcu_read_unlock();
183 return sid;
184}
185
186/*
187 * get the subjective security ID of the current task
188 */
189static inline u32 current_sid(void)
190{
191 const struct task_security_struct *tsec = current_security();
192
193 return tsec->sid;
194}
195
196/* Allocate and free functions for each kind of security blob. */
197
198static int inode_alloc_security(struct inode *inode)
199{
200 struct inode_security_struct *isec;
201 u32 sid = current_sid();
202
203 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
204 if (!isec)
205 return -ENOMEM;
206
207 mutex_init(&isec->lock);
208 INIT_LIST_HEAD(&isec->list);
209 isec->inode = inode;
210 isec->sid = SECINITSID_UNLABELED;
211 isec->sclass = SECCLASS_FILE;
212 isec->task_sid = sid;
213 inode->i_security = isec;
214
215 return 0;
216}
217
218static void inode_free_security(struct inode *inode)
219{
220 struct inode_security_struct *isec = inode->i_security;
221 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
222
223 spin_lock(&sbsec->isec_lock);
224 if (!list_empty(&isec->list))
225 list_del_init(&isec->list);
226 spin_unlock(&sbsec->isec_lock);
227
228 inode->i_security = NULL;
229 kmem_cache_free(sel_inode_cache, isec);
230}
231
232static int file_alloc_security(struct file *file)
233{
234 struct file_security_struct *fsec;
235 u32 sid = current_sid();
236
237 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
238 if (!fsec)
239 return -ENOMEM;
240
241 fsec->sid = sid;
242 fsec->fown_sid = sid;
243 file->f_security = fsec;
244
245 return 0;
246}
247
248static void file_free_security(struct file *file)
249{
250 struct file_security_struct *fsec = file->f_security;
251 file->f_security = NULL;
252 kfree(fsec);
253}
254
255static int superblock_alloc_security(struct super_block *sb)
256{
257 struct superblock_security_struct *sbsec;
258
259 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
260 if (!sbsec)
261 return -ENOMEM;
262
263 mutex_init(&sbsec->lock);
264 INIT_LIST_HEAD(&sbsec->isec_head);
265 spin_lock_init(&sbsec->isec_lock);
266 sbsec->sb = sb;
267 sbsec->sid = SECINITSID_UNLABELED;
268 sbsec->def_sid = SECINITSID_FILE;
269 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
270 sb->s_security = sbsec;
271
272 return 0;
273}
274
275static void superblock_free_security(struct super_block *sb)
276{
277 struct superblock_security_struct *sbsec = sb->s_security;
278 sb->s_security = NULL;
279 kfree(sbsec);
280}
281
282/* The security server must be initialized before
283 any labeling or access decisions can be provided. */
284extern int ss_initialized;
285
286/* The file system's label must be initialized prior to use. */
287
288static const char *labeling_behaviors[6] = {
289 "uses xattr",
290 "uses transition SIDs",
291 "uses task SIDs",
292 "uses genfs_contexts",
293 "not configured for labeling",
294 "uses mountpoint labeling",
295};
296
297static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
298
299static inline int inode_doinit(struct inode *inode)
300{
301 return inode_doinit_with_dentry(inode, NULL);
302}
303
304enum {
305 Opt_error = -1,
306 Opt_context = 1,
307 Opt_fscontext = 2,
308 Opt_defcontext = 3,
309 Opt_rootcontext = 4,
310 Opt_labelsupport = 5,
311};
312
313static const match_table_t tokens = {
314 {Opt_context, CONTEXT_STR "%s"},
315 {Opt_fscontext, FSCONTEXT_STR "%s"},
316 {Opt_defcontext, DEFCONTEXT_STR "%s"},
317 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
318 {Opt_labelsupport, LABELSUPP_STR},
319 {Opt_error, NULL},
320};
321
322#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
323
324static int may_context_mount_sb_relabel(u32 sid,
325 struct superblock_security_struct *sbsec,
326 const struct cred *cred)
327{
328 const struct task_security_struct *tsec = cred->security;
329 int rc;
330
331 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
332 FILESYSTEM__RELABELFROM, NULL);
333 if (rc)
334 return rc;
335
336 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
337 FILESYSTEM__RELABELTO, NULL);
338 return rc;
339}
340
341static int may_context_mount_inode_relabel(u32 sid,
342 struct superblock_security_struct *sbsec,
343 const struct cred *cred)
344{
345 const struct task_security_struct *tsec = cred->security;
346 int rc;
347 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
348 FILESYSTEM__RELABELFROM, NULL);
349 if (rc)
350 return rc;
351
352 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
353 FILESYSTEM__ASSOCIATE, NULL);
354 return rc;
355}
356
357static int sb_finish_set_opts(struct super_block *sb)
358{
359 struct superblock_security_struct *sbsec = sb->s_security;
360 struct dentry *root = sb->s_root;
361 struct inode *root_inode = root->d_inode;
362 int rc = 0;
363
364 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
365 /* Make sure that the xattr handler exists and that no
366 error other than -ENODATA is returned by getxattr on
367 the root directory. -ENODATA is ok, as this may be
368 the first boot of the SELinux kernel before we have
369 assigned xattr values to the filesystem. */
370 if (!root_inode->i_op->getxattr) {
371 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
372 "xattr support\n", sb->s_id, sb->s_type->name);
373 rc = -EOPNOTSUPP;
374 goto out;
375 }
376 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
377 if (rc < 0 && rc != -ENODATA) {
378 if (rc == -EOPNOTSUPP)
379 printk(KERN_WARNING "SELinux: (dev %s, type "
380 "%s) has no security xattr handler\n",
381 sb->s_id, sb->s_type->name);
382 else
383 printk(KERN_WARNING "SELinux: (dev %s, type "
384 "%s) getxattr errno %d\n", sb->s_id,
385 sb->s_type->name, -rc);
386 goto out;
387 }
388 }
389
390 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
391
392 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
393 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
394 sb->s_id, sb->s_type->name);
395 else
396 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
397 sb->s_id, sb->s_type->name,
398 labeling_behaviors[sbsec->behavior-1]);
399
400 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
401 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
402 sbsec->behavior == SECURITY_FS_USE_NONE ||
403 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
404 sbsec->flags &= ~SE_SBLABELSUPP;
405
406 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
407 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
408 sbsec->flags |= SE_SBLABELSUPP;
409
410 /* Initialize the root inode. */
411 rc = inode_doinit_with_dentry(root_inode, root);
412
413 /* Initialize any other inodes associated with the superblock, e.g.
414 inodes created prior to initial policy load or inodes created
415 during get_sb by a pseudo filesystem that directly
416 populates itself. */
417 spin_lock(&sbsec->isec_lock);
418next_inode:
419 if (!list_empty(&sbsec->isec_head)) {
420 struct inode_security_struct *isec =
421 list_entry(sbsec->isec_head.next,
422 struct inode_security_struct, list);
423 struct inode *inode = isec->inode;
424 spin_unlock(&sbsec->isec_lock);
425 inode = igrab(inode);
426 if (inode) {
427 if (!IS_PRIVATE(inode))
428 inode_doinit(inode);
429 iput(inode);
430 }
431 spin_lock(&sbsec->isec_lock);
432 list_del_init(&isec->list);
433 goto next_inode;
434 }
435 spin_unlock(&sbsec->isec_lock);
436out:
437 return rc;
438}
439
440/*
441 * This function should allow an FS to ask what it's mount security
442 * options were so it can use those later for submounts, displaying
443 * mount options, or whatever.
444 */
445static int selinux_get_mnt_opts(const struct super_block *sb,
446 struct security_mnt_opts *opts)
447{
448 int rc = 0, i;
449 struct superblock_security_struct *sbsec = sb->s_security;
450 char *context = NULL;
451 u32 len;
452 char tmp;
453
454 security_init_mnt_opts(opts);
455
456 if (!(sbsec->flags & SE_SBINITIALIZED))
457 return -EINVAL;
458
459 if (!ss_initialized)
460 return -EINVAL;
461
462 tmp = sbsec->flags & SE_MNTMASK;
463 /* count the number of mount options for this sb */
464 for (i = 0; i < 8; i++) {
465 if (tmp & 0x01)
466 opts->num_mnt_opts++;
467 tmp >>= 1;
468 }
469 /* Check if the Label support flag is set */
470 if (sbsec->flags & SE_SBLABELSUPP)
471 opts->num_mnt_opts++;
472
473 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
474 if (!opts->mnt_opts) {
475 rc = -ENOMEM;
476 goto out_free;
477 }
478
479 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
480 if (!opts->mnt_opts_flags) {
481 rc = -ENOMEM;
482 goto out_free;
483 }
484
485 i = 0;
486 if (sbsec->flags & FSCONTEXT_MNT) {
487 rc = security_sid_to_context(sbsec->sid, &context, &len);
488 if (rc)
489 goto out_free;
490 opts->mnt_opts[i] = context;
491 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
492 }
493 if (sbsec->flags & CONTEXT_MNT) {
494 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
495 if (rc)
496 goto out_free;
497 opts->mnt_opts[i] = context;
498 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
499 }
500 if (sbsec->flags & DEFCONTEXT_MNT) {
501 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
502 if (rc)
503 goto out_free;
504 opts->mnt_opts[i] = context;
505 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
506 }
507 if (sbsec->flags & ROOTCONTEXT_MNT) {
508 struct inode *root = sbsec->sb->s_root->d_inode;
509 struct inode_security_struct *isec = root->i_security;
510
511 rc = security_sid_to_context(isec->sid, &context, &len);
512 if (rc)
513 goto out_free;
514 opts->mnt_opts[i] = context;
515 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
516 }
517 if (sbsec->flags & SE_SBLABELSUPP) {
518 opts->mnt_opts[i] = NULL;
519 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
520 }
521
522 BUG_ON(i != opts->num_mnt_opts);
523
524 return 0;
525
526out_free:
527 security_free_mnt_opts(opts);
528 return rc;
529}
530
531static int bad_option(struct superblock_security_struct *sbsec, char flag,
532 u32 old_sid, u32 new_sid)
533{
534 char mnt_flags = sbsec->flags & SE_MNTMASK;
535
536 /* check if the old mount command had the same options */
537 if (sbsec->flags & SE_SBINITIALIZED)
538 if (!(sbsec->flags & flag) ||
539 (old_sid != new_sid))
540 return 1;
541
542 /* check if we were passed the same options twice,
543 * aka someone passed context=a,context=b
544 */
545 if (!(sbsec->flags & SE_SBINITIALIZED))
546 if (mnt_flags & flag)
547 return 1;
548 return 0;
549}
550
551/*
552 * Allow filesystems with binary mount data to explicitly set mount point
553 * labeling information.
554 */
555static int selinux_set_mnt_opts(struct super_block *sb,
556 struct security_mnt_opts *opts)
557{
558 const struct cred *cred = current_cred();
559 int rc = 0, i;
560 struct superblock_security_struct *sbsec = sb->s_security;
561 const char *name = sb->s_type->name;
562 struct inode *inode = sbsec->sb->s_root->d_inode;
563 struct inode_security_struct *root_isec = inode->i_security;
564 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
565 u32 defcontext_sid = 0;
566 char **mount_options = opts->mnt_opts;
567 int *flags = opts->mnt_opts_flags;
568 int num_opts = opts->num_mnt_opts;
569
570 mutex_lock(&sbsec->lock);
571
572 if (!ss_initialized) {
573 if (!num_opts) {
574 /* Defer initialization until selinux_complete_init,
575 after the initial policy is loaded and the security
576 server is ready to handle calls. */
577 goto out;
578 }
579 rc = -EINVAL;
580 printk(KERN_WARNING "SELinux: Unable to set superblock options "
581 "before the security server is initialized\n");
582 goto out;
583 }
584
585 /*
586 * Binary mount data FS will come through this function twice. Once
587 * from an explicit call and once from the generic calls from the vfs.
588 * Since the generic VFS calls will not contain any security mount data
589 * we need to skip the double mount verification.
590 *
591 * This does open a hole in which we will not notice if the first
592 * mount using this sb set explict options and a second mount using
593 * this sb does not set any security options. (The first options
594 * will be used for both mounts)
595 */
596 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
597 && (num_opts == 0))
598 goto out;
599
600 /*
601 * parse the mount options, check if they are valid sids.
602 * also check if someone is trying to mount the same sb more
603 * than once with different security options.
604 */
605 for (i = 0; i < num_opts; i++) {
606 u32 sid;
607
608 if (flags[i] == SE_SBLABELSUPP)
609 continue;
610 rc = security_context_to_sid(mount_options[i],
611 strlen(mount_options[i]), &sid);
612 if (rc) {
613 printk(KERN_WARNING "SELinux: security_context_to_sid"
614 "(%s) failed for (dev %s, type %s) errno=%d\n",
615 mount_options[i], sb->s_id, name, rc);
616 goto out;
617 }
618 switch (flags[i]) {
619 case FSCONTEXT_MNT:
620 fscontext_sid = sid;
621
622 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
623 fscontext_sid))
624 goto out_double_mount;
625
626 sbsec->flags |= FSCONTEXT_MNT;
627 break;
628 case CONTEXT_MNT:
629 context_sid = sid;
630
631 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
632 context_sid))
633 goto out_double_mount;
634
635 sbsec->flags |= CONTEXT_MNT;
636 break;
637 case ROOTCONTEXT_MNT:
638 rootcontext_sid = sid;
639
640 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
641 rootcontext_sid))
642 goto out_double_mount;
643
644 sbsec->flags |= ROOTCONTEXT_MNT;
645
646 break;
647 case DEFCONTEXT_MNT:
648 defcontext_sid = sid;
649
650 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
651 defcontext_sid))
652 goto out_double_mount;
653
654 sbsec->flags |= DEFCONTEXT_MNT;
655
656 break;
657 default:
658 rc = -EINVAL;
659 goto out;
660 }
661 }
662
663 if (sbsec->flags & SE_SBINITIALIZED) {
664 /* previously mounted with options, but not on this attempt? */
665 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
666 goto out_double_mount;
667 rc = 0;
668 goto out;
669 }
670
671 if (strcmp(sb->s_type->name, "proc") == 0)
672 sbsec->flags |= SE_SBPROC;
673
674 /* Determine the labeling behavior to use for this filesystem type. */
675 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
676 if (rc) {
677 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
678 __func__, sb->s_type->name, rc);
679 goto out;
680 }
681
682 /* sets the context of the superblock for the fs being mounted. */
683 if (fscontext_sid) {
684 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
685 if (rc)
686 goto out;
687
688 sbsec->sid = fscontext_sid;
689 }
690
691 /*
692 * Switch to using mount point labeling behavior.
693 * sets the label used on all file below the mountpoint, and will set
694 * the superblock context if not already set.
695 */
696 if (context_sid) {
697 if (!fscontext_sid) {
698 rc = may_context_mount_sb_relabel(context_sid, sbsec,
699 cred);
700 if (rc)
701 goto out;
702 sbsec->sid = context_sid;
703 } else {
704 rc = may_context_mount_inode_relabel(context_sid, sbsec,
705 cred);
706 if (rc)
707 goto out;
708 }
709 if (!rootcontext_sid)
710 rootcontext_sid = context_sid;
711
712 sbsec->mntpoint_sid = context_sid;
713 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
714 }
715
716 if (rootcontext_sid) {
717 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
718 cred);
719 if (rc)
720 goto out;
721
722 root_isec->sid = rootcontext_sid;
723 root_isec->initialized = 1;
724 }
725
726 if (defcontext_sid) {
727 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
728 rc = -EINVAL;
729 printk(KERN_WARNING "SELinux: defcontext option is "
730 "invalid for this filesystem type\n");
731 goto out;
732 }
733
734 if (defcontext_sid != sbsec->def_sid) {
735 rc = may_context_mount_inode_relabel(defcontext_sid,
736 sbsec, cred);
737 if (rc)
738 goto out;
739 }
740
741 sbsec->def_sid = defcontext_sid;
742 }
743
744 rc = sb_finish_set_opts(sb);
745out:
746 mutex_unlock(&sbsec->lock);
747 return rc;
748out_double_mount:
749 rc = -EINVAL;
750 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
751 "security settings for (dev %s, type %s)\n", sb->s_id, name);
752 goto out;
753}
754
755static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
756 struct super_block *newsb)
757{
758 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
759 struct superblock_security_struct *newsbsec = newsb->s_security;
760
761 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
762 int set_context = (oldsbsec->flags & CONTEXT_MNT);
763 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
764
765 /*
766 * if the parent was able to be mounted it clearly had no special lsm
767 * mount options. thus we can safely deal with this superblock later
768 */
769 if (!ss_initialized)
770 return;
771
772 /* how can we clone if the old one wasn't set up?? */
773 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
774
775 /* if fs is reusing a sb, just let its options stand... */
776 if (newsbsec->flags & SE_SBINITIALIZED)
777 return;
778
779 mutex_lock(&newsbsec->lock);
780
781 newsbsec->flags = oldsbsec->flags;
782
783 newsbsec->sid = oldsbsec->sid;
784 newsbsec->def_sid = oldsbsec->def_sid;
785 newsbsec->behavior = oldsbsec->behavior;
786
787 if (set_context) {
788 u32 sid = oldsbsec->mntpoint_sid;
789
790 if (!set_fscontext)
791 newsbsec->sid = sid;
792 if (!set_rootcontext) {
793 struct inode *newinode = newsb->s_root->d_inode;
794 struct inode_security_struct *newisec = newinode->i_security;
795 newisec->sid = sid;
796 }
797 newsbsec->mntpoint_sid = sid;
798 }
799 if (set_rootcontext) {
800 const struct inode *oldinode = oldsb->s_root->d_inode;
801 const struct inode_security_struct *oldisec = oldinode->i_security;
802 struct inode *newinode = newsb->s_root->d_inode;
803 struct inode_security_struct *newisec = newinode->i_security;
804
805 newisec->sid = oldisec->sid;
806 }
807
808 sb_finish_set_opts(newsb);
809 mutex_unlock(&newsbsec->lock);
810}
811
812static int selinux_parse_opts_str(char *options,
813 struct security_mnt_opts *opts)
814{
815 char *p;
816 char *context = NULL, *defcontext = NULL;
817 char *fscontext = NULL, *rootcontext = NULL;
818 int rc, num_mnt_opts = 0;
819
820 opts->num_mnt_opts = 0;
821
822 /* Standard string-based options. */
823 while ((p = strsep(&options, "|")) != NULL) {
824 int token;
825 substring_t args[MAX_OPT_ARGS];
826
827 if (!*p)
828 continue;
829
830 token = match_token(p, tokens, args);
831
832 switch (token) {
833 case Opt_context:
834 if (context || defcontext) {
835 rc = -EINVAL;
836 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
837 goto out_err;
838 }
839 context = match_strdup(&args[0]);
840 if (!context) {
841 rc = -ENOMEM;
842 goto out_err;
843 }
844 break;
845
846 case Opt_fscontext:
847 if (fscontext) {
848 rc = -EINVAL;
849 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
850 goto out_err;
851 }
852 fscontext = match_strdup(&args[0]);
853 if (!fscontext) {
854 rc = -ENOMEM;
855 goto out_err;
856 }
857 break;
858
859 case Opt_rootcontext:
860 if (rootcontext) {
861 rc = -EINVAL;
862 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
863 goto out_err;
864 }
865 rootcontext = match_strdup(&args[0]);
866 if (!rootcontext) {
867 rc = -ENOMEM;
868 goto out_err;
869 }
870 break;
871
872 case Opt_defcontext:
873 if (context || defcontext) {
874 rc = -EINVAL;
875 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
876 goto out_err;
877 }
878 defcontext = match_strdup(&args[0]);
879 if (!defcontext) {
880 rc = -ENOMEM;
881 goto out_err;
882 }
883 break;
884 case Opt_labelsupport:
885 break;
886 default:
887 rc = -EINVAL;
888 printk(KERN_WARNING "SELinux: unknown mount option\n");
889 goto out_err;
890
891 }
892 }
893
894 rc = -ENOMEM;
895 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
896 if (!opts->mnt_opts)
897 goto out_err;
898
899 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
900 if (!opts->mnt_opts_flags) {
901 kfree(opts->mnt_opts);
902 goto out_err;
903 }
904
905 if (fscontext) {
906 opts->mnt_opts[num_mnt_opts] = fscontext;
907 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
908 }
909 if (context) {
910 opts->mnt_opts[num_mnt_opts] = context;
911 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
912 }
913 if (rootcontext) {
914 opts->mnt_opts[num_mnt_opts] = rootcontext;
915 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
916 }
917 if (defcontext) {
918 opts->mnt_opts[num_mnt_opts] = defcontext;
919 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
920 }
921
922 opts->num_mnt_opts = num_mnt_opts;
923 return 0;
924
925out_err:
926 kfree(context);
927 kfree(defcontext);
928 kfree(fscontext);
929 kfree(rootcontext);
930 return rc;
931}
932/*
933 * string mount options parsing and call set the sbsec
934 */
935static int superblock_doinit(struct super_block *sb, void *data)
936{
937 int rc = 0;
938 char *options = data;
939 struct security_mnt_opts opts;
940
941 security_init_mnt_opts(&opts);
942
943 if (!data)
944 goto out;
945
946 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
947
948 rc = selinux_parse_opts_str(options, &opts);
949 if (rc)
950 goto out_err;
951
952out:
953 rc = selinux_set_mnt_opts(sb, &opts);
954
955out_err:
956 security_free_mnt_opts(&opts);
957 return rc;
958}
959
960static void selinux_write_opts(struct seq_file *m,
961 struct security_mnt_opts *opts)
962{
963 int i;
964 char *prefix;
965
966 for (i = 0; i < opts->num_mnt_opts; i++) {
967 char *has_comma;
968
969 if (opts->mnt_opts[i])
970 has_comma = strchr(opts->mnt_opts[i], ',');
971 else
972 has_comma = NULL;
973
974 switch (opts->mnt_opts_flags[i]) {
975 case CONTEXT_MNT:
976 prefix = CONTEXT_STR;
977 break;
978 case FSCONTEXT_MNT:
979 prefix = FSCONTEXT_STR;
980 break;
981 case ROOTCONTEXT_MNT:
982 prefix = ROOTCONTEXT_STR;
983 break;
984 case DEFCONTEXT_MNT:
985 prefix = DEFCONTEXT_STR;
986 break;
987 case SE_SBLABELSUPP:
988 seq_putc(m, ',');
989 seq_puts(m, LABELSUPP_STR);
990 continue;
991 default:
992 BUG();
993 return;
994 };
995 /* we need a comma before each option */
996 seq_putc(m, ',');
997 seq_puts(m, prefix);
998 if (has_comma)
999 seq_putc(m, '\"');
1000 seq_puts(m, opts->mnt_opts[i]);
1001 if (has_comma)
1002 seq_putc(m, '\"');
1003 }
1004}
1005
1006static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1007{
1008 struct security_mnt_opts opts;
1009 int rc;
1010
1011 rc = selinux_get_mnt_opts(sb, &opts);
1012 if (rc) {
1013 /* before policy load we may get EINVAL, don't show anything */
1014 if (rc == -EINVAL)
1015 rc = 0;
1016 return rc;
1017 }
1018
1019 selinux_write_opts(m, &opts);
1020
1021 security_free_mnt_opts(&opts);
1022
1023 return rc;
1024}
1025
1026static inline u16 inode_mode_to_security_class(umode_t mode)
1027{
1028 switch (mode & S_IFMT) {
1029 case S_IFSOCK:
1030 return SECCLASS_SOCK_FILE;
1031 case S_IFLNK:
1032 return SECCLASS_LNK_FILE;
1033 case S_IFREG:
1034 return SECCLASS_FILE;
1035 case S_IFBLK:
1036 return SECCLASS_BLK_FILE;
1037 case S_IFDIR:
1038 return SECCLASS_DIR;
1039 case S_IFCHR:
1040 return SECCLASS_CHR_FILE;
1041 case S_IFIFO:
1042 return SECCLASS_FIFO_FILE;
1043
1044 }
1045
1046 return SECCLASS_FILE;
1047}
1048
1049static inline int default_protocol_stream(int protocol)
1050{
1051 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1052}
1053
1054static inline int default_protocol_dgram(int protocol)
1055{
1056 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1057}
1058
1059static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1060{
1061 switch (family) {
1062 case PF_UNIX:
1063 switch (type) {
1064 case SOCK_STREAM:
1065 case SOCK_SEQPACKET:
1066 return SECCLASS_UNIX_STREAM_SOCKET;
1067 case SOCK_DGRAM:
1068 return SECCLASS_UNIX_DGRAM_SOCKET;
1069 }
1070 break;
1071 case PF_INET:
1072 case PF_INET6:
1073 switch (type) {
1074 case SOCK_STREAM:
1075 if (default_protocol_stream(protocol))
1076 return SECCLASS_TCP_SOCKET;
1077 else
1078 return SECCLASS_RAWIP_SOCKET;
1079 case SOCK_DGRAM:
1080 if (default_protocol_dgram(protocol))
1081 return SECCLASS_UDP_SOCKET;
1082 else
1083 return SECCLASS_RAWIP_SOCKET;
1084 case SOCK_DCCP:
1085 return SECCLASS_DCCP_SOCKET;
1086 default:
1087 return SECCLASS_RAWIP_SOCKET;
1088 }
1089 break;
1090 case PF_NETLINK:
1091 switch (protocol) {
1092 case NETLINK_ROUTE:
1093 return SECCLASS_NETLINK_ROUTE_SOCKET;
1094 case NETLINK_FIREWALL:
1095 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1096 case NETLINK_INET_DIAG:
1097 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1098 case NETLINK_NFLOG:
1099 return SECCLASS_NETLINK_NFLOG_SOCKET;
1100 case NETLINK_XFRM:
1101 return SECCLASS_NETLINK_XFRM_SOCKET;
1102 case NETLINK_SELINUX:
1103 return SECCLASS_NETLINK_SELINUX_SOCKET;
1104 case NETLINK_AUDIT:
1105 return SECCLASS_NETLINK_AUDIT_SOCKET;
1106 case NETLINK_IP6_FW:
1107 return SECCLASS_NETLINK_IP6FW_SOCKET;
1108 case NETLINK_DNRTMSG:
1109 return SECCLASS_NETLINK_DNRT_SOCKET;
1110 case NETLINK_KOBJECT_UEVENT:
1111 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1112 default:
1113 return SECCLASS_NETLINK_SOCKET;
1114 }
1115 case PF_PACKET:
1116 return SECCLASS_PACKET_SOCKET;
1117 case PF_KEY:
1118 return SECCLASS_KEY_SOCKET;
1119 case PF_APPLETALK:
1120 return SECCLASS_APPLETALK_SOCKET;
1121 }
1122
1123 return SECCLASS_SOCKET;
1124}
1125
1126#ifdef CONFIG_PROC_FS
1127static int selinux_proc_get_sid(struct dentry *dentry,
1128 u16 tclass,
1129 u32 *sid)
1130{
1131 int rc;
1132 char *buffer, *path;
1133
1134 buffer = (char *)__get_free_page(GFP_KERNEL);
1135 if (!buffer)
1136 return -ENOMEM;
1137
1138 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1139 if (IS_ERR(path))
1140 rc = PTR_ERR(path);
1141 else {
1142 /* each process gets a /proc/PID/ entry. Strip off the
1143 * PID part to get a valid selinux labeling.
1144 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1145 while (path[1] >= '0' && path[1] <= '9') {
1146 path[1] = '/';
1147 path++;
1148 }
1149 rc = security_genfs_sid("proc", path, tclass, sid);
1150 }
1151 free_page((unsigned long)buffer);
1152 return rc;
1153}
1154#else
1155static int selinux_proc_get_sid(struct dentry *dentry,
1156 u16 tclass,
1157 u32 *sid)
1158{
1159 return -EINVAL;
1160}
1161#endif
1162
1163/* The inode's security attributes must be initialized before first use. */
1164static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1165{
1166 struct superblock_security_struct *sbsec = NULL;
1167 struct inode_security_struct *isec = inode->i_security;
1168 u32 sid;
1169 struct dentry *dentry;
1170#define INITCONTEXTLEN 255
1171 char *context = NULL;
1172 unsigned len = 0;
1173 int rc = 0;
1174
1175 if (isec->initialized)
1176 goto out;
1177
1178 mutex_lock(&isec->lock);
1179 if (isec->initialized)
1180 goto out_unlock;
1181
1182 sbsec = inode->i_sb->s_security;
1183 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1184 /* Defer initialization until selinux_complete_init,
1185 after the initial policy is loaded and the security
1186 server is ready to handle calls. */
1187 spin_lock(&sbsec->isec_lock);
1188 if (list_empty(&isec->list))
1189 list_add(&isec->list, &sbsec->isec_head);
1190 spin_unlock(&sbsec->isec_lock);
1191 goto out_unlock;
1192 }
1193
1194 switch (sbsec->behavior) {
1195 case SECURITY_FS_USE_XATTR:
1196 if (!inode->i_op->getxattr) {
1197 isec->sid = sbsec->def_sid;
1198 break;
1199 }
1200
1201 /* Need a dentry, since the xattr API requires one.
1202 Life would be simpler if we could just pass the inode. */
1203 if (opt_dentry) {
1204 /* Called from d_instantiate or d_splice_alias. */
1205 dentry = dget(opt_dentry);
1206 } else {
1207 /* Called from selinux_complete_init, try to find a dentry. */
1208 dentry = d_find_alias(inode);
1209 }
1210 if (!dentry) {
1211 /*
1212 * this is can be hit on boot when a file is accessed
1213 * before the policy is loaded. When we load policy we
1214 * may find inodes that have no dentry on the
1215 * sbsec->isec_head list. No reason to complain as these
1216 * will get fixed up the next time we go through
1217 * inode_doinit with a dentry, before these inodes could
1218 * be used again by userspace.
1219 */
1220 goto out_unlock;
1221 }
1222
1223 len = INITCONTEXTLEN;
1224 context = kmalloc(len+1, GFP_NOFS);
1225 if (!context) {
1226 rc = -ENOMEM;
1227 dput(dentry);
1228 goto out_unlock;
1229 }
1230 context[len] = '\0';
1231 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1232 context, len);
1233 if (rc == -ERANGE) {
1234 kfree(context);
1235
1236 /* Need a larger buffer. Query for the right size. */
1237 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1238 NULL, 0);
1239 if (rc < 0) {
1240 dput(dentry);
1241 goto out_unlock;
1242 }
1243 len = rc;
1244 context = kmalloc(len+1, GFP_NOFS);
1245 if (!context) {
1246 rc = -ENOMEM;
1247 dput(dentry);
1248 goto out_unlock;
1249 }
1250 context[len] = '\0';
1251 rc = inode->i_op->getxattr(dentry,
1252 XATTR_NAME_SELINUX,
1253 context, len);
1254 }
1255 dput(dentry);
1256 if (rc < 0) {
1257 if (rc != -ENODATA) {
1258 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1259 "%d for dev=%s ino=%ld\n", __func__,
1260 -rc, inode->i_sb->s_id, inode->i_ino);
1261 kfree(context);
1262 goto out_unlock;
1263 }
1264 /* Map ENODATA to the default file SID */
1265 sid = sbsec->def_sid;
1266 rc = 0;
1267 } else {
1268 rc = security_context_to_sid_default(context, rc, &sid,
1269 sbsec->def_sid,
1270 GFP_NOFS);
1271 if (rc) {
1272 char *dev = inode->i_sb->s_id;
1273 unsigned long ino = inode->i_ino;
1274
1275 if (rc == -EINVAL) {
1276 if (printk_ratelimit())
1277 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1278 "context=%s. This indicates you may need to relabel the inode or the "
1279 "filesystem in question.\n", ino, dev, context);
1280 } else {
1281 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1282 "returned %d for dev=%s ino=%ld\n",
1283 __func__, context, -rc, dev, ino);
1284 }
1285 kfree(context);
1286 /* Leave with the unlabeled SID */
1287 rc = 0;
1288 break;
1289 }
1290 }
1291 kfree(context);
1292 isec->sid = sid;
1293 break;
1294 case SECURITY_FS_USE_TASK:
1295 isec->sid = isec->task_sid;
1296 break;
1297 case SECURITY_FS_USE_TRANS:
1298 /* Default to the fs SID. */
1299 isec->sid = sbsec->sid;
1300
1301 /* Try to obtain a transition SID. */
1302 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1304 isec->sclass, NULL, &sid);
1305 if (rc)
1306 goto out_unlock;
1307 isec->sid = sid;
1308 break;
1309 case SECURITY_FS_USE_MNTPOINT:
1310 isec->sid = sbsec->mntpoint_sid;
1311 break;
1312 default:
1313 /* Default to the fs superblock SID. */
1314 isec->sid = sbsec->sid;
1315
1316 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1317 if (opt_dentry) {
1318 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1319 rc = selinux_proc_get_sid(opt_dentry,
1320 isec->sclass,
1321 &sid);
1322 if (rc)
1323 goto out_unlock;
1324 isec->sid = sid;
1325 }
1326 }
1327 break;
1328 }
1329
1330 isec->initialized = 1;
1331
1332out_unlock:
1333 mutex_unlock(&isec->lock);
1334out:
1335 if (isec->sclass == SECCLASS_FILE)
1336 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1337 return rc;
1338}
1339
1340/* Convert a Linux signal to an access vector. */
1341static inline u32 signal_to_av(int sig)
1342{
1343 u32 perm = 0;
1344
1345 switch (sig) {
1346 case SIGCHLD:
1347 /* Commonly granted from child to parent. */
1348 perm = PROCESS__SIGCHLD;
1349 break;
1350 case SIGKILL:
1351 /* Cannot be caught or ignored */
1352 perm = PROCESS__SIGKILL;
1353 break;
1354 case SIGSTOP:
1355 /* Cannot be caught or ignored */
1356 perm = PROCESS__SIGSTOP;
1357 break;
1358 default:
1359 /* All other signals. */
1360 perm = PROCESS__SIGNAL;
1361 break;
1362 }
1363
1364 return perm;
1365}
1366
1367/*
1368 * Check permission between a pair of credentials
1369 * fork check, ptrace check, etc.
1370 */
1371static int cred_has_perm(const struct cred *actor,
1372 const struct cred *target,
1373 u32 perms)
1374{
1375 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1376
1377 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1378}
1379
1380/*
1381 * Check permission between a pair of tasks, e.g. signal checks,
1382 * fork check, ptrace check, etc.
1383 * tsk1 is the actor and tsk2 is the target
1384 * - this uses the default subjective creds of tsk1
1385 */
1386static int task_has_perm(const struct task_struct *tsk1,
1387 const struct task_struct *tsk2,
1388 u32 perms)
1389{
1390 const struct task_security_struct *__tsec1, *__tsec2;
1391 u32 sid1, sid2;
1392
1393 rcu_read_lock();
1394 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1395 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1396 rcu_read_unlock();
1397 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1398}
1399
1400/*
1401 * Check permission between current and another task, e.g. signal checks,
1402 * fork check, ptrace check, etc.
1403 * current is the actor and tsk2 is the target
1404 * - this uses current's subjective creds
1405 */
1406static int current_has_perm(const struct task_struct *tsk,
1407 u32 perms)
1408{
1409 u32 sid, tsid;
1410
1411 sid = current_sid();
1412 tsid = task_sid(tsk);
1413 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1414}
1415
1416#if CAP_LAST_CAP > 63
1417#error Fix SELinux to handle capabilities > 63.
1418#endif
1419
1420/* Check whether a task is allowed to use a capability. */
1421static int task_has_capability(struct task_struct *tsk,
1422 const struct cred *cred,
1423 int cap, int audit)
1424{
1425 struct common_audit_data ad;
1426 struct av_decision avd;
1427 u16 sclass;
1428 u32 sid = cred_sid(cred);
1429 u32 av = CAP_TO_MASK(cap);
1430 int rc;
1431
1432 COMMON_AUDIT_DATA_INIT(&ad, CAP);
1433 ad.tsk = tsk;
1434 ad.u.cap = cap;
1435
1436 switch (CAP_TO_INDEX(cap)) {
1437 case 0:
1438 sclass = SECCLASS_CAPABILITY;
1439 break;
1440 case 1:
1441 sclass = SECCLASS_CAPABILITY2;
1442 break;
1443 default:
1444 printk(KERN_ERR
1445 "SELinux: out of range capability %d\n", cap);
1446 BUG();
1447 return -EINVAL;
1448 }
1449
1450 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1451 if (audit == SECURITY_CAP_AUDIT) {
1452 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1453 if (rc2)
1454 return rc2;
1455 }
1456 return rc;
1457}
1458
1459/* Check whether a task is allowed to use a system operation. */
1460static int task_has_system(struct task_struct *tsk,
1461 u32 perms)
1462{
1463 u32 sid = task_sid(tsk);
1464
1465 return avc_has_perm(sid, SECINITSID_KERNEL,
1466 SECCLASS_SYSTEM, perms, NULL);
1467}
1468
1469/* Check whether a task has a particular permission to an inode.
1470 The 'adp' parameter is optional and allows other audit
1471 data to be passed (e.g. the dentry). */
1472static int inode_has_perm(const struct cred *cred,
1473 struct inode *inode,
1474 u32 perms,
1475 struct common_audit_data *adp,
1476 unsigned flags)
1477{
1478 struct inode_security_struct *isec;
1479 u32 sid;
1480
1481 validate_creds(cred);
1482
1483 if (unlikely(IS_PRIVATE(inode)))
1484 return 0;
1485
1486 sid = cred_sid(cred);
1487 isec = inode->i_security;
1488
1489 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1490}
1491
1492static int inode_has_perm_noadp(const struct cred *cred,
1493 struct inode *inode,
1494 u32 perms,
1495 unsigned flags)
1496{
1497 struct common_audit_data ad;
1498
1499 COMMON_AUDIT_DATA_INIT(&ad, INODE);
1500 ad.u.inode = inode;
1501 return inode_has_perm(cred, inode, perms, &ad, flags);
1502}
1503
1504/* Same as inode_has_perm, but pass explicit audit data containing
1505 the dentry to help the auditing code to more easily generate the
1506 pathname if needed. */
1507static inline int dentry_has_perm(const struct cred *cred,
1508 struct dentry *dentry,
1509 u32 av)
1510{
1511 struct inode *inode = dentry->d_inode;
1512 struct common_audit_data ad;
1513
1514 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1515 ad.u.dentry = dentry;
1516 return inode_has_perm(cred, inode, av, &ad, 0);
1517}
1518
1519/* Same as inode_has_perm, but pass explicit audit data containing
1520 the path to help the auditing code to more easily generate the
1521 pathname if needed. */
1522static inline int path_has_perm(const struct cred *cred,
1523 struct path *path,
1524 u32 av)
1525{
1526 struct inode *inode = path->dentry->d_inode;
1527 struct common_audit_data ad;
1528
1529 COMMON_AUDIT_DATA_INIT(&ad, PATH);
1530 ad.u.path = *path;
1531 return inode_has_perm(cred, inode, av, &ad, 0);
1532}
1533
1534/* Check whether a task can use an open file descriptor to
1535 access an inode in a given way. Check access to the
1536 descriptor itself, and then use dentry_has_perm to
1537 check a particular permission to the file.
1538 Access to the descriptor is implicitly granted if it
1539 has the same SID as the process. If av is zero, then
1540 access to the file is not checked, e.g. for cases
1541 where only the descriptor is affected like seek. */
1542static int file_has_perm(const struct cred *cred,
1543 struct file *file,
1544 u32 av)
1545{
1546 struct file_security_struct *fsec = file->f_security;
1547 struct inode *inode = file->f_path.dentry->d_inode;
1548 struct common_audit_data ad;
1549 u32 sid = cred_sid(cred);
1550 int rc;
1551
1552 COMMON_AUDIT_DATA_INIT(&ad, PATH);
1553 ad.u.path = file->f_path;
1554
1555 if (sid != fsec->sid) {
1556 rc = avc_has_perm(sid, fsec->sid,
1557 SECCLASS_FD,
1558 FD__USE,
1559 &ad);
1560 if (rc)
1561 goto out;
1562 }
1563
1564 /* av is zero if only checking access to the descriptor. */
1565 rc = 0;
1566 if (av)
1567 rc = inode_has_perm(cred, inode, av, &ad, 0);
1568
1569out:
1570 return rc;
1571}
1572
1573/* Check whether a task can create a file. */
1574static int may_create(struct inode *dir,
1575 struct dentry *dentry,
1576 u16 tclass)
1577{
1578 const struct task_security_struct *tsec = current_security();
1579 struct inode_security_struct *dsec;
1580 struct superblock_security_struct *sbsec;
1581 u32 sid, newsid;
1582 struct common_audit_data ad;
1583 int rc;
1584
1585 dsec = dir->i_security;
1586 sbsec = dir->i_sb->s_security;
1587
1588 sid = tsec->sid;
1589 newsid = tsec->create_sid;
1590
1591 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1592 ad.u.dentry = dentry;
1593
1594 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1595 DIR__ADD_NAME | DIR__SEARCH,
1596 &ad);
1597 if (rc)
1598 return rc;
1599
1600 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1601 rc = security_transition_sid(sid, dsec->sid, tclass,
1602 &dentry->d_name, &newsid);
1603 if (rc)
1604 return rc;
1605 }
1606
1607 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1608 if (rc)
1609 return rc;
1610
1611 return avc_has_perm(newsid, sbsec->sid,
1612 SECCLASS_FILESYSTEM,
1613 FILESYSTEM__ASSOCIATE, &ad);
1614}
1615
1616/* Check whether a task can create a key. */
1617static int may_create_key(u32 ksid,
1618 struct task_struct *ctx)
1619{
1620 u32 sid = task_sid(ctx);
1621
1622 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1623}
1624
1625#define MAY_LINK 0
1626#define MAY_UNLINK 1
1627#define MAY_RMDIR 2
1628
1629/* Check whether a task can link, unlink, or rmdir a file/directory. */
1630static int may_link(struct inode *dir,
1631 struct dentry *dentry,
1632 int kind)
1633
1634{
1635 struct inode_security_struct *dsec, *isec;
1636 struct common_audit_data ad;
1637 u32 sid = current_sid();
1638 u32 av;
1639 int rc;
1640
1641 dsec = dir->i_security;
1642 isec = dentry->d_inode->i_security;
1643
1644 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1645 ad.u.dentry = dentry;
1646
1647 av = DIR__SEARCH;
1648 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1649 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1650 if (rc)
1651 return rc;
1652
1653 switch (kind) {
1654 case MAY_LINK:
1655 av = FILE__LINK;
1656 break;
1657 case MAY_UNLINK:
1658 av = FILE__UNLINK;
1659 break;
1660 case MAY_RMDIR:
1661 av = DIR__RMDIR;
1662 break;
1663 default:
1664 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1665 __func__, kind);
1666 return 0;
1667 }
1668
1669 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1670 return rc;
1671}
1672
1673static inline int may_rename(struct inode *old_dir,
1674 struct dentry *old_dentry,
1675 struct inode *new_dir,
1676 struct dentry *new_dentry)
1677{
1678 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1679 struct common_audit_data ad;
1680 u32 sid = current_sid();
1681 u32 av;
1682 int old_is_dir, new_is_dir;
1683 int rc;
1684
1685 old_dsec = old_dir->i_security;
1686 old_isec = old_dentry->d_inode->i_security;
1687 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1688 new_dsec = new_dir->i_security;
1689
1690 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1691
1692 ad.u.dentry = old_dentry;
1693 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1694 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1695 if (rc)
1696 return rc;
1697 rc = avc_has_perm(sid, old_isec->sid,
1698 old_isec->sclass, FILE__RENAME, &ad);
1699 if (rc)
1700 return rc;
1701 if (old_is_dir && new_dir != old_dir) {
1702 rc = avc_has_perm(sid, old_isec->sid,
1703 old_isec->sclass, DIR__REPARENT, &ad);
1704 if (rc)
1705 return rc;
1706 }
1707
1708 ad.u.dentry = new_dentry;
1709 av = DIR__ADD_NAME | DIR__SEARCH;
1710 if (new_dentry->d_inode)
1711 av |= DIR__REMOVE_NAME;
1712 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1713 if (rc)
1714 return rc;
1715 if (new_dentry->d_inode) {
1716 new_isec = new_dentry->d_inode->i_security;
1717 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1718 rc = avc_has_perm(sid, new_isec->sid,
1719 new_isec->sclass,
1720 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1721 if (rc)
1722 return rc;
1723 }
1724
1725 return 0;
1726}
1727
1728/* Check whether a task can perform a filesystem operation. */
1729static int superblock_has_perm(const struct cred *cred,
1730 struct super_block *sb,
1731 u32 perms,
1732 struct common_audit_data *ad)
1733{
1734 struct superblock_security_struct *sbsec;
1735 u32 sid = cred_sid(cred);
1736
1737 sbsec = sb->s_security;
1738 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1739}
1740
1741/* Convert a Linux mode and permission mask to an access vector. */
1742static inline u32 file_mask_to_av(int mode, int mask)
1743{
1744 u32 av = 0;
1745
1746 if ((mode & S_IFMT) != S_IFDIR) {
1747 if (mask & MAY_EXEC)
1748 av |= FILE__EXECUTE;
1749 if (mask & MAY_READ)
1750 av |= FILE__READ;
1751
1752 if (mask & MAY_APPEND)
1753 av |= FILE__APPEND;
1754 else if (mask & MAY_WRITE)
1755 av |= FILE__WRITE;
1756
1757 } else {
1758 if (mask & MAY_EXEC)
1759 av |= DIR__SEARCH;
1760 if (mask & MAY_WRITE)
1761 av |= DIR__WRITE;
1762 if (mask & MAY_READ)
1763 av |= DIR__READ;
1764 }
1765
1766 return av;
1767}
1768
1769/* Convert a Linux file to an access vector. */
1770static inline u32 file_to_av(struct file *file)
1771{
1772 u32 av = 0;
1773
1774 if (file->f_mode & FMODE_READ)
1775 av |= FILE__READ;
1776 if (file->f_mode & FMODE_WRITE) {
1777 if (file->f_flags & O_APPEND)
1778 av |= FILE__APPEND;
1779 else
1780 av |= FILE__WRITE;
1781 }
1782 if (!av) {
1783 /*
1784 * Special file opened with flags 3 for ioctl-only use.
1785 */
1786 av = FILE__IOCTL;
1787 }
1788
1789 return av;
1790}
1791
1792/*
1793 * Convert a file to an access vector and include the correct open
1794 * open permission.
1795 */
1796static inline u32 open_file_to_av(struct file *file)
1797{
1798 u32 av = file_to_av(file);
1799
1800 if (selinux_policycap_openperm)
1801 av |= FILE__OPEN;
1802
1803 return av;
1804}
1805
1806/* Hook functions begin here. */
1807
1808static int selinux_ptrace_access_check(struct task_struct *child,
1809 unsigned int mode)
1810{
1811 int rc;
1812
1813 rc = cap_ptrace_access_check(child, mode);
1814 if (rc)
1815 return rc;
1816
1817 if (mode == PTRACE_MODE_READ) {
1818 u32 sid = current_sid();
1819 u32 csid = task_sid(child);
1820 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1821 }
1822
1823 return current_has_perm(child, PROCESS__PTRACE);
1824}
1825
1826static int selinux_ptrace_traceme(struct task_struct *parent)
1827{
1828 int rc;
1829
1830 rc = cap_ptrace_traceme(parent);
1831 if (rc)
1832 return rc;
1833
1834 return task_has_perm(parent, current, PROCESS__PTRACE);
1835}
1836
1837static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1838 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1839{
1840 int error;
1841
1842 error = current_has_perm(target, PROCESS__GETCAP);
1843 if (error)
1844 return error;
1845
1846 return cap_capget(target, effective, inheritable, permitted);
1847}
1848
1849static int selinux_capset(struct cred *new, const struct cred *old,
1850 const kernel_cap_t *effective,
1851 const kernel_cap_t *inheritable,
1852 const kernel_cap_t *permitted)
1853{
1854 int error;
1855
1856 error = cap_capset(new, old,
1857 effective, inheritable, permitted);
1858 if (error)
1859 return error;
1860
1861 return cred_has_perm(old, new, PROCESS__SETCAP);
1862}
1863
1864/*
1865 * (This comment used to live with the selinux_task_setuid hook,
1866 * which was removed).
1867 *
1868 * Since setuid only affects the current process, and since the SELinux
1869 * controls are not based on the Linux identity attributes, SELinux does not
1870 * need to control this operation. However, SELinux does control the use of
1871 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1872 */
1873
1874static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1875 struct user_namespace *ns, int cap, int audit)
1876{
1877 int rc;
1878
1879 rc = cap_capable(tsk, cred, ns, cap, audit);
1880 if (rc)
1881 return rc;
1882
1883 return task_has_capability(tsk, cred, cap, audit);
1884}
1885
1886static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1887{
1888 const struct cred *cred = current_cred();
1889 int rc = 0;
1890
1891 if (!sb)
1892 return 0;
1893
1894 switch (cmds) {
1895 case Q_SYNC:
1896 case Q_QUOTAON:
1897 case Q_QUOTAOFF:
1898 case Q_SETINFO:
1899 case Q_SETQUOTA:
1900 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1901 break;
1902 case Q_GETFMT:
1903 case Q_GETINFO:
1904 case Q_GETQUOTA:
1905 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1906 break;
1907 default:
1908 rc = 0; /* let the kernel handle invalid cmds */
1909 break;
1910 }
1911 return rc;
1912}
1913
1914static int selinux_quota_on(struct dentry *dentry)
1915{
1916 const struct cred *cred = current_cred();
1917
1918 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1919}
1920
1921static int selinux_syslog(int type)
1922{
1923 int rc;
1924
1925 switch (type) {
1926 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1927 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1928 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1929 break;
1930 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1931 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1932 /* Set level of messages printed to console */
1933 case SYSLOG_ACTION_CONSOLE_LEVEL:
1934 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1935 break;
1936 case SYSLOG_ACTION_CLOSE: /* Close log */
1937 case SYSLOG_ACTION_OPEN: /* Open log */
1938 case SYSLOG_ACTION_READ: /* Read from log */
1939 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1940 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1941 default:
1942 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1943 break;
1944 }
1945 return rc;
1946}
1947
1948/*
1949 * Check that a process has enough memory to allocate a new virtual
1950 * mapping. 0 means there is enough memory for the allocation to
1951 * succeed and -ENOMEM implies there is not.
1952 *
1953 * Do not audit the selinux permission check, as this is applied to all
1954 * processes that allocate mappings.
1955 */
1956static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1957{
1958 int rc, cap_sys_admin = 0;
1959
1960 rc = selinux_capable(current, current_cred(),
1961 &init_user_ns, CAP_SYS_ADMIN,
1962 SECURITY_CAP_NOAUDIT);
1963 if (rc == 0)
1964 cap_sys_admin = 1;
1965
1966 return __vm_enough_memory(mm, pages, cap_sys_admin);
1967}
1968
1969/* binprm security operations */
1970
1971static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1972{
1973 const struct task_security_struct *old_tsec;
1974 struct task_security_struct *new_tsec;
1975 struct inode_security_struct *isec;
1976 struct common_audit_data ad;
1977 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1978 int rc;
1979
1980 rc = cap_bprm_set_creds(bprm);
1981 if (rc)
1982 return rc;
1983
1984 /* SELinux context only depends on initial program or script and not
1985 * the script interpreter */
1986 if (bprm->cred_prepared)
1987 return 0;
1988
1989 old_tsec = current_security();
1990 new_tsec = bprm->cred->security;
1991 isec = inode->i_security;
1992
1993 /* Default to the current task SID. */
1994 new_tsec->sid = old_tsec->sid;
1995 new_tsec->osid = old_tsec->sid;
1996
1997 /* Reset fs, key, and sock SIDs on execve. */
1998 new_tsec->create_sid = 0;
1999 new_tsec->keycreate_sid = 0;
2000 new_tsec->sockcreate_sid = 0;
2001
2002 if (old_tsec->exec_sid) {
2003 new_tsec->sid = old_tsec->exec_sid;
2004 /* Reset exec SID on execve. */
2005 new_tsec->exec_sid = 0;
2006 } else {
2007 /* Check for a default transition on this program. */
2008 rc = security_transition_sid(old_tsec->sid, isec->sid,
2009 SECCLASS_PROCESS, NULL,
2010 &new_tsec->sid);
2011 if (rc)
2012 return rc;
2013 }
2014
2015 COMMON_AUDIT_DATA_INIT(&ad, PATH);
2016 ad.u.path = bprm->file->f_path;
2017
2018 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2019 new_tsec->sid = old_tsec->sid;
2020
2021 if (new_tsec->sid == old_tsec->sid) {
2022 rc = avc_has_perm(old_tsec->sid, isec->sid,
2023 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2024 if (rc)
2025 return rc;
2026 } else {
2027 /* Check permissions for the transition. */
2028 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2029 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2030 if (rc)
2031 return rc;
2032
2033 rc = avc_has_perm(new_tsec->sid, isec->sid,
2034 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2035 if (rc)
2036 return rc;
2037
2038 /* Check for shared state */
2039 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2040 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2041 SECCLASS_PROCESS, PROCESS__SHARE,
2042 NULL);
2043 if (rc)
2044 return -EPERM;
2045 }
2046
2047 /* Make sure that anyone attempting to ptrace over a task that
2048 * changes its SID has the appropriate permit */
2049 if (bprm->unsafe &
2050 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2051 struct task_struct *tracer;
2052 struct task_security_struct *sec;
2053 u32 ptsid = 0;
2054
2055 rcu_read_lock();
2056 tracer = ptrace_parent(current);
2057 if (likely(tracer != NULL)) {
2058 sec = __task_cred(tracer)->security;
2059 ptsid = sec->sid;
2060 }
2061 rcu_read_unlock();
2062
2063 if (ptsid != 0) {
2064 rc = avc_has_perm(ptsid, new_tsec->sid,
2065 SECCLASS_PROCESS,
2066 PROCESS__PTRACE, NULL);
2067 if (rc)
2068 return -EPERM;
2069 }
2070 }
2071
2072 /* Clear any possibly unsafe personality bits on exec: */
2073 bprm->per_clear |= PER_CLEAR_ON_SETID;
2074 }
2075
2076 return 0;
2077}
2078
2079static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2080{
2081 const struct task_security_struct *tsec = current_security();
2082 u32 sid, osid;
2083 int atsecure = 0;
2084
2085 sid = tsec->sid;
2086 osid = tsec->osid;
2087
2088 if (osid != sid) {
2089 /* Enable secure mode for SIDs transitions unless
2090 the noatsecure permission is granted between
2091 the two SIDs, i.e. ahp returns 0. */
2092 atsecure = avc_has_perm(osid, sid,
2093 SECCLASS_PROCESS,
2094 PROCESS__NOATSECURE, NULL);
2095 }
2096
2097 return (atsecure || cap_bprm_secureexec(bprm));
2098}
2099
2100extern struct vfsmount *selinuxfs_mount;
2101extern struct dentry *selinux_null;
2102
2103/* Derived from fs/exec.c:flush_old_files. */
2104static inline void flush_unauthorized_files(const struct cred *cred,
2105 struct files_struct *files)
2106{
2107 struct common_audit_data ad;
2108 struct file *file, *devnull = NULL;
2109 struct tty_struct *tty;
2110 struct fdtable *fdt;
2111 long j = -1;
2112 int drop_tty = 0;
2113
2114 tty = get_current_tty();
2115 if (tty) {
2116 spin_lock(&tty_files_lock);
2117 if (!list_empty(&tty->tty_files)) {
2118 struct tty_file_private *file_priv;
2119 struct inode *inode;
2120
2121 /* Revalidate access to controlling tty.
2122 Use inode_has_perm on the tty inode directly rather
2123 than using file_has_perm, as this particular open
2124 file may belong to another process and we are only
2125 interested in the inode-based check here. */
2126 file_priv = list_first_entry(&tty->tty_files,
2127 struct tty_file_private, list);
2128 file = file_priv->file;
2129 inode = file->f_path.dentry->d_inode;
2130 if (inode_has_perm_noadp(cred, inode,
2131 FILE__READ | FILE__WRITE, 0)) {
2132 drop_tty = 1;
2133 }
2134 }
2135 spin_unlock(&tty_files_lock);
2136 tty_kref_put(tty);
2137 }
2138 /* Reset controlling tty. */
2139 if (drop_tty)
2140 no_tty();
2141
2142 /* Revalidate access to inherited open files. */
2143
2144 COMMON_AUDIT_DATA_INIT(&ad, INODE);
2145
2146 spin_lock(&files->file_lock);
2147 for (;;) {
2148 unsigned long set, i;
2149 int fd;
2150
2151 j++;
2152 i = j * __NFDBITS;
2153 fdt = files_fdtable(files);
2154 if (i >= fdt->max_fds)
2155 break;
2156 set = fdt->open_fds->fds_bits[j];
2157 if (!set)
2158 continue;
2159 spin_unlock(&files->file_lock);
2160 for ( ; set ; i++, set >>= 1) {
2161 if (set & 1) {
2162 file = fget(i);
2163 if (!file)
2164 continue;
2165 if (file_has_perm(cred,
2166 file,
2167 file_to_av(file))) {
2168 sys_close(i);
2169 fd = get_unused_fd();
2170 if (fd != i) {
2171 if (fd >= 0)
2172 put_unused_fd(fd);
2173 fput(file);
2174 continue;
2175 }
2176 if (devnull) {
2177 get_file(devnull);
2178 } else {
2179 devnull = dentry_open(
2180 dget(selinux_null),
2181 mntget(selinuxfs_mount),
2182 O_RDWR, cred);
2183 if (IS_ERR(devnull)) {
2184 devnull = NULL;
2185 put_unused_fd(fd);
2186 fput(file);
2187 continue;
2188 }
2189 }
2190 fd_install(fd, devnull);
2191 }
2192 fput(file);
2193 }
2194 }
2195 spin_lock(&files->file_lock);
2196
2197 }
2198 spin_unlock(&files->file_lock);
2199}
2200
2201/*
2202 * Prepare a process for imminent new credential changes due to exec
2203 */
2204static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2205{
2206 struct task_security_struct *new_tsec;
2207 struct rlimit *rlim, *initrlim;
2208 int rc, i;
2209
2210 new_tsec = bprm->cred->security;
2211 if (new_tsec->sid == new_tsec->osid)
2212 return;
2213
2214 /* Close files for which the new task SID is not authorized. */
2215 flush_unauthorized_files(bprm->cred, current->files);
2216
2217 /* Always clear parent death signal on SID transitions. */
2218 current->pdeath_signal = 0;
2219
2220 /* Check whether the new SID can inherit resource limits from the old
2221 * SID. If not, reset all soft limits to the lower of the current
2222 * task's hard limit and the init task's soft limit.
2223 *
2224 * Note that the setting of hard limits (even to lower them) can be
2225 * controlled by the setrlimit check. The inclusion of the init task's
2226 * soft limit into the computation is to avoid resetting soft limits
2227 * higher than the default soft limit for cases where the default is
2228 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2229 */
2230 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2231 PROCESS__RLIMITINH, NULL);
2232 if (rc) {
2233 /* protect against do_prlimit() */
2234 task_lock(current);
2235 for (i = 0; i < RLIM_NLIMITS; i++) {
2236 rlim = current->signal->rlim + i;
2237 initrlim = init_task.signal->rlim + i;
2238 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2239 }
2240 task_unlock(current);
2241 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2242 }
2243}
2244
2245/*
2246 * Clean up the process immediately after the installation of new credentials
2247 * due to exec
2248 */
2249static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2250{
2251 const struct task_security_struct *tsec = current_security();
2252 struct itimerval itimer;
2253 u32 osid, sid;
2254 int rc, i;
2255
2256 osid = tsec->osid;
2257 sid = tsec->sid;
2258
2259 if (sid == osid)
2260 return;
2261
2262 /* Check whether the new SID can inherit signal state from the old SID.
2263 * If not, clear itimers to avoid subsequent signal generation and
2264 * flush and unblock signals.
2265 *
2266 * This must occur _after_ the task SID has been updated so that any
2267 * kill done after the flush will be checked against the new SID.
2268 */
2269 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2270 if (rc) {
2271 memset(&itimer, 0, sizeof itimer);
2272 for (i = 0; i < 3; i++)
2273 do_setitimer(i, &itimer, NULL);
2274 spin_lock_irq(¤t->sighand->siglock);
2275 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2276 __flush_signals(current);
2277 flush_signal_handlers(current, 1);
2278 sigemptyset(¤t->blocked);
2279 }
2280 spin_unlock_irq(¤t->sighand->siglock);
2281 }
2282
2283 /* Wake up the parent if it is waiting so that it can recheck
2284 * wait permission to the new task SID. */
2285 read_lock(&tasklist_lock);
2286 __wake_up_parent(current, current->real_parent);
2287 read_unlock(&tasklist_lock);
2288}
2289
2290/* superblock security operations */
2291
2292static int selinux_sb_alloc_security(struct super_block *sb)
2293{
2294 return superblock_alloc_security(sb);
2295}
2296
2297static void selinux_sb_free_security(struct super_block *sb)
2298{
2299 superblock_free_security(sb);
2300}
2301
2302static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2303{
2304 if (plen > olen)
2305 return 0;
2306
2307 return !memcmp(prefix, option, plen);
2308}
2309
2310static inline int selinux_option(char *option, int len)
2311{
2312 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2313 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2314 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2315 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2316 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2317}
2318
2319static inline void take_option(char **to, char *from, int *first, int len)
2320{
2321 if (!*first) {
2322 **to = ',';
2323 *to += 1;
2324 } else
2325 *first = 0;
2326 memcpy(*to, from, len);
2327 *to += len;
2328}
2329
2330static inline void take_selinux_option(char **to, char *from, int *first,
2331 int len)
2332{
2333 int current_size = 0;
2334
2335 if (!*first) {
2336 **to = '|';
2337 *to += 1;
2338 } else
2339 *first = 0;
2340
2341 while (current_size < len) {
2342 if (*from != '"') {
2343 **to = *from;
2344 *to += 1;
2345 }
2346 from += 1;
2347 current_size += 1;
2348 }
2349}
2350
2351static int selinux_sb_copy_data(char *orig, char *copy)
2352{
2353 int fnosec, fsec, rc = 0;
2354 char *in_save, *in_curr, *in_end;
2355 char *sec_curr, *nosec_save, *nosec;
2356 int open_quote = 0;
2357
2358 in_curr = orig;
2359 sec_curr = copy;
2360
2361 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2362 if (!nosec) {
2363 rc = -ENOMEM;
2364 goto out;
2365 }
2366
2367 nosec_save = nosec;
2368 fnosec = fsec = 1;
2369 in_save = in_end = orig;
2370
2371 do {
2372 if (*in_end == '"')
2373 open_quote = !open_quote;
2374 if ((*in_end == ',' && open_quote == 0) ||
2375 *in_end == '\0') {
2376 int len = in_end - in_curr;
2377
2378 if (selinux_option(in_curr, len))
2379 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2380 else
2381 take_option(&nosec, in_curr, &fnosec, len);
2382
2383 in_curr = in_end + 1;
2384 }
2385 } while (*in_end++);
2386
2387 strcpy(in_save, nosec_save);
2388 free_page((unsigned long)nosec_save);
2389out:
2390 return rc;
2391}
2392
2393static int selinux_sb_remount(struct super_block *sb, void *data)
2394{
2395 int rc, i, *flags;
2396 struct security_mnt_opts opts;
2397 char *secdata, **mount_options;
2398 struct superblock_security_struct *sbsec = sb->s_security;
2399
2400 if (!(sbsec->flags & SE_SBINITIALIZED))
2401 return 0;
2402
2403 if (!data)
2404 return 0;
2405
2406 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2407 return 0;
2408
2409 security_init_mnt_opts(&opts);
2410 secdata = alloc_secdata();
2411 if (!secdata)
2412 return -ENOMEM;
2413 rc = selinux_sb_copy_data(data, secdata);
2414 if (rc)
2415 goto out_free_secdata;
2416
2417 rc = selinux_parse_opts_str(secdata, &opts);
2418 if (rc)
2419 goto out_free_secdata;
2420
2421 mount_options = opts.mnt_opts;
2422 flags = opts.mnt_opts_flags;
2423
2424 for (i = 0; i < opts.num_mnt_opts; i++) {
2425 u32 sid;
2426 size_t len;
2427
2428 if (flags[i] == SE_SBLABELSUPP)
2429 continue;
2430 len = strlen(mount_options[i]);
2431 rc = security_context_to_sid(mount_options[i], len, &sid);
2432 if (rc) {
2433 printk(KERN_WARNING "SELinux: security_context_to_sid"
2434 "(%s) failed for (dev %s, type %s) errno=%d\n",
2435 mount_options[i], sb->s_id, sb->s_type->name, rc);
2436 goto out_free_opts;
2437 }
2438 rc = -EINVAL;
2439 switch (flags[i]) {
2440 case FSCONTEXT_MNT:
2441 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2442 goto out_bad_option;
2443 break;
2444 case CONTEXT_MNT:
2445 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2446 goto out_bad_option;
2447 break;
2448 case ROOTCONTEXT_MNT: {
2449 struct inode_security_struct *root_isec;
2450 root_isec = sb->s_root->d_inode->i_security;
2451
2452 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2453 goto out_bad_option;
2454 break;
2455 }
2456 case DEFCONTEXT_MNT:
2457 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2458 goto out_bad_option;
2459 break;
2460 default:
2461 goto out_free_opts;
2462 }
2463 }
2464
2465 rc = 0;
2466out_free_opts:
2467 security_free_mnt_opts(&opts);
2468out_free_secdata:
2469 free_secdata(secdata);
2470 return rc;
2471out_bad_option:
2472 printk(KERN_WARNING "SELinux: unable to change security options "
2473 "during remount (dev %s, type=%s)\n", sb->s_id,
2474 sb->s_type->name);
2475 goto out_free_opts;
2476}
2477
2478static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2479{
2480 const struct cred *cred = current_cred();
2481 struct common_audit_data ad;
2482 int rc;
2483
2484 rc = superblock_doinit(sb, data);
2485 if (rc)
2486 return rc;
2487
2488 /* Allow all mounts performed by the kernel */
2489 if (flags & MS_KERNMOUNT)
2490 return 0;
2491
2492 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2493 ad.u.dentry = sb->s_root;
2494 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2495}
2496
2497static int selinux_sb_statfs(struct dentry *dentry)
2498{
2499 const struct cred *cred = current_cred();
2500 struct common_audit_data ad;
2501
2502 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2503 ad.u.dentry = dentry->d_sb->s_root;
2504 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2505}
2506
2507static int selinux_mount(char *dev_name,
2508 struct path *path,
2509 char *type,
2510 unsigned long flags,
2511 void *data)
2512{
2513 const struct cred *cred = current_cred();
2514
2515 if (flags & MS_REMOUNT)
2516 return superblock_has_perm(cred, path->mnt->mnt_sb,
2517 FILESYSTEM__REMOUNT, NULL);
2518 else
2519 return path_has_perm(cred, path, FILE__MOUNTON);
2520}
2521
2522static int selinux_umount(struct vfsmount *mnt, int flags)
2523{
2524 const struct cred *cred = current_cred();
2525
2526 return superblock_has_perm(cred, mnt->mnt_sb,
2527 FILESYSTEM__UNMOUNT, NULL);
2528}
2529
2530/* inode security operations */
2531
2532static int selinux_inode_alloc_security(struct inode *inode)
2533{
2534 return inode_alloc_security(inode);
2535}
2536
2537static void selinux_inode_free_security(struct inode *inode)
2538{
2539 inode_free_security(inode);
2540}
2541
2542static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2543 const struct qstr *qstr, char **name,
2544 void **value, size_t *len)
2545{
2546 const struct task_security_struct *tsec = current_security();
2547 struct inode_security_struct *dsec;
2548 struct superblock_security_struct *sbsec;
2549 u32 sid, newsid, clen;
2550 int rc;
2551 char *namep = NULL, *context;
2552
2553 dsec = dir->i_security;
2554 sbsec = dir->i_sb->s_security;
2555
2556 sid = tsec->sid;
2557 newsid = tsec->create_sid;
2558
2559 if ((sbsec->flags & SE_SBINITIALIZED) &&
2560 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2561 newsid = sbsec->mntpoint_sid;
2562 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2563 rc = security_transition_sid(sid, dsec->sid,
2564 inode_mode_to_security_class(inode->i_mode),
2565 qstr, &newsid);
2566 if (rc) {
2567 printk(KERN_WARNING "%s: "
2568 "security_transition_sid failed, rc=%d (dev=%s "
2569 "ino=%ld)\n",
2570 __func__,
2571 -rc, inode->i_sb->s_id, inode->i_ino);
2572 return rc;
2573 }
2574 }
2575
2576 /* Possibly defer initialization to selinux_complete_init. */
2577 if (sbsec->flags & SE_SBINITIALIZED) {
2578 struct inode_security_struct *isec = inode->i_security;
2579 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2580 isec->sid = newsid;
2581 isec->initialized = 1;
2582 }
2583
2584 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2585 return -EOPNOTSUPP;
2586
2587 if (name) {
2588 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2589 if (!namep)
2590 return -ENOMEM;
2591 *name = namep;
2592 }
2593
2594 if (value && len) {
2595 rc = security_sid_to_context_force(newsid, &context, &clen);
2596 if (rc) {
2597 kfree(namep);
2598 return rc;
2599 }
2600 *value = context;
2601 *len = clen;
2602 }
2603
2604 return 0;
2605}
2606
2607static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2608{
2609 return may_create(dir, dentry, SECCLASS_FILE);
2610}
2611
2612static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2613{
2614 return may_link(dir, old_dentry, MAY_LINK);
2615}
2616
2617static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2618{
2619 return may_link(dir, dentry, MAY_UNLINK);
2620}
2621
2622static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2623{
2624 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2625}
2626
2627static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2628{
2629 return may_create(dir, dentry, SECCLASS_DIR);
2630}
2631
2632static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2633{
2634 return may_link(dir, dentry, MAY_RMDIR);
2635}
2636
2637static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2638{
2639 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2640}
2641
2642static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2643 struct inode *new_inode, struct dentry *new_dentry)
2644{
2645 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2646}
2647
2648static int selinux_inode_readlink(struct dentry *dentry)
2649{
2650 const struct cred *cred = current_cred();
2651
2652 return dentry_has_perm(cred, dentry, FILE__READ);
2653}
2654
2655static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2656{
2657 const struct cred *cred = current_cred();
2658
2659 return dentry_has_perm(cred, dentry, FILE__READ);
2660}
2661
2662static int selinux_inode_permission(struct inode *inode, int mask)
2663{
2664 const struct cred *cred = current_cred();
2665 struct common_audit_data ad;
2666 u32 perms;
2667 bool from_access;
2668 unsigned flags = mask & MAY_NOT_BLOCK;
2669
2670 from_access = mask & MAY_ACCESS;
2671 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2672
2673 /* No permission to check. Existence test. */
2674 if (!mask)
2675 return 0;
2676
2677 COMMON_AUDIT_DATA_INIT(&ad, INODE);
2678 ad.u.inode = inode;
2679
2680 if (from_access)
2681 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2682
2683 perms = file_mask_to_av(inode->i_mode, mask);
2684
2685 return inode_has_perm(cred, inode, perms, &ad, flags);
2686}
2687
2688static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2689{
2690 const struct cred *cred = current_cred();
2691 unsigned int ia_valid = iattr->ia_valid;
2692
2693 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2694 if (ia_valid & ATTR_FORCE) {
2695 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2696 ATTR_FORCE);
2697 if (!ia_valid)
2698 return 0;
2699 }
2700
2701 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2702 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2703 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2704
2705 return dentry_has_perm(cred, dentry, FILE__WRITE);
2706}
2707
2708static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2709{
2710 const struct cred *cred = current_cred();
2711 struct path path;
2712
2713 path.dentry = dentry;
2714 path.mnt = mnt;
2715
2716 return path_has_perm(cred, &path, FILE__GETATTR);
2717}
2718
2719static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2720{
2721 const struct cred *cred = current_cred();
2722
2723 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2724 sizeof XATTR_SECURITY_PREFIX - 1)) {
2725 if (!strcmp(name, XATTR_NAME_CAPS)) {
2726 if (!capable(CAP_SETFCAP))
2727 return -EPERM;
2728 } else if (!capable(CAP_SYS_ADMIN)) {
2729 /* A different attribute in the security namespace.
2730 Restrict to administrator. */
2731 return -EPERM;
2732 }
2733 }
2734
2735 /* Not an attribute we recognize, so just check the
2736 ordinary setattr permission. */
2737 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2738}
2739
2740static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2741 const void *value, size_t size, int flags)
2742{
2743 struct inode *inode = dentry->d_inode;
2744 struct inode_security_struct *isec = inode->i_security;
2745 struct superblock_security_struct *sbsec;
2746 struct common_audit_data ad;
2747 u32 newsid, sid = current_sid();
2748 int rc = 0;
2749
2750 if (strcmp(name, XATTR_NAME_SELINUX))
2751 return selinux_inode_setotherxattr(dentry, name);
2752
2753 sbsec = inode->i_sb->s_security;
2754 if (!(sbsec->flags & SE_SBLABELSUPP))
2755 return -EOPNOTSUPP;
2756
2757 if (!inode_owner_or_capable(inode))
2758 return -EPERM;
2759
2760 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2761 ad.u.dentry = dentry;
2762
2763 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2764 FILE__RELABELFROM, &ad);
2765 if (rc)
2766 return rc;
2767
2768 rc = security_context_to_sid(value, size, &newsid);
2769 if (rc == -EINVAL) {
2770 if (!capable(CAP_MAC_ADMIN))
2771 return rc;
2772 rc = security_context_to_sid_force(value, size, &newsid);
2773 }
2774 if (rc)
2775 return rc;
2776
2777 rc = avc_has_perm(sid, newsid, isec->sclass,
2778 FILE__RELABELTO, &ad);
2779 if (rc)
2780 return rc;
2781
2782 rc = security_validate_transition(isec->sid, newsid, sid,
2783 isec->sclass);
2784 if (rc)
2785 return rc;
2786
2787 return avc_has_perm(newsid,
2788 sbsec->sid,
2789 SECCLASS_FILESYSTEM,
2790 FILESYSTEM__ASSOCIATE,
2791 &ad);
2792}
2793
2794static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2795 const void *value, size_t size,
2796 int flags)
2797{
2798 struct inode *inode = dentry->d_inode;
2799 struct inode_security_struct *isec = inode->i_security;
2800 u32 newsid;
2801 int rc;
2802
2803 if (strcmp(name, XATTR_NAME_SELINUX)) {
2804 /* Not an attribute we recognize, so nothing to do. */
2805 return;
2806 }
2807
2808 rc = security_context_to_sid_force(value, size, &newsid);
2809 if (rc) {
2810 printk(KERN_ERR "SELinux: unable to map context to SID"
2811 "for (%s, %lu), rc=%d\n",
2812 inode->i_sb->s_id, inode->i_ino, -rc);
2813 return;
2814 }
2815
2816 isec->sid = newsid;
2817 return;
2818}
2819
2820static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2821{
2822 const struct cred *cred = current_cred();
2823
2824 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2825}
2826
2827static int selinux_inode_listxattr(struct dentry *dentry)
2828{
2829 const struct cred *cred = current_cred();
2830
2831 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2832}
2833
2834static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2835{
2836 if (strcmp(name, XATTR_NAME_SELINUX))
2837 return selinux_inode_setotherxattr(dentry, name);
2838
2839 /* No one is allowed to remove a SELinux security label.
2840 You can change the label, but all data must be labeled. */
2841 return -EACCES;
2842}
2843
2844/*
2845 * Copy the inode security context value to the user.
2846 *
2847 * Permission check is handled by selinux_inode_getxattr hook.
2848 */
2849static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2850{
2851 u32 size;
2852 int error;
2853 char *context = NULL;
2854 struct inode_security_struct *isec = inode->i_security;
2855
2856 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2857 return -EOPNOTSUPP;
2858
2859 /*
2860 * If the caller has CAP_MAC_ADMIN, then get the raw context
2861 * value even if it is not defined by current policy; otherwise,
2862 * use the in-core value under current policy.
2863 * Use the non-auditing forms of the permission checks since
2864 * getxattr may be called by unprivileged processes commonly
2865 * and lack of permission just means that we fall back to the
2866 * in-core context value, not a denial.
2867 */
2868 error = selinux_capable(current, current_cred(),
2869 &init_user_ns, CAP_MAC_ADMIN,
2870 SECURITY_CAP_NOAUDIT);
2871 if (!error)
2872 error = security_sid_to_context_force(isec->sid, &context,
2873 &size);
2874 else
2875 error = security_sid_to_context(isec->sid, &context, &size);
2876 if (error)
2877 return error;
2878 error = size;
2879 if (alloc) {
2880 *buffer = context;
2881 goto out_nofree;
2882 }
2883 kfree(context);
2884out_nofree:
2885 return error;
2886}
2887
2888static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2889 const void *value, size_t size, int flags)
2890{
2891 struct inode_security_struct *isec = inode->i_security;
2892 u32 newsid;
2893 int rc;
2894
2895 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2896 return -EOPNOTSUPP;
2897
2898 if (!value || !size)
2899 return -EACCES;
2900
2901 rc = security_context_to_sid((void *)value, size, &newsid);
2902 if (rc)
2903 return rc;
2904
2905 isec->sid = newsid;
2906 isec->initialized = 1;
2907 return 0;
2908}
2909
2910static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2911{
2912 const int len = sizeof(XATTR_NAME_SELINUX);
2913 if (buffer && len <= buffer_size)
2914 memcpy(buffer, XATTR_NAME_SELINUX, len);
2915 return len;
2916}
2917
2918static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2919{
2920 struct inode_security_struct *isec = inode->i_security;
2921 *secid = isec->sid;
2922}
2923
2924/* file security operations */
2925
2926static int selinux_revalidate_file_permission(struct file *file, int mask)
2927{
2928 const struct cred *cred = current_cred();
2929 struct inode *inode = file->f_path.dentry->d_inode;
2930
2931 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2932 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2933 mask |= MAY_APPEND;
2934
2935 return file_has_perm(cred, file,
2936 file_mask_to_av(inode->i_mode, mask));
2937}
2938
2939static int selinux_file_permission(struct file *file, int mask)
2940{
2941 struct inode *inode = file->f_path.dentry->d_inode;
2942 struct file_security_struct *fsec = file->f_security;
2943 struct inode_security_struct *isec = inode->i_security;
2944 u32 sid = current_sid();
2945
2946 if (!mask)
2947 /* No permission to check. Existence test. */
2948 return 0;
2949
2950 if (sid == fsec->sid && fsec->isid == isec->sid &&
2951 fsec->pseqno == avc_policy_seqno())
2952 /* No change since dentry_open check. */
2953 return 0;
2954
2955 return selinux_revalidate_file_permission(file, mask);
2956}
2957
2958static int selinux_file_alloc_security(struct file *file)
2959{
2960 return file_alloc_security(file);
2961}
2962
2963static void selinux_file_free_security(struct file *file)
2964{
2965 file_free_security(file);
2966}
2967
2968static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2969 unsigned long arg)
2970{
2971 const struct cred *cred = current_cred();
2972 int error = 0;
2973
2974 switch (cmd) {
2975 case FIONREAD:
2976 /* fall through */
2977 case FIBMAP:
2978 /* fall through */
2979 case FIGETBSZ:
2980 /* fall through */
2981 case EXT2_IOC_GETFLAGS:
2982 /* fall through */
2983 case EXT2_IOC_GETVERSION:
2984 error = file_has_perm(cred, file, FILE__GETATTR);
2985 break;
2986
2987 case EXT2_IOC_SETFLAGS:
2988 /* fall through */
2989 case EXT2_IOC_SETVERSION:
2990 error = file_has_perm(cred, file, FILE__SETATTR);
2991 break;
2992
2993 /* sys_ioctl() checks */
2994 case FIONBIO:
2995 /* fall through */
2996 case FIOASYNC:
2997 error = file_has_perm(cred, file, 0);
2998 break;
2999
3000 case KDSKBENT:
3001 case KDSKBSENT:
3002 error = task_has_capability(current, cred, CAP_SYS_TTY_CONFIG,
3003 SECURITY_CAP_AUDIT);
3004 break;
3005
3006 /* default case assumes that the command will go
3007 * to the file's ioctl() function.
3008 */
3009 default:
3010 error = file_has_perm(cred, file, FILE__IOCTL);
3011 }
3012 return error;
3013}
3014
3015static int default_noexec;
3016
3017static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3018{
3019 const struct cred *cred = current_cred();
3020 int rc = 0;
3021
3022 if (default_noexec &&
3023 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3024 /*
3025 * We are making executable an anonymous mapping or a
3026 * private file mapping that will also be writable.
3027 * This has an additional check.
3028 */
3029 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3030 if (rc)
3031 goto error;
3032 }
3033
3034 if (file) {
3035 /* read access is always possible with a mapping */
3036 u32 av = FILE__READ;
3037
3038 /* write access only matters if the mapping is shared */
3039 if (shared && (prot & PROT_WRITE))
3040 av |= FILE__WRITE;
3041
3042 if (prot & PROT_EXEC)
3043 av |= FILE__EXECUTE;
3044
3045 return file_has_perm(cred, file, av);
3046 }
3047
3048error:
3049 return rc;
3050}
3051
3052static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3053 unsigned long prot, unsigned long flags,
3054 unsigned long addr, unsigned long addr_only)
3055{
3056 int rc = 0;
3057 u32 sid = current_sid();
3058
3059 /*
3060 * notice that we are intentionally putting the SELinux check before
3061 * the secondary cap_file_mmap check. This is such a likely attempt
3062 * at bad behaviour/exploit that we always want to get the AVC, even
3063 * if DAC would have also denied the operation.
3064 */
3065 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3066 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3067 MEMPROTECT__MMAP_ZERO, NULL);
3068 if (rc)
3069 return rc;
3070 }
3071
3072 /* do DAC check on address space usage */
3073 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3074 if (rc || addr_only)
3075 return rc;
3076
3077 if (selinux_checkreqprot)
3078 prot = reqprot;
3079
3080 return file_map_prot_check(file, prot,
3081 (flags & MAP_TYPE) == MAP_SHARED);
3082}
3083
3084static int selinux_file_mprotect(struct vm_area_struct *vma,
3085 unsigned long reqprot,
3086 unsigned long prot)
3087{
3088 const struct cred *cred = current_cred();
3089
3090 if (selinux_checkreqprot)
3091 prot = reqprot;
3092
3093 if (default_noexec &&
3094 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3095 int rc = 0;
3096 if (vma->vm_start >= vma->vm_mm->start_brk &&
3097 vma->vm_end <= vma->vm_mm->brk) {
3098 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3099 } else if (!vma->vm_file &&
3100 vma->vm_start <= vma->vm_mm->start_stack &&
3101 vma->vm_end >= vma->vm_mm->start_stack) {
3102 rc = current_has_perm(current, PROCESS__EXECSTACK);
3103 } else if (vma->vm_file && vma->anon_vma) {
3104 /*
3105 * We are making executable a file mapping that has
3106 * had some COW done. Since pages might have been
3107 * written, check ability to execute the possibly
3108 * modified content. This typically should only
3109 * occur for text relocations.
3110 */
3111 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3112 }
3113 if (rc)
3114 return rc;
3115 }
3116
3117 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3118}
3119
3120static int selinux_file_lock(struct file *file, unsigned int cmd)
3121{
3122 const struct cred *cred = current_cred();
3123
3124 return file_has_perm(cred, file, FILE__LOCK);
3125}
3126
3127static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3128 unsigned long arg)
3129{
3130 const struct cred *cred = current_cred();
3131 int err = 0;
3132
3133 switch (cmd) {
3134 case F_SETFL:
3135 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3136 err = -EINVAL;
3137 break;
3138 }
3139
3140 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3141 err = file_has_perm(cred, file, FILE__WRITE);
3142 break;
3143 }
3144 /* fall through */
3145 case F_SETOWN:
3146 case F_SETSIG:
3147 case F_GETFL:
3148 case F_GETOWN:
3149 case F_GETSIG:
3150 /* Just check FD__USE permission */
3151 err = file_has_perm(cred, file, 0);
3152 break;
3153 case F_GETLK:
3154 case F_SETLK:
3155 case F_SETLKW:
3156#if BITS_PER_LONG == 32
3157 case F_GETLK64:
3158 case F_SETLK64:
3159 case F_SETLKW64:
3160#endif
3161 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3162 err = -EINVAL;
3163 break;
3164 }
3165 err = file_has_perm(cred, file, FILE__LOCK);
3166 break;
3167 }
3168
3169 return err;
3170}
3171
3172static int selinux_file_set_fowner(struct file *file)
3173{
3174 struct file_security_struct *fsec;
3175
3176 fsec = file->f_security;
3177 fsec->fown_sid = current_sid();
3178
3179 return 0;
3180}
3181
3182static int selinux_file_send_sigiotask(struct task_struct *tsk,
3183 struct fown_struct *fown, int signum)
3184{
3185 struct file *file;
3186 u32 sid = task_sid(tsk);
3187 u32 perm;
3188 struct file_security_struct *fsec;
3189
3190 /* struct fown_struct is never outside the context of a struct file */
3191 file = container_of(fown, struct file, f_owner);
3192
3193 fsec = file->f_security;
3194
3195 if (!signum)
3196 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3197 else
3198 perm = signal_to_av(signum);
3199
3200 return avc_has_perm(fsec->fown_sid, sid,
3201 SECCLASS_PROCESS, perm, NULL);
3202}
3203
3204static int selinux_file_receive(struct file *file)
3205{
3206 const struct cred *cred = current_cred();
3207
3208 return file_has_perm(cred, file, file_to_av(file));
3209}
3210
3211static int selinux_dentry_open(struct file *file, const struct cred *cred)
3212{
3213 struct file_security_struct *fsec;
3214 struct inode *inode;
3215 struct inode_security_struct *isec;
3216
3217 inode = file->f_path.dentry->d_inode;
3218 fsec = file->f_security;
3219 isec = inode->i_security;
3220 /*
3221 * Save inode label and policy sequence number
3222 * at open-time so that selinux_file_permission
3223 * can determine whether revalidation is necessary.
3224 * Task label is already saved in the file security
3225 * struct as its SID.
3226 */
3227 fsec->isid = isec->sid;
3228 fsec->pseqno = avc_policy_seqno();
3229 /*
3230 * Since the inode label or policy seqno may have changed
3231 * between the selinux_inode_permission check and the saving
3232 * of state above, recheck that access is still permitted.
3233 * Otherwise, access might never be revalidated against the
3234 * new inode label or new policy.
3235 * This check is not redundant - do not remove.
3236 */
3237 return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0);
3238}
3239
3240/* task security operations */
3241
3242static int selinux_task_create(unsigned long clone_flags)
3243{
3244 return current_has_perm(current, PROCESS__FORK);
3245}
3246
3247/*
3248 * allocate the SELinux part of blank credentials
3249 */
3250static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3251{
3252 struct task_security_struct *tsec;
3253
3254 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3255 if (!tsec)
3256 return -ENOMEM;
3257
3258 cred->security = tsec;
3259 return 0;
3260}
3261
3262/*
3263 * detach and free the LSM part of a set of credentials
3264 */
3265static void selinux_cred_free(struct cred *cred)
3266{
3267 struct task_security_struct *tsec = cred->security;
3268
3269 /*
3270 * cred->security == NULL if security_cred_alloc_blank() or
3271 * security_prepare_creds() returned an error.
3272 */
3273 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3274 cred->security = (void *) 0x7UL;
3275 kfree(tsec);
3276}
3277
3278/*
3279 * prepare a new set of credentials for modification
3280 */
3281static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3282 gfp_t gfp)
3283{
3284 const struct task_security_struct *old_tsec;
3285 struct task_security_struct *tsec;
3286
3287 old_tsec = old->security;
3288
3289 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3290 if (!tsec)
3291 return -ENOMEM;
3292
3293 new->security = tsec;
3294 return 0;
3295}
3296
3297/*
3298 * transfer the SELinux data to a blank set of creds
3299 */
3300static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3301{
3302 const struct task_security_struct *old_tsec = old->security;
3303 struct task_security_struct *tsec = new->security;
3304
3305 *tsec = *old_tsec;
3306}
3307
3308/*
3309 * set the security data for a kernel service
3310 * - all the creation contexts are set to unlabelled
3311 */
3312static int selinux_kernel_act_as(struct cred *new, u32 secid)
3313{
3314 struct task_security_struct *tsec = new->security;
3315 u32 sid = current_sid();
3316 int ret;
3317
3318 ret = avc_has_perm(sid, secid,
3319 SECCLASS_KERNEL_SERVICE,
3320 KERNEL_SERVICE__USE_AS_OVERRIDE,
3321 NULL);
3322 if (ret == 0) {
3323 tsec->sid = secid;
3324 tsec->create_sid = 0;
3325 tsec->keycreate_sid = 0;
3326 tsec->sockcreate_sid = 0;
3327 }
3328 return ret;
3329}
3330
3331/*
3332 * set the file creation context in a security record to the same as the
3333 * objective context of the specified inode
3334 */
3335static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3336{
3337 struct inode_security_struct *isec = inode->i_security;
3338 struct task_security_struct *tsec = new->security;
3339 u32 sid = current_sid();
3340 int ret;
3341
3342 ret = avc_has_perm(sid, isec->sid,
3343 SECCLASS_KERNEL_SERVICE,
3344 KERNEL_SERVICE__CREATE_FILES_AS,
3345 NULL);
3346
3347 if (ret == 0)
3348 tsec->create_sid = isec->sid;
3349 return ret;
3350}
3351
3352static int selinux_kernel_module_request(char *kmod_name)
3353{
3354 u32 sid;
3355 struct common_audit_data ad;
3356
3357 sid = task_sid(current);
3358
3359 COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3360 ad.u.kmod_name = kmod_name;
3361
3362 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3363 SYSTEM__MODULE_REQUEST, &ad);
3364}
3365
3366static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3367{
3368 return current_has_perm(p, PROCESS__SETPGID);
3369}
3370
3371static int selinux_task_getpgid(struct task_struct *p)
3372{
3373 return current_has_perm(p, PROCESS__GETPGID);
3374}
3375
3376static int selinux_task_getsid(struct task_struct *p)
3377{
3378 return current_has_perm(p, PROCESS__GETSESSION);
3379}
3380
3381static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3382{
3383 *secid = task_sid(p);
3384}
3385
3386static int selinux_task_setnice(struct task_struct *p, int nice)
3387{
3388 int rc;
3389
3390 rc = cap_task_setnice(p, nice);
3391 if (rc)
3392 return rc;
3393
3394 return current_has_perm(p, PROCESS__SETSCHED);
3395}
3396
3397static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3398{
3399 int rc;
3400
3401 rc = cap_task_setioprio(p, ioprio);
3402 if (rc)
3403 return rc;
3404
3405 return current_has_perm(p, PROCESS__SETSCHED);
3406}
3407
3408static int selinux_task_getioprio(struct task_struct *p)
3409{
3410 return current_has_perm(p, PROCESS__GETSCHED);
3411}
3412
3413static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3414 struct rlimit *new_rlim)
3415{
3416 struct rlimit *old_rlim = p->signal->rlim + resource;
3417
3418 /* Control the ability to change the hard limit (whether
3419 lowering or raising it), so that the hard limit can
3420 later be used as a safe reset point for the soft limit
3421 upon context transitions. See selinux_bprm_committing_creds. */
3422 if (old_rlim->rlim_max != new_rlim->rlim_max)
3423 return current_has_perm(p, PROCESS__SETRLIMIT);
3424
3425 return 0;
3426}
3427
3428static int selinux_task_setscheduler(struct task_struct *p)
3429{
3430 int rc;
3431
3432 rc = cap_task_setscheduler(p);
3433 if (rc)
3434 return rc;
3435
3436 return current_has_perm(p, PROCESS__SETSCHED);
3437}
3438
3439static int selinux_task_getscheduler(struct task_struct *p)
3440{
3441 return current_has_perm(p, PROCESS__GETSCHED);
3442}
3443
3444static int selinux_task_movememory(struct task_struct *p)
3445{
3446 return current_has_perm(p, PROCESS__SETSCHED);
3447}
3448
3449static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3450 int sig, u32 secid)
3451{
3452 u32 perm;
3453 int rc;
3454
3455 if (!sig)
3456 perm = PROCESS__SIGNULL; /* null signal; existence test */
3457 else
3458 perm = signal_to_av(sig);
3459 if (secid)
3460 rc = avc_has_perm(secid, task_sid(p),
3461 SECCLASS_PROCESS, perm, NULL);
3462 else
3463 rc = current_has_perm(p, perm);
3464 return rc;
3465}
3466
3467static int selinux_task_wait(struct task_struct *p)
3468{
3469 return task_has_perm(p, current, PROCESS__SIGCHLD);
3470}
3471
3472static void selinux_task_to_inode(struct task_struct *p,
3473 struct inode *inode)
3474{
3475 struct inode_security_struct *isec = inode->i_security;
3476 u32 sid = task_sid(p);
3477
3478 isec->sid = sid;
3479 isec->initialized = 1;
3480}
3481
3482/* Returns error only if unable to parse addresses */
3483static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3484 struct common_audit_data *ad, u8 *proto)
3485{
3486 int offset, ihlen, ret = -EINVAL;
3487 struct iphdr _iph, *ih;
3488
3489 offset = skb_network_offset(skb);
3490 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3491 if (ih == NULL)
3492 goto out;
3493
3494 ihlen = ih->ihl * 4;
3495 if (ihlen < sizeof(_iph))
3496 goto out;
3497
3498 ad->u.net.v4info.saddr = ih->saddr;
3499 ad->u.net.v4info.daddr = ih->daddr;
3500 ret = 0;
3501
3502 if (proto)
3503 *proto = ih->protocol;
3504
3505 switch (ih->protocol) {
3506 case IPPROTO_TCP: {
3507 struct tcphdr _tcph, *th;
3508
3509 if (ntohs(ih->frag_off) & IP_OFFSET)
3510 break;
3511
3512 offset += ihlen;
3513 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3514 if (th == NULL)
3515 break;
3516
3517 ad->u.net.sport = th->source;
3518 ad->u.net.dport = th->dest;
3519 break;
3520 }
3521
3522 case IPPROTO_UDP: {
3523 struct udphdr _udph, *uh;
3524
3525 if (ntohs(ih->frag_off) & IP_OFFSET)
3526 break;
3527
3528 offset += ihlen;
3529 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3530 if (uh == NULL)
3531 break;
3532
3533 ad->u.net.sport = uh->source;
3534 ad->u.net.dport = uh->dest;
3535 break;
3536 }
3537
3538 case IPPROTO_DCCP: {
3539 struct dccp_hdr _dccph, *dh;
3540
3541 if (ntohs(ih->frag_off) & IP_OFFSET)
3542 break;
3543
3544 offset += ihlen;
3545 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3546 if (dh == NULL)
3547 break;
3548
3549 ad->u.net.sport = dh->dccph_sport;
3550 ad->u.net.dport = dh->dccph_dport;
3551 break;
3552 }
3553
3554 default:
3555 break;
3556 }
3557out:
3558 return ret;
3559}
3560
3561#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3562
3563/* Returns error only if unable to parse addresses */
3564static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3565 struct common_audit_data *ad, u8 *proto)
3566{
3567 u8 nexthdr;
3568 int ret = -EINVAL, offset;
3569 struct ipv6hdr _ipv6h, *ip6;
3570
3571 offset = skb_network_offset(skb);
3572 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3573 if (ip6 == NULL)
3574 goto out;
3575
3576 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3577 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3578 ret = 0;
3579
3580 nexthdr = ip6->nexthdr;
3581 offset += sizeof(_ipv6h);
3582 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3583 if (offset < 0)
3584 goto out;
3585
3586 if (proto)
3587 *proto = nexthdr;
3588
3589 switch (nexthdr) {
3590 case IPPROTO_TCP: {
3591 struct tcphdr _tcph, *th;
3592
3593 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3594 if (th == NULL)
3595 break;
3596
3597 ad->u.net.sport = th->source;
3598 ad->u.net.dport = th->dest;
3599 break;
3600 }
3601
3602 case IPPROTO_UDP: {
3603 struct udphdr _udph, *uh;
3604
3605 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3606 if (uh == NULL)
3607 break;
3608
3609 ad->u.net.sport = uh->source;
3610 ad->u.net.dport = uh->dest;
3611 break;
3612 }
3613
3614 case IPPROTO_DCCP: {
3615 struct dccp_hdr _dccph, *dh;
3616
3617 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3618 if (dh == NULL)
3619 break;
3620
3621 ad->u.net.sport = dh->dccph_sport;
3622 ad->u.net.dport = dh->dccph_dport;
3623 break;
3624 }
3625
3626 /* includes fragments */
3627 default:
3628 break;
3629 }
3630out:
3631 return ret;
3632}
3633
3634#endif /* IPV6 */
3635
3636static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3637 char **_addrp, int src, u8 *proto)
3638{
3639 char *addrp;
3640 int ret;
3641
3642 switch (ad->u.net.family) {
3643 case PF_INET:
3644 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3645 if (ret)
3646 goto parse_error;
3647 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3648 &ad->u.net.v4info.daddr);
3649 goto okay;
3650
3651#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3652 case PF_INET6:
3653 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3654 if (ret)
3655 goto parse_error;
3656 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3657 &ad->u.net.v6info.daddr);
3658 goto okay;
3659#endif /* IPV6 */
3660 default:
3661 addrp = NULL;
3662 goto okay;
3663 }
3664
3665parse_error:
3666 printk(KERN_WARNING
3667 "SELinux: failure in selinux_parse_skb(),"
3668 " unable to parse packet\n");
3669 return ret;
3670
3671okay:
3672 if (_addrp)
3673 *_addrp = addrp;
3674 return 0;
3675}
3676
3677/**
3678 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3679 * @skb: the packet
3680 * @family: protocol family
3681 * @sid: the packet's peer label SID
3682 *
3683 * Description:
3684 * Check the various different forms of network peer labeling and determine
3685 * the peer label/SID for the packet; most of the magic actually occurs in
3686 * the security server function security_net_peersid_cmp(). The function
3687 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3688 * or -EACCES if @sid is invalid due to inconsistencies with the different
3689 * peer labels.
3690 *
3691 */
3692static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3693{
3694 int err;
3695 u32 xfrm_sid;
3696 u32 nlbl_sid;
3697 u32 nlbl_type;
3698
3699 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3700 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3701
3702 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3703 if (unlikely(err)) {
3704 printk(KERN_WARNING
3705 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3706 " unable to determine packet's peer label\n");
3707 return -EACCES;
3708 }
3709
3710 return 0;
3711}
3712
3713/* socket security operations */
3714
3715static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3716 u16 secclass, u32 *socksid)
3717{
3718 if (tsec->sockcreate_sid > SECSID_NULL) {
3719 *socksid = tsec->sockcreate_sid;
3720 return 0;
3721 }
3722
3723 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3724 socksid);
3725}
3726
3727static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3728{
3729 struct sk_security_struct *sksec = sk->sk_security;
3730 struct common_audit_data ad;
3731 u32 tsid = task_sid(task);
3732
3733 if (sksec->sid == SECINITSID_KERNEL)
3734 return 0;
3735
3736 COMMON_AUDIT_DATA_INIT(&ad, NET);
3737 ad.u.net.sk = sk;
3738
3739 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3740}
3741
3742static int selinux_socket_create(int family, int type,
3743 int protocol, int kern)
3744{
3745 const struct task_security_struct *tsec = current_security();
3746 u32 newsid;
3747 u16 secclass;
3748 int rc;
3749
3750 if (kern)
3751 return 0;
3752
3753 secclass = socket_type_to_security_class(family, type, protocol);
3754 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3755 if (rc)
3756 return rc;
3757
3758 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3759}
3760
3761static int selinux_socket_post_create(struct socket *sock, int family,
3762 int type, int protocol, int kern)
3763{
3764 const struct task_security_struct *tsec = current_security();
3765 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3766 struct sk_security_struct *sksec;
3767 int err = 0;
3768
3769 isec->sclass = socket_type_to_security_class(family, type, protocol);
3770
3771 if (kern)
3772 isec->sid = SECINITSID_KERNEL;
3773 else {
3774 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3775 if (err)
3776 return err;
3777 }
3778
3779 isec->initialized = 1;
3780
3781 if (sock->sk) {
3782 sksec = sock->sk->sk_security;
3783 sksec->sid = isec->sid;
3784 sksec->sclass = isec->sclass;
3785 err = selinux_netlbl_socket_post_create(sock->sk, family);
3786 }
3787
3788 return err;
3789}
3790
3791/* Range of port numbers used to automatically bind.
3792 Need to determine whether we should perform a name_bind
3793 permission check between the socket and the port number. */
3794
3795static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3796{
3797 struct sock *sk = sock->sk;
3798 u16 family;
3799 int err;
3800
3801 err = sock_has_perm(current, sk, SOCKET__BIND);
3802 if (err)
3803 goto out;
3804
3805 /*
3806 * If PF_INET or PF_INET6, check name_bind permission for the port.
3807 * Multiple address binding for SCTP is not supported yet: we just
3808 * check the first address now.
3809 */
3810 family = sk->sk_family;
3811 if (family == PF_INET || family == PF_INET6) {
3812 char *addrp;
3813 struct sk_security_struct *sksec = sk->sk_security;
3814 struct common_audit_data ad;
3815 struct sockaddr_in *addr4 = NULL;
3816 struct sockaddr_in6 *addr6 = NULL;
3817 unsigned short snum;
3818 u32 sid, node_perm;
3819
3820 if (family == PF_INET) {
3821 addr4 = (struct sockaddr_in *)address;
3822 snum = ntohs(addr4->sin_port);
3823 addrp = (char *)&addr4->sin_addr.s_addr;
3824 } else {
3825 addr6 = (struct sockaddr_in6 *)address;
3826 snum = ntohs(addr6->sin6_port);
3827 addrp = (char *)&addr6->sin6_addr.s6_addr;
3828 }
3829
3830 if (snum) {
3831 int low, high;
3832
3833 inet_get_local_port_range(&low, &high);
3834
3835 if (snum < max(PROT_SOCK, low) || snum > high) {
3836 err = sel_netport_sid(sk->sk_protocol,
3837 snum, &sid);
3838 if (err)
3839 goto out;
3840 COMMON_AUDIT_DATA_INIT(&ad, NET);
3841 ad.u.net.sport = htons(snum);
3842 ad.u.net.family = family;
3843 err = avc_has_perm(sksec->sid, sid,
3844 sksec->sclass,
3845 SOCKET__NAME_BIND, &ad);
3846 if (err)
3847 goto out;
3848 }
3849 }
3850
3851 switch (sksec->sclass) {
3852 case SECCLASS_TCP_SOCKET:
3853 node_perm = TCP_SOCKET__NODE_BIND;
3854 break;
3855
3856 case SECCLASS_UDP_SOCKET:
3857 node_perm = UDP_SOCKET__NODE_BIND;
3858 break;
3859
3860 case SECCLASS_DCCP_SOCKET:
3861 node_perm = DCCP_SOCKET__NODE_BIND;
3862 break;
3863
3864 default:
3865 node_perm = RAWIP_SOCKET__NODE_BIND;
3866 break;
3867 }
3868
3869 err = sel_netnode_sid(addrp, family, &sid);
3870 if (err)
3871 goto out;
3872
3873 COMMON_AUDIT_DATA_INIT(&ad, NET);
3874 ad.u.net.sport = htons(snum);
3875 ad.u.net.family = family;
3876
3877 if (family == PF_INET)
3878 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3879 else
3880 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3881
3882 err = avc_has_perm(sksec->sid, sid,
3883 sksec->sclass, node_perm, &ad);
3884 if (err)
3885 goto out;
3886 }
3887out:
3888 return err;
3889}
3890
3891static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3892{
3893 struct sock *sk = sock->sk;
3894 struct sk_security_struct *sksec = sk->sk_security;
3895 int err;
3896
3897 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3898 if (err)
3899 return err;
3900
3901 /*
3902 * If a TCP or DCCP socket, check name_connect permission for the port.
3903 */
3904 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3905 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3906 struct common_audit_data ad;
3907 struct sockaddr_in *addr4 = NULL;
3908 struct sockaddr_in6 *addr6 = NULL;
3909 unsigned short snum;
3910 u32 sid, perm;
3911
3912 if (sk->sk_family == PF_INET) {
3913 addr4 = (struct sockaddr_in *)address;
3914 if (addrlen < sizeof(struct sockaddr_in))
3915 return -EINVAL;
3916 snum = ntohs(addr4->sin_port);
3917 } else {
3918 addr6 = (struct sockaddr_in6 *)address;
3919 if (addrlen < SIN6_LEN_RFC2133)
3920 return -EINVAL;
3921 snum = ntohs(addr6->sin6_port);
3922 }
3923
3924 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3925 if (err)
3926 goto out;
3927
3928 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3929 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3930
3931 COMMON_AUDIT_DATA_INIT(&ad, NET);
3932 ad.u.net.dport = htons(snum);
3933 ad.u.net.family = sk->sk_family;
3934 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3935 if (err)
3936 goto out;
3937 }
3938
3939 err = selinux_netlbl_socket_connect(sk, address);
3940
3941out:
3942 return err;
3943}
3944
3945static int selinux_socket_listen(struct socket *sock, int backlog)
3946{
3947 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3948}
3949
3950static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3951{
3952 int err;
3953 struct inode_security_struct *isec;
3954 struct inode_security_struct *newisec;
3955
3956 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3957 if (err)
3958 return err;
3959
3960 newisec = SOCK_INODE(newsock)->i_security;
3961
3962 isec = SOCK_INODE(sock)->i_security;
3963 newisec->sclass = isec->sclass;
3964 newisec->sid = isec->sid;
3965 newisec->initialized = 1;
3966
3967 return 0;
3968}
3969
3970static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3971 int size)
3972{
3973 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3974}
3975
3976static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3977 int size, int flags)
3978{
3979 return sock_has_perm(current, sock->sk, SOCKET__READ);
3980}
3981
3982static int selinux_socket_getsockname(struct socket *sock)
3983{
3984 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3985}
3986
3987static int selinux_socket_getpeername(struct socket *sock)
3988{
3989 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3990}
3991
3992static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3993{
3994 int err;
3995
3996 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3997 if (err)
3998 return err;
3999
4000 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4001}
4002
4003static int selinux_socket_getsockopt(struct socket *sock, int level,
4004 int optname)
4005{
4006 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4007}
4008
4009static int selinux_socket_shutdown(struct socket *sock, int how)
4010{
4011 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4012}
4013
4014static int selinux_socket_unix_stream_connect(struct sock *sock,
4015 struct sock *other,
4016 struct sock *newsk)
4017{
4018 struct sk_security_struct *sksec_sock = sock->sk_security;
4019 struct sk_security_struct *sksec_other = other->sk_security;
4020 struct sk_security_struct *sksec_new = newsk->sk_security;
4021 struct common_audit_data ad;
4022 int err;
4023
4024 COMMON_AUDIT_DATA_INIT(&ad, NET);
4025 ad.u.net.sk = other;
4026
4027 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4028 sksec_other->sclass,
4029 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4030 if (err)
4031 return err;
4032
4033 /* server child socket */
4034 sksec_new->peer_sid = sksec_sock->sid;
4035 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4036 &sksec_new->sid);
4037 if (err)
4038 return err;
4039
4040 /* connecting socket */
4041 sksec_sock->peer_sid = sksec_new->sid;
4042
4043 return 0;
4044}
4045
4046static int selinux_socket_unix_may_send(struct socket *sock,
4047 struct socket *other)
4048{
4049 struct sk_security_struct *ssec = sock->sk->sk_security;
4050 struct sk_security_struct *osec = other->sk->sk_security;
4051 struct common_audit_data ad;
4052
4053 COMMON_AUDIT_DATA_INIT(&ad, NET);
4054 ad.u.net.sk = other->sk;
4055
4056 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4057 &ad);
4058}
4059
4060static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4061 u32 peer_sid,
4062 struct common_audit_data *ad)
4063{
4064 int err;
4065 u32 if_sid;
4066 u32 node_sid;
4067
4068 err = sel_netif_sid(ifindex, &if_sid);
4069 if (err)
4070 return err;
4071 err = avc_has_perm(peer_sid, if_sid,
4072 SECCLASS_NETIF, NETIF__INGRESS, ad);
4073 if (err)
4074 return err;
4075
4076 err = sel_netnode_sid(addrp, family, &node_sid);
4077 if (err)
4078 return err;
4079 return avc_has_perm(peer_sid, node_sid,
4080 SECCLASS_NODE, NODE__RECVFROM, ad);
4081}
4082
4083static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4084 u16 family)
4085{
4086 int err = 0;
4087 struct sk_security_struct *sksec = sk->sk_security;
4088 u32 sk_sid = sksec->sid;
4089 struct common_audit_data ad;
4090 char *addrp;
4091
4092 COMMON_AUDIT_DATA_INIT(&ad, NET);
4093 ad.u.net.netif = skb->skb_iif;
4094 ad.u.net.family = family;
4095 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4096 if (err)
4097 return err;
4098
4099 if (selinux_secmark_enabled()) {
4100 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4101 PACKET__RECV, &ad);
4102 if (err)
4103 return err;
4104 }
4105
4106 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4107 if (err)
4108 return err;
4109 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4110
4111 return err;
4112}
4113
4114static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4115{
4116 int err;
4117 struct sk_security_struct *sksec = sk->sk_security;
4118 u16 family = sk->sk_family;
4119 u32 sk_sid = sksec->sid;
4120 struct common_audit_data ad;
4121 char *addrp;
4122 u8 secmark_active;
4123 u8 peerlbl_active;
4124
4125 if (family != PF_INET && family != PF_INET6)
4126 return 0;
4127
4128 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4129 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4130 family = PF_INET;
4131
4132 /* If any sort of compatibility mode is enabled then handoff processing
4133 * to the selinux_sock_rcv_skb_compat() function to deal with the
4134 * special handling. We do this in an attempt to keep this function
4135 * as fast and as clean as possible. */
4136 if (!selinux_policycap_netpeer)
4137 return selinux_sock_rcv_skb_compat(sk, skb, family);
4138
4139 secmark_active = selinux_secmark_enabled();
4140 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4141 if (!secmark_active && !peerlbl_active)
4142 return 0;
4143
4144 COMMON_AUDIT_DATA_INIT(&ad, NET);
4145 ad.u.net.netif = skb->skb_iif;
4146 ad.u.net.family = family;
4147 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4148 if (err)
4149 return err;
4150
4151 if (peerlbl_active) {
4152 u32 peer_sid;
4153
4154 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4155 if (err)
4156 return err;
4157 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4158 peer_sid, &ad);
4159 if (err) {
4160 selinux_netlbl_err(skb, err, 0);
4161 return err;
4162 }
4163 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4164 PEER__RECV, &ad);
4165 if (err)
4166 selinux_netlbl_err(skb, err, 0);
4167 }
4168
4169 if (secmark_active) {
4170 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4171 PACKET__RECV, &ad);
4172 if (err)
4173 return err;
4174 }
4175
4176 return err;
4177}
4178
4179static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4180 int __user *optlen, unsigned len)
4181{
4182 int err = 0;
4183 char *scontext;
4184 u32 scontext_len;
4185 struct sk_security_struct *sksec = sock->sk->sk_security;
4186 u32 peer_sid = SECSID_NULL;
4187
4188 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4189 sksec->sclass == SECCLASS_TCP_SOCKET)
4190 peer_sid = sksec->peer_sid;
4191 if (peer_sid == SECSID_NULL)
4192 return -ENOPROTOOPT;
4193
4194 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4195 if (err)
4196 return err;
4197
4198 if (scontext_len > len) {
4199 err = -ERANGE;
4200 goto out_len;
4201 }
4202
4203 if (copy_to_user(optval, scontext, scontext_len))
4204 err = -EFAULT;
4205
4206out_len:
4207 if (put_user(scontext_len, optlen))
4208 err = -EFAULT;
4209 kfree(scontext);
4210 return err;
4211}
4212
4213static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4214{
4215 u32 peer_secid = SECSID_NULL;
4216 u16 family;
4217
4218 if (skb && skb->protocol == htons(ETH_P_IP))
4219 family = PF_INET;
4220 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4221 family = PF_INET6;
4222 else if (sock)
4223 family = sock->sk->sk_family;
4224 else
4225 goto out;
4226
4227 if (sock && family == PF_UNIX)
4228 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4229 else if (skb)
4230 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4231
4232out:
4233 *secid = peer_secid;
4234 if (peer_secid == SECSID_NULL)
4235 return -EINVAL;
4236 return 0;
4237}
4238
4239static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4240{
4241 struct sk_security_struct *sksec;
4242
4243 sksec = kzalloc(sizeof(*sksec), priority);
4244 if (!sksec)
4245 return -ENOMEM;
4246
4247 sksec->peer_sid = SECINITSID_UNLABELED;
4248 sksec->sid = SECINITSID_UNLABELED;
4249 selinux_netlbl_sk_security_reset(sksec);
4250 sk->sk_security = sksec;
4251
4252 return 0;
4253}
4254
4255static void selinux_sk_free_security(struct sock *sk)
4256{
4257 struct sk_security_struct *sksec = sk->sk_security;
4258
4259 sk->sk_security = NULL;
4260 selinux_netlbl_sk_security_free(sksec);
4261 kfree(sksec);
4262}
4263
4264static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4265{
4266 struct sk_security_struct *sksec = sk->sk_security;
4267 struct sk_security_struct *newsksec = newsk->sk_security;
4268
4269 newsksec->sid = sksec->sid;
4270 newsksec->peer_sid = sksec->peer_sid;
4271 newsksec->sclass = sksec->sclass;
4272
4273 selinux_netlbl_sk_security_reset(newsksec);
4274}
4275
4276static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4277{
4278 if (!sk)
4279 *secid = SECINITSID_ANY_SOCKET;
4280 else {
4281 struct sk_security_struct *sksec = sk->sk_security;
4282
4283 *secid = sksec->sid;
4284 }
4285}
4286
4287static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4288{
4289 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4290 struct sk_security_struct *sksec = sk->sk_security;
4291
4292 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4293 sk->sk_family == PF_UNIX)
4294 isec->sid = sksec->sid;
4295 sksec->sclass = isec->sclass;
4296}
4297
4298static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4299 struct request_sock *req)
4300{
4301 struct sk_security_struct *sksec = sk->sk_security;
4302 int err;
4303 u16 family = sk->sk_family;
4304 u32 newsid;
4305 u32 peersid;
4306
4307 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4308 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4309 family = PF_INET;
4310
4311 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4312 if (err)
4313 return err;
4314 if (peersid == SECSID_NULL) {
4315 req->secid = sksec->sid;
4316 req->peer_secid = SECSID_NULL;
4317 } else {
4318 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4319 if (err)
4320 return err;
4321 req->secid = newsid;
4322 req->peer_secid = peersid;
4323 }
4324
4325 return selinux_netlbl_inet_conn_request(req, family);
4326}
4327
4328static void selinux_inet_csk_clone(struct sock *newsk,
4329 const struct request_sock *req)
4330{
4331 struct sk_security_struct *newsksec = newsk->sk_security;
4332
4333 newsksec->sid = req->secid;
4334 newsksec->peer_sid = req->peer_secid;
4335 /* NOTE: Ideally, we should also get the isec->sid for the
4336 new socket in sync, but we don't have the isec available yet.
4337 So we will wait until sock_graft to do it, by which
4338 time it will have been created and available. */
4339
4340 /* We don't need to take any sort of lock here as we are the only
4341 * thread with access to newsksec */
4342 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4343}
4344
4345static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4346{
4347 u16 family = sk->sk_family;
4348 struct sk_security_struct *sksec = sk->sk_security;
4349
4350 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4351 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4352 family = PF_INET;
4353
4354 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4355}
4356
4357static int selinux_secmark_relabel_packet(u32 sid)
4358{
4359 const struct task_security_struct *__tsec;
4360 u32 tsid;
4361
4362 __tsec = current_security();
4363 tsid = __tsec->sid;
4364
4365 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4366}
4367
4368static void selinux_secmark_refcount_inc(void)
4369{
4370 atomic_inc(&selinux_secmark_refcount);
4371}
4372
4373static void selinux_secmark_refcount_dec(void)
4374{
4375 atomic_dec(&selinux_secmark_refcount);
4376}
4377
4378static void selinux_req_classify_flow(const struct request_sock *req,
4379 struct flowi *fl)
4380{
4381 fl->flowi_secid = req->secid;
4382}
4383
4384static int selinux_tun_dev_create(void)
4385{
4386 u32 sid = current_sid();
4387
4388 /* we aren't taking into account the "sockcreate" SID since the socket
4389 * that is being created here is not a socket in the traditional sense,
4390 * instead it is a private sock, accessible only to the kernel, and
4391 * representing a wide range of network traffic spanning multiple
4392 * connections unlike traditional sockets - check the TUN driver to
4393 * get a better understanding of why this socket is special */
4394
4395 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4396 NULL);
4397}
4398
4399static void selinux_tun_dev_post_create(struct sock *sk)
4400{
4401 struct sk_security_struct *sksec = sk->sk_security;
4402
4403 /* we don't currently perform any NetLabel based labeling here and it
4404 * isn't clear that we would want to do so anyway; while we could apply
4405 * labeling without the support of the TUN user the resulting labeled
4406 * traffic from the other end of the connection would almost certainly
4407 * cause confusion to the TUN user that had no idea network labeling
4408 * protocols were being used */
4409
4410 /* see the comments in selinux_tun_dev_create() about why we don't use
4411 * the sockcreate SID here */
4412
4413 sksec->sid = current_sid();
4414 sksec->sclass = SECCLASS_TUN_SOCKET;
4415}
4416
4417static int selinux_tun_dev_attach(struct sock *sk)
4418{
4419 struct sk_security_struct *sksec = sk->sk_security;
4420 u32 sid = current_sid();
4421 int err;
4422
4423 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4424 TUN_SOCKET__RELABELFROM, NULL);
4425 if (err)
4426 return err;
4427 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4428 TUN_SOCKET__RELABELTO, NULL);
4429 if (err)
4430 return err;
4431
4432 sksec->sid = sid;
4433
4434 return 0;
4435}
4436
4437static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4438{
4439 int err = 0;
4440 u32 perm;
4441 struct nlmsghdr *nlh;
4442 struct sk_security_struct *sksec = sk->sk_security;
4443
4444 if (skb->len < NLMSG_SPACE(0)) {
4445 err = -EINVAL;
4446 goto out;
4447 }
4448 nlh = nlmsg_hdr(skb);
4449
4450 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4451 if (err) {
4452 if (err == -EINVAL) {
4453 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4454 "SELinux: unrecognized netlink message"
4455 " type=%hu for sclass=%hu\n",
4456 nlh->nlmsg_type, sksec->sclass);
4457 if (!selinux_enforcing || security_get_allow_unknown())
4458 err = 0;
4459 }
4460
4461 /* Ignore */
4462 if (err == -ENOENT)
4463 err = 0;
4464 goto out;
4465 }
4466
4467 err = sock_has_perm(current, sk, perm);
4468out:
4469 return err;
4470}
4471
4472#ifdef CONFIG_NETFILTER
4473
4474static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4475 u16 family)
4476{
4477 int err;
4478 char *addrp;
4479 u32 peer_sid;
4480 struct common_audit_data ad;
4481 u8 secmark_active;
4482 u8 netlbl_active;
4483 u8 peerlbl_active;
4484
4485 if (!selinux_policycap_netpeer)
4486 return NF_ACCEPT;
4487
4488 secmark_active = selinux_secmark_enabled();
4489 netlbl_active = netlbl_enabled();
4490 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4491 if (!secmark_active && !peerlbl_active)
4492 return NF_ACCEPT;
4493
4494 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4495 return NF_DROP;
4496
4497 COMMON_AUDIT_DATA_INIT(&ad, NET);
4498 ad.u.net.netif = ifindex;
4499 ad.u.net.family = family;
4500 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4501 return NF_DROP;
4502
4503 if (peerlbl_active) {
4504 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4505 peer_sid, &ad);
4506 if (err) {
4507 selinux_netlbl_err(skb, err, 1);
4508 return NF_DROP;
4509 }
4510 }
4511
4512 if (secmark_active)
4513 if (avc_has_perm(peer_sid, skb->secmark,
4514 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4515 return NF_DROP;
4516
4517 if (netlbl_active)
4518 /* we do this in the FORWARD path and not the POST_ROUTING
4519 * path because we want to make sure we apply the necessary
4520 * labeling before IPsec is applied so we can leverage AH
4521 * protection */
4522 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4523 return NF_DROP;
4524
4525 return NF_ACCEPT;
4526}
4527
4528static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4529 struct sk_buff *skb,
4530 const struct net_device *in,
4531 const struct net_device *out,
4532 int (*okfn)(struct sk_buff *))
4533{
4534 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4535}
4536
4537#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4538static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4539 struct sk_buff *skb,
4540 const struct net_device *in,
4541 const struct net_device *out,
4542 int (*okfn)(struct sk_buff *))
4543{
4544 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4545}
4546#endif /* IPV6 */
4547
4548static unsigned int selinux_ip_output(struct sk_buff *skb,
4549 u16 family)
4550{
4551 u32 sid;
4552
4553 if (!netlbl_enabled())
4554 return NF_ACCEPT;
4555
4556 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4557 * because we want to make sure we apply the necessary labeling
4558 * before IPsec is applied so we can leverage AH protection */
4559 if (skb->sk) {
4560 struct sk_security_struct *sksec = skb->sk->sk_security;
4561 sid = sksec->sid;
4562 } else
4563 sid = SECINITSID_KERNEL;
4564 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4565 return NF_DROP;
4566
4567 return NF_ACCEPT;
4568}
4569
4570static unsigned int selinux_ipv4_output(unsigned int hooknum,
4571 struct sk_buff *skb,
4572 const struct net_device *in,
4573 const struct net_device *out,
4574 int (*okfn)(struct sk_buff *))
4575{
4576 return selinux_ip_output(skb, PF_INET);
4577}
4578
4579static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4580 int ifindex,
4581 u16 family)
4582{
4583 struct sock *sk = skb->sk;
4584 struct sk_security_struct *sksec;
4585 struct common_audit_data ad;
4586 char *addrp;
4587 u8 proto;
4588
4589 if (sk == NULL)
4590 return NF_ACCEPT;
4591 sksec = sk->sk_security;
4592
4593 COMMON_AUDIT_DATA_INIT(&ad, NET);
4594 ad.u.net.netif = ifindex;
4595 ad.u.net.family = family;
4596 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4597 return NF_DROP;
4598
4599 if (selinux_secmark_enabled())
4600 if (avc_has_perm(sksec->sid, skb->secmark,
4601 SECCLASS_PACKET, PACKET__SEND, &ad))
4602 return NF_DROP_ERR(-ECONNREFUSED);
4603
4604 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4605 return NF_DROP_ERR(-ECONNREFUSED);
4606
4607 return NF_ACCEPT;
4608}
4609
4610static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4611 u16 family)
4612{
4613 u32 secmark_perm;
4614 u32 peer_sid;
4615 struct sock *sk;
4616 struct common_audit_data ad;
4617 char *addrp;
4618 u8 secmark_active;
4619 u8 peerlbl_active;
4620
4621 /* If any sort of compatibility mode is enabled then handoff processing
4622 * to the selinux_ip_postroute_compat() function to deal with the
4623 * special handling. We do this in an attempt to keep this function
4624 * as fast and as clean as possible. */
4625 if (!selinux_policycap_netpeer)
4626 return selinux_ip_postroute_compat(skb, ifindex, family);
4627#ifdef CONFIG_XFRM
4628 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4629 * packet transformation so allow the packet to pass without any checks
4630 * since we'll have another chance to perform access control checks
4631 * when the packet is on it's final way out.
4632 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4633 * is NULL, in this case go ahead and apply access control. */
4634 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4635 return NF_ACCEPT;
4636#endif
4637 secmark_active = selinux_secmark_enabled();
4638 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4639 if (!secmark_active && !peerlbl_active)
4640 return NF_ACCEPT;
4641
4642 /* if the packet is being forwarded then get the peer label from the
4643 * packet itself; otherwise check to see if it is from a local
4644 * application or the kernel, if from an application get the peer label
4645 * from the sending socket, otherwise use the kernel's sid */
4646 sk = skb->sk;
4647 if (sk == NULL) {
4648 if (skb->skb_iif) {
4649 secmark_perm = PACKET__FORWARD_OUT;
4650 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4651 return NF_DROP;
4652 } else {
4653 secmark_perm = PACKET__SEND;
4654 peer_sid = SECINITSID_KERNEL;
4655 }
4656 } else {
4657 struct sk_security_struct *sksec = sk->sk_security;
4658 peer_sid = sksec->sid;
4659 secmark_perm = PACKET__SEND;
4660 }
4661
4662 COMMON_AUDIT_DATA_INIT(&ad, NET);
4663 ad.u.net.netif = ifindex;
4664 ad.u.net.family = family;
4665 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4666 return NF_DROP;
4667
4668 if (secmark_active)
4669 if (avc_has_perm(peer_sid, skb->secmark,
4670 SECCLASS_PACKET, secmark_perm, &ad))
4671 return NF_DROP_ERR(-ECONNREFUSED);
4672
4673 if (peerlbl_active) {
4674 u32 if_sid;
4675 u32 node_sid;
4676
4677 if (sel_netif_sid(ifindex, &if_sid))
4678 return NF_DROP;
4679 if (avc_has_perm(peer_sid, if_sid,
4680 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4681 return NF_DROP_ERR(-ECONNREFUSED);
4682
4683 if (sel_netnode_sid(addrp, family, &node_sid))
4684 return NF_DROP;
4685 if (avc_has_perm(peer_sid, node_sid,
4686 SECCLASS_NODE, NODE__SENDTO, &ad))
4687 return NF_DROP_ERR(-ECONNREFUSED);
4688 }
4689
4690 return NF_ACCEPT;
4691}
4692
4693static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4694 struct sk_buff *skb,
4695 const struct net_device *in,
4696 const struct net_device *out,
4697 int (*okfn)(struct sk_buff *))
4698{
4699 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4700}
4701
4702#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4703static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4704 struct sk_buff *skb,
4705 const struct net_device *in,
4706 const struct net_device *out,
4707 int (*okfn)(struct sk_buff *))
4708{
4709 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4710}
4711#endif /* IPV6 */
4712
4713#endif /* CONFIG_NETFILTER */
4714
4715static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4716{
4717 int err;
4718
4719 err = cap_netlink_send(sk, skb);
4720 if (err)
4721 return err;
4722
4723 return selinux_nlmsg_perm(sk, skb);
4724}
4725
4726static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4727{
4728 int err;
4729 struct common_audit_data ad;
4730 u32 sid;
4731
4732 err = cap_netlink_recv(skb, capability);
4733 if (err)
4734 return err;
4735
4736 COMMON_AUDIT_DATA_INIT(&ad, CAP);
4737 ad.u.cap = capability;
4738
4739 security_task_getsecid(current, &sid);
4740 return avc_has_perm(sid, sid, SECCLASS_CAPABILITY,
4741 CAP_TO_MASK(capability), &ad);
4742}
4743
4744static int ipc_alloc_security(struct task_struct *task,
4745 struct kern_ipc_perm *perm,
4746 u16 sclass)
4747{
4748 struct ipc_security_struct *isec;
4749 u32 sid;
4750
4751 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4752 if (!isec)
4753 return -ENOMEM;
4754
4755 sid = task_sid(task);
4756 isec->sclass = sclass;
4757 isec->sid = sid;
4758 perm->security = isec;
4759
4760 return 0;
4761}
4762
4763static void ipc_free_security(struct kern_ipc_perm *perm)
4764{
4765 struct ipc_security_struct *isec = perm->security;
4766 perm->security = NULL;
4767 kfree(isec);
4768}
4769
4770static int msg_msg_alloc_security(struct msg_msg *msg)
4771{
4772 struct msg_security_struct *msec;
4773
4774 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4775 if (!msec)
4776 return -ENOMEM;
4777
4778 msec->sid = SECINITSID_UNLABELED;
4779 msg->security = msec;
4780
4781 return 0;
4782}
4783
4784static void msg_msg_free_security(struct msg_msg *msg)
4785{
4786 struct msg_security_struct *msec = msg->security;
4787
4788 msg->security = NULL;
4789 kfree(msec);
4790}
4791
4792static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4793 u32 perms)
4794{
4795 struct ipc_security_struct *isec;
4796 struct common_audit_data ad;
4797 u32 sid = current_sid();
4798
4799 isec = ipc_perms->security;
4800
4801 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4802 ad.u.ipc_id = ipc_perms->key;
4803
4804 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4805}
4806
4807static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4808{
4809 return msg_msg_alloc_security(msg);
4810}
4811
4812static void selinux_msg_msg_free_security(struct msg_msg *msg)
4813{
4814 msg_msg_free_security(msg);
4815}
4816
4817/* message queue security operations */
4818static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4819{
4820 struct ipc_security_struct *isec;
4821 struct common_audit_data ad;
4822 u32 sid = current_sid();
4823 int rc;
4824
4825 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4826 if (rc)
4827 return rc;
4828
4829 isec = msq->q_perm.security;
4830
4831 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4832 ad.u.ipc_id = msq->q_perm.key;
4833
4834 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4835 MSGQ__CREATE, &ad);
4836 if (rc) {
4837 ipc_free_security(&msq->q_perm);
4838 return rc;
4839 }
4840 return 0;
4841}
4842
4843static void selinux_msg_queue_free_security(struct msg_queue *msq)
4844{
4845 ipc_free_security(&msq->q_perm);
4846}
4847
4848static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4849{
4850 struct ipc_security_struct *isec;
4851 struct common_audit_data ad;
4852 u32 sid = current_sid();
4853
4854 isec = msq->q_perm.security;
4855
4856 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4857 ad.u.ipc_id = msq->q_perm.key;
4858
4859 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4860 MSGQ__ASSOCIATE, &ad);
4861}
4862
4863static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4864{
4865 int err;
4866 int perms;
4867
4868 switch (cmd) {
4869 case IPC_INFO:
4870 case MSG_INFO:
4871 /* No specific object, just general system-wide information. */
4872 return task_has_system(current, SYSTEM__IPC_INFO);
4873 case IPC_STAT:
4874 case MSG_STAT:
4875 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4876 break;
4877 case IPC_SET:
4878 perms = MSGQ__SETATTR;
4879 break;
4880 case IPC_RMID:
4881 perms = MSGQ__DESTROY;
4882 break;
4883 default:
4884 return 0;
4885 }
4886
4887 err = ipc_has_perm(&msq->q_perm, perms);
4888 return err;
4889}
4890
4891static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4892{
4893 struct ipc_security_struct *isec;
4894 struct msg_security_struct *msec;
4895 struct common_audit_data ad;
4896 u32 sid = current_sid();
4897 int rc;
4898
4899 isec = msq->q_perm.security;
4900 msec = msg->security;
4901
4902 /*
4903 * First time through, need to assign label to the message
4904 */
4905 if (msec->sid == SECINITSID_UNLABELED) {
4906 /*
4907 * Compute new sid based on current process and
4908 * message queue this message will be stored in
4909 */
4910 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4911 NULL, &msec->sid);
4912 if (rc)
4913 return rc;
4914 }
4915
4916 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4917 ad.u.ipc_id = msq->q_perm.key;
4918
4919 /* Can this process write to the queue? */
4920 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4921 MSGQ__WRITE, &ad);
4922 if (!rc)
4923 /* Can this process send the message */
4924 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4925 MSG__SEND, &ad);
4926 if (!rc)
4927 /* Can the message be put in the queue? */
4928 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4929 MSGQ__ENQUEUE, &ad);
4930
4931 return rc;
4932}
4933
4934static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4935 struct task_struct *target,
4936 long type, int mode)
4937{
4938 struct ipc_security_struct *isec;
4939 struct msg_security_struct *msec;
4940 struct common_audit_data ad;
4941 u32 sid = task_sid(target);
4942 int rc;
4943
4944 isec = msq->q_perm.security;
4945 msec = msg->security;
4946
4947 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4948 ad.u.ipc_id = msq->q_perm.key;
4949
4950 rc = avc_has_perm(sid, isec->sid,
4951 SECCLASS_MSGQ, MSGQ__READ, &ad);
4952 if (!rc)
4953 rc = avc_has_perm(sid, msec->sid,
4954 SECCLASS_MSG, MSG__RECEIVE, &ad);
4955 return rc;
4956}
4957
4958/* Shared Memory security operations */
4959static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4960{
4961 struct ipc_security_struct *isec;
4962 struct common_audit_data ad;
4963 u32 sid = current_sid();
4964 int rc;
4965
4966 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4967 if (rc)
4968 return rc;
4969
4970 isec = shp->shm_perm.security;
4971
4972 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4973 ad.u.ipc_id = shp->shm_perm.key;
4974
4975 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4976 SHM__CREATE, &ad);
4977 if (rc) {
4978 ipc_free_security(&shp->shm_perm);
4979 return rc;
4980 }
4981 return 0;
4982}
4983
4984static void selinux_shm_free_security(struct shmid_kernel *shp)
4985{
4986 ipc_free_security(&shp->shm_perm);
4987}
4988
4989static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4990{
4991 struct ipc_security_struct *isec;
4992 struct common_audit_data ad;
4993 u32 sid = current_sid();
4994
4995 isec = shp->shm_perm.security;
4996
4997 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4998 ad.u.ipc_id = shp->shm_perm.key;
4999
5000 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5001 SHM__ASSOCIATE, &ad);
5002}
5003
5004/* Note, at this point, shp is locked down */
5005static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5006{
5007 int perms;
5008 int err;
5009
5010 switch (cmd) {
5011 case IPC_INFO:
5012 case SHM_INFO:
5013 /* No specific object, just general system-wide information. */
5014 return task_has_system(current, SYSTEM__IPC_INFO);
5015 case IPC_STAT:
5016 case SHM_STAT:
5017 perms = SHM__GETATTR | SHM__ASSOCIATE;
5018 break;
5019 case IPC_SET:
5020 perms = SHM__SETATTR;
5021 break;
5022 case SHM_LOCK:
5023 case SHM_UNLOCK:
5024 perms = SHM__LOCK;
5025 break;
5026 case IPC_RMID:
5027 perms = SHM__DESTROY;
5028 break;
5029 default:
5030 return 0;
5031 }
5032
5033 err = ipc_has_perm(&shp->shm_perm, perms);
5034 return err;
5035}
5036
5037static int selinux_shm_shmat(struct shmid_kernel *shp,
5038 char __user *shmaddr, int shmflg)
5039{
5040 u32 perms;
5041
5042 if (shmflg & SHM_RDONLY)
5043 perms = SHM__READ;
5044 else
5045 perms = SHM__READ | SHM__WRITE;
5046
5047 return ipc_has_perm(&shp->shm_perm, perms);
5048}
5049
5050/* Semaphore security operations */
5051static int selinux_sem_alloc_security(struct sem_array *sma)
5052{
5053 struct ipc_security_struct *isec;
5054 struct common_audit_data ad;
5055 u32 sid = current_sid();
5056 int rc;
5057
5058 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5059 if (rc)
5060 return rc;
5061
5062 isec = sma->sem_perm.security;
5063
5064 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5065 ad.u.ipc_id = sma->sem_perm.key;
5066
5067 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5068 SEM__CREATE, &ad);
5069 if (rc) {
5070 ipc_free_security(&sma->sem_perm);
5071 return rc;
5072 }
5073 return 0;
5074}
5075
5076static void selinux_sem_free_security(struct sem_array *sma)
5077{
5078 ipc_free_security(&sma->sem_perm);
5079}
5080
5081static int selinux_sem_associate(struct sem_array *sma, int semflg)
5082{
5083 struct ipc_security_struct *isec;
5084 struct common_audit_data ad;
5085 u32 sid = current_sid();
5086
5087 isec = sma->sem_perm.security;
5088
5089 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5090 ad.u.ipc_id = sma->sem_perm.key;
5091
5092 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5093 SEM__ASSOCIATE, &ad);
5094}
5095
5096/* Note, at this point, sma is locked down */
5097static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5098{
5099 int err;
5100 u32 perms;
5101
5102 switch (cmd) {
5103 case IPC_INFO:
5104 case SEM_INFO:
5105 /* No specific object, just general system-wide information. */
5106 return task_has_system(current, SYSTEM__IPC_INFO);
5107 case GETPID:
5108 case GETNCNT:
5109 case GETZCNT:
5110 perms = SEM__GETATTR;
5111 break;
5112 case GETVAL:
5113 case GETALL:
5114 perms = SEM__READ;
5115 break;
5116 case SETVAL:
5117 case SETALL:
5118 perms = SEM__WRITE;
5119 break;
5120 case IPC_RMID:
5121 perms = SEM__DESTROY;
5122 break;
5123 case IPC_SET:
5124 perms = SEM__SETATTR;
5125 break;
5126 case IPC_STAT:
5127 case SEM_STAT:
5128 perms = SEM__GETATTR | SEM__ASSOCIATE;
5129 break;
5130 default:
5131 return 0;
5132 }
5133
5134 err = ipc_has_perm(&sma->sem_perm, perms);
5135 return err;
5136}
5137
5138static int selinux_sem_semop(struct sem_array *sma,
5139 struct sembuf *sops, unsigned nsops, int alter)
5140{
5141 u32 perms;
5142
5143 if (alter)
5144 perms = SEM__READ | SEM__WRITE;
5145 else
5146 perms = SEM__READ;
5147
5148 return ipc_has_perm(&sma->sem_perm, perms);
5149}
5150
5151static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5152{
5153 u32 av = 0;
5154
5155 av = 0;
5156 if (flag & S_IRUGO)
5157 av |= IPC__UNIX_READ;
5158 if (flag & S_IWUGO)
5159 av |= IPC__UNIX_WRITE;
5160
5161 if (av == 0)
5162 return 0;
5163
5164 return ipc_has_perm(ipcp, av);
5165}
5166
5167static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5168{
5169 struct ipc_security_struct *isec = ipcp->security;
5170 *secid = isec->sid;
5171}
5172
5173static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5174{
5175 if (inode)
5176 inode_doinit_with_dentry(inode, dentry);
5177}
5178
5179static int selinux_getprocattr(struct task_struct *p,
5180 char *name, char **value)
5181{
5182 const struct task_security_struct *__tsec;
5183 u32 sid;
5184 int error;
5185 unsigned len;
5186
5187 if (current != p) {
5188 error = current_has_perm(p, PROCESS__GETATTR);
5189 if (error)
5190 return error;
5191 }
5192
5193 rcu_read_lock();
5194 __tsec = __task_cred(p)->security;
5195
5196 if (!strcmp(name, "current"))
5197 sid = __tsec->sid;
5198 else if (!strcmp(name, "prev"))
5199 sid = __tsec->osid;
5200 else if (!strcmp(name, "exec"))
5201 sid = __tsec->exec_sid;
5202 else if (!strcmp(name, "fscreate"))
5203 sid = __tsec->create_sid;
5204 else if (!strcmp(name, "keycreate"))
5205 sid = __tsec->keycreate_sid;
5206 else if (!strcmp(name, "sockcreate"))
5207 sid = __tsec->sockcreate_sid;
5208 else
5209 goto invalid;
5210 rcu_read_unlock();
5211
5212 if (!sid)
5213 return 0;
5214
5215 error = security_sid_to_context(sid, value, &len);
5216 if (error)
5217 return error;
5218 return len;
5219
5220invalid:
5221 rcu_read_unlock();
5222 return -EINVAL;
5223}
5224
5225static int selinux_setprocattr(struct task_struct *p,
5226 char *name, void *value, size_t size)
5227{
5228 struct task_security_struct *tsec;
5229 struct task_struct *tracer;
5230 struct cred *new;
5231 u32 sid = 0, ptsid;
5232 int error;
5233 char *str = value;
5234
5235 if (current != p) {
5236 /* SELinux only allows a process to change its own
5237 security attributes. */
5238 return -EACCES;
5239 }
5240
5241 /*
5242 * Basic control over ability to set these attributes at all.
5243 * current == p, but we'll pass them separately in case the
5244 * above restriction is ever removed.
5245 */
5246 if (!strcmp(name, "exec"))
5247 error = current_has_perm(p, PROCESS__SETEXEC);
5248 else if (!strcmp(name, "fscreate"))
5249 error = current_has_perm(p, PROCESS__SETFSCREATE);
5250 else if (!strcmp(name, "keycreate"))
5251 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5252 else if (!strcmp(name, "sockcreate"))
5253 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5254 else if (!strcmp(name, "current"))
5255 error = current_has_perm(p, PROCESS__SETCURRENT);
5256 else
5257 error = -EINVAL;
5258 if (error)
5259 return error;
5260
5261 /* Obtain a SID for the context, if one was specified. */
5262 if (size && str[1] && str[1] != '\n') {
5263 if (str[size-1] == '\n') {
5264 str[size-1] = 0;
5265 size--;
5266 }
5267 error = security_context_to_sid(value, size, &sid);
5268 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5269 if (!capable(CAP_MAC_ADMIN))
5270 return error;
5271 error = security_context_to_sid_force(value, size,
5272 &sid);
5273 }
5274 if (error)
5275 return error;
5276 }
5277
5278 new = prepare_creds();
5279 if (!new)
5280 return -ENOMEM;
5281
5282 /* Permission checking based on the specified context is
5283 performed during the actual operation (execve,
5284 open/mkdir/...), when we know the full context of the
5285 operation. See selinux_bprm_set_creds for the execve
5286 checks and may_create for the file creation checks. The
5287 operation will then fail if the context is not permitted. */
5288 tsec = new->security;
5289 if (!strcmp(name, "exec")) {
5290 tsec->exec_sid = sid;
5291 } else if (!strcmp(name, "fscreate")) {
5292 tsec->create_sid = sid;
5293 } else if (!strcmp(name, "keycreate")) {
5294 error = may_create_key(sid, p);
5295 if (error)
5296 goto abort_change;
5297 tsec->keycreate_sid = sid;
5298 } else if (!strcmp(name, "sockcreate")) {
5299 tsec->sockcreate_sid = sid;
5300 } else if (!strcmp(name, "current")) {
5301 error = -EINVAL;
5302 if (sid == 0)
5303 goto abort_change;
5304
5305 /* Only allow single threaded processes to change context */
5306 error = -EPERM;
5307 if (!current_is_single_threaded()) {
5308 error = security_bounded_transition(tsec->sid, sid);
5309 if (error)
5310 goto abort_change;
5311 }
5312
5313 /* Check permissions for the transition. */
5314 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5315 PROCESS__DYNTRANSITION, NULL);
5316 if (error)
5317 goto abort_change;
5318
5319 /* Check for ptracing, and update the task SID if ok.
5320 Otherwise, leave SID unchanged and fail. */
5321 ptsid = 0;
5322 task_lock(p);
5323 tracer = ptrace_parent(p);
5324 if (tracer)
5325 ptsid = task_sid(tracer);
5326 task_unlock(p);
5327
5328 if (tracer) {
5329 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5330 PROCESS__PTRACE, NULL);
5331 if (error)
5332 goto abort_change;
5333 }
5334
5335 tsec->sid = sid;
5336 } else {
5337 error = -EINVAL;
5338 goto abort_change;
5339 }
5340
5341 commit_creds(new);
5342 return size;
5343
5344abort_change:
5345 abort_creds(new);
5346 return error;
5347}
5348
5349static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5350{
5351 return security_sid_to_context(secid, secdata, seclen);
5352}
5353
5354static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5355{
5356 return security_context_to_sid(secdata, seclen, secid);
5357}
5358
5359static void selinux_release_secctx(char *secdata, u32 seclen)
5360{
5361 kfree(secdata);
5362}
5363
5364/*
5365 * called with inode->i_mutex locked
5366 */
5367static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5368{
5369 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5370}
5371
5372/*
5373 * called with inode->i_mutex locked
5374 */
5375static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5376{
5377 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5378}
5379
5380static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5381{
5382 int len = 0;
5383 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5384 ctx, true);
5385 if (len < 0)
5386 return len;
5387 *ctxlen = len;
5388 return 0;
5389}
5390#ifdef CONFIG_KEYS
5391
5392static int selinux_key_alloc(struct key *k, const struct cred *cred,
5393 unsigned long flags)
5394{
5395 const struct task_security_struct *tsec;
5396 struct key_security_struct *ksec;
5397
5398 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5399 if (!ksec)
5400 return -ENOMEM;
5401
5402 tsec = cred->security;
5403 if (tsec->keycreate_sid)
5404 ksec->sid = tsec->keycreate_sid;
5405 else
5406 ksec->sid = tsec->sid;
5407
5408 k->security = ksec;
5409 return 0;
5410}
5411
5412static void selinux_key_free(struct key *k)
5413{
5414 struct key_security_struct *ksec = k->security;
5415
5416 k->security = NULL;
5417 kfree(ksec);
5418}
5419
5420static int selinux_key_permission(key_ref_t key_ref,
5421 const struct cred *cred,
5422 key_perm_t perm)
5423{
5424 struct key *key;
5425 struct key_security_struct *ksec;
5426 u32 sid;
5427
5428 /* if no specific permissions are requested, we skip the
5429 permission check. No serious, additional covert channels
5430 appear to be created. */
5431 if (perm == 0)
5432 return 0;
5433
5434 sid = cred_sid(cred);
5435
5436 key = key_ref_to_ptr(key_ref);
5437 ksec = key->security;
5438
5439 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5440}
5441
5442static int selinux_key_getsecurity(struct key *key, char **_buffer)
5443{
5444 struct key_security_struct *ksec = key->security;
5445 char *context = NULL;
5446 unsigned len;
5447 int rc;
5448
5449 rc = security_sid_to_context(ksec->sid, &context, &len);
5450 if (!rc)
5451 rc = len;
5452 *_buffer = context;
5453 return rc;
5454}
5455
5456#endif
5457
5458static struct security_operations selinux_ops = {
5459 .name = "selinux",
5460
5461 .ptrace_access_check = selinux_ptrace_access_check,
5462 .ptrace_traceme = selinux_ptrace_traceme,
5463 .capget = selinux_capget,
5464 .capset = selinux_capset,
5465 .capable = selinux_capable,
5466 .quotactl = selinux_quotactl,
5467 .quota_on = selinux_quota_on,
5468 .syslog = selinux_syslog,
5469 .vm_enough_memory = selinux_vm_enough_memory,
5470
5471 .netlink_send = selinux_netlink_send,
5472 .netlink_recv = selinux_netlink_recv,
5473
5474 .bprm_set_creds = selinux_bprm_set_creds,
5475 .bprm_committing_creds = selinux_bprm_committing_creds,
5476 .bprm_committed_creds = selinux_bprm_committed_creds,
5477 .bprm_secureexec = selinux_bprm_secureexec,
5478
5479 .sb_alloc_security = selinux_sb_alloc_security,
5480 .sb_free_security = selinux_sb_free_security,
5481 .sb_copy_data = selinux_sb_copy_data,
5482 .sb_remount = selinux_sb_remount,
5483 .sb_kern_mount = selinux_sb_kern_mount,
5484 .sb_show_options = selinux_sb_show_options,
5485 .sb_statfs = selinux_sb_statfs,
5486 .sb_mount = selinux_mount,
5487 .sb_umount = selinux_umount,
5488 .sb_set_mnt_opts = selinux_set_mnt_opts,
5489 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5490 .sb_parse_opts_str = selinux_parse_opts_str,
5491
5492
5493 .inode_alloc_security = selinux_inode_alloc_security,
5494 .inode_free_security = selinux_inode_free_security,
5495 .inode_init_security = selinux_inode_init_security,
5496 .inode_create = selinux_inode_create,
5497 .inode_link = selinux_inode_link,
5498 .inode_unlink = selinux_inode_unlink,
5499 .inode_symlink = selinux_inode_symlink,
5500 .inode_mkdir = selinux_inode_mkdir,
5501 .inode_rmdir = selinux_inode_rmdir,
5502 .inode_mknod = selinux_inode_mknod,
5503 .inode_rename = selinux_inode_rename,
5504 .inode_readlink = selinux_inode_readlink,
5505 .inode_follow_link = selinux_inode_follow_link,
5506 .inode_permission = selinux_inode_permission,
5507 .inode_setattr = selinux_inode_setattr,
5508 .inode_getattr = selinux_inode_getattr,
5509 .inode_setxattr = selinux_inode_setxattr,
5510 .inode_post_setxattr = selinux_inode_post_setxattr,
5511 .inode_getxattr = selinux_inode_getxattr,
5512 .inode_listxattr = selinux_inode_listxattr,
5513 .inode_removexattr = selinux_inode_removexattr,
5514 .inode_getsecurity = selinux_inode_getsecurity,
5515 .inode_setsecurity = selinux_inode_setsecurity,
5516 .inode_listsecurity = selinux_inode_listsecurity,
5517 .inode_getsecid = selinux_inode_getsecid,
5518
5519 .file_permission = selinux_file_permission,
5520 .file_alloc_security = selinux_file_alloc_security,
5521 .file_free_security = selinux_file_free_security,
5522 .file_ioctl = selinux_file_ioctl,
5523 .file_mmap = selinux_file_mmap,
5524 .file_mprotect = selinux_file_mprotect,
5525 .file_lock = selinux_file_lock,
5526 .file_fcntl = selinux_file_fcntl,
5527 .file_set_fowner = selinux_file_set_fowner,
5528 .file_send_sigiotask = selinux_file_send_sigiotask,
5529 .file_receive = selinux_file_receive,
5530
5531 .dentry_open = selinux_dentry_open,
5532
5533 .task_create = selinux_task_create,
5534 .cred_alloc_blank = selinux_cred_alloc_blank,
5535 .cred_free = selinux_cred_free,
5536 .cred_prepare = selinux_cred_prepare,
5537 .cred_transfer = selinux_cred_transfer,
5538 .kernel_act_as = selinux_kernel_act_as,
5539 .kernel_create_files_as = selinux_kernel_create_files_as,
5540 .kernel_module_request = selinux_kernel_module_request,
5541 .task_setpgid = selinux_task_setpgid,
5542 .task_getpgid = selinux_task_getpgid,
5543 .task_getsid = selinux_task_getsid,
5544 .task_getsecid = selinux_task_getsecid,
5545 .task_setnice = selinux_task_setnice,
5546 .task_setioprio = selinux_task_setioprio,
5547 .task_getioprio = selinux_task_getioprio,
5548 .task_setrlimit = selinux_task_setrlimit,
5549 .task_setscheduler = selinux_task_setscheduler,
5550 .task_getscheduler = selinux_task_getscheduler,
5551 .task_movememory = selinux_task_movememory,
5552 .task_kill = selinux_task_kill,
5553 .task_wait = selinux_task_wait,
5554 .task_to_inode = selinux_task_to_inode,
5555
5556 .ipc_permission = selinux_ipc_permission,
5557 .ipc_getsecid = selinux_ipc_getsecid,
5558
5559 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5560 .msg_msg_free_security = selinux_msg_msg_free_security,
5561
5562 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5563 .msg_queue_free_security = selinux_msg_queue_free_security,
5564 .msg_queue_associate = selinux_msg_queue_associate,
5565 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5566 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5567 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5568
5569 .shm_alloc_security = selinux_shm_alloc_security,
5570 .shm_free_security = selinux_shm_free_security,
5571 .shm_associate = selinux_shm_associate,
5572 .shm_shmctl = selinux_shm_shmctl,
5573 .shm_shmat = selinux_shm_shmat,
5574
5575 .sem_alloc_security = selinux_sem_alloc_security,
5576 .sem_free_security = selinux_sem_free_security,
5577 .sem_associate = selinux_sem_associate,
5578 .sem_semctl = selinux_sem_semctl,
5579 .sem_semop = selinux_sem_semop,
5580
5581 .d_instantiate = selinux_d_instantiate,
5582
5583 .getprocattr = selinux_getprocattr,
5584 .setprocattr = selinux_setprocattr,
5585
5586 .secid_to_secctx = selinux_secid_to_secctx,
5587 .secctx_to_secid = selinux_secctx_to_secid,
5588 .release_secctx = selinux_release_secctx,
5589 .inode_notifysecctx = selinux_inode_notifysecctx,
5590 .inode_setsecctx = selinux_inode_setsecctx,
5591 .inode_getsecctx = selinux_inode_getsecctx,
5592
5593 .unix_stream_connect = selinux_socket_unix_stream_connect,
5594 .unix_may_send = selinux_socket_unix_may_send,
5595
5596 .socket_create = selinux_socket_create,
5597 .socket_post_create = selinux_socket_post_create,
5598 .socket_bind = selinux_socket_bind,
5599 .socket_connect = selinux_socket_connect,
5600 .socket_listen = selinux_socket_listen,
5601 .socket_accept = selinux_socket_accept,
5602 .socket_sendmsg = selinux_socket_sendmsg,
5603 .socket_recvmsg = selinux_socket_recvmsg,
5604 .socket_getsockname = selinux_socket_getsockname,
5605 .socket_getpeername = selinux_socket_getpeername,
5606 .socket_getsockopt = selinux_socket_getsockopt,
5607 .socket_setsockopt = selinux_socket_setsockopt,
5608 .socket_shutdown = selinux_socket_shutdown,
5609 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5610 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5611 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5612 .sk_alloc_security = selinux_sk_alloc_security,
5613 .sk_free_security = selinux_sk_free_security,
5614 .sk_clone_security = selinux_sk_clone_security,
5615 .sk_getsecid = selinux_sk_getsecid,
5616 .sock_graft = selinux_sock_graft,
5617 .inet_conn_request = selinux_inet_conn_request,
5618 .inet_csk_clone = selinux_inet_csk_clone,
5619 .inet_conn_established = selinux_inet_conn_established,
5620 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5621 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5622 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5623 .req_classify_flow = selinux_req_classify_flow,
5624 .tun_dev_create = selinux_tun_dev_create,
5625 .tun_dev_post_create = selinux_tun_dev_post_create,
5626 .tun_dev_attach = selinux_tun_dev_attach,
5627
5628#ifdef CONFIG_SECURITY_NETWORK_XFRM
5629 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5630 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5631 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5632 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5633 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5634 .xfrm_state_free_security = selinux_xfrm_state_free,
5635 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5636 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5637 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5638 .xfrm_decode_session = selinux_xfrm_decode_session,
5639#endif
5640
5641#ifdef CONFIG_KEYS
5642 .key_alloc = selinux_key_alloc,
5643 .key_free = selinux_key_free,
5644 .key_permission = selinux_key_permission,
5645 .key_getsecurity = selinux_key_getsecurity,
5646#endif
5647
5648#ifdef CONFIG_AUDIT
5649 .audit_rule_init = selinux_audit_rule_init,
5650 .audit_rule_known = selinux_audit_rule_known,
5651 .audit_rule_match = selinux_audit_rule_match,
5652 .audit_rule_free = selinux_audit_rule_free,
5653#endif
5654};
5655
5656static __init int selinux_init(void)
5657{
5658 if (!security_module_enable(&selinux_ops)) {
5659 selinux_enabled = 0;
5660 return 0;
5661 }
5662
5663 if (!selinux_enabled) {
5664 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5665 return 0;
5666 }
5667
5668 printk(KERN_INFO "SELinux: Initializing.\n");
5669
5670 /* Set the security state for the initial task. */
5671 cred_init_security();
5672
5673 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5674
5675 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5676 sizeof(struct inode_security_struct),
5677 0, SLAB_PANIC, NULL);
5678 avc_init();
5679
5680 if (register_security(&selinux_ops))
5681 panic("SELinux: Unable to register with kernel.\n");
5682
5683 if (selinux_enforcing)
5684 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5685 else
5686 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5687
5688 return 0;
5689}
5690
5691static void delayed_superblock_init(struct super_block *sb, void *unused)
5692{
5693 superblock_doinit(sb, NULL);
5694}
5695
5696void selinux_complete_init(void)
5697{
5698 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5699
5700 /* Set up any superblocks initialized prior to the policy load. */
5701 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5702 iterate_supers(delayed_superblock_init, NULL);
5703}
5704
5705/* SELinux requires early initialization in order to label
5706 all processes and objects when they are created. */
5707security_initcall(selinux_init);
5708
5709#if defined(CONFIG_NETFILTER)
5710
5711static struct nf_hook_ops selinux_ipv4_ops[] = {
5712 {
5713 .hook = selinux_ipv4_postroute,
5714 .owner = THIS_MODULE,
5715 .pf = PF_INET,
5716 .hooknum = NF_INET_POST_ROUTING,
5717 .priority = NF_IP_PRI_SELINUX_LAST,
5718 },
5719 {
5720 .hook = selinux_ipv4_forward,
5721 .owner = THIS_MODULE,
5722 .pf = PF_INET,
5723 .hooknum = NF_INET_FORWARD,
5724 .priority = NF_IP_PRI_SELINUX_FIRST,
5725 },
5726 {
5727 .hook = selinux_ipv4_output,
5728 .owner = THIS_MODULE,
5729 .pf = PF_INET,
5730 .hooknum = NF_INET_LOCAL_OUT,
5731 .priority = NF_IP_PRI_SELINUX_FIRST,
5732 }
5733};
5734
5735#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5736
5737static struct nf_hook_ops selinux_ipv6_ops[] = {
5738 {
5739 .hook = selinux_ipv6_postroute,
5740 .owner = THIS_MODULE,
5741 .pf = PF_INET6,
5742 .hooknum = NF_INET_POST_ROUTING,
5743 .priority = NF_IP6_PRI_SELINUX_LAST,
5744 },
5745 {
5746 .hook = selinux_ipv6_forward,
5747 .owner = THIS_MODULE,
5748 .pf = PF_INET6,
5749 .hooknum = NF_INET_FORWARD,
5750 .priority = NF_IP6_PRI_SELINUX_FIRST,
5751 }
5752};
5753
5754#endif /* IPV6 */
5755
5756static int __init selinux_nf_ip_init(void)
5757{
5758 int err = 0;
5759
5760 if (!selinux_enabled)
5761 goto out;
5762
5763 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5764
5765 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5766 if (err)
5767 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5768
5769#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5770 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5771 if (err)
5772 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5773#endif /* IPV6 */
5774
5775out:
5776 return err;
5777}
5778
5779__initcall(selinux_nf_ip_init);
5780
5781#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5782static void selinux_nf_ip_exit(void)
5783{
5784 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5785
5786 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5787#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5788 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5789#endif /* IPV6 */
5790}
5791#endif
5792
5793#else /* CONFIG_NETFILTER */
5794
5795#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5796#define selinux_nf_ip_exit()
5797#endif
5798
5799#endif /* CONFIG_NETFILTER */
5800
5801#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5802static int selinux_disabled;
5803
5804int selinux_disable(void)
5805{
5806 extern void exit_sel_fs(void);
5807
5808 if (ss_initialized) {
5809 /* Not permitted after initial policy load. */
5810 return -EINVAL;
5811 }
5812
5813 if (selinux_disabled) {
5814 /* Only do this once. */
5815 return -EINVAL;
5816 }
5817
5818 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5819
5820 selinux_disabled = 1;
5821 selinux_enabled = 0;
5822
5823 reset_security_ops();
5824
5825 /* Try to destroy the avc node cache */
5826 avc_disable();
5827
5828 /* Unregister netfilter hooks. */
5829 selinux_nf_ip_exit();
5830
5831 /* Unregister selinuxfs. */
5832 exit_sel_fs();
5833
5834 return 0;
5835}
5836#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/tracehook.h>
29#include <linux/errno.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/task.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/fs_context.h>
50#include <linux/fs_parser.h>
51#include <linux/netfilter_ipv4.h>
52#include <linux/netfilter_ipv6.h>
53#include <linux/tty.h>
54#include <net/icmp.h>
55#include <net/ip.h> /* for local_port_range[] */
56#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
57#include <net/inet_connection_sock.h>
58#include <net/net_namespace.h>
59#include <net/netlabel.h>
60#include <linux/uaccess.h>
61#include <asm/ioctls.h>
62#include <linux/atomic.h>
63#include <linux/bitops.h>
64#include <linux/interrupt.h>
65#include <linux/netdevice.h> /* for network interface checks */
66#include <net/netlink.h>
67#include <linux/tcp.h>
68#include <linux/udp.h>
69#include <linux/dccp.h>
70#include <linux/sctp.h>
71#include <net/sctp/structs.h>
72#include <linux/quota.h>
73#include <linux/un.h> /* for Unix socket types */
74#include <net/af_unix.h> /* for Unix socket types */
75#include <linux/parser.h>
76#include <linux/nfs_mount.h>
77#include <net/ipv6.h>
78#include <linux/hugetlb.h>
79#include <linux/personality.h>
80#include <linux/audit.h>
81#include <linux/string.h>
82#include <linux/mutex.h>
83#include <linux/posix-timers.h>
84#include <linux/syslog.h>
85#include <linux/user_namespace.h>
86#include <linux/export.h>
87#include <linux/msg.h>
88#include <linux/shm.h>
89#include <linux/bpf.h>
90#include <linux/kernfs.h>
91#include <linux/stringhash.h> /* for hashlen_string() */
92#include <uapi/linux/mount.h>
93#include <linux/fsnotify.h>
94#include <linux/fanotify.h>
95
96#include "avc.h"
97#include "objsec.h"
98#include "netif.h"
99#include "netnode.h"
100#include "netport.h"
101#include "ibpkey.h"
102#include "xfrm.h"
103#include "netlabel.h"
104#include "audit.h"
105#include "avc_ss.h"
106
107struct selinux_state selinux_state;
108
109/* SECMARK reference count */
110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111
112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113static int selinux_enforcing_boot __initdata;
114
115static int __init enforcing_setup(char *str)
116{
117 unsigned long enforcing;
118 if (!kstrtoul(str, 0, &enforcing))
119 selinux_enforcing_boot = enforcing ? 1 : 0;
120 return 1;
121}
122__setup("enforcing=", enforcing_setup);
123#else
124#define selinux_enforcing_boot 1
125#endif
126
127int selinux_enabled_boot __initdata = 1;
128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
129static int __init selinux_enabled_setup(char *str)
130{
131 unsigned long enabled;
132 if (!kstrtoul(str, 0, &enabled))
133 selinux_enabled_boot = enabled ? 1 : 0;
134 return 1;
135}
136__setup("selinux=", selinux_enabled_setup);
137#endif
138
139static unsigned int selinux_checkreqprot_boot =
140 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
141
142static int __init checkreqprot_setup(char *str)
143{
144 unsigned long checkreqprot;
145
146 if (!kstrtoul(str, 0, &checkreqprot)) {
147 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
148 if (checkreqprot)
149 pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct cred *cred = (struct cred *) current->real_cred;
215 struct task_security_struct *tsec;
216
217 tsec = selinux_cred(cred);
218 tsec->osid = tsec->sid = SECINITSID_KERNEL;
219}
220
221/*
222 * get the security ID of a set of credentials
223 */
224static inline u32 cred_sid(const struct cred *cred)
225{
226 const struct task_security_struct *tsec;
227
228 tsec = selinux_cred(cred);
229 return tsec->sid;
230}
231
232/*
233 * get the subjective security ID of a task
234 */
235static inline u32 task_sid_subj(const struct task_struct *task)
236{
237 u32 sid;
238
239 rcu_read_lock();
240 sid = cred_sid(rcu_dereference(task->cred));
241 rcu_read_unlock();
242 return sid;
243}
244
245/*
246 * get the objective security ID of a task
247 */
248static inline u32 task_sid_obj(const struct task_struct *task)
249{
250 u32 sid;
251
252 rcu_read_lock();
253 sid = cred_sid(__task_cred(task));
254 rcu_read_unlock();
255 return sid;
256}
257
258/*
259 * get the security ID of a task for use with binder
260 */
261static inline u32 task_sid_binder(const struct task_struct *task)
262{
263 /*
264 * In many case where this function is used we should be using the
265 * task's subjective SID, but we can't reliably access the subjective
266 * creds of a task other than our own so we must use the objective
267 * creds/SID, which are safe to access. The downside is that if a task
268 * is temporarily overriding it's creds it will not be reflected here;
269 * however, it isn't clear that binder would handle that case well
270 * anyway.
271 *
272 * If this ever changes and we can safely reference the subjective
273 * creds/SID of another task, this function will make it easier to
274 * identify the various places where we make use of the task SIDs in
275 * the binder code. It is also likely that we will need to adjust
276 * the main drivers/android binder code as well.
277 */
278 return task_sid_obj(task);
279}
280
281static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
282
283/*
284 * Try reloading inode security labels that have been marked as invalid. The
285 * @may_sleep parameter indicates when sleeping and thus reloading labels is
286 * allowed; when set to false, returns -ECHILD when the label is
287 * invalid. The @dentry parameter should be set to a dentry of the inode.
288 */
289static int __inode_security_revalidate(struct inode *inode,
290 struct dentry *dentry,
291 bool may_sleep)
292{
293 struct inode_security_struct *isec = selinux_inode(inode);
294
295 might_sleep_if(may_sleep);
296
297 if (selinux_initialized(&selinux_state) &&
298 isec->initialized != LABEL_INITIALIZED) {
299 if (!may_sleep)
300 return -ECHILD;
301
302 /*
303 * Try reloading the inode security label. This will fail if
304 * @opt_dentry is NULL and no dentry for this inode can be
305 * found; in that case, continue using the old label.
306 */
307 inode_doinit_with_dentry(inode, dentry);
308 }
309 return 0;
310}
311
312static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
313{
314 return selinux_inode(inode);
315}
316
317static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
318{
319 int error;
320
321 error = __inode_security_revalidate(inode, NULL, !rcu);
322 if (error)
323 return ERR_PTR(error);
324 return selinux_inode(inode);
325}
326
327/*
328 * Get the security label of an inode.
329 */
330static struct inode_security_struct *inode_security(struct inode *inode)
331{
332 __inode_security_revalidate(inode, NULL, true);
333 return selinux_inode(inode);
334}
335
336static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
337{
338 struct inode *inode = d_backing_inode(dentry);
339
340 return selinux_inode(inode);
341}
342
343/*
344 * Get the security label of a dentry's backing inode.
345 */
346static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
347{
348 struct inode *inode = d_backing_inode(dentry);
349
350 __inode_security_revalidate(inode, dentry, true);
351 return selinux_inode(inode);
352}
353
354static void inode_free_security(struct inode *inode)
355{
356 struct inode_security_struct *isec = selinux_inode(inode);
357 struct superblock_security_struct *sbsec;
358
359 if (!isec)
360 return;
361 sbsec = selinux_superblock(inode->i_sb);
362 /*
363 * As not all inode security structures are in a list, we check for
364 * empty list outside of the lock to make sure that we won't waste
365 * time taking a lock doing nothing.
366 *
367 * The list_del_init() function can be safely called more than once.
368 * It should not be possible for this function to be called with
369 * concurrent list_add(), but for better safety against future changes
370 * in the code, we use list_empty_careful() here.
371 */
372 if (!list_empty_careful(&isec->list)) {
373 spin_lock(&sbsec->isec_lock);
374 list_del_init(&isec->list);
375 spin_unlock(&sbsec->isec_lock);
376 }
377}
378
379struct selinux_mnt_opts {
380 const char *fscontext, *context, *rootcontext, *defcontext;
381};
382
383static void selinux_free_mnt_opts(void *mnt_opts)
384{
385 struct selinux_mnt_opts *opts = mnt_opts;
386 kfree(opts->fscontext);
387 kfree(opts->context);
388 kfree(opts->rootcontext);
389 kfree(opts->defcontext);
390 kfree(opts);
391}
392
393enum {
394 Opt_error = -1,
395 Opt_context = 0,
396 Opt_defcontext = 1,
397 Opt_fscontext = 2,
398 Opt_rootcontext = 3,
399 Opt_seclabel = 4,
400};
401
402#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
403static struct {
404 const char *name;
405 int len;
406 int opt;
407 bool has_arg;
408} tokens[] = {
409 A(context, true),
410 A(fscontext, true),
411 A(defcontext, true),
412 A(rootcontext, true),
413 A(seclabel, false),
414};
415#undef A
416
417static int match_opt_prefix(char *s, int l, char **arg)
418{
419 int i;
420
421 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
422 size_t len = tokens[i].len;
423 if (len > l || memcmp(s, tokens[i].name, len))
424 continue;
425 if (tokens[i].has_arg) {
426 if (len == l || s[len] != '=')
427 continue;
428 *arg = s + len + 1;
429 } else if (len != l)
430 continue;
431 return tokens[i].opt;
432 }
433 return Opt_error;
434}
435
436#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
437
438static int may_context_mount_sb_relabel(u32 sid,
439 struct superblock_security_struct *sbsec,
440 const struct cred *cred)
441{
442 const struct task_security_struct *tsec = selinux_cred(cred);
443 int rc;
444
445 rc = avc_has_perm(&selinux_state,
446 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
447 FILESYSTEM__RELABELFROM, NULL);
448 if (rc)
449 return rc;
450
451 rc = avc_has_perm(&selinux_state,
452 tsec->sid, sid, SECCLASS_FILESYSTEM,
453 FILESYSTEM__RELABELTO, NULL);
454 return rc;
455}
456
457static int may_context_mount_inode_relabel(u32 sid,
458 struct superblock_security_struct *sbsec,
459 const struct cred *cred)
460{
461 const struct task_security_struct *tsec = selinux_cred(cred);
462 int rc;
463 rc = avc_has_perm(&selinux_state,
464 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
465 FILESYSTEM__RELABELFROM, NULL);
466 if (rc)
467 return rc;
468
469 rc = avc_has_perm(&selinux_state,
470 sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 FILESYSTEM__ASSOCIATE, NULL);
472 return rc;
473}
474
475static int selinux_is_genfs_special_handling(struct super_block *sb)
476{
477 /* Special handling. Genfs but also in-core setxattr handler */
478 return !strcmp(sb->s_type->name, "sysfs") ||
479 !strcmp(sb->s_type->name, "pstore") ||
480 !strcmp(sb->s_type->name, "debugfs") ||
481 !strcmp(sb->s_type->name, "tracefs") ||
482 !strcmp(sb->s_type->name, "rootfs") ||
483 (selinux_policycap_cgroupseclabel() &&
484 (!strcmp(sb->s_type->name, "cgroup") ||
485 !strcmp(sb->s_type->name, "cgroup2")));
486}
487
488static int selinux_is_sblabel_mnt(struct super_block *sb)
489{
490 struct superblock_security_struct *sbsec = selinux_superblock(sb);
491
492 /*
493 * IMPORTANT: Double-check logic in this function when adding a new
494 * SECURITY_FS_USE_* definition!
495 */
496 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
497
498 switch (sbsec->behavior) {
499 case SECURITY_FS_USE_XATTR:
500 case SECURITY_FS_USE_TRANS:
501 case SECURITY_FS_USE_TASK:
502 case SECURITY_FS_USE_NATIVE:
503 return 1;
504
505 case SECURITY_FS_USE_GENFS:
506 return selinux_is_genfs_special_handling(sb);
507
508 /* Never allow relabeling on context mounts */
509 case SECURITY_FS_USE_MNTPOINT:
510 case SECURITY_FS_USE_NONE:
511 default:
512 return 0;
513 }
514}
515
516static int sb_check_xattr_support(struct super_block *sb)
517{
518 struct superblock_security_struct *sbsec = sb->s_security;
519 struct dentry *root = sb->s_root;
520 struct inode *root_inode = d_backing_inode(root);
521 u32 sid;
522 int rc;
523
524 /*
525 * Make sure that the xattr handler exists and that no
526 * error other than -ENODATA is returned by getxattr on
527 * the root directory. -ENODATA is ok, as this may be
528 * the first boot of the SELinux kernel before we have
529 * assigned xattr values to the filesystem.
530 */
531 if (!(root_inode->i_opflags & IOP_XATTR)) {
532 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
533 sb->s_id, sb->s_type->name);
534 goto fallback;
535 }
536
537 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
538 if (rc < 0 && rc != -ENODATA) {
539 if (rc == -EOPNOTSUPP) {
540 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
541 sb->s_id, sb->s_type->name);
542 goto fallback;
543 } else {
544 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
545 sb->s_id, sb->s_type->name, -rc);
546 return rc;
547 }
548 }
549 return 0;
550
551fallback:
552 /* No xattr support - try to fallback to genfs if possible. */
553 rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
554 SECCLASS_DIR, &sid);
555 if (rc)
556 return -EOPNOTSUPP;
557
558 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
559 sb->s_id, sb->s_type->name);
560 sbsec->behavior = SECURITY_FS_USE_GENFS;
561 sbsec->sid = sid;
562 return 0;
563}
564
565static int sb_finish_set_opts(struct super_block *sb)
566{
567 struct superblock_security_struct *sbsec = selinux_superblock(sb);
568 struct dentry *root = sb->s_root;
569 struct inode *root_inode = d_backing_inode(root);
570 int rc = 0;
571
572 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
573 rc = sb_check_xattr_support(sb);
574 if (rc)
575 return rc;
576 }
577
578 sbsec->flags |= SE_SBINITIALIZED;
579
580 /*
581 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
582 * leave the flag untouched because sb_clone_mnt_opts might be handing
583 * us a superblock that needs the flag to be cleared.
584 */
585 if (selinux_is_sblabel_mnt(sb))
586 sbsec->flags |= SBLABEL_MNT;
587 else
588 sbsec->flags &= ~SBLABEL_MNT;
589
590 /* Initialize the root inode. */
591 rc = inode_doinit_with_dentry(root_inode, root);
592
593 /* Initialize any other inodes associated with the superblock, e.g.
594 inodes created prior to initial policy load or inodes created
595 during get_sb by a pseudo filesystem that directly
596 populates itself. */
597 spin_lock(&sbsec->isec_lock);
598 while (!list_empty(&sbsec->isec_head)) {
599 struct inode_security_struct *isec =
600 list_first_entry(&sbsec->isec_head,
601 struct inode_security_struct, list);
602 struct inode *inode = isec->inode;
603 list_del_init(&isec->list);
604 spin_unlock(&sbsec->isec_lock);
605 inode = igrab(inode);
606 if (inode) {
607 if (!IS_PRIVATE(inode))
608 inode_doinit_with_dentry(inode, NULL);
609 iput(inode);
610 }
611 spin_lock(&sbsec->isec_lock);
612 }
613 spin_unlock(&sbsec->isec_lock);
614 return rc;
615}
616
617static int bad_option(struct superblock_security_struct *sbsec, char flag,
618 u32 old_sid, u32 new_sid)
619{
620 char mnt_flags = sbsec->flags & SE_MNTMASK;
621
622 /* check if the old mount command had the same options */
623 if (sbsec->flags & SE_SBINITIALIZED)
624 if (!(sbsec->flags & flag) ||
625 (old_sid != new_sid))
626 return 1;
627
628 /* check if we were passed the same options twice,
629 * aka someone passed context=a,context=b
630 */
631 if (!(sbsec->flags & SE_SBINITIALIZED))
632 if (mnt_flags & flag)
633 return 1;
634 return 0;
635}
636
637static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
638{
639 int rc = security_context_str_to_sid(&selinux_state, s,
640 sid, GFP_KERNEL);
641 if (rc)
642 pr_warn("SELinux: security_context_str_to_sid"
643 "(%s) failed for (dev %s, type %s) errno=%d\n",
644 s, sb->s_id, sb->s_type->name, rc);
645 return rc;
646}
647
648/*
649 * Allow filesystems with binary mount data to explicitly set mount point
650 * labeling information.
651 */
652static int selinux_set_mnt_opts(struct super_block *sb,
653 void *mnt_opts,
654 unsigned long kern_flags,
655 unsigned long *set_kern_flags)
656{
657 const struct cred *cred = current_cred();
658 struct superblock_security_struct *sbsec = selinux_superblock(sb);
659 struct dentry *root = sb->s_root;
660 struct selinux_mnt_opts *opts = mnt_opts;
661 struct inode_security_struct *root_isec;
662 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
663 u32 defcontext_sid = 0;
664 int rc = 0;
665
666 mutex_lock(&sbsec->lock);
667
668 if (!selinux_initialized(&selinux_state)) {
669 if (!opts) {
670 /* Defer initialization until selinux_complete_init,
671 after the initial policy is loaded and the security
672 server is ready to handle calls. */
673 goto out;
674 }
675 rc = -EINVAL;
676 pr_warn("SELinux: Unable to set superblock options "
677 "before the security server is initialized\n");
678 goto out;
679 }
680 if (kern_flags && !set_kern_flags) {
681 /* Specifying internal flags without providing a place to
682 * place the results is not allowed */
683 rc = -EINVAL;
684 goto out;
685 }
686
687 /*
688 * Binary mount data FS will come through this function twice. Once
689 * from an explicit call and once from the generic calls from the vfs.
690 * Since the generic VFS calls will not contain any security mount data
691 * we need to skip the double mount verification.
692 *
693 * This does open a hole in which we will not notice if the first
694 * mount using this sb set explict options and a second mount using
695 * this sb does not set any security options. (The first options
696 * will be used for both mounts)
697 */
698 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
699 && !opts)
700 goto out;
701
702 root_isec = backing_inode_security_novalidate(root);
703
704 /*
705 * parse the mount options, check if they are valid sids.
706 * also check if someone is trying to mount the same sb more
707 * than once with different security options.
708 */
709 if (opts) {
710 if (opts->fscontext) {
711 rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
712 if (rc)
713 goto out;
714 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
715 fscontext_sid))
716 goto out_double_mount;
717 sbsec->flags |= FSCONTEXT_MNT;
718 }
719 if (opts->context) {
720 rc = parse_sid(sb, opts->context, &context_sid);
721 if (rc)
722 goto out;
723 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
724 context_sid))
725 goto out_double_mount;
726 sbsec->flags |= CONTEXT_MNT;
727 }
728 if (opts->rootcontext) {
729 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
730 if (rc)
731 goto out;
732 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
733 rootcontext_sid))
734 goto out_double_mount;
735 sbsec->flags |= ROOTCONTEXT_MNT;
736 }
737 if (opts->defcontext) {
738 rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
739 if (rc)
740 goto out;
741 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
742 defcontext_sid))
743 goto out_double_mount;
744 sbsec->flags |= DEFCONTEXT_MNT;
745 }
746 }
747
748 if (sbsec->flags & SE_SBINITIALIZED) {
749 /* previously mounted with options, but not on this attempt? */
750 if ((sbsec->flags & SE_MNTMASK) && !opts)
751 goto out_double_mount;
752 rc = 0;
753 goto out;
754 }
755
756 if (strcmp(sb->s_type->name, "proc") == 0)
757 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
758
759 if (!strcmp(sb->s_type->name, "debugfs") ||
760 !strcmp(sb->s_type->name, "tracefs") ||
761 !strcmp(sb->s_type->name, "binder") ||
762 !strcmp(sb->s_type->name, "bpf") ||
763 !strcmp(sb->s_type->name, "pstore"))
764 sbsec->flags |= SE_SBGENFS;
765
766 if (!strcmp(sb->s_type->name, "sysfs") ||
767 !strcmp(sb->s_type->name, "cgroup") ||
768 !strcmp(sb->s_type->name, "cgroup2"))
769 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
770
771 if (!sbsec->behavior) {
772 /*
773 * Determine the labeling behavior to use for this
774 * filesystem type.
775 */
776 rc = security_fs_use(&selinux_state, sb);
777 if (rc) {
778 pr_warn("%s: security_fs_use(%s) returned %d\n",
779 __func__, sb->s_type->name, rc);
780 goto out;
781 }
782 }
783
784 /*
785 * If this is a user namespace mount and the filesystem type is not
786 * explicitly whitelisted, then no contexts are allowed on the command
787 * line and security labels must be ignored.
788 */
789 if (sb->s_user_ns != &init_user_ns &&
790 strcmp(sb->s_type->name, "tmpfs") &&
791 strcmp(sb->s_type->name, "ramfs") &&
792 strcmp(sb->s_type->name, "devpts") &&
793 strcmp(sb->s_type->name, "overlay")) {
794 if (context_sid || fscontext_sid || rootcontext_sid ||
795 defcontext_sid) {
796 rc = -EACCES;
797 goto out;
798 }
799 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
800 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
801 rc = security_transition_sid(&selinux_state,
802 current_sid(),
803 current_sid(),
804 SECCLASS_FILE, NULL,
805 &sbsec->mntpoint_sid);
806 if (rc)
807 goto out;
808 }
809 goto out_set_opts;
810 }
811
812 /* sets the context of the superblock for the fs being mounted. */
813 if (fscontext_sid) {
814 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
815 if (rc)
816 goto out;
817
818 sbsec->sid = fscontext_sid;
819 }
820
821 /*
822 * Switch to using mount point labeling behavior.
823 * sets the label used on all file below the mountpoint, and will set
824 * the superblock context if not already set.
825 */
826 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
827 sbsec->behavior = SECURITY_FS_USE_NATIVE;
828 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
829 }
830
831 if (context_sid) {
832 if (!fscontext_sid) {
833 rc = may_context_mount_sb_relabel(context_sid, sbsec,
834 cred);
835 if (rc)
836 goto out;
837 sbsec->sid = context_sid;
838 } else {
839 rc = may_context_mount_inode_relabel(context_sid, sbsec,
840 cred);
841 if (rc)
842 goto out;
843 }
844 if (!rootcontext_sid)
845 rootcontext_sid = context_sid;
846
847 sbsec->mntpoint_sid = context_sid;
848 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
849 }
850
851 if (rootcontext_sid) {
852 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
853 cred);
854 if (rc)
855 goto out;
856
857 root_isec->sid = rootcontext_sid;
858 root_isec->initialized = LABEL_INITIALIZED;
859 }
860
861 if (defcontext_sid) {
862 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
863 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
864 rc = -EINVAL;
865 pr_warn("SELinux: defcontext option is "
866 "invalid for this filesystem type\n");
867 goto out;
868 }
869
870 if (defcontext_sid != sbsec->def_sid) {
871 rc = may_context_mount_inode_relabel(defcontext_sid,
872 sbsec, cred);
873 if (rc)
874 goto out;
875 }
876
877 sbsec->def_sid = defcontext_sid;
878 }
879
880out_set_opts:
881 rc = sb_finish_set_opts(sb);
882out:
883 mutex_unlock(&sbsec->lock);
884 return rc;
885out_double_mount:
886 rc = -EINVAL;
887 pr_warn("SELinux: mount invalid. Same superblock, different "
888 "security settings for (dev %s, type %s)\n", sb->s_id,
889 sb->s_type->name);
890 goto out;
891}
892
893static int selinux_cmp_sb_context(const struct super_block *oldsb,
894 const struct super_block *newsb)
895{
896 struct superblock_security_struct *old = selinux_superblock(oldsb);
897 struct superblock_security_struct *new = selinux_superblock(newsb);
898 char oldflags = old->flags & SE_MNTMASK;
899 char newflags = new->flags & SE_MNTMASK;
900
901 if (oldflags != newflags)
902 goto mismatch;
903 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
904 goto mismatch;
905 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
906 goto mismatch;
907 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
908 goto mismatch;
909 if (oldflags & ROOTCONTEXT_MNT) {
910 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
911 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
912 if (oldroot->sid != newroot->sid)
913 goto mismatch;
914 }
915 return 0;
916mismatch:
917 pr_warn("SELinux: mount invalid. Same superblock, "
918 "different security settings for (dev %s, "
919 "type %s)\n", newsb->s_id, newsb->s_type->name);
920 return -EBUSY;
921}
922
923static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
924 struct super_block *newsb,
925 unsigned long kern_flags,
926 unsigned long *set_kern_flags)
927{
928 int rc = 0;
929 const struct superblock_security_struct *oldsbsec =
930 selinux_superblock(oldsb);
931 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
932
933 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
934 int set_context = (oldsbsec->flags & CONTEXT_MNT);
935 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
936
937 /*
938 * if the parent was able to be mounted it clearly had no special lsm
939 * mount options. thus we can safely deal with this superblock later
940 */
941 if (!selinux_initialized(&selinux_state))
942 return 0;
943
944 /*
945 * Specifying internal flags without providing a place to
946 * place the results is not allowed.
947 */
948 if (kern_flags && !set_kern_flags)
949 return -EINVAL;
950
951 /* how can we clone if the old one wasn't set up?? */
952 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
953
954 /* if fs is reusing a sb, make sure that the contexts match */
955 if (newsbsec->flags & SE_SBINITIALIZED) {
956 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
957 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
958 return selinux_cmp_sb_context(oldsb, newsb);
959 }
960
961 mutex_lock(&newsbsec->lock);
962
963 newsbsec->flags = oldsbsec->flags;
964
965 newsbsec->sid = oldsbsec->sid;
966 newsbsec->def_sid = oldsbsec->def_sid;
967 newsbsec->behavior = oldsbsec->behavior;
968
969 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
970 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
971 rc = security_fs_use(&selinux_state, newsb);
972 if (rc)
973 goto out;
974 }
975
976 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
977 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
978 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
979 }
980
981 if (set_context) {
982 u32 sid = oldsbsec->mntpoint_sid;
983
984 if (!set_fscontext)
985 newsbsec->sid = sid;
986 if (!set_rootcontext) {
987 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
988 newisec->sid = sid;
989 }
990 newsbsec->mntpoint_sid = sid;
991 }
992 if (set_rootcontext) {
993 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
994 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
995
996 newisec->sid = oldisec->sid;
997 }
998
999 sb_finish_set_opts(newsb);
1000out:
1001 mutex_unlock(&newsbsec->lock);
1002 return rc;
1003}
1004
1005static int selinux_add_opt(int token, const char *s, void **mnt_opts)
1006{
1007 struct selinux_mnt_opts *opts = *mnt_opts;
1008
1009 if (token == Opt_seclabel) /* eaten and completely ignored */
1010 return 0;
1011
1012 if (!opts) {
1013 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1014 if (!opts)
1015 return -ENOMEM;
1016 *mnt_opts = opts;
1017 }
1018 if (!s)
1019 return -ENOMEM;
1020 switch (token) {
1021 case Opt_context:
1022 if (opts->context || opts->defcontext)
1023 goto Einval;
1024 opts->context = s;
1025 break;
1026 case Opt_fscontext:
1027 if (opts->fscontext)
1028 goto Einval;
1029 opts->fscontext = s;
1030 break;
1031 case Opt_rootcontext:
1032 if (opts->rootcontext)
1033 goto Einval;
1034 opts->rootcontext = s;
1035 break;
1036 case Opt_defcontext:
1037 if (opts->context || opts->defcontext)
1038 goto Einval;
1039 opts->defcontext = s;
1040 break;
1041 }
1042 return 0;
1043Einval:
1044 pr_warn(SEL_MOUNT_FAIL_MSG);
1045 return -EINVAL;
1046}
1047
1048static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1049 void **mnt_opts)
1050{
1051 int token = Opt_error;
1052 int rc, i;
1053
1054 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1055 if (strcmp(option, tokens[i].name) == 0) {
1056 token = tokens[i].opt;
1057 break;
1058 }
1059 }
1060
1061 if (token == Opt_error)
1062 return -EINVAL;
1063
1064 if (token != Opt_seclabel) {
1065 val = kmemdup_nul(val, len, GFP_KERNEL);
1066 if (!val) {
1067 rc = -ENOMEM;
1068 goto free_opt;
1069 }
1070 }
1071 rc = selinux_add_opt(token, val, mnt_opts);
1072 if (unlikely(rc)) {
1073 kfree(val);
1074 goto free_opt;
1075 }
1076 return rc;
1077
1078free_opt:
1079 if (*mnt_opts) {
1080 selinux_free_mnt_opts(*mnt_opts);
1081 *mnt_opts = NULL;
1082 }
1083 return rc;
1084}
1085
1086static int show_sid(struct seq_file *m, u32 sid)
1087{
1088 char *context = NULL;
1089 u32 len;
1090 int rc;
1091
1092 rc = security_sid_to_context(&selinux_state, sid,
1093 &context, &len);
1094 if (!rc) {
1095 bool has_comma = context && strchr(context, ',');
1096
1097 seq_putc(m, '=');
1098 if (has_comma)
1099 seq_putc(m, '\"');
1100 seq_escape(m, context, "\"\n\\");
1101 if (has_comma)
1102 seq_putc(m, '\"');
1103 }
1104 kfree(context);
1105 return rc;
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1111 int rc;
1112
1113 if (!(sbsec->flags & SE_SBINITIALIZED))
1114 return 0;
1115
1116 if (!selinux_initialized(&selinux_state))
1117 return 0;
1118
1119 if (sbsec->flags & FSCONTEXT_MNT) {
1120 seq_putc(m, ',');
1121 seq_puts(m, FSCONTEXT_STR);
1122 rc = show_sid(m, sbsec->sid);
1123 if (rc)
1124 return rc;
1125 }
1126 if (sbsec->flags & CONTEXT_MNT) {
1127 seq_putc(m, ',');
1128 seq_puts(m, CONTEXT_STR);
1129 rc = show_sid(m, sbsec->mntpoint_sid);
1130 if (rc)
1131 return rc;
1132 }
1133 if (sbsec->flags & DEFCONTEXT_MNT) {
1134 seq_putc(m, ',');
1135 seq_puts(m, DEFCONTEXT_STR);
1136 rc = show_sid(m, sbsec->def_sid);
1137 if (rc)
1138 return rc;
1139 }
1140 if (sbsec->flags & ROOTCONTEXT_MNT) {
1141 struct dentry *root = sb->s_root;
1142 struct inode_security_struct *isec = backing_inode_security(root);
1143 seq_putc(m, ',');
1144 seq_puts(m, ROOTCONTEXT_STR);
1145 rc = show_sid(m, isec->sid);
1146 if (rc)
1147 return rc;
1148 }
1149 if (sbsec->flags & SBLABEL_MNT) {
1150 seq_putc(m, ',');
1151 seq_puts(m, SECLABEL_STR);
1152 }
1153 return 0;
1154}
1155
1156static inline u16 inode_mode_to_security_class(umode_t mode)
1157{
1158 switch (mode & S_IFMT) {
1159 case S_IFSOCK:
1160 return SECCLASS_SOCK_FILE;
1161 case S_IFLNK:
1162 return SECCLASS_LNK_FILE;
1163 case S_IFREG:
1164 return SECCLASS_FILE;
1165 case S_IFBLK:
1166 return SECCLASS_BLK_FILE;
1167 case S_IFDIR:
1168 return SECCLASS_DIR;
1169 case S_IFCHR:
1170 return SECCLASS_CHR_FILE;
1171 case S_IFIFO:
1172 return SECCLASS_FIFO_FILE;
1173
1174 }
1175
1176 return SECCLASS_FILE;
1177}
1178
1179static inline int default_protocol_stream(int protocol)
1180{
1181 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1182 protocol == IPPROTO_MPTCP);
1183}
1184
1185static inline int default_protocol_dgram(int protocol)
1186{
1187 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1188}
1189
1190static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1191{
1192 int extsockclass = selinux_policycap_extsockclass();
1193
1194 switch (family) {
1195 case PF_UNIX:
1196 switch (type) {
1197 case SOCK_STREAM:
1198 case SOCK_SEQPACKET:
1199 return SECCLASS_UNIX_STREAM_SOCKET;
1200 case SOCK_DGRAM:
1201 case SOCK_RAW:
1202 return SECCLASS_UNIX_DGRAM_SOCKET;
1203 }
1204 break;
1205 case PF_INET:
1206 case PF_INET6:
1207 switch (type) {
1208 case SOCK_STREAM:
1209 case SOCK_SEQPACKET:
1210 if (default_protocol_stream(protocol))
1211 return SECCLASS_TCP_SOCKET;
1212 else if (extsockclass && protocol == IPPROTO_SCTP)
1213 return SECCLASS_SCTP_SOCKET;
1214 else
1215 return SECCLASS_RAWIP_SOCKET;
1216 case SOCK_DGRAM:
1217 if (default_protocol_dgram(protocol))
1218 return SECCLASS_UDP_SOCKET;
1219 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1220 protocol == IPPROTO_ICMPV6))
1221 return SECCLASS_ICMP_SOCKET;
1222 else
1223 return SECCLASS_RAWIP_SOCKET;
1224 case SOCK_DCCP:
1225 return SECCLASS_DCCP_SOCKET;
1226 default:
1227 return SECCLASS_RAWIP_SOCKET;
1228 }
1229 break;
1230 case PF_NETLINK:
1231 switch (protocol) {
1232 case NETLINK_ROUTE:
1233 return SECCLASS_NETLINK_ROUTE_SOCKET;
1234 case NETLINK_SOCK_DIAG:
1235 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1236 case NETLINK_NFLOG:
1237 return SECCLASS_NETLINK_NFLOG_SOCKET;
1238 case NETLINK_XFRM:
1239 return SECCLASS_NETLINK_XFRM_SOCKET;
1240 case NETLINK_SELINUX:
1241 return SECCLASS_NETLINK_SELINUX_SOCKET;
1242 case NETLINK_ISCSI:
1243 return SECCLASS_NETLINK_ISCSI_SOCKET;
1244 case NETLINK_AUDIT:
1245 return SECCLASS_NETLINK_AUDIT_SOCKET;
1246 case NETLINK_FIB_LOOKUP:
1247 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1248 case NETLINK_CONNECTOR:
1249 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1250 case NETLINK_NETFILTER:
1251 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1252 case NETLINK_DNRTMSG:
1253 return SECCLASS_NETLINK_DNRT_SOCKET;
1254 case NETLINK_KOBJECT_UEVENT:
1255 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1256 case NETLINK_GENERIC:
1257 return SECCLASS_NETLINK_GENERIC_SOCKET;
1258 case NETLINK_SCSITRANSPORT:
1259 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1260 case NETLINK_RDMA:
1261 return SECCLASS_NETLINK_RDMA_SOCKET;
1262 case NETLINK_CRYPTO:
1263 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1264 default:
1265 return SECCLASS_NETLINK_SOCKET;
1266 }
1267 case PF_PACKET:
1268 return SECCLASS_PACKET_SOCKET;
1269 case PF_KEY:
1270 return SECCLASS_KEY_SOCKET;
1271 case PF_APPLETALK:
1272 return SECCLASS_APPLETALK_SOCKET;
1273 }
1274
1275 if (extsockclass) {
1276 switch (family) {
1277 case PF_AX25:
1278 return SECCLASS_AX25_SOCKET;
1279 case PF_IPX:
1280 return SECCLASS_IPX_SOCKET;
1281 case PF_NETROM:
1282 return SECCLASS_NETROM_SOCKET;
1283 case PF_ATMPVC:
1284 return SECCLASS_ATMPVC_SOCKET;
1285 case PF_X25:
1286 return SECCLASS_X25_SOCKET;
1287 case PF_ROSE:
1288 return SECCLASS_ROSE_SOCKET;
1289 case PF_DECnet:
1290 return SECCLASS_DECNET_SOCKET;
1291 case PF_ATMSVC:
1292 return SECCLASS_ATMSVC_SOCKET;
1293 case PF_RDS:
1294 return SECCLASS_RDS_SOCKET;
1295 case PF_IRDA:
1296 return SECCLASS_IRDA_SOCKET;
1297 case PF_PPPOX:
1298 return SECCLASS_PPPOX_SOCKET;
1299 case PF_LLC:
1300 return SECCLASS_LLC_SOCKET;
1301 case PF_CAN:
1302 return SECCLASS_CAN_SOCKET;
1303 case PF_TIPC:
1304 return SECCLASS_TIPC_SOCKET;
1305 case PF_BLUETOOTH:
1306 return SECCLASS_BLUETOOTH_SOCKET;
1307 case PF_IUCV:
1308 return SECCLASS_IUCV_SOCKET;
1309 case PF_RXRPC:
1310 return SECCLASS_RXRPC_SOCKET;
1311 case PF_ISDN:
1312 return SECCLASS_ISDN_SOCKET;
1313 case PF_PHONET:
1314 return SECCLASS_PHONET_SOCKET;
1315 case PF_IEEE802154:
1316 return SECCLASS_IEEE802154_SOCKET;
1317 case PF_CAIF:
1318 return SECCLASS_CAIF_SOCKET;
1319 case PF_ALG:
1320 return SECCLASS_ALG_SOCKET;
1321 case PF_NFC:
1322 return SECCLASS_NFC_SOCKET;
1323 case PF_VSOCK:
1324 return SECCLASS_VSOCK_SOCKET;
1325 case PF_KCM:
1326 return SECCLASS_KCM_SOCKET;
1327 case PF_QIPCRTR:
1328 return SECCLASS_QIPCRTR_SOCKET;
1329 case PF_SMC:
1330 return SECCLASS_SMC_SOCKET;
1331 case PF_XDP:
1332 return SECCLASS_XDP_SOCKET;
1333#if PF_MAX > 45
1334#error New address family defined, please update this function.
1335#endif
1336 }
1337 }
1338
1339 return SECCLASS_SOCKET;
1340}
1341
1342static int selinux_genfs_get_sid(struct dentry *dentry,
1343 u16 tclass,
1344 u16 flags,
1345 u32 *sid)
1346{
1347 int rc;
1348 struct super_block *sb = dentry->d_sb;
1349 char *buffer, *path;
1350
1351 buffer = (char *)__get_free_page(GFP_KERNEL);
1352 if (!buffer)
1353 return -ENOMEM;
1354
1355 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1356 if (IS_ERR(path))
1357 rc = PTR_ERR(path);
1358 else {
1359 if (flags & SE_SBPROC) {
1360 /* each process gets a /proc/PID/ entry. Strip off the
1361 * PID part to get a valid selinux labeling.
1362 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1363 while (path[1] >= '0' && path[1] <= '9') {
1364 path[1] = '/';
1365 path++;
1366 }
1367 }
1368 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1369 path, tclass, sid);
1370 if (rc == -ENOENT) {
1371 /* No match in policy, mark as unlabeled. */
1372 *sid = SECINITSID_UNLABELED;
1373 rc = 0;
1374 }
1375 }
1376 free_page((unsigned long)buffer);
1377 return rc;
1378}
1379
1380static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1381 u32 def_sid, u32 *sid)
1382{
1383#define INITCONTEXTLEN 255
1384 char *context;
1385 unsigned int len;
1386 int rc;
1387
1388 len = INITCONTEXTLEN;
1389 context = kmalloc(len + 1, GFP_NOFS);
1390 if (!context)
1391 return -ENOMEM;
1392
1393 context[len] = '\0';
1394 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1395 if (rc == -ERANGE) {
1396 kfree(context);
1397
1398 /* Need a larger buffer. Query for the right size. */
1399 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1400 if (rc < 0)
1401 return rc;
1402
1403 len = rc;
1404 context = kmalloc(len + 1, GFP_NOFS);
1405 if (!context)
1406 return -ENOMEM;
1407
1408 context[len] = '\0';
1409 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1410 context, len);
1411 }
1412 if (rc < 0) {
1413 kfree(context);
1414 if (rc != -ENODATA) {
1415 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1416 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1417 return rc;
1418 }
1419 *sid = def_sid;
1420 return 0;
1421 }
1422
1423 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1424 def_sid, GFP_NOFS);
1425 if (rc) {
1426 char *dev = inode->i_sb->s_id;
1427 unsigned long ino = inode->i_ino;
1428
1429 if (rc == -EINVAL) {
1430 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1431 ino, dev, context);
1432 } else {
1433 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1434 __func__, context, -rc, dev, ino);
1435 }
1436 }
1437 kfree(context);
1438 return 0;
1439}
1440
1441/* The inode's security attributes must be initialized before first use. */
1442static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1443{
1444 struct superblock_security_struct *sbsec = NULL;
1445 struct inode_security_struct *isec = selinux_inode(inode);
1446 u32 task_sid, sid = 0;
1447 u16 sclass;
1448 struct dentry *dentry;
1449 int rc = 0;
1450
1451 if (isec->initialized == LABEL_INITIALIZED)
1452 return 0;
1453
1454 spin_lock(&isec->lock);
1455 if (isec->initialized == LABEL_INITIALIZED)
1456 goto out_unlock;
1457
1458 if (isec->sclass == SECCLASS_FILE)
1459 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1460
1461 sbsec = selinux_superblock(inode->i_sb);
1462 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1463 /* Defer initialization until selinux_complete_init,
1464 after the initial policy is loaded and the security
1465 server is ready to handle calls. */
1466 spin_lock(&sbsec->isec_lock);
1467 if (list_empty(&isec->list))
1468 list_add(&isec->list, &sbsec->isec_head);
1469 spin_unlock(&sbsec->isec_lock);
1470 goto out_unlock;
1471 }
1472
1473 sclass = isec->sclass;
1474 task_sid = isec->task_sid;
1475 sid = isec->sid;
1476 isec->initialized = LABEL_PENDING;
1477 spin_unlock(&isec->lock);
1478
1479 switch (sbsec->behavior) {
1480 case SECURITY_FS_USE_NATIVE:
1481 break;
1482 case SECURITY_FS_USE_XATTR:
1483 if (!(inode->i_opflags & IOP_XATTR)) {
1484 sid = sbsec->def_sid;
1485 break;
1486 }
1487 /* Need a dentry, since the xattr API requires one.
1488 Life would be simpler if we could just pass the inode. */
1489 if (opt_dentry) {
1490 /* Called from d_instantiate or d_splice_alias. */
1491 dentry = dget(opt_dentry);
1492 } else {
1493 /*
1494 * Called from selinux_complete_init, try to find a dentry.
1495 * Some filesystems really want a connected one, so try
1496 * that first. We could split SECURITY_FS_USE_XATTR in
1497 * two, depending upon that...
1498 */
1499 dentry = d_find_alias(inode);
1500 if (!dentry)
1501 dentry = d_find_any_alias(inode);
1502 }
1503 if (!dentry) {
1504 /*
1505 * this is can be hit on boot when a file is accessed
1506 * before the policy is loaded. When we load policy we
1507 * may find inodes that have no dentry on the
1508 * sbsec->isec_head list. No reason to complain as these
1509 * will get fixed up the next time we go through
1510 * inode_doinit with a dentry, before these inodes could
1511 * be used again by userspace.
1512 */
1513 goto out_invalid;
1514 }
1515
1516 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1517 &sid);
1518 dput(dentry);
1519 if (rc)
1520 goto out;
1521 break;
1522 case SECURITY_FS_USE_TASK:
1523 sid = task_sid;
1524 break;
1525 case SECURITY_FS_USE_TRANS:
1526 /* Default to the fs SID. */
1527 sid = sbsec->sid;
1528
1529 /* Try to obtain a transition SID. */
1530 rc = security_transition_sid(&selinux_state, task_sid, sid,
1531 sclass, NULL, &sid);
1532 if (rc)
1533 goto out;
1534 break;
1535 case SECURITY_FS_USE_MNTPOINT:
1536 sid = sbsec->mntpoint_sid;
1537 break;
1538 default:
1539 /* Default to the fs superblock SID. */
1540 sid = sbsec->sid;
1541
1542 if ((sbsec->flags & SE_SBGENFS) &&
1543 (!S_ISLNK(inode->i_mode) ||
1544 selinux_policycap_genfs_seclabel_symlinks())) {
1545 /* We must have a dentry to determine the label on
1546 * procfs inodes */
1547 if (opt_dentry) {
1548 /* Called from d_instantiate or
1549 * d_splice_alias. */
1550 dentry = dget(opt_dentry);
1551 } else {
1552 /* Called from selinux_complete_init, try to
1553 * find a dentry. Some filesystems really want
1554 * a connected one, so try that first.
1555 */
1556 dentry = d_find_alias(inode);
1557 if (!dentry)
1558 dentry = d_find_any_alias(inode);
1559 }
1560 /*
1561 * This can be hit on boot when a file is accessed
1562 * before the policy is loaded. When we load policy we
1563 * may find inodes that have no dentry on the
1564 * sbsec->isec_head list. No reason to complain as
1565 * these will get fixed up the next time we go through
1566 * inode_doinit() with a dentry, before these inodes
1567 * could be used again by userspace.
1568 */
1569 if (!dentry)
1570 goto out_invalid;
1571 rc = selinux_genfs_get_sid(dentry, sclass,
1572 sbsec->flags, &sid);
1573 if (rc) {
1574 dput(dentry);
1575 goto out;
1576 }
1577
1578 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1579 (inode->i_opflags & IOP_XATTR)) {
1580 rc = inode_doinit_use_xattr(inode, dentry,
1581 sid, &sid);
1582 if (rc) {
1583 dput(dentry);
1584 goto out;
1585 }
1586 }
1587 dput(dentry);
1588 }
1589 break;
1590 }
1591
1592out:
1593 spin_lock(&isec->lock);
1594 if (isec->initialized == LABEL_PENDING) {
1595 if (rc) {
1596 isec->initialized = LABEL_INVALID;
1597 goto out_unlock;
1598 }
1599 isec->initialized = LABEL_INITIALIZED;
1600 isec->sid = sid;
1601 }
1602
1603out_unlock:
1604 spin_unlock(&isec->lock);
1605 return rc;
1606
1607out_invalid:
1608 spin_lock(&isec->lock);
1609 if (isec->initialized == LABEL_PENDING) {
1610 isec->initialized = LABEL_INVALID;
1611 isec->sid = sid;
1612 }
1613 spin_unlock(&isec->lock);
1614 return 0;
1615}
1616
1617/* Convert a Linux signal to an access vector. */
1618static inline u32 signal_to_av(int sig)
1619{
1620 u32 perm = 0;
1621
1622 switch (sig) {
1623 case SIGCHLD:
1624 /* Commonly granted from child to parent. */
1625 perm = PROCESS__SIGCHLD;
1626 break;
1627 case SIGKILL:
1628 /* Cannot be caught or ignored */
1629 perm = PROCESS__SIGKILL;
1630 break;
1631 case SIGSTOP:
1632 /* Cannot be caught or ignored */
1633 perm = PROCESS__SIGSTOP;
1634 break;
1635 default:
1636 /* All other signals. */
1637 perm = PROCESS__SIGNAL;
1638 break;
1639 }
1640
1641 return perm;
1642}
1643
1644#if CAP_LAST_CAP > 63
1645#error Fix SELinux to handle capabilities > 63.
1646#endif
1647
1648/* Check whether a task is allowed to use a capability. */
1649static int cred_has_capability(const struct cred *cred,
1650 int cap, unsigned int opts, bool initns)
1651{
1652 struct common_audit_data ad;
1653 struct av_decision avd;
1654 u16 sclass;
1655 u32 sid = cred_sid(cred);
1656 u32 av = CAP_TO_MASK(cap);
1657 int rc;
1658
1659 ad.type = LSM_AUDIT_DATA_CAP;
1660 ad.u.cap = cap;
1661
1662 switch (CAP_TO_INDEX(cap)) {
1663 case 0:
1664 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1665 break;
1666 case 1:
1667 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1668 break;
1669 default:
1670 pr_err("SELinux: out of range capability %d\n", cap);
1671 BUG();
1672 return -EINVAL;
1673 }
1674
1675 rc = avc_has_perm_noaudit(&selinux_state,
1676 sid, sid, sclass, av, 0, &avd);
1677 if (!(opts & CAP_OPT_NOAUDIT)) {
1678 int rc2 = avc_audit(&selinux_state,
1679 sid, sid, sclass, av, &avd, rc, &ad);
1680 if (rc2)
1681 return rc2;
1682 }
1683 return rc;
1684}
1685
1686/* Check whether a task has a particular permission to an inode.
1687 The 'adp' parameter is optional and allows other audit
1688 data to be passed (e.g. the dentry). */
1689static int inode_has_perm(const struct cred *cred,
1690 struct inode *inode,
1691 u32 perms,
1692 struct common_audit_data *adp)
1693{
1694 struct inode_security_struct *isec;
1695 u32 sid;
1696
1697 validate_creds(cred);
1698
1699 if (unlikely(IS_PRIVATE(inode)))
1700 return 0;
1701
1702 sid = cred_sid(cred);
1703 isec = selinux_inode(inode);
1704
1705 return avc_has_perm(&selinux_state,
1706 sid, isec->sid, isec->sclass, perms, adp);
1707}
1708
1709/* Same as inode_has_perm, but pass explicit audit data containing
1710 the dentry to help the auditing code to more easily generate the
1711 pathname if needed. */
1712static inline int dentry_has_perm(const struct cred *cred,
1713 struct dentry *dentry,
1714 u32 av)
1715{
1716 struct inode *inode = d_backing_inode(dentry);
1717 struct common_audit_data ad;
1718
1719 ad.type = LSM_AUDIT_DATA_DENTRY;
1720 ad.u.dentry = dentry;
1721 __inode_security_revalidate(inode, dentry, true);
1722 return inode_has_perm(cred, inode, av, &ad);
1723}
1724
1725/* Same as inode_has_perm, but pass explicit audit data containing
1726 the path to help the auditing code to more easily generate the
1727 pathname if needed. */
1728static inline int path_has_perm(const struct cred *cred,
1729 const struct path *path,
1730 u32 av)
1731{
1732 struct inode *inode = d_backing_inode(path->dentry);
1733 struct common_audit_data ad;
1734
1735 ad.type = LSM_AUDIT_DATA_PATH;
1736 ad.u.path = *path;
1737 __inode_security_revalidate(inode, path->dentry, true);
1738 return inode_has_perm(cred, inode, av, &ad);
1739}
1740
1741/* Same as path_has_perm, but uses the inode from the file struct. */
1742static inline int file_path_has_perm(const struct cred *cred,
1743 struct file *file,
1744 u32 av)
1745{
1746 struct common_audit_data ad;
1747
1748 ad.type = LSM_AUDIT_DATA_FILE;
1749 ad.u.file = file;
1750 return inode_has_perm(cred, file_inode(file), av, &ad);
1751}
1752
1753#ifdef CONFIG_BPF_SYSCALL
1754static int bpf_fd_pass(struct file *file, u32 sid);
1755#endif
1756
1757/* Check whether a task can use an open file descriptor to
1758 access an inode in a given way. Check access to the
1759 descriptor itself, and then use dentry_has_perm to
1760 check a particular permission to the file.
1761 Access to the descriptor is implicitly granted if it
1762 has the same SID as the process. If av is zero, then
1763 access to the file is not checked, e.g. for cases
1764 where only the descriptor is affected like seek. */
1765static int file_has_perm(const struct cred *cred,
1766 struct file *file,
1767 u32 av)
1768{
1769 struct file_security_struct *fsec = selinux_file(file);
1770 struct inode *inode = file_inode(file);
1771 struct common_audit_data ad;
1772 u32 sid = cred_sid(cred);
1773 int rc;
1774
1775 ad.type = LSM_AUDIT_DATA_FILE;
1776 ad.u.file = file;
1777
1778 if (sid != fsec->sid) {
1779 rc = avc_has_perm(&selinux_state,
1780 sid, fsec->sid,
1781 SECCLASS_FD,
1782 FD__USE,
1783 &ad);
1784 if (rc)
1785 goto out;
1786 }
1787
1788#ifdef CONFIG_BPF_SYSCALL
1789 rc = bpf_fd_pass(file, cred_sid(cred));
1790 if (rc)
1791 return rc;
1792#endif
1793
1794 /* av is zero if only checking access to the descriptor. */
1795 rc = 0;
1796 if (av)
1797 rc = inode_has_perm(cred, inode, av, &ad);
1798
1799out:
1800 return rc;
1801}
1802
1803/*
1804 * Determine the label for an inode that might be unioned.
1805 */
1806static int
1807selinux_determine_inode_label(const struct task_security_struct *tsec,
1808 struct inode *dir,
1809 const struct qstr *name, u16 tclass,
1810 u32 *_new_isid)
1811{
1812 const struct superblock_security_struct *sbsec =
1813 selinux_superblock(dir->i_sb);
1814
1815 if ((sbsec->flags & SE_SBINITIALIZED) &&
1816 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1817 *_new_isid = sbsec->mntpoint_sid;
1818 } else if ((sbsec->flags & SBLABEL_MNT) &&
1819 tsec->create_sid) {
1820 *_new_isid = tsec->create_sid;
1821 } else {
1822 const struct inode_security_struct *dsec = inode_security(dir);
1823 return security_transition_sid(&selinux_state, tsec->sid,
1824 dsec->sid, tclass,
1825 name, _new_isid);
1826 }
1827
1828 return 0;
1829}
1830
1831/* Check whether a task can create a file. */
1832static int may_create(struct inode *dir,
1833 struct dentry *dentry,
1834 u16 tclass)
1835{
1836 const struct task_security_struct *tsec = selinux_cred(current_cred());
1837 struct inode_security_struct *dsec;
1838 struct superblock_security_struct *sbsec;
1839 u32 sid, newsid;
1840 struct common_audit_data ad;
1841 int rc;
1842
1843 dsec = inode_security(dir);
1844 sbsec = selinux_superblock(dir->i_sb);
1845
1846 sid = tsec->sid;
1847
1848 ad.type = LSM_AUDIT_DATA_DENTRY;
1849 ad.u.dentry = dentry;
1850
1851 rc = avc_has_perm(&selinux_state,
1852 sid, dsec->sid, SECCLASS_DIR,
1853 DIR__ADD_NAME | DIR__SEARCH,
1854 &ad);
1855 if (rc)
1856 return rc;
1857
1858 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1859 &newsid);
1860 if (rc)
1861 return rc;
1862
1863 rc = avc_has_perm(&selinux_state,
1864 sid, newsid, tclass, FILE__CREATE, &ad);
1865 if (rc)
1866 return rc;
1867
1868 return avc_has_perm(&selinux_state,
1869 newsid, sbsec->sid,
1870 SECCLASS_FILESYSTEM,
1871 FILESYSTEM__ASSOCIATE, &ad);
1872}
1873
1874#define MAY_LINK 0
1875#define MAY_UNLINK 1
1876#define MAY_RMDIR 2
1877
1878/* Check whether a task can link, unlink, or rmdir a file/directory. */
1879static int may_link(struct inode *dir,
1880 struct dentry *dentry,
1881 int kind)
1882
1883{
1884 struct inode_security_struct *dsec, *isec;
1885 struct common_audit_data ad;
1886 u32 sid = current_sid();
1887 u32 av;
1888 int rc;
1889
1890 dsec = inode_security(dir);
1891 isec = backing_inode_security(dentry);
1892
1893 ad.type = LSM_AUDIT_DATA_DENTRY;
1894 ad.u.dentry = dentry;
1895
1896 av = DIR__SEARCH;
1897 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1898 rc = avc_has_perm(&selinux_state,
1899 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1900 if (rc)
1901 return rc;
1902
1903 switch (kind) {
1904 case MAY_LINK:
1905 av = FILE__LINK;
1906 break;
1907 case MAY_UNLINK:
1908 av = FILE__UNLINK;
1909 break;
1910 case MAY_RMDIR:
1911 av = DIR__RMDIR;
1912 break;
1913 default:
1914 pr_warn("SELinux: %s: unrecognized kind %d\n",
1915 __func__, kind);
1916 return 0;
1917 }
1918
1919 rc = avc_has_perm(&selinux_state,
1920 sid, isec->sid, isec->sclass, av, &ad);
1921 return rc;
1922}
1923
1924static inline int may_rename(struct inode *old_dir,
1925 struct dentry *old_dentry,
1926 struct inode *new_dir,
1927 struct dentry *new_dentry)
1928{
1929 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1930 struct common_audit_data ad;
1931 u32 sid = current_sid();
1932 u32 av;
1933 int old_is_dir, new_is_dir;
1934 int rc;
1935
1936 old_dsec = inode_security(old_dir);
1937 old_isec = backing_inode_security(old_dentry);
1938 old_is_dir = d_is_dir(old_dentry);
1939 new_dsec = inode_security(new_dir);
1940
1941 ad.type = LSM_AUDIT_DATA_DENTRY;
1942
1943 ad.u.dentry = old_dentry;
1944 rc = avc_has_perm(&selinux_state,
1945 sid, old_dsec->sid, SECCLASS_DIR,
1946 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1947 if (rc)
1948 return rc;
1949 rc = avc_has_perm(&selinux_state,
1950 sid, old_isec->sid,
1951 old_isec->sclass, FILE__RENAME, &ad);
1952 if (rc)
1953 return rc;
1954 if (old_is_dir && new_dir != old_dir) {
1955 rc = avc_has_perm(&selinux_state,
1956 sid, old_isec->sid,
1957 old_isec->sclass, DIR__REPARENT, &ad);
1958 if (rc)
1959 return rc;
1960 }
1961
1962 ad.u.dentry = new_dentry;
1963 av = DIR__ADD_NAME | DIR__SEARCH;
1964 if (d_is_positive(new_dentry))
1965 av |= DIR__REMOVE_NAME;
1966 rc = avc_has_perm(&selinux_state,
1967 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1968 if (rc)
1969 return rc;
1970 if (d_is_positive(new_dentry)) {
1971 new_isec = backing_inode_security(new_dentry);
1972 new_is_dir = d_is_dir(new_dentry);
1973 rc = avc_has_perm(&selinux_state,
1974 sid, new_isec->sid,
1975 new_isec->sclass,
1976 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1977 if (rc)
1978 return rc;
1979 }
1980
1981 return 0;
1982}
1983
1984/* Check whether a task can perform a filesystem operation. */
1985static int superblock_has_perm(const struct cred *cred,
1986 struct super_block *sb,
1987 u32 perms,
1988 struct common_audit_data *ad)
1989{
1990 struct superblock_security_struct *sbsec;
1991 u32 sid = cred_sid(cred);
1992
1993 sbsec = selinux_superblock(sb);
1994 return avc_has_perm(&selinux_state,
1995 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1996}
1997
1998/* Convert a Linux mode and permission mask to an access vector. */
1999static inline u32 file_mask_to_av(int mode, int mask)
2000{
2001 u32 av = 0;
2002
2003 if (!S_ISDIR(mode)) {
2004 if (mask & MAY_EXEC)
2005 av |= FILE__EXECUTE;
2006 if (mask & MAY_READ)
2007 av |= FILE__READ;
2008
2009 if (mask & MAY_APPEND)
2010 av |= FILE__APPEND;
2011 else if (mask & MAY_WRITE)
2012 av |= FILE__WRITE;
2013
2014 } else {
2015 if (mask & MAY_EXEC)
2016 av |= DIR__SEARCH;
2017 if (mask & MAY_WRITE)
2018 av |= DIR__WRITE;
2019 if (mask & MAY_READ)
2020 av |= DIR__READ;
2021 }
2022
2023 return av;
2024}
2025
2026/* Convert a Linux file to an access vector. */
2027static inline u32 file_to_av(struct file *file)
2028{
2029 u32 av = 0;
2030
2031 if (file->f_mode & FMODE_READ)
2032 av |= FILE__READ;
2033 if (file->f_mode & FMODE_WRITE) {
2034 if (file->f_flags & O_APPEND)
2035 av |= FILE__APPEND;
2036 else
2037 av |= FILE__WRITE;
2038 }
2039 if (!av) {
2040 /*
2041 * Special file opened with flags 3 for ioctl-only use.
2042 */
2043 av = FILE__IOCTL;
2044 }
2045
2046 return av;
2047}
2048
2049/*
2050 * Convert a file to an access vector and include the correct
2051 * open permission.
2052 */
2053static inline u32 open_file_to_av(struct file *file)
2054{
2055 u32 av = file_to_av(file);
2056 struct inode *inode = file_inode(file);
2057
2058 if (selinux_policycap_openperm() &&
2059 inode->i_sb->s_magic != SOCKFS_MAGIC)
2060 av |= FILE__OPEN;
2061
2062 return av;
2063}
2064
2065/* Hook functions begin here. */
2066
2067static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2068{
2069 return avc_has_perm(&selinux_state,
2070 current_sid(), task_sid_binder(mgr), SECCLASS_BINDER,
2071 BINDER__SET_CONTEXT_MGR, NULL);
2072}
2073
2074static int selinux_binder_transaction(struct task_struct *from,
2075 struct task_struct *to)
2076{
2077 u32 mysid = current_sid();
2078 u32 fromsid = task_sid_binder(from);
2079 int rc;
2080
2081 if (mysid != fromsid) {
2082 rc = avc_has_perm(&selinux_state,
2083 mysid, fromsid, SECCLASS_BINDER,
2084 BINDER__IMPERSONATE, NULL);
2085 if (rc)
2086 return rc;
2087 }
2088
2089 return avc_has_perm(&selinux_state, fromsid, task_sid_binder(to),
2090 SECCLASS_BINDER, BINDER__CALL, NULL);
2091}
2092
2093static int selinux_binder_transfer_binder(struct task_struct *from,
2094 struct task_struct *to)
2095{
2096 return avc_has_perm(&selinux_state,
2097 task_sid_binder(from), task_sid_binder(to),
2098 SECCLASS_BINDER, BINDER__TRANSFER,
2099 NULL);
2100}
2101
2102static int selinux_binder_transfer_file(struct task_struct *from,
2103 struct task_struct *to,
2104 struct file *file)
2105{
2106 u32 sid = task_sid_binder(to);
2107 struct file_security_struct *fsec = selinux_file(file);
2108 struct dentry *dentry = file->f_path.dentry;
2109 struct inode_security_struct *isec;
2110 struct common_audit_data ad;
2111 int rc;
2112
2113 ad.type = LSM_AUDIT_DATA_PATH;
2114 ad.u.path = file->f_path;
2115
2116 if (sid != fsec->sid) {
2117 rc = avc_has_perm(&selinux_state,
2118 sid, fsec->sid,
2119 SECCLASS_FD,
2120 FD__USE,
2121 &ad);
2122 if (rc)
2123 return rc;
2124 }
2125
2126#ifdef CONFIG_BPF_SYSCALL
2127 rc = bpf_fd_pass(file, sid);
2128 if (rc)
2129 return rc;
2130#endif
2131
2132 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133 return 0;
2134
2135 isec = backing_inode_security(dentry);
2136 return avc_has_perm(&selinux_state,
2137 sid, isec->sid, isec->sclass, file_to_av(file),
2138 &ad);
2139}
2140
2141static int selinux_ptrace_access_check(struct task_struct *child,
2142 unsigned int mode)
2143{
2144 u32 sid = current_sid();
2145 u32 csid = task_sid_obj(child);
2146
2147 if (mode & PTRACE_MODE_READ)
2148 return avc_has_perm(&selinux_state,
2149 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150
2151 return avc_has_perm(&selinux_state,
2152 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157 return avc_has_perm(&selinux_state,
2158 task_sid_obj(parent), task_sid_obj(current),
2159 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2160}
2161
2162static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2163 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2164{
2165 return avc_has_perm(&selinux_state,
2166 current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2167 PROCESS__GETCAP, NULL);
2168}
2169
2170static int selinux_capset(struct cred *new, const struct cred *old,
2171 const kernel_cap_t *effective,
2172 const kernel_cap_t *inheritable,
2173 const kernel_cap_t *permitted)
2174{
2175 return avc_has_perm(&selinux_state,
2176 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2177 PROCESS__SETCAP, NULL);
2178}
2179
2180/*
2181 * (This comment used to live with the selinux_task_setuid hook,
2182 * which was removed).
2183 *
2184 * Since setuid only affects the current process, and since the SELinux
2185 * controls are not based on the Linux identity attributes, SELinux does not
2186 * need to control this operation. However, SELinux does control the use of
2187 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2188 */
2189
2190static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2191 int cap, unsigned int opts)
2192{
2193 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2194}
2195
2196static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2197{
2198 const struct cred *cred = current_cred();
2199 int rc = 0;
2200
2201 if (!sb)
2202 return 0;
2203
2204 switch (cmds) {
2205 case Q_SYNC:
2206 case Q_QUOTAON:
2207 case Q_QUOTAOFF:
2208 case Q_SETINFO:
2209 case Q_SETQUOTA:
2210 case Q_XQUOTAOFF:
2211 case Q_XQUOTAON:
2212 case Q_XSETQLIM:
2213 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2214 break;
2215 case Q_GETFMT:
2216 case Q_GETINFO:
2217 case Q_GETQUOTA:
2218 case Q_XGETQUOTA:
2219 case Q_XGETQSTAT:
2220 case Q_XGETQSTATV:
2221 case Q_XGETNEXTQUOTA:
2222 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2223 break;
2224 default:
2225 rc = 0; /* let the kernel handle invalid cmds */
2226 break;
2227 }
2228 return rc;
2229}
2230
2231static int selinux_quota_on(struct dentry *dentry)
2232{
2233 const struct cred *cred = current_cred();
2234
2235 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2236}
2237
2238static int selinux_syslog(int type)
2239{
2240 switch (type) {
2241 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2242 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2243 return avc_has_perm(&selinux_state,
2244 current_sid(), SECINITSID_KERNEL,
2245 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2246 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2247 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2248 /* Set level of messages printed to console */
2249 case SYSLOG_ACTION_CONSOLE_LEVEL:
2250 return avc_has_perm(&selinux_state,
2251 current_sid(), SECINITSID_KERNEL,
2252 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2253 NULL);
2254 }
2255 /* All other syslog types */
2256 return avc_has_perm(&selinux_state,
2257 current_sid(), SECINITSID_KERNEL,
2258 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2259}
2260
2261/*
2262 * Check that a process has enough memory to allocate a new virtual
2263 * mapping. 0 means there is enough memory for the allocation to
2264 * succeed and -ENOMEM implies there is not.
2265 *
2266 * Do not audit the selinux permission check, as this is applied to all
2267 * processes that allocate mappings.
2268 */
2269static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2270{
2271 int rc, cap_sys_admin = 0;
2272
2273 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2274 CAP_OPT_NOAUDIT, true);
2275 if (rc == 0)
2276 cap_sys_admin = 1;
2277
2278 return cap_sys_admin;
2279}
2280
2281/* binprm security operations */
2282
2283static u32 ptrace_parent_sid(void)
2284{
2285 u32 sid = 0;
2286 struct task_struct *tracer;
2287
2288 rcu_read_lock();
2289 tracer = ptrace_parent(current);
2290 if (tracer)
2291 sid = task_sid_obj(tracer);
2292 rcu_read_unlock();
2293
2294 return sid;
2295}
2296
2297static int check_nnp_nosuid(const struct linux_binprm *bprm,
2298 const struct task_security_struct *old_tsec,
2299 const struct task_security_struct *new_tsec)
2300{
2301 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2302 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2303 int rc;
2304 u32 av;
2305
2306 if (!nnp && !nosuid)
2307 return 0; /* neither NNP nor nosuid */
2308
2309 if (new_tsec->sid == old_tsec->sid)
2310 return 0; /* No change in credentials */
2311
2312 /*
2313 * If the policy enables the nnp_nosuid_transition policy capability,
2314 * then we permit transitions under NNP or nosuid if the
2315 * policy allows the corresponding permission between
2316 * the old and new contexts.
2317 */
2318 if (selinux_policycap_nnp_nosuid_transition()) {
2319 av = 0;
2320 if (nnp)
2321 av |= PROCESS2__NNP_TRANSITION;
2322 if (nosuid)
2323 av |= PROCESS2__NOSUID_TRANSITION;
2324 rc = avc_has_perm(&selinux_state,
2325 old_tsec->sid, new_tsec->sid,
2326 SECCLASS_PROCESS2, av, NULL);
2327 if (!rc)
2328 return 0;
2329 }
2330
2331 /*
2332 * We also permit NNP or nosuid transitions to bounded SIDs,
2333 * i.e. SIDs that are guaranteed to only be allowed a subset
2334 * of the permissions of the current SID.
2335 */
2336 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2337 new_tsec->sid);
2338 if (!rc)
2339 return 0;
2340
2341 /*
2342 * On failure, preserve the errno values for NNP vs nosuid.
2343 * NNP: Operation not permitted for caller.
2344 * nosuid: Permission denied to file.
2345 */
2346 if (nnp)
2347 return -EPERM;
2348 return -EACCES;
2349}
2350
2351static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2352{
2353 const struct task_security_struct *old_tsec;
2354 struct task_security_struct *new_tsec;
2355 struct inode_security_struct *isec;
2356 struct common_audit_data ad;
2357 struct inode *inode = file_inode(bprm->file);
2358 int rc;
2359
2360 /* SELinux context only depends on initial program or script and not
2361 * the script interpreter */
2362
2363 old_tsec = selinux_cred(current_cred());
2364 new_tsec = selinux_cred(bprm->cred);
2365 isec = inode_security(inode);
2366
2367 /* Default to the current task SID. */
2368 new_tsec->sid = old_tsec->sid;
2369 new_tsec->osid = old_tsec->sid;
2370
2371 /* Reset fs, key, and sock SIDs on execve. */
2372 new_tsec->create_sid = 0;
2373 new_tsec->keycreate_sid = 0;
2374 new_tsec->sockcreate_sid = 0;
2375
2376 if (old_tsec->exec_sid) {
2377 new_tsec->sid = old_tsec->exec_sid;
2378 /* Reset exec SID on execve. */
2379 new_tsec->exec_sid = 0;
2380
2381 /* Fail on NNP or nosuid if not an allowed transition. */
2382 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2383 if (rc)
2384 return rc;
2385 } else {
2386 /* Check for a default transition on this program. */
2387 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2388 isec->sid, SECCLASS_PROCESS, NULL,
2389 &new_tsec->sid);
2390 if (rc)
2391 return rc;
2392
2393 /*
2394 * Fallback to old SID on NNP or nosuid if not an allowed
2395 * transition.
2396 */
2397 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2398 if (rc)
2399 new_tsec->sid = old_tsec->sid;
2400 }
2401
2402 ad.type = LSM_AUDIT_DATA_FILE;
2403 ad.u.file = bprm->file;
2404
2405 if (new_tsec->sid == old_tsec->sid) {
2406 rc = avc_has_perm(&selinux_state,
2407 old_tsec->sid, isec->sid,
2408 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2409 if (rc)
2410 return rc;
2411 } else {
2412 /* Check permissions for the transition. */
2413 rc = avc_has_perm(&selinux_state,
2414 old_tsec->sid, new_tsec->sid,
2415 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2416 if (rc)
2417 return rc;
2418
2419 rc = avc_has_perm(&selinux_state,
2420 new_tsec->sid, isec->sid,
2421 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2422 if (rc)
2423 return rc;
2424
2425 /* Check for shared state */
2426 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2427 rc = avc_has_perm(&selinux_state,
2428 old_tsec->sid, new_tsec->sid,
2429 SECCLASS_PROCESS, PROCESS__SHARE,
2430 NULL);
2431 if (rc)
2432 return -EPERM;
2433 }
2434
2435 /* Make sure that anyone attempting to ptrace over a task that
2436 * changes its SID has the appropriate permit */
2437 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2438 u32 ptsid = ptrace_parent_sid();
2439 if (ptsid != 0) {
2440 rc = avc_has_perm(&selinux_state,
2441 ptsid, new_tsec->sid,
2442 SECCLASS_PROCESS,
2443 PROCESS__PTRACE, NULL);
2444 if (rc)
2445 return -EPERM;
2446 }
2447 }
2448
2449 /* Clear any possibly unsafe personality bits on exec: */
2450 bprm->per_clear |= PER_CLEAR_ON_SETID;
2451
2452 /* Enable secure mode for SIDs transitions unless
2453 the noatsecure permission is granted between
2454 the two SIDs, i.e. ahp returns 0. */
2455 rc = avc_has_perm(&selinux_state,
2456 old_tsec->sid, new_tsec->sid,
2457 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2458 NULL);
2459 bprm->secureexec |= !!rc;
2460 }
2461
2462 return 0;
2463}
2464
2465static int match_file(const void *p, struct file *file, unsigned fd)
2466{
2467 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2468}
2469
2470/* Derived from fs/exec.c:flush_old_files. */
2471static inline void flush_unauthorized_files(const struct cred *cred,
2472 struct files_struct *files)
2473{
2474 struct file *file, *devnull = NULL;
2475 struct tty_struct *tty;
2476 int drop_tty = 0;
2477 unsigned n;
2478
2479 tty = get_current_tty();
2480 if (tty) {
2481 spin_lock(&tty->files_lock);
2482 if (!list_empty(&tty->tty_files)) {
2483 struct tty_file_private *file_priv;
2484
2485 /* Revalidate access to controlling tty.
2486 Use file_path_has_perm on the tty path directly
2487 rather than using file_has_perm, as this particular
2488 open file may belong to another process and we are
2489 only interested in the inode-based check here. */
2490 file_priv = list_first_entry(&tty->tty_files,
2491 struct tty_file_private, list);
2492 file = file_priv->file;
2493 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2494 drop_tty = 1;
2495 }
2496 spin_unlock(&tty->files_lock);
2497 tty_kref_put(tty);
2498 }
2499 /* Reset controlling tty. */
2500 if (drop_tty)
2501 no_tty();
2502
2503 /* Revalidate access to inherited open files. */
2504 n = iterate_fd(files, 0, match_file, cred);
2505 if (!n) /* none found? */
2506 return;
2507
2508 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2509 if (IS_ERR(devnull))
2510 devnull = NULL;
2511 /* replace all the matching ones with this */
2512 do {
2513 replace_fd(n - 1, devnull, 0);
2514 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2515 if (devnull)
2516 fput(devnull);
2517}
2518
2519/*
2520 * Prepare a process for imminent new credential changes due to exec
2521 */
2522static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2523{
2524 struct task_security_struct *new_tsec;
2525 struct rlimit *rlim, *initrlim;
2526 int rc, i;
2527
2528 new_tsec = selinux_cred(bprm->cred);
2529 if (new_tsec->sid == new_tsec->osid)
2530 return;
2531
2532 /* Close files for which the new task SID is not authorized. */
2533 flush_unauthorized_files(bprm->cred, current->files);
2534
2535 /* Always clear parent death signal on SID transitions. */
2536 current->pdeath_signal = 0;
2537
2538 /* Check whether the new SID can inherit resource limits from the old
2539 * SID. If not, reset all soft limits to the lower of the current
2540 * task's hard limit and the init task's soft limit.
2541 *
2542 * Note that the setting of hard limits (even to lower them) can be
2543 * controlled by the setrlimit check. The inclusion of the init task's
2544 * soft limit into the computation is to avoid resetting soft limits
2545 * higher than the default soft limit for cases where the default is
2546 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2547 */
2548 rc = avc_has_perm(&selinux_state,
2549 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2550 PROCESS__RLIMITINH, NULL);
2551 if (rc) {
2552 /* protect against do_prlimit() */
2553 task_lock(current);
2554 for (i = 0; i < RLIM_NLIMITS; i++) {
2555 rlim = current->signal->rlim + i;
2556 initrlim = init_task.signal->rlim + i;
2557 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2558 }
2559 task_unlock(current);
2560 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2561 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2562 }
2563}
2564
2565/*
2566 * Clean up the process immediately after the installation of new credentials
2567 * due to exec
2568 */
2569static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2570{
2571 const struct task_security_struct *tsec = selinux_cred(current_cred());
2572 u32 osid, sid;
2573 int rc;
2574
2575 osid = tsec->osid;
2576 sid = tsec->sid;
2577
2578 if (sid == osid)
2579 return;
2580
2581 /* Check whether the new SID can inherit signal state from the old SID.
2582 * If not, clear itimers to avoid subsequent signal generation and
2583 * flush and unblock signals.
2584 *
2585 * This must occur _after_ the task SID has been updated so that any
2586 * kill done after the flush will be checked against the new SID.
2587 */
2588 rc = avc_has_perm(&selinux_state,
2589 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2590 if (rc) {
2591 clear_itimer();
2592
2593 spin_lock_irq(¤t->sighand->siglock);
2594 if (!fatal_signal_pending(current)) {
2595 flush_sigqueue(¤t->pending);
2596 flush_sigqueue(¤t->signal->shared_pending);
2597 flush_signal_handlers(current, 1);
2598 sigemptyset(¤t->blocked);
2599 recalc_sigpending();
2600 }
2601 spin_unlock_irq(¤t->sighand->siglock);
2602 }
2603
2604 /* Wake up the parent if it is waiting so that it can recheck
2605 * wait permission to the new task SID. */
2606 read_lock(&tasklist_lock);
2607 __wake_up_parent(current, current->real_parent);
2608 read_unlock(&tasklist_lock);
2609}
2610
2611/* superblock security operations */
2612
2613static int selinux_sb_alloc_security(struct super_block *sb)
2614{
2615 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2616
2617 mutex_init(&sbsec->lock);
2618 INIT_LIST_HEAD(&sbsec->isec_head);
2619 spin_lock_init(&sbsec->isec_lock);
2620 sbsec->sid = SECINITSID_UNLABELED;
2621 sbsec->def_sid = SECINITSID_FILE;
2622 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2623
2624 return 0;
2625}
2626
2627static inline int opt_len(const char *s)
2628{
2629 bool open_quote = false;
2630 int len;
2631 char c;
2632
2633 for (len = 0; (c = s[len]) != '\0'; len++) {
2634 if (c == '"')
2635 open_quote = !open_quote;
2636 if (c == ',' && !open_quote)
2637 break;
2638 }
2639 return len;
2640}
2641
2642static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2643{
2644 char *from = options;
2645 char *to = options;
2646 bool first = true;
2647 int rc;
2648
2649 while (1) {
2650 int len = opt_len(from);
2651 int token;
2652 char *arg = NULL;
2653
2654 token = match_opt_prefix(from, len, &arg);
2655
2656 if (token != Opt_error) {
2657 char *p, *q;
2658
2659 /* strip quotes */
2660 if (arg) {
2661 for (p = q = arg; p < from + len; p++) {
2662 char c = *p;
2663 if (c != '"')
2664 *q++ = c;
2665 }
2666 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2667 if (!arg) {
2668 rc = -ENOMEM;
2669 goto free_opt;
2670 }
2671 }
2672 rc = selinux_add_opt(token, arg, mnt_opts);
2673 if (unlikely(rc)) {
2674 kfree(arg);
2675 goto free_opt;
2676 }
2677 } else {
2678 if (!first) { // copy with preceding comma
2679 from--;
2680 len++;
2681 }
2682 if (to != from)
2683 memmove(to, from, len);
2684 to += len;
2685 first = false;
2686 }
2687 if (!from[len])
2688 break;
2689 from += len + 1;
2690 }
2691 *to = '\0';
2692 return 0;
2693
2694free_opt:
2695 if (*mnt_opts) {
2696 selinux_free_mnt_opts(*mnt_opts);
2697 *mnt_opts = NULL;
2698 }
2699 return rc;
2700}
2701
2702static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2703{
2704 struct selinux_mnt_opts *opts = mnt_opts;
2705 struct superblock_security_struct *sbsec = sb->s_security;
2706 u32 sid;
2707 int rc;
2708
2709 /*
2710 * Superblock not initialized (i.e. no options) - reject if any
2711 * options specified, otherwise accept.
2712 */
2713 if (!(sbsec->flags & SE_SBINITIALIZED))
2714 return opts ? 1 : 0;
2715
2716 /*
2717 * Superblock initialized and no options specified - reject if
2718 * superblock has any options set, otherwise accept.
2719 */
2720 if (!opts)
2721 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2722
2723 if (opts->fscontext) {
2724 rc = parse_sid(sb, opts->fscontext, &sid);
2725 if (rc)
2726 return 1;
2727 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2728 return 1;
2729 }
2730 if (opts->context) {
2731 rc = parse_sid(sb, opts->context, &sid);
2732 if (rc)
2733 return 1;
2734 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2735 return 1;
2736 }
2737 if (opts->rootcontext) {
2738 struct inode_security_struct *root_isec;
2739
2740 root_isec = backing_inode_security(sb->s_root);
2741 rc = parse_sid(sb, opts->rootcontext, &sid);
2742 if (rc)
2743 return 1;
2744 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2745 return 1;
2746 }
2747 if (opts->defcontext) {
2748 rc = parse_sid(sb, opts->defcontext, &sid);
2749 if (rc)
2750 return 1;
2751 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2752 return 1;
2753 }
2754 return 0;
2755}
2756
2757static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2758{
2759 struct selinux_mnt_opts *opts = mnt_opts;
2760 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2761 u32 sid;
2762 int rc;
2763
2764 if (!(sbsec->flags & SE_SBINITIALIZED))
2765 return 0;
2766
2767 if (!opts)
2768 return 0;
2769
2770 if (opts->fscontext) {
2771 rc = parse_sid(sb, opts->fscontext, &sid);
2772 if (rc)
2773 return rc;
2774 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2775 goto out_bad_option;
2776 }
2777 if (opts->context) {
2778 rc = parse_sid(sb, opts->context, &sid);
2779 if (rc)
2780 return rc;
2781 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2782 goto out_bad_option;
2783 }
2784 if (opts->rootcontext) {
2785 struct inode_security_struct *root_isec;
2786 root_isec = backing_inode_security(sb->s_root);
2787 rc = parse_sid(sb, opts->rootcontext, &sid);
2788 if (rc)
2789 return rc;
2790 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2791 goto out_bad_option;
2792 }
2793 if (opts->defcontext) {
2794 rc = parse_sid(sb, opts->defcontext, &sid);
2795 if (rc)
2796 return rc;
2797 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2798 goto out_bad_option;
2799 }
2800 return 0;
2801
2802out_bad_option:
2803 pr_warn("SELinux: unable to change security options "
2804 "during remount (dev %s, type=%s)\n", sb->s_id,
2805 sb->s_type->name);
2806 return -EINVAL;
2807}
2808
2809static int selinux_sb_kern_mount(struct super_block *sb)
2810{
2811 const struct cred *cred = current_cred();
2812 struct common_audit_data ad;
2813
2814 ad.type = LSM_AUDIT_DATA_DENTRY;
2815 ad.u.dentry = sb->s_root;
2816 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2817}
2818
2819static int selinux_sb_statfs(struct dentry *dentry)
2820{
2821 const struct cred *cred = current_cred();
2822 struct common_audit_data ad;
2823
2824 ad.type = LSM_AUDIT_DATA_DENTRY;
2825 ad.u.dentry = dentry->d_sb->s_root;
2826 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2827}
2828
2829static int selinux_mount(const char *dev_name,
2830 const struct path *path,
2831 const char *type,
2832 unsigned long flags,
2833 void *data)
2834{
2835 const struct cred *cred = current_cred();
2836
2837 if (flags & MS_REMOUNT)
2838 return superblock_has_perm(cred, path->dentry->d_sb,
2839 FILESYSTEM__REMOUNT, NULL);
2840 else
2841 return path_has_perm(cred, path, FILE__MOUNTON);
2842}
2843
2844static int selinux_move_mount(const struct path *from_path,
2845 const struct path *to_path)
2846{
2847 const struct cred *cred = current_cred();
2848
2849 return path_has_perm(cred, to_path, FILE__MOUNTON);
2850}
2851
2852static int selinux_umount(struct vfsmount *mnt, int flags)
2853{
2854 const struct cred *cred = current_cred();
2855
2856 return superblock_has_perm(cred, mnt->mnt_sb,
2857 FILESYSTEM__UNMOUNT, NULL);
2858}
2859
2860static int selinux_fs_context_dup(struct fs_context *fc,
2861 struct fs_context *src_fc)
2862{
2863 const struct selinux_mnt_opts *src = src_fc->security;
2864 struct selinux_mnt_opts *opts;
2865
2866 if (!src)
2867 return 0;
2868
2869 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2870 if (!fc->security)
2871 return -ENOMEM;
2872
2873 opts = fc->security;
2874
2875 if (src->fscontext) {
2876 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2877 if (!opts->fscontext)
2878 return -ENOMEM;
2879 }
2880 if (src->context) {
2881 opts->context = kstrdup(src->context, GFP_KERNEL);
2882 if (!opts->context)
2883 return -ENOMEM;
2884 }
2885 if (src->rootcontext) {
2886 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2887 if (!opts->rootcontext)
2888 return -ENOMEM;
2889 }
2890 if (src->defcontext) {
2891 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2892 if (!opts->defcontext)
2893 return -ENOMEM;
2894 }
2895 return 0;
2896}
2897
2898static const struct fs_parameter_spec selinux_fs_parameters[] = {
2899 fsparam_string(CONTEXT_STR, Opt_context),
2900 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2901 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2902 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2903 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2904 {}
2905};
2906
2907static int selinux_fs_context_parse_param(struct fs_context *fc,
2908 struct fs_parameter *param)
2909{
2910 struct fs_parse_result result;
2911 int opt, rc;
2912
2913 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2914 if (opt < 0)
2915 return opt;
2916
2917 rc = selinux_add_opt(opt, param->string, &fc->security);
2918 if (!rc) {
2919 param->string = NULL;
2920 rc = 1;
2921 }
2922 return rc;
2923}
2924
2925/* inode security operations */
2926
2927static int selinux_inode_alloc_security(struct inode *inode)
2928{
2929 struct inode_security_struct *isec = selinux_inode(inode);
2930 u32 sid = current_sid();
2931
2932 spin_lock_init(&isec->lock);
2933 INIT_LIST_HEAD(&isec->list);
2934 isec->inode = inode;
2935 isec->sid = SECINITSID_UNLABELED;
2936 isec->sclass = SECCLASS_FILE;
2937 isec->task_sid = sid;
2938 isec->initialized = LABEL_INVALID;
2939
2940 return 0;
2941}
2942
2943static void selinux_inode_free_security(struct inode *inode)
2944{
2945 inode_free_security(inode);
2946}
2947
2948static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2949 const struct qstr *name, void **ctx,
2950 u32 *ctxlen)
2951{
2952 u32 newsid;
2953 int rc;
2954
2955 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2956 d_inode(dentry->d_parent), name,
2957 inode_mode_to_security_class(mode),
2958 &newsid);
2959 if (rc)
2960 return rc;
2961
2962 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2963 ctxlen);
2964}
2965
2966static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2967 struct qstr *name,
2968 const struct cred *old,
2969 struct cred *new)
2970{
2971 u32 newsid;
2972 int rc;
2973 struct task_security_struct *tsec;
2974
2975 rc = selinux_determine_inode_label(selinux_cred(old),
2976 d_inode(dentry->d_parent), name,
2977 inode_mode_to_security_class(mode),
2978 &newsid);
2979 if (rc)
2980 return rc;
2981
2982 tsec = selinux_cred(new);
2983 tsec->create_sid = newsid;
2984 return 0;
2985}
2986
2987static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2988 const struct qstr *qstr,
2989 const char **name,
2990 void **value, size_t *len)
2991{
2992 const struct task_security_struct *tsec = selinux_cred(current_cred());
2993 struct superblock_security_struct *sbsec;
2994 u32 newsid, clen;
2995 int rc;
2996 char *context;
2997
2998 sbsec = selinux_superblock(dir->i_sb);
2999
3000 newsid = tsec->create_sid;
3001
3002 rc = selinux_determine_inode_label(tsec, dir, qstr,
3003 inode_mode_to_security_class(inode->i_mode),
3004 &newsid);
3005 if (rc)
3006 return rc;
3007
3008 /* Possibly defer initialization to selinux_complete_init. */
3009 if (sbsec->flags & SE_SBINITIALIZED) {
3010 struct inode_security_struct *isec = selinux_inode(inode);
3011 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3012 isec->sid = newsid;
3013 isec->initialized = LABEL_INITIALIZED;
3014 }
3015
3016 if (!selinux_initialized(&selinux_state) ||
3017 !(sbsec->flags & SBLABEL_MNT))
3018 return -EOPNOTSUPP;
3019
3020 if (name)
3021 *name = XATTR_SELINUX_SUFFIX;
3022
3023 if (value && len) {
3024 rc = security_sid_to_context_force(&selinux_state, newsid,
3025 &context, &clen);
3026 if (rc)
3027 return rc;
3028 *value = context;
3029 *len = clen;
3030 }
3031
3032 return 0;
3033}
3034
3035static int selinux_inode_init_security_anon(struct inode *inode,
3036 const struct qstr *name,
3037 const struct inode *context_inode)
3038{
3039 const struct task_security_struct *tsec = selinux_cred(current_cred());
3040 struct common_audit_data ad;
3041 struct inode_security_struct *isec;
3042 int rc;
3043
3044 if (unlikely(!selinux_initialized(&selinux_state)))
3045 return 0;
3046
3047 isec = selinux_inode(inode);
3048
3049 /*
3050 * We only get here once per ephemeral inode. The inode has
3051 * been initialized via inode_alloc_security but is otherwise
3052 * untouched.
3053 */
3054
3055 if (context_inode) {
3056 struct inode_security_struct *context_isec =
3057 selinux_inode(context_inode);
3058 if (context_isec->initialized != LABEL_INITIALIZED) {
3059 pr_err("SELinux: context_inode is not initialized");
3060 return -EACCES;
3061 }
3062
3063 isec->sclass = context_isec->sclass;
3064 isec->sid = context_isec->sid;
3065 } else {
3066 isec->sclass = SECCLASS_ANON_INODE;
3067 rc = security_transition_sid(
3068 &selinux_state, tsec->sid, tsec->sid,
3069 isec->sclass, name, &isec->sid);
3070 if (rc)
3071 return rc;
3072 }
3073
3074 isec->initialized = LABEL_INITIALIZED;
3075 /*
3076 * Now that we've initialized security, check whether we're
3077 * allowed to actually create this type of anonymous inode.
3078 */
3079
3080 ad.type = LSM_AUDIT_DATA_INODE;
3081 ad.u.inode = inode;
3082
3083 return avc_has_perm(&selinux_state,
3084 tsec->sid,
3085 isec->sid,
3086 isec->sclass,
3087 FILE__CREATE,
3088 &ad);
3089}
3090
3091static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3092{
3093 return may_create(dir, dentry, SECCLASS_FILE);
3094}
3095
3096static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3097{
3098 return may_link(dir, old_dentry, MAY_LINK);
3099}
3100
3101static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3102{
3103 return may_link(dir, dentry, MAY_UNLINK);
3104}
3105
3106static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3107{
3108 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3109}
3110
3111static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3112{
3113 return may_create(dir, dentry, SECCLASS_DIR);
3114}
3115
3116static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3117{
3118 return may_link(dir, dentry, MAY_RMDIR);
3119}
3120
3121static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3122{
3123 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3124}
3125
3126static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3127 struct inode *new_inode, struct dentry *new_dentry)
3128{
3129 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3130}
3131
3132static int selinux_inode_readlink(struct dentry *dentry)
3133{
3134 const struct cred *cred = current_cred();
3135
3136 return dentry_has_perm(cred, dentry, FILE__READ);
3137}
3138
3139static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3140 bool rcu)
3141{
3142 const struct cred *cred = current_cred();
3143 struct common_audit_data ad;
3144 struct inode_security_struct *isec;
3145 u32 sid;
3146
3147 validate_creds(cred);
3148
3149 ad.type = LSM_AUDIT_DATA_DENTRY;
3150 ad.u.dentry = dentry;
3151 sid = cred_sid(cred);
3152 isec = inode_security_rcu(inode, rcu);
3153 if (IS_ERR(isec))
3154 return PTR_ERR(isec);
3155
3156 return avc_has_perm(&selinux_state,
3157 sid, isec->sid, isec->sclass, FILE__READ, &ad);
3158}
3159
3160static noinline int audit_inode_permission(struct inode *inode,
3161 u32 perms, u32 audited, u32 denied,
3162 int result)
3163{
3164 struct common_audit_data ad;
3165 struct inode_security_struct *isec = selinux_inode(inode);
3166
3167 ad.type = LSM_AUDIT_DATA_INODE;
3168 ad.u.inode = inode;
3169
3170 return slow_avc_audit(&selinux_state,
3171 current_sid(), isec->sid, isec->sclass, perms,
3172 audited, denied, result, &ad);
3173}
3174
3175static int selinux_inode_permission(struct inode *inode, int mask)
3176{
3177 const struct cred *cred = current_cred();
3178 u32 perms;
3179 bool from_access;
3180 bool no_block = mask & MAY_NOT_BLOCK;
3181 struct inode_security_struct *isec;
3182 u32 sid;
3183 struct av_decision avd;
3184 int rc, rc2;
3185 u32 audited, denied;
3186
3187 from_access = mask & MAY_ACCESS;
3188 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3189
3190 /* No permission to check. Existence test. */
3191 if (!mask)
3192 return 0;
3193
3194 validate_creds(cred);
3195
3196 if (unlikely(IS_PRIVATE(inode)))
3197 return 0;
3198
3199 perms = file_mask_to_av(inode->i_mode, mask);
3200
3201 sid = cred_sid(cred);
3202 isec = inode_security_rcu(inode, no_block);
3203 if (IS_ERR(isec))
3204 return PTR_ERR(isec);
3205
3206 rc = avc_has_perm_noaudit(&selinux_state,
3207 sid, isec->sid, isec->sclass, perms, 0,
3208 &avd);
3209 audited = avc_audit_required(perms, &avd, rc,
3210 from_access ? FILE__AUDIT_ACCESS : 0,
3211 &denied);
3212 if (likely(!audited))
3213 return rc;
3214
3215 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3216 if (rc2)
3217 return rc2;
3218 return rc;
3219}
3220
3221static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3222{
3223 const struct cred *cred = current_cred();
3224 struct inode *inode = d_backing_inode(dentry);
3225 unsigned int ia_valid = iattr->ia_valid;
3226 __u32 av = FILE__WRITE;
3227
3228 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3229 if (ia_valid & ATTR_FORCE) {
3230 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3231 ATTR_FORCE);
3232 if (!ia_valid)
3233 return 0;
3234 }
3235
3236 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3237 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3238 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3239
3240 if (selinux_policycap_openperm() &&
3241 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3242 (ia_valid & ATTR_SIZE) &&
3243 !(ia_valid & ATTR_FILE))
3244 av |= FILE__OPEN;
3245
3246 return dentry_has_perm(cred, dentry, av);
3247}
3248
3249static int selinux_inode_getattr(const struct path *path)
3250{
3251 return path_has_perm(current_cred(), path, FILE__GETATTR);
3252}
3253
3254static bool has_cap_mac_admin(bool audit)
3255{
3256 const struct cred *cred = current_cred();
3257 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3258
3259 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3260 return false;
3261 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3262 return false;
3263 return true;
3264}
3265
3266static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3267 struct dentry *dentry, const char *name,
3268 const void *value, size_t size, int flags)
3269{
3270 struct inode *inode = d_backing_inode(dentry);
3271 struct inode_security_struct *isec;
3272 struct superblock_security_struct *sbsec;
3273 struct common_audit_data ad;
3274 u32 newsid, sid = current_sid();
3275 int rc = 0;
3276
3277 if (strcmp(name, XATTR_NAME_SELINUX)) {
3278 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3279 if (rc)
3280 return rc;
3281
3282 /* Not an attribute we recognize, so just check the
3283 ordinary setattr permission. */
3284 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3285 }
3286
3287 if (!selinux_initialized(&selinux_state))
3288 return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3289
3290 sbsec = selinux_superblock(inode->i_sb);
3291 if (!(sbsec->flags & SBLABEL_MNT))
3292 return -EOPNOTSUPP;
3293
3294 if (!inode_owner_or_capable(mnt_userns, inode))
3295 return -EPERM;
3296
3297 ad.type = LSM_AUDIT_DATA_DENTRY;
3298 ad.u.dentry = dentry;
3299
3300 isec = backing_inode_security(dentry);
3301 rc = avc_has_perm(&selinux_state,
3302 sid, isec->sid, isec->sclass,
3303 FILE__RELABELFROM, &ad);
3304 if (rc)
3305 return rc;
3306
3307 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3308 GFP_KERNEL);
3309 if (rc == -EINVAL) {
3310 if (!has_cap_mac_admin(true)) {
3311 struct audit_buffer *ab;
3312 size_t audit_size;
3313
3314 /* We strip a nul only if it is at the end, otherwise the
3315 * context contains a nul and we should audit that */
3316 if (value) {
3317 const char *str = value;
3318
3319 if (str[size - 1] == '\0')
3320 audit_size = size - 1;
3321 else
3322 audit_size = size;
3323 } else {
3324 audit_size = 0;
3325 }
3326 ab = audit_log_start(audit_context(),
3327 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3328 audit_log_format(ab, "op=setxattr invalid_context=");
3329 audit_log_n_untrustedstring(ab, value, audit_size);
3330 audit_log_end(ab);
3331
3332 return rc;
3333 }
3334 rc = security_context_to_sid_force(&selinux_state, value,
3335 size, &newsid);
3336 }
3337 if (rc)
3338 return rc;
3339
3340 rc = avc_has_perm(&selinux_state,
3341 sid, newsid, isec->sclass,
3342 FILE__RELABELTO, &ad);
3343 if (rc)
3344 return rc;
3345
3346 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3347 sid, isec->sclass);
3348 if (rc)
3349 return rc;
3350
3351 return avc_has_perm(&selinux_state,
3352 newsid,
3353 sbsec->sid,
3354 SECCLASS_FILESYSTEM,
3355 FILESYSTEM__ASSOCIATE,
3356 &ad);
3357}
3358
3359static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3360 const void *value, size_t size,
3361 int flags)
3362{
3363 struct inode *inode = d_backing_inode(dentry);
3364 struct inode_security_struct *isec;
3365 u32 newsid;
3366 int rc;
3367
3368 if (strcmp(name, XATTR_NAME_SELINUX)) {
3369 /* Not an attribute we recognize, so nothing to do. */
3370 return;
3371 }
3372
3373 if (!selinux_initialized(&selinux_state)) {
3374 /* If we haven't even been initialized, then we can't validate
3375 * against a policy, so leave the label as invalid. It may
3376 * resolve to a valid label on the next revalidation try if
3377 * we've since initialized.
3378 */
3379 return;
3380 }
3381
3382 rc = security_context_to_sid_force(&selinux_state, value, size,
3383 &newsid);
3384 if (rc) {
3385 pr_err("SELinux: unable to map context to SID"
3386 "for (%s, %lu), rc=%d\n",
3387 inode->i_sb->s_id, inode->i_ino, -rc);
3388 return;
3389 }
3390
3391 isec = backing_inode_security(dentry);
3392 spin_lock(&isec->lock);
3393 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3394 isec->sid = newsid;
3395 isec->initialized = LABEL_INITIALIZED;
3396 spin_unlock(&isec->lock);
3397
3398 return;
3399}
3400
3401static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3402{
3403 const struct cred *cred = current_cred();
3404
3405 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3406}
3407
3408static int selinux_inode_listxattr(struct dentry *dentry)
3409{
3410 const struct cred *cred = current_cred();
3411
3412 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3413}
3414
3415static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3416 struct dentry *dentry, const char *name)
3417{
3418 if (strcmp(name, XATTR_NAME_SELINUX)) {
3419 int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3420 if (rc)
3421 return rc;
3422
3423 /* Not an attribute we recognize, so just check the
3424 ordinary setattr permission. */
3425 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3426 }
3427
3428 if (!selinux_initialized(&selinux_state))
3429 return 0;
3430
3431 /* No one is allowed to remove a SELinux security label.
3432 You can change the label, but all data must be labeled. */
3433 return -EACCES;
3434}
3435
3436static int selinux_path_notify(const struct path *path, u64 mask,
3437 unsigned int obj_type)
3438{
3439 int ret;
3440 u32 perm;
3441
3442 struct common_audit_data ad;
3443
3444 ad.type = LSM_AUDIT_DATA_PATH;
3445 ad.u.path = *path;
3446
3447 /*
3448 * Set permission needed based on the type of mark being set.
3449 * Performs an additional check for sb watches.
3450 */
3451 switch (obj_type) {
3452 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3453 perm = FILE__WATCH_MOUNT;
3454 break;
3455 case FSNOTIFY_OBJ_TYPE_SB:
3456 perm = FILE__WATCH_SB;
3457 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3458 FILESYSTEM__WATCH, &ad);
3459 if (ret)
3460 return ret;
3461 break;
3462 case FSNOTIFY_OBJ_TYPE_INODE:
3463 perm = FILE__WATCH;
3464 break;
3465 default:
3466 return -EINVAL;
3467 }
3468
3469 /* blocking watches require the file:watch_with_perm permission */
3470 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3471 perm |= FILE__WATCH_WITH_PERM;
3472
3473 /* watches on read-like events need the file:watch_reads permission */
3474 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3475 perm |= FILE__WATCH_READS;
3476
3477 return path_has_perm(current_cred(), path, perm);
3478}
3479
3480/*
3481 * Copy the inode security context value to the user.
3482 *
3483 * Permission check is handled by selinux_inode_getxattr hook.
3484 */
3485static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3486 struct inode *inode, const char *name,
3487 void **buffer, bool alloc)
3488{
3489 u32 size;
3490 int error;
3491 char *context = NULL;
3492 struct inode_security_struct *isec;
3493
3494 /*
3495 * If we're not initialized yet, then we can't validate contexts, so
3496 * just let vfs_getxattr fall back to using the on-disk xattr.
3497 */
3498 if (!selinux_initialized(&selinux_state) ||
3499 strcmp(name, XATTR_SELINUX_SUFFIX))
3500 return -EOPNOTSUPP;
3501
3502 /*
3503 * If the caller has CAP_MAC_ADMIN, then get the raw context
3504 * value even if it is not defined by current policy; otherwise,
3505 * use the in-core value under current policy.
3506 * Use the non-auditing forms of the permission checks since
3507 * getxattr may be called by unprivileged processes commonly
3508 * and lack of permission just means that we fall back to the
3509 * in-core context value, not a denial.
3510 */
3511 isec = inode_security(inode);
3512 if (has_cap_mac_admin(false))
3513 error = security_sid_to_context_force(&selinux_state,
3514 isec->sid, &context,
3515 &size);
3516 else
3517 error = security_sid_to_context(&selinux_state, isec->sid,
3518 &context, &size);
3519 if (error)
3520 return error;
3521 error = size;
3522 if (alloc) {
3523 *buffer = context;
3524 goto out_nofree;
3525 }
3526 kfree(context);
3527out_nofree:
3528 return error;
3529}
3530
3531static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3532 const void *value, size_t size, int flags)
3533{
3534 struct inode_security_struct *isec = inode_security_novalidate(inode);
3535 struct superblock_security_struct *sbsec;
3536 u32 newsid;
3537 int rc;
3538
3539 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3540 return -EOPNOTSUPP;
3541
3542 sbsec = selinux_superblock(inode->i_sb);
3543 if (!(sbsec->flags & SBLABEL_MNT))
3544 return -EOPNOTSUPP;
3545
3546 if (!value || !size)
3547 return -EACCES;
3548
3549 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3550 GFP_KERNEL);
3551 if (rc)
3552 return rc;
3553
3554 spin_lock(&isec->lock);
3555 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3556 isec->sid = newsid;
3557 isec->initialized = LABEL_INITIALIZED;
3558 spin_unlock(&isec->lock);
3559 return 0;
3560}
3561
3562static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3563{
3564 const int len = sizeof(XATTR_NAME_SELINUX);
3565
3566 if (!selinux_initialized(&selinux_state))
3567 return 0;
3568
3569 if (buffer && len <= buffer_size)
3570 memcpy(buffer, XATTR_NAME_SELINUX, len);
3571 return len;
3572}
3573
3574static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3575{
3576 struct inode_security_struct *isec = inode_security_novalidate(inode);
3577 *secid = isec->sid;
3578}
3579
3580static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3581{
3582 u32 sid;
3583 struct task_security_struct *tsec;
3584 struct cred *new_creds = *new;
3585
3586 if (new_creds == NULL) {
3587 new_creds = prepare_creds();
3588 if (!new_creds)
3589 return -ENOMEM;
3590 }
3591
3592 tsec = selinux_cred(new_creds);
3593 /* Get label from overlay inode and set it in create_sid */
3594 selinux_inode_getsecid(d_inode(src), &sid);
3595 tsec->create_sid = sid;
3596 *new = new_creds;
3597 return 0;
3598}
3599
3600static int selinux_inode_copy_up_xattr(const char *name)
3601{
3602 /* The copy_up hook above sets the initial context on an inode, but we
3603 * don't then want to overwrite it by blindly copying all the lower
3604 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3605 */
3606 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3607 return 1; /* Discard */
3608 /*
3609 * Any other attribute apart from SELINUX is not claimed, supported
3610 * by selinux.
3611 */
3612 return -EOPNOTSUPP;
3613}
3614
3615/* kernfs node operations */
3616
3617static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3618 struct kernfs_node *kn)
3619{
3620 const struct task_security_struct *tsec = selinux_cred(current_cred());
3621 u32 parent_sid, newsid, clen;
3622 int rc;
3623 char *context;
3624
3625 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3626 if (rc == -ENODATA)
3627 return 0;
3628 else if (rc < 0)
3629 return rc;
3630
3631 clen = (u32)rc;
3632 context = kmalloc(clen, GFP_KERNEL);
3633 if (!context)
3634 return -ENOMEM;
3635
3636 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3637 if (rc < 0) {
3638 kfree(context);
3639 return rc;
3640 }
3641
3642 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3643 GFP_KERNEL);
3644 kfree(context);
3645 if (rc)
3646 return rc;
3647
3648 if (tsec->create_sid) {
3649 newsid = tsec->create_sid;
3650 } else {
3651 u16 secclass = inode_mode_to_security_class(kn->mode);
3652 struct qstr q;
3653
3654 q.name = kn->name;
3655 q.hash_len = hashlen_string(kn_dir, kn->name);
3656
3657 rc = security_transition_sid(&selinux_state, tsec->sid,
3658 parent_sid, secclass, &q,
3659 &newsid);
3660 if (rc)
3661 return rc;
3662 }
3663
3664 rc = security_sid_to_context_force(&selinux_state, newsid,
3665 &context, &clen);
3666 if (rc)
3667 return rc;
3668
3669 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3670 XATTR_CREATE);
3671 kfree(context);
3672 return rc;
3673}
3674
3675
3676/* file security operations */
3677
3678static int selinux_revalidate_file_permission(struct file *file, int mask)
3679{
3680 const struct cred *cred = current_cred();
3681 struct inode *inode = file_inode(file);
3682
3683 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3684 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3685 mask |= MAY_APPEND;
3686
3687 return file_has_perm(cred, file,
3688 file_mask_to_av(inode->i_mode, mask));
3689}
3690
3691static int selinux_file_permission(struct file *file, int mask)
3692{
3693 struct inode *inode = file_inode(file);
3694 struct file_security_struct *fsec = selinux_file(file);
3695 struct inode_security_struct *isec;
3696 u32 sid = current_sid();
3697
3698 if (!mask)
3699 /* No permission to check. Existence test. */
3700 return 0;
3701
3702 isec = inode_security(inode);
3703 if (sid == fsec->sid && fsec->isid == isec->sid &&
3704 fsec->pseqno == avc_policy_seqno(&selinux_state))
3705 /* No change since file_open check. */
3706 return 0;
3707
3708 return selinux_revalidate_file_permission(file, mask);
3709}
3710
3711static int selinux_file_alloc_security(struct file *file)
3712{
3713 struct file_security_struct *fsec = selinux_file(file);
3714 u32 sid = current_sid();
3715
3716 fsec->sid = sid;
3717 fsec->fown_sid = sid;
3718
3719 return 0;
3720}
3721
3722/*
3723 * Check whether a task has the ioctl permission and cmd
3724 * operation to an inode.
3725 */
3726static int ioctl_has_perm(const struct cred *cred, struct file *file,
3727 u32 requested, u16 cmd)
3728{
3729 struct common_audit_data ad;
3730 struct file_security_struct *fsec = selinux_file(file);
3731 struct inode *inode = file_inode(file);
3732 struct inode_security_struct *isec;
3733 struct lsm_ioctlop_audit ioctl;
3734 u32 ssid = cred_sid(cred);
3735 int rc;
3736 u8 driver = cmd >> 8;
3737 u8 xperm = cmd & 0xff;
3738
3739 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3740 ad.u.op = &ioctl;
3741 ad.u.op->cmd = cmd;
3742 ad.u.op->path = file->f_path;
3743
3744 if (ssid != fsec->sid) {
3745 rc = avc_has_perm(&selinux_state,
3746 ssid, fsec->sid,
3747 SECCLASS_FD,
3748 FD__USE,
3749 &ad);
3750 if (rc)
3751 goto out;
3752 }
3753
3754 if (unlikely(IS_PRIVATE(inode)))
3755 return 0;
3756
3757 isec = inode_security(inode);
3758 rc = avc_has_extended_perms(&selinux_state,
3759 ssid, isec->sid, isec->sclass,
3760 requested, driver, xperm, &ad);
3761out:
3762 return rc;
3763}
3764
3765static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3766 unsigned long arg)
3767{
3768 const struct cred *cred = current_cred();
3769 int error = 0;
3770
3771 switch (cmd) {
3772 case FIONREAD:
3773 case FIBMAP:
3774 case FIGETBSZ:
3775 case FS_IOC_GETFLAGS:
3776 case FS_IOC_GETVERSION:
3777 error = file_has_perm(cred, file, FILE__GETATTR);
3778 break;
3779
3780 case FS_IOC_SETFLAGS:
3781 case FS_IOC_SETVERSION:
3782 error = file_has_perm(cred, file, FILE__SETATTR);
3783 break;
3784
3785 /* sys_ioctl() checks */
3786 case FIONBIO:
3787 case FIOASYNC:
3788 error = file_has_perm(cred, file, 0);
3789 break;
3790
3791 case KDSKBENT:
3792 case KDSKBSENT:
3793 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3794 CAP_OPT_NONE, true);
3795 break;
3796
3797 /* default case assumes that the command will go
3798 * to the file's ioctl() function.
3799 */
3800 default:
3801 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3802 }
3803 return error;
3804}
3805
3806static int default_noexec __ro_after_init;
3807
3808static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3809{
3810 const struct cred *cred = current_cred();
3811 u32 sid = cred_sid(cred);
3812 int rc = 0;
3813
3814 if (default_noexec &&
3815 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3816 (!shared && (prot & PROT_WRITE)))) {
3817 /*
3818 * We are making executable an anonymous mapping or a
3819 * private file mapping that will also be writable.
3820 * This has an additional check.
3821 */
3822 rc = avc_has_perm(&selinux_state,
3823 sid, sid, SECCLASS_PROCESS,
3824 PROCESS__EXECMEM, NULL);
3825 if (rc)
3826 goto error;
3827 }
3828
3829 if (file) {
3830 /* read access is always possible with a mapping */
3831 u32 av = FILE__READ;
3832
3833 /* write access only matters if the mapping is shared */
3834 if (shared && (prot & PROT_WRITE))
3835 av |= FILE__WRITE;
3836
3837 if (prot & PROT_EXEC)
3838 av |= FILE__EXECUTE;
3839
3840 return file_has_perm(cred, file, av);
3841 }
3842
3843error:
3844 return rc;
3845}
3846
3847static int selinux_mmap_addr(unsigned long addr)
3848{
3849 int rc = 0;
3850
3851 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3852 u32 sid = current_sid();
3853 rc = avc_has_perm(&selinux_state,
3854 sid, sid, SECCLASS_MEMPROTECT,
3855 MEMPROTECT__MMAP_ZERO, NULL);
3856 }
3857
3858 return rc;
3859}
3860
3861static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3862 unsigned long prot, unsigned long flags)
3863{
3864 struct common_audit_data ad;
3865 int rc;
3866
3867 if (file) {
3868 ad.type = LSM_AUDIT_DATA_FILE;
3869 ad.u.file = file;
3870 rc = inode_has_perm(current_cred(), file_inode(file),
3871 FILE__MAP, &ad);
3872 if (rc)
3873 return rc;
3874 }
3875
3876 if (checkreqprot_get(&selinux_state))
3877 prot = reqprot;
3878
3879 return file_map_prot_check(file, prot,
3880 (flags & MAP_TYPE) == MAP_SHARED);
3881}
3882
3883static int selinux_file_mprotect(struct vm_area_struct *vma,
3884 unsigned long reqprot,
3885 unsigned long prot)
3886{
3887 const struct cred *cred = current_cred();
3888 u32 sid = cred_sid(cred);
3889
3890 if (checkreqprot_get(&selinux_state))
3891 prot = reqprot;
3892
3893 if (default_noexec &&
3894 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3895 int rc = 0;
3896 if (vma->vm_start >= vma->vm_mm->start_brk &&
3897 vma->vm_end <= vma->vm_mm->brk) {
3898 rc = avc_has_perm(&selinux_state,
3899 sid, sid, SECCLASS_PROCESS,
3900 PROCESS__EXECHEAP, NULL);
3901 } else if (!vma->vm_file &&
3902 ((vma->vm_start <= vma->vm_mm->start_stack &&
3903 vma->vm_end >= vma->vm_mm->start_stack) ||
3904 vma_is_stack_for_current(vma))) {
3905 rc = avc_has_perm(&selinux_state,
3906 sid, sid, SECCLASS_PROCESS,
3907 PROCESS__EXECSTACK, NULL);
3908 } else if (vma->vm_file && vma->anon_vma) {
3909 /*
3910 * We are making executable a file mapping that has
3911 * had some COW done. Since pages might have been
3912 * written, check ability to execute the possibly
3913 * modified content. This typically should only
3914 * occur for text relocations.
3915 */
3916 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3917 }
3918 if (rc)
3919 return rc;
3920 }
3921
3922 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3923}
3924
3925static int selinux_file_lock(struct file *file, unsigned int cmd)
3926{
3927 const struct cred *cred = current_cred();
3928
3929 return file_has_perm(cred, file, FILE__LOCK);
3930}
3931
3932static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3933 unsigned long arg)
3934{
3935 const struct cred *cred = current_cred();
3936 int err = 0;
3937
3938 switch (cmd) {
3939 case F_SETFL:
3940 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3941 err = file_has_perm(cred, file, FILE__WRITE);
3942 break;
3943 }
3944 fallthrough;
3945 case F_SETOWN:
3946 case F_SETSIG:
3947 case F_GETFL:
3948 case F_GETOWN:
3949 case F_GETSIG:
3950 case F_GETOWNER_UIDS:
3951 /* Just check FD__USE permission */
3952 err = file_has_perm(cred, file, 0);
3953 break;
3954 case F_GETLK:
3955 case F_SETLK:
3956 case F_SETLKW:
3957 case F_OFD_GETLK:
3958 case F_OFD_SETLK:
3959 case F_OFD_SETLKW:
3960#if BITS_PER_LONG == 32
3961 case F_GETLK64:
3962 case F_SETLK64:
3963 case F_SETLKW64:
3964#endif
3965 err = file_has_perm(cred, file, FILE__LOCK);
3966 break;
3967 }
3968
3969 return err;
3970}
3971
3972static void selinux_file_set_fowner(struct file *file)
3973{
3974 struct file_security_struct *fsec;
3975
3976 fsec = selinux_file(file);
3977 fsec->fown_sid = current_sid();
3978}
3979
3980static int selinux_file_send_sigiotask(struct task_struct *tsk,
3981 struct fown_struct *fown, int signum)
3982{
3983 struct file *file;
3984 u32 sid = task_sid_obj(tsk);
3985 u32 perm;
3986 struct file_security_struct *fsec;
3987
3988 /* struct fown_struct is never outside the context of a struct file */
3989 file = container_of(fown, struct file, f_owner);
3990
3991 fsec = selinux_file(file);
3992
3993 if (!signum)
3994 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3995 else
3996 perm = signal_to_av(signum);
3997
3998 return avc_has_perm(&selinux_state,
3999 fsec->fown_sid, sid,
4000 SECCLASS_PROCESS, perm, NULL);
4001}
4002
4003static int selinux_file_receive(struct file *file)
4004{
4005 const struct cred *cred = current_cred();
4006
4007 return file_has_perm(cred, file, file_to_av(file));
4008}
4009
4010static int selinux_file_open(struct file *file)
4011{
4012 struct file_security_struct *fsec;
4013 struct inode_security_struct *isec;
4014
4015 fsec = selinux_file(file);
4016 isec = inode_security(file_inode(file));
4017 /*
4018 * Save inode label and policy sequence number
4019 * at open-time so that selinux_file_permission
4020 * can determine whether revalidation is necessary.
4021 * Task label is already saved in the file security
4022 * struct as its SID.
4023 */
4024 fsec->isid = isec->sid;
4025 fsec->pseqno = avc_policy_seqno(&selinux_state);
4026 /*
4027 * Since the inode label or policy seqno may have changed
4028 * between the selinux_inode_permission check and the saving
4029 * of state above, recheck that access is still permitted.
4030 * Otherwise, access might never be revalidated against the
4031 * new inode label or new policy.
4032 * This check is not redundant - do not remove.
4033 */
4034 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
4035}
4036
4037/* task security operations */
4038
4039static int selinux_task_alloc(struct task_struct *task,
4040 unsigned long clone_flags)
4041{
4042 u32 sid = current_sid();
4043
4044 return avc_has_perm(&selinux_state,
4045 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4046}
4047
4048/*
4049 * prepare a new set of credentials for modification
4050 */
4051static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4052 gfp_t gfp)
4053{
4054 const struct task_security_struct *old_tsec = selinux_cred(old);
4055 struct task_security_struct *tsec = selinux_cred(new);
4056
4057 *tsec = *old_tsec;
4058 return 0;
4059}
4060
4061/*
4062 * transfer the SELinux data to a blank set of creds
4063 */
4064static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4065{
4066 const struct task_security_struct *old_tsec = selinux_cred(old);
4067 struct task_security_struct *tsec = selinux_cred(new);
4068
4069 *tsec = *old_tsec;
4070}
4071
4072static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4073{
4074 *secid = cred_sid(c);
4075}
4076
4077/*
4078 * set the security data for a kernel service
4079 * - all the creation contexts are set to unlabelled
4080 */
4081static int selinux_kernel_act_as(struct cred *new, u32 secid)
4082{
4083 struct task_security_struct *tsec = selinux_cred(new);
4084 u32 sid = current_sid();
4085 int ret;
4086
4087 ret = avc_has_perm(&selinux_state,
4088 sid, secid,
4089 SECCLASS_KERNEL_SERVICE,
4090 KERNEL_SERVICE__USE_AS_OVERRIDE,
4091 NULL);
4092 if (ret == 0) {
4093 tsec->sid = secid;
4094 tsec->create_sid = 0;
4095 tsec->keycreate_sid = 0;
4096 tsec->sockcreate_sid = 0;
4097 }
4098 return ret;
4099}
4100
4101/*
4102 * set the file creation context in a security record to the same as the
4103 * objective context of the specified inode
4104 */
4105static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4106{
4107 struct inode_security_struct *isec = inode_security(inode);
4108 struct task_security_struct *tsec = selinux_cred(new);
4109 u32 sid = current_sid();
4110 int ret;
4111
4112 ret = avc_has_perm(&selinux_state,
4113 sid, isec->sid,
4114 SECCLASS_KERNEL_SERVICE,
4115 KERNEL_SERVICE__CREATE_FILES_AS,
4116 NULL);
4117
4118 if (ret == 0)
4119 tsec->create_sid = isec->sid;
4120 return ret;
4121}
4122
4123static int selinux_kernel_module_request(char *kmod_name)
4124{
4125 struct common_audit_data ad;
4126
4127 ad.type = LSM_AUDIT_DATA_KMOD;
4128 ad.u.kmod_name = kmod_name;
4129
4130 return avc_has_perm(&selinux_state,
4131 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4132 SYSTEM__MODULE_REQUEST, &ad);
4133}
4134
4135static int selinux_kernel_module_from_file(struct file *file)
4136{
4137 struct common_audit_data ad;
4138 struct inode_security_struct *isec;
4139 struct file_security_struct *fsec;
4140 u32 sid = current_sid();
4141 int rc;
4142
4143 /* init_module */
4144 if (file == NULL)
4145 return avc_has_perm(&selinux_state,
4146 sid, sid, SECCLASS_SYSTEM,
4147 SYSTEM__MODULE_LOAD, NULL);
4148
4149 /* finit_module */
4150
4151 ad.type = LSM_AUDIT_DATA_FILE;
4152 ad.u.file = file;
4153
4154 fsec = selinux_file(file);
4155 if (sid != fsec->sid) {
4156 rc = avc_has_perm(&selinux_state,
4157 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4158 if (rc)
4159 return rc;
4160 }
4161
4162 isec = inode_security(file_inode(file));
4163 return avc_has_perm(&selinux_state,
4164 sid, isec->sid, SECCLASS_SYSTEM,
4165 SYSTEM__MODULE_LOAD, &ad);
4166}
4167
4168static int selinux_kernel_read_file(struct file *file,
4169 enum kernel_read_file_id id,
4170 bool contents)
4171{
4172 int rc = 0;
4173
4174 switch (id) {
4175 case READING_MODULE:
4176 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4177 break;
4178 default:
4179 break;
4180 }
4181
4182 return rc;
4183}
4184
4185static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4186{
4187 int rc = 0;
4188
4189 switch (id) {
4190 case LOADING_MODULE:
4191 rc = selinux_kernel_module_from_file(NULL);
4192 break;
4193 default:
4194 break;
4195 }
4196
4197 return rc;
4198}
4199
4200static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4201{
4202 return avc_has_perm(&selinux_state,
4203 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204 PROCESS__SETPGID, NULL);
4205}
4206
4207static int selinux_task_getpgid(struct task_struct *p)
4208{
4209 return avc_has_perm(&selinux_state,
4210 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4211 PROCESS__GETPGID, NULL);
4212}
4213
4214static int selinux_task_getsid(struct task_struct *p)
4215{
4216 return avc_has_perm(&selinux_state,
4217 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4218 PROCESS__GETSESSION, NULL);
4219}
4220
4221static void selinux_task_getsecid_subj(struct task_struct *p, u32 *secid)
4222{
4223 *secid = task_sid_subj(p);
4224}
4225
4226static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4227{
4228 *secid = task_sid_obj(p);
4229}
4230
4231static int selinux_task_setnice(struct task_struct *p, int nice)
4232{
4233 return avc_has_perm(&selinux_state,
4234 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4235 PROCESS__SETSCHED, NULL);
4236}
4237
4238static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4239{
4240 return avc_has_perm(&selinux_state,
4241 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4242 PROCESS__SETSCHED, NULL);
4243}
4244
4245static int selinux_task_getioprio(struct task_struct *p)
4246{
4247 return avc_has_perm(&selinux_state,
4248 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4249 PROCESS__GETSCHED, NULL);
4250}
4251
4252static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4253 unsigned int flags)
4254{
4255 u32 av = 0;
4256
4257 if (!flags)
4258 return 0;
4259 if (flags & LSM_PRLIMIT_WRITE)
4260 av |= PROCESS__SETRLIMIT;
4261 if (flags & LSM_PRLIMIT_READ)
4262 av |= PROCESS__GETRLIMIT;
4263 return avc_has_perm(&selinux_state,
4264 cred_sid(cred), cred_sid(tcred),
4265 SECCLASS_PROCESS, av, NULL);
4266}
4267
4268static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4269 struct rlimit *new_rlim)
4270{
4271 struct rlimit *old_rlim = p->signal->rlim + resource;
4272
4273 /* Control the ability to change the hard limit (whether
4274 lowering or raising it), so that the hard limit can
4275 later be used as a safe reset point for the soft limit
4276 upon context transitions. See selinux_bprm_committing_creds. */
4277 if (old_rlim->rlim_max != new_rlim->rlim_max)
4278 return avc_has_perm(&selinux_state,
4279 current_sid(), task_sid_obj(p),
4280 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4281
4282 return 0;
4283}
4284
4285static int selinux_task_setscheduler(struct task_struct *p)
4286{
4287 return avc_has_perm(&selinux_state,
4288 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4289 PROCESS__SETSCHED, NULL);
4290}
4291
4292static int selinux_task_getscheduler(struct task_struct *p)
4293{
4294 return avc_has_perm(&selinux_state,
4295 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4296 PROCESS__GETSCHED, NULL);
4297}
4298
4299static int selinux_task_movememory(struct task_struct *p)
4300{
4301 return avc_has_perm(&selinux_state,
4302 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4303 PROCESS__SETSCHED, NULL);
4304}
4305
4306static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4307 int sig, const struct cred *cred)
4308{
4309 u32 secid;
4310 u32 perm;
4311
4312 if (!sig)
4313 perm = PROCESS__SIGNULL; /* null signal; existence test */
4314 else
4315 perm = signal_to_av(sig);
4316 if (!cred)
4317 secid = current_sid();
4318 else
4319 secid = cred_sid(cred);
4320 return avc_has_perm(&selinux_state,
4321 secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4322}
4323
4324static void selinux_task_to_inode(struct task_struct *p,
4325 struct inode *inode)
4326{
4327 struct inode_security_struct *isec = selinux_inode(inode);
4328 u32 sid = task_sid_obj(p);
4329
4330 spin_lock(&isec->lock);
4331 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4332 isec->sid = sid;
4333 isec->initialized = LABEL_INITIALIZED;
4334 spin_unlock(&isec->lock);
4335}
4336
4337/* Returns error only if unable to parse addresses */
4338static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4339 struct common_audit_data *ad, u8 *proto)
4340{
4341 int offset, ihlen, ret = -EINVAL;
4342 struct iphdr _iph, *ih;
4343
4344 offset = skb_network_offset(skb);
4345 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4346 if (ih == NULL)
4347 goto out;
4348
4349 ihlen = ih->ihl * 4;
4350 if (ihlen < sizeof(_iph))
4351 goto out;
4352
4353 ad->u.net->v4info.saddr = ih->saddr;
4354 ad->u.net->v4info.daddr = ih->daddr;
4355 ret = 0;
4356
4357 if (proto)
4358 *proto = ih->protocol;
4359
4360 switch (ih->protocol) {
4361 case IPPROTO_TCP: {
4362 struct tcphdr _tcph, *th;
4363
4364 if (ntohs(ih->frag_off) & IP_OFFSET)
4365 break;
4366
4367 offset += ihlen;
4368 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4369 if (th == NULL)
4370 break;
4371
4372 ad->u.net->sport = th->source;
4373 ad->u.net->dport = th->dest;
4374 break;
4375 }
4376
4377 case IPPROTO_UDP: {
4378 struct udphdr _udph, *uh;
4379
4380 if (ntohs(ih->frag_off) & IP_OFFSET)
4381 break;
4382
4383 offset += ihlen;
4384 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4385 if (uh == NULL)
4386 break;
4387
4388 ad->u.net->sport = uh->source;
4389 ad->u.net->dport = uh->dest;
4390 break;
4391 }
4392
4393 case IPPROTO_DCCP: {
4394 struct dccp_hdr _dccph, *dh;
4395
4396 if (ntohs(ih->frag_off) & IP_OFFSET)
4397 break;
4398
4399 offset += ihlen;
4400 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4401 if (dh == NULL)
4402 break;
4403
4404 ad->u.net->sport = dh->dccph_sport;
4405 ad->u.net->dport = dh->dccph_dport;
4406 break;
4407 }
4408
4409#if IS_ENABLED(CONFIG_IP_SCTP)
4410 case IPPROTO_SCTP: {
4411 struct sctphdr _sctph, *sh;
4412
4413 if (ntohs(ih->frag_off) & IP_OFFSET)
4414 break;
4415
4416 offset += ihlen;
4417 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4418 if (sh == NULL)
4419 break;
4420
4421 ad->u.net->sport = sh->source;
4422 ad->u.net->dport = sh->dest;
4423 break;
4424 }
4425#endif
4426 default:
4427 break;
4428 }
4429out:
4430 return ret;
4431}
4432
4433#if IS_ENABLED(CONFIG_IPV6)
4434
4435/* Returns error only if unable to parse addresses */
4436static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4437 struct common_audit_data *ad, u8 *proto)
4438{
4439 u8 nexthdr;
4440 int ret = -EINVAL, offset;
4441 struct ipv6hdr _ipv6h, *ip6;
4442 __be16 frag_off;
4443
4444 offset = skb_network_offset(skb);
4445 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4446 if (ip6 == NULL)
4447 goto out;
4448
4449 ad->u.net->v6info.saddr = ip6->saddr;
4450 ad->u.net->v6info.daddr = ip6->daddr;
4451 ret = 0;
4452
4453 nexthdr = ip6->nexthdr;
4454 offset += sizeof(_ipv6h);
4455 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4456 if (offset < 0)
4457 goto out;
4458
4459 if (proto)
4460 *proto = nexthdr;
4461
4462 switch (nexthdr) {
4463 case IPPROTO_TCP: {
4464 struct tcphdr _tcph, *th;
4465
4466 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4467 if (th == NULL)
4468 break;
4469
4470 ad->u.net->sport = th->source;
4471 ad->u.net->dport = th->dest;
4472 break;
4473 }
4474
4475 case IPPROTO_UDP: {
4476 struct udphdr _udph, *uh;
4477
4478 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4479 if (uh == NULL)
4480 break;
4481
4482 ad->u.net->sport = uh->source;
4483 ad->u.net->dport = uh->dest;
4484 break;
4485 }
4486
4487 case IPPROTO_DCCP: {
4488 struct dccp_hdr _dccph, *dh;
4489
4490 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4491 if (dh == NULL)
4492 break;
4493
4494 ad->u.net->sport = dh->dccph_sport;
4495 ad->u.net->dport = dh->dccph_dport;
4496 break;
4497 }
4498
4499#if IS_ENABLED(CONFIG_IP_SCTP)
4500 case IPPROTO_SCTP: {
4501 struct sctphdr _sctph, *sh;
4502
4503 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4504 if (sh == NULL)
4505 break;
4506
4507 ad->u.net->sport = sh->source;
4508 ad->u.net->dport = sh->dest;
4509 break;
4510 }
4511#endif
4512 /* includes fragments */
4513 default:
4514 break;
4515 }
4516out:
4517 return ret;
4518}
4519
4520#endif /* IPV6 */
4521
4522static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4523 char **_addrp, int src, u8 *proto)
4524{
4525 char *addrp;
4526 int ret;
4527
4528 switch (ad->u.net->family) {
4529 case PF_INET:
4530 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4531 if (ret)
4532 goto parse_error;
4533 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4534 &ad->u.net->v4info.daddr);
4535 goto okay;
4536
4537#if IS_ENABLED(CONFIG_IPV6)
4538 case PF_INET6:
4539 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4540 if (ret)
4541 goto parse_error;
4542 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4543 &ad->u.net->v6info.daddr);
4544 goto okay;
4545#endif /* IPV6 */
4546 default:
4547 addrp = NULL;
4548 goto okay;
4549 }
4550
4551parse_error:
4552 pr_warn(
4553 "SELinux: failure in selinux_parse_skb(),"
4554 " unable to parse packet\n");
4555 return ret;
4556
4557okay:
4558 if (_addrp)
4559 *_addrp = addrp;
4560 return 0;
4561}
4562
4563/**
4564 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4565 * @skb: the packet
4566 * @family: protocol family
4567 * @sid: the packet's peer label SID
4568 *
4569 * Description:
4570 * Check the various different forms of network peer labeling and determine
4571 * the peer label/SID for the packet; most of the magic actually occurs in
4572 * the security server function security_net_peersid_cmp(). The function
4573 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4574 * or -EACCES if @sid is invalid due to inconsistencies with the different
4575 * peer labels.
4576 *
4577 */
4578static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4579{
4580 int err;
4581 u32 xfrm_sid;
4582 u32 nlbl_sid;
4583 u32 nlbl_type;
4584
4585 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4586 if (unlikely(err))
4587 return -EACCES;
4588 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4589 if (unlikely(err))
4590 return -EACCES;
4591
4592 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4593 nlbl_type, xfrm_sid, sid);
4594 if (unlikely(err)) {
4595 pr_warn(
4596 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4597 " unable to determine packet's peer label\n");
4598 return -EACCES;
4599 }
4600
4601 return 0;
4602}
4603
4604/**
4605 * selinux_conn_sid - Determine the child socket label for a connection
4606 * @sk_sid: the parent socket's SID
4607 * @skb_sid: the packet's SID
4608 * @conn_sid: the resulting connection SID
4609 *
4610 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4611 * combined with the MLS information from @skb_sid in order to create
4612 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4613 * of @sk_sid. Returns zero on success, negative values on failure.
4614 *
4615 */
4616static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4617{
4618 int err = 0;
4619
4620 if (skb_sid != SECSID_NULL)
4621 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4622 conn_sid);
4623 else
4624 *conn_sid = sk_sid;
4625
4626 return err;
4627}
4628
4629/* socket security operations */
4630
4631static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4632 u16 secclass, u32 *socksid)
4633{
4634 if (tsec->sockcreate_sid > SECSID_NULL) {
4635 *socksid = tsec->sockcreate_sid;
4636 return 0;
4637 }
4638
4639 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4640 secclass, NULL, socksid);
4641}
4642
4643static int sock_has_perm(struct sock *sk, u32 perms)
4644{
4645 struct sk_security_struct *sksec = sk->sk_security;
4646 struct common_audit_data ad;
4647 struct lsm_network_audit net = {0,};
4648
4649 if (sksec->sid == SECINITSID_KERNEL)
4650 return 0;
4651
4652 ad.type = LSM_AUDIT_DATA_NET;
4653 ad.u.net = &net;
4654 ad.u.net->sk = sk;
4655
4656 return avc_has_perm(&selinux_state,
4657 current_sid(), sksec->sid, sksec->sclass, perms,
4658 &ad);
4659}
4660
4661static int selinux_socket_create(int family, int type,
4662 int protocol, int kern)
4663{
4664 const struct task_security_struct *tsec = selinux_cred(current_cred());
4665 u32 newsid;
4666 u16 secclass;
4667 int rc;
4668
4669 if (kern)
4670 return 0;
4671
4672 secclass = socket_type_to_security_class(family, type, protocol);
4673 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4674 if (rc)
4675 return rc;
4676
4677 return avc_has_perm(&selinux_state,
4678 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4679}
4680
4681static int selinux_socket_post_create(struct socket *sock, int family,
4682 int type, int protocol, int kern)
4683{
4684 const struct task_security_struct *tsec = selinux_cred(current_cred());
4685 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4686 struct sk_security_struct *sksec;
4687 u16 sclass = socket_type_to_security_class(family, type, protocol);
4688 u32 sid = SECINITSID_KERNEL;
4689 int err = 0;
4690
4691 if (!kern) {
4692 err = socket_sockcreate_sid(tsec, sclass, &sid);
4693 if (err)
4694 return err;
4695 }
4696
4697 isec->sclass = sclass;
4698 isec->sid = sid;
4699 isec->initialized = LABEL_INITIALIZED;
4700
4701 if (sock->sk) {
4702 sksec = sock->sk->sk_security;
4703 sksec->sclass = sclass;
4704 sksec->sid = sid;
4705 /* Allows detection of the first association on this socket */
4706 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4707 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4708
4709 err = selinux_netlbl_socket_post_create(sock->sk, family);
4710 }
4711
4712 return err;
4713}
4714
4715static int selinux_socket_socketpair(struct socket *socka,
4716 struct socket *sockb)
4717{
4718 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4719 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4720
4721 sksec_a->peer_sid = sksec_b->sid;
4722 sksec_b->peer_sid = sksec_a->sid;
4723
4724 return 0;
4725}
4726
4727/* Range of port numbers used to automatically bind.
4728 Need to determine whether we should perform a name_bind
4729 permission check between the socket and the port number. */
4730
4731static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4732{
4733 struct sock *sk = sock->sk;
4734 struct sk_security_struct *sksec = sk->sk_security;
4735 u16 family;
4736 int err;
4737
4738 err = sock_has_perm(sk, SOCKET__BIND);
4739 if (err)
4740 goto out;
4741
4742 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4743 family = sk->sk_family;
4744 if (family == PF_INET || family == PF_INET6) {
4745 char *addrp;
4746 struct common_audit_data ad;
4747 struct lsm_network_audit net = {0,};
4748 struct sockaddr_in *addr4 = NULL;
4749 struct sockaddr_in6 *addr6 = NULL;
4750 u16 family_sa;
4751 unsigned short snum;
4752 u32 sid, node_perm;
4753
4754 /*
4755 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4756 * that validates multiple binding addresses. Because of this
4757 * need to check address->sa_family as it is possible to have
4758 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4759 */
4760 if (addrlen < offsetofend(struct sockaddr, sa_family))
4761 return -EINVAL;
4762 family_sa = address->sa_family;
4763 switch (family_sa) {
4764 case AF_UNSPEC:
4765 case AF_INET:
4766 if (addrlen < sizeof(struct sockaddr_in))
4767 return -EINVAL;
4768 addr4 = (struct sockaddr_in *)address;
4769 if (family_sa == AF_UNSPEC) {
4770 /* see __inet_bind(), we only want to allow
4771 * AF_UNSPEC if the address is INADDR_ANY
4772 */
4773 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4774 goto err_af;
4775 family_sa = AF_INET;
4776 }
4777 snum = ntohs(addr4->sin_port);
4778 addrp = (char *)&addr4->sin_addr.s_addr;
4779 break;
4780 case AF_INET6:
4781 if (addrlen < SIN6_LEN_RFC2133)
4782 return -EINVAL;
4783 addr6 = (struct sockaddr_in6 *)address;
4784 snum = ntohs(addr6->sin6_port);
4785 addrp = (char *)&addr6->sin6_addr.s6_addr;
4786 break;
4787 default:
4788 goto err_af;
4789 }
4790
4791 ad.type = LSM_AUDIT_DATA_NET;
4792 ad.u.net = &net;
4793 ad.u.net->sport = htons(snum);
4794 ad.u.net->family = family_sa;
4795
4796 if (snum) {
4797 int low, high;
4798
4799 inet_get_local_port_range(sock_net(sk), &low, &high);
4800
4801 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4802 snum < low || snum > high) {
4803 err = sel_netport_sid(sk->sk_protocol,
4804 snum, &sid);
4805 if (err)
4806 goto out;
4807 err = avc_has_perm(&selinux_state,
4808 sksec->sid, sid,
4809 sksec->sclass,
4810 SOCKET__NAME_BIND, &ad);
4811 if (err)
4812 goto out;
4813 }
4814 }
4815
4816 switch (sksec->sclass) {
4817 case SECCLASS_TCP_SOCKET:
4818 node_perm = TCP_SOCKET__NODE_BIND;
4819 break;
4820
4821 case SECCLASS_UDP_SOCKET:
4822 node_perm = UDP_SOCKET__NODE_BIND;
4823 break;
4824
4825 case SECCLASS_DCCP_SOCKET:
4826 node_perm = DCCP_SOCKET__NODE_BIND;
4827 break;
4828
4829 case SECCLASS_SCTP_SOCKET:
4830 node_perm = SCTP_SOCKET__NODE_BIND;
4831 break;
4832
4833 default:
4834 node_perm = RAWIP_SOCKET__NODE_BIND;
4835 break;
4836 }
4837
4838 err = sel_netnode_sid(addrp, family_sa, &sid);
4839 if (err)
4840 goto out;
4841
4842 if (family_sa == AF_INET)
4843 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4844 else
4845 ad.u.net->v6info.saddr = addr6->sin6_addr;
4846
4847 err = avc_has_perm(&selinux_state,
4848 sksec->sid, sid,
4849 sksec->sclass, node_perm, &ad);
4850 if (err)
4851 goto out;
4852 }
4853out:
4854 return err;
4855err_af:
4856 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4857 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4858 return -EINVAL;
4859 return -EAFNOSUPPORT;
4860}
4861
4862/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4863 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4864 */
4865static int selinux_socket_connect_helper(struct socket *sock,
4866 struct sockaddr *address, int addrlen)
4867{
4868 struct sock *sk = sock->sk;
4869 struct sk_security_struct *sksec = sk->sk_security;
4870 int err;
4871
4872 err = sock_has_perm(sk, SOCKET__CONNECT);
4873 if (err)
4874 return err;
4875 if (addrlen < offsetofend(struct sockaddr, sa_family))
4876 return -EINVAL;
4877
4878 /* connect(AF_UNSPEC) has special handling, as it is a documented
4879 * way to disconnect the socket
4880 */
4881 if (address->sa_family == AF_UNSPEC)
4882 return 0;
4883
4884 /*
4885 * If a TCP, DCCP or SCTP socket, check name_connect permission
4886 * for the port.
4887 */
4888 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4889 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4890 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4891 struct common_audit_data ad;
4892 struct lsm_network_audit net = {0,};
4893 struct sockaddr_in *addr4 = NULL;
4894 struct sockaddr_in6 *addr6 = NULL;
4895 unsigned short snum;
4896 u32 sid, perm;
4897
4898 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4899 * that validates multiple connect addresses. Because of this
4900 * need to check address->sa_family as it is possible to have
4901 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4902 */
4903 switch (address->sa_family) {
4904 case AF_INET:
4905 addr4 = (struct sockaddr_in *)address;
4906 if (addrlen < sizeof(struct sockaddr_in))
4907 return -EINVAL;
4908 snum = ntohs(addr4->sin_port);
4909 break;
4910 case AF_INET6:
4911 addr6 = (struct sockaddr_in6 *)address;
4912 if (addrlen < SIN6_LEN_RFC2133)
4913 return -EINVAL;
4914 snum = ntohs(addr6->sin6_port);
4915 break;
4916 default:
4917 /* Note that SCTP services expect -EINVAL, whereas
4918 * others expect -EAFNOSUPPORT.
4919 */
4920 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4921 return -EINVAL;
4922 else
4923 return -EAFNOSUPPORT;
4924 }
4925
4926 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4927 if (err)
4928 return err;
4929
4930 switch (sksec->sclass) {
4931 case SECCLASS_TCP_SOCKET:
4932 perm = TCP_SOCKET__NAME_CONNECT;
4933 break;
4934 case SECCLASS_DCCP_SOCKET:
4935 perm = DCCP_SOCKET__NAME_CONNECT;
4936 break;
4937 case SECCLASS_SCTP_SOCKET:
4938 perm = SCTP_SOCKET__NAME_CONNECT;
4939 break;
4940 }
4941
4942 ad.type = LSM_AUDIT_DATA_NET;
4943 ad.u.net = &net;
4944 ad.u.net->dport = htons(snum);
4945 ad.u.net->family = address->sa_family;
4946 err = avc_has_perm(&selinux_state,
4947 sksec->sid, sid, sksec->sclass, perm, &ad);
4948 if (err)
4949 return err;
4950 }
4951
4952 return 0;
4953}
4954
4955/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4956static int selinux_socket_connect(struct socket *sock,
4957 struct sockaddr *address, int addrlen)
4958{
4959 int err;
4960 struct sock *sk = sock->sk;
4961
4962 err = selinux_socket_connect_helper(sock, address, addrlen);
4963 if (err)
4964 return err;
4965
4966 return selinux_netlbl_socket_connect(sk, address);
4967}
4968
4969static int selinux_socket_listen(struct socket *sock, int backlog)
4970{
4971 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4972}
4973
4974static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4975{
4976 int err;
4977 struct inode_security_struct *isec;
4978 struct inode_security_struct *newisec;
4979 u16 sclass;
4980 u32 sid;
4981
4982 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4983 if (err)
4984 return err;
4985
4986 isec = inode_security_novalidate(SOCK_INODE(sock));
4987 spin_lock(&isec->lock);
4988 sclass = isec->sclass;
4989 sid = isec->sid;
4990 spin_unlock(&isec->lock);
4991
4992 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4993 newisec->sclass = sclass;
4994 newisec->sid = sid;
4995 newisec->initialized = LABEL_INITIALIZED;
4996
4997 return 0;
4998}
4999
5000static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
5001 int size)
5002{
5003 return sock_has_perm(sock->sk, SOCKET__WRITE);
5004}
5005
5006static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
5007 int size, int flags)
5008{
5009 return sock_has_perm(sock->sk, SOCKET__READ);
5010}
5011
5012static int selinux_socket_getsockname(struct socket *sock)
5013{
5014 return sock_has_perm(sock->sk, SOCKET__GETATTR);
5015}
5016
5017static int selinux_socket_getpeername(struct socket *sock)
5018{
5019 return sock_has_perm(sock->sk, SOCKET__GETATTR);
5020}
5021
5022static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5023{
5024 int err;
5025
5026 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5027 if (err)
5028 return err;
5029
5030 return selinux_netlbl_socket_setsockopt(sock, level, optname);
5031}
5032
5033static int selinux_socket_getsockopt(struct socket *sock, int level,
5034 int optname)
5035{
5036 return sock_has_perm(sock->sk, SOCKET__GETOPT);
5037}
5038
5039static int selinux_socket_shutdown(struct socket *sock, int how)
5040{
5041 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5042}
5043
5044static int selinux_socket_unix_stream_connect(struct sock *sock,
5045 struct sock *other,
5046 struct sock *newsk)
5047{
5048 struct sk_security_struct *sksec_sock = sock->sk_security;
5049 struct sk_security_struct *sksec_other = other->sk_security;
5050 struct sk_security_struct *sksec_new = newsk->sk_security;
5051 struct common_audit_data ad;
5052 struct lsm_network_audit net = {0,};
5053 int err;
5054
5055 ad.type = LSM_AUDIT_DATA_NET;
5056 ad.u.net = &net;
5057 ad.u.net->sk = other;
5058
5059 err = avc_has_perm(&selinux_state,
5060 sksec_sock->sid, sksec_other->sid,
5061 sksec_other->sclass,
5062 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5063 if (err)
5064 return err;
5065
5066 /* server child socket */
5067 sksec_new->peer_sid = sksec_sock->sid;
5068 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
5069 sksec_sock->sid, &sksec_new->sid);
5070 if (err)
5071 return err;
5072
5073 /* connecting socket */
5074 sksec_sock->peer_sid = sksec_new->sid;
5075
5076 return 0;
5077}
5078
5079static int selinux_socket_unix_may_send(struct socket *sock,
5080 struct socket *other)
5081{
5082 struct sk_security_struct *ssec = sock->sk->sk_security;
5083 struct sk_security_struct *osec = other->sk->sk_security;
5084 struct common_audit_data ad;
5085 struct lsm_network_audit net = {0,};
5086
5087 ad.type = LSM_AUDIT_DATA_NET;
5088 ad.u.net = &net;
5089 ad.u.net->sk = other->sk;
5090
5091 return avc_has_perm(&selinux_state,
5092 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5093 &ad);
5094}
5095
5096static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5097 char *addrp, u16 family, u32 peer_sid,
5098 struct common_audit_data *ad)
5099{
5100 int err;
5101 u32 if_sid;
5102 u32 node_sid;
5103
5104 err = sel_netif_sid(ns, ifindex, &if_sid);
5105 if (err)
5106 return err;
5107 err = avc_has_perm(&selinux_state,
5108 peer_sid, if_sid,
5109 SECCLASS_NETIF, NETIF__INGRESS, ad);
5110 if (err)
5111 return err;
5112
5113 err = sel_netnode_sid(addrp, family, &node_sid);
5114 if (err)
5115 return err;
5116 return avc_has_perm(&selinux_state,
5117 peer_sid, node_sid,
5118 SECCLASS_NODE, NODE__RECVFROM, ad);
5119}
5120
5121static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5122 u16 family)
5123{
5124 int err = 0;
5125 struct sk_security_struct *sksec = sk->sk_security;
5126 u32 sk_sid = sksec->sid;
5127 struct common_audit_data ad;
5128 struct lsm_network_audit net = {0,};
5129 char *addrp;
5130
5131 ad.type = LSM_AUDIT_DATA_NET;
5132 ad.u.net = &net;
5133 ad.u.net->netif = skb->skb_iif;
5134 ad.u.net->family = family;
5135 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5136 if (err)
5137 return err;
5138
5139 if (selinux_secmark_enabled()) {
5140 err = avc_has_perm(&selinux_state,
5141 sk_sid, skb->secmark, SECCLASS_PACKET,
5142 PACKET__RECV, &ad);
5143 if (err)
5144 return err;
5145 }
5146
5147 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5148 if (err)
5149 return err;
5150 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5151
5152 return err;
5153}
5154
5155static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5156{
5157 int err;
5158 struct sk_security_struct *sksec = sk->sk_security;
5159 u16 family = sk->sk_family;
5160 u32 sk_sid = sksec->sid;
5161 struct common_audit_data ad;
5162 struct lsm_network_audit net = {0,};
5163 char *addrp;
5164 u8 secmark_active;
5165 u8 peerlbl_active;
5166
5167 if (family != PF_INET && family != PF_INET6)
5168 return 0;
5169
5170 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5171 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5172 family = PF_INET;
5173
5174 /* If any sort of compatibility mode is enabled then handoff processing
5175 * to the selinux_sock_rcv_skb_compat() function to deal with the
5176 * special handling. We do this in an attempt to keep this function
5177 * as fast and as clean as possible. */
5178 if (!selinux_policycap_netpeer())
5179 return selinux_sock_rcv_skb_compat(sk, skb, family);
5180
5181 secmark_active = selinux_secmark_enabled();
5182 peerlbl_active = selinux_peerlbl_enabled();
5183 if (!secmark_active && !peerlbl_active)
5184 return 0;
5185
5186 ad.type = LSM_AUDIT_DATA_NET;
5187 ad.u.net = &net;
5188 ad.u.net->netif = skb->skb_iif;
5189 ad.u.net->family = family;
5190 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5191 if (err)
5192 return err;
5193
5194 if (peerlbl_active) {
5195 u32 peer_sid;
5196
5197 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5198 if (err)
5199 return err;
5200 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5201 addrp, family, peer_sid, &ad);
5202 if (err) {
5203 selinux_netlbl_err(skb, family, err, 0);
5204 return err;
5205 }
5206 err = avc_has_perm(&selinux_state,
5207 sk_sid, peer_sid, SECCLASS_PEER,
5208 PEER__RECV, &ad);
5209 if (err) {
5210 selinux_netlbl_err(skb, family, err, 0);
5211 return err;
5212 }
5213 }
5214
5215 if (secmark_active) {
5216 err = avc_has_perm(&selinux_state,
5217 sk_sid, skb->secmark, SECCLASS_PACKET,
5218 PACKET__RECV, &ad);
5219 if (err)
5220 return err;
5221 }
5222
5223 return err;
5224}
5225
5226static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5227 int __user *optlen, unsigned len)
5228{
5229 int err = 0;
5230 char *scontext;
5231 u32 scontext_len;
5232 struct sk_security_struct *sksec = sock->sk->sk_security;
5233 u32 peer_sid = SECSID_NULL;
5234
5235 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5236 sksec->sclass == SECCLASS_TCP_SOCKET ||
5237 sksec->sclass == SECCLASS_SCTP_SOCKET)
5238 peer_sid = sksec->peer_sid;
5239 if (peer_sid == SECSID_NULL)
5240 return -ENOPROTOOPT;
5241
5242 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5243 &scontext_len);
5244 if (err)
5245 return err;
5246
5247 if (scontext_len > len) {
5248 err = -ERANGE;
5249 goto out_len;
5250 }
5251
5252 if (copy_to_user(optval, scontext, scontext_len))
5253 err = -EFAULT;
5254
5255out_len:
5256 if (put_user(scontext_len, optlen))
5257 err = -EFAULT;
5258 kfree(scontext);
5259 return err;
5260}
5261
5262static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5263{
5264 u32 peer_secid = SECSID_NULL;
5265 u16 family;
5266 struct inode_security_struct *isec;
5267
5268 if (skb && skb->protocol == htons(ETH_P_IP))
5269 family = PF_INET;
5270 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5271 family = PF_INET6;
5272 else if (sock)
5273 family = sock->sk->sk_family;
5274 else
5275 goto out;
5276
5277 if (sock && family == PF_UNIX) {
5278 isec = inode_security_novalidate(SOCK_INODE(sock));
5279 peer_secid = isec->sid;
5280 } else if (skb)
5281 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5282
5283out:
5284 *secid = peer_secid;
5285 if (peer_secid == SECSID_NULL)
5286 return -EINVAL;
5287 return 0;
5288}
5289
5290static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5291{
5292 struct sk_security_struct *sksec;
5293
5294 sksec = kzalloc(sizeof(*sksec), priority);
5295 if (!sksec)
5296 return -ENOMEM;
5297
5298 sksec->peer_sid = SECINITSID_UNLABELED;
5299 sksec->sid = SECINITSID_UNLABELED;
5300 sksec->sclass = SECCLASS_SOCKET;
5301 selinux_netlbl_sk_security_reset(sksec);
5302 sk->sk_security = sksec;
5303
5304 return 0;
5305}
5306
5307static void selinux_sk_free_security(struct sock *sk)
5308{
5309 struct sk_security_struct *sksec = sk->sk_security;
5310
5311 sk->sk_security = NULL;
5312 selinux_netlbl_sk_security_free(sksec);
5313 kfree(sksec);
5314}
5315
5316static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5317{
5318 struct sk_security_struct *sksec = sk->sk_security;
5319 struct sk_security_struct *newsksec = newsk->sk_security;
5320
5321 newsksec->sid = sksec->sid;
5322 newsksec->peer_sid = sksec->peer_sid;
5323 newsksec->sclass = sksec->sclass;
5324
5325 selinux_netlbl_sk_security_reset(newsksec);
5326}
5327
5328static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5329{
5330 if (!sk)
5331 *secid = SECINITSID_ANY_SOCKET;
5332 else {
5333 struct sk_security_struct *sksec = sk->sk_security;
5334
5335 *secid = sksec->sid;
5336 }
5337}
5338
5339static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5340{
5341 struct inode_security_struct *isec =
5342 inode_security_novalidate(SOCK_INODE(parent));
5343 struct sk_security_struct *sksec = sk->sk_security;
5344
5345 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5346 sk->sk_family == PF_UNIX)
5347 isec->sid = sksec->sid;
5348 sksec->sclass = isec->sclass;
5349}
5350
5351/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5352 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5353 * already present).
5354 */
5355static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5356 struct sk_buff *skb)
5357{
5358 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5359 struct common_audit_data ad;
5360 struct lsm_network_audit net = {0,};
5361 u8 peerlbl_active;
5362 u32 peer_sid = SECINITSID_UNLABELED;
5363 u32 conn_sid;
5364 int err = 0;
5365
5366 if (!selinux_policycap_extsockclass())
5367 return 0;
5368
5369 peerlbl_active = selinux_peerlbl_enabled();
5370
5371 if (peerlbl_active) {
5372 /* This will return peer_sid = SECSID_NULL if there are
5373 * no peer labels, see security_net_peersid_resolve().
5374 */
5375 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5376 &peer_sid);
5377 if (err)
5378 return err;
5379
5380 if (peer_sid == SECSID_NULL)
5381 peer_sid = SECINITSID_UNLABELED;
5382 }
5383
5384 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5385 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5386
5387 /* Here as first association on socket. As the peer SID
5388 * was allowed by peer recv (and the netif/node checks),
5389 * then it is approved by policy and used as the primary
5390 * peer SID for getpeercon(3).
5391 */
5392 sksec->peer_sid = peer_sid;
5393 } else if (sksec->peer_sid != peer_sid) {
5394 /* Other association peer SIDs are checked to enforce
5395 * consistency among the peer SIDs.
5396 */
5397 ad.type = LSM_AUDIT_DATA_NET;
5398 ad.u.net = &net;
5399 ad.u.net->sk = ep->base.sk;
5400 err = avc_has_perm(&selinux_state,
5401 sksec->peer_sid, peer_sid, sksec->sclass,
5402 SCTP_SOCKET__ASSOCIATION, &ad);
5403 if (err)
5404 return err;
5405 }
5406
5407 /* Compute the MLS component for the connection and store
5408 * the information in ep. This will be used by SCTP TCP type
5409 * sockets and peeled off connections as they cause a new
5410 * socket to be generated. selinux_sctp_sk_clone() will then
5411 * plug this into the new socket.
5412 */
5413 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5414 if (err)
5415 return err;
5416
5417 ep->secid = conn_sid;
5418 ep->peer_secid = peer_sid;
5419
5420 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5421 return selinux_netlbl_sctp_assoc_request(ep, skb);
5422}
5423
5424/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5425 * based on their @optname.
5426 */
5427static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5428 struct sockaddr *address,
5429 int addrlen)
5430{
5431 int len, err = 0, walk_size = 0;
5432 void *addr_buf;
5433 struct sockaddr *addr;
5434 struct socket *sock;
5435
5436 if (!selinux_policycap_extsockclass())
5437 return 0;
5438
5439 /* Process one or more addresses that may be IPv4 or IPv6 */
5440 sock = sk->sk_socket;
5441 addr_buf = address;
5442
5443 while (walk_size < addrlen) {
5444 if (walk_size + sizeof(sa_family_t) > addrlen)
5445 return -EINVAL;
5446
5447 addr = addr_buf;
5448 switch (addr->sa_family) {
5449 case AF_UNSPEC:
5450 case AF_INET:
5451 len = sizeof(struct sockaddr_in);
5452 break;
5453 case AF_INET6:
5454 len = sizeof(struct sockaddr_in6);
5455 break;
5456 default:
5457 return -EINVAL;
5458 }
5459
5460 if (walk_size + len > addrlen)
5461 return -EINVAL;
5462
5463 err = -EINVAL;
5464 switch (optname) {
5465 /* Bind checks */
5466 case SCTP_PRIMARY_ADDR:
5467 case SCTP_SET_PEER_PRIMARY_ADDR:
5468 case SCTP_SOCKOPT_BINDX_ADD:
5469 err = selinux_socket_bind(sock, addr, len);
5470 break;
5471 /* Connect checks */
5472 case SCTP_SOCKOPT_CONNECTX:
5473 case SCTP_PARAM_SET_PRIMARY:
5474 case SCTP_PARAM_ADD_IP:
5475 case SCTP_SENDMSG_CONNECT:
5476 err = selinux_socket_connect_helper(sock, addr, len);
5477 if (err)
5478 return err;
5479
5480 /* As selinux_sctp_bind_connect() is called by the
5481 * SCTP protocol layer, the socket is already locked,
5482 * therefore selinux_netlbl_socket_connect_locked()
5483 * is called here. The situations handled are:
5484 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5485 * whenever a new IP address is added or when a new
5486 * primary address is selected.
5487 * Note that an SCTP connect(2) call happens before
5488 * the SCTP protocol layer and is handled via
5489 * selinux_socket_connect().
5490 */
5491 err = selinux_netlbl_socket_connect_locked(sk, addr);
5492 break;
5493 }
5494
5495 if (err)
5496 return err;
5497
5498 addr_buf += len;
5499 walk_size += len;
5500 }
5501
5502 return 0;
5503}
5504
5505/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5506static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5507 struct sock *newsk)
5508{
5509 struct sk_security_struct *sksec = sk->sk_security;
5510 struct sk_security_struct *newsksec = newsk->sk_security;
5511
5512 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5513 * the non-sctp clone version.
5514 */
5515 if (!selinux_policycap_extsockclass())
5516 return selinux_sk_clone_security(sk, newsk);
5517
5518 newsksec->sid = ep->secid;
5519 newsksec->peer_sid = ep->peer_secid;
5520 newsksec->sclass = sksec->sclass;
5521 selinux_netlbl_sctp_sk_clone(sk, newsk);
5522}
5523
5524static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5525 struct request_sock *req)
5526{
5527 struct sk_security_struct *sksec = sk->sk_security;
5528 int err;
5529 u16 family = req->rsk_ops->family;
5530 u32 connsid;
5531 u32 peersid;
5532
5533 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5534 if (err)
5535 return err;
5536 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5537 if (err)
5538 return err;
5539 req->secid = connsid;
5540 req->peer_secid = peersid;
5541
5542 return selinux_netlbl_inet_conn_request(req, family);
5543}
5544
5545static void selinux_inet_csk_clone(struct sock *newsk,
5546 const struct request_sock *req)
5547{
5548 struct sk_security_struct *newsksec = newsk->sk_security;
5549
5550 newsksec->sid = req->secid;
5551 newsksec->peer_sid = req->peer_secid;
5552 /* NOTE: Ideally, we should also get the isec->sid for the
5553 new socket in sync, but we don't have the isec available yet.
5554 So we will wait until sock_graft to do it, by which
5555 time it will have been created and available. */
5556
5557 /* We don't need to take any sort of lock here as we are the only
5558 * thread with access to newsksec */
5559 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5560}
5561
5562static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5563{
5564 u16 family = sk->sk_family;
5565 struct sk_security_struct *sksec = sk->sk_security;
5566
5567 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5568 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5569 family = PF_INET;
5570
5571 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5572}
5573
5574static int selinux_secmark_relabel_packet(u32 sid)
5575{
5576 const struct task_security_struct *__tsec;
5577 u32 tsid;
5578
5579 __tsec = selinux_cred(current_cred());
5580 tsid = __tsec->sid;
5581
5582 return avc_has_perm(&selinux_state,
5583 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5584 NULL);
5585}
5586
5587static void selinux_secmark_refcount_inc(void)
5588{
5589 atomic_inc(&selinux_secmark_refcount);
5590}
5591
5592static void selinux_secmark_refcount_dec(void)
5593{
5594 atomic_dec(&selinux_secmark_refcount);
5595}
5596
5597static void selinux_req_classify_flow(const struct request_sock *req,
5598 struct flowi_common *flic)
5599{
5600 flic->flowic_secid = req->secid;
5601}
5602
5603static int selinux_tun_dev_alloc_security(void **security)
5604{
5605 struct tun_security_struct *tunsec;
5606
5607 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5608 if (!tunsec)
5609 return -ENOMEM;
5610 tunsec->sid = current_sid();
5611
5612 *security = tunsec;
5613 return 0;
5614}
5615
5616static void selinux_tun_dev_free_security(void *security)
5617{
5618 kfree(security);
5619}
5620
5621static int selinux_tun_dev_create(void)
5622{
5623 u32 sid = current_sid();
5624
5625 /* we aren't taking into account the "sockcreate" SID since the socket
5626 * that is being created here is not a socket in the traditional sense,
5627 * instead it is a private sock, accessible only to the kernel, and
5628 * representing a wide range of network traffic spanning multiple
5629 * connections unlike traditional sockets - check the TUN driver to
5630 * get a better understanding of why this socket is special */
5631
5632 return avc_has_perm(&selinux_state,
5633 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5634 NULL);
5635}
5636
5637static int selinux_tun_dev_attach_queue(void *security)
5638{
5639 struct tun_security_struct *tunsec = security;
5640
5641 return avc_has_perm(&selinux_state,
5642 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5643 TUN_SOCKET__ATTACH_QUEUE, NULL);
5644}
5645
5646static int selinux_tun_dev_attach(struct sock *sk, void *security)
5647{
5648 struct tun_security_struct *tunsec = security;
5649 struct sk_security_struct *sksec = sk->sk_security;
5650
5651 /* we don't currently perform any NetLabel based labeling here and it
5652 * isn't clear that we would want to do so anyway; while we could apply
5653 * labeling without the support of the TUN user the resulting labeled
5654 * traffic from the other end of the connection would almost certainly
5655 * cause confusion to the TUN user that had no idea network labeling
5656 * protocols were being used */
5657
5658 sksec->sid = tunsec->sid;
5659 sksec->sclass = SECCLASS_TUN_SOCKET;
5660
5661 return 0;
5662}
5663
5664static int selinux_tun_dev_open(void *security)
5665{
5666 struct tun_security_struct *tunsec = security;
5667 u32 sid = current_sid();
5668 int err;
5669
5670 err = avc_has_perm(&selinux_state,
5671 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5672 TUN_SOCKET__RELABELFROM, NULL);
5673 if (err)
5674 return err;
5675 err = avc_has_perm(&selinux_state,
5676 sid, sid, SECCLASS_TUN_SOCKET,
5677 TUN_SOCKET__RELABELTO, NULL);
5678 if (err)
5679 return err;
5680 tunsec->sid = sid;
5681
5682 return 0;
5683}
5684
5685#ifdef CONFIG_NETFILTER
5686
5687static unsigned int selinux_ip_forward(struct sk_buff *skb,
5688 const struct net_device *indev,
5689 u16 family)
5690{
5691 int err;
5692 char *addrp;
5693 u32 peer_sid;
5694 struct common_audit_data ad;
5695 struct lsm_network_audit net = {0,};
5696 u8 secmark_active;
5697 u8 netlbl_active;
5698 u8 peerlbl_active;
5699
5700 if (!selinux_policycap_netpeer())
5701 return NF_ACCEPT;
5702
5703 secmark_active = selinux_secmark_enabled();
5704 netlbl_active = netlbl_enabled();
5705 peerlbl_active = selinux_peerlbl_enabled();
5706 if (!secmark_active && !peerlbl_active)
5707 return NF_ACCEPT;
5708
5709 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5710 return NF_DROP;
5711
5712 ad.type = LSM_AUDIT_DATA_NET;
5713 ad.u.net = &net;
5714 ad.u.net->netif = indev->ifindex;
5715 ad.u.net->family = family;
5716 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5717 return NF_DROP;
5718
5719 if (peerlbl_active) {
5720 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5721 addrp, family, peer_sid, &ad);
5722 if (err) {
5723 selinux_netlbl_err(skb, family, err, 1);
5724 return NF_DROP;
5725 }
5726 }
5727
5728 if (secmark_active)
5729 if (avc_has_perm(&selinux_state,
5730 peer_sid, skb->secmark,
5731 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5732 return NF_DROP;
5733
5734 if (netlbl_active)
5735 /* we do this in the FORWARD path and not the POST_ROUTING
5736 * path because we want to make sure we apply the necessary
5737 * labeling before IPsec is applied so we can leverage AH
5738 * protection */
5739 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5740 return NF_DROP;
5741
5742 return NF_ACCEPT;
5743}
5744
5745static unsigned int selinux_ipv4_forward(void *priv,
5746 struct sk_buff *skb,
5747 const struct nf_hook_state *state)
5748{
5749 return selinux_ip_forward(skb, state->in, PF_INET);
5750}
5751
5752#if IS_ENABLED(CONFIG_IPV6)
5753static unsigned int selinux_ipv6_forward(void *priv,
5754 struct sk_buff *skb,
5755 const struct nf_hook_state *state)
5756{
5757 return selinux_ip_forward(skb, state->in, PF_INET6);
5758}
5759#endif /* IPV6 */
5760
5761static unsigned int selinux_ip_output(struct sk_buff *skb,
5762 u16 family)
5763{
5764 struct sock *sk;
5765 u32 sid;
5766
5767 if (!netlbl_enabled())
5768 return NF_ACCEPT;
5769
5770 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5771 * because we want to make sure we apply the necessary labeling
5772 * before IPsec is applied so we can leverage AH protection */
5773 sk = skb->sk;
5774 if (sk) {
5775 struct sk_security_struct *sksec;
5776
5777 if (sk_listener(sk))
5778 /* if the socket is the listening state then this
5779 * packet is a SYN-ACK packet which means it needs to
5780 * be labeled based on the connection/request_sock and
5781 * not the parent socket. unfortunately, we can't
5782 * lookup the request_sock yet as it isn't queued on
5783 * the parent socket until after the SYN-ACK is sent.
5784 * the "solution" is to simply pass the packet as-is
5785 * as any IP option based labeling should be copied
5786 * from the initial connection request (in the IP
5787 * layer). it is far from ideal, but until we get a
5788 * security label in the packet itself this is the
5789 * best we can do. */
5790 return NF_ACCEPT;
5791
5792 /* standard practice, label using the parent socket */
5793 sksec = sk->sk_security;
5794 sid = sksec->sid;
5795 } else
5796 sid = SECINITSID_KERNEL;
5797 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5798 return NF_DROP;
5799
5800 return NF_ACCEPT;
5801}
5802
5803static unsigned int selinux_ipv4_output(void *priv,
5804 struct sk_buff *skb,
5805 const struct nf_hook_state *state)
5806{
5807 return selinux_ip_output(skb, PF_INET);
5808}
5809
5810#if IS_ENABLED(CONFIG_IPV6)
5811static unsigned int selinux_ipv6_output(void *priv,
5812 struct sk_buff *skb,
5813 const struct nf_hook_state *state)
5814{
5815 return selinux_ip_output(skb, PF_INET6);
5816}
5817#endif /* IPV6 */
5818
5819static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5820 int ifindex,
5821 u16 family)
5822{
5823 struct sock *sk = skb_to_full_sk(skb);
5824 struct sk_security_struct *sksec;
5825 struct common_audit_data ad;
5826 struct lsm_network_audit net = {0,};
5827 char *addrp;
5828 u8 proto;
5829
5830 if (sk == NULL)
5831 return NF_ACCEPT;
5832 sksec = sk->sk_security;
5833
5834 ad.type = LSM_AUDIT_DATA_NET;
5835 ad.u.net = &net;
5836 ad.u.net->netif = ifindex;
5837 ad.u.net->family = family;
5838 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5839 return NF_DROP;
5840
5841 if (selinux_secmark_enabled())
5842 if (avc_has_perm(&selinux_state,
5843 sksec->sid, skb->secmark,
5844 SECCLASS_PACKET, PACKET__SEND, &ad))
5845 return NF_DROP_ERR(-ECONNREFUSED);
5846
5847 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5848 return NF_DROP_ERR(-ECONNREFUSED);
5849
5850 return NF_ACCEPT;
5851}
5852
5853static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5854 const struct net_device *outdev,
5855 u16 family)
5856{
5857 u32 secmark_perm;
5858 u32 peer_sid;
5859 int ifindex = outdev->ifindex;
5860 struct sock *sk;
5861 struct common_audit_data ad;
5862 struct lsm_network_audit net = {0,};
5863 char *addrp;
5864 u8 secmark_active;
5865 u8 peerlbl_active;
5866
5867 /* If any sort of compatibility mode is enabled then handoff processing
5868 * to the selinux_ip_postroute_compat() function to deal with the
5869 * special handling. We do this in an attempt to keep this function
5870 * as fast and as clean as possible. */
5871 if (!selinux_policycap_netpeer())
5872 return selinux_ip_postroute_compat(skb, ifindex, family);
5873
5874 secmark_active = selinux_secmark_enabled();
5875 peerlbl_active = selinux_peerlbl_enabled();
5876 if (!secmark_active && !peerlbl_active)
5877 return NF_ACCEPT;
5878
5879 sk = skb_to_full_sk(skb);
5880
5881#ifdef CONFIG_XFRM
5882 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5883 * packet transformation so allow the packet to pass without any checks
5884 * since we'll have another chance to perform access control checks
5885 * when the packet is on it's final way out.
5886 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5887 * is NULL, in this case go ahead and apply access control.
5888 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5889 * TCP listening state we cannot wait until the XFRM processing
5890 * is done as we will miss out on the SA label if we do;
5891 * unfortunately, this means more work, but it is only once per
5892 * connection. */
5893 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5894 !(sk && sk_listener(sk)))
5895 return NF_ACCEPT;
5896#endif
5897
5898 if (sk == NULL) {
5899 /* Without an associated socket the packet is either coming
5900 * from the kernel or it is being forwarded; check the packet
5901 * to determine which and if the packet is being forwarded
5902 * query the packet directly to determine the security label. */
5903 if (skb->skb_iif) {
5904 secmark_perm = PACKET__FORWARD_OUT;
5905 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5906 return NF_DROP;
5907 } else {
5908 secmark_perm = PACKET__SEND;
5909 peer_sid = SECINITSID_KERNEL;
5910 }
5911 } else if (sk_listener(sk)) {
5912 /* Locally generated packet but the associated socket is in the
5913 * listening state which means this is a SYN-ACK packet. In
5914 * this particular case the correct security label is assigned
5915 * to the connection/request_sock but unfortunately we can't
5916 * query the request_sock as it isn't queued on the parent
5917 * socket until after the SYN-ACK packet is sent; the only
5918 * viable choice is to regenerate the label like we do in
5919 * selinux_inet_conn_request(). See also selinux_ip_output()
5920 * for similar problems. */
5921 u32 skb_sid;
5922 struct sk_security_struct *sksec;
5923
5924 sksec = sk->sk_security;
5925 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5926 return NF_DROP;
5927 /* At this point, if the returned skb peerlbl is SECSID_NULL
5928 * and the packet has been through at least one XFRM
5929 * transformation then we must be dealing with the "final"
5930 * form of labeled IPsec packet; since we've already applied
5931 * all of our access controls on this packet we can safely
5932 * pass the packet. */
5933 if (skb_sid == SECSID_NULL) {
5934 switch (family) {
5935 case PF_INET:
5936 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5937 return NF_ACCEPT;
5938 break;
5939 case PF_INET6:
5940 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5941 return NF_ACCEPT;
5942 break;
5943 default:
5944 return NF_DROP_ERR(-ECONNREFUSED);
5945 }
5946 }
5947 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5948 return NF_DROP;
5949 secmark_perm = PACKET__SEND;
5950 } else {
5951 /* Locally generated packet, fetch the security label from the
5952 * associated socket. */
5953 struct sk_security_struct *sksec = sk->sk_security;
5954 peer_sid = sksec->sid;
5955 secmark_perm = PACKET__SEND;
5956 }
5957
5958 ad.type = LSM_AUDIT_DATA_NET;
5959 ad.u.net = &net;
5960 ad.u.net->netif = ifindex;
5961 ad.u.net->family = family;
5962 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5963 return NF_DROP;
5964
5965 if (secmark_active)
5966 if (avc_has_perm(&selinux_state,
5967 peer_sid, skb->secmark,
5968 SECCLASS_PACKET, secmark_perm, &ad))
5969 return NF_DROP_ERR(-ECONNREFUSED);
5970
5971 if (peerlbl_active) {
5972 u32 if_sid;
5973 u32 node_sid;
5974
5975 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5976 return NF_DROP;
5977 if (avc_has_perm(&selinux_state,
5978 peer_sid, if_sid,
5979 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5980 return NF_DROP_ERR(-ECONNREFUSED);
5981
5982 if (sel_netnode_sid(addrp, family, &node_sid))
5983 return NF_DROP;
5984 if (avc_has_perm(&selinux_state,
5985 peer_sid, node_sid,
5986 SECCLASS_NODE, NODE__SENDTO, &ad))
5987 return NF_DROP_ERR(-ECONNREFUSED);
5988 }
5989
5990 return NF_ACCEPT;
5991}
5992
5993static unsigned int selinux_ipv4_postroute(void *priv,
5994 struct sk_buff *skb,
5995 const struct nf_hook_state *state)
5996{
5997 return selinux_ip_postroute(skb, state->out, PF_INET);
5998}
5999
6000#if IS_ENABLED(CONFIG_IPV6)
6001static unsigned int selinux_ipv6_postroute(void *priv,
6002 struct sk_buff *skb,
6003 const struct nf_hook_state *state)
6004{
6005 return selinux_ip_postroute(skb, state->out, PF_INET6);
6006}
6007#endif /* IPV6 */
6008
6009#endif /* CONFIG_NETFILTER */
6010
6011static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
6012{
6013 int rc = 0;
6014 unsigned int msg_len;
6015 unsigned int data_len = skb->len;
6016 unsigned char *data = skb->data;
6017 struct nlmsghdr *nlh;
6018 struct sk_security_struct *sksec = sk->sk_security;
6019 u16 sclass = sksec->sclass;
6020 u32 perm;
6021
6022 while (data_len >= nlmsg_total_size(0)) {
6023 nlh = (struct nlmsghdr *)data;
6024
6025 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
6026 * users which means we can't reject skb's with bogus
6027 * length fields; our solution is to follow what
6028 * netlink_rcv_skb() does and simply skip processing at
6029 * messages with length fields that are clearly junk
6030 */
6031 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
6032 return 0;
6033
6034 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
6035 if (rc == 0) {
6036 rc = sock_has_perm(sk, perm);
6037 if (rc)
6038 return rc;
6039 } else if (rc == -EINVAL) {
6040 /* -EINVAL is a missing msg/perm mapping */
6041 pr_warn_ratelimited("SELinux: unrecognized netlink"
6042 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
6043 " pid=%d comm=%s\n",
6044 sk->sk_protocol, nlh->nlmsg_type,
6045 secclass_map[sclass - 1].name,
6046 task_pid_nr(current), current->comm);
6047 if (enforcing_enabled(&selinux_state) &&
6048 !security_get_allow_unknown(&selinux_state))
6049 return rc;
6050 rc = 0;
6051 } else if (rc == -ENOENT) {
6052 /* -ENOENT is a missing socket/class mapping, ignore */
6053 rc = 0;
6054 } else {
6055 return rc;
6056 }
6057
6058 /* move to the next message after applying netlink padding */
6059 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6060 if (msg_len >= data_len)
6061 return 0;
6062 data_len -= msg_len;
6063 data += msg_len;
6064 }
6065
6066 return rc;
6067}
6068
6069static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6070{
6071 isec->sclass = sclass;
6072 isec->sid = current_sid();
6073}
6074
6075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6076 u32 perms)
6077{
6078 struct ipc_security_struct *isec;
6079 struct common_audit_data ad;
6080 u32 sid = current_sid();
6081
6082 isec = selinux_ipc(ipc_perms);
6083
6084 ad.type = LSM_AUDIT_DATA_IPC;
6085 ad.u.ipc_id = ipc_perms->key;
6086
6087 return avc_has_perm(&selinux_state,
6088 sid, isec->sid, isec->sclass, perms, &ad);
6089}
6090
6091static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6092{
6093 struct msg_security_struct *msec;
6094
6095 msec = selinux_msg_msg(msg);
6096 msec->sid = SECINITSID_UNLABELED;
6097
6098 return 0;
6099}
6100
6101/* message queue security operations */
6102static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6103{
6104 struct ipc_security_struct *isec;
6105 struct common_audit_data ad;
6106 u32 sid = current_sid();
6107 int rc;
6108
6109 isec = selinux_ipc(msq);
6110 ipc_init_security(isec, SECCLASS_MSGQ);
6111
6112 ad.type = LSM_AUDIT_DATA_IPC;
6113 ad.u.ipc_id = msq->key;
6114
6115 rc = avc_has_perm(&selinux_state,
6116 sid, isec->sid, SECCLASS_MSGQ,
6117 MSGQ__CREATE, &ad);
6118 return rc;
6119}
6120
6121static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6122{
6123 struct ipc_security_struct *isec;
6124 struct common_audit_data ad;
6125 u32 sid = current_sid();
6126
6127 isec = selinux_ipc(msq);
6128
6129 ad.type = LSM_AUDIT_DATA_IPC;
6130 ad.u.ipc_id = msq->key;
6131
6132 return avc_has_perm(&selinux_state,
6133 sid, isec->sid, SECCLASS_MSGQ,
6134 MSGQ__ASSOCIATE, &ad);
6135}
6136
6137static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6138{
6139 int err;
6140 int perms;
6141
6142 switch (cmd) {
6143 case IPC_INFO:
6144 case MSG_INFO:
6145 /* No specific object, just general system-wide information. */
6146 return avc_has_perm(&selinux_state,
6147 current_sid(), SECINITSID_KERNEL,
6148 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6149 case IPC_STAT:
6150 case MSG_STAT:
6151 case MSG_STAT_ANY:
6152 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6153 break;
6154 case IPC_SET:
6155 perms = MSGQ__SETATTR;
6156 break;
6157 case IPC_RMID:
6158 perms = MSGQ__DESTROY;
6159 break;
6160 default:
6161 return 0;
6162 }
6163
6164 err = ipc_has_perm(msq, perms);
6165 return err;
6166}
6167
6168static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6169{
6170 struct ipc_security_struct *isec;
6171 struct msg_security_struct *msec;
6172 struct common_audit_data ad;
6173 u32 sid = current_sid();
6174 int rc;
6175
6176 isec = selinux_ipc(msq);
6177 msec = selinux_msg_msg(msg);
6178
6179 /*
6180 * First time through, need to assign label to the message
6181 */
6182 if (msec->sid == SECINITSID_UNLABELED) {
6183 /*
6184 * Compute new sid based on current process and
6185 * message queue this message will be stored in
6186 */
6187 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6188 SECCLASS_MSG, NULL, &msec->sid);
6189 if (rc)
6190 return rc;
6191 }
6192
6193 ad.type = LSM_AUDIT_DATA_IPC;
6194 ad.u.ipc_id = msq->key;
6195
6196 /* Can this process write to the queue? */
6197 rc = avc_has_perm(&selinux_state,
6198 sid, isec->sid, SECCLASS_MSGQ,
6199 MSGQ__WRITE, &ad);
6200 if (!rc)
6201 /* Can this process send the message */
6202 rc = avc_has_perm(&selinux_state,
6203 sid, msec->sid, SECCLASS_MSG,
6204 MSG__SEND, &ad);
6205 if (!rc)
6206 /* Can the message be put in the queue? */
6207 rc = avc_has_perm(&selinux_state,
6208 msec->sid, isec->sid, SECCLASS_MSGQ,
6209 MSGQ__ENQUEUE, &ad);
6210
6211 return rc;
6212}
6213
6214static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6215 struct task_struct *target,
6216 long type, int mode)
6217{
6218 struct ipc_security_struct *isec;
6219 struct msg_security_struct *msec;
6220 struct common_audit_data ad;
6221 u32 sid = task_sid_obj(target);
6222 int rc;
6223
6224 isec = selinux_ipc(msq);
6225 msec = selinux_msg_msg(msg);
6226
6227 ad.type = LSM_AUDIT_DATA_IPC;
6228 ad.u.ipc_id = msq->key;
6229
6230 rc = avc_has_perm(&selinux_state,
6231 sid, isec->sid,
6232 SECCLASS_MSGQ, MSGQ__READ, &ad);
6233 if (!rc)
6234 rc = avc_has_perm(&selinux_state,
6235 sid, msec->sid,
6236 SECCLASS_MSG, MSG__RECEIVE, &ad);
6237 return rc;
6238}
6239
6240/* Shared Memory security operations */
6241static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6242{
6243 struct ipc_security_struct *isec;
6244 struct common_audit_data ad;
6245 u32 sid = current_sid();
6246 int rc;
6247
6248 isec = selinux_ipc(shp);
6249 ipc_init_security(isec, SECCLASS_SHM);
6250
6251 ad.type = LSM_AUDIT_DATA_IPC;
6252 ad.u.ipc_id = shp->key;
6253
6254 rc = avc_has_perm(&selinux_state,
6255 sid, isec->sid, SECCLASS_SHM,
6256 SHM__CREATE, &ad);
6257 return rc;
6258}
6259
6260static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6261{
6262 struct ipc_security_struct *isec;
6263 struct common_audit_data ad;
6264 u32 sid = current_sid();
6265
6266 isec = selinux_ipc(shp);
6267
6268 ad.type = LSM_AUDIT_DATA_IPC;
6269 ad.u.ipc_id = shp->key;
6270
6271 return avc_has_perm(&selinux_state,
6272 sid, isec->sid, SECCLASS_SHM,
6273 SHM__ASSOCIATE, &ad);
6274}
6275
6276/* Note, at this point, shp is locked down */
6277static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6278{
6279 int perms;
6280 int err;
6281
6282 switch (cmd) {
6283 case IPC_INFO:
6284 case SHM_INFO:
6285 /* No specific object, just general system-wide information. */
6286 return avc_has_perm(&selinux_state,
6287 current_sid(), SECINITSID_KERNEL,
6288 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6289 case IPC_STAT:
6290 case SHM_STAT:
6291 case SHM_STAT_ANY:
6292 perms = SHM__GETATTR | SHM__ASSOCIATE;
6293 break;
6294 case IPC_SET:
6295 perms = SHM__SETATTR;
6296 break;
6297 case SHM_LOCK:
6298 case SHM_UNLOCK:
6299 perms = SHM__LOCK;
6300 break;
6301 case IPC_RMID:
6302 perms = SHM__DESTROY;
6303 break;
6304 default:
6305 return 0;
6306 }
6307
6308 err = ipc_has_perm(shp, perms);
6309 return err;
6310}
6311
6312static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6313 char __user *shmaddr, int shmflg)
6314{
6315 u32 perms;
6316
6317 if (shmflg & SHM_RDONLY)
6318 perms = SHM__READ;
6319 else
6320 perms = SHM__READ | SHM__WRITE;
6321
6322 return ipc_has_perm(shp, perms);
6323}
6324
6325/* Semaphore security operations */
6326static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6327{
6328 struct ipc_security_struct *isec;
6329 struct common_audit_data ad;
6330 u32 sid = current_sid();
6331 int rc;
6332
6333 isec = selinux_ipc(sma);
6334 ipc_init_security(isec, SECCLASS_SEM);
6335
6336 ad.type = LSM_AUDIT_DATA_IPC;
6337 ad.u.ipc_id = sma->key;
6338
6339 rc = avc_has_perm(&selinux_state,
6340 sid, isec->sid, SECCLASS_SEM,
6341 SEM__CREATE, &ad);
6342 return rc;
6343}
6344
6345static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6346{
6347 struct ipc_security_struct *isec;
6348 struct common_audit_data ad;
6349 u32 sid = current_sid();
6350
6351 isec = selinux_ipc(sma);
6352
6353 ad.type = LSM_AUDIT_DATA_IPC;
6354 ad.u.ipc_id = sma->key;
6355
6356 return avc_has_perm(&selinux_state,
6357 sid, isec->sid, SECCLASS_SEM,
6358 SEM__ASSOCIATE, &ad);
6359}
6360
6361/* Note, at this point, sma is locked down */
6362static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6363{
6364 int err;
6365 u32 perms;
6366
6367 switch (cmd) {
6368 case IPC_INFO:
6369 case SEM_INFO:
6370 /* No specific object, just general system-wide information. */
6371 return avc_has_perm(&selinux_state,
6372 current_sid(), SECINITSID_KERNEL,
6373 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6374 case GETPID:
6375 case GETNCNT:
6376 case GETZCNT:
6377 perms = SEM__GETATTR;
6378 break;
6379 case GETVAL:
6380 case GETALL:
6381 perms = SEM__READ;
6382 break;
6383 case SETVAL:
6384 case SETALL:
6385 perms = SEM__WRITE;
6386 break;
6387 case IPC_RMID:
6388 perms = SEM__DESTROY;
6389 break;
6390 case IPC_SET:
6391 perms = SEM__SETATTR;
6392 break;
6393 case IPC_STAT:
6394 case SEM_STAT:
6395 case SEM_STAT_ANY:
6396 perms = SEM__GETATTR | SEM__ASSOCIATE;
6397 break;
6398 default:
6399 return 0;
6400 }
6401
6402 err = ipc_has_perm(sma, perms);
6403 return err;
6404}
6405
6406static int selinux_sem_semop(struct kern_ipc_perm *sma,
6407 struct sembuf *sops, unsigned nsops, int alter)
6408{
6409 u32 perms;
6410
6411 if (alter)
6412 perms = SEM__READ | SEM__WRITE;
6413 else
6414 perms = SEM__READ;
6415
6416 return ipc_has_perm(sma, perms);
6417}
6418
6419static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6420{
6421 u32 av = 0;
6422
6423 av = 0;
6424 if (flag & S_IRUGO)
6425 av |= IPC__UNIX_READ;
6426 if (flag & S_IWUGO)
6427 av |= IPC__UNIX_WRITE;
6428
6429 if (av == 0)
6430 return 0;
6431
6432 return ipc_has_perm(ipcp, av);
6433}
6434
6435static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6436{
6437 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6438 *secid = isec->sid;
6439}
6440
6441static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6442{
6443 if (inode)
6444 inode_doinit_with_dentry(inode, dentry);
6445}
6446
6447static int selinux_getprocattr(struct task_struct *p,
6448 char *name, char **value)
6449{
6450 const struct task_security_struct *__tsec;
6451 u32 sid;
6452 int error;
6453 unsigned len;
6454
6455 rcu_read_lock();
6456 __tsec = selinux_cred(__task_cred(p));
6457
6458 if (current != p) {
6459 error = avc_has_perm(&selinux_state,
6460 current_sid(), __tsec->sid,
6461 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6462 if (error)
6463 goto bad;
6464 }
6465
6466 if (!strcmp(name, "current"))
6467 sid = __tsec->sid;
6468 else if (!strcmp(name, "prev"))
6469 sid = __tsec->osid;
6470 else if (!strcmp(name, "exec"))
6471 sid = __tsec->exec_sid;
6472 else if (!strcmp(name, "fscreate"))
6473 sid = __tsec->create_sid;
6474 else if (!strcmp(name, "keycreate"))
6475 sid = __tsec->keycreate_sid;
6476 else if (!strcmp(name, "sockcreate"))
6477 sid = __tsec->sockcreate_sid;
6478 else {
6479 error = -EINVAL;
6480 goto bad;
6481 }
6482 rcu_read_unlock();
6483
6484 if (!sid)
6485 return 0;
6486
6487 error = security_sid_to_context(&selinux_state, sid, value, &len);
6488 if (error)
6489 return error;
6490 return len;
6491
6492bad:
6493 rcu_read_unlock();
6494 return error;
6495}
6496
6497static int selinux_setprocattr(const char *name, void *value, size_t size)
6498{
6499 struct task_security_struct *tsec;
6500 struct cred *new;
6501 u32 mysid = current_sid(), sid = 0, ptsid;
6502 int error;
6503 char *str = value;
6504
6505 /*
6506 * Basic control over ability to set these attributes at all.
6507 */
6508 if (!strcmp(name, "exec"))
6509 error = avc_has_perm(&selinux_state,
6510 mysid, mysid, SECCLASS_PROCESS,
6511 PROCESS__SETEXEC, NULL);
6512 else if (!strcmp(name, "fscreate"))
6513 error = avc_has_perm(&selinux_state,
6514 mysid, mysid, SECCLASS_PROCESS,
6515 PROCESS__SETFSCREATE, NULL);
6516 else if (!strcmp(name, "keycreate"))
6517 error = avc_has_perm(&selinux_state,
6518 mysid, mysid, SECCLASS_PROCESS,
6519 PROCESS__SETKEYCREATE, NULL);
6520 else if (!strcmp(name, "sockcreate"))
6521 error = avc_has_perm(&selinux_state,
6522 mysid, mysid, SECCLASS_PROCESS,
6523 PROCESS__SETSOCKCREATE, NULL);
6524 else if (!strcmp(name, "current"))
6525 error = avc_has_perm(&selinux_state,
6526 mysid, mysid, SECCLASS_PROCESS,
6527 PROCESS__SETCURRENT, NULL);
6528 else
6529 error = -EINVAL;
6530 if (error)
6531 return error;
6532
6533 /* Obtain a SID for the context, if one was specified. */
6534 if (size && str[0] && str[0] != '\n') {
6535 if (str[size-1] == '\n') {
6536 str[size-1] = 0;
6537 size--;
6538 }
6539 error = security_context_to_sid(&selinux_state, value, size,
6540 &sid, GFP_KERNEL);
6541 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6542 if (!has_cap_mac_admin(true)) {
6543 struct audit_buffer *ab;
6544 size_t audit_size;
6545
6546 /* We strip a nul only if it is at the end, otherwise the
6547 * context contains a nul and we should audit that */
6548 if (str[size - 1] == '\0')
6549 audit_size = size - 1;
6550 else
6551 audit_size = size;
6552 ab = audit_log_start(audit_context(),
6553 GFP_ATOMIC,
6554 AUDIT_SELINUX_ERR);
6555 audit_log_format(ab, "op=fscreate invalid_context=");
6556 audit_log_n_untrustedstring(ab, value, audit_size);
6557 audit_log_end(ab);
6558
6559 return error;
6560 }
6561 error = security_context_to_sid_force(
6562 &selinux_state,
6563 value, size, &sid);
6564 }
6565 if (error)
6566 return error;
6567 }
6568
6569 new = prepare_creds();
6570 if (!new)
6571 return -ENOMEM;
6572
6573 /* Permission checking based on the specified context is
6574 performed during the actual operation (execve,
6575 open/mkdir/...), when we know the full context of the
6576 operation. See selinux_bprm_creds_for_exec for the execve
6577 checks and may_create for the file creation checks. The
6578 operation will then fail if the context is not permitted. */
6579 tsec = selinux_cred(new);
6580 if (!strcmp(name, "exec")) {
6581 tsec->exec_sid = sid;
6582 } else if (!strcmp(name, "fscreate")) {
6583 tsec->create_sid = sid;
6584 } else if (!strcmp(name, "keycreate")) {
6585 if (sid) {
6586 error = avc_has_perm(&selinux_state, mysid, sid,
6587 SECCLASS_KEY, KEY__CREATE, NULL);
6588 if (error)
6589 goto abort_change;
6590 }
6591 tsec->keycreate_sid = sid;
6592 } else if (!strcmp(name, "sockcreate")) {
6593 tsec->sockcreate_sid = sid;
6594 } else if (!strcmp(name, "current")) {
6595 error = -EINVAL;
6596 if (sid == 0)
6597 goto abort_change;
6598
6599 /* Only allow single threaded processes to change context */
6600 error = -EPERM;
6601 if (!current_is_single_threaded()) {
6602 error = security_bounded_transition(&selinux_state,
6603 tsec->sid, sid);
6604 if (error)
6605 goto abort_change;
6606 }
6607
6608 /* Check permissions for the transition. */
6609 error = avc_has_perm(&selinux_state,
6610 tsec->sid, sid, SECCLASS_PROCESS,
6611 PROCESS__DYNTRANSITION, NULL);
6612 if (error)
6613 goto abort_change;
6614
6615 /* Check for ptracing, and update the task SID if ok.
6616 Otherwise, leave SID unchanged and fail. */
6617 ptsid = ptrace_parent_sid();
6618 if (ptsid != 0) {
6619 error = avc_has_perm(&selinux_state,
6620 ptsid, sid, SECCLASS_PROCESS,
6621 PROCESS__PTRACE, NULL);
6622 if (error)
6623 goto abort_change;
6624 }
6625
6626 tsec->sid = sid;
6627 } else {
6628 error = -EINVAL;
6629 goto abort_change;
6630 }
6631
6632 commit_creds(new);
6633 return size;
6634
6635abort_change:
6636 abort_creds(new);
6637 return error;
6638}
6639
6640static int selinux_ismaclabel(const char *name)
6641{
6642 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6643}
6644
6645static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6646{
6647 return security_sid_to_context(&selinux_state, secid,
6648 secdata, seclen);
6649}
6650
6651static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6652{
6653 return security_context_to_sid(&selinux_state, secdata, seclen,
6654 secid, GFP_KERNEL);
6655}
6656
6657static void selinux_release_secctx(char *secdata, u32 seclen)
6658{
6659 kfree(secdata);
6660}
6661
6662static void selinux_inode_invalidate_secctx(struct inode *inode)
6663{
6664 struct inode_security_struct *isec = selinux_inode(inode);
6665
6666 spin_lock(&isec->lock);
6667 isec->initialized = LABEL_INVALID;
6668 spin_unlock(&isec->lock);
6669}
6670
6671/*
6672 * called with inode->i_mutex locked
6673 */
6674static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6675{
6676 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6677 ctx, ctxlen, 0);
6678 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6679 return rc == -EOPNOTSUPP ? 0 : rc;
6680}
6681
6682/*
6683 * called with inode->i_mutex locked
6684 */
6685static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6686{
6687 return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6688 ctx, ctxlen, 0);
6689}
6690
6691static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6692{
6693 int len = 0;
6694 len = selinux_inode_getsecurity(&init_user_ns, inode,
6695 XATTR_SELINUX_SUFFIX, ctx, true);
6696 if (len < 0)
6697 return len;
6698 *ctxlen = len;
6699 return 0;
6700}
6701#ifdef CONFIG_KEYS
6702
6703static int selinux_key_alloc(struct key *k, const struct cred *cred,
6704 unsigned long flags)
6705{
6706 const struct task_security_struct *tsec;
6707 struct key_security_struct *ksec;
6708
6709 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6710 if (!ksec)
6711 return -ENOMEM;
6712
6713 tsec = selinux_cred(cred);
6714 if (tsec->keycreate_sid)
6715 ksec->sid = tsec->keycreate_sid;
6716 else
6717 ksec->sid = tsec->sid;
6718
6719 k->security = ksec;
6720 return 0;
6721}
6722
6723static void selinux_key_free(struct key *k)
6724{
6725 struct key_security_struct *ksec = k->security;
6726
6727 k->security = NULL;
6728 kfree(ksec);
6729}
6730
6731static int selinux_key_permission(key_ref_t key_ref,
6732 const struct cred *cred,
6733 enum key_need_perm need_perm)
6734{
6735 struct key *key;
6736 struct key_security_struct *ksec;
6737 u32 perm, sid;
6738
6739 switch (need_perm) {
6740 case KEY_NEED_VIEW:
6741 perm = KEY__VIEW;
6742 break;
6743 case KEY_NEED_READ:
6744 perm = KEY__READ;
6745 break;
6746 case KEY_NEED_WRITE:
6747 perm = KEY__WRITE;
6748 break;
6749 case KEY_NEED_SEARCH:
6750 perm = KEY__SEARCH;
6751 break;
6752 case KEY_NEED_LINK:
6753 perm = KEY__LINK;
6754 break;
6755 case KEY_NEED_SETATTR:
6756 perm = KEY__SETATTR;
6757 break;
6758 case KEY_NEED_UNLINK:
6759 case KEY_SYSADMIN_OVERRIDE:
6760 case KEY_AUTHTOKEN_OVERRIDE:
6761 case KEY_DEFER_PERM_CHECK:
6762 return 0;
6763 default:
6764 WARN_ON(1);
6765 return -EPERM;
6766
6767 }
6768
6769 sid = cred_sid(cred);
6770 key = key_ref_to_ptr(key_ref);
6771 ksec = key->security;
6772
6773 return avc_has_perm(&selinux_state,
6774 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6775}
6776
6777static int selinux_key_getsecurity(struct key *key, char **_buffer)
6778{
6779 struct key_security_struct *ksec = key->security;
6780 char *context = NULL;
6781 unsigned len;
6782 int rc;
6783
6784 rc = security_sid_to_context(&selinux_state, ksec->sid,
6785 &context, &len);
6786 if (!rc)
6787 rc = len;
6788 *_buffer = context;
6789 return rc;
6790}
6791
6792#ifdef CONFIG_KEY_NOTIFICATIONS
6793static int selinux_watch_key(struct key *key)
6794{
6795 struct key_security_struct *ksec = key->security;
6796 u32 sid = current_sid();
6797
6798 return avc_has_perm(&selinux_state,
6799 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6800}
6801#endif
6802#endif
6803
6804#ifdef CONFIG_SECURITY_INFINIBAND
6805static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6806{
6807 struct common_audit_data ad;
6808 int err;
6809 u32 sid = 0;
6810 struct ib_security_struct *sec = ib_sec;
6811 struct lsm_ibpkey_audit ibpkey;
6812
6813 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6814 if (err)
6815 return err;
6816
6817 ad.type = LSM_AUDIT_DATA_IBPKEY;
6818 ibpkey.subnet_prefix = subnet_prefix;
6819 ibpkey.pkey = pkey_val;
6820 ad.u.ibpkey = &ibpkey;
6821 return avc_has_perm(&selinux_state,
6822 sec->sid, sid,
6823 SECCLASS_INFINIBAND_PKEY,
6824 INFINIBAND_PKEY__ACCESS, &ad);
6825}
6826
6827static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6828 u8 port_num)
6829{
6830 struct common_audit_data ad;
6831 int err;
6832 u32 sid = 0;
6833 struct ib_security_struct *sec = ib_sec;
6834 struct lsm_ibendport_audit ibendport;
6835
6836 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6837 &sid);
6838
6839 if (err)
6840 return err;
6841
6842 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6843 ibendport.dev_name = dev_name;
6844 ibendport.port = port_num;
6845 ad.u.ibendport = &ibendport;
6846 return avc_has_perm(&selinux_state,
6847 sec->sid, sid,
6848 SECCLASS_INFINIBAND_ENDPORT,
6849 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6850}
6851
6852static int selinux_ib_alloc_security(void **ib_sec)
6853{
6854 struct ib_security_struct *sec;
6855
6856 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6857 if (!sec)
6858 return -ENOMEM;
6859 sec->sid = current_sid();
6860
6861 *ib_sec = sec;
6862 return 0;
6863}
6864
6865static void selinux_ib_free_security(void *ib_sec)
6866{
6867 kfree(ib_sec);
6868}
6869#endif
6870
6871#ifdef CONFIG_BPF_SYSCALL
6872static int selinux_bpf(int cmd, union bpf_attr *attr,
6873 unsigned int size)
6874{
6875 u32 sid = current_sid();
6876 int ret;
6877
6878 switch (cmd) {
6879 case BPF_MAP_CREATE:
6880 ret = avc_has_perm(&selinux_state,
6881 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6882 NULL);
6883 break;
6884 case BPF_PROG_LOAD:
6885 ret = avc_has_perm(&selinux_state,
6886 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6887 NULL);
6888 break;
6889 default:
6890 ret = 0;
6891 break;
6892 }
6893
6894 return ret;
6895}
6896
6897static u32 bpf_map_fmode_to_av(fmode_t fmode)
6898{
6899 u32 av = 0;
6900
6901 if (fmode & FMODE_READ)
6902 av |= BPF__MAP_READ;
6903 if (fmode & FMODE_WRITE)
6904 av |= BPF__MAP_WRITE;
6905 return av;
6906}
6907
6908/* This function will check the file pass through unix socket or binder to see
6909 * if it is a bpf related object. And apply correspinding checks on the bpf
6910 * object based on the type. The bpf maps and programs, not like other files and
6911 * socket, are using a shared anonymous inode inside the kernel as their inode.
6912 * So checking that inode cannot identify if the process have privilege to
6913 * access the bpf object and that's why we have to add this additional check in
6914 * selinux_file_receive and selinux_binder_transfer_files.
6915 */
6916static int bpf_fd_pass(struct file *file, u32 sid)
6917{
6918 struct bpf_security_struct *bpfsec;
6919 struct bpf_prog *prog;
6920 struct bpf_map *map;
6921 int ret;
6922
6923 if (file->f_op == &bpf_map_fops) {
6924 map = file->private_data;
6925 bpfsec = map->security;
6926 ret = avc_has_perm(&selinux_state,
6927 sid, bpfsec->sid, SECCLASS_BPF,
6928 bpf_map_fmode_to_av(file->f_mode), NULL);
6929 if (ret)
6930 return ret;
6931 } else if (file->f_op == &bpf_prog_fops) {
6932 prog = file->private_data;
6933 bpfsec = prog->aux->security;
6934 ret = avc_has_perm(&selinux_state,
6935 sid, bpfsec->sid, SECCLASS_BPF,
6936 BPF__PROG_RUN, NULL);
6937 if (ret)
6938 return ret;
6939 }
6940 return 0;
6941}
6942
6943static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6944{
6945 u32 sid = current_sid();
6946 struct bpf_security_struct *bpfsec;
6947
6948 bpfsec = map->security;
6949 return avc_has_perm(&selinux_state,
6950 sid, bpfsec->sid, SECCLASS_BPF,
6951 bpf_map_fmode_to_av(fmode), NULL);
6952}
6953
6954static int selinux_bpf_prog(struct bpf_prog *prog)
6955{
6956 u32 sid = current_sid();
6957 struct bpf_security_struct *bpfsec;
6958
6959 bpfsec = prog->aux->security;
6960 return avc_has_perm(&selinux_state,
6961 sid, bpfsec->sid, SECCLASS_BPF,
6962 BPF__PROG_RUN, NULL);
6963}
6964
6965static int selinux_bpf_map_alloc(struct bpf_map *map)
6966{
6967 struct bpf_security_struct *bpfsec;
6968
6969 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6970 if (!bpfsec)
6971 return -ENOMEM;
6972
6973 bpfsec->sid = current_sid();
6974 map->security = bpfsec;
6975
6976 return 0;
6977}
6978
6979static void selinux_bpf_map_free(struct bpf_map *map)
6980{
6981 struct bpf_security_struct *bpfsec = map->security;
6982
6983 map->security = NULL;
6984 kfree(bpfsec);
6985}
6986
6987static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6988{
6989 struct bpf_security_struct *bpfsec;
6990
6991 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6992 if (!bpfsec)
6993 return -ENOMEM;
6994
6995 bpfsec->sid = current_sid();
6996 aux->security = bpfsec;
6997
6998 return 0;
6999}
7000
7001static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
7002{
7003 struct bpf_security_struct *bpfsec = aux->security;
7004
7005 aux->security = NULL;
7006 kfree(bpfsec);
7007}
7008#endif
7009
7010static int selinux_lockdown(enum lockdown_reason what)
7011{
7012 struct common_audit_data ad;
7013 u32 sid = current_sid();
7014 int invalid_reason = (what <= LOCKDOWN_NONE) ||
7015 (what == LOCKDOWN_INTEGRITY_MAX) ||
7016 (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
7017
7018 if (WARN(invalid_reason, "Invalid lockdown reason")) {
7019 audit_log(audit_context(),
7020 GFP_ATOMIC, AUDIT_SELINUX_ERR,
7021 "lockdown_reason=invalid");
7022 return -EINVAL;
7023 }
7024
7025 ad.type = LSM_AUDIT_DATA_LOCKDOWN;
7026 ad.u.reason = what;
7027
7028 if (what <= LOCKDOWN_INTEGRITY_MAX)
7029 return avc_has_perm(&selinux_state,
7030 sid, sid, SECCLASS_LOCKDOWN,
7031 LOCKDOWN__INTEGRITY, &ad);
7032 else
7033 return avc_has_perm(&selinux_state,
7034 sid, sid, SECCLASS_LOCKDOWN,
7035 LOCKDOWN__CONFIDENTIALITY, &ad);
7036}
7037
7038struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
7039 .lbs_cred = sizeof(struct task_security_struct),
7040 .lbs_file = sizeof(struct file_security_struct),
7041 .lbs_inode = sizeof(struct inode_security_struct),
7042 .lbs_ipc = sizeof(struct ipc_security_struct),
7043 .lbs_msg_msg = sizeof(struct msg_security_struct),
7044 .lbs_superblock = sizeof(struct superblock_security_struct),
7045};
7046
7047#ifdef CONFIG_PERF_EVENTS
7048static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7049{
7050 u32 requested, sid = current_sid();
7051
7052 if (type == PERF_SECURITY_OPEN)
7053 requested = PERF_EVENT__OPEN;
7054 else if (type == PERF_SECURITY_CPU)
7055 requested = PERF_EVENT__CPU;
7056 else if (type == PERF_SECURITY_KERNEL)
7057 requested = PERF_EVENT__KERNEL;
7058 else if (type == PERF_SECURITY_TRACEPOINT)
7059 requested = PERF_EVENT__TRACEPOINT;
7060 else
7061 return -EINVAL;
7062
7063 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
7064 requested, NULL);
7065}
7066
7067static int selinux_perf_event_alloc(struct perf_event *event)
7068{
7069 struct perf_event_security_struct *perfsec;
7070
7071 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7072 if (!perfsec)
7073 return -ENOMEM;
7074
7075 perfsec->sid = current_sid();
7076 event->security = perfsec;
7077
7078 return 0;
7079}
7080
7081static void selinux_perf_event_free(struct perf_event *event)
7082{
7083 struct perf_event_security_struct *perfsec = event->security;
7084
7085 event->security = NULL;
7086 kfree(perfsec);
7087}
7088
7089static int selinux_perf_event_read(struct perf_event *event)
7090{
7091 struct perf_event_security_struct *perfsec = event->security;
7092 u32 sid = current_sid();
7093
7094 return avc_has_perm(&selinux_state, sid, perfsec->sid,
7095 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7096}
7097
7098static int selinux_perf_event_write(struct perf_event *event)
7099{
7100 struct perf_event_security_struct *perfsec = event->security;
7101 u32 sid = current_sid();
7102
7103 return avc_has_perm(&selinux_state, sid, perfsec->sid,
7104 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7105}
7106#endif
7107
7108/*
7109 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7110 * 1. any hooks that don't belong to (2.) or (3.) below,
7111 * 2. hooks that both access structures allocated by other hooks, and allocate
7112 * structures that can be later accessed by other hooks (mostly "cloning"
7113 * hooks),
7114 * 3. hooks that only allocate structures that can be later accessed by other
7115 * hooks ("allocating" hooks).
7116 *
7117 * Please follow block comment delimiters in the list to keep this order.
7118 *
7119 * This ordering is needed for SELinux runtime disable to work at least somewhat
7120 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7121 * when disabling SELinux at runtime.
7122 */
7123static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7124 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7125 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7126 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7127 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7128
7129 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7130 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7131 LSM_HOOK_INIT(capget, selinux_capget),
7132 LSM_HOOK_INIT(capset, selinux_capset),
7133 LSM_HOOK_INIT(capable, selinux_capable),
7134 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7135 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7136 LSM_HOOK_INIT(syslog, selinux_syslog),
7137 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7138
7139 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7140
7141 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7142 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7143 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7144
7145 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7146 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7147 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7148 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7149 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7150 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7151 LSM_HOOK_INIT(sb_mount, selinux_mount),
7152 LSM_HOOK_INIT(sb_umount, selinux_umount),
7153 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7154 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7155
7156 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7157
7158 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7159 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7160
7161 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7162 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7163 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7164 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7165 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7166 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7167 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7168 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7169 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7170 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7171 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7172 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7173 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7174 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7175 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7176 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7177 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7178 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7179 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7180 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7181 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7182 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7183 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7184 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7185 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7186 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7187 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7188 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7189
7190 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7191
7192 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7193 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7194 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7195 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7196 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7197 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7198 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7199 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7200 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7201 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7202 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7203
7204 LSM_HOOK_INIT(file_open, selinux_file_open),
7205
7206 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7207 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7208 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7209 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7210 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7211 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7212 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7213 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7214 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7215 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7216 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7217 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7218 LSM_HOOK_INIT(task_getsecid_subj, selinux_task_getsecid_subj),
7219 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7220 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7221 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7222 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7223 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7224 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7225 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7226 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7227 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7228 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7229 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7230
7231 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7232 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7233
7234 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7235 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7236 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7237 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7238
7239 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7240 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7241 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7242
7243 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7244 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7245 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7246
7247 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7248
7249 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7250 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7251
7252 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7253 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7254 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7255 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7256 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7257 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7258
7259 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7260 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7261
7262 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7263 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7264 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7265 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7266 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7267 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7268 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7269 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7270 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7271 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7272 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7273 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7274 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7275 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7276 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7277 LSM_HOOK_INIT(socket_getpeersec_stream,
7278 selinux_socket_getpeersec_stream),
7279 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7280 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7281 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7282 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7283 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7284 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7285 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7286 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7287 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7288 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7289 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7290 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7291 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7292 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7293 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7294 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7295 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7296 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7297 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7298 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7299#ifdef CONFIG_SECURITY_INFINIBAND
7300 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7301 LSM_HOOK_INIT(ib_endport_manage_subnet,
7302 selinux_ib_endport_manage_subnet),
7303 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7304#endif
7305#ifdef CONFIG_SECURITY_NETWORK_XFRM
7306 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7307 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7308 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7309 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7310 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7311 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7312 selinux_xfrm_state_pol_flow_match),
7313 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7314#endif
7315
7316#ifdef CONFIG_KEYS
7317 LSM_HOOK_INIT(key_free, selinux_key_free),
7318 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7319 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7320#ifdef CONFIG_KEY_NOTIFICATIONS
7321 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7322#endif
7323#endif
7324
7325#ifdef CONFIG_AUDIT
7326 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7327 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7328 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7329#endif
7330
7331#ifdef CONFIG_BPF_SYSCALL
7332 LSM_HOOK_INIT(bpf, selinux_bpf),
7333 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7334 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7335 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7336 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7337#endif
7338
7339#ifdef CONFIG_PERF_EVENTS
7340 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7341 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7342 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7343 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7344#endif
7345
7346 LSM_HOOK_INIT(locked_down, selinux_lockdown),
7347
7348 /*
7349 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7350 */
7351 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7352 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7353 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7354 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7355#ifdef CONFIG_SECURITY_NETWORK_XFRM
7356 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7357#endif
7358
7359 /*
7360 * PUT "ALLOCATING" HOOKS HERE
7361 */
7362 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7363 LSM_HOOK_INIT(msg_queue_alloc_security,
7364 selinux_msg_queue_alloc_security),
7365 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7366 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7367 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7368 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7369 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7370 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7371 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7372 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7373#ifdef CONFIG_SECURITY_INFINIBAND
7374 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7375#endif
7376#ifdef CONFIG_SECURITY_NETWORK_XFRM
7377 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7378 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7379 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7380 selinux_xfrm_state_alloc_acquire),
7381#endif
7382#ifdef CONFIG_KEYS
7383 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7384#endif
7385#ifdef CONFIG_AUDIT
7386 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7387#endif
7388#ifdef CONFIG_BPF_SYSCALL
7389 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7390 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7391#endif
7392#ifdef CONFIG_PERF_EVENTS
7393 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7394#endif
7395};
7396
7397static __init int selinux_init(void)
7398{
7399 pr_info("SELinux: Initializing.\n");
7400
7401 memset(&selinux_state, 0, sizeof(selinux_state));
7402 enforcing_set(&selinux_state, selinux_enforcing_boot);
7403 checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7404 selinux_avc_init(&selinux_state.avc);
7405 mutex_init(&selinux_state.status_lock);
7406 mutex_init(&selinux_state.policy_mutex);
7407
7408 /* Set the security state for the initial task. */
7409 cred_init_security();
7410
7411 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7412
7413 avc_init();
7414
7415 avtab_cache_init();
7416
7417 ebitmap_cache_init();
7418
7419 hashtab_cache_init();
7420
7421 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7422
7423 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7424 panic("SELinux: Unable to register AVC netcache callback\n");
7425
7426 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7427 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7428
7429 if (selinux_enforcing_boot)
7430 pr_debug("SELinux: Starting in enforcing mode\n");
7431 else
7432 pr_debug("SELinux: Starting in permissive mode\n");
7433
7434 fs_validate_description("selinux", selinux_fs_parameters);
7435
7436 return 0;
7437}
7438
7439static void delayed_superblock_init(struct super_block *sb, void *unused)
7440{
7441 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7442}
7443
7444void selinux_complete_init(void)
7445{
7446 pr_debug("SELinux: Completing initialization.\n");
7447
7448 /* Set up any superblocks initialized prior to the policy load. */
7449 pr_debug("SELinux: Setting up existing superblocks.\n");
7450 iterate_supers(delayed_superblock_init, NULL);
7451}
7452
7453/* SELinux requires early initialization in order to label
7454 all processes and objects when they are created. */
7455DEFINE_LSM(selinux) = {
7456 .name = "selinux",
7457 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7458 .enabled = &selinux_enabled_boot,
7459 .blobs = &selinux_blob_sizes,
7460 .init = selinux_init,
7461};
7462
7463#if defined(CONFIG_NETFILTER)
7464
7465static const struct nf_hook_ops selinux_nf_ops[] = {
7466 {
7467 .hook = selinux_ipv4_postroute,
7468 .pf = NFPROTO_IPV4,
7469 .hooknum = NF_INET_POST_ROUTING,
7470 .priority = NF_IP_PRI_SELINUX_LAST,
7471 },
7472 {
7473 .hook = selinux_ipv4_forward,
7474 .pf = NFPROTO_IPV4,
7475 .hooknum = NF_INET_FORWARD,
7476 .priority = NF_IP_PRI_SELINUX_FIRST,
7477 },
7478 {
7479 .hook = selinux_ipv4_output,
7480 .pf = NFPROTO_IPV4,
7481 .hooknum = NF_INET_LOCAL_OUT,
7482 .priority = NF_IP_PRI_SELINUX_FIRST,
7483 },
7484#if IS_ENABLED(CONFIG_IPV6)
7485 {
7486 .hook = selinux_ipv6_postroute,
7487 .pf = NFPROTO_IPV6,
7488 .hooknum = NF_INET_POST_ROUTING,
7489 .priority = NF_IP6_PRI_SELINUX_LAST,
7490 },
7491 {
7492 .hook = selinux_ipv6_forward,
7493 .pf = NFPROTO_IPV6,
7494 .hooknum = NF_INET_FORWARD,
7495 .priority = NF_IP6_PRI_SELINUX_FIRST,
7496 },
7497 {
7498 .hook = selinux_ipv6_output,
7499 .pf = NFPROTO_IPV6,
7500 .hooknum = NF_INET_LOCAL_OUT,
7501 .priority = NF_IP6_PRI_SELINUX_FIRST,
7502 },
7503#endif /* IPV6 */
7504};
7505
7506static int __net_init selinux_nf_register(struct net *net)
7507{
7508 return nf_register_net_hooks(net, selinux_nf_ops,
7509 ARRAY_SIZE(selinux_nf_ops));
7510}
7511
7512static void __net_exit selinux_nf_unregister(struct net *net)
7513{
7514 nf_unregister_net_hooks(net, selinux_nf_ops,
7515 ARRAY_SIZE(selinux_nf_ops));
7516}
7517
7518static struct pernet_operations selinux_net_ops = {
7519 .init = selinux_nf_register,
7520 .exit = selinux_nf_unregister,
7521};
7522
7523static int __init selinux_nf_ip_init(void)
7524{
7525 int err;
7526
7527 if (!selinux_enabled_boot)
7528 return 0;
7529
7530 pr_debug("SELinux: Registering netfilter hooks\n");
7531
7532 err = register_pernet_subsys(&selinux_net_ops);
7533 if (err)
7534 panic("SELinux: register_pernet_subsys: error %d\n", err);
7535
7536 return 0;
7537}
7538__initcall(selinux_nf_ip_init);
7539
7540#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7541static void selinux_nf_ip_exit(void)
7542{
7543 pr_debug("SELinux: Unregistering netfilter hooks\n");
7544
7545 unregister_pernet_subsys(&selinux_net_ops);
7546}
7547#endif
7548
7549#else /* CONFIG_NETFILTER */
7550
7551#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7552#define selinux_nf_ip_exit()
7553#endif
7554
7555#endif /* CONFIG_NETFILTER */
7556
7557#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7558int selinux_disable(struct selinux_state *state)
7559{
7560 if (selinux_initialized(state)) {
7561 /* Not permitted after initial policy load. */
7562 return -EINVAL;
7563 }
7564
7565 if (selinux_disabled(state)) {
7566 /* Only do this once. */
7567 return -EINVAL;
7568 }
7569
7570 selinux_mark_disabled(state);
7571
7572 pr_info("SELinux: Disabled at runtime.\n");
7573
7574 /*
7575 * Unregister netfilter hooks.
7576 * Must be done before security_delete_hooks() to avoid breaking
7577 * runtime disable.
7578 */
7579 selinux_nf_ip_exit();
7580
7581 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7582
7583 /* Try to destroy the avc node cache */
7584 avc_disable();
7585
7586 /* Unregister selinuxfs. */
7587 exit_sel_fs();
7588
7589 return 0;
7590}
7591#endif