Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
 
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/ext2_fs.h>
  32#include <linux/sched.h>
  33#include <linux/security.h>
  34#include <linux/xattr.h>
  35#include <linux/capability.h>
  36#include <linux/unistd.h>
  37#include <linux/mm.h>
  38#include <linux/mman.h>
  39#include <linux/slab.h>
  40#include <linux/pagemap.h>
  41#include <linux/proc_fs.h>
  42#include <linux/swap.h>
  43#include <linux/spinlock.h>
  44#include <linux/syscalls.h>
  45#include <linux/dcache.h>
  46#include <linux/file.h>
  47#include <linux/fdtable.h>
  48#include <linux/namei.h>
  49#include <linux/mount.h>
 
 
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
 
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <linux/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
 
 
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
 
 
 
 
 
 
 
 
 
  83
  84#include "avc.h"
  85#include "objsec.h"
  86#include "netif.h"
  87#include "netnode.h"
  88#include "netport.h"
 
  89#include "xfrm.h"
  90#include "netlabel.h"
  91#include "audit.h"
 
  92
  93#define NUM_SEL_MNT_OPTS 5
  94
  95extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
  96extern struct security_operations *security_ops;
  97
  98/* SECMARK reference count */
  99atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 100
 101#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 102int selinux_enforcing;
 103
 104static int __init enforcing_setup(char *str)
 105{
 106	unsigned long enforcing;
 107	if (!strict_strtoul(str, 0, &enforcing))
 108		selinux_enforcing = enforcing ? 1 : 0;
 109	return 1;
 110}
 111__setup("enforcing=", enforcing_setup);
 
 
 112#endif
 113
 
 114#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 115int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 116
 117static int __init selinux_enabled_setup(char *str)
 118{
 119	unsigned long enabled;
 120	if (!strict_strtoul(str, 0, &enabled))
 121		selinux_enabled = enabled ? 1 : 0;
 122	return 1;
 123}
 124__setup("selinux=", selinux_enabled_setup);
 125#else
 126int selinux_enabled = 1;
 127#endif
 128
 129static struct kmem_cache *sel_inode_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.
 
 139 *
 140 */
 141static int selinux_secmark_enabled(void)
 142{
 143	return (atomic_read(&selinux_secmark_refcount) > 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144}
 145
 146/*
 147 * initialise the security for the init task
 148 */
 149static void cred_init_security(void)
 150{
 151	struct cred *cred = (struct cred *) current->real_cred;
 152	struct task_security_struct *tsec;
 153
 154	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 155	if (!tsec)
 156		panic("SELinux:  Failed to initialize initial task.\n");
 157
 158	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 159	cred->security = tsec;
 160}
 161
 162/*
 163 * get the security ID of a set of credentials
 164 */
 165static inline u32 cred_sid(const struct cred *cred)
 166{
 167	const struct task_security_struct *tsec;
 168
 169	tsec = cred->security;
 170	return tsec->sid;
 171}
 172
 173/*
 174 * get the objective security ID of a task
 175 */
 176static inline u32 task_sid(const struct task_struct *task)
 177{
 178	u32 sid;
 179
 180	rcu_read_lock();
 181	sid = cred_sid(__task_cred(task));
 182	rcu_read_unlock();
 183	return sid;
 184}
 185
 186/*
 187 * get the subjective security ID of the current task
 188 */
 189static inline u32 current_sid(void)
 190{
 191	const struct task_security_struct *tsec = current_security();
 192
 193	return tsec->sid;
 
 
 
 194}
 195
 196/* Allocate and free functions for each kind of security blob. */
 197
 198static int inode_alloc_security(struct inode *inode)
 
 199{
 200	struct inode_security_struct *isec;
 201	u32 sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202
 203	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 204	if (!isec)
 205		return -ENOMEM;
 206
 207	mutex_init(&isec->lock);
 208	INIT_LIST_HEAD(&isec->list);
 209	isec->inode = inode;
 210	isec->sid = SECINITSID_UNLABELED;
 211	isec->sclass = SECCLASS_FILE;
 212	isec->task_sid = sid;
 213	inode->i_security = isec;
 
 
 
 
 
 
 
 
 
 
 
 214
 
 
 
 
 
 
 
 215	return 0;
 216}
 217
 218static void inode_free_security(struct inode *inode)
 219{
 220	struct inode_security_struct *isec = inode->i_security;
 221	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 222
 223	spin_lock(&sbsec->isec_lock);
 224	if (!list_empty(&isec->list))
 225		list_del_init(&isec->list);
 226	spin_unlock(&sbsec->isec_lock);
 227
 228	inode->i_security = NULL;
 229	kmem_cache_free(sel_inode_cache, isec);
 230}
 231
 232static int file_alloc_security(struct file *file)
 233{
 234	struct file_security_struct *fsec;
 235	u32 sid = current_sid();
 236
 237	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 238	if (!fsec)
 239		return -ENOMEM;
 240
 241	fsec->sid = sid;
 242	fsec->fown_sid = sid;
 243	file->f_security = fsec;
 244
 245	return 0;
 
 
 
 246}
 247
 248static void file_free_security(struct file *file)
 
 
 
 249{
 250	struct file_security_struct *fsec = file->f_security;
 251	file->f_security = NULL;
 252	kfree(fsec);
 253}
 254
 255static int superblock_alloc_security(struct super_block *sb)
 256{
 257	struct superblock_security_struct *sbsec;
 258
 259	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 260	if (!sbsec)
 261		return -ENOMEM;
 262
 263	mutex_init(&sbsec->lock);
 264	INIT_LIST_HEAD(&sbsec->isec_head);
 265	spin_lock_init(&sbsec->isec_lock);
 266	sbsec->sb = sb;
 267	sbsec->sid = SECINITSID_UNLABELED;
 268	sbsec->def_sid = SECINITSID_FILE;
 269	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 270	sb->s_security = sbsec;
 271
 272	return 0;
 
 273}
 274
 275static void superblock_free_security(struct super_block *sb)
 276{
 277	struct superblock_security_struct *sbsec = sb->s_security;
 278	sb->s_security = NULL;
 279	kfree(sbsec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280}
 281
 282/* The security server must be initialized before
 283   any labeling or access decisions can be provided. */
 284extern int ss_initialized;
 285
 286/* The file system's label must be initialized prior to use. */
 287
 288static const char *labeling_behaviors[6] = {
 289	"uses xattr",
 290	"uses transition SIDs",
 291	"uses task SIDs",
 292	"uses genfs_contexts",
 293	"not configured for labeling",
 294	"uses mountpoint labeling",
 295};
 296
 297static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 298
 299static inline int inode_doinit(struct inode *inode)
 300{
 301	return inode_doinit_with_dentry(inode, NULL);
 
 
 
 
 
 302}
 303
 304enum {
 305	Opt_error = -1,
 306	Opt_context = 1,
 
 307	Opt_fscontext = 2,
 308	Opt_defcontext = 3,
 309	Opt_rootcontext = 4,
 310	Opt_labelsupport = 5,
 311};
 312
 313static const match_table_t tokens = {
 314	{Opt_context, CONTEXT_STR "%s"},
 315	{Opt_fscontext, FSCONTEXT_STR "%s"},
 316	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 317	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 318	{Opt_labelsupport, LABELSUPP_STR},
 319	{Opt_error, NULL},
 
 
 
 
 
 320};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321
 322#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 323
 324static int may_context_mount_sb_relabel(u32 sid,
 325			struct superblock_security_struct *sbsec,
 326			const struct cred *cred)
 327{
 328	const struct task_security_struct *tsec = cred->security;
 329	int rc;
 330
 331	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 332			  FILESYSTEM__RELABELFROM, NULL);
 333	if (rc)
 334		return rc;
 335
 336	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 337			  FILESYSTEM__RELABELTO, NULL);
 338	return rc;
 339}
 340
 341static int may_context_mount_inode_relabel(u32 sid,
 342			struct superblock_security_struct *sbsec,
 343			const struct cred *cred)
 344{
 345	const struct task_security_struct *tsec = cred->security;
 346	int rc;
 347	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 348			  FILESYSTEM__RELABELFROM, NULL);
 349	if (rc)
 350		return rc;
 351
 352	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 353			  FILESYSTEM__ASSOCIATE, NULL);
 354	return rc;
 355}
 356
 357static int sb_finish_set_opts(struct super_block *sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358{
 359	struct superblock_security_struct *sbsec = sb->s_security;
 360	struct dentry *root = sb->s_root;
 361	struct inode *root_inode = root->d_inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362	int rc = 0;
 363
 364	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 365		/* Make sure that the xattr handler exists and that no
 366		   error other than -ENODATA is returned by getxattr on
 367		   the root directory.  -ENODATA is ok, as this may be
 368		   the first boot of the SELinux kernel before we have
 369		   assigned xattr values to the filesystem. */
 370		if (!root_inode->i_op->getxattr) {
 371			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 372			       "xattr support\n", sb->s_id, sb->s_type->name);
 373			rc = -EOPNOTSUPP;
 374			goto out;
 375		}
 376		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 377		if (rc < 0 && rc != -ENODATA) {
 378			if (rc == -EOPNOTSUPP)
 379				printk(KERN_WARNING "SELinux: (dev %s, type "
 380				       "%s) has no security xattr handler\n",
 381				       sb->s_id, sb->s_type->name);
 382			else
 383				printk(KERN_WARNING "SELinux: (dev %s, type "
 384				       "%s) getxattr errno %d\n", sb->s_id,
 385				       sb->s_type->name, -rc);
 386			goto out;
 387		}
 388	}
 389
 390	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
 391
 392	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 393		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 394		       sb->s_id, sb->s_type->name);
 
 
 
 
 395	else
 396		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 397		       sb->s_id, sb->s_type->name,
 398		       labeling_behaviors[sbsec->behavior-1]);
 399
 400	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
 401	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
 402	    sbsec->behavior == SECURITY_FS_USE_NONE ||
 403	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 404		sbsec->flags &= ~SE_SBLABELSUPP;
 405
 406	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
 407	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 408		sbsec->flags |= SE_SBLABELSUPP;
 409
 410	/* Initialize the root inode. */
 411	rc = inode_doinit_with_dentry(root_inode, root);
 412
 413	/* Initialize any other inodes associated with the superblock, e.g.
 414	   inodes created prior to initial policy load or inodes created
 415	   during get_sb by a pseudo filesystem that directly
 416	   populates itself. */
 417	spin_lock(&sbsec->isec_lock);
 418next_inode:
 419	if (!list_empty(&sbsec->isec_head)) {
 420		struct inode_security_struct *isec =
 421				list_entry(sbsec->isec_head.next,
 422					   struct inode_security_struct, list);
 423		struct inode *inode = isec->inode;
 
 424		spin_unlock(&sbsec->isec_lock);
 425		inode = igrab(inode);
 426		if (inode) {
 427			if (!IS_PRIVATE(inode))
 428				inode_doinit(inode);
 429			iput(inode);
 430		}
 431		spin_lock(&sbsec->isec_lock);
 432		list_del_init(&isec->list);
 433		goto next_inode;
 434	}
 435	spin_unlock(&sbsec->isec_lock);
 436out:
 437	return rc;
 438}
 439
 440/*
 441 * This function should allow an FS to ask what it's mount security
 442 * options were so it can use those later for submounts, displaying
 443 * mount options, or whatever.
 444 */
 445static int selinux_get_mnt_opts(const struct super_block *sb,
 446				struct security_mnt_opts *opts)
 447{
 448	int rc = 0, i;
 449	struct superblock_security_struct *sbsec = sb->s_security;
 450	char *context = NULL;
 451	u32 len;
 452	char tmp;
 453
 454	security_init_mnt_opts(opts);
 455
 456	if (!(sbsec->flags & SE_SBINITIALIZED))
 457		return -EINVAL;
 458
 459	if (!ss_initialized)
 460		return -EINVAL;
 461
 462	tmp = sbsec->flags & SE_MNTMASK;
 463	/* count the number of mount options for this sb */
 464	for (i = 0; i < 8; i++) {
 465		if (tmp & 0x01)
 466			opts->num_mnt_opts++;
 467		tmp >>= 1;
 468	}
 469	/* Check if the Label support flag is set */
 470	if (sbsec->flags & SE_SBLABELSUPP)
 471		opts->num_mnt_opts++;
 472
 473	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 474	if (!opts->mnt_opts) {
 475		rc = -ENOMEM;
 476		goto out_free;
 477	}
 478
 479	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 480	if (!opts->mnt_opts_flags) {
 481		rc = -ENOMEM;
 482		goto out_free;
 483	}
 484
 485	i = 0;
 486	if (sbsec->flags & FSCONTEXT_MNT) {
 487		rc = security_sid_to_context(sbsec->sid, &context, &len);
 488		if (rc)
 489			goto out_free;
 490		opts->mnt_opts[i] = context;
 491		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 492	}
 493	if (sbsec->flags & CONTEXT_MNT) {
 494		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 495		if (rc)
 496			goto out_free;
 497		opts->mnt_opts[i] = context;
 498		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 499	}
 500	if (sbsec->flags & DEFCONTEXT_MNT) {
 501		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 502		if (rc)
 503			goto out_free;
 504		opts->mnt_opts[i] = context;
 505		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 506	}
 507	if (sbsec->flags & ROOTCONTEXT_MNT) {
 508		struct inode *root = sbsec->sb->s_root->d_inode;
 509		struct inode_security_struct *isec = root->i_security;
 510
 511		rc = security_sid_to_context(isec->sid, &context, &len);
 512		if (rc)
 513			goto out_free;
 514		opts->mnt_opts[i] = context;
 515		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 516	}
 517	if (sbsec->flags & SE_SBLABELSUPP) {
 518		opts->mnt_opts[i] = NULL;
 519		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
 520	}
 521
 522	BUG_ON(i != opts->num_mnt_opts);
 523
 524	return 0;
 525
 526out_free:
 527	security_free_mnt_opts(opts);
 528	return rc;
 529}
 530
 531static int bad_option(struct superblock_security_struct *sbsec, char flag,
 532		      u32 old_sid, u32 new_sid)
 533{
 534	char mnt_flags = sbsec->flags & SE_MNTMASK;
 535
 536	/* check if the old mount command had the same options */
 537	if (sbsec->flags & SE_SBINITIALIZED)
 538		if (!(sbsec->flags & flag) ||
 539		    (old_sid != new_sid))
 540			return 1;
 541
 542	/* check if we were passed the same options twice,
 543	 * aka someone passed context=a,context=b
 544	 */
 545	if (!(sbsec->flags & SE_SBINITIALIZED))
 546		if (mnt_flags & flag)
 547			return 1;
 548	return 0;
 549}
 550
 
 
 
 
 
 
 
 
 
 
 
 551/*
 552 * Allow filesystems with binary mount data to explicitly set mount point
 553 * labeling information.
 554 */
 555static int selinux_set_mnt_opts(struct super_block *sb,
 556				struct security_mnt_opts *opts)
 
 
 557{
 558	const struct cred *cred = current_cred();
 559	int rc = 0, i;
 560	struct superblock_security_struct *sbsec = sb->s_security;
 561	const char *name = sb->s_type->name;
 562	struct inode *inode = sbsec->sb->s_root->d_inode;
 563	struct inode_security_struct *root_isec = inode->i_security;
 564	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 565	u32 defcontext_sid = 0;
 566	char **mount_options = opts->mnt_opts;
 567	int *flags = opts->mnt_opts_flags;
 568	int num_opts = opts->num_mnt_opts;
 569
 570	mutex_lock(&sbsec->lock);
 571
 572	if (!ss_initialized) {
 573		if (!num_opts) {
 574			/* Defer initialization until selinux_complete_init,
 575			   after the initial policy is loaded and the security
 576			   server is ready to handle calls. */
 577			goto out;
 578		}
 579		rc = -EINVAL;
 580		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 581			"before the security server is initialized\n");
 582		goto out;
 583	}
 
 
 
 
 
 
 584
 585	/*
 586	 * Binary mount data FS will come through this function twice.  Once
 587	 * from an explicit call and once from the generic calls from the vfs.
 588	 * Since the generic VFS calls will not contain any security mount data
 589	 * we need to skip the double mount verification.
 590	 *
 591	 * This does open a hole in which we will not notice if the first
 592	 * mount using this sb set explict options and a second mount using
 593	 * this sb does not set any security options.  (The first options
 594	 * will be used for both mounts)
 595	 */
 596	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 597	    && (num_opts == 0))
 598		goto out;
 599
 
 
 600	/*
 601	 * parse the mount options, check if they are valid sids.
 602	 * also check if someone is trying to mount the same sb more
 603	 * than once with different security options.
 604	 */
 605	for (i = 0; i < num_opts; i++) {
 606		u32 sid;
 607
 608		if (flags[i] == SE_SBLABELSUPP)
 609			continue;
 610		rc = security_context_to_sid(mount_options[i],
 611					     strlen(mount_options[i]), &sid);
 612		if (rc) {
 613			printk(KERN_WARNING "SELinux: security_context_to_sid"
 614			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 615			       mount_options[i], sb->s_id, name, rc);
 616			goto out;
 617		}
 618		switch (flags[i]) {
 619		case FSCONTEXT_MNT:
 620			fscontext_sid = sid;
 621
 622			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 623					fscontext_sid))
 624				goto out_double_mount;
 625
 626			sbsec->flags |= FSCONTEXT_MNT;
 627			break;
 628		case CONTEXT_MNT:
 629			context_sid = sid;
 630
 
 631			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 632					context_sid))
 633				goto out_double_mount;
 634
 635			sbsec->flags |= CONTEXT_MNT;
 636			break;
 637		case ROOTCONTEXT_MNT:
 638			rootcontext_sid = sid;
 639
 
 640			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 641					rootcontext_sid))
 642				goto out_double_mount;
 643
 644			sbsec->flags |= ROOTCONTEXT_MNT;
 645
 646			break;
 647		case DEFCONTEXT_MNT:
 648			defcontext_sid = sid;
 649
 650			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 651					defcontext_sid))
 652				goto out_double_mount;
 653
 654			sbsec->flags |= DEFCONTEXT_MNT;
 655
 656			break;
 657		default:
 658			rc = -EINVAL;
 659			goto out;
 660		}
 661	}
 662
 663	if (sbsec->flags & SE_SBINITIALIZED) {
 664		/* previously mounted with options, but not on this attempt? */
 665		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 666			goto out_double_mount;
 667		rc = 0;
 668		goto out;
 669	}
 670
 671	if (strcmp(sb->s_type->name, "proc") == 0)
 672		sbsec->flags |= SE_SBPROC;
 673
 674	/* Determine the labeling behavior to use for this filesystem type. */
 675	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
 676	if (rc) {
 677		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
 678		       __func__, sb->s_type->name, rc);
 679		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680	}
 681
 682	/* sets the context of the superblock for the fs being mounted. */
 683	if (fscontext_sid) {
 684		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 685		if (rc)
 686			goto out;
 687
 688		sbsec->sid = fscontext_sid;
 689	}
 690
 691	/*
 692	 * Switch to using mount point labeling behavior.
 693	 * sets the label used on all file below the mountpoint, and will set
 694	 * the superblock context if not already set.
 695	 */
 
 
 
 
 
 696	if (context_sid) {
 697		if (!fscontext_sid) {
 698			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 699							  cred);
 700			if (rc)
 701				goto out;
 702			sbsec->sid = context_sid;
 703		} else {
 704			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 705							     cred);
 706			if (rc)
 707				goto out;
 708		}
 709		if (!rootcontext_sid)
 710			rootcontext_sid = context_sid;
 711
 712		sbsec->mntpoint_sid = context_sid;
 713		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 714	}
 715
 716	if (rootcontext_sid) {
 717		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 718						     cred);
 719		if (rc)
 720			goto out;
 721
 722		root_isec->sid = rootcontext_sid;
 723		root_isec->initialized = 1;
 724	}
 725
 726	if (defcontext_sid) {
 727		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
 
 728			rc = -EINVAL;
 729			printk(KERN_WARNING "SELinux: defcontext option is "
 730			       "invalid for this filesystem type\n");
 731			goto out;
 732		}
 733
 734		if (defcontext_sid != sbsec->def_sid) {
 735			rc = may_context_mount_inode_relabel(defcontext_sid,
 736							     sbsec, cred);
 737			if (rc)
 738				goto out;
 739		}
 740
 741		sbsec->def_sid = defcontext_sid;
 742	}
 743
 
 744	rc = sb_finish_set_opts(sb);
 745out:
 746	mutex_unlock(&sbsec->lock);
 747	return rc;
 748out_double_mount:
 749	rc = -EINVAL;
 750	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 751	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 752	goto out;
 753}
 754
 755static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 756					struct super_block *newsb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757{
 758	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 759	struct superblock_security_struct *newsbsec = newsb->s_security;
 
 
 760
 761	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 762	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 763	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 764
 765	/*
 766	 * if the parent was able to be mounted it clearly had no special lsm
 767	 * mount options.  thus we can safely deal with this superblock later
 768	 */
 769	if (!ss_initialized)
 770		return;
 
 
 
 
 
 
 
 771
 772	/* how can we clone if the old one wasn't set up?? */
 773	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 774
 775	/* if fs is reusing a sb, just let its options stand... */
 776	if (newsbsec->flags & SE_SBINITIALIZED)
 777		return;
 
 
 
 778
 779	mutex_lock(&newsbsec->lock);
 780
 781	newsbsec->flags = oldsbsec->flags;
 782
 783	newsbsec->sid = oldsbsec->sid;
 784	newsbsec->def_sid = oldsbsec->def_sid;
 785	newsbsec->behavior = oldsbsec->behavior;
 786
 
 
 
 
 
 
 
 
 
 
 
 
 787	if (set_context) {
 788		u32 sid = oldsbsec->mntpoint_sid;
 789
 790		if (!set_fscontext)
 791			newsbsec->sid = sid;
 792		if (!set_rootcontext) {
 793			struct inode *newinode = newsb->s_root->d_inode;
 794			struct inode_security_struct *newisec = newinode->i_security;
 795			newisec->sid = sid;
 796		}
 797		newsbsec->mntpoint_sid = sid;
 798	}
 799	if (set_rootcontext) {
 800		const struct inode *oldinode = oldsb->s_root->d_inode;
 801		const struct inode_security_struct *oldisec = oldinode->i_security;
 802		struct inode *newinode = newsb->s_root->d_inode;
 803		struct inode_security_struct *newisec = newinode->i_security;
 804
 805		newisec->sid = oldisec->sid;
 806	}
 807
 808	sb_finish_set_opts(newsb);
 
 809	mutex_unlock(&newsbsec->lock);
 
 810}
 811
 812static int selinux_parse_opts_str(char *options,
 813				  struct security_mnt_opts *opts)
 814{
 815	char *p;
 816	char *context = NULL, *defcontext = NULL;
 817	char *fscontext = NULL, *rootcontext = NULL;
 818	int rc, num_mnt_opts = 0;
 819
 820	opts->num_mnt_opts = 0;
 821
 822	/* Standard string-based options. */
 823	while ((p = strsep(&options, "|")) != NULL) {
 824		int token;
 825		substring_t args[MAX_OPT_ARGS];
 826
 827		if (!*p)
 828			continue;
 829
 830		token = match_token(p, tokens, args);
 831
 832		switch (token) {
 833		case Opt_context:
 834			if (context || defcontext) {
 835				rc = -EINVAL;
 836				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 837				goto out_err;
 838			}
 839			context = match_strdup(&args[0]);
 840			if (!context) {
 841				rc = -ENOMEM;
 842				goto out_err;
 843			}
 844			break;
 845
 846		case Opt_fscontext:
 847			if (fscontext) {
 848				rc = -EINVAL;
 849				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 850				goto out_err;
 851			}
 852			fscontext = match_strdup(&args[0]);
 853			if (!fscontext) {
 854				rc = -ENOMEM;
 855				goto out_err;
 856			}
 857			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858
 859		case Opt_rootcontext:
 860			if (rootcontext) {
 861				rc = -EINVAL;
 862				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 863				goto out_err;
 864			}
 865			rootcontext = match_strdup(&args[0]);
 866			if (!rootcontext) {
 867				rc = -ENOMEM;
 868				goto out_err;
 869			}
 870			break;
 871
 872		case Opt_defcontext:
 873			if (context || defcontext) {
 874				rc = -EINVAL;
 875				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 876				goto out_err;
 877			}
 878			defcontext = match_strdup(&args[0]);
 879			if (!defcontext) {
 880				rc = -ENOMEM;
 881				goto out_err;
 882			}
 883			break;
 884		case Opt_labelsupport:
 885			break;
 886		default:
 887			rc = -EINVAL;
 888			printk(KERN_WARNING "SELinux:  unknown mount option\n");
 889			goto out_err;
 890
 891		}
 892	}
 893
 894	rc = -ENOMEM;
 895	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
 896	if (!opts->mnt_opts)
 897		goto out_err;
 898
 899	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
 900	if (!opts->mnt_opts_flags) {
 901		kfree(opts->mnt_opts);
 902		goto out_err;
 903	}
 904
 905	if (fscontext) {
 906		opts->mnt_opts[num_mnt_opts] = fscontext;
 907		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
 908	}
 909	if (context) {
 910		opts->mnt_opts[num_mnt_opts] = context;
 911		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
 912	}
 913	if (rootcontext) {
 914		opts->mnt_opts[num_mnt_opts] = rootcontext;
 915		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
 916	}
 917	if (defcontext) {
 918		opts->mnt_opts[num_mnt_opts] = defcontext;
 919		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 
 920	}
 921
 922	opts->num_mnt_opts = num_mnt_opts;
 923	return 0;
 924
 925out_err:
 926	kfree(context);
 927	kfree(defcontext);
 928	kfree(fscontext);
 929	kfree(rootcontext);
 930	return rc;
 931}
 932/*
 933 * string mount options parsing and call set the sbsec
 934 */
 935static int superblock_doinit(struct super_block *sb, void *data)
 936{
 937	int rc = 0;
 938	char *options = data;
 939	struct security_mnt_opts opts;
 940
 941	security_init_mnt_opts(&opts);
 942
 943	if (!data)
 944		goto out;
 945
 946	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
 947
 948	rc = selinux_parse_opts_str(options, &opts);
 949	if (rc)
 950		goto out_err;
 951
 952out:
 953	rc = selinux_set_mnt_opts(sb, &opts);
 954
 955out_err:
 956	security_free_mnt_opts(&opts);
 957	return rc;
 958}
 959
 960static void selinux_write_opts(struct seq_file *m,
 961			       struct security_mnt_opts *opts)
 962{
 963	int i;
 964	char *prefix;
 
 965
 966	for (i = 0; i < opts->num_mnt_opts; i++) {
 967		char *has_comma;
 
 
 968
 969		if (opts->mnt_opts[i])
 970			has_comma = strchr(opts->mnt_opts[i], ',');
 971		else
 972			has_comma = NULL;
 973
 974		switch (opts->mnt_opts_flags[i]) {
 975		case CONTEXT_MNT:
 976			prefix = CONTEXT_STR;
 977			break;
 978		case FSCONTEXT_MNT:
 979			prefix = FSCONTEXT_STR;
 980			break;
 981		case ROOTCONTEXT_MNT:
 982			prefix = ROOTCONTEXT_STR;
 983			break;
 984		case DEFCONTEXT_MNT:
 985			prefix = DEFCONTEXT_STR;
 986			break;
 987		case SE_SBLABELSUPP:
 988			seq_putc(m, ',');
 989			seq_puts(m, LABELSUPP_STR);
 990			continue;
 991		default:
 992			BUG();
 993			return;
 994		};
 995		/* we need a comma before each option */
 996		seq_putc(m, ',');
 997		seq_puts(m, prefix);
 998		if (has_comma)
 999			seq_putc(m, '\"');
1000		seq_puts(m, opts->mnt_opts[i]);
1001		if (has_comma)
1002			seq_putc(m, '\"');
1003	}
 
 
1004}
1005
1006static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1007{
1008	struct security_mnt_opts opts;
1009	int rc;
1010
1011	rc = selinux_get_mnt_opts(sb, &opts);
1012	if (rc) {
1013		/* before policy load we may get EINVAL, don't show anything */
1014		if (rc == -EINVAL)
1015			rc = 0;
1016		return rc;
1017	}
1018
1019	selinux_write_opts(m, &opts);
1020
1021	security_free_mnt_opts(&opts);
 
1022
1023	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024}
1025
1026static inline u16 inode_mode_to_security_class(umode_t mode)
1027{
1028	switch (mode & S_IFMT) {
1029	case S_IFSOCK:
1030		return SECCLASS_SOCK_FILE;
1031	case S_IFLNK:
1032		return SECCLASS_LNK_FILE;
1033	case S_IFREG:
1034		return SECCLASS_FILE;
1035	case S_IFBLK:
1036		return SECCLASS_BLK_FILE;
1037	case S_IFDIR:
1038		return SECCLASS_DIR;
1039	case S_IFCHR:
1040		return SECCLASS_CHR_FILE;
1041	case S_IFIFO:
1042		return SECCLASS_FIFO_FILE;
1043
1044	}
1045
1046	return SECCLASS_FILE;
1047}
1048
1049static inline int default_protocol_stream(int protocol)
1050{
1051	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
 
1052}
1053
1054static inline int default_protocol_dgram(int protocol)
1055{
1056	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1057}
1058
1059static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1060{
 
 
1061	switch (family) {
1062	case PF_UNIX:
1063		switch (type) {
1064		case SOCK_STREAM:
1065		case SOCK_SEQPACKET:
1066			return SECCLASS_UNIX_STREAM_SOCKET;
1067		case SOCK_DGRAM:
 
1068			return SECCLASS_UNIX_DGRAM_SOCKET;
1069		}
1070		break;
1071	case PF_INET:
1072	case PF_INET6:
1073		switch (type) {
1074		case SOCK_STREAM:
 
1075			if (default_protocol_stream(protocol))
1076				return SECCLASS_TCP_SOCKET;
 
 
1077			else
1078				return SECCLASS_RAWIP_SOCKET;
1079		case SOCK_DGRAM:
1080			if (default_protocol_dgram(protocol))
1081				return SECCLASS_UDP_SOCKET;
 
 
 
1082			else
1083				return SECCLASS_RAWIP_SOCKET;
1084		case SOCK_DCCP:
1085			return SECCLASS_DCCP_SOCKET;
1086		default:
1087			return SECCLASS_RAWIP_SOCKET;
1088		}
1089		break;
1090	case PF_NETLINK:
1091		switch (protocol) {
1092		case NETLINK_ROUTE:
1093			return SECCLASS_NETLINK_ROUTE_SOCKET;
1094		case NETLINK_FIREWALL:
1095			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1096		case NETLINK_INET_DIAG:
1097			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1098		case NETLINK_NFLOG:
1099			return SECCLASS_NETLINK_NFLOG_SOCKET;
1100		case NETLINK_XFRM:
1101			return SECCLASS_NETLINK_XFRM_SOCKET;
1102		case NETLINK_SELINUX:
1103			return SECCLASS_NETLINK_SELINUX_SOCKET;
 
 
1104		case NETLINK_AUDIT:
1105			return SECCLASS_NETLINK_AUDIT_SOCKET;
1106		case NETLINK_IP6_FW:
1107			return SECCLASS_NETLINK_IP6FW_SOCKET;
 
 
 
 
1108		case NETLINK_DNRTMSG:
1109			return SECCLASS_NETLINK_DNRT_SOCKET;
1110		case NETLINK_KOBJECT_UEVENT:
1111			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
 
 
 
 
 
 
 
 
1112		default:
1113			return SECCLASS_NETLINK_SOCKET;
1114		}
1115	case PF_PACKET:
1116		return SECCLASS_PACKET_SOCKET;
1117	case PF_KEY:
1118		return SECCLASS_KEY_SOCKET;
1119	case PF_APPLETALK:
1120		return SECCLASS_APPLETALK_SOCKET;
1121	}
1122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123	return SECCLASS_SOCKET;
1124}
1125
1126#ifdef CONFIG_PROC_FS
1127static int selinux_proc_get_sid(struct dentry *dentry,
1128				u16 tclass,
1129				u32 *sid)
1130{
1131	int rc;
 
1132	char *buffer, *path;
1133
1134	buffer = (char *)__get_free_page(GFP_KERNEL);
1135	if (!buffer)
1136		return -ENOMEM;
1137
1138	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1139	if (IS_ERR(path))
1140		rc = PTR_ERR(path);
1141	else {
1142		/* each process gets a /proc/PID/ entry. Strip off the
1143		 * PID part to get a valid selinux labeling.
1144		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1145		while (path[1] >= '0' && path[1] <= '9') {
1146			path[1] = '/';
1147			path++;
 
 
 
 
 
 
 
 
 
1148		}
1149		rc = security_genfs_sid("proc", path, tclass, sid);
1150	}
1151	free_page((unsigned long)buffer);
1152	return rc;
1153}
1154#else
1155static int selinux_proc_get_sid(struct dentry *dentry,
1156				u16 tclass,
1157				u32 *sid)
1158{
1159	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160}
1161#endif
1162
1163/* The inode's security attributes must be initialized before first use. */
1164static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1165{
1166	struct superblock_security_struct *sbsec = NULL;
1167	struct inode_security_struct *isec = inode->i_security;
1168	u32 sid;
 
1169	struct dentry *dentry;
1170#define INITCONTEXTLEN 255
1171	char *context = NULL;
1172	unsigned len = 0;
1173	int rc = 0;
1174
1175	if (isec->initialized)
1176		goto out;
1177
1178	mutex_lock(&isec->lock);
1179	if (isec->initialized)
1180		goto out_unlock;
1181
1182	sbsec = inode->i_sb->s_security;
 
 
 
1183	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1184		/* Defer initialization until selinux_complete_init,
1185		   after the initial policy is loaded and the security
1186		   server is ready to handle calls. */
1187		spin_lock(&sbsec->isec_lock);
1188		if (list_empty(&isec->list))
1189			list_add(&isec->list, &sbsec->isec_head);
1190		spin_unlock(&sbsec->isec_lock);
1191		goto out_unlock;
1192	}
1193
 
 
 
 
 
 
1194	switch (sbsec->behavior) {
 
 
1195	case SECURITY_FS_USE_XATTR:
1196		if (!inode->i_op->getxattr) {
1197			isec->sid = sbsec->def_sid;
1198			break;
1199		}
1200
1201		/* Need a dentry, since the xattr API requires one.
1202		   Life would be simpler if we could just pass the inode. */
1203		if (opt_dentry) {
1204			/* Called from d_instantiate or d_splice_alias. */
1205			dentry = dget(opt_dentry);
1206		} else {
1207			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1208			dentry = d_find_alias(inode);
 
 
1209		}
1210		if (!dentry) {
1211			/*
1212			 * this is can be hit on boot when a file is accessed
1213			 * before the policy is loaded.  When we load policy we
1214			 * may find inodes that have no dentry on the
1215			 * sbsec->isec_head list.  No reason to complain as these
1216			 * will get fixed up the next time we go through
1217			 * inode_doinit with a dentry, before these inodes could
1218			 * be used again by userspace.
1219			 */
1220			goto out_unlock;
1221		}
1222
1223		len = INITCONTEXTLEN;
1224		context = kmalloc(len+1, GFP_NOFS);
1225		if (!context) {
1226			rc = -ENOMEM;
1227			dput(dentry);
1228			goto out_unlock;
1229		}
1230		context[len] = '\0';
1231		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1232					   context, len);
1233		if (rc == -ERANGE) {
1234			kfree(context);
1235
1236			/* Need a larger buffer.  Query for the right size. */
1237			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1238						   NULL, 0);
1239			if (rc < 0) {
1240				dput(dentry);
1241				goto out_unlock;
1242			}
1243			len = rc;
1244			context = kmalloc(len+1, GFP_NOFS);
1245			if (!context) {
1246				rc = -ENOMEM;
1247				dput(dentry);
1248				goto out_unlock;
1249			}
1250			context[len] = '\0';
1251			rc = inode->i_op->getxattr(dentry,
1252						   XATTR_NAME_SELINUX,
1253						   context, len);
1254		}
1255		dput(dentry);
1256		if (rc < 0) {
1257			if (rc != -ENODATA) {
1258				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1259				       "%d for dev=%s ino=%ld\n", __func__,
1260				       -rc, inode->i_sb->s_id, inode->i_ino);
1261				kfree(context);
1262				goto out_unlock;
1263			}
1264			/* Map ENODATA to the default file SID */
1265			sid = sbsec->def_sid;
1266			rc = 0;
1267		} else {
1268			rc = security_context_to_sid_default(context, rc, &sid,
1269							     sbsec->def_sid,
1270							     GFP_NOFS);
1271			if (rc) {
1272				char *dev = inode->i_sb->s_id;
1273				unsigned long ino = inode->i_ino;
1274
1275				if (rc == -EINVAL) {
1276					if (printk_ratelimit())
1277						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1278							"context=%s.  This indicates you may need to relabel the inode or the "
1279							"filesystem in question.\n", ino, dev, context);
1280				} else {
1281					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1282					       "returned %d for dev=%s ino=%ld\n",
1283					       __func__, context, -rc, dev, ino);
1284				}
1285				kfree(context);
1286				/* Leave with the unlabeled SID */
1287				rc = 0;
1288				break;
1289			}
1290		}
1291		kfree(context);
1292		isec->sid = sid;
1293		break;
1294	case SECURITY_FS_USE_TASK:
1295		isec->sid = isec->task_sid;
1296		break;
1297	case SECURITY_FS_USE_TRANS:
1298		/* Default to the fs SID. */
1299		isec->sid = sbsec->sid;
1300
1301		/* Try to obtain a transition SID. */
1302		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1304					     isec->sclass, NULL, &sid);
1305		if (rc)
1306			goto out_unlock;
1307		isec->sid = sid;
1308		break;
1309	case SECURITY_FS_USE_MNTPOINT:
1310		isec->sid = sbsec->mntpoint_sid;
1311		break;
1312	default:
1313		/* Default to the fs superblock SID. */
1314		isec->sid = sbsec->sid;
1315
1316		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
 
 
 
 
1317			if (opt_dentry) {
1318				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1319				rc = selinux_proc_get_sid(opt_dentry,
1320							  isec->sclass,
1321							  &sid);
1322				if (rc)
1323					goto out_unlock;
1324				isec->sid = sid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1325			}
 
1326		}
1327		break;
1328	}
1329
1330	isec->initialized = 1;
 
 
 
 
 
 
 
 
 
1331
1332out_unlock:
1333	mutex_unlock(&isec->lock);
1334out:
1335	if (isec->sclass == SECCLASS_FILE)
1336		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1337	return rc;
 
 
 
 
 
 
 
 
 
1338}
1339
1340/* Convert a Linux signal to an access vector. */
1341static inline u32 signal_to_av(int sig)
1342{
1343	u32 perm = 0;
1344
1345	switch (sig) {
1346	case SIGCHLD:
1347		/* Commonly granted from child to parent. */
1348		perm = PROCESS__SIGCHLD;
1349		break;
1350	case SIGKILL:
1351		/* Cannot be caught or ignored */
1352		perm = PROCESS__SIGKILL;
1353		break;
1354	case SIGSTOP:
1355		/* Cannot be caught or ignored */
1356		perm = PROCESS__SIGSTOP;
1357		break;
1358	default:
1359		/* All other signals. */
1360		perm = PROCESS__SIGNAL;
1361		break;
1362	}
1363
1364	return perm;
1365}
1366
1367/*
1368 * Check permission between a pair of credentials
1369 * fork check, ptrace check, etc.
1370 */
1371static int cred_has_perm(const struct cred *actor,
1372			 const struct cred *target,
1373			 u32 perms)
1374{
1375	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1376
1377	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1378}
1379
1380/*
1381 * Check permission between a pair of tasks, e.g. signal checks,
1382 * fork check, ptrace check, etc.
1383 * tsk1 is the actor and tsk2 is the target
1384 * - this uses the default subjective creds of tsk1
1385 */
1386static int task_has_perm(const struct task_struct *tsk1,
1387			 const struct task_struct *tsk2,
1388			 u32 perms)
1389{
1390	const struct task_security_struct *__tsec1, *__tsec2;
1391	u32 sid1, sid2;
1392
1393	rcu_read_lock();
1394	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1395	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1396	rcu_read_unlock();
1397	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1398}
1399
1400/*
1401 * Check permission between current and another task, e.g. signal checks,
1402 * fork check, ptrace check, etc.
1403 * current is the actor and tsk2 is the target
1404 * - this uses current's subjective creds
1405 */
1406static int current_has_perm(const struct task_struct *tsk,
1407			    u32 perms)
1408{
1409	u32 sid, tsid;
1410
1411	sid = current_sid();
1412	tsid = task_sid(tsk);
1413	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1414}
1415
1416#if CAP_LAST_CAP > 63
1417#error Fix SELinux to handle capabilities > 63.
1418#endif
1419
1420/* Check whether a task is allowed to use a capability. */
1421static int task_has_capability(struct task_struct *tsk,
1422			       const struct cred *cred,
1423			       int cap, int audit)
1424{
1425	struct common_audit_data ad;
1426	struct av_decision avd;
1427	u16 sclass;
1428	u32 sid = cred_sid(cred);
1429	u32 av = CAP_TO_MASK(cap);
1430	int rc;
1431
1432	COMMON_AUDIT_DATA_INIT(&ad, CAP);
1433	ad.tsk = tsk;
1434	ad.u.cap = cap;
1435
1436	switch (CAP_TO_INDEX(cap)) {
1437	case 0:
1438		sclass = SECCLASS_CAPABILITY;
1439		break;
1440	case 1:
1441		sclass = SECCLASS_CAPABILITY2;
1442		break;
1443	default:
1444		printk(KERN_ERR
1445		       "SELinux:  out of range capability %d\n", cap);
1446		BUG();
1447		return -EINVAL;
1448	}
1449
1450	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1451	if (audit == SECURITY_CAP_AUDIT) {
1452		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
 
 
1453		if (rc2)
1454			return rc2;
1455	}
1456	return rc;
1457}
1458
1459/* Check whether a task is allowed to use a system operation. */
1460static int task_has_system(struct task_struct *tsk,
1461			   u32 perms)
1462{
1463	u32 sid = task_sid(tsk);
1464
1465	return avc_has_perm(sid, SECINITSID_KERNEL,
1466			    SECCLASS_SYSTEM, perms, NULL);
1467}
1468
1469/* Check whether a task has a particular permission to an inode.
1470   The 'adp' parameter is optional and allows other audit
1471   data to be passed (e.g. the dentry). */
1472static int inode_has_perm(const struct cred *cred,
1473			  struct inode *inode,
1474			  u32 perms,
1475			  struct common_audit_data *adp,
1476			  unsigned flags)
1477{
1478	struct inode_security_struct *isec;
1479	u32 sid;
1480
1481	validate_creds(cred);
1482
1483	if (unlikely(IS_PRIVATE(inode)))
1484		return 0;
1485
1486	sid = cred_sid(cred);
1487	isec = inode->i_security;
1488
1489	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1490}
1491
1492static int inode_has_perm_noadp(const struct cred *cred,
1493				struct inode *inode,
1494				u32 perms,
1495				unsigned flags)
1496{
1497	struct common_audit_data ad;
1498
1499	COMMON_AUDIT_DATA_INIT(&ad, INODE);
1500	ad.u.inode = inode;
1501	return inode_has_perm(cred, inode, perms, &ad, flags);
1502}
1503
1504/* Same as inode_has_perm, but pass explicit audit data containing
1505   the dentry to help the auditing code to more easily generate the
1506   pathname if needed. */
1507static inline int dentry_has_perm(const struct cred *cred,
1508				  struct dentry *dentry,
1509				  u32 av)
1510{
1511	struct inode *inode = dentry->d_inode;
1512	struct common_audit_data ad;
1513
1514	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1515	ad.u.dentry = dentry;
1516	return inode_has_perm(cred, inode, av, &ad, 0);
 
1517}
1518
1519/* Same as inode_has_perm, but pass explicit audit data containing
1520   the path to help the auditing code to more easily generate the
1521   pathname if needed. */
1522static inline int path_has_perm(const struct cred *cred,
1523				struct path *path,
1524				u32 av)
1525{
1526	struct inode *inode = path->dentry->d_inode;
1527	struct common_audit_data ad;
1528
1529	COMMON_AUDIT_DATA_INIT(&ad, PATH);
1530	ad.u.path = *path;
1531	return inode_has_perm(cred, inode, av, &ad, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
1532}
1533
 
 
 
 
1534/* Check whether a task can use an open file descriptor to
1535   access an inode in a given way.  Check access to the
1536   descriptor itself, and then use dentry_has_perm to
1537   check a particular permission to the file.
1538   Access to the descriptor is implicitly granted if it
1539   has the same SID as the process.  If av is zero, then
1540   access to the file is not checked, e.g. for cases
1541   where only the descriptor is affected like seek. */
1542static int file_has_perm(const struct cred *cred,
1543			 struct file *file,
1544			 u32 av)
1545{
1546	struct file_security_struct *fsec = file->f_security;
1547	struct inode *inode = file->f_path.dentry->d_inode;
1548	struct common_audit_data ad;
1549	u32 sid = cred_sid(cred);
1550	int rc;
1551
1552	COMMON_AUDIT_DATA_INIT(&ad, PATH);
1553	ad.u.path = file->f_path;
1554
1555	if (sid != fsec->sid) {
1556		rc = avc_has_perm(sid, fsec->sid,
 
1557				  SECCLASS_FD,
1558				  FD__USE,
1559				  &ad);
1560		if (rc)
1561			goto out;
1562	}
1563
 
 
 
 
 
 
1564	/* av is zero if only checking access to the descriptor. */
1565	rc = 0;
1566	if (av)
1567		rc = inode_has_perm(cred, inode, av, &ad, 0);
1568
1569out:
1570	return rc;
1571}
1572
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573/* Check whether a task can create a file. */
1574static int may_create(struct inode *dir,
1575		      struct dentry *dentry,
1576		      u16 tclass)
1577{
1578	const struct task_security_struct *tsec = current_security();
1579	struct inode_security_struct *dsec;
1580	struct superblock_security_struct *sbsec;
1581	u32 sid, newsid;
1582	struct common_audit_data ad;
1583	int rc;
1584
1585	dsec = dir->i_security;
1586	sbsec = dir->i_sb->s_security;
1587
1588	sid = tsec->sid;
1589	newsid = tsec->create_sid;
1590
1591	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1592	ad.u.dentry = dentry;
1593
1594	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1595			  DIR__ADD_NAME | DIR__SEARCH,
1596			  &ad);
1597	if (rc)
1598		return rc;
1599
1600	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1601		rc = security_transition_sid(sid, dsec->sid, tclass,
1602					     &dentry->d_name, &newsid);
1603		if (rc)
1604			return rc;
1605	}
1606
1607	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1608	if (rc)
1609		return rc;
1610
1611	return avc_has_perm(newsid, sbsec->sid,
 
1612			    SECCLASS_FILESYSTEM,
1613			    FILESYSTEM__ASSOCIATE, &ad);
1614}
1615
1616/* Check whether a task can create a key. */
1617static int may_create_key(u32 ksid,
1618			  struct task_struct *ctx)
1619{
1620	u32 sid = task_sid(ctx);
1621
1622	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1623}
1624
1625#define MAY_LINK	0
1626#define MAY_UNLINK	1
1627#define MAY_RMDIR	2
1628
1629/* Check whether a task can link, unlink, or rmdir a file/directory. */
1630static int may_link(struct inode *dir,
1631		    struct dentry *dentry,
1632		    int kind)
1633
1634{
1635	struct inode_security_struct *dsec, *isec;
1636	struct common_audit_data ad;
1637	u32 sid = current_sid();
1638	u32 av;
1639	int rc;
1640
1641	dsec = dir->i_security;
1642	isec = dentry->d_inode->i_security;
1643
1644	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1645	ad.u.dentry = dentry;
1646
1647	av = DIR__SEARCH;
1648	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1649	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1650	if (rc)
1651		return rc;
1652
1653	switch (kind) {
1654	case MAY_LINK:
1655		av = FILE__LINK;
1656		break;
1657	case MAY_UNLINK:
1658		av = FILE__UNLINK;
1659		break;
1660	case MAY_RMDIR:
1661		av = DIR__RMDIR;
1662		break;
1663	default:
1664		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1665			__func__, kind);
1666		return 0;
1667	}
1668
1669	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1670	return rc;
1671}
1672
1673static inline int may_rename(struct inode *old_dir,
1674			     struct dentry *old_dentry,
1675			     struct inode *new_dir,
1676			     struct dentry *new_dentry)
1677{
1678	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1679	struct common_audit_data ad;
1680	u32 sid = current_sid();
1681	u32 av;
1682	int old_is_dir, new_is_dir;
1683	int rc;
1684
1685	old_dsec = old_dir->i_security;
1686	old_isec = old_dentry->d_inode->i_security;
1687	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1688	new_dsec = new_dir->i_security;
1689
1690	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1691
1692	ad.u.dentry = old_dentry;
1693	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1694			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1695	if (rc)
1696		return rc;
1697	rc = avc_has_perm(sid, old_isec->sid,
 
1698			  old_isec->sclass, FILE__RENAME, &ad);
1699	if (rc)
1700		return rc;
1701	if (old_is_dir && new_dir != old_dir) {
1702		rc = avc_has_perm(sid, old_isec->sid,
 
1703				  old_isec->sclass, DIR__REPARENT, &ad);
1704		if (rc)
1705			return rc;
1706	}
1707
1708	ad.u.dentry = new_dentry;
1709	av = DIR__ADD_NAME | DIR__SEARCH;
1710	if (new_dentry->d_inode)
1711		av |= DIR__REMOVE_NAME;
1712	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1713	if (rc)
1714		return rc;
1715	if (new_dentry->d_inode) {
1716		new_isec = new_dentry->d_inode->i_security;
1717		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1718		rc = avc_has_perm(sid, new_isec->sid,
 
1719				  new_isec->sclass,
1720				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1721		if (rc)
1722			return rc;
1723	}
1724
1725	return 0;
1726}
1727
1728/* Check whether a task can perform a filesystem operation. */
1729static int superblock_has_perm(const struct cred *cred,
1730			       struct super_block *sb,
1731			       u32 perms,
1732			       struct common_audit_data *ad)
1733{
1734	struct superblock_security_struct *sbsec;
1735	u32 sid = cred_sid(cred);
1736
1737	sbsec = sb->s_security;
1738	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1739}
1740
1741/* Convert a Linux mode and permission mask to an access vector. */
1742static inline u32 file_mask_to_av(int mode, int mask)
1743{
1744	u32 av = 0;
1745
1746	if ((mode & S_IFMT) != S_IFDIR) {
1747		if (mask & MAY_EXEC)
1748			av |= FILE__EXECUTE;
1749		if (mask & MAY_READ)
1750			av |= FILE__READ;
1751
1752		if (mask & MAY_APPEND)
1753			av |= FILE__APPEND;
1754		else if (mask & MAY_WRITE)
1755			av |= FILE__WRITE;
1756
1757	} else {
1758		if (mask & MAY_EXEC)
1759			av |= DIR__SEARCH;
1760		if (mask & MAY_WRITE)
1761			av |= DIR__WRITE;
1762		if (mask & MAY_READ)
1763			av |= DIR__READ;
1764	}
1765
1766	return av;
1767}
1768
1769/* Convert a Linux file to an access vector. */
1770static inline u32 file_to_av(struct file *file)
1771{
1772	u32 av = 0;
1773
1774	if (file->f_mode & FMODE_READ)
1775		av |= FILE__READ;
1776	if (file->f_mode & FMODE_WRITE) {
1777		if (file->f_flags & O_APPEND)
1778			av |= FILE__APPEND;
1779		else
1780			av |= FILE__WRITE;
1781	}
1782	if (!av) {
1783		/*
1784		 * Special file opened with flags 3 for ioctl-only use.
1785		 */
1786		av = FILE__IOCTL;
1787	}
1788
1789	return av;
1790}
1791
1792/*
1793 * Convert a file to an access vector and include the correct open
1794 * open permission.
1795 */
1796static inline u32 open_file_to_av(struct file *file)
1797{
1798	u32 av = file_to_av(file);
 
1799
1800	if (selinux_policycap_openperm)
 
1801		av |= FILE__OPEN;
1802
1803	return av;
1804}
1805
1806/* Hook functions begin here. */
1807
1808static int selinux_ptrace_access_check(struct task_struct *child,
1809				     unsigned int mode)
1810{
1811	int rc;
 
 
 
1812
1813	rc = cap_ptrace_access_check(child, mode);
1814	if (rc)
1815		return rc;
 
 
 
1816
1817	if (mode == PTRACE_MODE_READ) {
1818		u32 sid = current_sid();
1819		u32 csid = task_sid(child);
1820		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
 
 
1821	}
1822
1823	return current_has_perm(child, PROCESS__PTRACE);
 
1824}
1825
1826static int selinux_ptrace_traceme(struct task_struct *parent)
 
1827{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828	int rc;
1829
1830	rc = cap_ptrace_traceme(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831	if (rc)
1832		return rc;
 
 
 
 
1833
1834	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
 
1835}
1836
1837static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1838			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1839{
1840	int error;
 
1841
1842	error = current_has_perm(target, PROCESS__GETCAP);
1843	if (error)
1844		return error;
 
 
 
 
 
 
 
 
 
 
 
1845
1846	return cap_capget(target, effective, inheritable, permitted);
 
 
 
 
 
1847}
1848
1849static int selinux_capset(struct cred *new, const struct cred *old,
1850			  const kernel_cap_t *effective,
1851			  const kernel_cap_t *inheritable,
1852			  const kernel_cap_t *permitted)
1853{
1854	int error;
1855
1856	error = cap_capset(new, old,
1857				      effective, inheritable, permitted);
1858	if (error)
1859		return error;
1860
1861	return cred_has_perm(old, new, PROCESS__SETCAP);
1862}
1863
1864/*
1865 * (This comment used to live with the selinux_task_setuid hook,
1866 * which was removed).
1867 *
1868 * Since setuid only affects the current process, and since the SELinux
1869 * controls are not based on the Linux identity attributes, SELinux does not
1870 * need to control this operation.  However, SELinux does control the use of
1871 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1872 */
1873
1874static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1875			   struct user_namespace *ns, int cap, int audit)
1876{
1877	int rc;
1878
1879	rc = cap_capable(tsk, cred, ns, cap, audit);
1880	if (rc)
1881		return rc;
1882
1883	return task_has_capability(tsk, cred, cap, audit);
1884}
1885
1886static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1887{
1888	const struct cred *cred = current_cred();
1889	int rc = 0;
1890
1891	if (!sb)
1892		return 0;
1893
1894	switch (cmds) {
1895	case Q_SYNC:
1896	case Q_QUOTAON:
1897	case Q_QUOTAOFF:
1898	case Q_SETINFO:
1899	case Q_SETQUOTA:
 
 
 
1900		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1901		break;
1902	case Q_GETFMT:
1903	case Q_GETINFO:
1904	case Q_GETQUOTA:
 
 
 
 
1905		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1906		break;
1907	default:
1908		rc = 0;  /* let the kernel handle invalid cmds */
1909		break;
1910	}
1911	return rc;
1912}
1913
1914static int selinux_quota_on(struct dentry *dentry)
1915{
1916	const struct cred *cred = current_cred();
1917
1918	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1919}
1920
1921static int selinux_syslog(int type)
1922{
1923	int rc;
1924
1925	switch (type) {
1926	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1927	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1928		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1929		break;
 
1930	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1931	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1932	/* Set level of messages printed to console */
1933	case SYSLOG_ACTION_CONSOLE_LEVEL:
1934		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1935		break;
1936	case SYSLOG_ACTION_CLOSE:	/* Close log */
1937	case SYSLOG_ACTION_OPEN:	/* Open log */
1938	case SYSLOG_ACTION_READ:	/* Read from log */
1939	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1940	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1941	default:
1942		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1943		break;
1944	}
1945	return rc;
1946}
1947
1948/*
1949 * Check that a process has enough memory to allocate a new virtual
1950 * mapping. 0 means there is enough memory for the allocation to
1951 * succeed and -ENOMEM implies there is not.
1952 *
1953 * Do not audit the selinux permission check, as this is applied to all
1954 * processes that allocate mappings.
1955 */
1956static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1957{
1958	int rc, cap_sys_admin = 0;
1959
1960	rc = selinux_capable(current, current_cred(),
1961			     &init_user_ns, CAP_SYS_ADMIN,
1962			     SECURITY_CAP_NOAUDIT);
1963	if (rc == 0)
1964		cap_sys_admin = 1;
1965
1966	return __vm_enough_memory(mm, pages, cap_sys_admin);
1967}
1968
1969/* binprm security operations */
1970
1971static int selinux_bprm_set_creds(struct linux_binprm *bprm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972{
1973	const struct task_security_struct *old_tsec;
1974	struct task_security_struct *new_tsec;
1975	struct inode_security_struct *isec;
1976	struct common_audit_data ad;
1977	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1978	int rc;
1979
1980	rc = cap_bprm_set_creds(bprm);
1981	if (rc)
1982		return rc;
1983
1984	/* SELinux context only depends on initial program or script and not
1985	 * the script interpreter */
1986	if (bprm->cred_prepared)
1987		return 0;
1988
1989	old_tsec = current_security();
1990	new_tsec = bprm->cred->security;
1991	isec = inode->i_security;
1992
1993	/* Default to the current task SID. */
1994	new_tsec->sid = old_tsec->sid;
1995	new_tsec->osid = old_tsec->sid;
1996
1997	/* Reset fs, key, and sock SIDs on execve. */
1998	new_tsec->create_sid = 0;
1999	new_tsec->keycreate_sid = 0;
2000	new_tsec->sockcreate_sid = 0;
2001
2002	if (old_tsec->exec_sid) {
2003		new_tsec->sid = old_tsec->exec_sid;
2004		/* Reset exec SID on execve. */
2005		new_tsec->exec_sid = 0;
 
 
 
 
 
2006	} else {
2007		/* Check for a default transition on this program. */
2008		rc = security_transition_sid(old_tsec->sid, isec->sid,
2009					     SECCLASS_PROCESS, NULL,
2010					     &new_tsec->sid);
2011		if (rc)
2012			return rc;
2013	}
2014
2015	COMMON_AUDIT_DATA_INIT(&ad, PATH);
2016	ad.u.path = bprm->file->f_path;
 
 
 
 
 
 
2017
2018	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2019		new_tsec->sid = old_tsec->sid;
2020
2021	if (new_tsec->sid == old_tsec->sid) {
2022		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2023				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2024		if (rc)
2025			return rc;
2026	} else {
2027		/* Check permissions for the transition. */
2028		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2029				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2030		if (rc)
2031			return rc;
2032
2033		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2034				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2035		if (rc)
2036			return rc;
2037
2038		/* Check for shared state */
2039		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2040			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2041					  SECCLASS_PROCESS, PROCESS__SHARE,
2042					  NULL);
2043			if (rc)
2044				return -EPERM;
2045		}
2046
2047		/* Make sure that anyone attempting to ptrace over a task that
2048		 * changes its SID has the appropriate permit */
2049		if (bprm->unsafe &
2050		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2051			struct task_struct *tracer;
2052			struct task_security_struct *sec;
2053			u32 ptsid = 0;
2054
2055			rcu_read_lock();
2056			tracer = ptrace_parent(current);
2057			if (likely(tracer != NULL)) {
2058				sec = __task_cred(tracer)->security;
2059				ptsid = sec->sid;
2060			}
2061			rcu_read_unlock();
2062
2063			if (ptsid != 0) {
2064				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2065						  SECCLASS_PROCESS,
2066						  PROCESS__PTRACE, NULL);
2067				if (rc)
2068					return -EPERM;
2069			}
2070		}
2071
2072		/* Clear any possibly unsafe personality bits on exec: */
2073		bprm->per_clear |= PER_CLEAR_ON_SETID;
2074	}
2075
2076	return 0;
2077}
2078
2079static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2080{
2081	const struct task_security_struct *tsec = current_security();
2082	u32 sid, osid;
2083	int atsecure = 0;
2084
2085	sid = tsec->sid;
2086	osid = tsec->osid;
2087
2088	if (osid != sid) {
2089		/* Enable secure mode for SIDs transitions unless
2090		   the noatsecure permission is granted between
2091		   the two SIDs, i.e. ahp returns 0. */
2092		atsecure = avc_has_perm(osid, sid,
2093					SECCLASS_PROCESS,
2094					PROCESS__NOATSECURE, NULL);
 
 
2095	}
2096
2097	return (atsecure || cap_bprm_secureexec(bprm));
2098}
2099
2100extern struct vfsmount *selinuxfs_mount;
2101extern struct dentry *selinux_null;
 
 
2102
2103/* Derived from fs/exec.c:flush_old_files. */
2104static inline void flush_unauthorized_files(const struct cred *cred,
2105					    struct files_struct *files)
2106{
2107	struct common_audit_data ad;
2108	struct file *file, *devnull = NULL;
2109	struct tty_struct *tty;
2110	struct fdtable *fdt;
2111	long j = -1;
2112	int drop_tty = 0;
 
2113
2114	tty = get_current_tty();
2115	if (tty) {
2116		spin_lock(&tty_files_lock);
2117		if (!list_empty(&tty->tty_files)) {
2118			struct tty_file_private *file_priv;
2119			struct inode *inode;
2120
2121			/* Revalidate access to controlling tty.
2122			   Use inode_has_perm on the tty inode directly rather
2123			   than using file_has_perm, as this particular open
2124			   file may belong to another process and we are only
2125			   interested in the inode-based check here. */
2126			file_priv = list_first_entry(&tty->tty_files,
2127						struct tty_file_private, list);
2128			file = file_priv->file;
2129			inode = file->f_path.dentry->d_inode;
2130			if (inode_has_perm_noadp(cred, inode,
2131					   FILE__READ | FILE__WRITE, 0)) {
2132				drop_tty = 1;
2133			}
2134		}
2135		spin_unlock(&tty_files_lock);
2136		tty_kref_put(tty);
2137	}
2138	/* Reset controlling tty. */
2139	if (drop_tty)
2140		no_tty();
2141
2142	/* Revalidate access to inherited open files. */
 
 
 
2143
2144	COMMON_AUDIT_DATA_INIT(&ad, INODE);
2145
2146	spin_lock(&files->file_lock);
2147	for (;;) {
2148		unsigned long set, i;
2149		int fd;
2150
2151		j++;
2152		i = j * __NFDBITS;
2153		fdt = files_fdtable(files);
2154		if (i >= fdt->max_fds)
2155			break;
2156		set = fdt->open_fds->fds_bits[j];
2157		if (!set)
2158			continue;
2159		spin_unlock(&files->file_lock);
2160		for ( ; set ; i++, set >>= 1) {
2161			if (set & 1) {
2162				file = fget(i);
2163				if (!file)
2164					continue;
2165				if (file_has_perm(cred,
2166						  file,
2167						  file_to_av(file))) {
2168					sys_close(i);
2169					fd = get_unused_fd();
2170					if (fd != i) {
2171						if (fd >= 0)
2172							put_unused_fd(fd);
2173						fput(file);
2174						continue;
2175					}
2176					if (devnull) {
2177						get_file(devnull);
2178					} else {
2179						devnull = dentry_open(
2180							dget(selinux_null),
2181							mntget(selinuxfs_mount),
2182							O_RDWR, cred);
2183						if (IS_ERR(devnull)) {
2184							devnull = NULL;
2185							put_unused_fd(fd);
2186							fput(file);
2187							continue;
2188						}
2189					}
2190					fd_install(fd, devnull);
2191				}
2192				fput(file);
2193			}
2194		}
2195		spin_lock(&files->file_lock);
2196
2197	}
2198	spin_unlock(&files->file_lock);
2199}
2200
2201/*
2202 * Prepare a process for imminent new credential changes due to exec
2203 */
2204static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2205{
2206	struct task_security_struct *new_tsec;
2207	struct rlimit *rlim, *initrlim;
2208	int rc, i;
2209
2210	new_tsec = bprm->cred->security;
2211	if (new_tsec->sid == new_tsec->osid)
2212		return;
2213
2214	/* Close files for which the new task SID is not authorized. */
2215	flush_unauthorized_files(bprm->cred, current->files);
2216
2217	/* Always clear parent death signal on SID transitions. */
2218	current->pdeath_signal = 0;
2219
2220	/* Check whether the new SID can inherit resource limits from the old
2221	 * SID.  If not, reset all soft limits to the lower of the current
2222	 * task's hard limit and the init task's soft limit.
2223	 *
2224	 * Note that the setting of hard limits (even to lower them) can be
2225	 * controlled by the setrlimit check.  The inclusion of the init task's
2226	 * soft limit into the computation is to avoid resetting soft limits
2227	 * higher than the default soft limit for cases where the default is
2228	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2229	 */
2230	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2231			  PROCESS__RLIMITINH, NULL);
2232	if (rc) {
2233		/* protect against do_prlimit() */
2234		task_lock(current);
2235		for (i = 0; i < RLIM_NLIMITS; i++) {
2236			rlim = current->signal->rlim + i;
2237			initrlim = init_task.signal->rlim + i;
2238			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2239		}
2240		task_unlock(current);
2241		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
 
2242	}
2243}
2244
2245/*
2246 * Clean up the process immediately after the installation of new credentials
2247 * due to exec
2248 */
2249static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2250{
2251	const struct task_security_struct *tsec = current_security();
2252	struct itimerval itimer;
2253	u32 osid, sid;
2254	int rc, i;
2255
2256	osid = tsec->osid;
2257	sid = tsec->sid;
2258
2259	if (sid == osid)
2260		return;
2261
2262	/* Check whether the new SID can inherit signal state from the old SID.
2263	 * If not, clear itimers to avoid subsequent signal generation and
2264	 * flush and unblock signals.
2265	 *
2266	 * This must occur _after_ the task SID has been updated so that any
2267	 * kill done after the flush will be checked against the new SID.
2268	 */
2269	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2270	if (rc) {
2271		memset(&itimer, 0, sizeof itimer);
2272		for (i = 0; i < 3; i++)
2273			do_setitimer(i, &itimer, NULL);
2274		spin_lock_irq(&current->sighand->siglock);
2275		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2276			__flush_signals(current);
 
2277			flush_signal_handlers(current, 1);
2278			sigemptyset(&current->blocked);
 
2279		}
2280		spin_unlock_irq(&current->sighand->siglock);
2281	}
2282
2283	/* Wake up the parent if it is waiting so that it can recheck
2284	 * wait permission to the new task SID. */
2285	read_lock(&tasklist_lock);
2286	__wake_up_parent(current, current->real_parent);
2287	read_unlock(&tasklist_lock);
2288}
2289
2290/* superblock security operations */
2291
2292static int selinux_sb_alloc_security(struct super_block *sb)
2293{
2294	return superblock_alloc_security(sb);
2295}
2296
2297static void selinux_sb_free_security(struct super_block *sb)
2298{
2299	superblock_free_security(sb);
2300}
2301
2302static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2303{
2304	if (plen > olen)
2305		return 0;
2306
2307	return !memcmp(prefix, option, plen);
2308}
2309
2310static inline int selinux_option(char *option, int len)
2311{
2312	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2313		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2314		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2315		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2316		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2317}
2318
2319static inline void take_option(char **to, char *from, int *first, int len)
2320{
2321	if (!*first) {
2322		**to = ',';
2323		*to += 1;
2324	} else
2325		*first = 0;
2326	memcpy(*to, from, len);
2327	*to += len;
2328}
2329
2330static inline void take_selinux_option(char **to, char *from, int *first,
2331				       int len)
2332{
2333	int current_size = 0;
2334
2335	if (!*first) {
2336		**to = '|';
2337		*to += 1;
2338	} else
2339		*first = 0;
2340
2341	while (current_size < len) {
2342		if (*from != '"') {
2343			**to = *from;
2344			*to += 1;
2345		}
2346		from += 1;
2347		current_size += 1;
2348	}
 
2349}
2350
2351static int selinux_sb_copy_data(char *orig, char *copy)
2352{
2353	int fnosec, fsec, rc = 0;
2354	char *in_save, *in_curr, *in_end;
2355	char *sec_curr, *nosec_save, *nosec;
2356	int open_quote = 0;
2357
2358	in_curr = orig;
2359	sec_curr = copy;
2360
2361	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2362	if (!nosec) {
2363		rc = -ENOMEM;
2364		goto out;
2365	}
2366
2367	nosec_save = nosec;
2368	fnosec = fsec = 1;
2369	in_save = in_end = orig;
 
2370
2371	do {
2372		if (*in_end == '"')
2373			open_quote = !open_quote;
2374		if ((*in_end == ',' && open_quote == 0) ||
2375				*in_end == '\0') {
2376			int len = in_end - in_curr;
2377
2378			if (selinux_option(in_curr, len))
2379				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2380			else
2381				take_option(&nosec, in_curr, &fnosec, len);
2382
2383			in_curr = in_end + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384		}
2385	} while (*in_end++);
 
 
 
 
 
2386
2387	strcpy(in_save, nosec_save);
2388	free_page((unsigned long)nosec_save);
2389out:
 
 
2390	return rc;
2391}
2392
2393static int selinux_sb_remount(struct super_block *sb, void *data)
2394{
2395	int rc, i, *flags;
2396	struct security_mnt_opts opts;
2397	char *secdata, **mount_options;
2398	struct superblock_security_struct *sbsec = sb->s_security;
 
 
2399
 
 
 
 
2400	if (!(sbsec->flags & SE_SBINITIALIZED))
2401		return 0;
2402
2403	if (!data)
2404		return 0;
2405
2406	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2407		return 0;
 
2408
2409	security_init_mnt_opts(&opts);
2410	secdata = alloc_secdata();
2411	if (!secdata)
2412		return -ENOMEM;
2413	rc = selinux_sb_copy_data(data, secdata);
2414	if (rc)
2415		goto out_free_secdata;
 
 
 
 
 
 
 
 
 
2416
2417	rc = selinux_parse_opts_str(secdata, &opts);
2418	if (rc)
2419		goto out_free_secdata;
 
 
 
 
 
 
 
 
 
 
 
 
 
2420
2421	mount_options = opts.mnt_opts;
2422	flags = opts.mnt_opts_flags;
 
 
 
 
2423
2424	for (i = 0; i < opts.num_mnt_opts; i++) {
2425		u32 sid;
2426		size_t len;
2427
2428		if (flags[i] == SE_SBLABELSUPP)
2429			continue;
2430		len = strlen(mount_options[i]);
2431		rc = security_context_to_sid(mount_options[i], len, &sid);
2432		if (rc) {
2433			printk(KERN_WARNING "SELinux: security_context_to_sid"
2434			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2435			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2436			goto out_free_opts;
2437		}
2438		rc = -EINVAL;
2439		switch (flags[i]) {
2440		case FSCONTEXT_MNT:
2441			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2442				goto out_bad_option;
2443			break;
2444		case CONTEXT_MNT:
2445			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2446				goto out_bad_option;
2447			break;
2448		case ROOTCONTEXT_MNT: {
2449			struct inode_security_struct *root_isec;
2450			root_isec = sb->s_root->d_inode->i_security;
2451
2452			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2453				goto out_bad_option;
2454			break;
2455		}
2456		case DEFCONTEXT_MNT:
2457			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2458				goto out_bad_option;
2459			break;
2460		default:
2461			goto out_free_opts;
2462		}
2463	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2464
2465	rc = 0;
2466out_free_opts:
2467	security_free_mnt_opts(&opts);
2468out_free_secdata:
2469	free_secdata(secdata);
2470	return rc;
2471out_bad_option:
2472	printk(KERN_WARNING "SELinux: unable to change security options "
2473	       "during remount (dev %s, type=%s)\n", sb->s_id,
2474	       sb->s_type->name);
2475	goto out_free_opts;
2476}
2477
2478static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2479{
2480	const struct cred *cred = current_cred();
2481	struct common_audit_data ad;
2482	int rc;
2483
2484	rc = superblock_doinit(sb, data);
2485	if (rc)
2486		return rc;
2487
2488	/* Allow all mounts performed by the kernel */
2489	if (flags & MS_KERNMOUNT)
2490		return 0;
2491
2492	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2493	ad.u.dentry = sb->s_root;
2494	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2495}
2496
2497static int selinux_sb_statfs(struct dentry *dentry)
2498{
2499	const struct cred *cred = current_cred();
2500	struct common_audit_data ad;
2501
2502	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2503	ad.u.dentry = dentry->d_sb->s_root;
2504	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2505}
2506
2507static int selinux_mount(char *dev_name,
2508			 struct path *path,
2509			 char *type,
2510			 unsigned long flags,
2511			 void *data)
2512{
2513	const struct cred *cred = current_cred();
2514
2515	if (flags & MS_REMOUNT)
2516		return superblock_has_perm(cred, path->mnt->mnt_sb,
2517					   FILESYSTEM__REMOUNT, NULL);
2518	else
2519		return path_has_perm(cred, path, FILE__MOUNTON);
2520}
2521
 
 
 
 
 
 
 
 
2522static int selinux_umount(struct vfsmount *mnt, int flags)
2523{
2524	const struct cred *cred = current_cred();
2525
2526	return superblock_has_perm(cred, mnt->mnt_sb,
2527				   FILESYSTEM__UNMOUNT, NULL);
2528}
2529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2530/* inode security operations */
2531
2532static int selinux_inode_alloc_security(struct inode *inode)
2533{
2534	return inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
2535}
2536
2537static void selinux_inode_free_security(struct inode *inode)
2538{
2539	inode_free_security(inode);
2540}
2541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2542static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2543				       const struct qstr *qstr, char **name,
 
2544				       void **value, size_t *len)
2545{
2546	const struct task_security_struct *tsec = current_security();
2547	struct inode_security_struct *dsec;
2548	struct superblock_security_struct *sbsec;
2549	u32 sid, newsid, clen;
2550	int rc;
2551	char *namep = NULL, *context;
2552
2553	dsec = dir->i_security;
2554	sbsec = dir->i_sb->s_security;
2555
2556	sid = tsec->sid;
2557	newsid = tsec->create_sid;
2558
2559	if ((sbsec->flags & SE_SBINITIALIZED) &&
2560	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2561		newsid = sbsec->mntpoint_sid;
2562	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2563		rc = security_transition_sid(sid, dsec->sid,
2564					     inode_mode_to_security_class(inode->i_mode),
2565					     qstr, &newsid);
2566		if (rc) {
2567			printk(KERN_WARNING "%s:  "
2568			       "security_transition_sid failed, rc=%d (dev=%s "
2569			       "ino=%ld)\n",
2570			       __func__,
2571			       -rc, inode->i_sb->s_id, inode->i_ino);
2572			return rc;
2573		}
2574	}
2575
2576	/* Possibly defer initialization to selinux_complete_init. */
2577	if (sbsec->flags & SE_SBINITIALIZED) {
2578		struct inode_security_struct *isec = inode->i_security;
2579		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2580		isec->sid = newsid;
2581		isec->initialized = 1;
2582	}
2583
2584	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
 
2585		return -EOPNOTSUPP;
2586
2587	if (name) {
2588		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2589		if (!namep)
2590			return -ENOMEM;
2591		*name = namep;
2592	}
2593
2594	if (value && len) {
2595		rc = security_sid_to_context_force(newsid, &context, &clen);
2596		if (rc) {
2597			kfree(namep);
2598			return rc;
2599		}
2600		*value = context;
2601		*len = clen;
2602	}
2603
2604	return 0;
2605}
2606
2607static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608{
2609	return may_create(dir, dentry, SECCLASS_FILE);
2610}
2611
2612static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2613{
2614	return may_link(dir, old_dentry, MAY_LINK);
2615}
2616
2617static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2618{
2619	return may_link(dir, dentry, MAY_UNLINK);
2620}
2621
2622static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2623{
2624	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2625}
2626
2627static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2628{
2629	return may_create(dir, dentry, SECCLASS_DIR);
2630}
2631
2632static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2633{
2634	return may_link(dir, dentry, MAY_RMDIR);
2635}
2636
2637static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2638{
2639	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2640}
2641
2642static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2643				struct inode *new_inode, struct dentry *new_dentry)
2644{
2645	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2646}
2647
2648static int selinux_inode_readlink(struct dentry *dentry)
2649{
2650	const struct cred *cred = current_cred();
2651
2652	return dentry_has_perm(cred, dentry, FILE__READ);
2653}
2654
2655static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
 
2656{
2657	const struct cred *cred = current_cred();
 
 
 
2658
2659	return dentry_has_perm(cred, dentry, FILE__READ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660}
2661
2662static int selinux_inode_permission(struct inode *inode, int mask)
2663{
2664	const struct cred *cred = current_cred();
2665	struct common_audit_data ad;
2666	u32 perms;
2667	bool from_access;
2668	unsigned flags = mask & MAY_NOT_BLOCK;
 
 
 
 
 
2669
2670	from_access = mask & MAY_ACCESS;
2671	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2672
2673	/* No permission to check.  Existence test. */
2674	if (!mask)
2675		return 0;
2676
2677	COMMON_AUDIT_DATA_INIT(&ad, INODE);
2678	ad.u.inode = inode;
2679
2680	if (from_access)
2681		ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2682
2683	perms = file_mask_to_av(inode->i_mode, mask);
2684
2685	return inode_has_perm(cred, inode, perms, &ad, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686}
2687
2688static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2689{
2690	const struct cred *cred = current_cred();
 
2691	unsigned int ia_valid = iattr->ia_valid;
 
2692
2693	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2694	if (ia_valid & ATTR_FORCE) {
2695		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2696			      ATTR_FORCE);
2697		if (!ia_valid)
2698			return 0;
2699	}
2700
2701	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2702			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2703		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2704
2705	return dentry_has_perm(cred, dentry, FILE__WRITE);
 
 
 
 
 
 
2706}
2707
2708static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2709{
2710	const struct cred *cred = current_cred();
2711	struct path path;
2712
2713	path.dentry = dentry;
2714	path.mnt = mnt;
2715
2716	return path_has_perm(cred, &path, FILE__GETATTR);
2717}
2718
2719static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2720{
2721	const struct cred *cred = current_cred();
 
2722
2723	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2724		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2725		if (!strcmp(name, XATTR_NAME_CAPS)) {
2726			if (!capable(CAP_SETFCAP))
2727				return -EPERM;
2728		} else if (!capable(CAP_SYS_ADMIN)) {
2729			/* A different attribute in the security namespace.
2730			   Restrict to administrator. */
2731			return -EPERM;
2732		}
2733	}
2734
2735	/* Not an attribute we recognize, so just check the
2736	   ordinary setattr permission. */
2737	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2738}
2739
2740static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
 
2741				  const void *value, size_t size, int flags)
2742{
2743	struct inode *inode = dentry->d_inode;
2744	struct inode_security_struct *isec = inode->i_security;
2745	struct superblock_security_struct *sbsec;
2746	struct common_audit_data ad;
2747	u32 newsid, sid = current_sid();
2748	int rc = 0;
2749
2750	if (strcmp(name, XATTR_NAME_SELINUX))
2751		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
2752
2753	sbsec = inode->i_sb->s_security;
2754	if (!(sbsec->flags & SE_SBLABELSUPP))
2755		return -EOPNOTSUPP;
2756
2757	if (!inode_owner_or_capable(inode))
2758		return -EPERM;
2759
2760	COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2761	ad.u.dentry = dentry;
2762
2763	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
 
2764			  FILE__RELABELFROM, &ad);
2765	if (rc)
2766		return rc;
2767
2768	rc = security_context_to_sid(value, size, &newsid);
 
2769	if (rc == -EINVAL) {
2770		if (!capable(CAP_MAC_ADMIN))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2771			return rc;
2772		rc = security_context_to_sid_force(value, size, &newsid);
 
 
2773	}
2774	if (rc)
2775		return rc;
2776
2777	rc = avc_has_perm(sid, newsid, isec->sclass,
 
2778			  FILE__RELABELTO, &ad);
2779	if (rc)
2780		return rc;
2781
2782	rc = security_validate_transition(isec->sid, newsid, sid,
2783					  isec->sclass);
2784	if (rc)
2785		return rc;
2786
2787	return avc_has_perm(newsid,
 
2788			    sbsec->sid,
2789			    SECCLASS_FILESYSTEM,
2790			    FILESYSTEM__ASSOCIATE,
2791			    &ad);
2792}
2793
2794static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2795					const void *value, size_t size,
2796					int flags)
2797{
2798	struct inode *inode = dentry->d_inode;
2799	struct inode_security_struct *isec = inode->i_security;
2800	u32 newsid;
2801	int rc;
2802
2803	if (strcmp(name, XATTR_NAME_SELINUX)) {
2804		/* Not an attribute we recognize, so nothing to do. */
2805		return;
2806	}
2807
2808	rc = security_context_to_sid_force(value, size, &newsid);
 
 
 
 
 
 
 
 
 
 
2809	if (rc) {
2810		printk(KERN_ERR "SELinux:  unable to map context to SID"
2811		       "for (%s, %lu), rc=%d\n",
2812		       inode->i_sb->s_id, inode->i_ino, -rc);
2813		return;
2814	}
2815
 
 
 
2816	isec->sid = newsid;
 
 
 
2817	return;
2818}
2819
2820static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2821{
2822	const struct cred *cred = current_cred();
2823
2824	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2825}
2826
2827static int selinux_inode_listxattr(struct dentry *dentry)
2828{
2829	const struct cred *cred = current_cred();
2830
2831	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2832}
2833
2834static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
 
2835{
2836	if (strcmp(name, XATTR_NAME_SELINUX))
2837		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
2838
2839	/* No one is allowed to remove a SELinux security label.
2840	   You can change the label, but all data must be labeled. */
2841	return -EACCES;
2842}
2843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2844/*
2845 * Copy the inode security context value to the user.
2846 *
2847 * Permission check is handled by selinux_inode_getxattr hook.
2848 */
2849static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 
 
2850{
2851	u32 size;
2852	int error;
2853	char *context = NULL;
2854	struct inode_security_struct *isec = inode->i_security;
2855
2856	if (strcmp(name, XATTR_SELINUX_SUFFIX))
 
 
 
 
 
2857		return -EOPNOTSUPP;
2858
2859	/*
2860	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2861	 * value even if it is not defined by current policy; otherwise,
2862	 * use the in-core value under current policy.
2863	 * Use the non-auditing forms of the permission checks since
2864	 * getxattr may be called by unprivileged processes commonly
2865	 * and lack of permission just means that we fall back to the
2866	 * in-core context value, not a denial.
2867	 */
2868	error = selinux_capable(current, current_cred(),
2869				&init_user_ns, CAP_MAC_ADMIN,
2870				SECURITY_CAP_NOAUDIT);
2871	if (!error)
2872		error = security_sid_to_context_force(isec->sid, &context,
2873						      &size);
2874	else
2875		error = security_sid_to_context(isec->sid, &context, &size);
 
2876	if (error)
2877		return error;
2878	error = size;
2879	if (alloc) {
2880		*buffer = context;
2881		goto out_nofree;
2882	}
2883	kfree(context);
2884out_nofree:
2885	return error;
2886}
2887
2888static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2889				     const void *value, size_t size, int flags)
2890{
2891	struct inode_security_struct *isec = inode->i_security;
 
2892	u32 newsid;
2893	int rc;
2894
2895	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2896		return -EOPNOTSUPP;
2897
 
 
 
 
2898	if (!value || !size)
2899		return -EACCES;
2900
2901	rc = security_context_to_sid((void *)value, size, &newsid);
 
2902	if (rc)
2903		return rc;
2904
 
 
2905	isec->sid = newsid;
2906	isec->initialized = 1;
 
2907	return 0;
2908}
2909
2910static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2911{
2912	const int len = sizeof(XATTR_NAME_SELINUX);
 
 
 
 
2913	if (buffer && len <= buffer_size)
2914		memcpy(buffer, XATTR_NAME_SELINUX, len);
2915	return len;
2916}
2917
2918static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2919{
2920	struct inode_security_struct *isec = inode->i_security;
2921	*secid = isec->sid;
2922}
2923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924/* file security operations */
2925
2926static int selinux_revalidate_file_permission(struct file *file, int mask)
2927{
2928	const struct cred *cred = current_cred();
2929	struct inode *inode = file->f_path.dentry->d_inode;
2930
2931	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2932	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2933		mask |= MAY_APPEND;
2934
2935	return file_has_perm(cred, file,
2936			     file_mask_to_av(inode->i_mode, mask));
2937}
2938
2939static int selinux_file_permission(struct file *file, int mask)
2940{
2941	struct inode *inode = file->f_path.dentry->d_inode;
2942	struct file_security_struct *fsec = file->f_security;
2943	struct inode_security_struct *isec = inode->i_security;
2944	u32 sid = current_sid();
2945
2946	if (!mask)
2947		/* No permission to check.  Existence test. */
2948		return 0;
2949
 
2950	if (sid == fsec->sid && fsec->isid == isec->sid &&
2951	    fsec->pseqno == avc_policy_seqno())
2952		/* No change since dentry_open check. */
2953		return 0;
2954
2955	return selinux_revalidate_file_permission(file, mask);
2956}
2957
2958static int selinux_file_alloc_security(struct file *file)
2959{
2960	return file_alloc_security(file);
 
 
 
 
 
 
2961}
2962
2963static void selinux_file_free_security(struct file *file)
 
 
 
 
 
2964{
2965	file_free_security(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2966}
2967
2968static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2969			      unsigned long arg)
2970{
2971	const struct cred *cred = current_cred();
2972	int error = 0;
2973
2974	switch (cmd) {
2975	case FIONREAD:
2976	/* fall through */
2977	case FIBMAP:
2978	/* fall through */
2979	case FIGETBSZ:
2980	/* fall through */
2981	case EXT2_IOC_GETFLAGS:
2982	/* fall through */
2983	case EXT2_IOC_GETVERSION:
2984		error = file_has_perm(cred, file, FILE__GETATTR);
2985		break;
2986
2987	case EXT2_IOC_SETFLAGS:
2988	/* fall through */
2989	case EXT2_IOC_SETVERSION:
2990		error = file_has_perm(cred, file, FILE__SETATTR);
2991		break;
2992
2993	/* sys_ioctl() checks */
2994	case FIONBIO:
2995	/* fall through */
2996	case FIOASYNC:
2997		error = file_has_perm(cred, file, 0);
2998		break;
2999
3000	case KDSKBENT:
3001	case KDSKBSENT:
3002		error = task_has_capability(current, cred, CAP_SYS_TTY_CONFIG,
3003					SECURITY_CAP_AUDIT);
3004		break;
3005
3006	/* default case assumes that the command will go
3007	 * to the file's ioctl() function.
3008	 */
3009	default:
3010		error = file_has_perm(cred, file, FILE__IOCTL);
3011	}
3012	return error;
3013}
3014
3015static int default_noexec;
3016
3017static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3018{
3019	const struct cred *cred = current_cred();
 
3020	int rc = 0;
3021
3022	if (default_noexec &&
3023	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
 
3024		/*
3025		 * We are making executable an anonymous mapping or a
3026		 * private file mapping that will also be writable.
3027		 * This has an additional check.
3028		 */
3029		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3030		if (rc)
3031			goto error;
3032	}
3033
3034	if (file) {
3035		/* read access is always possible with a mapping */
3036		u32 av = FILE__READ;
3037
3038		/* write access only matters if the mapping is shared */
3039		if (shared && (prot & PROT_WRITE))
3040			av |= FILE__WRITE;
3041
3042		if (prot & PROT_EXEC)
3043			av |= FILE__EXECUTE;
3044
3045		return file_has_perm(cred, file, av);
3046	}
3047
3048error:
3049	return rc;
3050}
3051
3052static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3053			     unsigned long prot, unsigned long flags,
3054			     unsigned long addr, unsigned long addr_only)
3055{
3056	int rc = 0;
3057	u32 sid = current_sid();
3058
3059	/*
3060	 * notice that we are intentionally putting the SELinux check before
3061	 * the secondary cap_file_mmap check.  This is such a likely attempt
3062	 * at bad behaviour/exploit that we always want to get the AVC, even
3063	 * if DAC would have also denied the operation.
3064	 */
3065	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3066		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
 
3067				  MEMPROTECT__MMAP_ZERO, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3068		if (rc)
3069			return rc;
3070	}
3071
3072	/* do DAC check on address space usage */
3073	rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3074	if (rc || addr_only)
3075		return rc;
3076
3077	if (selinux_checkreqprot)
3078		prot = reqprot;
3079
3080	return file_map_prot_check(file, prot,
3081				   (flags & MAP_TYPE) == MAP_SHARED);
3082}
3083
3084static int selinux_file_mprotect(struct vm_area_struct *vma,
3085				 unsigned long reqprot,
3086				 unsigned long prot)
3087{
3088	const struct cred *cred = current_cred();
 
3089
3090	if (selinux_checkreqprot)
3091		prot = reqprot;
3092
3093	if (default_noexec &&
3094	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3095		int rc = 0;
3096		if (vma->vm_start >= vma->vm_mm->start_brk &&
3097		    vma->vm_end <= vma->vm_mm->brk) {
3098			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3099		} else if (!vma->vm_file &&
3100			   vma->vm_start <= vma->vm_mm->start_stack &&
3101			   vma->vm_end >= vma->vm_mm->start_stack) {
3102			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
 
3103		} else if (vma->vm_file && vma->anon_vma) {
3104			/*
3105			 * We are making executable a file mapping that has
3106			 * had some COW done. Since pages might have been
3107			 * written, check ability to execute the possibly
3108			 * modified content.  This typically should only
3109			 * occur for text relocations.
3110			 */
3111			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3112		}
3113		if (rc)
3114			return rc;
3115	}
3116
3117	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3118}
3119
3120static int selinux_file_lock(struct file *file, unsigned int cmd)
3121{
3122	const struct cred *cred = current_cred();
3123
3124	return file_has_perm(cred, file, FILE__LOCK);
3125}
3126
3127static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3128			      unsigned long arg)
3129{
3130	const struct cred *cred = current_cred();
3131	int err = 0;
3132
3133	switch (cmd) {
3134	case F_SETFL:
3135		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3136			err = -EINVAL;
3137			break;
3138		}
3139
3140		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3141			err = file_has_perm(cred, file, FILE__WRITE);
3142			break;
3143		}
3144		/* fall through */
3145	case F_SETOWN:
3146	case F_SETSIG:
3147	case F_GETFL:
3148	case F_GETOWN:
3149	case F_GETSIG:
 
3150		/* Just check FD__USE permission */
3151		err = file_has_perm(cred, file, 0);
3152		break;
3153	case F_GETLK:
3154	case F_SETLK:
3155	case F_SETLKW:
 
 
 
3156#if BITS_PER_LONG == 32
3157	case F_GETLK64:
3158	case F_SETLK64:
3159	case F_SETLKW64:
3160#endif
3161		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3162			err = -EINVAL;
3163			break;
3164		}
3165		err = file_has_perm(cred, file, FILE__LOCK);
3166		break;
3167	}
3168
3169	return err;
3170}
3171
3172static int selinux_file_set_fowner(struct file *file)
3173{
3174	struct file_security_struct *fsec;
3175
3176	fsec = file->f_security;
3177	fsec->fown_sid = current_sid();
3178
3179	return 0;
3180}
3181
3182static int selinux_file_send_sigiotask(struct task_struct *tsk,
3183				       struct fown_struct *fown, int signum)
3184{
3185	struct file *file;
3186	u32 sid = task_sid(tsk);
3187	u32 perm;
3188	struct file_security_struct *fsec;
3189
3190	/* struct fown_struct is never outside the context of a struct file */
3191	file = container_of(fown, struct file, f_owner);
3192
3193	fsec = file->f_security;
3194
3195	if (!signum)
3196		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3197	else
3198		perm = signal_to_av(signum);
3199
3200	return avc_has_perm(fsec->fown_sid, sid,
 
3201			    SECCLASS_PROCESS, perm, NULL);
3202}
3203
3204static int selinux_file_receive(struct file *file)
3205{
3206	const struct cred *cred = current_cred();
3207
3208	return file_has_perm(cred, file, file_to_av(file));
3209}
3210
3211static int selinux_dentry_open(struct file *file, const struct cred *cred)
3212{
3213	struct file_security_struct *fsec;
3214	struct inode *inode;
3215	struct inode_security_struct *isec;
3216
3217	inode = file->f_path.dentry->d_inode;
3218	fsec = file->f_security;
3219	isec = inode->i_security;
3220	/*
3221	 * Save inode label and policy sequence number
3222	 * at open-time so that selinux_file_permission
3223	 * can determine whether revalidation is necessary.
3224	 * Task label is already saved in the file security
3225	 * struct as its SID.
3226	 */
3227	fsec->isid = isec->sid;
3228	fsec->pseqno = avc_policy_seqno();
3229	/*
3230	 * Since the inode label or policy seqno may have changed
3231	 * between the selinux_inode_permission check and the saving
3232	 * of state above, recheck that access is still permitted.
3233	 * Otherwise, access might never be revalidated against the
3234	 * new inode label or new policy.
3235	 * This check is not redundant - do not remove.
3236	 */
3237	return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0);
3238}
3239
3240/* task security operations */
3241
3242static int selinux_task_create(unsigned long clone_flags)
3243{
3244	return current_has_perm(current, PROCESS__FORK);
3245}
3246
3247/*
3248 * allocate the SELinux part of blank credentials
3249 */
3250static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3251{
3252	struct task_security_struct *tsec;
3253
3254	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3255	if (!tsec)
3256		return -ENOMEM;
3257
3258	cred->security = tsec;
3259	return 0;
3260}
3261
3262/*
3263 * detach and free the LSM part of a set of credentials
3264 */
3265static void selinux_cred_free(struct cred *cred)
3266{
3267	struct task_security_struct *tsec = cred->security;
3268
3269	/*
3270	 * cred->security == NULL if security_cred_alloc_blank() or
3271	 * security_prepare_creds() returned an error.
3272	 */
3273	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3274	cred->security = (void *) 0x7UL;
3275	kfree(tsec);
3276}
3277
3278/*
3279 * prepare a new set of credentials for modification
3280 */
3281static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3282				gfp_t gfp)
3283{
3284	const struct task_security_struct *old_tsec;
3285	struct task_security_struct *tsec;
3286
3287	old_tsec = old->security;
3288
3289	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3290	if (!tsec)
3291		return -ENOMEM;
3292
3293	new->security = tsec;
3294	return 0;
3295}
3296
3297/*
3298 * transfer the SELinux data to a blank set of creds
3299 */
3300static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3301{
3302	const struct task_security_struct *old_tsec = old->security;
3303	struct task_security_struct *tsec = new->security;
3304
3305	*tsec = *old_tsec;
3306}
3307
 
 
 
 
 
3308/*
3309 * set the security data for a kernel service
3310 * - all the creation contexts are set to unlabelled
3311 */
3312static int selinux_kernel_act_as(struct cred *new, u32 secid)
3313{
3314	struct task_security_struct *tsec = new->security;
3315	u32 sid = current_sid();
3316	int ret;
3317
3318	ret = avc_has_perm(sid, secid,
 
3319			   SECCLASS_KERNEL_SERVICE,
3320			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3321			   NULL);
3322	if (ret == 0) {
3323		tsec->sid = secid;
3324		tsec->create_sid = 0;
3325		tsec->keycreate_sid = 0;
3326		tsec->sockcreate_sid = 0;
3327	}
3328	return ret;
3329}
3330
3331/*
3332 * set the file creation context in a security record to the same as the
3333 * objective context of the specified inode
3334 */
3335static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3336{
3337	struct inode_security_struct *isec = inode->i_security;
3338	struct task_security_struct *tsec = new->security;
3339	u32 sid = current_sid();
3340	int ret;
3341
3342	ret = avc_has_perm(sid, isec->sid,
 
3343			   SECCLASS_KERNEL_SERVICE,
3344			   KERNEL_SERVICE__CREATE_FILES_AS,
3345			   NULL);
3346
3347	if (ret == 0)
3348		tsec->create_sid = isec->sid;
3349	return ret;
3350}
3351
3352static int selinux_kernel_module_request(char *kmod_name)
3353{
3354	u32 sid;
3355	struct common_audit_data ad;
3356
3357	sid = task_sid(current);
3358
3359	COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3360	ad.u.kmod_name = kmod_name;
3361
3362	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3363			    SYSTEM__MODULE_REQUEST, &ad);
3364}
3365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3366static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3367{
3368	return current_has_perm(p, PROCESS__SETPGID);
 
 
3369}
3370
3371static int selinux_task_getpgid(struct task_struct *p)
3372{
3373	return current_has_perm(p, PROCESS__GETPGID);
 
 
3374}
3375
3376static int selinux_task_getsid(struct task_struct *p)
3377{
3378	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3379}
3380
3381static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3382{
3383	*secid = task_sid(p);
3384}
3385
3386static int selinux_task_setnice(struct task_struct *p, int nice)
3387{
3388	int rc;
3389
3390	rc = cap_task_setnice(p, nice);
3391	if (rc)
3392		return rc;
3393
3394	return current_has_perm(p, PROCESS__SETSCHED);
 
 
 
 
3395}
3396
3397static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3398{
3399	int rc;
3400
3401	rc = cap_task_setioprio(p, ioprio);
3402	if (rc)
3403		return rc;
3404
3405	return current_has_perm(p, PROCESS__SETSCHED);
3406}
3407
3408static int selinux_task_getioprio(struct task_struct *p)
3409{
3410	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3411}
3412
3413static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3414		struct rlimit *new_rlim)
3415{
3416	struct rlimit *old_rlim = p->signal->rlim + resource;
3417
3418	/* Control the ability to change the hard limit (whether
3419	   lowering or raising it), so that the hard limit can
3420	   later be used as a safe reset point for the soft limit
3421	   upon context transitions.  See selinux_bprm_committing_creds. */
3422	if (old_rlim->rlim_max != new_rlim->rlim_max)
3423		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3424
3425	return 0;
3426}
3427
3428static int selinux_task_setscheduler(struct task_struct *p)
3429{
3430	int rc;
3431
3432	rc = cap_task_setscheduler(p);
3433	if (rc)
3434		return rc;
3435
3436	return current_has_perm(p, PROCESS__SETSCHED);
3437}
3438
3439static int selinux_task_getscheduler(struct task_struct *p)
3440{
3441	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3442}
3443
3444static int selinux_task_movememory(struct task_struct *p)
3445{
3446	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3447}
3448
3449static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3450				int sig, u32 secid)
3451{
 
3452	u32 perm;
3453	int rc;
3454
3455	if (!sig)
3456		perm = PROCESS__SIGNULL; /* null signal; existence test */
3457	else
3458		perm = signal_to_av(sig);
3459	if (secid)
3460		rc = avc_has_perm(secid, task_sid(p),
3461				  SECCLASS_PROCESS, perm, NULL);
3462	else
3463		rc = current_has_perm(p, perm);
3464	return rc;
3465}
3466
3467static int selinux_task_wait(struct task_struct *p)
3468{
3469	return task_has_perm(p, current, PROCESS__SIGCHLD);
3470}
3471
3472static void selinux_task_to_inode(struct task_struct *p,
3473				  struct inode *inode)
3474{
3475	struct inode_security_struct *isec = inode->i_security;
3476	u32 sid = task_sid(p);
3477
 
 
3478	isec->sid = sid;
3479	isec->initialized = 1;
 
3480}
3481
3482/* Returns error only if unable to parse addresses */
3483static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3484			struct common_audit_data *ad, u8 *proto)
3485{
3486	int offset, ihlen, ret = -EINVAL;
3487	struct iphdr _iph, *ih;
3488
3489	offset = skb_network_offset(skb);
3490	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3491	if (ih == NULL)
3492		goto out;
3493
3494	ihlen = ih->ihl * 4;
3495	if (ihlen < sizeof(_iph))
3496		goto out;
3497
3498	ad->u.net.v4info.saddr = ih->saddr;
3499	ad->u.net.v4info.daddr = ih->daddr;
3500	ret = 0;
3501
3502	if (proto)
3503		*proto = ih->protocol;
3504
3505	switch (ih->protocol) {
3506	case IPPROTO_TCP: {
3507		struct tcphdr _tcph, *th;
3508
3509		if (ntohs(ih->frag_off) & IP_OFFSET)
3510			break;
3511
3512		offset += ihlen;
3513		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3514		if (th == NULL)
3515			break;
3516
3517		ad->u.net.sport = th->source;
3518		ad->u.net.dport = th->dest;
3519		break;
3520	}
3521
3522	case IPPROTO_UDP: {
3523		struct udphdr _udph, *uh;
3524
3525		if (ntohs(ih->frag_off) & IP_OFFSET)
3526			break;
3527
3528		offset += ihlen;
3529		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3530		if (uh == NULL)
3531			break;
3532
3533		ad->u.net.sport = uh->source;
3534		ad->u.net.dport = uh->dest;
3535		break;
3536	}
3537
3538	case IPPROTO_DCCP: {
3539		struct dccp_hdr _dccph, *dh;
3540
3541		if (ntohs(ih->frag_off) & IP_OFFSET)
3542			break;
3543
3544		offset += ihlen;
3545		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3546		if (dh == NULL)
3547			break;
3548
3549		ad->u.net.sport = dh->dccph_sport;
3550		ad->u.net.dport = dh->dccph_dport;
3551		break;
3552	}
3553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3554	default:
3555		break;
3556	}
3557out:
3558	return ret;
3559}
3560
3561#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3562
3563/* Returns error only if unable to parse addresses */
3564static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3565			struct common_audit_data *ad, u8 *proto)
3566{
3567	u8 nexthdr;
3568	int ret = -EINVAL, offset;
3569	struct ipv6hdr _ipv6h, *ip6;
 
3570
3571	offset = skb_network_offset(skb);
3572	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3573	if (ip6 == NULL)
3574		goto out;
3575
3576	ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3577	ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3578	ret = 0;
3579
3580	nexthdr = ip6->nexthdr;
3581	offset += sizeof(_ipv6h);
3582	offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3583	if (offset < 0)
3584		goto out;
3585
3586	if (proto)
3587		*proto = nexthdr;
3588
3589	switch (nexthdr) {
3590	case IPPROTO_TCP: {
3591		struct tcphdr _tcph, *th;
3592
3593		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3594		if (th == NULL)
3595			break;
3596
3597		ad->u.net.sport = th->source;
3598		ad->u.net.dport = th->dest;
3599		break;
3600	}
3601
3602	case IPPROTO_UDP: {
3603		struct udphdr _udph, *uh;
3604
3605		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3606		if (uh == NULL)
3607			break;
3608
3609		ad->u.net.sport = uh->source;
3610		ad->u.net.dport = uh->dest;
3611		break;
3612	}
3613
3614	case IPPROTO_DCCP: {
3615		struct dccp_hdr _dccph, *dh;
3616
3617		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3618		if (dh == NULL)
3619			break;
3620
3621		ad->u.net.sport = dh->dccph_sport;
3622		ad->u.net.dport = dh->dccph_dport;
3623		break;
3624	}
3625
 
 
 
 
 
 
 
 
 
 
 
 
 
3626	/* includes fragments */
3627	default:
3628		break;
3629	}
3630out:
3631	return ret;
3632}
3633
3634#endif /* IPV6 */
3635
3636static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3637			     char **_addrp, int src, u8 *proto)
3638{
3639	char *addrp;
3640	int ret;
3641
3642	switch (ad->u.net.family) {
3643	case PF_INET:
3644		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3645		if (ret)
3646			goto parse_error;
3647		addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3648				       &ad->u.net.v4info.daddr);
3649		goto okay;
3650
3651#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3652	case PF_INET6:
3653		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3654		if (ret)
3655			goto parse_error;
3656		addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3657				       &ad->u.net.v6info.daddr);
3658		goto okay;
3659#endif	/* IPV6 */
3660	default:
3661		addrp = NULL;
3662		goto okay;
3663	}
3664
3665parse_error:
3666	printk(KERN_WARNING
3667	       "SELinux: failure in selinux_parse_skb(),"
3668	       " unable to parse packet\n");
3669	return ret;
3670
3671okay:
3672	if (_addrp)
3673		*_addrp = addrp;
3674	return 0;
3675}
3676
3677/**
3678 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3679 * @skb: the packet
3680 * @family: protocol family
3681 * @sid: the packet's peer label SID
3682 *
3683 * Description:
3684 * Check the various different forms of network peer labeling and determine
3685 * the peer label/SID for the packet; most of the magic actually occurs in
3686 * the security server function security_net_peersid_cmp().  The function
3687 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3688 * or -EACCES if @sid is invalid due to inconsistencies with the different
3689 * peer labels.
3690 *
3691 */
3692static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3693{
3694	int err;
3695	u32 xfrm_sid;
3696	u32 nlbl_sid;
3697	u32 nlbl_type;
3698
3699	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3700	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
 
 
 
 
3701
3702	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
3703	if (unlikely(err)) {
3704		printk(KERN_WARNING
3705		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3706		       " unable to determine packet's peer label\n");
3707		return -EACCES;
3708	}
3709
3710	return 0;
3711}
3712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3713/* socket security operations */
3714
3715static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3716				 u16 secclass, u32 *socksid)
3717{
3718	if (tsec->sockcreate_sid > SECSID_NULL) {
3719		*socksid = tsec->sockcreate_sid;
3720		return 0;
3721	}
3722
3723	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3724				       socksid);
3725}
3726
3727static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3728{
3729	struct sk_security_struct *sksec = sk->sk_security;
3730	struct common_audit_data ad;
3731	u32 tsid = task_sid(task);
3732
3733	if (sksec->sid == SECINITSID_KERNEL)
3734		return 0;
3735
3736	COMMON_AUDIT_DATA_INIT(&ad, NET);
3737	ad.u.net.sk = sk;
 
3738
3739	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
3740}
3741
3742static int selinux_socket_create(int family, int type,
3743				 int protocol, int kern)
3744{
3745	const struct task_security_struct *tsec = current_security();
3746	u32 newsid;
3747	u16 secclass;
3748	int rc;
3749
3750	if (kern)
3751		return 0;
3752
3753	secclass = socket_type_to_security_class(family, type, protocol);
3754	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3755	if (rc)
3756		return rc;
3757
3758	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
3759}
3760
3761static int selinux_socket_post_create(struct socket *sock, int family,
3762				      int type, int protocol, int kern)
3763{
3764	const struct task_security_struct *tsec = current_security();
3765	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3766	struct sk_security_struct *sksec;
 
 
3767	int err = 0;
3768
3769	isec->sclass = socket_type_to_security_class(family, type, protocol);
3770
3771	if (kern)
3772		isec->sid = SECINITSID_KERNEL;
3773	else {
3774		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3775		if (err)
3776			return err;
3777	}
3778
3779	isec->initialized = 1;
 
 
3780
3781	if (sock->sk) {
3782		sksec = sock->sk->sk_security;
3783		sksec->sid = isec->sid;
3784		sksec->sclass = isec->sclass;
 
 
 
 
3785		err = selinux_netlbl_socket_post_create(sock->sk, family);
3786	}
3787
3788	return err;
3789}
3790
 
 
 
 
 
 
 
 
 
 
 
 
3791/* Range of port numbers used to automatically bind.
3792   Need to determine whether we should perform a name_bind
3793   permission check between the socket and the port number. */
3794
3795static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3796{
3797	struct sock *sk = sock->sk;
 
3798	u16 family;
3799	int err;
3800
3801	err = sock_has_perm(current, sk, SOCKET__BIND);
3802	if (err)
3803		goto out;
3804
3805	/*
3806	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3807	 * Multiple address binding for SCTP is not supported yet: we just
3808	 * check the first address now.
3809	 */
3810	family = sk->sk_family;
3811	if (family == PF_INET || family == PF_INET6) {
3812		char *addrp;
3813		struct sk_security_struct *sksec = sk->sk_security;
3814		struct common_audit_data ad;
 
3815		struct sockaddr_in *addr4 = NULL;
3816		struct sockaddr_in6 *addr6 = NULL;
 
3817		unsigned short snum;
3818		u32 sid, node_perm;
3819
3820		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
3821			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
3822			snum = ntohs(addr4->sin_port);
3823			addrp = (char *)&addr4->sin_addr.s_addr;
3824		} else {
 
 
 
3825			addr6 = (struct sockaddr_in6 *)address;
3826			snum = ntohs(addr6->sin6_port);
3827			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
3828		}
3829
 
 
 
 
 
3830		if (snum) {
3831			int low, high;
3832
3833			inet_get_local_port_range(&low, &high);
3834
3835			if (snum < max(PROT_SOCK, low) || snum > high) {
 
3836				err = sel_netport_sid(sk->sk_protocol,
3837						      snum, &sid);
3838				if (err)
3839					goto out;
3840				COMMON_AUDIT_DATA_INIT(&ad, NET);
3841				ad.u.net.sport = htons(snum);
3842				ad.u.net.family = family;
3843				err = avc_has_perm(sksec->sid, sid,
3844						   sksec->sclass,
3845						   SOCKET__NAME_BIND, &ad);
3846				if (err)
3847					goto out;
3848			}
3849		}
3850
3851		switch (sksec->sclass) {
3852		case SECCLASS_TCP_SOCKET:
3853			node_perm = TCP_SOCKET__NODE_BIND;
3854			break;
3855
3856		case SECCLASS_UDP_SOCKET:
3857			node_perm = UDP_SOCKET__NODE_BIND;
3858			break;
3859
3860		case SECCLASS_DCCP_SOCKET:
3861			node_perm = DCCP_SOCKET__NODE_BIND;
3862			break;
3863
 
 
 
 
3864		default:
3865			node_perm = RAWIP_SOCKET__NODE_BIND;
3866			break;
3867		}
3868
3869		err = sel_netnode_sid(addrp, family, &sid);
3870		if (err)
3871			goto out;
3872
3873		COMMON_AUDIT_DATA_INIT(&ad, NET);
3874		ad.u.net.sport = htons(snum);
3875		ad.u.net.family = family;
3876
3877		if (family == PF_INET)
3878			ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3879		else
3880			ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3881
3882		err = avc_has_perm(sksec->sid, sid,
 
3883				   sksec->sclass, node_perm, &ad);
3884		if (err)
3885			goto out;
3886	}
3887out:
3888	return err;
 
 
 
 
 
3889}
3890
3891static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
3892{
3893	struct sock *sk = sock->sk;
3894	struct sk_security_struct *sksec = sk->sk_security;
3895	int err;
3896
3897	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3898	if (err)
3899		return err;
 
 
 
 
 
 
 
 
3900
3901	/*
3902	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
3903	 */
3904	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3905	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
3906		struct common_audit_data ad;
 
3907		struct sockaddr_in *addr4 = NULL;
3908		struct sockaddr_in6 *addr6 = NULL;
3909		unsigned short snum;
3910		u32 sid, perm;
3911
3912		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
3913			addr4 = (struct sockaddr_in *)address;
3914			if (addrlen < sizeof(struct sockaddr_in))
3915				return -EINVAL;
3916			snum = ntohs(addr4->sin_port);
3917		} else {
 
3918			addr6 = (struct sockaddr_in6 *)address;
3919			if (addrlen < SIN6_LEN_RFC2133)
3920				return -EINVAL;
3921			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
3922		}
3923
3924		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3925		if (err)
3926			goto out;
3927
3928		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3929		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
3930
3931		COMMON_AUDIT_DATA_INIT(&ad, NET);
3932		ad.u.net.dport = htons(snum);
3933		ad.u.net.family = sk->sk_family;
3934		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
 
3935		if (err)
3936			goto out;
3937	}
3938
3939	err = selinux_netlbl_socket_connect(sk, address);
 
3940
3941out:
3942	return err;
 
 
 
 
 
 
 
 
 
 
3943}
3944
3945static int selinux_socket_listen(struct socket *sock, int backlog)
3946{
3947	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3948}
3949
3950static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3951{
3952	int err;
3953	struct inode_security_struct *isec;
3954	struct inode_security_struct *newisec;
 
 
3955
3956	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3957	if (err)
3958		return err;
3959
3960	newisec = SOCK_INODE(newsock)->i_security;
3961
3962	isec = SOCK_INODE(sock)->i_security;
3963	newisec->sclass = isec->sclass;
3964	newisec->sid = isec->sid;
3965	newisec->initialized = 1;
 
 
 
 
3966
3967	return 0;
3968}
3969
3970static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3971				  int size)
3972{
3973	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3974}
3975
3976static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3977				  int size, int flags)
3978{
3979	return sock_has_perm(current, sock->sk, SOCKET__READ);
3980}
3981
3982static int selinux_socket_getsockname(struct socket *sock)
3983{
3984	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3985}
3986
3987static int selinux_socket_getpeername(struct socket *sock)
3988{
3989	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3990}
3991
3992static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3993{
3994	int err;
3995
3996	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3997	if (err)
3998		return err;
3999
4000	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4001}
4002
4003static int selinux_socket_getsockopt(struct socket *sock, int level,
4004				     int optname)
4005{
4006	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4007}
4008
4009static int selinux_socket_shutdown(struct socket *sock, int how)
4010{
4011	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4012}
4013
4014static int selinux_socket_unix_stream_connect(struct sock *sock,
4015					      struct sock *other,
4016					      struct sock *newsk)
4017{
4018	struct sk_security_struct *sksec_sock = sock->sk_security;
4019	struct sk_security_struct *sksec_other = other->sk_security;
4020	struct sk_security_struct *sksec_new = newsk->sk_security;
4021	struct common_audit_data ad;
 
4022	int err;
4023
4024	COMMON_AUDIT_DATA_INIT(&ad, NET);
4025	ad.u.net.sk = other;
 
4026
4027	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4028			   sksec_other->sclass,
4029			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4030	if (err)
4031		return err;
4032
4033	/* server child socket */
4034	sksec_new->peer_sid = sksec_sock->sid;
4035	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4036				    &sksec_new->sid);
4037	if (err)
4038		return err;
4039
4040	/* connecting socket */
4041	sksec_sock->peer_sid = sksec_new->sid;
4042
4043	return 0;
4044}
4045
4046static int selinux_socket_unix_may_send(struct socket *sock,
4047					struct socket *other)
4048{
4049	struct sk_security_struct *ssec = sock->sk->sk_security;
4050	struct sk_security_struct *osec = other->sk->sk_security;
4051	struct common_audit_data ad;
 
4052
4053	COMMON_AUDIT_DATA_INIT(&ad, NET);
4054	ad.u.net.sk = other->sk;
 
4055
4056	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4057			    &ad);
4058}
4059
4060static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4061				    u32 peer_sid,
4062				    struct common_audit_data *ad)
4063{
4064	int err;
4065	u32 if_sid;
4066	u32 node_sid;
4067
4068	err = sel_netif_sid(ifindex, &if_sid);
4069	if (err)
4070		return err;
4071	err = avc_has_perm(peer_sid, if_sid,
 
4072			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4073	if (err)
4074		return err;
4075
4076	err = sel_netnode_sid(addrp, family, &node_sid);
4077	if (err)
4078		return err;
4079	return avc_has_perm(peer_sid, node_sid,
 
4080			    SECCLASS_NODE, NODE__RECVFROM, ad);
4081}
4082
4083static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4084				       u16 family)
4085{
4086	int err = 0;
4087	struct sk_security_struct *sksec = sk->sk_security;
4088	u32 sk_sid = sksec->sid;
4089	struct common_audit_data ad;
 
4090	char *addrp;
4091
4092	COMMON_AUDIT_DATA_INIT(&ad, NET);
4093	ad.u.net.netif = skb->skb_iif;
4094	ad.u.net.family = family;
 
4095	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4096	if (err)
4097		return err;
4098
4099	if (selinux_secmark_enabled()) {
4100		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4101				   PACKET__RECV, &ad);
4102		if (err)
4103			return err;
4104	}
4105
4106	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4107	if (err)
4108		return err;
4109	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4110
4111	return err;
4112}
4113
4114static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4115{
4116	int err;
4117	struct sk_security_struct *sksec = sk->sk_security;
4118	u16 family = sk->sk_family;
4119	u32 sk_sid = sksec->sid;
4120	struct common_audit_data ad;
 
4121	char *addrp;
4122	u8 secmark_active;
4123	u8 peerlbl_active;
4124
4125	if (family != PF_INET && family != PF_INET6)
4126		return 0;
4127
4128	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4129	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4130		family = PF_INET;
4131
4132	/* If any sort of compatibility mode is enabled then handoff processing
4133	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4134	 * special handling.  We do this in an attempt to keep this function
4135	 * as fast and as clean as possible. */
4136	if (!selinux_policycap_netpeer)
4137		return selinux_sock_rcv_skb_compat(sk, skb, family);
4138
4139	secmark_active = selinux_secmark_enabled();
4140	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4141	if (!secmark_active && !peerlbl_active)
4142		return 0;
4143
4144	COMMON_AUDIT_DATA_INIT(&ad, NET);
4145	ad.u.net.netif = skb->skb_iif;
4146	ad.u.net.family = family;
 
4147	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4148	if (err)
4149		return err;
4150
4151	if (peerlbl_active) {
4152		u32 peer_sid;
4153
4154		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4155		if (err)
4156			return err;
4157		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4158					       peer_sid, &ad);
4159		if (err) {
4160			selinux_netlbl_err(skb, err, 0);
4161			return err;
4162		}
4163		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4164				   PEER__RECV, &ad);
4165		if (err)
4166			selinux_netlbl_err(skb, err, 0);
 
 
4167	}
4168
4169	if (secmark_active) {
4170		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4171				   PACKET__RECV, &ad);
4172		if (err)
4173			return err;
4174	}
4175
4176	return err;
4177}
4178
4179static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4180					    int __user *optlen, unsigned len)
4181{
4182	int err = 0;
4183	char *scontext;
4184	u32 scontext_len;
4185	struct sk_security_struct *sksec = sock->sk->sk_security;
4186	u32 peer_sid = SECSID_NULL;
4187
4188	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4189	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4190		peer_sid = sksec->peer_sid;
4191	if (peer_sid == SECSID_NULL)
4192		return -ENOPROTOOPT;
4193
4194	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4195	if (err)
4196		return err;
4197
4198	if (scontext_len > len) {
4199		err = -ERANGE;
4200		goto out_len;
4201	}
4202
4203	if (copy_to_user(optval, scontext, scontext_len))
4204		err = -EFAULT;
4205
4206out_len:
4207	if (put_user(scontext_len, optlen))
4208		err = -EFAULT;
4209	kfree(scontext);
4210	return err;
4211}
4212
4213static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4214{
4215	u32 peer_secid = SECSID_NULL;
4216	u16 family;
 
4217
4218	if (skb && skb->protocol == htons(ETH_P_IP))
4219		family = PF_INET;
4220	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4221		family = PF_INET6;
4222	else if (sock)
4223		family = sock->sk->sk_family;
4224	else
4225		goto out;
4226
4227	if (sock && family == PF_UNIX)
4228		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4229	else if (skb)
 
4230		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4231
4232out:
4233	*secid = peer_secid;
4234	if (peer_secid == SECSID_NULL)
4235		return -EINVAL;
4236	return 0;
4237}
4238
4239static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4240{
4241	struct sk_security_struct *sksec;
4242
4243	sksec = kzalloc(sizeof(*sksec), priority);
4244	if (!sksec)
4245		return -ENOMEM;
4246
4247	sksec->peer_sid = SECINITSID_UNLABELED;
4248	sksec->sid = SECINITSID_UNLABELED;
 
4249	selinux_netlbl_sk_security_reset(sksec);
4250	sk->sk_security = sksec;
4251
4252	return 0;
4253}
4254
4255static void selinux_sk_free_security(struct sock *sk)
4256{
4257	struct sk_security_struct *sksec = sk->sk_security;
4258
4259	sk->sk_security = NULL;
4260	selinux_netlbl_sk_security_free(sksec);
4261	kfree(sksec);
4262}
4263
4264static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4265{
4266	struct sk_security_struct *sksec = sk->sk_security;
4267	struct sk_security_struct *newsksec = newsk->sk_security;
4268
4269	newsksec->sid = sksec->sid;
4270	newsksec->peer_sid = sksec->peer_sid;
4271	newsksec->sclass = sksec->sclass;
4272
4273	selinux_netlbl_sk_security_reset(newsksec);
4274}
4275
4276static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4277{
4278	if (!sk)
4279		*secid = SECINITSID_ANY_SOCKET;
4280	else {
4281		struct sk_security_struct *sksec = sk->sk_security;
4282
4283		*secid = sksec->sid;
4284	}
4285}
4286
4287static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4288{
4289	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
 
4290	struct sk_security_struct *sksec = sk->sk_security;
4291
4292	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4293	    sk->sk_family == PF_UNIX)
4294		isec->sid = sksec->sid;
4295	sksec->sclass = isec->sclass;
4296}
4297
4298static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4299				     struct request_sock *req)
4300{
4301	struct sk_security_struct *sksec = sk->sk_security;
4302	int err;
4303	u16 family = sk->sk_family;
4304	u32 newsid;
4305	u32 peersid;
4306
4307	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4308	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4309		family = PF_INET;
4310
4311	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4312	if (err)
4313		return err;
4314	if (peersid == SECSID_NULL) {
4315		req->secid = sksec->sid;
4316		req->peer_secid = SECSID_NULL;
4317	} else {
4318		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4319		if (err)
4320			return err;
4321		req->secid = newsid;
4322		req->peer_secid = peersid;
4323	}
4324
4325	return selinux_netlbl_inet_conn_request(req, family);
4326}
4327
4328static void selinux_inet_csk_clone(struct sock *newsk,
4329				   const struct request_sock *req)
4330{
4331	struct sk_security_struct *newsksec = newsk->sk_security;
4332
4333	newsksec->sid = req->secid;
4334	newsksec->peer_sid = req->peer_secid;
4335	/* NOTE: Ideally, we should also get the isec->sid for the
4336	   new socket in sync, but we don't have the isec available yet.
4337	   So we will wait until sock_graft to do it, by which
4338	   time it will have been created and available. */
4339
4340	/* We don't need to take any sort of lock here as we are the only
4341	 * thread with access to newsksec */
4342	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4343}
4344
4345static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4346{
4347	u16 family = sk->sk_family;
4348	struct sk_security_struct *sksec = sk->sk_security;
4349
4350	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4351	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4352		family = PF_INET;
4353
4354	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4355}
4356
4357static int selinux_secmark_relabel_packet(u32 sid)
4358{
4359	const struct task_security_struct *__tsec;
4360	u32 tsid;
4361
4362	__tsec = current_security();
4363	tsid = __tsec->sid;
4364
4365	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4366}
4367
4368static void selinux_secmark_refcount_inc(void)
4369{
4370	atomic_inc(&selinux_secmark_refcount);
4371}
4372
4373static void selinux_secmark_refcount_dec(void)
4374{
4375	atomic_dec(&selinux_secmark_refcount);
4376}
4377
4378static void selinux_req_classify_flow(const struct request_sock *req,
4379				      struct flowi *fl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4380{
4381	fl->flowi_secid = req->secid;
4382}
4383
4384static int selinux_tun_dev_create(void)
4385{
4386	u32 sid = current_sid();
4387
4388	/* we aren't taking into account the "sockcreate" SID since the socket
4389	 * that is being created here is not a socket in the traditional sense,
4390	 * instead it is a private sock, accessible only to the kernel, and
4391	 * representing a wide range of network traffic spanning multiple
4392	 * connections unlike traditional sockets - check the TUN driver to
4393	 * get a better understanding of why this socket is special */
4394
4395	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4396			    NULL);
4397}
4398
4399static void selinux_tun_dev_post_create(struct sock *sk)
4400{
 
 
 
 
 
 
 
 
 
 
4401	struct sk_security_struct *sksec = sk->sk_security;
4402
4403	/* we don't currently perform any NetLabel based labeling here and it
4404	 * isn't clear that we would want to do so anyway; while we could apply
4405	 * labeling without the support of the TUN user the resulting labeled
4406	 * traffic from the other end of the connection would almost certainly
4407	 * cause confusion to the TUN user that had no idea network labeling
4408	 * protocols were being used */
4409
4410	/* see the comments in selinux_tun_dev_create() about why we don't use
4411	 * the sockcreate SID here */
4412
4413	sksec->sid = current_sid();
4414	sksec->sclass = SECCLASS_TUN_SOCKET;
 
 
4415}
4416
4417static int selinux_tun_dev_attach(struct sock *sk)
4418{
4419	struct sk_security_struct *sksec = sk->sk_security;
4420	u32 sid = current_sid();
4421	int err;
4422
4423	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
 
4424			   TUN_SOCKET__RELABELFROM, NULL);
4425	if (err)
4426		return err;
4427	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
4428			   TUN_SOCKET__RELABELTO, NULL);
4429	if (err)
4430		return err;
4431
4432	sksec->sid = sid;
4433
4434	return 0;
4435}
4436
4437static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4438{
4439	int err = 0;
4440	u32 perm;
4441	struct nlmsghdr *nlh;
4442	struct sk_security_struct *sksec = sk->sk_security;
4443
4444	if (skb->len < NLMSG_SPACE(0)) {
4445		err = -EINVAL;
4446		goto out;
4447	}
4448	nlh = nlmsg_hdr(skb);
4449
4450	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4451	if (err) {
4452		if (err == -EINVAL) {
4453			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4454				  "SELinux:  unrecognized netlink message"
4455				  " type=%hu for sclass=%hu\n",
4456				  nlh->nlmsg_type, sksec->sclass);
4457			if (!selinux_enforcing || security_get_allow_unknown())
4458				err = 0;
4459		}
4460
4461		/* Ignore */
4462		if (err == -ENOENT)
4463			err = 0;
4464		goto out;
4465	}
4466
4467	err = sock_has_perm(current, sk, perm);
4468out:
4469	return err;
4470}
4471
4472#ifdef CONFIG_NETFILTER
4473
4474static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
 
4475				       u16 family)
4476{
4477	int err;
4478	char *addrp;
4479	u32 peer_sid;
4480	struct common_audit_data ad;
 
4481	u8 secmark_active;
4482	u8 netlbl_active;
4483	u8 peerlbl_active;
4484
4485	if (!selinux_policycap_netpeer)
4486		return NF_ACCEPT;
4487
4488	secmark_active = selinux_secmark_enabled();
4489	netlbl_active = netlbl_enabled();
4490	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4491	if (!secmark_active && !peerlbl_active)
4492		return NF_ACCEPT;
4493
4494	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4495		return NF_DROP;
4496
4497	COMMON_AUDIT_DATA_INIT(&ad, NET);
4498	ad.u.net.netif = ifindex;
4499	ad.u.net.family = family;
 
4500	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4501		return NF_DROP;
4502
4503	if (peerlbl_active) {
4504		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4505					       peer_sid, &ad);
4506		if (err) {
4507			selinux_netlbl_err(skb, err, 1);
4508			return NF_DROP;
4509		}
4510	}
4511
4512	if (secmark_active)
4513		if (avc_has_perm(peer_sid, skb->secmark,
 
4514				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4515			return NF_DROP;
4516
4517	if (netlbl_active)
4518		/* we do this in the FORWARD path and not the POST_ROUTING
4519		 * path because we want to make sure we apply the necessary
4520		 * labeling before IPsec is applied so we can leverage AH
4521		 * protection */
4522		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4523			return NF_DROP;
4524
4525	return NF_ACCEPT;
4526}
4527
4528static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4529					 struct sk_buff *skb,
4530					 const struct net_device *in,
4531					 const struct net_device *out,
4532					 int (*okfn)(struct sk_buff *))
4533{
4534	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4535}
4536
4537#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4538static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4539					 struct sk_buff *skb,
4540					 const struct net_device *in,
4541					 const struct net_device *out,
4542					 int (*okfn)(struct sk_buff *))
4543{
4544	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4545}
4546#endif	/* IPV6 */
4547
4548static unsigned int selinux_ip_output(struct sk_buff *skb,
4549				      u16 family)
4550{
 
4551	u32 sid;
4552
4553	if (!netlbl_enabled())
4554		return NF_ACCEPT;
4555
4556	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4557	 * because we want to make sure we apply the necessary labeling
4558	 * before IPsec is applied so we can leverage AH protection */
4559	if (skb->sk) {
4560		struct sk_security_struct *sksec = skb->sk->sk_security;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4561		sid = sksec->sid;
4562	} else
4563		sid = SECINITSID_KERNEL;
4564	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4565		return NF_DROP;
4566
4567	return NF_ACCEPT;
4568}
4569
4570static unsigned int selinux_ipv4_output(unsigned int hooknum,
4571					struct sk_buff *skb,
4572					const struct net_device *in,
4573					const struct net_device *out,
4574					int (*okfn)(struct sk_buff *))
4575{
4576	return selinux_ip_output(skb, PF_INET);
4577}
4578
 
 
 
 
 
 
 
 
 
4579static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4580						int ifindex,
4581						u16 family)
4582{
4583	struct sock *sk = skb->sk;
4584	struct sk_security_struct *sksec;
4585	struct common_audit_data ad;
 
4586	char *addrp;
4587	u8 proto;
4588
4589	if (sk == NULL)
4590		return NF_ACCEPT;
4591	sksec = sk->sk_security;
4592
4593	COMMON_AUDIT_DATA_INIT(&ad, NET);
4594	ad.u.net.netif = ifindex;
4595	ad.u.net.family = family;
 
4596	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4597		return NF_DROP;
4598
4599	if (selinux_secmark_enabled())
4600		if (avc_has_perm(sksec->sid, skb->secmark,
 
4601				 SECCLASS_PACKET, PACKET__SEND, &ad))
4602			return NF_DROP_ERR(-ECONNREFUSED);
4603
4604	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4605		return NF_DROP_ERR(-ECONNREFUSED);
4606
4607	return NF_ACCEPT;
4608}
4609
4610static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
 
4611					 u16 family)
4612{
4613	u32 secmark_perm;
4614	u32 peer_sid;
 
4615	struct sock *sk;
4616	struct common_audit_data ad;
 
4617	char *addrp;
4618	u8 secmark_active;
4619	u8 peerlbl_active;
4620
4621	/* If any sort of compatibility mode is enabled then handoff processing
4622	 * to the selinux_ip_postroute_compat() function to deal with the
4623	 * special handling.  We do this in an attempt to keep this function
4624	 * as fast and as clean as possible. */
4625	if (!selinux_policycap_netpeer)
4626		return selinux_ip_postroute_compat(skb, ifindex, family);
 
 
 
 
 
 
 
 
4627#ifdef CONFIG_XFRM
4628	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4629	 * packet transformation so allow the packet to pass without any checks
4630	 * since we'll have another chance to perform access control checks
4631	 * when the packet is on it's final way out.
4632	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4633	 *       is NULL, in this case go ahead and apply access control. */
4634	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
 
 
 
 
 
 
4635		return NF_ACCEPT;
4636#endif
4637	secmark_active = selinux_secmark_enabled();
4638	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4639	if (!secmark_active && !peerlbl_active)
4640		return NF_ACCEPT;
4641
4642	/* if the packet is being forwarded then get the peer label from the
4643	 * packet itself; otherwise check to see if it is from a local
4644	 * application or the kernel, if from an application get the peer label
4645	 * from the sending socket, otherwise use the kernel's sid */
4646	sk = skb->sk;
4647	if (sk == NULL) {
 
 
 
 
4648		if (skb->skb_iif) {
4649			secmark_perm = PACKET__FORWARD_OUT;
4650			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4651				return NF_DROP;
4652		} else {
4653			secmark_perm = PACKET__SEND;
4654			peer_sid = SECINITSID_KERNEL;
4655		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4656	} else {
 
 
4657		struct sk_security_struct *sksec = sk->sk_security;
4658		peer_sid = sksec->sid;
4659		secmark_perm = PACKET__SEND;
4660	}
4661
4662	COMMON_AUDIT_DATA_INIT(&ad, NET);
4663	ad.u.net.netif = ifindex;
4664	ad.u.net.family = family;
 
4665	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4666		return NF_DROP;
4667
4668	if (secmark_active)
4669		if (avc_has_perm(peer_sid, skb->secmark,
 
4670				 SECCLASS_PACKET, secmark_perm, &ad))
4671			return NF_DROP_ERR(-ECONNREFUSED);
4672
4673	if (peerlbl_active) {
4674		u32 if_sid;
4675		u32 node_sid;
4676
4677		if (sel_netif_sid(ifindex, &if_sid))
4678			return NF_DROP;
4679		if (avc_has_perm(peer_sid, if_sid,
 
4680				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4681			return NF_DROP_ERR(-ECONNREFUSED);
4682
4683		if (sel_netnode_sid(addrp, family, &node_sid))
4684			return NF_DROP;
4685		if (avc_has_perm(peer_sid, node_sid,
 
4686				 SECCLASS_NODE, NODE__SENDTO, &ad))
4687			return NF_DROP_ERR(-ECONNREFUSED);
4688	}
4689
4690	return NF_ACCEPT;
4691}
4692
4693static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4694					   struct sk_buff *skb,
4695					   const struct net_device *in,
4696					   const struct net_device *out,
4697					   int (*okfn)(struct sk_buff *))
4698{
4699	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4700}
4701
4702#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4703static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4704					   struct sk_buff *skb,
4705					   const struct net_device *in,
4706					   const struct net_device *out,
4707					   int (*okfn)(struct sk_buff *))
4708{
4709	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4710}
4711#endif	/* IPV6 */
4712
4713#endif	/* CONFIG_NETFILTER */
4714
4715static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4716{
4717	int err;
4718
4719	err = cap_netlink_send(sk, skb);
4720	if (err)
4721		return err;
 
 
 
4722
4723	return selinux_nlmsg_perm(sk, skb);
4724}
4725
4726static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4727{
4728	int err;
4729	struct common_audit_data ad;
4730	u32 sid;
 
 
 
4731
4732	err = cap_netlink_recv(skb, capability);
4733	if (err)
4734		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4735
4736	COMMON_AUDIT_DATA_INIT(&ad, CAP);
4737	ad.u.cap = capability;
 
 
 
 
 
4738
4739	security_task_getsecid(current, &sid);
4740	return avc_has_perm(sid, sid, SECCLASS_CAPABILITY,
4741			    CAP_TO_MASK(capability), &ad);
4742}
4743
4744static int ipc_alloc_security(struct task_struct *task,
4745			      struct kern_ipc_perm *perm,
4746			      u16 sclass)
4747{
4748	struct ipc_security_struct *isec;
4749	u32 sid;
4750
4751	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4752	if (!isec)
4753		return -ENOMEM;
4754
4755	sid = task_sid(task);
4756	isec->sclass = sclass;
4757	isec->sid = sid;
4758	perm->security = isec;
4759
4760	return 0;
4761}
4762
4763static void ipc_free_security(struct kern_ipc_perm *perm)
4764{
4765	struct ipc_security_struct *isec = perm->security;
4766	perm->security = NULL;
4767	kfree(isec);
4768}
4769
4770static int msg_msg_alloc_security(struct msg_msg *msg)
4771{
4772	struct msg_security_struct *msec;
4773
4774	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4775	if (!msec)
4776		return -ENOMEM;
4777
4778	msec->sid = SECINITSID_UNLABELED;
4779	msg->security = msec;
4780
4781	return 0;
4782}
4783
4784static void msg_msg_free_security(struct msg_msg *msg)
4785{
4786	struct msg_security_struct *msec = msg->security;
4787
4788	msg->security = NULL;
4789	kfree(msec);
4790}
4791
4792static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4793			u32 perms)
4794{
4795	struct ipc_security_struct *isec;
4796	struct common_audit_data ad;
4797	u32 sid = current_sid();
4798
4799	isec = ipc_perms->security;
4800
4801	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4802	ad.u.ipc_id = ipc_perms->key;
4803
4804	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
4805}
4806
4807static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4808{
4809	return msg_msg_alloc_security(msg);
4810}
4811
4812static void selinux_msg_msg_free_security(struct msg_msg *msg)
4813{
4814	msg_msg_free_security(msg);
 
4815}
4816
4817/* message queue security operations */
4818static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4819{
4820	struct ipc_security_struct *isec;
4821	struct common_audit_data ad;
4822	u32 sid = current_sid();
4823	int rc;
4824
4825	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4826	if (rc)
4827		return rc;
4828
4829	isec = msq->q_perm.security;
4830
4831	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4832	ad.u.ipc_id = msq->q_perm.key;
4833
4834	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4835			  MSGQ__CREATE, &ad);
4836	if (rc) {
4837		ipc_free_security(&msq->q_perm);
4838		return rc;
4839	}
4840	return 0;
4841}
4842
4843static void selinux_msg_queue_free_security(struct msg_queue *msq)
4844{
4845	ipc_free_security(&msq->q_perm);
4846}
4847
4848static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4849{
4850	struct ipc_security_struct *isec;
4851	struct common_audit_data ad;
4852	u32 sid = current_sid();
4853
4854	isec = msq->q_perm.security;
4855
4856	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4857	ad.u.ipc_id = msq->q_perm.key;
4858
4859	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4860			    MSGQ__ASSOCIATE, &ad);
4861}
4862
4863static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4864{
4865	int err;
4866	int perms;
4867
4868	switch (cmd) {
4869	case IPC_INFO:
4870	case MSG_INFO:
4871		/* No specific object, just general system-wide information. */
4872		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
4873	case IPC_STAT:
4874	case MSG_STAT:
 
4875		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4876		break;
4877	case IPC_SET:
4878		perms = MSGQ__SETATTR;
4879		break;
4880	case IPC_RMID:
4881		perms = MSGQ__DESTROY;
4882		break;
4883	default:
4884		return 0;
4885	}
4886
4887	err = ipc_has_perm(&msq->q_perm, perms);
4888	return err;
4889}
4890
4891static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4892{
4893	struct ipc_security_struct *isec;
4894	struct msg_security_struct *msec;
4895	struct common_audit_data ad;
4896	u32 sid = current_sid();
4897	int rc;
4898
4899	isec = msq->q_perm.security;
4900	msec = msg->security;
4901
4902	/*
4903	 * First time through, need to assign label to the message
4904	 */
4905	if (msec->sid == SECINITSID_UNLABELED) {
4906		/*
4907		 * Compute new sid based on current process and
4908		 * message queue this message will be stored in
4909		 */
4910		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4911					     NULL, &msec->sid);
4912		if (rc)
4913			return rc;
4914	}
4915
4916	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4917	ad.u.ipc_id = msq->q_perm.key;
4918
4919	/* Can this process write to the queue? */
4920	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
4921			  MSGQ__WRITE, &ad);
4922	if (!rc)
4923		/* Can this process send the message */
4924		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
4925				  MSG__SEND, &ad);
4926	if (!rc)
4927		/* Can the message be put in the queue? */
4928		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
4929				  MSGQ__ENQUEUE, &ad);
4930
4931	return rc;
4932}
4933
4934static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4935				    struct task_struct *target,
4936				    long type, int mode)
4937{
4938	struct ipc_security_struct *isec;
4939	struct msg_security_struct *msec;
4940	struct common_audit_data ad;
4941	u32 sid = task_sid(target);
4942	int rc;
4943
4944	isec = msq->q_perm.security;
4945	msec = msg->security;
4946
4947	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4948	ad.u.ipc_id = msq->q_perm.key;
4949
4950	rc = avc_has_perm(sid, isec->sid,
 
4951			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4952	if (!rc)
4953		rc = avc_has_perm(sid, msec->sid,
 
4954				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4955	return rc;
4956}
4957
4958/* Shared Memory security operations */
4959static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4960{
4961	struct ipc_security_struct *isec;
4962	struct common_audit_data ad;
4963	u32 sid = current_sid();
4964	int rc;
4965
4966	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4967	if (rc)
4968		return rc;
4969
4970	isec = shp->shm_perm.security;
4971
4972	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4973	ad.u.ipc_id = shp->shm_perm.key;
4974
4975	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
4976			  SHM__CREATE, &ad);
4977	if (rc) {
4978		ipc_free_security(&shp->shm_perm);
4979		return rc;
4980	}
4981	return 0;
4982}
4983
4984static void selinux_shm_free_security(struct shmid_kernel *shp)
4985{
4986	ipc_free_security(&shp->shm_perm);
4987}
4988
4989static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4990{
4991	struct ipc_security_struct *isec;
4992	struct common_audit_data ad;
4993	u32 sid = current_sid();
4994
4995	isec = shp->shm_perm.security;
4996
4997	COMMON_AUDIT_DATA_INIT(&ad, IPC);
4998	ad.u.ipc_id = shp->shm_perm.key;
4999
5000	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5001			    SHM__ASSOCIATE, &ad);
5002}
5003
5004/* Note, at this point, shp is locked down */
5005static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5006{
5007	int perms;
5008	int err;
5009
5010	switch (cmd) {
5011	case IPC_INFO:
5012	case SHM_INFO:
5013		/* No specific object, just general system-wide information. */
5014		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5015	case IPC_STAT:
5016	case SHM_STAT:
 
5017		perms = SHM__GETATTR | SHM__ASSOCIATE;
5018		break;
5019	case IPC_SET:
5020		perms = SHM__SETATTR;
5021		break;
5022	case SHM_LOCK:
5023	case SHM_UNLOCK:
5024		perms = SHM__LOCK;
5025		break;
5026	case IPC_RMID:
5027		perms = SHM__DESTROY;
5028		break;
5029	default:
5030		return 0;
5031	}
5032
5033	err = ipc_has_perm(&shp->shm_perm, perms);
5034	return err;
5035}
5036
5037static int selinux_shm_shmat(struct shmid_kernel *shp,
5038			     char __user *shmaddr, int shmflg)
5039{
5040	u32 perms;
5041
5042	if (shmflg & SHM_RDONLY)
5043		perms = SHM__READ;
5044	else
5045		perms = SHM__READ | SHM__WRITE;
5046
5047	return ipc_has_perm(&shp->shm_perm, perms);
5048}
5049
5050/* Semaphore security operations */
5051static int selinux_sem_alloc_security(struct sem_array *sma)
5052{
5053	struct ipc_security_struct *isec;
5054	struct common_audit_data ad;
5055	u32 sid = current_sid();
5056	int rc;
5057
5058	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5059	if (rc)
5060		return rc;
5061
5062	isec = sma->sem_perm.security;
 
5063
5064	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5065	ad.u.ipc_id = sma->sem_perm.key;
5066
5067	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5068			  SEM__CREATE, &ad);
5069	if (rc) {
5070		ipc_free_security(&sma->sem_perm);
5071		return rc;
5072	}
5073	return 0;
5074}
5075
5076static void selinux_sem_free_security(struct sem_array *sma)
5077{
5078	ipc_free_security(&sma->sem_perm);
5079}
5080
5081static int selinux_sem_associate(struct sem_array *sma, int semflg)
5082{
5083	struct ipc_security_struct *isec;
5084	struct common_audit_data ad;
5085	u32 sid = current_sid();
5086
5087	isec = sma->sem_perm.security;
5088
5089	COMMON_AUDIT_DATA_INIT(&ad, IPC);
5090	ad.u.ipc_id = sma->sem_perm.key;
5091
5092	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5093			    SEM__ASSOCIATE, &ad);
5094}
5095
5096/* Note, at this point, sma is locked down */
5097static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5098{
5099	int err;
5100	u32 perms;
5101
5102	switch (cmd) {
5103	case IPC_INFO:
5104	case SEM_INFO:
5105		/* No specific object, just general system-wide information. */
5106		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5107	case GETPID:
5108	case GETNCNT:
5109	case GETZCNT:
5110		perms = SEM__GETATTR;
5111		break;
5112	case GETVAL:
5113	case GETALL:
5114		perms = SEM__READ;
5115		break;
5116	case SETVAL:
5117	case SETALL:
5118		perms = SEM__WRITE;
5119		break;
5120	case IPC_RMID:
5121		perms = SEM__DESTROY;
5122		break;
5123	case IPC_SET:
5124		perms = SEM__SETATTR;
5125		break;
5126	case IPC_STAT:
5127	case SEM_STAT:
 
5128		perms = SEM__GETATTR | SEM__ASSOCIATE;
5129		break;
5130	default:
5131		return 0;
5132	}
5133
5134	err = ipc_has_perm(&sma->sem_perm, perms);
5135	return err;
5136}
5137
5138static int selinux_sem_semop(struct sem_array *sma,
5139			     struct sembuf *sops, unsigned nsops, int alter)
5140{
5141	u32 perms;
5142
5143	if (alter)
5144		perms = SEM__READ | SEM__WRITE;
5145	else
5146		perms = SEM__READ;
5147
5148	return ipc_has_perm(&sma->sem_perm, perms);
5149}
5150
5151static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5152{
5153	u32 av = 0;
5154
5155	av = 0;
5156	if (flag & S_IRUGO)
5157		av |= IPC__UNIX_READ;
5158	if (flag & S_IWUGO)
5159		av |= IPC__UNIX_WRITE;
5160
5161	if (av == 0)
5162		return 0;
5163
5164	return ipc_has_perm(ipcp, av);
5165}
5166
5167static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5168{
5169	struct ipc_security_struct *isec = ipcp->security;
5170	*secid = isec->sid;
5171}
5172
5173static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5174{
5175	if (inode)
5176		inode_doinit_with_dentry(inode, dentry);
5177}
5178
5179static int selinux_getprocattr(struct task_struct *p,
5180			       char *name, char **value)
5181{
5182	const struct task_security_struct *__tsec;
5183	u32 sid;
5184	int error;
5185	unsigned len;
5186
 
 
 
5187	if (current != p) {
5188		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5189		if (error)
5190			return error;
5191	}
5192
5193	rcu_read_lock();
5194	__tsec = __task_cred(p)->security;
5195
5196	if (!strcmp(name, "current"))
5197		sid = __tsec->sid;
5198	else if (!strcmp(name, "prev"))
5199		sid = __tsec->osid;
5200	else if (!strcmp(name, "exec"))
5201		sid = __tsec->exec_sid;
5202	else if (!strcmp(name, "fscreate"))
5203		sid = __tsec->create_sid;
5204	else if (!strcmp(name, "keycreate"))
5205		sid = __tsec->keycreate_sid;
5206	else if (!strcmp(name, "sockcreate"))
5207		sid = __tsec->sockcreate_sid;
5208	else
5209		goto invalid;
 
 
5210	rcu_read_unlock();
5211
5212	if (!sid)
5213		return 0;
5214
5215	error = security_sid_to_context(sid, value, &len);
5216	if (error)
5217		return error;
5218	return len;
5219
5220invalid:
5221	rcu_read_unlock();
5222	return -EINVAL;
5223}
5224
5225static int selinux_setprocattr(struct task_struct *p,
5226			       char *name, void *value, size_t size)
5227{
5228	struct task_security_struct *tsec;
5229	struct task_struct *tracer;
5230	struct cred *new;
5231	u32 sid = 0, ptsid;
5232	int error;
5233	char *str = value;
5234
5235	if (current != p) {
5236		/* SELinux only allows a process to change its own
5237		   security attributes. */
5238		return -EACCES;
5239	}
5240
5241	/*
5242	 * Basic control over ability to set these attributes at all.
5243	 * current == p, but we'll pass them separately in case the
5244	 * above restriction is ever removed.
5245	 */
5246	if (!strcmp(name, "exec"))
5247		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5248	else if (!strcmp(name, "fscreate"))
5249		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5250	else if (!strcmp(name, "keycreate"))
5251		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5252	else if (!strcmp(name, "sockcreate"))
5253		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5254	else if (!strcmp(name, "current"))
5255		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5256	else
5257		error = -EINVAL;
5258	if (error)
5259		return error;
5260
5261	/* Obtain a SID for the context, if one was specified. */
5262	if (size && str[1] && str[1] != '\n') {
5263		if (str[size-1] == '\n') {
5264			str[size-1] = 0;
5265			size--;
5266		}
5267		error = security_context_to_sid(value, size, &sid);
 
5268		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5269			if (!capable(CAP_MAC_ADMIN))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5270				return error;
5271			error = security_context_to_sid_force(value, size,
5272							      &sid);
 
 
5273		}
5274		if (error)
5275			return error;
5276	}
5277
5278	new = prepare_creds();
5279	if (!new)
5280		return -ENOMEM;
5281
5282	/* Permission checking based on the specified context is
5283	   performed during the actual operation (execve,
5284	   open/mkdir/...), when we know the full context of the
5285	   operation.  See selinux_bprm_set_creds for the execve
5286	   checks and may_create for the file creation checks. The
5287	   operation will then fail if the context is not permitted. */
5288	tsec = new->security;
5289	if (!strcmp(name, "exec")) {
5290		tsec->exec_sid = sid;
5291	} else if (!strcmp(name, "fscreate")) {
5292		tsec->create_sid = sid;
5293	} else if (!strcmp(name, "keycreate")) {
5294		error = may_create_key(sid, p);
5295		if (error)
5296			goto abort_change;
 
 
 
5297		tsec->keycreate_sid = sid;
5298	} else if (!strcmp(name, "sockcreate")) {
5299		tsec->sockcreate_sid = sid;
5300	} else if (!strcmp(name, "current")) {
5301		error = -EINVAL;
5302		if (sid == 0)
5303			goto abort_change;
5304
5305		/* Only allow single threaded processes to change context */
5306		error = -EPERM;
5307		if (!current_is_single_threaded()) {
5308			error = security_bounded_transition(tsec->sid, sid);
 
5309			if (error)
5310				goto abort_change;
5311		}
5312
5313		/* Check permissions for the transition. */
5314		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5315				     PROCESS__DYNTRANSITION, NULL);
5316		if (error)
5317			goto abort_change;
5318
5319		/* Check for ptracing, and update the task SID if ok.
5320		   Otherwise, leave SID unchanged and fail. */
5321		ptsid = 0;
5322		task_lock(p);
5323		tracer = ptrace_parent(p);
5324		if (tracer)
5325			ptsid = task_sid(tracer);
5326		task_unlock(p);
5327
5328		if (tracer) {
5329			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5330					     PROCESS__PTRACE, NULL);
5331			if (error)
5332				goto abort_change;
5333		}
5334
5335		tsec->sid = sid;
5336	} else {
5337		error = -EINVAL;
5338		goto abort_change;
5339	}
5340
5341	commit_creds(new);
5342	return size;
5343
5344abort_change:
5345	abort_creds(new);
5346	return error;
5347}
5348
 
 
 
 
 
5349static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5350{
5351	return security_sid_to_context(secid, secdata, seclen);
 
5352}
5353
5354static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5355{
5356	return security_context_to_sid(secdata, seclen, secid);
 
5357}
5358
5359static void selinux_release_secctx(char *secdata, u32 seclen)
5360{
5361	kfree(secdata);
5362}
5363
 
 
 
 
 
 
 
 
 
5364/*
5365 *	called with inode->i_mutex locked
5366 */
5367static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5368{
5369	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
5370}
5371
5372/*
5373 *	called with inode->i_mutex locked
5374 */
5375static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5376{
5377	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
 
5378}
5379
5380static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5381{
5382	int len = 0;
5383	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5384						ctx, true);
5385	if (len < 0)
5386		return len;
5387	*ctxlen = len;
5388	return 0;
5389}
5390#ifdef CONFIG_KEYS
5391
5392static int selinux_key_alloc(struct key *k, const struct cred *cred,
5393			     unsigned long flags)
5394{
5395	const struct task_security_struct *tsec;
5396	struct key_security_struct *ksec;
5397
5398	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5399	if (!ksec)
5400		return -ENOMEM;
5401
5402	tsec = cred->security;
5403	if (tsec->keycreate_sid)
5404		ksec->sid = tsec->keycreate_sid;
5405	else
5406		ksec->sid = tsec->sid;
5407
5408	k->security = ksec;
5409	return 0;
5410}
5411
5412static void selinux_key_free(struct key *k)
5413{
5414	struct key_security_struct *ksec = k->security;
5415
5416	k->security = NULL;
5417	kfree(ksec);
5418}
5419
5420static int selinux_key_permission(key_ref_t key_ref,
5421				  const struct cred *cred,
5422				  key_perm_t perm)
5423{
5424	struct key *key;
5425	struct key_security_struct *ksec;
5426	u32 sid;
5427
5428	/* if no specific permissions are requested, we skip the
5429	   permission check. No serious, additional covert channels
5430	   appear to be created. */
5431	if (perm == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5432		return 0;
 
 
 
5433
5434	sid = cred_sid(cred);
5435
 
5436	key = key_ref_to_ptr(key_ref);
5437	ksec = key->security;
5438
5439	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
5440}
5441
5442static int selinux_key_getsecurity(struct key *key, char **_buffer)
5443{
5444	struct key_security_struct *ksec = key->security;
5445	char *context = NULL;
5446	unsigned len;
5447	int rc;
5448
5449	rc = security_sid_to_context(ksec->sid, &context, &len);
 
5450	if (!rc)
5451		rc = len;
5452	*_buffer = context;
5453	return rc;
5454}
5455
 
 
 
 
 
 
 
 
 
5456#endif
 
 
 
 
 
 
 
 
 
 
5457
5458static struct security_operations selinux_ops = {
5459	.name =				"selinux",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5460
5461	.ptrace_access_check =		selinux_ptrace_access_check,
5462	.ptrace_traceme =		selinux_ptrace_traceme,
5463	.capget =			selinux_capget,
5464	.capset =			selinux_capset,
5465	.capable =			selinux_capable,
5466	.quotactl =			selinux_quotactl,
5467	.quota_on =			selinux_quota_on,
5468	.syslog =			selinux_syslog,
5469	.vm_enough_memory =		selinux_vm_enough_memory,
5470
5471	.netlink_send =			selinux_netlink_send,
5472	.netlink_recv =			selinux_netlink_recv,
5473
5474	.bprm_set_creds =		selinux_bprm_set_creds,
5475	.bprm_committing_creds =	selinux_bprm_committing_creds,
5476	.bprm_committed_creds =		selinux_bprm_committed_creds,
5477	.bprm_secureexec =		selinux_bprm_secureexec,
5478
5479	.sb_alloc_security =		selinux_sb_alloc_security,
5480	.sb_free_security =		selinux_sb_free_security,
5481	.sb_copy_data =			selinux_sb_copy_data,
5482	.sb_remount =			selinux_sb_remount,
5483	.sb_kern_mount =		selinux_sb_kern_mount,
5484	.sb_show_options =		selinux_sb_show_options,
5485	.sb_statfs =			selinux_sb_statfs,
5486	.sb_mount =			selinux_mount,
5487	.sb_umount =			selinux_umount,
5488	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5489	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5490	.sb_parse_opts_str = 		selinux_parse_opts_str,
5491
5492
5493	.inode_alloc_security =		selinux_inode_alloc_security,
5494	.inode_free_security =		selinux_inode_free_security,
5495	.inode_init_security =		selinux_inode_init_security,
5496	.inode_create =			selinux_inode_create,
5497	.inode_link =			selinux_inode_link,
5498	.inode_unlink =			selinux_inode_unlink,
5499	.inode_symlink =		selinux_inode_symlink,
5500	.inode_mkdir =			selinux_inode_mkdir,
5501	.inode_rmdir =			selinux_inode_rmdir,
5502	.inode_mknod =			selinux_inode_mknod,
5503	.inode_rename =			selinux_inode_rename,
5504	.inode_readlink =		selinux_inode_readlink,
5505	.inode_follow_link =		selinux_inode_follow_link,
5506	.inode_permission =		selinux_inode_permission,
5507	.inode_setattr =		selinux_inode_setattr,
5508	.inode_getattr =		selinux_inode_getattr,
5509	.inode_setxattr =		selinux_inode_setxattr,
5510	.inode_post_setxattr =		selinux_inode_post_setxattr,
5511	.inode_getxattr =		selinux_inode_getxattr,
5512	.inode_listxattr =		selinux_inode_listxattr,
5513	.inode_removexattr =		selinux_inode_removexattr,
5514	.inode_getsecurity =		selinux_inode_getsecurity,
5515	.inode_setsecurity =		selinux_inode_setsecurity,
5516	.inode_listsecurity =		selinux_inode_listsecurity,
5517	.inode_getsecid =		selinux_inode_getsecid,
5518
5519	.file_permission =		selinux_file_permission,
5520	.file_alloc_security =		selinux_file_alloc_security,
5521	.file_free_security =		selinux_file_free_security,
5522	.file_ioctl =			selinux_file_ioctl,
5523	.file_mmap =			selinux_file_mmap,
5524	.file_mprotect =		selinux_file_mprotect,
5525	.file_lock =			selinux_file_lock,
5526	.file_fcntl =			selinux_file_fcntl,
5527	.file_set_fowner =		selinux_file_set_fowner,
5528	.file_send_sigiotask =		selinux_file_send_sigiotask,
5529	.file_receive =			selinux_file_receive,
5530
5531	.dentry_open =			selinux_dentry_open,
5532
5533	.task_create =			selinux_task_create,
5534	.cred_alloc_blank =		selinux_cred_alloc_blank,
5535	.cred_free =			selinux_cred_free,
5536	.cred_prepare =			selinux_cred_prepare,
5537	.cred_transfer =		selinux_cred_transfer,
5538	.kernel_act_as =		selinux_kernel_act_as,
5539	.kernel_create_files_as =	selinux_kernel_create_files_as,
5540	.kernel_module_request =	selinux_kernel_module_request,
5541	.task_setpgid =			selinux_task_setpgid,
5542	.task_getpgid =			selinux_task_getpgid,
5543	.task_getsid =			selinux_task_getsid,
5544	.task_getsecid =		selinux_task_getsecid,
5545	.task_setnice =			selinux_task_setnice,
5546	.task_setioprio =		selinux_task_setioprio,
5547	.task_getioprio =		selinux_task_getioprio,
5548	.task_setrlimit =		selinux_task_setrlimit,
5549	.task_setscheduler =		selinux_task_setscheduler,
5550	.task_getscheduler =		selinux_task_getscheduler,
5551	.task_movememory =		selinux_task_movememory,
5552	.task_kill =			selinux_task_kill,
5553	.task_wait =			selinux_task_wait,
5554	.task_to_inode =		selinux_task_to_inode,
5555
5556	.ipc_permission =		selinux_ipc_permission,
5557	.ipc_getsecid =			selinux_ipc_getsecid,
5558
5559	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5560	.msg_msg_free_security =	selinux_msg_msg_free_security,
5561
5562	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5563	.msg_queue_free_security =	selinux_msg_queue_free_security,
5564	.msg_queue_associate =		selinux_msg_queue_associate,
5565	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5566	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5567	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5568
5569	.shm_alloc_security =		selinux_shm_alloc_security,
5570	.shm_free_security =		selinux_shm_free_security,
5571	.shm_associate =		selinux_shm_associate,
5572	.shm_shmctl =			selinux_shm_shmctl,
5573	.shm_shmat =			selinux_shm_shmat,
5574
5575	.sem_alloc_security =		selinux_sem_alloc_security,
5576	.sem_free_security =		selinux_sem_free_security,
5577	.sem_associate =		selinux_sem_associate,
5578	.sem_semctl =			selinux_sem_semctl,
5579	.sem_semop =			selinux_sem_semop,
5580
5581	.d_instantiate =		selinux_d_instantiate,
5582
5583	.getprocattr =			selinux_getprocattr,
5584	.setprocattr =			selinux_setprocattr,
5585
5586	.secid_to_secctx =		selinux_secid_to_secctx,
5587	.secctx_to_secid =		selinux_secctx_to_secid,
5588	.release_secctx =		selinux_release_secctx,
5589	.inode_notifysecctx =		selinux_inode_notifysecctx,
5590	.inode_setsecctx =		selinux_inode_setsecctx,
5591	.inode_getsecctx =		selinux_inode_getsecctx,
5592
5593	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5594	.unix_may_send =		selinux_socket_unix_may_send,
5595
5596	.socket_create =		selinux_socket_create,
5597	.socket_post_create =		selinux_socket_post_create,
5598	.socket_bind =			selinux_socket_bind,
5599	.socket_connect =		selinux_socket_connect,
5600	.socket_listen =		selinux_socket_listen,
5601	.socket_accept =		selinux_socket_accept,
5602	.socket_sendmsg =		selinux_socket_sendmsg,
5603	.socket_recvmsg =		selinux_socket_recvmsg,
5604	.socket_getsockname =		selinux_socket_getsockname,
5605	.socket_getpeername =		selinux_socket_getpeername,
5606	.socket_getsockopt =		selinux_socket_getsockopt,
5607	.socket_setsockopt =		selinux_socket_setsockopt,
5608	.socket_shutdown =		selinux_socket_shutdown,
5609	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5610	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5611	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5612	.sk_alloc_security =		selinux_sk_alloc_security,
5613	.sk_free_security =		selinux_sk_free_security,
5614	.sk_clone_security =		selinux_sk_clone_security,
5615	.sk_getsecid =			selinux_sk_getsecid,
5616	.sock_graft =			selinux_sock_graft,
5617	.inet_conn_request =		selinux_inet_conn_request,
5618	.inet_csk_clone =		selinux_inet_csk_clone,
5619	.inet_conn_established =	selinux_inet_conn_established,
5620	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5621	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5622	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5623	.req_classify_flow =		selinux_req_classify_flow,
5624	.tun_dev_create =		selinux_tun_dev_create,
5625	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5626	.tun_dev_attach =		selinux_tun_dev_attach,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5628#ifdef CONFIG_SECURITY_NETWORK_XFRM
5629	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5630	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5631	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5632	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5633	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5634	.xfrm_state_free_security =	selinux_xfrm_state_free,
5635	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5636	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5637	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5638	.xfrm_decode_session =		selinux_xfrm_decode_session,
5639#endif
5640
5641#ifdef CONFIG_KEYS
5642	.key_alloc =			selinux_key_alloc,
5643	.key_free =			selinux_key_free,
5644	.key_permission =		selinux_key_permission,
5645	.key_getsecurity =		selinux_key_getsecurity,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5646#endif
5647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5648#ifdef CONFIG_AUDIT
5649	.audit_rule_init =		selinux_audit_rule_init,
5650	.audit_rule_known =		selinux_audit_rule_known,
5651	.audit_rule_match =		selinux_audit_rule_match,
5652	.audit_rule_free =		selinux_audit_rule_free,
 
 
 
 
5653#endif
5654};
5655
5656static __init int selinux_init(void)
5657{
5658	if (!security_module_enable(&selinux_ops)) {
5659		selinux_enabled = 0;
5660		return 0;
5661	}
5662
5663	if (!selinux_enabled) {
5664		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5665		return 0;
5666	}
5667
5668	printk(KERN_INFO "SELinux:  Initializing.\n");
 
 
 
 
 
5669
5670	/* Set the security state for the initial task. */
5671	cred_init_security();
5672
5673	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5674
5675	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5676					    sizeof(struct inode_security_struct),
5677					    0, SLAB_PANIC, NULL);
5678	avc_init();
5679
5680	if (register_security(&selinux_ops))
5681		panic("SELinux: Unable to register with kernel.\n");
 
 
 
 
 
 
 
 
 
 
 
5682
5683	if (selinux_enforcing)
5684		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5685	else
5686		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
5687
5688	return 0;
5689}
5690
5691static void delayed_superblock_init(struct super_block *sb, void *unused)
5692{
5693	superblock_doinit(sb, NULL);
5694}
5695
5696void selinux_complete_init(void)
5697{
5698	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5699
5700	/* Set up any superblocks initialized prior to the policy load. */
5701	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5702	iterate_supers(delayed_superblock_init, NULL);
5703}
5704
5705/* SELinux requires early initialization in order to label
5706   all processes and objects when they are created. */
5707security_initcall(selinux_init);
 
 
 
 
 
 
5708
5709#if defined(CONFIG_NETFILTER)
5710
5711static struct nf_hook_ops selinux_ipv4_ops[] = {
5712	{
5713		.hook =		selinux_ipv4_postroute,
5714		.owner =	THIS_MODULE,
5715		.pf =		PF_INET,
5716		.hooknum =	NF_INET_POST_ROUTING,
5717		.priority =	NF_IP_PRI_SELINUX_LAST,
5718	},
5719	{
5720		.hook =		selinux_ipv4_forward,
5721		.owner =	THIS_MODULE,
5722		.pf =		PF_INET,
5723		.hooknum =	NF_INET_FORWARD,
5724		.priority =	NF_IP_PRI_SELINUX_FIRST,
5725	},
5726	{
5727		.hook =		selinux_ipv4_output,
5728		.owner =	THIS_MODULE,
5729		.pf =		PF_INET,
5730		.hooknum =	NF_INET_LOCAL_OUT,
5731		.priority =	NF_IP_PRI_SELINUX_FIRST,
5732	}
5733};
5734
5735#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5736
5737static struct nf_hook_ops selinux_ipv6_ops[] = {
5738	{
5739		.hook =		selinux_ipv6_postroute,
5740		.owner =	THIS_MODULE,
5741		.pf =		PF_INET6,
5742		.hooknum =	NF_INET_POST_ROUTING,
5743		.priority =	NF_IP6_PRI_SELINUX_LAST,
5744	},
5745	{
5746		.hook =		selinux_ipv6_forward,
5747		.owner =	THIS_MODULE,
5748		.pf =		PF_INET6,
5749		.hooknum =	NF_INET_FORWARD,
5750		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5751	}
 
 
 
 
 
 
 
5752};
5753
5754#endif	/* IPV6 */
 
 
 
 
5755
5756static int __init selinux_nf_ip_init(void)
5757{
5758	int err = 0;
 
 
5759
5760	if (!selinux_enabled)
5761		goto out;
 
 
5762
5763	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
 
 
5764
5765	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5766	if (err)
5767		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
 
5768
5769#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5770	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5771	if (err)
5772		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5773#endif	/* IPV6 */
5774
5775out:
5776	return err;
5777}
5778
5779__initcall(selinux_nf_ip_init);
5780
5781#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5782static void selinux_nf_ip_exit(void)
5783{
5784	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5785
5786	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5787#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5788	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5789#endif	/* IPV6 */
5790}
5791#endif
5792
5793#else /* CONFIG_NETFILTER */
5794
5795#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5796#define selinux_nf_ip_exit()
5797#endif
5798
5799#endif /* CONFIG_NETFILTER */
5800
5801#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5802static int selinux_disabled;
5803
5804int selinux_disable(void)
5805{
5806	extern void exit_sel_fs(void);
5807
5808	if (ss_initialized) {
5809		/* Not permitted after initial policy load. */
5810		return -EINVAL;
5811	}
5812
5813	if (selinux_disabled) {
5814		/* Only do this once. */
5815		return -EINVAL;
5816	}
5817
5818	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5819
5820	selinux_disabled = 1;
5821	selinux_enabled = 0;
5822
5823	reset_security_ops();
 
 
 
 
 
 
 
5824
5825	/* Try to destroy the avc node cache */
5826	avc_disable();
5827
5828	/* Unregister netfilter hooks. */
5829	selinux_nf_ip_exit();
5830
5831	/* Unregister selinuxfs. */
5832	exit_sel_fs();
5833
5834	return 0;
5835}
5836#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/tracehook.h>
  29#include <linux/errno.h>
  30#include <linux/sched/signal.h>
  31#include <linux/sched/task.h>
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51#include <linux/netfilter_ipv4.h>
  52#include <linux/netfilter_ipv6.h>
  53#include <linux/tty.h>
  54#include <net/icmp.h>
  55#include <net/ip.h>		/* for local_port_range[] */
  56#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  57#include <net/inet_connection_sock.h>
  58#include <net/net_namespace.h>
  59#include <net/netlabel.h>
  60#include <linux/uaccess.h>
  61#include <asm/ioctls.h>
  62#include <linux/atomic.h>
  63#include <linux/bitops.h>
  64#include <linux/interrupt.h>
  65#include <linux/netdevice.h>	/* for network interface checks */
  66#include <net/netlink.h>
  67#include <linux/tcp.h>
  68#include <linux/udp.h>
  69#include <linux/dccp.h>
  70#include <linux/sctp.h>
  71#include <net/sctp/structs.h>
  72#include <linux/quota.h>
  73#include <linux/un.h>		/* for Unix socket types */
  74#include <net/af_unix.h>	/* for Unix socket types */
  75#include <linux/parser.h>
  76#include <linux/nfs_mount.h>
  77#include <net/ipv6.h>
  78#include <linux/hugetlb.h>
  79#include <linux/personality.h>
  80#include <linux/audit.h>
  81#include <linux/string.h>
 
  82#include <linux/mutex.h>
  83#include <linux/posix-timers.h>
  84#include <linux/syslog.h>
  85#include <linux/user_namespace.h>
  86#include <linux/export.h>
  87#include <linux/msg.h>
  88#include <linux/shm.h>
  89#include <linux/bpf.h>
  90#include <linux/kernfs.h>
  91#include <linux/stringhash.h>	/* for hashlen_string() */
  92#include <uapi/linux/mount.h>
  93#include <linux/fsnotify.h>
  94#include <linux/fanotify.h>
  95
  96#include "avc.h"
  97#include "objsec.h"
  98#include "netif.h"
  99#include "netnode.h"
 100#include "netport.h"
 101#include "ibpkey.h"
 102#include "xfrm.h"
 103#include "netlabel.h"
 104#include "audit.h"
 105#include "avc_ss.h"
 106
 107struct selinux_state selinux_state;
 
 
 
 108
 109/* SECMARK reference count */
 110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 111
 112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 113static int selinux_enforcing_boot __initdata;
 114
 115static int __init enforcing_setup(char *str)
 116{
 117	unsigned long enforcing;
 118	if (!kstrtoul(str, 0, &enforcing))
 119		selinux_enforcing_boot = enforcing ? 1 : 0;
 120	return 1;
 121}
 122__setup("enforcing=", enforcing_setup);
 123#else
 124#define selinux_enforcing_boot 1
 125#endif
 126
 127int selinux_enabled_boot __initdata = 1;
 128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 129static int __init selinux_enabled_setup(char *str)
 130{
 131	unsigned long enabled;
 132	if (!kstrtoul(str, 0, &enabled))
 133		selinux_enabled_boot = enabled ? 1 : 0;
 134	return 1;
 135}
 136__setup("selinux=", selinux_enabled_setup);
 
 
 137#endif
 138
 139static unsigned int selinux_checkreqprot_boot =
 140	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 141
 142static int __init checkreqprot_setup(char *str)
 143{
 144	unsigned long checkreqprot;
 145
 146	if (!kstrtoul(str, 0, &checkreqprot)) {
 147		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 148		if (checkreqprot)
 149			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 214	struct cred *cred = (struct cred *) current->real_cred;
 215	struct task_security_struct *tsec;
 216
 217	tsec = selinux_cred(cred);
 
 
 
 218	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 219}
 220
 221/*
 222 * get the security ID of a set of credentials
 223 */
 224static inline u32 cred_sid(const struct cred *cred)
 225{
 226	const struct task_security_struct *tsec;
 227
 228	tsec = selinux_cred(cred);
 229	return tsec->sid;
 230}
 231
 232/*
 233 * get the subjective security ID of a task
 234 */
 235static inline u32 task_sid_subj(const struct task_struct *task)
 236{
 237	u32 sid;
 238
 239	rcu_read_lock();
 240	sid = cred_sid(rcu_dereference(task->cred));
 241	rcu_read_unlock();
 242	return sid;
 243}
 244
 245/*
 246 * get the objective security ID of a task
 247 */
 248static inline u32 task_sid_obj(const struct task_struct *task)
 249{
 250	u32 sid;
 251
 252	rcu_read_lock();
 253	sid = cred_sid(__task_cred(task));
 254	rcu_read_unlock();
 255	return sid;
 256}
 257
 258/*
 259 * get the security ID of a task for use with binder
 260 */
 261static inline u32 task_sid_binder(const struct task_struct *task)
 262{
 263	/*
 264	 * In many case where this function is used we should be using the
 265	 * task's subjective SID, but we can't reliably access the subjective
 266	 * creds of a task other than our own so we must use the objective
 267	 * creds/SID, which are safe to access.  The downside is that if a task
 268	 * is temporarily overriding it's creds it will not be reflected here;
 269	 * however, it isn't clear that binder would handle that case well
 270	 * anyway.
 271	 *
 272	 * If this ever changes and we can safely reference the subjective
 273	 * creds/SID of another task, this function will make it easier to
 274	 * identify the various places where we make use of the task SIDs in
 275	 * the binder code.  It is also likely that we will need to adjust
 276	 * the main drivers/android binder code as well.
 277	 */
 278	return task_sid_obj(task);
 279}
 280
 281static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 
 
 282
 283/*
 284 * Try reloading inode security labels that have been marked as invalid.  The
 285 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 286 * allowed; when set to false, returns -ECHILD when the label is
 287 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 288 */
 289static int __inode_security_revalidate(struct inode *inode,
 290				       struct dentry *dentry,
 291				       bool may_sleep)
 292{
 293	struct inode_security_struct *isec = selinux_inode(inode);
 294
 295	might_sleep_if(may_sleep);
 296
 297	if (selinux_initialized(&selinux_state) &&
 298	    isec->initialized != LABEL_INITIALIZED) {
 299		if (!may_sleep)
 300			return -ECHILD;
 301
 302		/*
 303		 * Try reloading the inode security label.  This will fail if
 304		 * @opt_dentry is NULL and no dentry for this inode can be
 305		 * found; in that case, continue using the old label.
 306		 */
 307		inode_doinit_with_dentry(inode, dentry);
 308	}
 309	return 0;
 310}
 311
 312static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 313{
 314	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 
 315}
 316
 317static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 318{
 319	int error;
 
 
 
 
 
 
 
 
 
 320
 321	error = __inode_security_revalidate(inode, NULL, !rcu);
 322	if (error)
 323		return ERR_PTR(error);
 324	return selinux_inode(inode);
 325}
 326
 327/*
 328 * Get the security label of an inode.
 329 */
 330static struct inode_security_struct *inode_security(struct inode *inode)
 331{
 332	__inode_security_revalidate(inode, NULL, true);
 333	return selinux_inode(inode);
 
 334}
 335
 336static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 337{
 338	struct inode *inode = d_backing_inode(dentry);
 339
 340	return selinux_inode(inode);
 341}
 
 342
 343/*
 344 * Get the security label of a dentry's backing inode.
 345 */
 346static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 347{
 348	struct inode *inode = d_backing_inode(dentry);
 
 
 349
 350	__inode_security_revalidate(inode, dentry, true);
 351	return selinux_inode(inode);
 352}
 353
 354static void inode_free_security(struct inode *inode)
 355{
 356	struct inode_security_struct *isec = selinux_inode(inode);
 357	struct superblock_security_struct *sbsec;
 358
 359	if (!isec)
 360		return;
 361	sbsec = selinux_superblock(inode->i_sb);
 362	/*
 363	 * As not all inode security structures are in a list, we check for
 364	 * empty list outside of the lock to make sure that we won't waste
 365	 * time taking a lock doing nothing.
 366	 *
 367	 * The list_del_init() function can be safely called more than once.
 368	 * It should not be possible for this function to be called with
 369	 * concurrent list_add(), but for better safety against future changes
 370	 * in the code, we use list_empty_careful() here.
 371	 */
 372	if (!list_empty_careful(&isec->list)) {
 373		spin_lock(&sbsec->isec_lock);
 374		list_del_init(&isec->list);
 375		spin_unlock(&sbsec->isec_lock);
 376	}
 377}
 378
 379struct selinux_mnt_opts {
 380	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 
 
 
 
 
 
 
 
 381};
 382
 383static void selinux_free_mnt_opts(void *mnt_opts)
 
 
 384{
 385	struct selinux_mnt_opts *opts = mnt_opts;
 386	kfree(opts->fscontext);
 387	kfree(opts->context);
 388	kfree(opts->rootcontext);
 389	kfree(opts->defcontext);
 390	kfree(opts);
 391}
 392
 393enum {
 394	Opt_error = -1,
 395	Opt_context = 0,
 396	Opt_defcontext = 1,
 397	Opt_fscontext = 2,
 398	Opt_rootcontext = 3,
 399	Opt_seclabel = 4,
 
 400};
 401
 402#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 403static struct {
 404	const char *name;
 405	int len;
 406	int opt;
 407	bool has_arg;
 408} tokens[] = {
 409	A(context, true),
 410	A(fscontext, true),
 411	A(defcontext, true),
 412	A(rootcontext, true),
 413	A(seclabel, false),
 414};
 415#undef A
 416
 417static int match_opt_prefix(char *s, int l, char **arg)
 418{
 419	int i;
 420
 421	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 422		size_t len = tokens[i].len;
 423		if (len > l || memcmp(s, tokens[i].name, len))
 424			continue;
 425		if (tokens[i].has_arg) {
 426			if (len == l || s[len] != '=')
 427				continue;
 428			*arg = s + len + 1;
 429		} else if (len != l)
 430			continue;
 431		return tokens[i].opt;
 432	}
 433	return Opt_error;
 434}
 435
 436#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 437
 438static int may_context_mount_sb_relabel(u32 sid,
 439			struct superblock_security_struct *sbsec,
 440			const struct cred *cred)
 441{
 442	const struct task_security_struct *tsec = selinux_cred(cred);
 443	int rc;
 444
 445	rc = avc_has_perm(&selinux_state,
 446			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 447			  FILESYSTEM__RELABELFROM, NULL);
 448	if (rc)
 449		return rc;
 450
 451	rc = avc_has_perm(&selinux_state,
 452			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 453			  FILESYSTEM__RELABELTO, NULL);
 454	return rc;
 455}
 456
 457static int may_context_mount_inode_relabel(u32 sid,
 458			struct superblock_security_struct *sbsec,
 459			const struct cred *cred)
 460{
 461	const struct task_security_struct *tsec = selinux_cred(cred);
 462	int rc;
 463	rc = avc_has_perm(&selinux_state,
 464			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 465			  FILESYSTEM__RELABELFROM, NULL);
 466	if (rc)
 467		return rc;
 468
 469	rc = avc_has_perm(&selinux_state,
 470			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 471			  FILESYSTEM__ASSOCIATE, NULL);
 472	return rc;
 473}
 474
 475static int selinux_is_genfs_special_handling(struct super_block *sb)
 476{
 477	/* Special handling. Genfs but also in-core setxattr handler */
 478	return	!strcmp(sb->s_type->name, "sysfs") ||
 479		!strcmp(sb->s_type->name, "pstore") ||
 480		!strcmp(sb->s_type->name, "debugfs") ||
 481		!strcmp(sb->s_type->name, "tracefs") ||
 482		!strcmp(sb->s_type->name, "rootfs") ||
 483		(selinux_policycap_cgroupseclabel() &&
 484		 (!strcmp(sb->s_type->name, "cgroup") ||
 485		  !strcmp(sb->s_type->name, "cgroup2")));
 486}
 487
 488static int selinux_is_sblabel_mnt(struct super_block *sb)
 489{
 490	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 491
 492	/*
 493	 * IMPORTANT: Double-check logic in this function when adding a new
 494	 * SECURITY_FS_USE_* definition!
 495	 */
 496	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 497
 498	switch (sbsec->behavior) {
 499	case SECURITY_FS_USE_XATTR:
 500	case SECURITY_FS_USE_TRANS:
 501	case SECURITY_FS_USE_TASK:
 502	case SECURITY_FS_USE_NATIVE:
 503		return 1;
 504
 505	case SECURITY_FS_USE_GENFS:
 506		return selinux_is_genfs_special_handling(sb);
 507
 508	/* Never allow relabeling on context mounts */
 509	case SECURITY_FS_USE_MNTPOINT:
 510	case SECURITY_FS_USE_NONE:
 511	default:
 512		return 0;
 513	}
 514}
 515
 516static int sb_check_xattr_support(struct super_block *sb)
 517{
 518	struct superblock_security_struct *sbsec = sb->s_security;
 519	struct dentry *root = sb->s_root;
 520	struct inode *root_inode = d_backing_inode(root);
 521	u32 sid;
 522	int rc;
 523
 524	/*
 525	 * Make sure that the xattr handler exists and that no
 526	 * error other than -ENODATA is returned by getxattr on
 527	 * the root directory.  -ENODATA is ok, as this may be
 528	 * the first boot of the SELinux kernel before we have
 529	 * assigned xattr values to the filesystem.
 530	 */
 531	if (!(root_inode->i_opflags & IOP_XATTR)) {
 532		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 533			sb->s_id, sb->s_type->name);
 534		goto fallback;
 535	}
 536
 537	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 538	if (rc < 0 && rc != -ENODATA) {
 539		if (rc == -EOPNOTSUPP) {
 540			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 541				sb->s_id, sb->s_type->name);
 542			goto fallback;
 543		} else {
 544			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 545				sb->s_id, sb->s_type->name, -rc);
 546			return rc;
 547		}
 548	}
 549	return 0;
 550
 551fallback:
 552	/* No xattr support - try to fallback to genfs if possible. */
 553	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
 554				SECCLASS_DIR, &sid);
 555	if (rc)
 556		return -EOPNOTSUPP;
 557
 558	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 559		sb->s_id, sb->s_type->name);
 560	sbsec->behavior = SECURITY_FS_USE_GENFS;
 561	sbsec->sid = sid;
 562	return 0;
 563}
 564
 565static int sb_finish_set_opts(struct super_block *sb)
 566{
 567	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 568	struct dentry *root = sb->s_root;
 569	struct inode *root_inode = d_backing_inode(root);
 570	int rc = 0;
 571
 572	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 573		rc = sb_check_xattr_support(sb);
 574		if (rc)
 575			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576	}
 577
 578	sbsec->flags |= SE_SBINITIALIZED;
 579
 580	/*
 581	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 582	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 583	 * us a superblock that needs the flag to be cleared.
 584	 */
 585	if (selinux_is_sblabel_mnt(sb))
 586		sbsec->flags |= SBLABEL_MNT;
 587	else
 588		sbsec->flags &= ~SBLABEL_MNT;
 
 
 
 
 
 
 
 
 
 
 
 
 589
 590	/* Initialize the root inode. */
 591	rc = inode_doinit_with_dentry(root_inode, root);
 592
 593	/* Initialize any other inodes associated with the superblock, e.g.
 594	   inodes created prior to initial policy load or inodes created
 595	   during get_sb by a pseudo filesystem that directly
 596	   populates itself. */
 597	spin_lock(&sbsec->isec_lock);
 598	while (!list_empty(&sbsec->isec_head)) {
 
 599		struct inode_security_struct *isec =
 600				list_first_entry(&sbsec->isec_head,
 601					   struct inode_security_struct, list);
 602		struct inode *inode = isec->inode;
 603		list_del_init(&isec->list);
 604		spin_unlock(&sbsec->isec_lock);
 605		inode = igrab(inode);
 606		if (inode) {
 607			if (!IS_PRIVATE(inode))
 608				inode_doinit_with_dentry(inode, NULL);
 609			iput(inode);
 610		}
 611		spin_lock(&sbsec->isec_lock);
 
 
 612	}
 613	spin_unlock(&sbsec->isec_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614	return rc;
 615}
 616
 617static int bad_option(struct superblock_security_struct *sbsec, char flag,
 618		      u32 old_sid, u32 new_sid)
 619{
 620	char mnt_flags = sbsec->flags & SE_MNTMASK;
 621
 622	/* check if the old mount command had the same options */
 623	if (sbsec->flags & SE_SBINITIALIZED)
 624		if (!(sbsec->flags & flag) ||
 625		    (old_sid != new_sid))
 626			return 1;
 627
 628	/* check if we were passed the same options twice,
 629	 * aka someone passed context=a,context=b
 630	 */
 631	if (!(sbsec->flags & SE_SBINITIALIZED))
 632		if (mnt_flags & flag)
 633			return 1;
 634	return 0;
 635}
 636
 637static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 638{
 639	int rc = security_context_str_to_sid(&selinux_state, s,
 640					     sid, GFP_KERNEL);
 641	if (rc)
 642		pr_warn("SELinux: security_context_str_to_sid"
 643		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 644		       s, sb->s_id, sb->s_type->name, rc);
 645	return rc;
 646}
 647
 648/*
 649 * Allow filesystems with binary mount data to explicitly set mount point
 650 * labeling information.
 651 */
 652static int selinux_set_mnt_opts(struct super_block *sb,
 653				void *mnt_opts,
 654				unsigned long kern_flags,
 655				unsigned long *set_kern_flags)
 656{
 657	const struct cred *cred = current_cred();
 658	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 659	struct dentry *root = sb->s_root;
 660	struct selinux_mnt_opts *opts = mnt_opts;
 661	struct inode_security_struct *root_isec;
 
 662	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 663	u32 defcontext_sid = 0;
 664	int rc = 0;
 
 
 665
 666	mutex_lock(&sbsec->lock);
 667
 668	if (!selinux_initialized(&selinux_state)) {
 669		if (!opts) {
 670			/* Defer initialization until selinux_complete_init,
 671			   after the initial policy is loaded and the security
 672			   server is ready to handle calls. */
 673			goto out;
 674		}
 675		rc = -EINVAL;
 676		pr_warn("SELinux: Unable to set superblock options "
 677			"before the security server is initialized\n");
 678		goto out;
 679	}
 680	if (kern_flags && !set_kern_flags) {
 681		/* Specifying internal flags without providing a place to
 682		 * place the results is not allowed */
 683		rc = -EINVAL;
 684		goto out;
 685	}
 686
 687	/*
 688	 * Binary mount data FS will come through this function twice.  Once
 689	 * from an explicit call and once from the generic calls from the vfs.
 690	 * Since the generic VFS calls will not contain any security mount data
 691	 * we need to skip the double mount verification.
 692	 *
 693	 * This does open a hole in which we will not notice if the first
 694	 * mount using this sb set explict options and a second mount using
 695	 * this sb does not set any security options.  (The first options
 696	 * will be used for both mounts)
 697	 */
 698	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 699	    && !opts)
 700		goto out;
 701
 702	root_isec = backing_inode_security_novalidate(root);
 703
 704	/*
 705	 * parse the mount options, check if they are valid sids.
 706	 * also check if someone is trying to mount the same sb more
 707	 * than once with different security options.
 708	 */
 709	if (opts) {
 710		if (opts->fscontext) {
 711			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 712			if (rc)
 713				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 714			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 715					fscontext_sid))
 716				goto out_double_mount;
 
 717			sbsec->flags |= FSCONTEXT_MNT;
 718		}
 719		if (opts->context) {
 720			rc = parse_sid(sb, opts->context, &context_sid);
 721			if (rc)
 722				goto out;
 723			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 724					context_sid))
 725				goto out_double_mount;
 
 726			sbsec->flags |= CONTEXT_MNT;
 727		}
 728		if (opts->rootcontext) {
 729			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 730			if (rc)
 731				goto out;
 732			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 733					rootcontext_sid))
 734				goto out_double_mount;
 
 735			sbsec->flags |= ROOTCONTEXT_MNT;
 736		}
 737		if (opts->defcontext) {
 738			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 739			if (rc)
 740				goto out;
 741			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 742					defcontext_sid))
 743				goto out_double_mount;
 
 744			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 745		}
 746	}
 747
 748	if (sbsec->flags & SE_SBINITIALIZED) {
 749		/* previously mounted with options, but not on this attempt? */
 750		if ((sbsec->flags & SE_MNTMASK) && !opts)
 751			goto out_double_mount;
 752		rc = 0;
 753		goto out;
 754	}
 755
 756	if (strcmp(sb->s_type->name, "proc") == 0)
 757		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 758
 759	if (!strcmp(sb->s_type->name, "debugfs") ||
 760	    !strcmp(sb->s_type->name, "tracefs") ||
 761	    !strcmp(sb->s_type->name, "binder") ||
 762	    !strcmp(sb->s_type->name, "bpf") ||
 763	    !strcmp(sb->s_type->name, "pstore"))
 764		sbsec->flags |= SE_SBGENFS;
 765
 766	if (!strcmp(sb->s_type->name, "sysfs") ||
 767	    !strcmp(sb->s_type->name, "cgroup") ||
 768	    !strcmp(sb->s_type->name, "cgroup2"))
 769		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 770
 771	if (!sbsec->behavior) {
 772		/*
 773		 * Determine the labeling behavior to use for this
 774		 * filesystem type.
 775		 */
 776		rc = security_fs_use(&selinux_state, sb);
 777		if (rc) {
 778			pr_warn("%s: security_fs_use(%s) returned %d\n",
 779					__func__, sb->s_type->name, rc);
 780			goto out;
 781		}
 782	}
 783
 784	/*
 785	 * If this is a user namespace mount and the filesystem type is not
 786	 * explicitly whitelisted, then no contexts are allowed on the command
 787	 * line and security labels must be ignored.
 788	 */
 789	if (sb->s_user_ns != &init_user_ns &&
 790	    strcmp(sb->s_type->name, "tmpfs") &&
 791	    strcmp(sb->s_type->name, "ramfs") &&
 792	    strcmp(sb->s_type->name, "devpts") &&
 793	    strcmp(sb->s_type->name, "overlay")) {
 794		if (context_sid || fscontext_sid || rootcontext_sid ||
 795		    defcontext_sid) {
 796			rc = -EACCES;
 797			goto out;
 798		}
 799		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 800			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 801			rc = security_transition_sid(&selinux_state,
 802						     current_sid(),
 803						     current_sid(),
 804						     SECCLASS_FILE, NULL,
 805						     &sbsec->mntpoint_sid);
 806			if (rc)
 807				goto out;
 808		}
 809		goto out_set_opts;
 810	}
 811
 812	/* sets the context of the superblock for the fs being mounted. */
 813	if (fscontext_sid) {
 814		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 815		if (rc)
 816			goto out;
 817
 818		sbsec->sid = fscontext_sid;
 819	}
 820
 821	/*
 822	 * Switch to using mount point labeling behavior.
 823	 * sets the label used on all file below the mountpoint, and will set
 824	 * the superblock context if not already set.
 825	 */
 826	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 827		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 828		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 829	}
 830
 831	if (context_sid) {
 832		if (!fscontext_sid) {
 833			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 834							  cred);
 835			if (rc)
 836				goto out;
 837			sbsec->sid = context_sid;
 838		} else {
 839			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 840							     cred);
 841			if (rc)
 842				goto out;
 843		}
 844		if (!rootcontext_sid)
 845			rootcontext_sid = context_sid;
 846
 847		sbsec->mntpoint_sid = context_sid;
 848		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 849	}
 850
 851	if (rootcontext_sid) {
 852		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 853						     cred);
 854		if (rc)
 855			goto out;
 856
 857		root_isec->sid = rootcontext_sid;
 858		root_isec->initialized = LABEL_INITIALIZED;
 859	}
 860
 861	if (defcontext_sid) {
 862		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 863			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 864			rc = -EINVAL;
 865			pr_warn("SELinux: defcontext option is "
 866			       "invalid for this filesystem type\n");
 867			goto out;
 868		}
 869
 870		if (defcontext_sid != sbsec->def_sid) {
 871			rc = may_context_mount_inode_relabel(defcontext_sid,
 872							     sbsec, cred);
 873			if (rc)
 874				goto out;
 875		}
 876
 877		sbsec->def_sid = defcontext_sid;
 878	}
 879
 880out_set_opts:
 881	rc = sb_finish_set_opts(sb);
 882out:
 883	mutex_unlock(&sbsec->lock);
 884	return rc;
 885out_double_mount:
 886	rc = -EINVAL;
 887	pr_warn("SELinux: mount invalid.  Same superblock, different "
 888	       "security settings for (dev %s, type %s)\n", sb->s_id,
 889	       sb->s_type->name);
 890	goto out;
 891}
 892
 893static int selinux_cmp_sb_context(const struct super_block *oldsb,
 894				    const struct super_block *newsb)
 895{
 896	struct superblock_security_struct *old = selinux_superblock(oldsb);
 897	struct superblock_security_struct *new = selinux_superblock(newsb);
 898	char oldflags = old->flags & SE_MNTMASK;
 899	char newflags = new->flags & SE_MNTMASK;
 900
 901	if (oldflags != newflags)
 902		goto mismatch;
 903	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 904		goto mismatch;
 905	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 906		goto mismatch;
 907	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 908		goto mismatch;
 909	if (oldflags & ROOTCONTEXT_MNT) {
 910		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 911		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 912		if (oldroot->sid != newroot->sid)
 913			goto mismatch;
 914	}
 915	return 0;
 916mismatch:
 917	pr_warn("SELinux: mount invalid.  Same superblock, "
 918			    "different security settings for (dev %s, "
 919			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 920	return -EBUSY;
 921}
 922
 923static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 924					struct super_block *newsb,
 925					unsigned long kern_flags,
 926					unsigned long *set_kern_flags)
 927{
 928	int rc = 0;
 929	const struct superblock_security_struct *oldsbsec =
 930						selinux_superblock(oldsb);
 931	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 932
 933	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 934	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 935	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 936
 937	/*
 938	 * if the parent was able to be mounted it clearly had no special lsm
 939	 * mount options.  thus we can safely deal with this superblock later
 940	 */
 941	if (!selinux_initialized(&selinux_state))
 942		return 0;
 943
 944	/*
 945	 * Specifying internal flags without providing a place to
 946	 * place the results is not allowed.
 947	 */
 948	if (kern_flags && !set_kern_flags)
 949		return -EINVAL;
 950
 951	/* how can we clone if the old one wasn't set up?? */
 952	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 953
 954	/* if fs is reusing a sb, make sure that the contexts match */
 955	if (newsbsec->flags & SE_SBINITIALIZED) {
 956		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 957			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 958		return selinux_cmp_sb_context(oldsb, newsb);
 959	}
 960
 961	mutex_lock(&newsbsec->lock);
 962
 963	newsbsec->flags = oldsbsec->flags;
 964
 965	newsbsec->sid = oldsbsec->sid;
 966	newsbsec->def_sid = oldsbsec->def_sid;
 967	newsbsec->behavior = oldsbsec->behavior;
 968
 969	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 970		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 971		rc = security_fs_use(&selinux_state, newsb);
 972		if (rc)
 973			goto out;
 974	}
 975
 976	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 977		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 978		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 979	}
 980
 981	if (set_context) {
 982		u32 sid = oldsbsec->mntpoint_sid;
 983
 984		if (!set_fscontext)
 985			newsbsec->sid = sid;
 986		if (!set_rootcontext) {
 987			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 988			newisec->sid = sid;
 989		}
 990		newsbsec->mntpoint_sid = sid;
 991	}
 992	if (set_rootcontext) {
 993		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 994		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 
 995
 996		newisec->sid = oldisec->sid;
 997	}
 998
 999	sb_finish_set_opts(newsb);
1000out:
1001	mutex_unlock(&newsbsec->lock);
1002	return rc;
1003}
1004
1005static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 
1006{
1007	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008
1009	if (token == Opt_seclabel)	/* eaten and completely ignored */
1010		return 0;
 
 
 
 
 
 
 
 
 
 
 
1011
1012	if (!opts) {
1013		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1014		if (!opts)
1015			return -ENOMEM;
1016		*mnt_opts = opts;
1017	}
1018	if (!s)
1019		return -ENOMEM;
1020	switch (token) {
1021	case Opt_context:
1022		if (opts->context || opts->defcontext)
1023			goto Einval;
1024		opts->context = s;
1025		break;
1026	case Opt_fscontext:
1027		if (opts->fscontext)
1028			goto Einval;
1029		opts->fscontext = s;
1030		break;
1031	case Opt_rootcontext:
1032		if (opts->rootcontext)
1033			goto Einval;
1034		opts->rootcontext = s;
1035		break;
1036	case Opt_defcontext:
1037		if (opts->context || opts->defcontext)
1038			goto Einval;
1039		opts->defcontext = s;
1040		break;
1041	}
1042	return 0;
1043Einval:
1044	pr_warn(SEL_MOUNT_FAIL_MSG);
1045	return -EINVAL;
1046}
1047
1048static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1049			       void **mnt_opts)
1050{
1051	int token = Opt_error;
1052	int rc, i;
 
 
 
 
 
 
 
1053
1054	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1055		if (strcmp(option, tokens[i].name) == 0) {
1056			token = tokens[i].opt;
 
 
 
 
 
 
 
 
 
 
1057			break;
 
 
 
 
 
1058		}
1059	}
1060
1061	if (token == Opt_error)
1062		return -EINVAL;
 
 
 
 
 
 
 
 
1063
1064	if (token != Opt_seclabel) {
1065		val = kmemdup_nul(val, len, GFP_KERNEL);
1066		if (!val) {
1067			rc = -ENOMEM;
1068			goto free_opt;
1069		}
 
 
 
 
 
1070	}
1071	rc = selinux_add_opt(token, val, mnt_opts);
1072	if (unlikely(rc)) {
1073		kfree(val);
1074		goto free_opt;
1075	}
 
 
 
 
 
 
 
 
 
1076	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077
1078free_opt:
1079	if (*mnt_opts) {
1080		selinux_free_mnt_opts(*mnt_opts);
1081		*mnt_opts = NULL;
1082	}
 
 
 
 
 
 
1083	return rc;
1084}
1085
1086static int show_sid(struct seq_file *m, u32 sid)
 
1087{
1088	char *context = NULL;
1089	u32 len;
1090	int rc;
1091
1092	rc = security_sid_to_context(&selinux_state, sid,
1093					     &context, &len);
1094	if (!rc) {
1095		bool has_comma = context && strchr(context, ',');
1096
1097		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098		if (has_comma)
1099			seq_putc(m, '\"');
1100		seq_escape(m, context, "\"\n\\");
1101		if (has_comma)
1102			seq_putc(m, '\"');
1103	}
1104	kfree(context);
1105	return rc;
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1111	int rc;
1112
1113	if (!(sbsec->flags & SE_SBINITIALIZED))
1114		return 0;
 
 
 
 
 
 
 
1115
1116	if (!selinux_initialized(&selinux_state))
1117		return 0;
1118
1119	if (sbsec->flags & FSCONTEXT_MNT) {
1120		seq_putc(m, ',');
1121		seq_puts(m, FSCONTEXT_STR);
1122		rc = show_sid(m, sbsec->sid);
1123		if (rc)
1124			return rc;
1125	}
1126	if (sbsec->flags & CONTEXT_MNT) {
1127		seq_putc(m, ',');
1128		seq_puts(m, CONTEXT_STR);
1129		rc = show_sid(m, sbsec->mntpoint_sid);
1130		if (rc)
1131			return rc;
1132	}
1133	if (sbsec->flags & DEFCONTEXT_MNT) {
1134		seq_putc(m, ',');
1135		seq_puts(m, DEFCONTEXT_STR);
1136		rc = show_sid(m, sbsec->def_sid);
1137		if (rc)
1138			return rc;
1139	}
1140	if (sbsec->flags & ROOTCONTEXT_MNT) {
1141		struct dentry *root = sb->s_root;
1142		struct inode_security_struct *isec = backing_inode_security(root);
1143		seq_putc(m, ',');
1144		seq_puts(m, ROOTCONTEXT_STR);
1145		rc = show_sid(m, isec->sid);
1146		if (rc)
1147			return rc;
1148	}
1149	if (sbsec->flags & SBLABEL_MNT) {
1150		seq_putc(m, ',');
1151		seq_puts(m, SECLABEL_STR);
1152	}
1153	return 0;
1154}
1155
1156static inline u16 inode_mode_to_security_class(umode_t mode)
1157{
1158	switch (mode & S_IFMT) {
1159	case S_IFSOCK:
1160		return SECCLASS_SOCK_FILE;
1161	case S_IFLNK:
1162		return SECCLASS_LNK_FILE;
1163	case S_IFREG:
1164		return SECCLASS_FILE;
1165	case S_IFBLK:
1166		return SECCLASS_BLK_FILE;
1167	case S_IFDIR:
1168		return SECCLASS_DIR;
1169	case S_IFCHR:
1170		return SECCLASS_CHR_FILE;
1171	case S_IFIFO:
1172		return SECCLASS_FIFO_FILE;
1173
1174	}
1175
1176	return SECCLASS_FILE;
1177}
1178
1179static inline int default_protocol_stream(int protocol)
1180{
1181	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1182		protocol == IPPROTO_MPTCP);
1183}
1184
1185static inline int default_protocol_dgram(int protocol)
1186{
1187	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1188}
1189
1190static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1191{
1192	int extsockclass = selinux_policycap_extsockclass();
1193
1194	switch (family) {
1195	case PF_UNIX:
1196		switch (type) {
1197		case SOCK_STREAM:
1198		case SOCK_SEQPACKET:
1199			return SECCLASS_UNIX_STREAM_SOCKET;
1200		case SOCK_DGRAM:
1201		case SOCK_RAW:
1202			return SECCLASS_UNIX_DGRAM_SOCKET;
1203		}
1204		break;
1205	case PF_INET:
1206	case PF_INET6:
1207		switch (type) {
1208		case SOCK_STREAM:
1209		case SOCK_SEQPACKET:
1210			if (default_protocol_stream(protocol))
1211				return SECCLASS_TCP_SOCKET;
1212			else if (extsockclass && protocol == IPPROTO_SCTP)
1213				return SECCLASS_SCTP_SOCKET;
1214			else
1215				return SECCLASS_RAWIP_SOCKET;
1216		case SOCK_DGRAM:
1217			if (default_protocol_dgram(protocol))
1218				return SECCLASS_UDP_SOCKET;
1219			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1220						  protocol == IPPROTO_ICMPV6))
1221				return SECCLASS_ICMP_SOCKET;
1222			else
1223				return SECCLASS_RAWIP_SOCKET;
1224		case SOCK_DCCP:
1225			return SECCLASS_DCCP_SOCKET;
1226		default:
1227			return SECCLASS_RAWIP_SOCKET;
1228		}
1229		break;
1230	case PF_NETLINK:
1231		switch (protocol) {
1232		case NETLINK_ROUTE:
1233			return SECCLASS_NETLINK_ROUTE_SOCKET;
1234		case NETLINK_SOCK_DIAG:
 
 
1235			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1236		case NETLINK_NFLOG:
1237			return SECCLASS_NETLINK_NFLOG_SOCKET;
1238		case NETLINK_XFRM:
1239			return SECCLASS_NETLINK_XFRM_SOCKET;
1240		case NETLINK_SELINUX:
1241			return SECCLASS_NETLINK_SELINUX_SOCKET;
1242		case NETLINK_ISCSI:
1243			return SECCLASS_NETLINK_ISCSI_SOCKET;
1244		case NETLINK_AUDIT:
1245			return SECCLASS_NETLINK_AUDIT_SOCKET;
1246		case NETLINK_FIB_LOOKUP:
1247			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1248		case NETLINK_CONNECTOR:
1249			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1250		case NETLINK_NETFILTER:
1251			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1252		case NETLINK_DNRTMSG:
1253			return SECCLASS_NETLINK_DNRT_SOCKET;
1254		case NETLINK_KOBJECT_UEVENT:
1255			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1256		case NETLINK_GENERIC:
1257			return SECCLASS_NETLINK_GENERIC_SOCKET;
1258		case NETLINK_SCSITRANSPORT:
1259			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1260		case NETLINK_RDMA:
1261			return SECCLASS_NETLINK_RDMA_SOCKET;
1262		case NETLINK_CRYPTO:
1263			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1264		default:
1265			return SECCLASS_NETLINK_SOCKET;
1266		}
1267	case PF_PACKET:
1268		return SECCLASS_PACKET_SOCKET;
1269	case PF_KEY:
1270		return SECCLASS_KEY_SOCKET;
1271	case PF_APPLETALK:
1272		return SECCLASS_APPLETALK_SOCKET;
1273	}
1274
1275	if (extsockclass) {
1276		switch (family) {
1277		case PF_AX25:
1278			return SECCLASS_AX25_SOCKET;
1279		case PF_IPX:
1280			return SECCLASS_IPX_SOCKET;
1281		case PF_NETROM:
1282			return SECCLASS_NETROM_SOCKET;
1283		case PF_ATMPVC:
1284			return SECCLASS_ATMPVC_SOCKET;
1285		case PF_X25:
1286			return SECCLASS_X25_SOCKET;
1287		case PF_ROSE:
1288			return SECCLASS_ROSE_SOCKET;
1289		case PF_DECnet:
1290			return SECCLASS_DECNET_SOCKET;
1291		case PF_ATMSVC:
1292			return SECCLASS_ATMSVC_SOCKET;
1293		case PF_RDS:
1294			return SECCLASS_RDS_SOCKET;
1295		case PF_IRDA:
1296			return SECCLASS_IRDA_SOCKET;
1297		case PF_PPPOX:
1298			return SECCLASS_PPPOX_SOCKET;
1299		case PF_LLC:
1300			return SECCLASS_LLC_SOCKET;
1301		case PF_CAN:
1302			return SECCLASS_CAN_SOCKET;
1303		case PF_TIPC:
1304			return SECCLASS_TIPC_SOCKET;
1305		case PF_BLUETOOTH:
1306			return SECCLASS_BLUETOOTH_SOCKET;
1307		case PF_IUCV:
1308			return SECCLASS_IUCV_SOCKET;
1309		case PF_RXRPC:
1310			return SECCLASS_RXRPC_SOCKET;
1311		case PF_ISDN:
1312			return SECCLASS_ISDN_SOCKET;
1313		case PF_PHONET:
1314			return SECCLASS_PHONET_SOCKET;
1315		case PF_IEEE802154:
1316			return SECCLASS_IEEE802154_SOCKET;
1317		case PF_CAIF:
1318			return SECCLASS_CAIF_SOCKET;
1319		case PF_ALG:
1320			return SECCLASS_ALG_SOCKET;
1321		case PF_NFC:
1322			return SECCLASS_NFC_SOCKET;
1323		case PF_VSOCK:
1324			return SECCLASS_VSOCK_SOCKET;
1325		case PF_KCM:
1326			return SECCLASS_KCM_SOCKET;
1327		case PF_QIPCRTR:
1328			return SECCLASS_QIPCRTR_SOCKET;
1329		case PF_SMC:
1330			return SECCLASS_SMC_SOCKET;
1331		case PF_XDP:
1332			return SECCLASS_XDP_SOCKET;
1333#if PF_MAX > 45
1334#error New address family defined, please update this function.
1335#endif
1336		}
1337	}
1338
1339	return SECCLASS_SOCKET;
1340}
1341
1342static int selinux_genfs_get_sid(struct dentry *dentry,
1343				 u16 tclass,
1344				 u16 flags,
1345				 u32 *sid)
1346{
1347	int rc;
1348	struct super_block *sb = dentry->d_sb;
1349	char *buffer, *path;
1350
1351	buffer = (char *)__get_free_page(GFP_KERNEL);
1352	if (!buffer)
1353		return -ENOMEM;
1354
1355	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1356	if (IS_ERR(path))
1357		rc = PTR_ERR(path);
1358	else {
1359		if (flags & SE_SBPROC) {
1360			/* each process gets a /proc/PID/ entry. Strip off the
1361			 * PID part to get a valid selinux labeling.
1362			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1363			while (path[1] >= '0' && path[1] <= '9') {
1364				path[1] = '/';
1365				path++;
1366			}
1367		}
1368		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1369					path, tclass, sid);
1370		if (rc == -ENOENT) {
1371			/* No match in policy, mark as unlabeled. */
1372			*sid = SECINITSID_UNLABELED;
1373			rc = 0;
1374		}
 
1375	}
1376	free_page((unsigned long)buffer);
1377	return rc;
1378}
1379
1380static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1381				  u32 def_sid, u32 *sid)
 
1382{
1383#define INITCONTEXTLEN 255
1384	char *context;
1385	unsigned int len;
1386	int rc;
1387
1388	len = INITCONTEXTLEN;
1389	context = kmalloc(len + 1, GFP_NOFS);
1390	if (!context)
1391		return -ENOMEM;
1392
1393	context[len] = '\0';
1394	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1395	if (rc == -ERANGE) {
1396		kfree(context);
1397
1398		/* Need a larger buffer.  Query for the right size. */
1399		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1400		if (rc < 0)
1401			return rc;
1402
1403		len = rc;
1404		context = kmalloc(len + 1, GFP_NOFS);
1405		if (!context)
1406			return -ENOMEM;
1407
1408		context[len] = '\0';
1409		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1410				    context, len);
1411	}
1412	if (rc < 0) {
1413		kfree(context);
1414		if (rc != -ENODATA) {
1415			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1416				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1417			return rc;
1418		}
1419		*sid = def_sid;
1420		return 0;
1421	}
1422
1423	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1424					     def_sid, GFP_NOFS);
1425	if (rc) {
1426		char *dev = inode->i_sb->s_id;
1427		unsigned long ino = inode->i_ino;
1428
1429		if (rc == -EINVAL) {
1430			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1431					      ino, dev, context);
1432		} else {
1433			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1434				__func__, context, -rc, dev, ino);
1435		}
1436	}
1437	kfree(context);
1438	return 0;
1439}
 
1440
1441/* The inode's security attributes must be initialized before first use. */
1442static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1443{
1444	struct superblock_security_struct *sbsec = NULL;
1445	struct inode_security_struct *isec = selinux_inode(inode);
1446	u32 task_sid, sid = 0;
1447	u16 sclass;
1448	struct dentry *dentry;
 
 
 
1449	int rc = 0;
1450
1451	if (isec->initialized == LABEL_INITIALIZED)
1452		return 0;
1453
1454	spin_lock(&isec->lock);
1455	if (isec->initialized == LABEL_INITIALIZED)
1456		goto out_unlock;
1457
1458	if (isec->sclass == SECCLASS_FILE)
1459		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1460
1461	sbsec = selinux_superblock(inode->i_sb);
1462	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1463		/* Defer initialization until selinux_complete_init,
1464		   after the initial policy is loaded and the security
1465		   server is ready to handle calls. */
1466		spin_lock(&sbsec->isec_lock);
1467		if (list_empty(&isec->list))
1468			list_add(&isec->list, &sbsec->isec_head);
1469		spin_unlock(&sbsec->isec_lock);
1470		goto out_unlock;
1471	}
1472
1473	sclass = isec->sclass;
1474	task_sid = isec->task_sid;
1475	sid = isec->sid;
1476	isec->initialized = LABEL_PENDING;
1477	spin_unlock(&isec->lock);
1478
1479	switch (sbsec->behavior) {
1480	case SECURITY_FS_USE_NATIVE:
1481		break;
1482	case SECURITY_FS_USE_XATTR:
1483		if (!(inode->i_opflags & IOP_XATTR)) {
1484			sid = sbsec->def_sid;
1485			break;
1486		}
 
1487		/* Need a dentry, since the xattr API requires one.
1488		   Life would be simpler if we could just pass the inode. */
1489		if (opt_dentry) {
1490			/* Called from d_instantiate or d_splice_alias. */
1491			dentry = dget(opt_dentry);
1492		} else {
1493			/*
1494			 * Called from selinux_complete_init, try to find a dentry.
1495			 * Some filesystems really want a connected one, so try
1496			 * that first.  We could split SECURITY_FS_USE_XATTR in
1497			 * two, depending upon that...
1498			 */
1499			dentry = d_find_alias(inode);
1500			if (!dentry)
1501				dentry = d_find_any_alias(inode);
1502		}
1503		if (!dentry) {
1504			/*
1505			 * this is can be hit on boot when a file is accessed
1506			 * before the policy is loaded.  When we load policy we
1507			 * may find inodes that have no dentry on the
1508			 * sbsec->isec_head list.  No reason to complain as these
1509			 * will get fixed up the next time we go through
1510			 * inode_doinit with a dentry, before these inodes could
1511			 * be used again by userspace.
1512			 */
1513			goto out_invalid;
1514		}
1515
1516		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1517					    &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518		dput(dentry);
1519		if (rc)
1520			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521		break;
1522	case SECURITY_FS_USE_TASK:
1523		sid = task_sid;
1524		break;
1525	case SECURITY_FS_USE_TRANS:
1526		/* Default to the fs SID. */
1527		sid = sbsec->sid;
1528
1529		/* Try to obtain a transition SID. */
1530		rc = security_transition_sid(&selinux_state, task_sid, sid,
1531					     sclass, NULL, &sid);
 
1532		if (rc)
1533			goto out;
 
1534		break;
1535	case SECURITY_FS_USE_MNTPOINT:
1536		sid = sbsec->mntpoint_sid;
1537		break;
1538	default:
1539		/* Default to the fs superblock SID. */
1540		sid = sbsec->sid;
1541
1542		if ((sbsec->flags & SE_SBGENFS) &&
1543		     (!S_ISLNK(inode->i_mode) ||
1544		      selinux_policycap_genfs_seclabel_symlinks())) {
1545			/* We must have a dentry to determine the label on
1546			 * procfs inodes */
1547			if (opt_dentry) {
1548				/* Called from d_instantiate or
1549				 * d_splice_alias. */
1550				dentry = dget(opt_dentry);
1551			} else {
1552				/* Called from selinux_complete_init, try to
1553				 * find a dentry.  Some filesystems really want
1554				 * a connected one, so try that first.
1555				 */
1556				dentry = d_find_alias(inode);
1557				if (!dentry)
1558					dentry = d_find_any_alias(inode);
1559			}
1560			/*
1561			 * This can be hit on boot when a file is accessed
1562			 * before the policy is loaded.  When we load policy we
1563			 * may find inodes that have no dentry on the
1564			 * sbsec->isec_head list.  No reason to complain as
1565			 * these will get fixed up the next time we go through
1566			 * inode_doinit() with a dentry, before these inodes
1567			 * could be used again by userspace.
1568			 */
1569			if (!dentry)
1570				goto out_invalid;
1571			rc = selinux_genfs_get_sid(dentry, sclass,
1572						   sbsec->flags, &sid);
1573			if (rc) {
1574				dput(dentry);
1575				goto out;
1576			}
1577
1578			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1579			    (inode->i_opflags & IOP_XATTR)) {
1580				rc = inode_doinit_use_xattr(inode, dentry,
1581							    sid, &sid);
1582				if (rc) {
1583					dput(dentry);
1584					goto out;
1585				}
1586			}
1587			dput(dentry);
1588		}
1589		break;
1590	}
1591
1592out:
1593	spin_lock(&isec->lock);
1594	if (isec->initialized == LABEL_PENDING) {
1595		if (rc) {
1596			isec->initialized = LABEL_INVALID;
1597			goto out_unlock;
1598		}
1599		isec->initialized = LABEL_INITIALIZED;
1600		isec->sid = sid;
1601	}
1602
1603out_unlock:
1604	spin_unlock(&isec->lock);
 
 
 
1605	return rc;
1606
1607out_invalid:
1608	spin_lock(&isec->lock);
1609	if (isec->initialized == LABEL_PENDING) {
1610		isec->initialized = LABEL_INVALID;
1611		isec->sid = sid;
1612	}
1613	spin_unlock(&isec->lock);
1614	return 0;
1615}
1616
1617/* Convert a Linux signal to an access vector. */
1618static inline u32 signal_to_av(int sig)
1619{
1620	u32 perm = 0;
1621
1622	switch (sig) {
1623	case SIGCHLD:
1624		/* Commonly granted from child to parent. */
1625		perm = PROCESS__SIGCHLD;
1626		break;
1627	case SIGKILL:
1628		/* Cannot be caught or ignored */
1629		perm = PROCESS__SIGKILL;
1630		break;
1631	case SIGSTOP:
1632		/* Cannot be caught or ignored */
1633		perm = PROCESS__SIGSTOP;
1634		break;
1635	default:
1636		/* All other signals. */
1637		perm = PROCESS__SIGNAL;
1638		break;
1639	}
1640
1641	return perm;
1642}
1643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644#if CAP_LAST_CAP > 63
1645#error Fix SELinux to handle capabilities > 63.
1646#endif
1647
1648/* Check whether a task is allowed to use a capability. */
1649static int cred_has_capability(const struct cred *cred,
1650			       int cap, unsigned int opts, bool initns)
 
1651{
1652	struct common_audit_data ad;
1653	struct av_decision avd;
1654	u16 sclass;
1655	u32 sid = cred_sid(cred);
1656	u32 av = CAP_TO_MASK(cap);
1657	int rc;
1658
1659	ad.type = LSM_AUDIT_DATA_CAP;
 
1660	ad.u.cap = cap;
1661
1662	switch (CAP_TO_INDEX(cap)) {
1663	case 0:
1664		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1665		break;
1666	case 1:
1667		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1668		break;
1669	default:
1670		pr_err("SELinux:  out of range capability %d\n", cap);
 
1671		BUG();
1672		return -EINVAL;
1673	}
1674
1675	rc = avc_has_perm_noaudit(&selinux_state,
1676				  sid, sid, sclass, av, 0, &avd);
1677	if (!(opts & CAP_OPT_NOAUDIT)) {
1678		int rc2 = avc_audit(&selinux_state,
1679				    sid, sid, sclass, av, &avd, rc, &ad);
1680		if (rc2)
1681			return rc2;
1682	}
1683	return rc;
1684}
1685
 
 
 
 
 
 
 
 
 
 
1686/* Check whether a task has a particular permission to an inode.
1687   The 'adp' parameter is optional and allows other audit
1688   data to be passed (e.g. the dentry). */
1689static int inode_has_perm(const struct cred *cred,
1690			  struct inode *inode,
1691			  u32 perms,
1692			  struct common_audit_data *adp)
 
1693{
1694	struct inode_security_struct *isec;
1695	u32 sid;
1696
1697	validate_creds(cred);
1698
1699	if (unlikely(IS_PRIVATE(inode)))
1700		return 0;
1701
1702	sid = cred_sid(cred);
1703	isec = selinux_inode(inode);
 
 
 
 
 
 
 
 
 
 
1704
1705	return avc_has_perm(&selinux_state,
1706			    sid, isec->sid, isec->sclass, perms, adp);
 
1707}
1708
1709/* Same as inode_has_perm, but pass explicit audit data containing
1710   the dentry to help the auditing code to more easily generate the
1711   pathname if needed. */
1712static inline int dentry_has_perm(const struct cred *cred,
1713				  struct dentry *dentry,
1714				  u32 av)
1715{
1716	struct inode *inode = d_backing_inode(dentry);
1717	struct common_audit_data ad;
1718
1719	ad.type = LSM_AUDIT_DATA_DENTRY;
1720	ad.u.dentry = dentry;
1721	__inode_security_revalidate(inode, dentry, true);
1722	return inode_has_perm(cred, inode, av, &ad);
1723}
1724
1725/* Same as inode_has_perm, but pass explicit audit data containing
1726   the path to help the auditing code to more easily generate the
1727   pathname if needed. */
1728static inline int path_has_perm(const struct cred *cred,
1729				const struct path *path,
1730				u32 av)
1731{
1732	struct inode *inode = d_backing_inode(path->dentry);
1733	struct common_audit_data ad;
1734
1735	ad.type = LSM_AUDIT_DATA_PATH;
1736	ad.u.path = *path;
1737	__inode_security_revalidate(inode, path->dentry, true);
1738	return inode_has_perm(cred, inode, av, &ad);
1739}
1740
1741/* Same as path_has_perm, but uses the inode from the file struct. */
1742static inline int file_path_has_perm(const struct cred *cred,
1743				     struct file *file,
1744				     u32 av)
1745{
1746	struct common_audit_data ad;
1747
1748	ad.type = LSM_AUDIT_DATA_FILE;
1749	ad.u.file = file;
1750	return inode_has_perm(cred, file_inode(file), av, &ad);
1751}
1752
1753#ifdef CONFIG_BPF_SYSCALL
1754static int bpf_fd_pass(struct file *file, u32 sid);
1755#endif
1756
1757/* Check whether a task can use an open file descriptor to
1758   access an inode in a given way.  Check access to the
1759   descriptor itself, and then use dentry_has_perm to
1760   check a particular permission to the file.
1761   Access to the descriptor is implicitly granted if it
1762   has the same SID as the process.  If av is zero, then
1763   access to the file is not checked, e.g. for cases
1764   where only the descriptor is affected like seek. */
1765static int file_has_perm(const struct cred *cred,
1766			 struct file *file,
1767			 u32 av)
1768{
1769	struct file_security_struct *fsec = selinux_file(file);
1770	struct inode *inode = file_inode(file);
1771	struct common_audit_data ad;
1772	u32 sid = cred_sid(cred);
1773	int rc;
1774
1775	ad.type = LSM_AUDIT_DATA_FILE;
1776	ad.u.file = file;
1777
1778	if (sid != fsec->sid) {
1779		rc = avc_has_perm(&selinux_state,
1780				  sid, fsec->sid,
1781				  SECCLASS_FD,
1782				  FD__USE,
1783				  &ad);
1784		if (rc)
1785			goto out;
1786	}
1787
1788#ifdef CONFIG_BPF_SYSCALL
1789	rc = bpf_fd_pass(file, cred_sid(cred));
1790	if (rc)
1791		return rc;
1792#endif
1793
1794	/* av is zero if only checking access to the descriptor. */
1795	rc = 0;
1796	if (av)
1797		rc = inode_has_perm(cred, inode, av, &ad);
1798
1799out:
1800	return rc;
1801}
1802
1803/*
1804 * Determine the label for an inode that might be unioned.
1805 */
1806static int
1807selinux_determine_inode_label(const struct task_security_struct *tsec,
1808				 struct inode *dir,
1809				 const struct qstr *name, u16 tclass,
1810				 u32 *_new_isid)
1811{
1812	const struct superblock_security_struct *sbsec =
1813						selinux_superblock(dir->i_sb);
1814
1815	if ((sbsec->flags & SE_SBINITIALIZED) &&
1816	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1817		*_new_isid = sbsec->mntpoint_sid;
1818	} else if ((sbsec->flags & SBLABEL_MNT) &&
1819		   tsec->create_sid) {
1820		*_new_isid = tsec->create_sid;
1821	} else {
1822		const struct inode_security_struct *dsec = inode_security(dir);
1823		return security_transition_sid(&selinux_state, tsec->sid,
1824					       dsec->sid, tclass,
1825					       name, _new_isid);
1826	}
1827
1828	return 0;
1829}
1830
1831/* Check whether a task can create a file. */
1832static int may_create(struct inode *dir,
1833		      struct dentry *dentry,
1834		      u16 tclass)
1835{
1836	const struct task_security_struct *tsec = selinux_cred(current_cred());
1837	struct inode_security_struct *dsec;
1838	struct superblock_security_struct *sbsec;
1839	u32 sid, newsid;
1840	struct common_audit_data ad;
1841	int rc;
1842
1843	dsec = inode_security(dir);
1844	sbsec = selinux_superblock(dir->i_sb);
1845
1846	sid = tsec->sid;
 
1847
1848	ad.type = LSM_AUDIT_DATA_DENTRY;
1849	ad.u.dentry = dentry;
1850
1851	rc = avc_has_perm(&selinux_state,
1852			  sid, dsec->sid, SECCLASS_DIR,
1853			  DIR__ADD_NAME | DIR__SEARCH,
1854			  &ad);
1855	if (rc)
1856		return rc;
1857
1858	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1859					   &newsid);
1860	if (rc)
1861		return rc;
 
 
1862
1863	rc = avc_has_perm(&selinux_state,
1864			  sid, newsid, tclass, FILE__CREATE, &ad);
1865	if (rc)
1866		return rc;
1867
1868	return avc_has_perm(&selinux_state,
1869			    newsid, sbsec->sid,
1870			    SECCLASS_FILESYSTEM,
1871			    FILESYSTEM__ASSOCIATE, &ad);
1872}
1873
 
 
 
 
 
 
 
 
 
1874#define MAY_LINK	0
1875#define MAY_UNLINK	1
1876#define MAY_RMDIR	2
1877
1878/* Check whether a task can link, unlink, or rmdir a file/directory. */
1879static int may_link(struct inode *dir,
1880		    struct dentry *dentry,
1881		    int kind)
1882
1883{
1884	struct inode_security_struct *dsec, *isec;
1885	struct common_audit_data ad;
1886	u32 sid = current_sid();
1887	u32 av;
1888	int rc;
1889
1890	dsec = inode_security(dir);
1891	isec = backing_inode_security(dentry);
1892
1893	ad.type = LSM_AUDIT_DATA_DENTRY;
1894	ad.u.dentry = dentry;
1895
1896	av = DIR__SEARCH;
1897	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1898	rc = avc_has_perm(&selinux_state,
1899			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1900	if (rc)
1901		return rc;
1902
1903	switch (kind) {
1904	case MAY_LINK:
1905		av = FILE__LINK;
1906		break;
1907	case MAY_UNLINK:
1908		av = FILE__UNLINK;
1909		break;
1910	case MAY_RMDIR:
1911		av = DIR__RMDIR;
1912		break;
1913	default:
1914		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1915			__func__, kind);
1916		return 0;
1917	}
1918
1919	rc = avc_has_perm(&selinux_state,
1920			  sid, isec->sid, isec->sclass, av, &ad);
1921	return rc;
1922}
1923
1924static inline int may_rename(struct inode *old_dir,
1925			     struct dentry *old_dentry,
1926			     struct inode *new_dir,
1927			     struct dentry *new_dentry)
1928{
1929	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1930	struct common_audit_data ad;
1931	u32 sid = current_sid();
1932	u32 av;
1933	int old_is_dir, new_is_dir;
1934	int rc;
1935
1936	old_dsec = inode_security(old_dir);
1937	old_isec = backing_inode_security(old_dentry);
1938	old_is_dir = d_is_dir(old_dentry);
1939	new_dsec = inode_security(new_dir);
1940
1941	ad.type = LSM_AUDIT_DATA_DENTRY;
1942
1943	ad.u.dentry = old_dentry;
1944	rc = avc_has_perm(&selinux_state,
1945			  sid, old_dsec->sid, SECCLASS_DIR,
1946			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1947	if (rc)
1948		return rc;
1949	rc = avc_has_perm(&selinux_state,
1950			  sid, old_isec->sid,
1951			  old_isec->sclass, FILE__RENAME, &ad);
1952	if (rc)
1953		return rc;
1954	if (old_is_dir && new_dir != old_dir) {
1955		rc = avc_has_perm(&selinux_state,
1956				  sid, old_isec->sid,
1957				  old_isec->sclass, DIR__REPARENT, &ad);
1958		if (rc)
1959			return rc;
1960	}
1961
1962	ad.u.dentry = new_dentry;
1963	av = DIR__ADD_NAME | DIR__SEARCH;
1964	if (d_is_positive(new_dentry))
1965		av |= DIR__REMOVE_NAME;
1966	rc = avc_has_perm(&selinux_state,
1967			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1968	if (rc)
1969		return rc;
1970	if (d_is_positive(new_dentry)) {
1971		new_isec = backing_inode_security(new_dentry);
1972		new_is_dir = d_is_dir(new_dentry);
1973		rc = avc_has_perm(&selinux_state,
1974				  sid, new_isec->sid,
1975				  new_isec->sclass,
1976				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1977		if (rc)
1978			return rc;
1979	}
1980
1981	return 0;
1982}
1983
1984/* Check whether a task can perform a filesystem operation. */
1985static int superblock_has_perm(const struct cred *cred,
1986			       struct super_block *sb,
1987			       u32 perms,
1988			       struct common_audit_data *ad)
1989{
1990	struct superblock_security_struct *sbsec;
1991	u32 sid = cred_sid(cred);
1992
1993	sbsec = selinux_superblock(sb);
1994	return avc_has_perm(&selinux_state,
1995			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1996}
1997
1998/* Convert a Linux mode and permission mask to an access vector. */
1999static inline u32 file_mask_to_av(int mode, int mask)
2000{
2001	u32 av = 0;
2002
2003	if (!S_ISDIR(mode)) {
2004		if (mask & MAY_EXEC)
2005			av |= FILE__EXECUTE;
2006		if (mask & MAY_READ)
2007			av |= FILE__READ;
2008
2009		if (mask & MAY_APPEND)
2010			av |= FILE__APPEND;
2011		else if (mask & MAY_WRITE)
2012			av |= FILE__WRITE;
2013
2014	} else {
2015		if (mask & MAY_EXEC)
2016			av |= DIR__SEARCH;
2017		if (mask & MAY_WRITE)
2018			av |= DIR__WRITE;
2019		if (mask & MAY_READ)
2020			av |= DIR__READ;
2021	}
2022
2023	return av;
2024}
2025
2026/* Convert a Linux file to an access vector. */
2027static inline u32 file_to_av(struct file *file)
2028{
2029	u32 av = 0;
2030
2031	if (file->f_mode & FMODE_READ)
2032		av |= FILE__READ;
2033	if (file->f_mode & FMODE_WRITE) {
2034		if (file->f_flags & O_APPEND)
2035			av |= FILE__APPEND;
2036		else
2037			av |= FILE__WRITE;
2038	}
2039	if (!av) {
2040		/*
2041		 * Special file opened with flags 3 for ioctl-only use.
2042		 */
2043		av = FILE__IOCTL;
2044	}
2045
2046	return av;
2047}
2048
2049/*
2050 * Convert a file to an access vector and include the correct
2051 * open permission.
2052 */
2053static inline u32 open_file_to_av(struct file *file)
2054{
2055	u32 av = file_to_av(file);
2056	struct inode *inode = file_inode(file);
2057
2058	if (selinux_policycap_openperm() &&
2059	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2060		av |= FILE__OPEN;
2061
2062	return av;
2063}
2064
2065/* Hook functions begin here. */
2066
2067static int selinux_binder_set_context_mgr(struct task_struct *mgr)
 
2068{
2069	return avc_has_perm(&selinux_state,
2070			    current_sid(), task_sid_binder(mgr), SECCLASS_BINDER,
2071			    BINDER__SET_CONTEXT_MGR, NULL);
2072}
2073
2074static int selinux_binder_transaction(struct task_struct *from,
2075				      struct task_struct *to)
2076{
2077	u32 mysid = current_sid();
2078	u32 fromsid = task_sid_binder(from);
2079	int rc;
2080
2081	if (mysid != fromsid) {
2082		rc = avc_has_perm(&selinux_state,
2083				  mysid, fromsid, SECCLASS_BINDER,
2084				  BINDER__IMPERSONATE, NULL);
2085		if (rc)
2086			return rc;
2087	}
2088
2089	return avc_has_perm(&selinux_state, fromsid, task_sid_binder(to),
2090			    SECCLASS_BINDER, BINDER__CALL, NULL);
2091}
2092
2093static int selinux_binder_transfer_binder(struct task_struct *from,
2094					  struct task_struct *to)
2095{
2096	return avc_has_perm(&selinux_state,
2097			    task_sid_binder(from), task_sid_binder(to),
2098			    SECCLASS_BINDER, BINDER__TRANSFER,
2099			    NULL);
2100}
2101
2102static int selinux_binder_transfer_file(struct task_struct *from,
2103					struct task_struct *to,
2104					struct file *file)
2105{
2106	u32 sid = task_sid_binder(to);
2107	struct file_security_struct *fsec = selinux_file(file);
2108	struct dentry *dentry = file->f_path.dentry;
2109	struct inode_security_struct *isec;
2110	struct common_audit_data ad;
2111	int rc;
2112
2113	ad.type = LSM_AUDIT_DATA_PATH;
2114	ad.u.path = file->f_path;
2115
2116	if (sid != fsec->sid) {
2117		rc = avc_has_perm(&selinux_state,
2118				  sid, fsec->sid,
2119				  SECCLASS_FD,
2120				  FD__USE,
2121				  &ad);
2122		if (rc)
2123			return rc;
2124	}
2125
2126#ifdef CONFIG_BPF_SYSCALL
2127	rc = bpf_fd_pass(file, sid);
2128	if (rc)
2129		return rc;
2130#endif
2131
2132	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133		return 0;
2134
2135	isec = backing_inode_security(dentry);
2136	return avc_has_perm(&selinux_state,
2137			    sid, isec->sid, isec->sclass, file_to_av(file),
2138			    &ad);
2139}
2140
2141static int selinux_ptrace_access_check(struct task_struct *child,
2142				       unsigned int mode)
2143{
2144	u32 sid = current_sid();
2145	u32 csid = task_sid_obj(child);
2146
2147	if (mode & PTRACE_MODE_READ)
2148		return avc_has_perm(&selinux_state,
2149				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150
2151	return avc_has_perm(&selinux_state,
2152			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157	return avc_has_perm(&selinux_state,
2158			    task_sid_obj(parent), task_sid_obj(current),
2159			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2160}
2161
2162static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2163			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2164{
2165	return avc_has_perm(&selinux_state,
2166			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2167			    PROCESS__GETCAP, NULL);
2168}
2169
2170static int selinux_capset(struct cred *new, const struct cred *old,
2171			  const kernel_cap_t *effective,
2172			  const kernel_cap_t *inheritable,
2173			  const kernel_cap_t *permitted)
2174{
2175	return avc_has_perm(&selinux_state,
2176			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2177			    PROCESS__SETCAP, NULL);
 
 
 
 
 
2178}
2179
2180/*
2181 * (This comment used to live with the selinux_task_setuid hook,
2182 * which was removed).
2183 *
2184 * Since setuid only affects the current process, and since the SELinux
2185 * controls are not based on the Linux identity attributes, SELinux does not
2186 * need to control this operation.  However, SELinux does control the use of
2187 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2188 */
2189
2190static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2191			   int cap, unsigned int opts)
2192{
2193	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
 
 
 
 
 
 
2194}
2195
2196static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2197{
2198	const struct cred *cred = current_cred();
2199	int rc = 0;
2200
2201	if (!sb)
2202		return 0;
2203
2204	switch (cmds) {
2205	case Q_SYNC:
2206	case Q_QUOTAON:
2207	case Q_QUOTAOFF:
2208	case Q_SETINFO:
2209	case Q_SETQUOTA:
2210	case Q_XQUOTAOFF:
2211	case Q_XQUOTAON:
2212	case Q_XSETQLIM:
2213		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2214		break;
2215	case Q_GETFMT:
2216	case Q_GETINFO:
2217	case Q_GETQUOTA:
2218	case Q_XGETQUOTA:
2219	case Q_XGETQSTAT:
2220	case Q_XGETQSTATV:
2221	case Q_XGETNEXTQUOTA:
2222		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2223		break;
2224	default:
2225		rc = 0;  /* let the kernel handle invalid cmds */
2226		break;
2227	}
2228	return rc;
2229}
2230
2231static int selinux_quota_on(struct dentry *dentry)
2232{
2233	const struct cred *cred = current_cred();
2234
2235	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2236}
2237
2238static int selinux_syslog(int type)
2239{
 
 
2240	switch (type) {
2241	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2242	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2243		return avc_has_perm(&selinux_state,
2244				    current_sid(), SECINITSID_KERNEL,
2245				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2246	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2247	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2248	/* Set level of messages printed to console */
2249	case SYSLOG_ACTION_CONSOLE_LEVEL:
2250		return avc_has_perm(&selinux_state,
2251				    current_sid(), SECINITSID_KERNEL,
2252				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2253				    NULL);
2254	}
2255	/* All other syslog types */
2256	return avc_has_perm(&selinux_state,
2257			    current_sid(), SECINITSID_KERNEL,
2258			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2259}
2260
2261/*
2262 * Check that a process has enough memory to allocate a new virtual
2263 * mapping. 0 means there is enough memory for the allocation to
2264 * succeed and -ENOMEM implies there is not.
2265 *
2266 * Do not audit the selinux permission check, as this is applied to all
2267 * processes that allocate mappings.
2268 */
2269static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2270{
2271	int rc, cap_sys_admin = 0;
2272
2273	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2274				 CAP_OPT_NOAUDIT, true);
 
2275	if (rc == 0)
2276		cap_sys_admin = 1;
2277
2278	return cap_sys_admin;
2279}
2280
2281/* binprm security operations */
2282
2283static u32 ptrace_parent_sid(void)
2284{
2285	u32 sid = 0;
2286	struct task_struct *tracer;
2287
2288	rcu_read_lock();
2289	tracer = ptrace_parent(current);
2290	if (tracer)
2291		sid = task_sid_obj(tracer);
2292	rcu_read_unlock();
2293
2294	return sid;
2295}
2296
2297static int check_nnp_nosuid(const struct linux_binprm *bprm,
2298			    const struct task_security_struct *old_tsec,
2299			    const struct task_security_struct *new_tsec)
2300{
2301	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2302	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2303	int rc;
2304	u32 av;
2305
2306	if (!nnp && !nosuid)
2307		return 0; /* neither NNP nor nosuid */
2308
2309	if (new_tsec->sid == old_tsec->sid)
2310		return 0; /* No change in credentials */
2311
2312	/*
2313	 * If the policy enables the nnp_nosuid_transition policy capability,
2314	 * then we permit transitions under NNP or nosuid if the
2315	 * policy allows the corresponding permission between
2316	 * the old and new contexts.
2317	 */
2318	if (selinux_policycap_nnp_nosuid_transition()) {
2319		av = 0;
2320		if (nnp)
2321			av |= PROCESS2__NNP_TRANSITION;
2322		if (nosuid)
2323			av |= PROCESS2__NOSUID_TRANSITION;
2324		rc = avc_has_perm(&selinux_state,
2325				  old_tsec->sid, new_tsec->sid,
2326				  SECCLASS_PROCESS2, av, NULL);
2327		if (!rc)
2328			return 0;
2329	}
2330
2331	/*
2332	 * We also permit NNP or nosuid transitions to bounded SIDs,
2333	 * i.e. SIDs that are guaranteed to only be allowed a subset
2334	 * of the permissions of the current SID.
2335	 */
2336	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2337					 new_tsec->sid);
2338	if (!rc)
2339		return 0;
2340
2341	/*
2342	 * On failure, preserve the errno values for NNP vs nosuid.
2343	 * NNP:  Operation not permitted for caller.
2344	 * nosuid:  Permission denied to file.
2345	 */
2346	if (nnp)
2347		return -EPERM;
2348	return -EACCES;
2349}
2350
2351static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2352{
2353	const struct task_security_struct *old_tsec;
2354	struct task_security_struct *new_tsec;
2355	struct inode_security_struct *isec;
2356	struct common_audit_data ad;
2357	struct inode *inode = file_inode(bprm->file);
2358	int rc;
2359
 
 
 
 
2360	/* SELinux context only depends on initial program or script and not
2361	 * the script interpreter */
 
 
2362
2363	old_tsec = selinux_cred(current_cred());
2364	new_tsec = selinux_cred(bprm->cred);
2365	isec = inode_security(inode);
2366
2367	/* Default to the current task SID. */
2368	new_tsec->sid = old_tsec->sid;
2369	new_tsec->osid = old_tsec->sid;
2370
2371	/* Reset fs, key, and sock SIDs on execve. */
2372	new_tsec->create_sid = 0;
2373	new_tsec->keycreate_sid = 0;
2374	new_tsec->sockcreate_sid = 0;
2375
2376	if (old_tsec->exec_sid) {
2377		new_tsec->sid = old_tsec->exec_sid;
2378		/* Reset exec SID on execve. */
2379		new_tsec->exec_sid = 0;
2380
2381		/* Fail on NNP or nosuid if not an allowed transition. */
2382		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2383		if (rc)
2384			return rc;
2385	} else {
2386		/* Check for a default transition on this program. */
2387		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2388					     isec->sid, SECCLASS_PROCESS, NULL,
2389					     &new_tsec->sid);
2390		if (rc)
2391			return rc;
 
2392
2393		/*
2394		 * Fallback to old SID on NNP or nosuid if not an allowed
2395		 * transition.
2396		 */
2397		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2398		if (rc)
2399			new_tsec->sid = old_tsec->sid;
2400	}
2401
2402	ad.type = LSM_AUDIT_DATA_FILE;
2403	ad.u.file = bprm->file;
2404
2405	if (new_tsec->sid == old_tsec->sid) {
2406		rc = avc_has_perm(&selinux_state,
2407				  old_tsec->sid, isec->sid,
2408				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2409		if (rc)
2410			return rc;
2411	} else {
2412		/* Check permissions for the transition. */
2413		rc = avc_has_perm(&selinux_state,
2414				  old_tsec->sid, new_tsec->sid,
2415				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2416		if (rc)
2417			return rc;
2418
2419		rc = avc_has_perm(&selinux_state,
2420				  new_tsec->sid, isec->sid,
2421				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2422		if (rc)
2423			return rc;
2424
2425		/* Check for shared state */
2426		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2427			rc = avc_has_perm(&selinux_state,
2428					  old_tsec->sid, new_tsec->sid,
2429					  SECCLASS_PROCESS, PROCESS__SHARE,
2430					  NULL);
2431			if (rc)
2432				return -EPERM;
2433		}
2434
2435		/* Make sure that anyone attempting to ptrace over a task that
2436		 * changes its SID has the appropriate permit */
2437		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2438			u32 ptsid = ptrace_parent_sid();
 
 
 
 
 
 
 
 
 
 
 
 
2439			if (ptsid != 0) {
2440				rc = avc_has_perm(&selinux_state,
2441						  ptsid, new_tsec->sid,
2442						  SECCLASS_PROCESS,
2443						  PROCESS__PTRACE, NULL);
2444				if (rc)
2445					return -EPERM;
2446			}
2447		}
2448
2449		/* Clear any possibly unsafe personality bits on exec: */
2450		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
 
 
 
2451
 
 
 
 
 
 
 
 
 
 
2452		/* Enable secure mode for SIDs transitions unless
2453		   the noatsecure permission is granted between
2454		   the two SIDs, i.e. ahp returns 0. */
2455		rc = avc_has_perm(&selinux_state,
2456				  old_tsec->sid, new_tsec->sid,
2457				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2458				  NULL);
2459		bprm->secureexec |= !!rc;
2460	}
2461
2462	return 0;
2463}
2464
2465static int match_file(const void *p, struct file *file, unsigned fd)
2466{
2467	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2468}
2469
2470/* Derived from fs/exec.c:flush_old_files. */
2471static inline void flush_unauthorized_files(const struct cred *cred,
2472					    struct files_struct *files)
2473{
 
2474	struct file *file, *devnull = NULL;
2475	struct tty_struct *tty;
 
 
2476	int drop_tty = 0;
2477	unsigned n;
2478
2479	tty = get_current_tty();
2480	if (tty) {
2481		spin_lock(&tty->files_lock);
2482		if (!list_empty(&tty->tty_files)) {
2483			struct tty_file_private *file_priv;
 
2484
2485			/* Revalidate access to controlling tty.
2486			   Use file_path_has_perm on the tty path directly
2487			   rather than using file_has_perm, as this particular
2488			   open file may belong to another process and we are
2489			   only interested in the inode-based check here. */
2490			file_priv = list_first_entry(&tty->tty_files,
2491						struct tty_file_private, list);
2492			file = file_priv->file;
2493			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
 
 
2494				drop_tty = 1;
 
2495		}
2496		spin_unlock(&tty->files_lock);
2497		tty_kref_put(tty);
2498	}
2499	/* Reset controlling tty. */
2500	if (drop_tty)
2501		no_tty();
2502
2503	/* Revalidate access to inherited open files. */
2504	n = iterate_fd(files, 0, match_file, cred);
2505	if (!n) /* none found? */
2506		return;
2507
2508	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2509	if (IS_ERR(devnull))
2510		devnull = NULL;
2511	/* replace all the matching ones with this */
2512	do {
2513		replace_fd(n - 1, devnull, 0);
2514	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2515	if (devnull)
2516		fput(devnull);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2517}
2518
2519/*
2520 * Prepare a process for imminent new credential changes due to exec
2521 */
2522static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2523{
2524	struct task_security_struct *new_tsec;
2525	struct rlimit *rlim, *initrlim;
2526	int rc, i;
2527
2528	new_tsec = selinux_cred(bprm->cred);
2529	if (new_tsec->sid == new_tsec->osid)
2530		return;
2531
2532	/* Close files for which the new task SID is not authorized. */
2533	flush_unauthorized_files(bprm->cred, current->files);
2534
2535	/* Always clear parent death signal on SID transitions. */
2536	current->pdeath_signal = 0;
2537
2538	/* Check whether the new SID can inherit resource limits from the old
2539	 * SID.  If not, reset all soft limits to the lower of the current
2540	 * task's hard limit and the init task's soft limit.
2541	 *
2542	 * Note that the setting of hard limits (even to lower them) can be
2543	 * controlled by the setrlimit check.  The inclusion of the init task's
2544	 * soft limit into the computation is to avoid resetting soft limits
2545	 * higher than the default soft limit for cases where the default is
2546	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2547	 */
2548	rc = avc_has_perm(&selinux_state,
2549			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2550			  PROCESS__RLIMITINH, NULL);
2551	if (rc) {
2552		/* protect against do_prlimit() */
2553		task_lock(current);
2554		for (i = 0; i < RLIM_NLIMITS; i++) {
2555			rlim = current->signal->rlim + i;
2556			initrlim = init_task.signal->rlim + i;
2557			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2558		}
2559		task_unlock(current);
2560		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2561			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2562	}
2563}
2564
2565/*
2566 * Clean up the process immediately after the installation of new credentials
2567 * due to exec
2568 */
2569static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2570{
2571	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2572	u32 osid, sid;
2573	int rc;
2574
2575	osid = tsec->osid;
2576	sid = tsec->sid;
2577
2578	if (sid == osid)
2579		return;
2580
2581	/* Check whether the new SID can inherit signal state from the old SID.
2582	 * If not, clear itimers to avoid subsequent signal generation and
2583	 * flush and unblock signals.
2584	 *
2585	 * This must occur _after_ the task SID has been updated so that any
2586	 * kill done after the flush will be checked against the new SID.
2587	 */
2588	rc = avc_has_perm(&selinux_state,
2589			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2590	if (rc) {
2591		clear_itimer();
2592
 
2593		spin_lock_irq(&current->sighand->siglock);
2594		if (!fatal_signal_pending(current)) {
2595			flush_sigqueue(&current->pending);
2596			flush_sigqueue(&current->signal->shared_pending);
2597			flush_signal_handlers(current, 1);
2598			sigemptyset(&current->blocked);
2599			recalc_sigpending();
2600		}
2601		spin_unlock_irq(&current->sighand->siglock);
2602	}
2603
2604	/* Wake up the parent if it is waiting so that it can recheck
2605	 * wait permission to the new task SID. */
2606	read_lock(&tasklist_lock);
2607	__wake_up_parent(current, current->real_parent);
2608	read_unlock(&tasklist_lock);
2609}
2610
2611/* superblock security operations */
2612
2613static int selinux_sb_alloc_security(struct super_block *sb)
2614{
2615	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2616
2617	mutex_init(&sbsec->lock);
2618	INIT_LIST_HEAD(&sbsec->isec_head);
2619	spin_lock_init(&sbsec->isec_lock);
2620	sbsec->sid = SECINITSID_UNLABELED;
2621	sbsec->def_sid = SECINITSID_FILE;
2622	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 
 
2623
2624	return 0;
 
 
 
 
 
 
 
 
2625}
2626
2627static inline int opt_len(const char *s)
 
2628{
2629	bool open_quote = false;
2630	int len;
2631	char c;
 
 
 
 
2632
2633	for (len = 0; (c = s[len]) != '\0'; len++) {
2634		if (c == '"')
2635			open_quote = !open_quote;
2636		if (c == ',' && !open_quote)
2637			break;
 
 
2638	}
2639	return len;
2640}
2641
2642static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2643{
2644	char *from = options;
2645	char *to = options;
2646	bool first = true;
2647	int rc;
 
 
 
 
 
 
 
 
 
2648
2649	while (1) {
2650		int len = opt_len(from);
2651		int token;
2652		char *arg = NULL;
2653
2654		token = match_opt_prefix(from, len, &arg);
 
 
 
 
 
2655
2656		if (token != Opt_error) {
2657			char *p, *q;
 
 
2658
2659			/* strip quotes */
2660			if (arg) {
2661				for (p = q = arg; p < from + len; p++) {
2662					char c = *p;
2663					if (c != '"')
2664						*q++ = c;
2665				}
2666				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2667				if (!arg) {
2668					rc = -ENOMEM;
2669					goto free_opt;
2670				}
2671			}
2672			rc = selinux_add_opt(token, arg, mnt_opts);
2673			if (unlikely(rc)) {
2674				kfree(arg);
2675				goto free_opt;
2676			}
2677		} else {
2678			if (!first) {	// copy with preceding comma
2679				from--;
2680				len++;
2681			}
2682			if (to != from)
2683				memmove(to, from, len);
2684			to += len;
2685			first = false;
2686		}
2687		if (!from[len])
2688			break;
2689		from += len + 1;
2690	}
2691	*to = '\0';
2692	return 0;
2693
2694free_opt:
2695	if (*mnt_opts) {
2696		selinux_free_mnt_opts(*mnt_opts);
2697		*mnt_opts = NULL;
2698	}
2699	return rc;
2700}
2701
2702static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2703{
2704	struct selinux_mnt_opts *opts = mnt_opts;
 
 
2705	struct superblock_security_struct *sbsec = sb->s_security;
2706	u32 sid;
2707	int rc;
2708
2709	/*
2710	 * Superblock not initialized (i.e. no options) - reject if any
2711	 * options specified, otherwise accept.
2712	 */
2713	if (!(sbsec->flags & SE_SBINITIALIZED))
2714		return opts ? 1 : 0;
2715
2716	/*
2717	 * Superblock initialized and no options specified - reject if
2718	 * superblock has any options set, otherwise accept.
2719	 */
2720	if (!opts)
2721		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2722
2723	if (opts->fscontext) {
2724		rc = parse_sid(sb, opts->fscontext, &sid);
2725		if (rc)
2726			return 1;
2727		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2728			return 1;
2729	}
2730	if (opts->context) {
2731		rc = parse_sid(sb, opts->context, &sid);
2732		if (rc)
2733			return 1;
2734		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2735			return 1;
2736	}
2737	if (opts->rootcontext) {
2738		struct inode_security_struct *root_isec;
2739
2740		root_isec = backing_inode_security(sb->s_root);
2741		rc = parse_sid(sb, opts->rootcontext, &sid);
2742		if (rc)
2743			return 1;
2744		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2745			return 1;
2746	}
2747	if (opts->defcontext) {
2748		rc = parse_sid(sb, opts->defcontext, &sid);
2749		if (rc)
2750			return 1;
2751		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2752			return 1;
2753	}
2754	return 0;
2755}
2756
2757static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2758{
2759	struct selinux_mnt_opts *opts = mnt_opts;
2760	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2761	u32 sid;
2762	int rc;
2763
2764	if (!(sbsec->flags & SE_SBINITIALIZED))
2765		return 0;
 
2766
2767	if (!opts)
2768		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769
2770	if (opts->fscontext) {
2771		rc = parse_sid(sb, opts->fscontext, &sid);
2772		if (rc)
2773			return rc;
2774		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2775			goto out_bad_option;
 
 
 
 
 
2776	}
2777	if (opts->context) {
2778		rc = parse_sid(sb, opts->context, &sid);
2779		if (rc)
2780			return rc;
2781		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2782			goto out_bad_option;
2783	}
2784	if (opts->rootcontext) {
2785		struct inode_security_struct *root_isec;
2786		root_isec = backing_inode_security(sb->s_root);
2787		rc = parse_sid(sb, opts->rootcontext, &sid);
2788		if (rc)
2789			return rc;
2790		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2791			goto out_bad_option;
2792	}
2793	if (opts->defcontext) {
2794		rc = parse_sid(sb, opts->defcontext, &sid);
2795		if (rc)
2796			return rc;
2797		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2798			goto out_bad_option;
2799	}
2800	return 0;
2801
 
 
 
 
 
 
2802out_bad_option:
2803	pr_warn("SELinux: unable to change security options "
2804	       "during remount (dev %s, type=%s)\n", sb->s_id,
2805	       sb->s_type->name);
2806	return -EINVAL;
2807}
2808
2809static int selinux_sb_kern_mount(struct super_block *sb)
2810{
2811	const struct cred *cred = current_cred();
2812	struct common_audit_data ad;
 
2813
2814	ad.type = LSM_AUDIT_DATA_DENTRY;
 
 
 
 
 
 
 
 
2815	ad.u.dentry = sb->s_root;
2816	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2817}
2818
2819static int selinux_sb_statfs(struct dentry *dentry)
2820{
2821	const struct cred *cred = current_cred();
2822	struct common_audit_data ad;
2823
2824	ad.type = LSM_AUDIT_DATA_DENTRY;
2825	ad.u.dentry = dentry->d_sb->s_root;
2826	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2827}
2828
2829static int selinux_mount(const char *dev_name,
2830			 const struct path *path,
2831			 const char *type,
2832			 unsigned long flags,
2833			 void *data)
2834{
2835	const struct cred *cred = current_cred();
2836
2837	if (flags & MS_REMOUNT)
2838		return superblock_has_perm(cred, path->dentry->d_sb,
2839					   FILESYSTEM__REMOUNT, NULL);
2840	else
2841		return path_has_perm(cred, path, FILE__MOUNTON);
2842}
2843
2844static int selinux_move_mount(const struct path *from_path,
2845			      const struct path *to_path)
2846{
2847	const struct cred *cred = current_cred();
2848
2849	return path_has_perm(cred, to_path, FILE__MOUNTON);
2850}
2851
2852static int selinux_umount(struct vfsmount *mnt, int flags)
2853{
2854	const struct cred *cred = current_cred();
2855
2856	return superblock_has_perm(cred, mnt->mnt_sb,
2857				   FILESYSTEM__UNMOUNT, NULL);
2858}
2859
2860static int selinux_fs_context_dup(struct fs_context *fc,
2861				  struct fs_context *src_fc)
2862{
2863	const struct selinux_mnt_opts *src = src_fc->security;
2864	struct selinux_mnt_opts *opts;
2865
2866	if (!src)
2867		return 0;
2868
2869	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2870	if (!fc->security)
2871		return -ENOMEM;
2872
2873	opts = fc->security;
2874
2875	if (src->fscontext) {
2876		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2877		if (!opts->fscontext)
2878			return -ENOMEM;
2879	}
2880	if (src->context) {
2881		opts->context = kstrdup(src->context, GFP_KERNEL);
2882		if (!opts->context)
2883			return -ENOMEM;
2884	}
2885	if (src->rootcontext) {
2886		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2887		if (!opts->rootcontext)
2888			return -ENOMEM;
2889	}
2890	if (src->defcontext) {
2891		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2892		if (!opts->defcontext)
2893			return -ENOMEM;
2894	}
2895	return 0;
2896}
2897
2898static const struct fs_parameter_spec selinux_fs_parameters[] = {
2899	fsparam_string(CONTEXT_STR,	Opt_context),
2900	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2901	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2902	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2903	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2904	{}
2905};
2906
2907static int selinux_fs_context_parse_param(struct fs_context *fc,
2908					  struct fs_parameter *param)
2909{
2910	struct fs_parse_result result;
2911	int opt, rc;
2912
2913	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2914	if (opt < 0)
2915		return opt;
2916
2917	rc = selinux_add_opt(opt, param->string, &fc->security);
2918	if (!rc) {
2919		param->string = NULL;
2920		rc = 1;
2921	}
2922	return rc;
2923}
2924
2925/* inode security operations */
2926
2927static int selinux_inode_alloc_security(struct inode *inode)
2928{
2929	struct inode_security_struct *isec = selinux_inode(inode);
2930	u32 sid = current_sid();
2931
2932	spin_lock_init(&isec->lock);
2933	INIT_LIST_HEAD(&isec->list);
2934	isec->inode = inode;
2935	isec->sid = SECINITSID_UNLABELED;
2936	isec->sclass = SECCLASS_FILE;
2937	isec->task_sid = sid;
2938	isec->initialized = LABEL_INVALID;
2939
2940	return 0;
2941}
2942
2943static void selinux_inode_free_security(struct inode *inode)
2944{
2945	inode_free_security(inode);
2946}
2947
2948static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2949					const struct qstr *name, void **ctx,
2950					u32 *ctxlen)
2951{
2952	u32 newsid;
2953	int rc;
2954
2955	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2956					   d_inode(dentry->d_parent), name,
2957					   inode_mode_to_security_class(mode),
2958					   &newsid);
2959	if (rc)
2960		return rc;
2961
2962	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2963				       ctxlen);
2964}
2965
2966static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2967					  struct qstr *name,
2968					  const struct cred *old,
2969					  struct cred *new)
2970{
2971	u32 newsid;
2972	int rc;
2973	struct task_security_struct *tsec;
2974
2975	rc = selinux_determine_inode_label(selinux_cred(old),
2976					   d_inode(dentry->d_parent), name,
2977					   inode_mode_to_security_class(mode),
2978					   &newsid);
2979	if (rc)
2980		return rc;
2981
2982	tsec = selinux_cred(new);
2983	tsec->create_sid = newsid;
2984	return 0;
2985}
2986
2987static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2988				       const struct qstr *qstr,
2989				       const char **name,
2990				       void **value, size_t *len)
2991{
2992	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2993	struct superblock_security_struct *sbsec;
2994	u32 newsid, clen;
2995	int rc;
2996	char *context;
2997
2998	sbsec = selinux_superblock(dir->i_sb);
 
2999
 
3000	newsid = tsec->create_sid;
3001
3002	rc = selinux_determine_inode_label(tsec, dir, qstr,
3003		inode_mode_to_security_class(inode->i_mode),
3004		&newsid);
3005	if (rc)
3006		return rc;
 
 
 
 
 
 
 
 
 
 
 
3007
3008	/* Possibly defer initialization to selinux_complete_init. */
3009	if (sbsec->flags & SE_SBINITIALIZED) {
3010		struct inode_security_struct *isec = selinux_inode(inode);
3011		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3012		isec->sid = newsid;
3013		isec->initialized = LABEL_INITIALIZED;
3014	}
3015
3016	if (!selinux_initialized(&selinux_state) ||
3017	    !(sbsec->flags & SBLABEL_MNT))
3018		return -EOPNOTSUPP;
3019
3020	if (name)
3021		*name = XATTR_SELINUX_SUFFIX;
 
 
 
 
3022
3023	if (value && len) {
3024		rc = security_sid_to_context_force(&selinux_state, newsid,
3025						   &context, &clen);
3026		if (rc)
3027			return rc;
 
3028		*value = context;
3029		*len = clen;
3030	}
3031
3032	return 0;
3033}
3034
3035static int selinux_inode_init_security_anon(struct inode *inode,
3036					    const struct qstr *name,
3037					    const struct inode *context_inode)
3038{
3039	const struct task_security_struct *tsec = selinux_cred(current_cred());
3040	struct common_audit_data ad;
3041	struct inode_security_struct *isec;
3042	int rc;
3043
3044	if (unlikely(!selinux_initialized(&selinux_state)))
3045		return 0;
3046
3047	isec = selinux_inode(inode);
3048
3049	/*
3050	 * We only get here once per ephemeral inode.  The inode has
3051	 * been initialized via inode_alloc_security but is otherwise
3052	 * untouched.
3053	 */
3054
3055	if (context_inode) {
3056		struct inode_security_struct *context_isec =
3057			selinux_inode(context_inode);
3058		if (context_isec->initialized != LABEL_INITIALIZED) {
3059			pr_err("SELinux:  context_inode is not initialized");
3060			return -EACCES;
3061		}
3062
3063		isec->sclass = context_isec->sclass;
3064		isec->sid = context_isec->sid;
3065	} else {
3066		isec->sclass = SECCLASS_ANON_INODE;
3067		rc = security_transition_sid(
3068			&selinux_state, tsec->sid, tsec->sid,
3069			isec->sclass, name, &isec->sid);
3070		if (rc)
3071			return rc;
3072	}
3073
3074	isec->initialized = LABEL_INITIALIZED;
3075	/*
3076	 * Now that we've initialized security, check whether we're
3077	 * allowed to actually create this type of anonymous inode.
3078	 */
3079
3080	ad.type = LSM_AUDIT_DATA_INODE;
3081	ad.u.inode = inode;
3082
3083	return avc_has_perm(&selinux_state,
3084			    tsec->sid,
3085			    isec->sid,
3086			    isec->sclass,
3087			    FILE__CREATE,
3088			    &ad);
3089}
3090
3091static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3092{
3093	return may_create(dir, dentry, SECCLASS_FILE);
3094}
3095
3096static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3097{
3098	return may_link(dir, old_dentry, MAY_LINK);
3099}
3100
3101static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3102{
3103	return may_link(dir, dentry, MAY_UNLINK);
3104}
3105
3106static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3107{
3108	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3109}
3110
3111static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3112{
3113	return may_create(dir, dentry, SECCLASS_DIR);
3114}
3115
3116static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3117{
3118	return may_link(dir, dentry, MAY_RMDIR);
3119}
3120
3121static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3122{
3123	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3124}
3125
3126static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3127				struct inode *new_inode, struct dentry *new_dentry)
3128{
3129	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3130}
3131
3132static int selinux_inode_readlink(struct dentry *dentry)
3133{
3134	const struct cred *cred = current_cred();
3135
3136	return dentry_has_perm(cred, dentry, FILE__READ);
3137}
3138
3139static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3140				     bool rcu)
3141{
3142	const struct cred *cred = current_cred();
3143	struct common_audit_data ad;
3144	struct inode_security_struct *isec;
3145	u32 sid;
3146
3147	validate_creds(cred);
3148
3149	ad.type = LSM_AUDIT_DATA_DENTRY;
3150	ad.u.dentry = dentry;
3151	sid = cred_sid(cred);
3152	isec = inode_security_rcu(inode, rcu);
3153	if (IS_ERR(isec))
3154		return PTR_ERR(isec);
3155
3156	return avc_has_perm(&selinux_state,
3157				  sid, isec->sid, isec->sclass, FILE__READ, &ad);
3158}
3159
3160static noinline int audit_inode_permission(struct inode *inode,
3161					   u32 perms, u32 audited, u32 denied,
3162					   int result)
3163{
3164	struct common_audit_data ad;
3165	struct inode_security_struct *isec = selinux_inode(inode);
3166
3167	ad.type = LSM_AUDIT_DATA_INODE;
3168	ad.u.inode = inode;
3169
3170	return slow_avc_audit(&selinux_state,
3171			    current_sid(), isec->sid, isec->sclass, perms,
3172			    audited, denied, result, &ad);
3173}
3174
3175static int selinux_inode_permission(struct inode *inode, int mask)
3176{
3177	const struct cred *cred = current_cred();
 
3178	u32 perms;
3179	bool from_access;
3180	bool no_block = mask & MAY_NOT_BLOCK;
3181	struct inode_security_struct *isec;
3182	u32 sid;
3183	struct av_decision avd;
3184	int rc, rc2;
3185	u32 audited, denied;
3186
3187	from_access = mask & MAY_ACCESS;
3188	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3189
3190	/* No permission to check.  Existence test. */
3191	if (!mask)
3192		return 0;
3193
3194	validate_creds(cred);
 
3195
3196	if (unlikely(IS_PRIVATE(inode)))
3197		return 0;
3198
3199	perms = file_mask_to_av(inode->i_mode, mask);
3200
3201	sid = cred_sid(cred);
3202	isec = inode_security_rcu(inode, no_block);
3203	if (IS_ERR(isec))
3204		return PTR_ERR(isec);
3205
3206	rc = avc_has_perm_noaudit(&selinux_state,
3207				  sid, isec->sid, isec->sclass, perms, 0,
3208				  &avd);
3209	audited = avc_audit_required(perms, &avd, rc,
3210				     from_access ? FILE__AUDIT_ACCESS : 0,
3211				     &denied);
3212	if (likely(!audited))
3213		return rc;
3214
3215	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3216	if (rc2)
3217		return rc2;
3218	return rc;
3219}
3220
3221static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3222{
3223	const struct cred *cred = current_cred();
3224	struct inode *inode = d_backing_inode(dentry);
3225	unsigned int ia_valid = iattr->ia_valid;
3226	__u32 av = FILE__WRITE;
3227
3228	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3229	if (ia_valid & ATTR_FORCE) {
3230		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3231			      ATTR_FORCE);
3232		if (!ia_valid)
3233			return 0;
3234	}
3235
3236	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3237			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3238		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3239
3240	if (selinux_policycap_openperm() &&
3241	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3242	    (ia_valid & ATTR_SIZE) &&
3243	    !(ia_valid & ATTR_FILE))
3244		av |= FILE__OPEN;
3245
3246	return dentry_has_perm(cred, dentry, av);
3247}
3248
3249static int selinux_inode_getattr(const struct path *path)
3250{
3251	return path_has_perm(current_cred(), path, FILE__GETATTR);
 
 
 
 
 
 
3252}
3253
3254static bool has_cap_mac_admin(bool audit)
3255{
3256	const struct cred *cred = current_cred();
3257	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3258
3259	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3260		return false;
3261	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3262		return false;
3263	return true;
 
 
 
 
 
 
 
 
 
 
3264}
3265
3266static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3267				  struct dentry *dentry, const char *name,
3268				  const void *value, size_t size, int flags)
3269{
3270	struct inode *inode = d_backing_inode(dentry);
3271	struct inode_security_struct *isec;
3272	struct superblock_security_struct *sbsec;
3273	struct common_audit_data ad;
3274	u32 newsid, sid = current_sid();
3275	int rc = 0;
3276
3277	if (strcmp(name, XATTR_NAME_SELINUX)) {
3278		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3279		if (rc)
3280			return rc;
3281
3282		/* Not an attribute we recognize, so just check the
3283		   ordinary setattr permission. */
3284		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3285	}
3286
3287	if (!selinux_initialized(&selinux_state))
3288		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3289
3290	sbsec = selinux_superblock(inode->i_sb);
3291	if (!(sbsec->flags & SBLABEL_MNT))
3292		return -EOPNOTSUPP;
3293
3294	if (!inode_owner_or_capable(mnt_userns, inode))
3295		return -EPERM;
3296
3297	ad.type = LSM_AUDIT_DATA_DENTRY;
3298	ad.u.dentry = dentry;
3299
3300	isec = backing_inode_security(dentry);
3301	rc = avc_has_perm(&selinux_state,
3302			  sid, isec->sid, isec->sclass,
3303			  FILE__RELABELFROM, &ad);
3304	if (rc)
3305		return rc;
3306
3307	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3308				     GFP_KERNEL);
3309	if (rc == -EINVAL) {
3310		if (!has_cap_mac_admin(true)) {
3311			struct audit_buffer *ab;
3312			size_t audit_size;
3313
3314			/* We strip a nul only if it is at the end, otherwise the
3315			 * context contains a nul and we should audit that */
3316			if (value) {
3317				const char *str = value;
3318
3319				if (str[size - 1] == '\0')
3320					audit_size = size - 1;
3321				else
3322					audit_size = size;
3323			} else {
3324				audit_size = 0;
3325			}
3326			ab = audit_log_start(audit_context(),
3327					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3328			audit_log_format(ab, "op=setxattr invalid_context=");
3329			audit_log_n_untrustedstring(ab, value, audit_size);
3330			audit_log_end(ab);
3331
3332			return rc;
3333		}
3334		rc = security_context_to_sid_force(&selinux_state, value,
3335						   size, &newsid);
3336	}
3337	if (rc)
3338		return rc;
3339
3340	rc = avc_has_perm(&selinux_state,
3341			  sid, newsid, isec->sclass,
3342			  FILE__RELABELTO, &ad);
3343	if (rc)
3344		return rc;
3345
3346	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3347					  sid, isec->sclass);
3348	if (rc)
3349		return rc;
3350
3351	return avc_has_perm(&selinux_state,
3352			    newsid,
3353			    sbsec->sid,
3354			    SECCLASS_FILESYSTEM,
3355			    FILESYSTEM__ASSOCIATE,
3356			    &ad);
3357}
3358
3359static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3360					const void *value, size_t size,
3361					int flags)
3362{
3363	struct inode *inode = d_backing_inode(dentry);
3364	struct inode_security_struct *isec;
3365	u32 newsid;
3366	int rc;
3367
3368	if (strcmp(name, XATTR_NAME_SELINUX)) {
3369		/* Not an attribute we recognize, so nothing to do. */
3370		return;
3371	}
3372
3373	if (!selinux_initialized(&selinux_state)) {
3374		/* If we haven't even been initialized, then we can't validate
3375		 * against a policy, so leave the label as invalid. It may
3376		 * resolve to a valid label on the next revalidation try if
3377		 * we've since initialized.
3378		 */
3379		return;
3380	}
3381
3382	rc = security_context_to_sid_force(&selinux_state, value, size,
3383					   &newsid);
3384	if (rc) {
3385		pr_err("SELinux:  unable to map context to SID"
3386		       "for (%s, %lu), rc=%d\n",
3387		       inode->i_sb->s_id, inode->i_ino, -rc);
3388		return;
3389	}
3390
3391	isec = backing_inode_security(dentry);
3392	spin_lock(&isec->lock);
3393	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3394	isec->sid = newsid;
3395	isec->initialized = LABEL_INITIALIZED;
3396	spin_unlock(&isec->lock);
3397
3398	return;
3399}
3400
3401static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3402{
3403	const struct cred *cred = current_cred();
3404
3405	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3406}
3407
3408static int selinux_inode_listxattr(struct dentry *dentry)
3409{
3410	const struct cred *cred = current_cred();
3411
3412	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3413}
3414
3415static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3416				     struct dentry *dentry, const char *name)
3417{
3418	if (strcmp(name, XATTR_NAME_SELINUX)) {
3419		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3420		if (rc)
3421			return rc;
3422
3423		/* Not an attribute we recognize, so just check the
3424		   ordinary setattr permission. */
3425		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3426	}
3427
3428	if (!selinux_initialized(&selinux_state))
3429		return 0;
3430
3431	/* No one is allowed to remove a SELinux security label.
3432	   You can change the label, but all data must be labeled. */
3433	return -EACCES;
3434}
3435
3436static int selinux_path_notify(const struct path *path, u64 mask,
3437						unsigned int obj_type)
3438{
3439	int ret;
3440	u32 perm;
3441
3442	struct common_audit_data ad;
3443
3444	ad.type = LSM_AUDIT_DATA_PATH;
3445	ad.u.path = *path;
3446
3447	/*
3448	 * Set permission needed based on the type of mark being set.
3449	 * Performs an additional check for sb watches.
3450	 */
3451	switch (obj_type) {
3452	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3453		perm = FILE__WATCH_MOUNT;
3454		break;
3455	case FSNOTIFY_OBJ_TYPE_SB:
3456		perm = FILE__WATCH_SB;
3457		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3458						FILESYSTEM__WATCH, &ad);
3459		if (ret)
3460			return ret;
3461		break;
3462	case FSNOTIFY_OBJ_TYPE_INODE:
3463		perm = FILE__WATCH;
3464		break;
3465	default:
3466		return -EINVAL;
3467	}
3468
3469	/* blocking watches require the file:watch_with_perm permission */
3470	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3471		perm |= FILE__WATCH_WITH_PERM;
3472
3473	/* watches on read-like events need the file:watch_reads permission */
3474	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3475		perm |= FILE__WATCH_READS;
3476
3477	return path_has_perm(current_cred(), path, perm);
3478}
3479
3480/*
3481 * Copy the inode security context value to the user.
3482 *
3483 * Permission check is handled by selinux_inode_getxattr hook.
3484 */
3485static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3486				     struct inode *inode, const char *name,
3487				     void **buffer, bool alloc)
3488{
3489	u32 size;
3490	int error;
3491	char *context = NULL;
3492	struct inode_security_struct *isec;
3493
3494	/*
3495	 * If we're not initialized yet, then we can't validate contexts, so
3496	 * just let vfs_getxattr fall back to using the on-disk xattr.
3497	 */
3498	if (!selinux_initialized(&selinux_state) ||
3499	    strcmp(name, XATTR_SELINUX_SUFFIX))
3500		return -EOPNOTSUPP;
3501
3502	/*
3503	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3504	 * value even if it is not defined by current policy; otherwise,
3505	 * use the in-core value under current policy.
3506	 * Use the non-auditing forms of the permission checks since
3507	 * getxattr may be called by unprivileged processes commonly
3508	 * and lack of permission just means that we fall back to the
3509	 * in-core context value, not a denial.
3510	 */
3511	isec = inode_security(inode);
3512	if (has_cap_mac_admin(false))
3513		error = security_sid_to_context_force(&selinux_state,
3514						      isec->sid, &context,
 
3515						      &size);
3516	else
3517		error = security_sid_to_context(&selinux_state, isec->sid,
3518						&context, &size);
3519	if (error)
3520		return error;
3521	error = size;
3522	if (alloc) {
3523		*buffer = context;
3524		goto out_nofree;
3525	}
3526	kfree(context);
3527out_nofree:
3528	return error;
3529}
3530
3531static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3532				     const void *value, size_t size, int flags)
3533{
3534	struct inode_security_struct *isec = inode_security_novalidate(inode);
3535	struct superblock_security_struct *sbsec;
3536	u32 newsid;
3537	int rc;
3538
3539	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3540		return -EOPNOTSUPP;
3541
3542	sbsec = selinux_superblock(inode->i_sb);
3543	if (!(sbsec->flags & SBLABEL_MNT))
3544		return -EOPNOTSUPP;
3545
3546	if (!value || !size)
3547		return -EACCES;
3548
3549	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3550				     GFP_KERNEL);
3551	if (rc)
3552		return rc;
3553
3554	spin_lock(&isec->lock);
3555	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3556	isec->sid = newsid;
3557	isec->initialized = LABEL_INITIALIZED;
3558	spin_unlock(&isec->lock);
3559	return 0;
3560}
3561
3562static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3563{
3564	const int len = sizeof(XATTR_NAME_SELINUX);
3565
3566	if (!selinux_initialized(&selinux_state))
3567		return 0;
3568
3569	if (buffer && len <= buffer_size)
3570		memcpy(buffer, XATTR_NAME_SELINUX, len);
3571	return len;
3572}
3573
3574static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3575{
3576	struct inode_security_struct *isec = inode_security_novalidate(inode);
3577	*secid = isec->sid;
3578}
3579
3580static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3581{
3582	u32 sid;
3583	struct task_security_struct *tsec;
3584	struct cred *new_creds = *new;
3585
3586	if (new_creds == NULL) {
3587		new_creds = prepare_creds();
3588		if (!new_creds)
3589			return -ENOMEM;
3590	}
3591
3592	tsec = selinux_cred(new_creds);
3593	/* Get label from overlay inode and set it in create_sid */
3594	selinux_inode_getsecid(d_inode(src), &sid);
3595	tsec->create_sid = sid;
3596	*new = new_creds;
3597	return 0;
3598}
3599
3600static int selinux_inode_copy_up_xattr(const char *name)
3601{
3602	/* The copy_up hook above sets the initial context on an inode, but we
3603	 * don't then want to overwrite it by blindly copying all the lower
3604	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3605	 */
3606	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3607		return 1; /* Discard */
3608	/*
3609	 * Any other attribute apart from SELINUX is not claimed, supported
3610	 * by selinux.
3611	 */
3612	return -EOPNOTSUPP;
3613}
3614
3615/* kernfs node operations */
3616
3617static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3618					struct kernfs_node *kn)
3619{
3620	const struct task_security_struct *tsec = selinux_cred(current_cred());
3621	u32 parent_sid, newsid, clen;
3622	int rc;
3623	char *context;
3624
3625	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3626	if (rc == -ENODATA)
3627		return 0;
3628	else if (rc < 0)
3629		return rc;
3630
3631	clen = (u32)rc;
3632	context = kmalloc(clen, GFP_KERNEL);
3633	if (!context)
3634		return -ENOMEM;
3635
3636	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3637	if (rc < 0) {
3638		kfree(context);
3639		return rc;
3640	}
3641
3642	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3643				     GFP_KERNEL);
3644	kfree(context);
3645	if (rc)
3646		return rc;
3647
3648	if (tsec->create_sid) {
3649		newsid = tsec->create_sid;
3650	} else {
3651		u16 secclass = inode_mode_to_security_class(kn->mode);
3652		struct qstr q;
3653
3654		q.name = kn->name;
3655		q.hash_len = hashlen_string(kn_dir, kn->name);
3656
3657		rc = security_transition_sid(&selinux_state, tsec->sid,
3658					     parent_sid, secclass, &q,
3659					     &newsid);
3660		if (rc)
3661			return rc;
3662	}
3663
3664	rc = security_sid_to_context_force(&selinux_state, newsid,
3665					   &context, &clen);
3666	if (rc)
3667		return rc;
3668
3669	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3670			      XATTR_CREATE);
3671	kfree(context);
3672	return rc;
3673}
3674
3675
3676/* file security operations */
3677
3678static int selinux_revalidate_file_permission(struct file *file, int mask)
3679{
3680	const struct cred *cred = current_cred();
3681	struct inode *inode = file_inode(file);
3682
3683	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3684	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3685		mask |= MAY_APPEND;
3686
3687	return file_has_perm(cred, file,
3688			     file_mask_to_av(inode->i_mode, mask));
3689}
3690
3691static int selinux_file_permission(struct file *file, int mask)
3692{
3693	struct inode *inode = file_inode(file);
3694	struct file_security_struct *fsec = selinux_file(file);
3695	struct inode_security_struct *isec;
3696	u32 sid = current_sid();
3697
3698	if (!mask)
3699		/* No permission to check.  Existence test. */
3700		return 0;
3701
3702	isec = inode_security(inode);
3703	if (sid == fsec->sid && fsec->isid == isec->sid &&
3704	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3705		/* No change since file_open check. */
3706		return 0;
3707
3708	return selinux_revalidate_file_permission(file, mask);
3709}
3710
3711static int selinux_file_alloc_security(struct file *file)
3712{
3713	struct file_security_struct *fsec = selinux_file(file);
3714	u32 sid = current_sid();
3715
3716	fsec->sid = sid;
3717	fsec->fown_sid = sid;
3718
3719	return 0;
3720}
3721
3722/*
3723 * Check whether a task has the ioctl permission and cmd
3724 * operation to an inode.
3725 */
3726static int ioctl_has_perm(const struct cred *cred, struct file *file,
3727		u32 requested, u16 cmd)
3728{
3729	struct common_audit_data ad;
3730	struct file_security_struct *fsec = selinux_file(file);
3731	struct inode *inode = file_inode(file);
3732	struct inode_security_struct *isec;
3733	struct lsm_ioctlop_audit ioctl;
3734	u32 ssid = cred_sid(cred);
3735	int rc;
3736	u8 driver = cmd >> 8;
3737	u8 xperm = cmd & 0xff;
3738
3739	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3740	ad.u.op = &ioctl;
3741	ad.u.op->cmd = cmd;
3742	ad.u.op->path = file->f_path;
3743
3744	if (ssid != fsec->sid) {
3745		rc = avc_has_perm(&selinux_state,
3746				  ssid, fsec->sid,
3747				SECCLASS_FD,
3748				FD__USE,
3749				&ad);
3750		if (rc)
3751			goto out;
3752	}
3753
3754	if (unlikely(IS_PRIVATE(inode)))
3755		return 0;
3756
3757	isec = inode_security(inode);
3758	rc = avc_has_extended_perms(&selinux_state,
3759				    ssid, isec->sid, isec->sclass,
3760				    requested, driver, xperm, &ad);
3761out:
3762	return rc;
3763}
3764
3765static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3766			      unsigned long arg)
3767{
3768	const struct cred *cred = current_cred();
3769	int error = 0;
3770
3771	switch (cmd) {
3772	case FIONREAD:
 
3773	case FIBMAP:
 
3774	case FIGETBSZ:
3775	case FS_IOC_GETFLAGS:
3776	case FS_IOC_GETVERSION:
 
 
3777		error = file_has_perm(cred, file, FILE__GETATTR);
3778		break;
3779
3780	case FS_IOC_SETFLAGS:
3781	case FS_IOC_SETVERSION:
 
3782		error = file_has_perm(cred, file, FILE__SETATTR);
3783		break;
3784
3785	/* sys_ioctl() checks */
3786	case FIONBIO:
 
3787	case FIOASYNC:
3788		error = file_has_perm(cred, file, 0);
3789		break;
3790
3791	case KDSKBENT:
3792	case KDSKBSENT:
3793		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3794					    CAP_OPT_NONE, true);
3795		break;
3796
3797	/* default case assumes that the command will go
3798	 * to the file's ioctl() function.
3799	 */
3800	default:
3801		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3802	}
3803	return error;
3804}
3805
3806static int default_noexec __ro_after_init;
3807
3808static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3809{
3810	const struct cred *cred = current_cred();
3811	u32 sid = cred_sid(cred);
3812	int rc = 0;
3813
3814	if (default_noexec &&
3815	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3816				   (!shared && (prot & PROT_WRITE)))) {
3817		/*
3818		 * We are making executable an anonymous mapping or a
3819		 * private file mapping that will also be writable.
3820		 * This has an additional check.
3821		 */
3822		rc = avc_has_perm(&selinux_state,
3823				  sid, sid, SECCLASS_PROCESS,
3824				  PROCESS__EXECMEM, NULL);
3825		if (rc)
3826			goto error;
3827	}
3828
3829	if (file) {
3830		/* read access is always possible with a mapping */
3831		u32 av = FILE__READ;
3832
3833		/* write access only matters if the mapping is shared */
3834		if (shared && (prot & PROT_WRITE))
3835			av |= FILE__WRITE;
3836
3837		if (prot & PROT_EXEC)
3838			av |= FILE__EXECUTE;
3839
3840		return file_has_perm(cred, file, av);
3841	}
3842
3843error:
3844	return rc;
3845}
3846
3847static int selinux_mmap_addr(unsigned long addr)
 
 
3848{
3849	int rc = 0;
 
3850
 
 
 
 
 
 
3851	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3852		u32 sid = current_sid();
3853		rc = avc_has_perm(&selinux_state,
3854				  sid, sid, SECCLASS_MEMPROTECT,
3855				  MEMPROTECT__MMAP_ZERO, NULL);
3856	}
3857
3858	return rc;
3859}
3860
3861static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3862			     unsigned long prot, unsigned long flags)
3863{
3864	struct common_audit_data ad;
3865	int rc;
3866
3867	if (file) {
3868		ad.type = LSM_AUDIT_DATA_FILE;
3869		ad.u.file = file;
3870		rc = inode_has_perm(current_cred(), file_inode(file),
3871				    FILE__MAP, &ad);
3872		if (rc)
3873			return rc;
3874	}
3875
3876	if (checkreqprot_get(&selinux_state))
 
 
 
 
 
3877		prot = reqprot;
3878
3879	return file_map_prot_check(file, prot,
3880				   (flags & MAP_TYPE) == MAP_SHARED);
3881}
3882
3883static int selinux_file_mprotect(struct vm_area_struct *vma,
3884				 unsigned long reqprot,
3885				 unsigned long prot)
3886{
3887	const struct cred *cred = current_cred();
3888	u32 sid = cred_sid(cred);
3889
3890	if (checkreqprot_get(&selinux_state))
3891		prot = reqprot;
3892
3893	if (default_noexec &&
3894	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3895		int rc = 0;
3896		if (vma->vm_start >= vma->vm_mm->start_brk &&
3897		    vma->vm_end <= vma->vm_mm->brk) {
3898			rc = avc_has_perm(&selinux_state,
3899					  sid, sid, SECCLASS_PROCESS,
3900					  PROCESS__EXECHEAP, NULL);
3901		} else if (!vma->vm_file &&
3902			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3903			     vma->vm_end >= vma->vm_mm->start_stack) ||
3904			    vma_is_stack_for_current(vma))) {
3905			rc = avc_has_perm(&selinux_state,
3906					  sid, sid, SECCLASS_PROCESS,
3907					  PROCESS__EXECSTACK, NULL);
3908		} else if (vma->vm_file && vma->anon_vma) {
3909			/*
3910			 * We are making executable a file mapping that has
3911			 * had some COW done. Since pages might have been
3912			 * written, check ability to execute the possibly
3913			 * modified content.  This typically should only
3914			 * occur for text relocations.
3915			 */
3916			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3917		}
3918		if (rc)
3919			return rc;
3920	}
3921
3922	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3923}
3924
3925static int selinux_file_lock(struct file *file, unsigned int cmd)
3926{
3927	const struct cred *cred = current_cred();
3928
3929	return file_has_perm(cred, file, FILE__LOCK);
3930}
3931
3932static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3933			      unsigned long arg)
3934{
3935	const struct cred *cred = current_cred();
3936	int err = 0;
3937
3938	switch (cmd) {
3939	case F_SETFL:
 
 
 
 
 
3940		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3941			err = file_has_perm(cred, file, FILE__WRITE);
3942			break;
3943		}
3944		fallthrough;
3945	case F_SETOWN:
3946	case F_SETSIG:
3947	case F_GETFL:
3948	case F_GETOWN:
3949	case F_GETSIG:
3950	case F_GETOWNER_UIDS:
3951		/* Just check FD__USE permission */
3952		err = file_has_perm(cred, file, 0);
3953		break;
3954	case F_GETLK:
3955	case F_SETLK:
3956	case F_SETLKW:
3957	case F_OFD_GETLK:
3958	case F_OFD_SETLK:
3959	case F_OFD_SETLKW:
3960#if BITS_PER_LONG == 32
3961	case F_GETLK64:
3962	case F_SETLK64:
3963	case F_SETLKW64:
3964#endif
 
 
 
 
3965		err = file_has_perm(cred, file, FILE__LOCK);
3966		break;
3967	}
3968
3969	return err;
3970}
3971
3972static void selinux_file_set_fowner(struct file *file)
3973{
3974	struct file_security_struct *fsec;
3975
3976	fsec = selinux_file(file);
3977	fsec->fown_sid = current_sid();
 
 
3978}
3979
3980static int selinux_file_send_sigiotask(struct task_struct *tsk,
3981				       struct fown_struct *fown, int signum)
3982{
3983	struct file *file;
3984	u32 sid = task_sid_obj(tsk);
3985	u32 perm;
3986	struct file_security_struct *fsec;
3987
3988	/* struct fown_struct is never outside the context of a struct file */
3989	file = container_of(fown, struct file, f_owner);
3990
3991	fsec = selinux_file(file);
3992
3993	if (!signum)
3994		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3995	else
3996		perm = signal_to_av(signum);
3997
3998	return avc_has_perm(&selinux_state,
3999			    fsec->fown_sid, sid,
4000			    SECCLASS_PROCESS, perm, NULL);
4001}
4002
4003static int selinux_file_receive(struct file *file)
4004{
4005	const struct cred *cred = current_cred();
4006
4007	return file_has_perm(cred, file, file_to_av(file));
4008}
4009
4010static int selinux_file_open(struct file *file)
4011{
4012	struct file_security_struct *fsec;
 
4013	struct inode_security_struct *isec;
4014
4015	fsec = selinux_file(file);
4016	isec = inode_security(file_inode(file));
 
4017	/*
4018	 * Save inode label and policy sequence number
4019	 * at open-time so that selinux_file_permission
4020	 * can determine whether revalidation is necessary.
4021	 * Task label is already saved in the file security
4022	 * struct as its SID.
4023	 */
4024	fsec->isid = isec->sid;
4025	fsec->pseqno = avc_policy_seqno(&selinux_state);
4026	/*
4027	 * Since the inode label or policy seqno may have changed
4028	 * between the selinux_inode_permission check and the saving
4029	 * of state above, recheck that access is still permitted.
4030	 * Otherwise, access might never be revalidated against the
4031	 * new inode label or new policy.
4032	 * This check is not redundant - do not remove.
4033	 */
4034	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
4035}
4036
4037/* task security operations */
4038
4039static int selinux_task_alloc(struct task_struct *task,
4040			      unsigned long clone_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4041{
4042	u32 sid = current_sid();
4043
4044	return avc_has_perm(&selinux_state,
4045			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
4046}
4047
4048/*
4049 * prepare a new set of credentials for modification
4050 */
4051static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4052				gfp_t gfp)
4053{
4054	const struct task_security_struct *old_tsec = selinux_cred(old);
4055	struct task_security_struct *tsec = selinux_cred(new);
4056
4057	*tsec = *old_tsec;
 
 
 
 
 
 
4058	return 0;
4059}
4060
4061/*
4062 * transfer the SELinux data to a blank set of creds
4063 */
4064static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4065{
4066	const struct task_security_struct *old_tsec = selinux_cred(old);
4067	struct task_security_struct *tsec = selinux_cred(new);
4068
4069	*tsec = *old_tsec;
4070}
4071
4072static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4073{
4074	*secid = cred_sid(c);
4075}
4076
4077/*
4078 * set the security data for a kernel service
4079 * - all the creation contexts are set to unlabelled
4080 */
4081static int selinux_kernel_act_as(struct cred *new, u32 secid)
4082{
4083	struct task_security_struct *tsec = selinux_cred(new);
4084	u32 sid = current_sid();
4085	int ret;
4086
4087	ret = avc_has_perm(&selinux_state,
4088			   sid, secid,
4089			   SECCLASS_KERNEL_SERVICE,
4090			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4091			   NULL);
4092	if (ret == 0) {
4093		tsec->sid = secid;
4094		tsec->create_sid = 0;
4095		tsec->keycreate_sid = 0;
4096		tsec->sockcreate_sid = 0;
4097	}
4098	return ret;
4099}
4100
4101/*
4102 * set the file creation context in a security record to the same as the
4103 * objective context of the specified inode
4104 */
4105static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4106{
4107	struct inode_security_struct *isec = inode_security(inode);
4108	struct task_security_struct *tsec = selinux_cred(new);
4109	u32 sid = current_sid();
4110	int ret;
4111
4112	ret = avc_has_perm(&selinux_state,
4113			   sid, isec->sid,
4114			   SECCLASS_KERNEL_SERVICE,
4115			   KERNEL_SERVICE__CREATE_FILES_AS,
4116			   NULL);
4117
4118	if (ret == 0)
4119		tsec->create_sid = isec->sid;
4120	return ret;
4121}
4122
4123static int selinux_kernel_module_request(char *kmod_name)
4124{
 
4125	struct common_audit_data ad;
4126
4127	ad.type = LSM_AUDIT_DATA_KMOD;
 
 
4128	ad.u.kmod_name = kmod_name;
4129
4130	return avc_has_perm(&selinux_state,
4131			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4132			    SYSTEM__MODULE_REQUEST, &ad);
4133}
4134
4135static int selinux_kernel_module_from_file(struct file *file)
4136{
4137	struct common_audit_data ad;
4138	struct inode_security_struct *isec;
4139	struct file_security_struct *fsec;
4140	u32 sid = current_sid();
4141	int rc;
4142
4143	/* init_module */
4144	if (file == NULL)
4145		return avc_has_perm(&selinux_state,
4146				    sid, sid, SECCLASS_SYSTEM,
4147					SYSTEM__MODULE_LOAD, NULL);
4148
4149	/* finit_module */
4150
4151	ad.type = LSM_AUDIT_DATA_FILE;
4152	ad.u.file = file;
4153
4154	fsec = selinux_file(file);
4155	if (sid != fsec->sid) {
4156		rc = avc_has_perm(&selinux_state,
4157				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4158		if (rc)
4159			return rc;
4160	}
4161
4162	isec = inode_security(file_inode(file));
4163	return avc_has_perm(&selinux_state,
4164			    sid, isec->sid, SECCLASS_SYSTEM,
4165				SYSTEM__MODULE_LOAD, &ad);
4166}
4167
4168static int selinux_kernel_read_file(struct file *file,
4169				    enum kernel_read_file_id id,
4170				    bool contents)
4171{
4172	int rc = 0;
4173
4174	switch (id) {
4175	case READING_MODULE:
4176		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4177		break;
4178	default:
4179		break;
4180	}
4181
4182	return rc;
4183}
4184
4185static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4186{
4187	int rc = 0;
4188
4189	switch (id) {
4190	case LOADING_MODULE:
4191		rc = selinux_kernel_module_from_file(NULL);
4192		break;
4193	default:
4194		break;
4195	}
4196
4197	return rc;
4198}
4199
4200static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4201{
4202	return avc_has_perm(&selinux_state,
4203			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204			    PROCESS__SETPGID, NULL);
4205}
4206
4207static int selinux_task_getpgid(struct task_struct *p)
4208{
4209	return avc_has_perm(&selinux_state,
4210			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4211			    PROCESS__GETPGID, NULL);
4212}
4213
4214static int selinux_task_getsid(struct task_struct *p)
4215{
4216	return avc_has_perm(&selinux_state,
4217			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4218			    PROCESS__GETSESSION, NULL);
4219}
4220
4221static void selinux_task_getsecid_subj(struct task_struct *p, u32 *secid)
4222{
4223	*secid = task_sid_subj(p);
4224}
4225
4226static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4227{
4228	*secid = task_sid_obj(p);
4229}
 
 
 
4230
4231static int selinux_task_setnice(struct task_struct *p, int nice)
4232{
4233	return avc_has_perm(&selinux_state,
4234			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4235			    PROCESS__SETSCHED, NULL);
4236}
4237
4238static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4239{
4240	return avc_has_perm(&selinux_state,
4241			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4242			    PROCESS__SETSCHED, NULL);
 
 
 
 
4243}
4244
4245static int selinux_task_getioprio(struct task_struct *p)
4246{
4247	return avc_has_perm(&selinux_state,
4248			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4249			    PROCESS__GETSCHED, NULL);
4250}
4251
4252static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4253				unsigned int flags)
4254{
4255	u32 av = 0;
4256
4257	if (!flags)
4258		return 0;
4259	if (flags & LSM_PRLIMIT_WRITE)
4260		av |= PROCESS__SETRLIMIT;
4261	if (flags & LSM_PRLIMIT_READ)
4262		av |= PROCESS__GETRLIMIT;
4263	return avc_has_perm(&selinux_state,
4264			    cred_sid(cred), cred_sid(tcred),
4265			    SECCLASS_PROCESS, av, NULL);
4266}
4267
4268static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4269		struct rlimit *new_rlim)
4270{
4271	struct rlimit *old_rlim = p->signal->rlim + resource;
4272
4273	/* Control the ability to change the hard limit (whether
4274	   lowering or raising it), so that the hard limit can
4275	   later be used as a safe reset point for the soft limit
4276	   upon context transitions.  See selinux_bprm_committing_creds. */
4277	if (old_rlim->rlim_max != new_rlim->rlim_max)
4278		return avc_has_perm(&selinux_state,
4279				    current_sid(), task_sid_obj(p),
4280				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4281
4282	return 0;
4283}
4284
4285static int selinux_task_setscheduler(struct task_struct *p)
4286{
4287	return avc_has_perm(&selinux_state,
4288			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4289			    PROCESS__SETSCHED, NULL);
 
 
 
 
4290}
4291
4292static int selinux_task_getscheduler(struct task_struct *p)
4293{
4294	return avc_has_perm(&selinux_state,
4295			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4296			    PROCESS__GETSCHED, NULL);
4297}
4298
4299static int selinux_task_movememory(struct task_struct *p)
4300{
4301	return avc_has_perm(&selinux_state,
4302			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4303			    PROCESS__SETSCHED, NULL);
4304}
4305
4306static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4307				int sig, const struct cred *cred)
4308{
4309	u32 secid;
4310	u32 perm;
 
4311
4312	if (!sig)
4313		perm = PROCESS__SIGNULL; /* null signal; existence test */
4314	else
4315		perm = signal_to_av(sig);
4316	if (!cred)
4317		secid = current_sid();
 
4318	else
4319		secid = cred_sid(cred);
4320	return avc_has_perm(&selinux_state,
4321			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4322}
4323
4324static void selinux_task_to_inode(struct task_struct *p,
4325				  struct inode *inode)
4326{
4327	struct inode_security_struct *isec = selinux_inode(inode);
4328	u32 sid = task_sid_obj(p);
4329
4330	spin_lock(&isec->lock);
4331	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4332	isec->sid = sid;
4333	isec->initialized = LABEL_INITIALIZED;
4334	spin_unlock(&isec->lock);
4335}
4336
4337/* Returns error only if unable to parse addresses */
4338static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4339			struct common_audit_data *ad, u8 *proto)
4340{
4341	int offset, ihlen, ret = -EINVAL;
4342	struct iphdr _iph, *ih;
4343
4344	offset = skb_network_offset(skb);
4345	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4346	if (ih == NULL)
4347		goto out;
4348
4349	ihlen = ih->ihl * 4;
4350	if (ihlen < sizeof(_iph))
4351		goto out;
4352
4353	ad->u.net->v4info.saddr = ih->saddr;
4354	ad->u.net->v4info.daddr = ih->daddr;
4355	ret = 0;
4356
4357	if (proto)
4358		*proto = ih->protocol;
4359
4360	switch (ih->protocol) {
4361	case IPPROTO_TCP: {
4362		struct tcphdr _tcph, *th;
4363
4364		if (ntohs(ih->frag_off) & IP_OFFSET)
4365			break;
4366
4367		offset += ihlen;
4368		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4369		if (th == NULL)
4370			break;
4371
4372		ad->u.net->sport = th->source;
4373		ad->u.net->dport = th->dest;
4374		break;
4375	}
4376
4377	case IPPROTO_UDP: {
4378		struct udphdr _udph, *uh;
4379
4380		if (ntohs(ih->frag_off) & IP_OFFSET)
4381			break;
4382
4383		offset += ihlen;
4384		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4385		if (uh == NULL)
4386			break;
4387
4388		ad->u.net->sport = uh->source;
4389		ad->u.net->dport = uh->dest;
4390		break;
4391	}
4392
4393	case IPPROTO_DCCP: {
4394		struct dccp_hdr _dccph, *dh;
4395
4396		if (ntohs(ih->frag_off) & IP_OFFSET)
4397			break;
4398
4399		offset += ihlen;
4400		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4401		if (dh == NULL)
4402			break;
4403
4404		ad->u.net->sport = dh->dccph_sport;
4405		ad->u.net->dport = dh->dccph_dport;
4406		break;
4407	}
4408
4409#if IS_ENABLED(CONFIG_IP_SCTP)
4410	case IPPROTO_SCTP: {
4411		struct sctphdr _sctph, *sh;
4412
4413		if (ntohs(ih->frag_off) & IP_OFFSET)
4414			break;
4415
4416		offset += ihlen;
4417		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4418		if (sh == NULL)
4419			break;
4420
4421		ad->u.net->sport = sh->source;
4422		ad->u.net->dport = sh->dest;
4423		break;
4424	}
4425#endif
4426	default:
4427		break;
4428	}
4429out:
4430	return ret;
4431}
4432
4433#if IS_ENABLED(CONFIG_IPV6)
4434
4435/* Returns error only if unable to parse addresses */
4436static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4437			struct common_audit_data *ad, u8 *proto)
4438{
4439	u8 nexthdr;
4440	int ret = -EINVAL, offset;
4441	struct ipv6hdr _ipv6h, *ip6;
4442	__be16 frag_off;
4443
4444	offset = skb_network_offset(skb);
4445	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4446	if (ip6 == NULL)
4447		goto out;
4448
4449	ad->u.net->v6info.saddr = ip6->saddr;
4450	ad->u.net->v6info.daddr = ip6->daddr;
4451	ret = 0;
4452
4453	nexthdr = ip6->nexthdr;
4454	offset += sizeof(_ipv6h);
4455	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4456	if (offset < 0)
4457		goto out;
4458
4459	if (proto)
4460		*proto = nexthdr;
4461
4462	switch (nexthdr) {
4463	case IPPROTO_TCP: {
4464		struct tcphdr _tcph, *th;
4465
4466		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4467		if (th == NULL)
4468			break;
4469
4470		ad->u.net->sport = th->source;
4471		ad->u.net->dport = th->dest;
4472		break;
4473	}
4474
4475	case IPPROTO_UDP: {
4476		struct udphdr _udph, *uh;
4477
4478		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4479		if (uh == NULL)
4480			break;
4481
4482		ad->u.net->sport = uh->source;
4483		ad->u.net->dport = uh->dest;
4484		break;
4485	}
4486
4487	case IPPROTO_DCCP: {
4488		struct dccp_hdr _dccph, *dh;
4489
4490		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4491		if (dh == NULL)
4492			break;
4493
4494		ad->u.net->sport = dh->dccph_sport;
4495		ad->u.net->dport = dh->dccph_dport;
4496		break;
4497	}
4498
4499#if IS_ENABLED(CONFIG_IP_SCTP)
4500	case IPPROTO_SCTP: {
4501		struct sctphdr _sctph, *sh;
4502
4503		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4504		if (sh == NULL)
4505			break;
4506
4507		ad->u.net->sport = sh->source;
4508		ad->u.net->dport = sh->dest;
4509		break;
4510	}
4511#endif
4512	/* includes fragments */
4513	default:
4514		break;
4515	}
4516out:
4517	return ret;
4518}
4519
4520#endif /* IPV6 */
4521
4522static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4523			     char **_addrp, int src, u8 *proto)
4524{
4525	char *addrp;
4526	int ret;
4527
4528	switch (ad->u.net->family) {
4529	case PF_INET:
4530		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4531		if (ret)
4532			goto parse_error;
4533		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4534				       &ad->u.net->v4info.daddr);
4535		goto okay;
4536
4537#if IS_ENABLED(CONFIG_IPV6)
4538	case PF_INET6:
4539		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4540		if (ret)
4541			goto parse_error;
4542		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4543				       &ad->u.net->v6info.daddr);
4544		goto okay;
4545#endif	/* IPV6 */
4546	default:
4547		addrp = NULL;
4548		goto okay;
4549	}
4550
4551parse_error:
4552	pr_warn(
4553	       "SELinux: failure in selinux_parse_skb(),"
4554	       " unable to parse packet\n");
4555	return ret;
4556
4557okay:
4558	if (_addrp)
4559		*_addrp = addrp;
4560	return 0;
4561}
4562
4563/**
4564 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4565 * @skb: the packet
4566 * @family: protocol family
4567 * @sid: the packet's peer label SID
4568 *
4569 * Description:
4570 * Check the various different forms of network peer labeling and determine
4571 * the peer label/SID for the packet; most of the magic actually occurs in
4572 * the security server function security_net_peersid_cmp().  The function
4573 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4574 * or -EACCES if @sid is invalid due to inconsistencies with the different
4575 * peer labels.
4576 *
4577 */
4578static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4579{
4580	int err;
4581	u32 xfrm_sid;
4582	u32 nlbl_sid;
4583	u32 nlbl_type;
4584
4585	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4586	if (unlikely(err))
4587		return -EACCES;
4588	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4589	if (unlikely(err))
4590		return -EACCES;
4591
4592	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4593					   nlbl_type, xfrm_sid, sid);
4594	if (unlikely(err)) {
4595		pr_warn(
4596		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4597		       " unable to determine packet's peer label\n");
4598		return -EACCES;
4599	}
4600
4601	return 0;
4602}
4603
4604/**
4605 * selinux_conn_sid - Determine the child socket label for a connection
4606 * @sk_sid: the parent socket's SID
4607 * @skb_sid: the packet's SID
4608 * @conn_sid: the resulting connection SID
4609 *
4610 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4611 * combined with the MLS information from @skb_sid in order to create
4612 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4613 * of @sk_sid.  Returns zero on success, negative values on failure.
4614 *
4615 */
4616static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4617{
4618	int err = 0;
4619
4620	if (skb_sid != SECSID_NULL)
4621		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4622					    conn_sid);
4623	else
4624		*conn_sid = sk_sid;
4625
4626	return err;
4627}
4628
4629/* socket security operations */
4630
4631static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4632				 u16 secclass, u32 *socksid)
4633{
4634	if (tsec->sockcreate_sid > SECSID_NULL) {
4635		*socksid = tsec->sockcreate_sid;
4636		return 0;
4637	}
4638
4639	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4640				       secclass, NULL, socksid);
4641}
4642
4643static int sock_has_perm(struct sock *sk, u32 perms)
4644{
4645	struct sk_security_struct *sksec = sk->sk_security;
4646	struct common_audit_data ad;
4647	struct lsm_network_audit net = {0,};
4648
4649	if (sksec->sid == SECINITSID_KERNEL)
4650		return 0;
4651
4652	ad.type = LSM_AUDIT_DATA_NET;
4653	ad.u.net = &net;
4654	ad.u.net->sk = sk;
4655
4656	return avc_has_perm(&selinux_state,
4657			    current_sid(), sksec->sid, sksec->sclass, perms,
4658			    &ad);
4659}
4660
4661static int selinux_socket_create(int family, int type,
4662				 int protocol, int kern)
4663{
4664	const struct task_security_struct *tsec = selinux_cred(current_cred());
4665	u32 newsid;
4666	u16 secclass;
4667	int rc;
4668
4669	if (kern)
4670		return 0;
4671
4672	secclass = socket_type_to_security_class(family, type, protocol);
4673	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4674	if (rc)
4675		return rc;
4676
4677	return avc_has_perm(&selinux_state,
4678			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4679}
4680
4681static int selinux_socket_post_create(struct socket *sock, int family,
4682				      int type, int protocol, int kern)
4683{
4684	const struct task_security_struct *tsec = selinux_cred(current_cred());
4685	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4686	struct sk_security_struct *sksec;
4687	u16 sclass = socket_type_to_security_class(family, type, protocol);
4688	u32 sid = SECINITSID_KERNEL;
4689	int err = 0;
4690
4691	if (!kern) {
4692		err = socket_sockcreate_sid(tsec, sclass, &sid);
 
 
 
 
4693		if (err)
4694			return err;
4695	}
4696
4697	isec->sclass = sclass;
4698	isec->sid = sid;
4699	isec->initialized = LABEL_INITIALIZED;
4700
4701	if (sock->sk) {
4702		sksec = sock->sk->sk_security;
4703		sksec->sclass = sclass;
4704		sksec->sid = sid;
4705		/* Allows detection of the first association on this socket */
4706		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4707			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4708
4709		err = selinux_netlbl_socket_post_create(sock->sk, family);
4710	}
4711
4712	return err;
4713}
4714
4715static int selinux_socket_socketpair(struct socket *socka,
4716				     struct socket *sockb)
4717{
4718	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4719	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4720
4721	sksec_a->peer_sid = sksec_b->sid;
4722	sksec_b->peer_sid = sksec_a->sid;
4723
4724	return 0;
4725}
4726
4727/* Range of port numbers used to automatically bind.
4728   Need to determine whether we should perform a name_bind
4729   permission check between the socket and the port number. */
4730
4731static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4732{
4733	struct sock *sk = sock->sk;
4734	struct sk_security_struct *sksec = sk->sk_security;
4735	u16 family;
4736	int err;
4737
4738	err = sock_has_perm(sk, SOCKET__BIND);
4739	if (err)
4740		goto out;
4741
4742	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4743	family = sk->sk_family;
4744	if (family == PF_INET || family == PF_INET6) {
4745		char *addrp;
 
4746		struct common_audit_data ad;
4747		struct lsm_network_audit net = {0,};
4748		struct sockaddr_in *addr4 = NULL;
4749		struct sockaddr_in6 *addr6 = NULL;
4750		u16 family_sa;
4751		unsigned short snum;
4752		u32 sid, node_perm;
4753
4754		/*
4755		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4756		 * that validates multiple binding addresses. Because of this
4757		 * need to check address->sa_family as it is possible to have
4758		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4759		 */
4760		if (addrlen < offsetofend(struct sockaddr, sa_family))
4761			return -EINVAL;
4762		family_sa = address->sa_family;
4763		switch (family_sa) {
4764		case AF_UNSPEC:
4765		case AF_INET:
4766			if (addrlen < sizeof(struct sockaddr_in))
4767				return -EINVAL;
4768			addr4 = (struct sockaddr_in *)address;
4769			if (family_sa == AF_UNSPEC) {
4770				/* see __inet_bind(), we only want to allow
4771				 * AF_UNSPEC if the address is INADDR_ANY
4772				 */
4773				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4774					goto err_af;
4775				family_sa = AF_INET;
4776			}
4777			snum = ntohs(addr4->sin_port);
4778			addrp = (char *)&addr4->sin_addr.s_addr;
4779			break;
4780		case AF_INET6:
4781			if (addrlen < SIN6_LEN_RFC2133)
4782				return -EINVAL;
4783			addr6 = (struct sockaddr_in6 *)address;
4784			snum = ntohs(addr6->sin6_port);
4785			addrp = (char *)&addr6->sin6_addr.s6_addr;
4786			break;
4787		default:
4788			goto err_af;
4789		}
4790
4791		ad.type = LSM_AUDIT_DATA_NET;
4792		ad.u.net = &net;
4793		ad.u.net->sport = htons(snum);
4794		ad.u.net->family = family_sa;
4795
4796		if (snum) {
4797			int low, high;
4798
4799			inet_get_local_port_range(sock_net(sk), &low, &high);
4800
4801			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4802			    snum < low || snum > high) {
4803				err = sel_netport_sid(sk->sk_protocol,
4804						      snum, &sid);
4805				if (err)
4806					goto out;
4807				err = avc_has_perm(&selinux_state,
4808						   sksec->sid, sid,
 
 
4809						   sksec->sclass,
4810						   SOCKET__NAME_BIND, &ad);
4811				if (err)
4812					goto out;
4813			}
4814		}
4815
4816		switch (sksec->sclass) {
4817		case SECCLASS_TCP_SOCKET:
4818			node_perm = TCP_SOCKET__NODE_BIND;
4819			break;
4820
4821		case SECCLASS_UDP_SOCKET:
4822			node_perm = UDP_SOCKET__NODE_BIND;
4823			break;
4824
4825		case SECCLASS_DCCP_SOCKET:
4826			node_perm = DCCP_SOCKET__NODE_BIND;
4827			break;
4828
4829		case SECCLASS_SCTP_SOCKET:
4830			node_perm = SCTP_SOCKET__NODE_BIND;
4831			break;
4832
4833		default:
4834			node_perm = RAWIP_SOCKET__NODE_BIND;
4835			break;
4836		}
4837
4838		err = sel_netnode_sid(addrp, family_sa, &sid);
4839		if (err)
4840			goto out;
4841
4842		if (family_sa == AF_INET)
4843			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
 
 
 
 
4844		else
4845			ad.u.net->v6info.saddr = addr6->sin6_addr;
4846
4847		err = avc_has_perm(&selinux_state,
4848				   sksec->sid, sid,
4849				   sksec->sclass, node_perm, &ad);
4850		if (err)
4851			goto out;
4852	}
4853out:
4854	return err;
4855err_af:
4856	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4857	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4858		return -EINVAL;
4859	return -EAFNOSUPPORT;
4860}
4861
4862/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4863 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4864 */
4865static int selinux_socket_connect_helper(struct socket *sock,
4866					 struct sockaddr *address, int addrlen)
4867{
4868	struct sock *sk = sock->sk;
4869	struct sk_security_struct *sksec = sk->sk_security;
4870	int err;
4871
4872	err = sock_has_perm(sk, SOCKET__CONNECT);
4873	if (err)
4874		return err;
4875	if (addrlen < offsetofend(struct sockaddr, sa_family))
4876		return -EINVAL;
4877
4878	/* connect(AF_UNSPEC) has special handling, as it is a documented
4879	 * way to disconnect the socket
4880	 */
4881	if (address->sa_family == AF_UNSPEC)
4882		return 0;
4883
4884	/*
4885	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4886	 * for the port.
4887	 */
4888	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4889	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4890	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4891		struct common_audit_data ad;
4892		struct lsm_network_audit net = {0,};
4893		struct sockaddr_in *addr4 = NULL;
4894		struct sockaddr_in6 *addr6 = NULL;
4895		unsigned short snum;
4896		u32 sid, perm;
4897
4898		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4899		 * that validates multiple connect addresses. Because of this
4900		 * need to check address->sa_family as it is possible to have
4901		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4902		 */
4903		switch (address->sa_family) {
4904		case AF_INET:
4905			addr4 = (struct sockaddr_in *)address;
4906			if (addrlen < sizeof(struct sockaddr_in))
4907				return -EINVAL;
4908			snum = ntohs(addr4->sin_port);
4909			break;
4910		case AF_INET6:
4911			addr6 = (struct sockaddr_in6 *)address;
4912			if (addrlen < SIN6_LEN_RFC2133)
4913				return -EINVAL;
4914			snum = ntohs(addr6->sin6_port);
4915			break;
4916		default:
4917			/* Note that SCTP services expect -EINVAL, whereas
4918			 * others expect -EAFNOSUPPORT.
4919			 */
4920			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4921				return -EINVAL;
4922			else
4923				return -EAFNOSUPPORT;
4924		}
4925
4926		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4927		if (err)
4928			return err;
4929
4930		switch (sksec->sclass) {
4931		case SECCLASS_TCP_SOCKET:
4932			perm = TCP_SOCKET__NAME_CONNECT;
4933			break;
4934		case SECCLASS_DCCP_SOCKET:
4935			perm = DCCP_SOCKET__NAME_CONNECT;
4936			break;
4937		case SECCLASS_SCTP_SOCKET:
4938			perm = SCTP_SOCKET__NAME_CONNECT;
4939			break;
4940		}
4941
4942		ad.type = LSM_AUDIT_DATA_NET;
4943		ad.u.net = &net;
4944		ad.u.net->dport = htons(snum);
4945		ad.u.net->family = address->sa_family;
4946		err = avc_has_perm(&selinux_state,
4947				   sksec->sid, sid, sksec->sclass, perm, &ad);
4948		if (err)
4949			return err;
4950	}
4951
4952	return 0;
4953}
4954
4955/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4956static int selinux_socket_connect(struct socket *sock,
4957				  struct sockaddr *address, int addrlen)
4958{
4959	int err;
4960	struct sock *sk = sock->sk;
4961
4962	err = selinux_socket_connect_helper(sock, address, addrlen);
4963	if (err)
4964		return err;
4965
4966	return selinux_netlbl_socket_connect(sk, address);
4967}
4968
4969static int selinux_socket_listen(struct socket *sock, int backlog)
4970{
4971	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4972}
4973
4974static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4975{
4976	int err;
4977	struct inode_security_struct *isec;
4978	struct inode_security_struct *newisec;
4979	u16 sclass;
4980	u32 sid;
4981
4982	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4983	if (err)
4984		return err;
4985
4986	isec = inode_security_novalidate(SOCK_INODE(sock));
4987	spin_lock(&isec->lock);
4988	sclass = isec->sclass;
4989	sid = isec->sid;
4990	spin_unlock(&isec->lock);
4991
4992	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4993	newisec->sclass = sclass;
4994	newisec->sid = sid;
4995	newisec->initialized = LABEL_INITIALIZED;
4996
4997	return 0;
4998}
4999
5000static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
5001				  int size)
5002{
5003	return sock_has_perm(sock->sk, SOCKET__WRITE);
5004}
5005
5006static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
5007				  int size, int flags)
5008{
5009	return sock_has_perm(sock->sk, SOCKET__READ);
5010}
5011
5012static int selinux_socket_getsockname(struct socket *sock)
5013{
5014	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5015}
5016
5017static int selinux_socket_getpeername(struct socket *sock)
5018{
5019	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5020}
5021
5022static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5023{
5024	int err;
5025
5026	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5027	if (err)
5028		return err;
5029
5030	return selinux_netlbl_socket_setsockopt(sock, level, optname);
5031}
5032
5033static int selinux_socket_getsockopt(struct socket *sock, int level,
5034				     int optname)
5035{
5036	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5037}
5038
5039static int selinux_socket_shutdown(struct socket *sock, int how)
5040{
5041	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5042}
5043
5044static int selinux_socket_unix_stream_connect(struct sock *sock,
5045					      struct sock *other,
5046					      struct sock *newsk)
5047{
5048	struct sk_security_struct *sksec_sock = sock->sk_security;
5049	struct sk_security_struct *sksec_other = other->sk_security;
5050	struct sk_security_struct *sksec_new = newsk->sk_security;
5051	struct common_audit_data ad;
5052	struct lsm_network_audit net = {0,};
5053	int err;
5054
5055	ad.type = LSM_AUDIT_DATA_NET;
5056	ad.u.net = &net;
5057	ad.u.net->sk = other;
5058
5059	err = avc_has_perm(&selinux_state,
5060			   sksec_sock->sid, sksec_other->sid,
5061			   sksec_other->sclass,
5062			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5063	if (err)
5064		return err;
5065
5066	/* server child socket */
5067	sksec_new->peer_sid = sksec_sock->sid;
5068	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
5069				    sksec_sock->sid, &sksec_new->sid);
5070	if (err)
5071		return err;
5072
5073	/* connecting socket */
5074	sksec_sock->peer_sid = sksec_new->sid;
5075
5076	return 0;
5077}
5078
5079static int selinux_socket_unix_may_send(struct socket *sock,
5080					struct socket *other)
5081{
5082	struct sk_security_struct *ssec = sock->sk->sk_security;
5083	struct sk_security_struct *osec = other->sk->sk_security;
5084	struct common_audit_data ad;
5085	struct lsm_network_audit net = {0,};
5086
5087	ad.type = LSM_AUDIT_DATA_NET;
5088	ad.u.net = &net;
5089	ad.u.net->sk = other->sk;
5090
5091	return avc_has_perm(&selinux_state,
5092			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5093			    &ad);
5094}
5095
5096static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5097				    char *addrp, u16 family, u32 peer_sid,
5098				    struct common_audit_data *ad)
5099{
5100	int err;
5101	u32 if_sid;
5102	u32 node_sid;
5103
5104	err = sel_netif_sid(ns, ifindex, &if_sid);
5105	if (err)
5106		return err;
5107	err = avc_has_perm(&selinux_state,
5108			   peer_sid, if_sid,
5109			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5110	if (err)
5111		return err;
5112
5113	err = sel_netnode_sid(addrp, family, &node_sid);
5114	if (err)
5115		return err;
5116	return avc_has_perm(&selinux_state,
5117			    peer_sid, node_sid,
5118			    SECCLASS_NODE, NODE__RECVFROM, ad);
5119}
5120
5121static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5122				       u16 family)
5123{
5124	int err = 0;
5125	struct sk_security_struct *sksec = sk->sk_security;
5126	u32 sk_sid = sksec->sid;
5127	struct common_audit_data ad;
5128	struct lsm_network_audit net = {0,};
5129	char *addrp;
5130
5131	ad.type = LSM_AUDIT_DATA_NET;
5132	ad.u.net = &net;
5133	ad.u.net->netif = skb->skb_iif;
5134	ad.u.net->family = family;
5135	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5136	if (err)
5137		return err;
5138
5139	if (selinux_secmark_enabled()) {
5140		err = avc_has_perm(&selinux_state,
5141				   sk_sid, skb->secmark, SECCLASS_PACKET,
5142				   PACKET__RECV, &ad);
5143		if (err)
5144			return err;
5145	}
5146
5147	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5148	if (err)
5149		return err;
5150	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5151
5152	return err;
5153}
5154
5155static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5156{
5157	int err;
5158	struct sk_security_struct *sksec = sk->sk_security;
5159	u16 family = sk->sk_family;
5160	u32 sk_sid = sksec->sid;
5161	struct common_audit_data ad;
5162	struct lsm_network_audit net = {0,};
5163	char *addrp;
5164	u8 secmark_active;
5165	u8 peerlbl_active;
5166
5167	if (family != PF_INET && family != PF_INET6)
5168		return 0;
5169
5170	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5171	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5172		family = PF_INET;
5173
5174	/* If any sort of compatibility mode is enabled then handoff processing
5175	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5176	 * special handling.  We do this in an attempt to keep this function
5177	 * as fast and as clean as possible. */
5178	if (!selinux_policycap_netpeer())
5179		return selinux_sock_rcv_skb_compat(sk, skb, family);
5180
5181	secmark_active = selinux_secmark_enabled();
5182	peerlbl_active = selinux_peerlbl_enabled();
5183	if (!secmark_active && !peerlbl_active)
5184		return 0;
5185
5186	ad.type = LSM_AUDIT_DATA_NET;
5187	ad.u.net = &net;
5188	ad.u.net->netif = skb->skb_iif;
5189	ad.u.net->family = family;
5190	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5191	if (err)
5192		return err;
5193
5194	if (peerlbl_active) {
5195		u32 peer_sid;
5196
5197		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5198		if (err)
5199			return err;
5200		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5201					       addrp, family, peer_sid, &ad);
5202		if (err) {
5203			selinux_netlbl_err(skb, family, err, 0);
5204			return err;
5205		}
5206		err = avc_has_perm(&selinux_state,
5207				   sk_sid, peer_sid, SECCLASS_PEER,
5208				   PEER__RECV, &ad);
5209		if (err) {
5210			selinux_netlbl_err(skb, family, err, 0);
5211			return err;
5212		}
5213	}
5214
5215	if (secmark_active) {
5216		err = avc_has_perm(&selinux_state,
5217				   sk_sid, skb->secmark, SECCLASS_PACKET,
5218				   PACKET__RECV, &ad);
5219		if (err)
5220			return err;
5221	}
5222
5223	return err;
5224}
5225
5226static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5227					    int __user *optlen, unsigned len)
5228{
5229	int err = 0;
5230	char *scontext;
5231	u32 scontext_len;
5232	struct sk_security_struct *sksec = sock->sk->sk_security;
5233	u32 peer_sid = SECSID_NULL;
5234
5235	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5236	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5237	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5238		peer_sid = sksec->peer_sid;
5239	if (peer_sid == SECSID_NULL)
5240		return -ENOPROTOOPT;
5241
5242	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5243				      &scontext_len);
5244	if (err)
5245		return err;
5246
5247	if (scontext_len > len) {
5248		err = -ERANGE;
5249		goto out_len;
5250	}
5251
5252	if (copy_to_user(optval, scontext, scontext_len))
5253		err = -EFAULT;
5254
5255out_len:
5256	if (put_user(scontext_len, optlen))
5257		err = -EFAULT;
5258	kfree(scontext);
5259	return err;
5260}
5261
5262static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5263{
5264	u32 peer_secid = SECSID_NULL;
5265	u16 family;
5266	struct inode_security_struct *isec;
5267
5268	if (skb && skb->protocol == htons(ETH_P_IP))
5269		family = PF_INET;
5270	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5271		family = PF_INET6;
5272	else if (sock)
5273		family = sock->sk->sk_family;
5274	else
5275		goto out;
5276
5277	if (sock && family == PF_UNIX) {
5278		isec = inode_security_novalidate(SOCK_INODE(sock));
5279		peer_secid = isec->sid;
5280	} else if (skb)
5281		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5282
5283out:
5284	*secid = peer_secid;
5285	if (peer_secid == SECSID_NULL)
5286		return -EINVAL;
5287	return 0;
5288}
5289
5290static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5291{
5292	struct sk_security_struct *sksec;
5293
5294	sksec = kzalloc(sizeof(*sksec), priority);
5295	if (!sksec)
5296		return -ENOMEM;
5297
5298	sksec->peer_sid = SECINITSID_UNLABELED;
5299	sksec->sid = SECINITSID_UNLABELED;
5300	sksec->sclass = SECCLASS_SOCKET;
5301	selinux_netlbl_sk_security_reset(sksec);
5302	sk->sk_security = sksec;
5303
5304	return 0;
5305}
5306
5307static void selinux_sk_free_security(struct sock *sk)
5308{
5309	struct sk_security_struct *sksec = sk->sk_security;
5310
5311	sk->sk_security = NULL;
5312	selinux_netlbl_sk_security_free(sksec);
5313	kfree(sksec);
5314}
5315
5316static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5317{
5318	struct sk_security_struct *sksec = sk->sk_security;
5319	struct sk_security_struct *newsksec = newsk->sk_security;
5320
5321	newsksec->sid = sksec->sid;
5322	newsksec->peer_sid = sksec->peer_sid;
5323	newsksec->sclass = sksec->sclass;
5324
5325	selinux_netlbl_sk_security_reset(newsksec);
5326}
5327
5328static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5329{
5330	if (!sk)
5331		*secid = SECINITSID_ANY_SOCKET;
5332	else {
5333		struct sk_security_struct *sksec = sk->sk_security;
5334
5335		*secid = sksec->sid;
5336	}
5337}
5338
5339static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5340{
5341	struct inode_security_struct *isec =
5342		inode_security_novalidate(SOCK_INODE(parent));
5343	struct sk_security_struct *sksec = sk->sk_security;
5344
5345	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5346	    sk->sk_family == PF_UNIX)
5347		isec->sid = sksec->sid;
5348	sksec->sclass = isec->sclass;
5349}
5350
5351/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5352 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5353 * already present).
5354 */
5355static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5356				      struct sk_buff *skb)
5357{
5358	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5359	struct common_audit_data ad;
5360	struct lsm_network_audit net = {0,};
5361	u8 peerlbl_active;
5362	u32 peer_sid = SECINITSID_UNLABELED;
5363	u32 conn_sid;
5364	int err = 0;
5365
5366	if (!selinux_policycap_extsockclass())
5367		return 0;
5368
5369	peerlbl_active = selinux_peerlbl_enabled();
5370
5371	if (peerlbl_active) {
5372		/* This will return peer_sid = SECSID_NULL if there are
5373		 * no peer labels, see security_net_peersid_resolve().
5374		 */
5375		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5376					      &peer_sid);
5377		if (err)
5378			return err;
5379
5380		if (peer_sid == SECSID_NULL)
5381			peer_sid = SECINITSID_UNLABELED;
5382	}
5383
5384	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5385		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5386
5387		/* Here as first association on socket. As the peer SID
5388		 * was allowed by peer recv (and the netif/node checks),
5389		 * then it is approved by policy and used as the primary
5390		 * peer SID for getpeercon(3).
5391		 */
5392		sksec->peer_sid = peer_sid;
5393	} else if  (sksec->peer_sid != peer_sid) {
5394		/* Other association peer SIDs are checked to enforce
5395		 * consistency among the peer SIDs.
5396		 */
5397		ad.type = LSM_AUDIT_DATA_NET;
5398		ad.u.net = &net;
5399		ad.u.net->sk = ep->base.sk;
5400		err = avc_has_perm(&selinux_state,
5401				   sksec->peer_sid, peer_sid, sksec->sclass,
5402				   SCTP_SOCKET__ASSOCIATION, &ad);
5403		if (err)
5404			return err;
5405	}
5406
5407	/* Compute the MLS component for the connection and store
5408	 * the information in ep. This will be used by SCTP TCP type
5409	 * sockets and peeled off connections as they cause a new
5410	 * socket to be generated. selinux_sctp_sk_clone() will then
5411	 * plug this into the new socket.
5412	 */
5413	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5414	if (err)
5415		return err;
5416
5417	ep->secid = conn_sid;
5418	ep->peer_secid = peer_sid;
5419
5420	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5421	return selinux_netlbl_sctp_assoc_request(ep, skb);
5422}
5423
5424/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5425 * based on their @optname.
5426 */
5427static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5428				     struct sockaddr *address,
5429				     int addrlen)
5430{
5431	int len, err = 0, walk_size = 0;
5432	void *addr_buf;
5433	struct sockaddr *addr;
5434	struct socket *sock;
5435
5436	if (!selinux_policycap_extsockclass())
5437		return 0;
5438
5439	/* Process one or more addresses that may be IPv4 or IPv6 */
5440	sock = sk->sk_socket;
5441	addr_buf = address;
5442
5443	while (walk_size < addrlen) {
5444		if (walk_size + sizeof(sa_family_t) > addrlen)
5445			return -EINVAL;
5446
5447		addr = addr_buf;
5448		switch (addr->sa_family) {
5449		case AF_UNSPEC:
5450		case AF_INET:
5451			len = sizeof(struct sockaddr_in);
5452			break;
5453		case AF_INET6:
5454			len = sizeof(struct sockaddr_in6);
5455			break;
5456		default:
5457			return -EINVAL;
5458		}
5459
5460		if (walk_size + len > addrlen)
5461			return -EINVAL;
5462
5463		err = -EINVAL;
5464		switch (optname) {
5465		/* Bind checks */
5466		case SCTP_PRIMARY_ADDR:
5467		case SCTP_SET_PEER_PRIMARY_ADDR:
5468		case SCTP_SOCKOPT_BINDX_ADD:
5469			err = selinux_socket_bind(sock, addr, len);
5470			break;
5471		/* Connect checks */
5472		case SCTP_SOCKOPT_CONNECTX:
5473		case SCTP_PARAM_SET_PRIMARY:
5474		case SCTP_PARAM_ADD_IP:
5475		case SCTP_SENDMSG_CONNECT:
5476			err = selinux_socket_connect_helper(sock, addr, len);
5477			if (err)
5478				return err;
5479
5480			/* As selinux_sctp_bind_connect() is called by the
5481			 * SCTP protocol layer, the socket is already locked,
5482			 * therefore selinux_netlbl_socket_connect_locked()
5483			 * is called here. The situations handled are:
5484			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5485			 * whenever a new IP address is added or when a new
5486			 * primary address is selected.
5487			 * Note that an SCTP connect(2) call happens before
5488			 * the SCTP protocol layer and is handled via
5489			 * selinux_socket_connect().
5490			 */
5491			err = selinux_netlbl_socket_connect_locked(sk, addr);
5492			break;
5493		}
5494
5495		if (err)
5496			return err;
5497
5498		addr_buf += len;
5499		walk_size += len;
5500	}
5501
5502	return 0;
5503}
5504
5505/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5506static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5507				  struct sock *newsk)
5508{
5509	struct sk_security_struct *sksec = sk->sk_security;
5510	struct sk_security_struct *newsksec = newsk->sk_security;
5511
5512	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5513	 * the non-sctp clone version.
5514	 */
5515	if (!selinux_policycap_extsockclass())
5516		return selinux_sk_clone_security(sk, newsk);
5517
5518	newsksec->sid = ep->secid;
5519	newsksec->peer_sid = ep->peer_secid;
5520	newsksec->sclass = sksec->sclass;
5521	selinux_netlbl_sctp_sk_clone(sk, newsk);
5522}
5523
5524static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5525				     struct request_sock *req)
5526{
5527	struct sk_security_struct *sksec = sk->sk_security;
5528	int err;
5529	u16 family = req->rsk_ops->family;
5530	u32 connsid;
5531	u32 peersid;
5532
 
 
 
 
5533	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5534	if (err)
5535		return err;
5536	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5537	if (err)
5538		return err;
5539	req->secid = connsid;
5540	req->peer_secid = peersid;
 
 
 
 
 
5541
5542	return selinux_netlbl_inet_conn_request(req, family);
5543}
5544
5545static void selinux_inet_csk_clone(struct sock *newsk,
5546				   const struct request_sock *req)
5547{
5548	struct sk_security_struct *newsksec = newsk->sk_security;
5549
5550	newsksec->sid = req->secid;
5551	newsksec->peer_sid = req->peer_secid;
5552	/* NOTE: Ideally, we should also get the isec->sid for the
5553	   new socket in sync, but we don't have the isec available yet.
5554	   So we will wait until sock_graft to do it, by which
5555	   time it will have been created and available. */
5556
5557	/* We don't need to take any sort of lock here as we are the only
5558	 * thread with access to newsksec */
5559	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5560}
5561
5562static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5563{
5564	u16 family = sk->sk_family;
5565	struct sk_security_struct *sksec = sk->sk_security;
5566
5567	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5568	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5569		family = PF_INET;
5570
5571	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5572}
5573
5574static int selinux_secmark_relabel_packet(u32 sid)
5575{
5576	const struct task_security_struct *__tsec;
5577	u32 tsid;
5578
5579	__tsec = selinux_cred(current_cred());
5580	tsid = __tsec->sid;
5581
5582	return avc_has_perm(&selinux_state,
5583			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5584			    NULL);
5585}
5586
5587static void selinux_secmark_refcount_inc(void)
5588{
5589	atomic_inc(&selinux_secmark_refcount);
5590}
5591
5592static void selinux_secmark_refcount_dec(void)
5593{
5594	atomic_dec(&selinux_secmark_refcount);
5595}
5596
5597static void selinux_req_classify_flow(const struct request_sock *req,
5598				      struct flowi_common *flic)
5599{
5600	flic->flowic_secid = req->secid;
5601}
5602
5603static int selinux_tun_dev_alloc_security(void **security)
5604{
5605	struct tun_security_struct *tunsec;
5606
5607	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5608	if (!tunsec)
5609		return -ENOMEM;
5610	tunsec->sid = current_sid();
5611
5612	*security = tunsec;
5613	return 0;
5614}
5615
5616static void selinux_tun_dev_free_security(void *security)
5617{
5618	kfree(security);
5619}
5620
5621static int selinux_tun_dev_create(void)
5622{
5623	u32 sid = current_sid();
5624
5625	/* we aren't taking into account the "sockcreate" SID since the socket
5626	 * that is being created here is not a socket in the traditional sense,
5627	 * instead it is a private sock, accessible only to the kernel, and
5628	 * representing a wide range of network traffic spanning multiple
5629	 * connections unlike traditional sockets - check the TUN driver to
5630	 * get a better understanding of why this socket is special */
5631
5632	return avc_has_perm(&selinux_state,
5633			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5634			    NULL);
5635}
5636
5637static int selinux_tun_dev_attach_queue(void *security)
5638{
5639	struct tun_security_struct *tunsec = security;
5640
5641	return avc_has_perm(&selinux_state,
5642			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5643			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5644}
5645
5646static int selinux_tun_dev_attach(struct sock *sk, void *security)
5647{
5648	struct tun_security_struct *tunsec = security;
5649	struct sk_security_struct *sksec = sk->sk_security;
5650
5651	/* we don't currently perform any NetLabel based labeling here and it
5652	 * isn't clear that we would want to do so anyway; while we could apply
5653	 * labeling without the support of the TUN user the resulting labeled
5654	 * traffic from the other end of the connection would almost certainly
5655	 * cause confusion to the TUN user that had no idea network labeling
5656	 * protocols were being used */
5657
5658	sksec->sid = tunsec->sid;
 
 
 
5659	sksec->sclass = SECCLASS_TUN_SOCKET;
5660
5661	return 0;
5662}
5663
5664static int selinux_tun_dev_open(void *security)
5665{
5666	struct tun_security_struct *tunsec = security;
5667	u32 sid = current_sid();
5668	int err;
5669
5670	err = avc_has_perm(&selinux_state,
5671			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5672			   TUN_SOCKET__RELABELFROM, NULL);
5673	if (err)
5674		return err;
5675	err = avc_has_perm(&selinux_state,
5676			   sid, sid, SECCLASS_TUN_SOCKET,
5677			   TUN_SOCKET__RELABELTO, NULL);
5678	if (err)
5679		return err;
5680	tunsec->sid = sid;
 
5681
5682	return 0;
5683}
5684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5685#ifdef CONFIG_NETFILTER
5686
5687static unsigned int selinux_ip_forward(struct sk_buff *skb,
5688				       const struct net_device *indev,
5689				       u16 family)
5690{
5691	int err;
5692	char *addrp;
5693	u32 peer_sid;
5694	struct common_audit_data ad;
5695	struct lsm_network_audit net = {0,};
5696	u8 secmark_active;
5697	u8 netlbl_active;
5698	u8 peerlbl_active;
5699
5700	if (!selinux_policycap_netpeer())
5701		return NF_ACCEPT;
5702
5703	secmark_active = selinux_secmark_enabled();
5704	netlbl_active = netlbl_enabled();
5705	peerlbl_active = selinux_peerlbl_enabled();
5706	if (!secmark_active && !peerlbl_active)
5707		return NF_ACCEPT;
5708
5709	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5710		return NF_DROP;
5711
5712	ad.type = LSM_AUDIT_DATA_NET;
5713	ad.u.net = &net;
5714	ad.u.net->netif = indev->ifindex;
5715	ad.u.net->family = family;
5716	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5717		return NF_DROP;
5718
5719	if (peerlbl_active) {
5720		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5721					       addrp, family, peer_sid, &ad);
5722		if (err) {
5723			selinux_netlbl_err(skb, family, err, 1);
5724			return NF_DROP;
5725		}
5726	}
5727
5728	if (secmark_active)
5729		if (avc_has_perm(&selinux_state,
5730				 peer_sid, skb->secmark,
5731				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5732			return NF_DROP;
5733
5734	if (netlbl_active)
5735		/* we do this in the FORWARD path and not the POST_ROUTING
5736		 * path because we want to make sure we apply the necessary
5737		 * labeling before IPsec is applied so we can leverage AH
5738		 * protection */
5739		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5740			return NF_DROP;
5741
5742	return NF_ACCEPT;
5743}
5744
5745static unsigned int selinux_ipv4_forward(void *priv,
5746					 struct sk_buff *skb,
5747					 const struct nf_hook_state *state)
 
 
5748{
5749	return selinux_ip_forward(skb, state->in, PF_INET);
5750}
5751
5752#if IS_ENABLED(CONFIG_IPV6)
5753static unsigned int selinux_ipv6_forward(void *priv,
5754					 struct sk_buff *skb,
5755					 const struct nf_hook_state *state)
 
 
5756{
5757	return selinux_ip_forward(skb, state->in, PF_INET6);
5758}
5759#endif	/* IPV6 */
5760
5761static unsigned int selinux_ip_output(struct sk_buff *skb,
5762				      u16 family)
5763{
5764	struct sock *sk;
5765	u32 sid;
5766
5767	if (!netlbl_enabled())
5768		return NF_ACCEPT;
5769
5770	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5771	 * because we want to make sure we apply the necessary labeling
5772	 * before IPsec is applied so we can leverage AH protection */
5773	sk = skb->sk;
5774	if (sk) {
5775		struct sk_security_struct *sksec;
5776
5777		if (sk_listener(sk))
5778			/* if the socket is the listening state then this
5779			 * packet is a SYN-ACK packet which means it needs to
5780			 * be labeled based on the connection/request_sock and
5781			 * not the parent socket.  unfortunately, we can't
5782			 * lookup the request_sock yet as it isn't queued on
5783			 * the parent socket until after the SYN-ACK is sent.
5784			 * the "solution" is to simply pass the packet as-is
5785			 * as any IP option based labeling should be copied
5786			 * from the initial connection request (in the IP
5787			 * layer).  it is far from ideal, but until we get a
5788			 * security label in the packet itself this is the
5789			 * best we can do. */
5790			return NF_ACCEPT;
5791
5792		/* standard practice, label using the parent socket */
5793		sksec = sk->sk_security;
5794		sid = sksec->sid;
5795	} else
5796		sid = SECINITSID_KERNEL;
5797	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5798		return NF_DROP;
5799
5800	return NF_ACCEPT;
5801}
5802
5803static unsigned int selinux_ipv4_output(void *priv,
5804					struct sk_buff *skb,
5805					const struct nf_hook_state *state)
 
 
5806{
5807	return selinux_ip_output(skb, PF_INET);
5808}
5809
5810#if IS_ENABLED(CONFIG_IPV6)
5811static unsigned int selinux_ipv6_output(void *priv,
5812					struct sk_buff *skb,
5813					const struct nf_hook_state *state)
5814{
5815	return selinux_ip_output(skb, PF_INET6);
5816}
5817#endif	/* IPV6 */
5818
5819static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5820						int ifindex,
5821						u16 family)
5822{
5823	struct sock *sk = skb_to_full_sk(skb);
5824	struct sk_security_struct *sksec;
5825	struct common_audit_data ad;
5826	struct lsm_network_audit net = {0,};
5827	char *addrp;
5828	u8 proto;
5829
5830	if (sk == NULL)
5831		return NF_ACCEPT;
5832	sksec = sk->sk_security;
5833
5834	ad.type = LSM_AUDIT_DATA_NET;
5835	ad.u.net = &net;
5836	ad.u.net->netif = ifindex;
5837	ad.u.net->family = family;
5838	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5839		return NF_DROP;
5840
5841	if (selinux_secmark_enabled())
5842		if (avc_has_perm(&selinux_state,
5843				 sksec->sid, skb->secmark,
5844				 SECCLASS_PACKET, PACKET__SEND, &ad))
5845			return NF_DROP_ERR(-ECONNREFUSED);
5846
5847	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5848		return NF_DROP_ERR(-ECONNREFUSED);
5849
5850	return NF_ACCEPT;
5851}
5852
5853static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5854					 const struct net_device *outdev,
5855					 u16 family)
5856{
5857	u32 secmark_perm;
5858	u32 peer_sid;
5859	int ifindex = outdev->ifindex;
5860	struct sock *sk;
5861	struct common_audit_data ad;
5862	struct lsm_network_audit net = {0,};
5863	char *addrp;
5864	u8 secmark_active;
5865	u8 peerlbl_active;
5866
5867	/* If any sort of compatibility mode is enabled then handoff processing
5868	 * to the selinux_ip_postroute_compat() function to deal with the
5869	 * special handling.  We do this in an attempt to keep this function
5870	 * as fast and as clean as possible. */
5871	if (!selinux_policycap_netpeer())
5872		return selinux_ip_postroute_compat(skb, ifindex, family);
5873
5874	secmark_active = selinux_secmark_enabled();
5875	peerlbl_active = selinux_peerlbl_enabled();
5876	if (!secmark_active && !peerlbl_active)
5877		return NF_ACCEPT;
5878
5879	sk = skb_to_full_sk(skb);
5880
5881#ifdef CONFIG_XFRM
5882	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5883	 * packet transformation so allow the packet to pass without any checks
5884	 * since we'll have another chance to perform access control checks
5885	 * when the packet is on it's final way out.
5886	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5887	 *       is NULL, in this case go ahead and apply access control.
5888	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5889	 *       TCP listening state we cannot wait until the XFRM processing
5890	 *       is done as we will miss out on the SA label if we do;
5891	 *       unfortunately, this means more work, but it is only once per
5892	 *       connection. */
5893	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5894	    !(sk && sk_listener(sk)))
5895		return NF_ACCEPT;
5896#endif
 
 
 
 
5897
 
 
 
 
 
5898	if (sk == NULL) {
5899		/* Without an associated socket the packet is either coming
5900		 * from the kernel or it is being forwarded; check the packet
5901		 * to determine which and if the packet is being forwarded
5902		 * query the packet directly to determine the security label. */
5903		if (skb->skb_iif) {
5904			secmark_perm = PACKET__FORWARD_OUT;
5905			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5906				return NF_DROP;
5907		} else {
5908			secmark_perm = PACKET__SEND;
5909			peer_sid = SECINITSID_KERNEL;
5910		}
5911	} else if (sk_listener(sk)) {
5912		/* Locally generated packet but the associated socket is in the
5913		 * listening state which means this is a SYN-ACK packet.  In
5914		 * this particular case the correct security label is assigned
5915		 * to the connection/request_sock but unfortunately we can't
5916		 * query the request_sock as it isn't queued on the parent
5917		 * socket until after the SYN-ACK packet is sent; the only
5918		 * viable choice is to regenerate the label like we do in
5919		 * selinux_inet_conn_request().  See also selinux_ip_output()
5920		 * for similar problems. */
5921		u32 skb_sid;
5922		struct sk_security_struct *sksec;
5923
5924		sksec = sk->sk_security;
5925		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5926			return NF_DROP;
5927		/* At this point, if the returned skb peerlbl is SECSID_NULL
5928		 * and the packet has been through at least one XFRM
5929		 * transformation then we must be dealing with the "final"
5930		 * form of labeled IPsec packet; since we've already applied
5931		 * all of our access controls on this packet we can safely
5932		 * pass the packet. */
5933		if (skb_sid == SECSID_NULL) {
5934			switch (family) {
5935			case PF_INET:
5936				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5937					return NF_ACCEPT;
5938				break;
5939			case PF_INET6:
5940				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5941					return NF_ACCEPT;
5942				break;
5943			default:
5944				return NF_DROP_ERR(-ECONNREFUSED);
5945			}
5946		}
5947		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5948			return NF_DROP;
5949		secmark_perm = PACKET__SEND;
5950	} else {
5951		/* Locally generated packet, fetch the security label from the
5952		 * associated socket. */
5953		struct sk_security_struct *sksec = sk->sk_security;
5954		peer_sid = sksec->sid;
5955		secmark_perm = PACKET__SEND;
5956	}
5957
5958	ad.type = LSM_AUDIT_DATA_NET;
5959	ad.u.net = &net;
5960	ad.u.net->netif = ifindex;
5961	ad.u.net->family = family;
5962	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5963		return NF_DROP;
5964
5965	if (secmark_active)
5966		if (avc_has_perm(&selinux_state,
5967				 peer_sid, skb->secmark,
5968				 SECCLASS_PACKET, secmark_perm, &ad))
5969			return NF_DROP_ERR(-ECONNREFUSED);
5970
5971	if (peerlbl_active) {
5972		u32 if_sid;
5973		u32 node_sid;
5974
5975		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5976			return NF_DROP;
5977		if (avc_has_perm(&selinux_state,
5978				 peer_sid, if_sid,
5979				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5980			return NF_DROP_ERR(-ECONNREFUSED);
5981
5982		if (sel_netnode_sid(addrp, family, &node_sid))
5983			return NF_DROP;
5984		if (avc_has_perm(&selinux_state,
5985				 peer_sid, node_sid,
5986				 SECCLASS_NODE, NODE__SENDTO, &ad))
5987			return NF_DROP_ERR(-ECONNREFUSED);
5988	}
5989
5990	return NF_ACCEPT;
5991}
5992
5993static unsigned int selinux_ipv4_postroute(void *priv,
5994					   struct sk_buff *skb,
5995					   const struct nf_hook_state *state)
 
 
5996{
5997	return selinux_ip_postroute(skb, state->out, PF_INET);
5998}
5999
6000#if IS_ENABLED(CONFIG_IPV6)
6001static unsigned int selinux_ipv6_postroute(void *priv,
6002					   struct sk_buff *skb,
6003					   const struct nf_hook_state *state)
 
 
6004{
6005	return selinux_ip_postroute(skb, state->out, PF_INET6);
6006}
6007#endif	/* IPV6 */
6008
6009#endif	/* CONFIG_NETFILTER */
6010
6011static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
6012{
6013	int rc = 0;
6014	unsigned int msg_len;
6015	unsigned int data_len = skb->len;
6016	unsigned char *data = skb->data;
6017	struct nlmsghdr *nlh;
6018	struct sk_security_struct *sksec = sk->sk_security;
6019	u16 sclass = sksec->sclass;
6020	u32 perm;
6021
6022	while (data_len >= nlmsg_total_size(0)) {
6023		nlh = (struct nlmsghdr *)data;
6024
6025		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
6026		 *       users which means we can't reject skb's with bogus
6027		 *       length fields; our solution is to follow what
6028		 *       netlink_rcv_skb() does and simply skip processing at
6029		 *       messages with length fields that are clearly junk
6030		 */
6031		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
6032			return 0;
6033
6034		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
6035		if (rc == 0) {
6036			rc = sock_has_perm(sk, perm);
6037			if (rc)
6038				return rc;
6039		} else if (rc == -EINVAL) {
6040			/* -EINVAL is a missing msg/perm mapping */
6041			pr_warn_ratelimited("SELinux: unrecognized netlink"
6042				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
6043				" pid=%d comm=%s\n",
6044				sk->sk_protocol, nlh->nlmsg_type,
6045				secclass_map[sclass - 1].name,
6046				task_pid_nr(current), current->comm);
6047			if (enforcing_enabled(&selinux_state) &&
6048			    !security_get_allow_unknown(&selinux_state))
6049				return rc;
6050			rc = 0;
6051		} else if (rc == -ENOENT) {
6052			/* -ENOENT is a missing socket/class mapping, ignore */
6053			rc = 0;
6054		} else {
6055			return rc;
6056		}
6057
6058		/* move to the next message after applying netlink padding */
6059		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6060		if (msg_len >= data_len)
6061			return 0;
6062		data_len -= msg_len;
6063		data += msg_len;
6064	}
6065
6066	return rc;
 
 
6067}
6068
6069static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
 
 
6070{
 
 
 
 
 
 
 
 
6071	isec->sclass = sclass;
6072	isec->sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6073}
6074
6075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6076			u32 perms)
6077{
6078	struct ipc_security_struct *isec;
6079	struct common_audit_data ad;
6080	u32 sid = current_sid();
6081
6082	isec = selinux_ipc(ipc_perms);
6083
6084	ad.type = LSM_AUDIT_DATA_IPC;
6085	ad.u.ipc_id = ipc_perms->key;
6086
6087	return avc_has_perm(&selinux_state,
6088			    sid, isec->sid, isec->sclass, perms, &ad);
6089}
6090
6091static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6092{
6093	struct msg_security_struct *msec;
 
6094
6095	msec = selinux_msg_msg(msg);
6096	msec->sid = SECINITSID_UNLABELED;
6097
6098	return 0;
6099}
6100
6101/* message queue security operations */
6102static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6103{
6104	struct ipc_security_struct *isec;
6105	struct common_audit_data ad;
6106	u32 sid = current_sid();
6107	int rc;
6108
6109	isec = selinux_ipc(msq);
6110	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
6111
6112	ad.type = LSM_AUDIT_DATA_IPC;
6113	ad.u.ipc_id = msq->key;
6114
6115	rc = avc_has_perm(&selinux_state,
6116			  sid, isec->sid, SECCLASS_MSGQ,
6117			  MSGQ__CREATE, &ad);
6118	return rc;
 
 
 
 
 
 
 
 
 
6119}
6120
6121static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6122{
6123	struct ipc_security_struct *isec;
6124	struct common_audit_data ad;
6125	u32 sid = current_sid();
6126
6127	isec = selinux_ipc(msq);
6128
6129	ad.type = LSM_AUDIT_DATA_IPC;
6130	ad.u.ipc_id = msq->key;
6131
6132	return avc_has_perm(&selinux_state,
6133			    sid, isec->sid, SECCLASS_MSGQ,
6134			    MSGQ__ASSOCIATE, &ad);
6135}
6136
6137static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6138{
6139	int err;
6140	int perms;
6141
6142	switch (cmd) {
6143	case IPC_INFO:
6144	case MSG_INFO:
6145		/* No specific object, just general system-wide information. */
6146		return avc_has_perm(&selinux_state,
6147				    current_sid(), SECINITSID_KERNEL,
6148				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6149	case IPC_STAT:
6150	case MSG_STAT:
6151	case MSG_STAT_ANY:
6152		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6153		break;
6154	case IPC_SET:
6155		perms = MSGQ__SETATTR;
6156		break;
6157	case IPC_RMID:
6158		perms = MSGQ__DESTROY;
6159		break;
6160	default:
6161		return 0;
6162	}
6163
6164	err = ipc_has_perm(msq, perms);
6165	return err;
6166}
6167
6168static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6169{
6170	struct ipc_security_struct *isec;
6171	struct msg_security_struct *msec;
6172	struct common_audit_data ad;
6173	u32 sid = current_sid();
6174	int rc;
6175
6176	isec = selinux_ipc(msq);
6177	msec = selinux_msg_msg(msg);
6178
6179	/*
6180	 * First time through, need to assign label to the message
6181	 */
6182	if (msec->sid == SECINITSID_UNLABELED) {
6183		/*
6184		 * Compute new sid based on current process and
6185		 * message queue this message will be stored in
6186		 */
6187		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6188					     SECCLASS_MSG, NULL, &msec->sid);
6189		if (rc)
6190			return rc;
6191	}
6192
6193	ad.type = LSM_AUDIT_DATA_IPC;
6194	ad.u.ipc_id = msq->key;
6195
6196	/* Can this process write to the queue? */
6197	rc = avc_has_perm(&selinux_state,
6198			  sid, isec->sid, SECCLASS_MSGQ,
6199			  MSGQ__WRITE, &ad);
6200	if (!rc)
6201		/* Can this process send the message */
6202		rc = avc_has_perm(&selinux_state,
6203				  sid, msec->sid, SECCLASS_MSG,
6204				  MSG__SEND, &ad);
6205	if (!rc)
6206		/* Can the message be put in the queue? */
6207		rc = avc_has_perm(&selinux_state,
6208				  msec->sid, isec->sid, SECCLASS_MSGQ,
6209				  MSGQ__ENQUEUE, &ad);
6210
6211	return rc;
6212}
6213
6214static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6215				    struct task_struct *target,
6216				    long type, int mode)
6217{
6218	struct ipc_security_struct *isec;
6219	struct msg_security_struct *msec;
6220	struct common_audit_data ad;
6221	u32 sid = task_sid_obj(target);
6222	int rc;
6223
6224	isec = selinux_ipc(msq);
6225	msec = selinux_msg_msg(msg);
6226
6227	ad.type = LSM_AUDIT_DATA_IPC;
6228	ad.u.ipc_id = msq->key;
6229
6230	rc = avc_has_perm(&selinux_state,
6231			  sid, isec->sid,
6232			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6233	if (!rc)
6234		rc = avc_has_perm(&selinux_state,
6235				  sid, msec->sid,
6236				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6237	return rc;
6238}
6239
6240/* Shared Memory security operations */
6241static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6242{
6243	struct ipc_security_struct *isec;
6244	struct common_audit_data ad;
6245	u32 sid = current_sid();
6246	int rc;
6247
6248	isec = selinux_ipc(shp);
6249	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6250
6251	ad.type = LSM_AUDIT_DATA_IPC;
6252	ad.u.ipc_id = shp->key;
6253
6254	rc = avc_has_perm(&selinux_state,
6255			  sid, isec->sid, SECCLASS_SHM,
6256			  SHM__CREATE, &ad);
6257	return rc;
 
 
 
 
 
 
 
 
 
6258}
6259
6260static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6261{
6262	struct ipc_security_struct *isec;
6263	struct common_audit_data ad;
6264	u32 sid = current_sid();
6265
6266	isec = selinux_ipc(shp);
6267
6268	ad.type = LSM_AUDIT_DATA_IPC;
6269	ad.u.ipc_id = shp->key;
6270
6271	return avc_has_perm(&selinux_state,
6272			    sid, isec->sid, SECCLASS_SHM,
6273			    SHM__ASSOCIATE, &ad);
6274}
6275
6276/* Note, at this point, shp is locked down */
6277static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6278{
6279	int perms;
6280	int err;
6281
6282	switch (cmd) {
6283	case IPC_INFO:
6284	case SHM_INFO:
6285		/* No specific object, just general system-wide information. */
6286		return avc_has_perm(&selinux_state,
6287				    current_sid(), SECINITSID_KERNEL,
6288				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6289	case IPC_STAT:
6290	case SHM_STAT:
6291	case SHM_STAT_ANY:
6292		perms = SHM__GETATTR | SHM__ASSOCIATE;
6293		break;
6294	case IPC_SET:
6295		perms = SHM__SETATTR;
6296		break;
6297	case SHM_LOCK:
6298	case SHM_UNLOCK:
6299		perms = SHM__LOCK;
6300		break;
6301	case IPC_RMID:
6302		perms = SHM__DESTROY;
6303		break;
6304	default:
6305		return 0;
6306	}
6307
6308	err = ipc_has_perm(shp, perms);
6309	return err;
6310}
6311
6312static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6313			     char __user *shmaddr, int shmflg)
6314{
6315	u32 perms;
6316
6317	if (shmflg & SHM_RDONLY)
6318		perms = SHM__READ;
6319	else
6320		perms = SHM__READ | SHM__WRITE;
6321
6322	return ipc_has_perm(shp, perms);
6323}
6324
6325/* Semaphore security operations */
6326static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6327{
6328	struct ipc_security_struct *isec;
6329	struct common_audit_data ad;
6330	u32 sid = current_sid();
6331	int rc;
6332
6333	isec = selinux_ipc(sma);
6334	ipc_init_security(isec, SECCLASS_SEM);
 
6335
6336	ad.type = LSM_AUDIT_DATA_IPC;
6337	ad.u.ipc_id = sma->key;
6338
6339	rc = avc_has_perm(&selinux_state,
6340			  sid, isec->sid, SECCLASS_SEM,
 
 
6341			  SEM__CREATE, &ad);
6342	return rc;
 
 
 
 
 
 
 
 
 
6343}
6344
6345static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6346{
6347	struct ipc_security_struct *isec;
6348	struct common_audit_data ad;
6349	u32 sid = current_sid();
6350
6351	isec = selinux_ipc(sma);
6352
6353	ad.type = LSM_AUDIT_DATA_IPC;
6354	ad.u.ipc_id = sma->key;
6355
6356	return avc_has_perm(&selinux_state,
6357			    sid, isec->sid, SECCLASS_SEM,
6358			    SEM__ASSOCIATE, &ad);
6359}
6360
6361/* Note, at this point, sma is locked down */
6362static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6363{
6364	int err;
6365	u32 perms;
6366
6367	switch (cmd) {
6368	case IPC_INFO:
6369	case SEM_INFO:
6370		/* No specific object, just general system-wide information. */
6371		return avc_has_perm(&selinux_state,
6372				    current_sid(), SECINITSID_KERNEL,
6373				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6374	case GETPID:
6375	case GETNCNT:
6376	case GETZCNT:
6377		perms = SEM__GETATTR;
6378		break;
6379	case GETVAL:
6380	case GETALL:
6381		perms = SEM__READ;
6382		break;
6383	case SETVAL:
6384	case SETALL:
6385		perms = SEM__WRITE;
6386		break;
6387	case IPC_RMID:
6388		perms = SEM__DESTROY;
6389		break;
6390	case IPC_SET:
6391		perms = SEM__SETATTR;
6392		break;
6393	case IPC_STAT:
6394	case SEM_STAT:
6395	case SEM_STAT_ANY:
6396		perms = SEM__GETATTR | SEM__ASSOCIATE;
6397		break;
6398	default:
6399		return 0;
6400	}
6401
6402	err = ipc_has_perm(sma, perms);
6403	return err;
6404}
6405
6406static int selinux_sem_semop(struct kern_ipc_perm *sma,
6407			     struct sembuf *sops, unsigned nsops, int alter)
6408{
6409	u32 perms;
6410
6411	if (alter)
6412		perms = SEM__READ | SEM__WRITE;
6413	else
6414		perms = SEM__READ;
6415
6416	return ipc_has_perm(sma, perms);
6417}
6418
6419static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6420{
6421	u32 av = 0;
6422
6423	av = 0;
6424	if (flag & S_IRUGO)
6425		av |= IPC__UNIX_READ;
6426	if (flag & S_IWUGO)
6427		av |= IPC__UNIX_WRITE;
6428
6429	if (av == 0)
6430		return 0;
6431
6432	return ipc_has_perm(ipcp, av);
6433}
6434
6435static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6436{
6437	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6438	*secid = isec->sid;
6439}
6440
6441static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6442{
6443	if (inode)
6444		inode_doinit_with_dentry(inode, dentry);
6445}
6446
6447static int selinux_getprocattr(struct task_struct *p,
6448			       char *name, char **value)
6449{
6450	const struct task_security_struct *__tsec;
6451	u32 sid;
6452	int error;
6453	unsigned len;
6454
6455	rcu_read_lock();
6456	__tsec = selinux_cred(__task_cred(p));
6457
6458	if (current != p) {
6459		error = avc_has_perm(&selinux_state,
6460				     current_sid(), __tsec->sid,
6461				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6462		if (error)
6463			goto bad;
6464	}
6465
 
 
 
6466	if (!strcmp(name, "current"))
6467		sid = __tsec->sid;
6468	else if (!strcmp(name, "prev"))
6469		sid = __tsec->osid;
6470	else if (!strcmp(name, "exec"))
6471		sid = __tsec->exec_sid;
6472	else if (!strcmp(name, "fscreate"))
6473		sid = __tsec->create_sid;
6474	else if (!strcmp(name, "keycreate"))
6475		sid = __tsec->keycreate_sid;
6476	else if (!strcmp(name, "sockcreate"))
6477		sid = __tsec->sockcreate_sid;
6478	else {
6479		error = -EINVAL;
6480		goto bad;
6481	}
6482	rcu_read_unlock();
6483
6484	if (!sid)
6485		return 0;
6486
6487	error = security_sid_to_context(&selinux_state, sid, value, &len);
6488	if (error)
6489		return error;
6490	return len;
6491
6492bad:
6493	rcu_read_unlock();
6494	return error;
6495}
6496
6497static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6498{
6499	struct task_security_struct *tsec;
 
6500	struct cred *new;
6501	u32 mysid = current_sid(), sid = 0, ptsid;
6502	int error;
6503	char *str = value;
6504
 
 
 
 
 
 
6505	/*
6506	 * Basic control over ability to set these attributes at all.
 
 
6507	 */
6508	if (!strcmp(name, "exec"))
6509		error = avc_has_perm(&selinux_state,
6510				     mysid, mysid, SECCLASS_PROCESS,
6511				     PROCESS__SETEXEC, NULL);
6512	else if (!strcmp(name, "fscreate"))
6513		error = avc_has_perm(&selinux_state,
6514				     mysid, mysid, SECCLASS_PROCESS,
6515				     PROCESS__SETFSCREATE, NULL);
6516	else if (!strcmp(name, "keycreate"))
6517		error = avc_has_perm(&selinux_state,
6518				     mysid, mysid, SECCLASS_PROCESS,
6519				     PROCESS__SETKEYCREATE, NULL);
6520	else if (!strcmp(name, "sockcreate"))
6521		error = avc_has_perm(&selinux_state,
6522				     mysid, mysid, SECCLASS_PROCESS,
6523				     PROCESS__SETSOCKCREATE, NULL);
6524	else if (!strcmp(name, "current"))
6525		error = avc_has_perm(&selinux_state,
6526				     mysid, mysid, SECCLASS_PROCESS,
6527				     PROCESS__SETCURRENT, NULL);
6528	else
6529		error = -EINVAL;
6530	if (error)
6531		return error;
6532
6533	/* Obtain a SID for the context, if one was specified. */
6534	if (size && str[0] && str[0] != '\n') {
6535		if (str[size-1] == '\n') {
6536			str[size-1] = 0;
6537			size--;
6538		}
6539		error = security_context_to_sid(&selinux_state, value, size,
6540						&sid, GFP_KERNEL);
6541		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6542			if (!has_cap_mac_admin(true)) {
6543				struct audit_buffer *ab;
6544				size_t audit_size;
6545
6546				/* We strip a nul only if it is at the end, otherwise the
6547				 * context contains a nul and we should audit that */
6548				if (str[size - 1] == '\0')
6549					audit_size = size - 1;
6550				else
6551					audit_size = size;
6552				ab = audit_log_start(audit_context(),
6553						     GFP_ATOMIC,
6554						     AUDIT_SELINUX_ERR);
6555				audit_log_format(ab, "op=fscreate invalid_context=");
6556				audit_log_n_untrustedstring(ab, value, audit_size);
6557				audit_log_end(ab);
6558
6559				return error;
6560			}
6561			error = security_context_to_sid_force(
6562						      &selinux_state,
6563						      value, size, &sid);
6564		}
6565		if (error)
6566			return error;
6567	}
6568
6569	new = prepare_creds();
6570	if (!new)
6571		return -ENOMEM;
6572
6573	/* Permission checking based on the specified context is
6574	   performed during the actual operation (execve,
6575	   open/mkdir/...), when we know the full context of the
6576	   operation.  See selinux_bprm_creds_for_exec for the execve
6577	   checks and may_create for the file creation checks. The
6578	   operation will then fail if the context is not permitted. */
6579	tsec = selinux_cred(new);
6580	if (!strcmp(name, "exec")) {
6581		tsec->exec_sid = sid;
6582	} else if (!strcmp(name, "fscreate")) {
6583		tsec->create_sid = sid;
6584	} else if (!strcmp(name, "keycreate")) {
6585		if (sid) {
6586			error = avc_has_perm(&selinux_state, mysid, sid,
6587					     SECCLASS_KEY, KEY__CREATE, NULL);
6588			if (error)
6589				goto abort_change;
6590		}
6591		tsec->keycreate_sid = sid;
6592	} else if (!strcmp(name, "sockcreate")) {
6593		tsec->sockcreate_sid = sid;
6594	} else if (!strcmp(name, "current")) {
6595		error = -EINVAL;
6596		if (sid == 0)
6597			goto abort_change;
6598
6599		/* Only allow single threaded processes to change context */
6600		error = -EPERM;
6601		if (!current_is_single_threaded()) {
6602			error = security_bounded_transition(&selinux_state,
6603							    tsec->sid, sid);
6604			if (error)
6605				goto abort_change;
6606		}
6607
6608		/* Check permissions for the transition. */
6609		error = avc_has_perm(&selinux_state,
6610				     tsec->sid, sid, SECCLASS_PROCESS,
6611				     PROCESS__DYNTRANSITION, NULL);
6612		if (error)
6613			goto abort_change;
6614
6615		/* Check for ptracing, and update the task SID if ok.
6616		   Otherwise, leave SID unchanged and fail. */
6617		ptsid = ptrace_parent_sid();
6618		if (ptsid != 0) {
6619			error = avc_has_perm(&selinux_state,
6620					     ptsid, sid, SECCLASS_PROCESS,
 
 
 
 
 
6621					     PROCESS__PTRACE, NULL);
6622			if (error)
6623				goto abort_change;
6624		}
6625
6626		tsec->sid = sid;
6627	} else {
6628		error = -EINVAL;
6629		goto abort_change;
6630	}
6631
6632	commit_creds(new);
6633	return size;
6634
6635abort_change:
6636	abort_creds(new);
6637	return error;
6638}
6639
6640static int selinux_ismaclabel(const char *name)
6641{
6642	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6643}
6644
6645static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6646{
6647	return security_sid_to_context(&selinux_state, secid,
6648				       secdata, seclen);
6649}
6650
6651static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6652{
6653	return security_context_to_sid(&selinux_state, secdata, seclen,
6654				       secid, GFP_KERNEL);
6655}
6656
6657static void selinux_release_secctx(char *secdata, u32 seclen)
6658{
6659	kfree(secdata);
6660}
6661
6662static void selinux_inode_invalidate_secctx(struct inode *inode)
6663{
6664	struct inode_security_struct *isec = selinux_inode(inode);
6665
6666	spin_lock(&isec->lock);
6667	isec->initialized = LABEL_INVALID;
6668	spin_unlock(&isec->lock);
6669}
6670
6671/*
6672 *	called with inode->i_mutex locked
6673 */
6674static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6675{
6676	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6677					   ctx, ctxlen, 0);
6678	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6679	return rc == -EOPNOTSUPP ? 0 : rc;
6680}
6681
6682/*
6683 *	called with inode->i_mutex locked
6684 */
6685static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6686{
6687	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6688				     ctx, ctxlen, 0);
6689}
6690
6691static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6692{
6693	int len = 0;
6694	len = selinux_inode_getsecurity(&init_user_ns, inode,
6695					XATTR_SELINUX_SUFFIX, ctx, true);
6696	if (len < 0)
6697		return len;
6698	*ctxlen = len;
6699	return 0;
6700}
6701#ifdef CONFIG_KEYS
6702
6703static int selinux_key_alloc(struct key *k, const struct cred *cred,
6704			     unsigned long flags)
6705{
6706	const struct task_security_struct *tsec;
6707	struct key_security_struct *ksec;
6708
6709	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6710	if (!ksec)
6711		return -ENOMEM;
6712
6713	tsec = selinux_cred(cred);
6714	if (tsec->keycreate_sid)
6715		ksec->sid = tsec->keycreate_sid;
6716	else
6717		ksec->sid = tsec->sid;
6718
6719	k->security = ksec;
6720	return 0;
6721}
6722
6723static void selinux_key_free(struct key *k)
6724{
6725	struct key_security_struct *ksec = k->security;
6726
6727	k->security = NULL;
6728	kfree(ksec);
6729}
6730
6731static int selinux_key_permission(key_ref_t key_ref,
6732				  const struct cred *cred,
6733				  enum key_need_perm need_perm)
6734{
6735	struct key *key;
6736	struct key_security_struct *ksec;
6737	u32 perm, sid;
6738
6739	switch (need_perm) {
6740	case KEY_NEED_VIEW:
6741		perm = KEY__VIEW;
6742		break;
6743	case KEY_NEED_READ:
6744		perm = KEY__READ;
6745		break;
6746	case KEY_NEED_WRITE:
6747		perm = KEY__WRITE;
6748		break;
6749	case KEY_NEED_SEARCH:
6750		perm = KEY__SEARCH;
6751		break;
6752	case KEY_NEED_LINK:
6753		perm = KEY__LINK;
6754		break;
6755	case KEY_NEED_SETATTR:
6756		perm = KEY__SETATTR;
6757		break;
6758	case KEY_NEED_UNLINK:
6759	case KEY_SYSADMIN_OVERRIDE:
6760	case KEY_AUTHTOKEN_OVERRIDE:
6761	case KEY_DEFER_PERM_CHECK:
6762		return 0;
6763	default:
6764		WARN_ON(1);
6765		return -EPERM;
6766
6767	}
6768
6769	sid = cred_sid(cred);
6770	key = key_ref_to_ptr(key_ref);
6771	ksec = key->security;
6772
6773	return avc_has_perm(&selinux_state,
6774			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6775}
6776
6777static int selinux_key_getsecurity(struct key *key, char **_buffer)
6778{
6779	struct key_security_struct *ksec = key->security;
6780	char *context = NULL;
6781	unsigned len;
6782	int rc;
6783
6784	rc = security_sid_to_context(&selinux_state, ksec->sid,
6785				     &context, &len);
6786	if (!rc)
6787		rc = len;
6788	*_buffer = context;
6789	return rc;
6790}
6791
6792#ifdef CONFIG_KEY_NOTIFICATIONS
6793static int selinux_watch_key(struct key *key)
6794{
6795	struct key_security_struct *ksec = key->security;
6796	u32 sid = current_sid();
6797
6798	return avc_has_perm(&selinux_state,
6799			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6800}
6801#endif
6802#endif
6803
6804#ifdef CONFIG_SECURITY_INFINIBAND
6805static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6806{
6807	struct common_audit_data ad;
6808	int err;
6809	u32 sid = 0;
6810	struct ib_security_struct *sec = ib_sec;
6811	struct lsm_ibpkey_audit ibpkey;
6812
6813	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6814	if (err)
6815		return err;
6816
6817	ad.type = LSM_AUDIT_DATA_IBPKEY;
6818	ibpkey.subnet_prefix = subnet_prefix;
6819	ibpkey.pkey = pkey_val;
6820	ad.u.ibpkey = &ibpkey;
6821	return avc_has_perm(&selinux_state,
6822			    sec->sid, sid,
6823			    SECCLASS_INFINIBAND_PKEY,
6824			    INFINIBAND_PKEY__ACCESS, &ad);
6825}
6826
6827static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6828					    u8 port_num)
6829{
6830	struct common_audit_data ad;
6831	int err;
6832	u32 sid = 0;
6833	struct ib_security_struct *sec = ib_sec;
6834	struct lsm_ibendport_audit ibendport;
6835
6836	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6837				      &sid);
6838
6839	if (err)
6840		return err;
6841
6842	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6843	ibendport.dev_name = dev_name;
6844	ibendport.port = port_num;
6845	ad.u.ibendport = &ibendport;
6846	return avc_has_perm(&selinux_state,
6847			    sec->sid, sid,
6848			    SECCLASS_INFINIBAND_ENDPORT,
6849			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6850}
6851
6852static int selinux_ib_alloc_security(void **ib_sec)
6853{
6854	struct ib_security_struct *sec;
6855
6856	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6857	if (!sec)
6858		return -ENOMEM;
6859	sec->sid = current_sid();
6860
6861	*ib_sec = sec;
6862	return 0;
6863}
6864
6865static void selinux_ib_free_security(void *ib_sec)
6866{
6867	kfree(ib_sec);
6868}
6869#endif
6870
6871#ifdef CONFIG_BPF_SYSCALL
6872static int selinux_bpf(int cmd, union bpf_attr *attr,
6873				     unsigned int size)
6874{
6875	u32 sid = current_sid();
6876	int ret;
6877
6878	switch (cmd) {
6879	case BPF_MAP_CREATE:
6880		ret = avc_has_perm(&selinux_state,
6881				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6882				   NULL);
6883		break;
6884	case BPF_PROG_LOAD:
6885		ret = avc_has_perm(&selinux_state,
6886				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6887				   NULL);
6888		break;
6889	default:
6890		ret = 0;
6891		break;
6892	}
6893
6894	return ret;
6895}
6896
6897static u32 bpf_map_fmode_to_av(fmode_t fmode)
6898{
6899	u32 av = 0;
6900
6901	if (fmode & FMODE_READ)
6902		av |= BPF__MAP_READ;
6903	if (fmode & FMODE_WRITE)
6904		av |= BPF__MAP_WRITE;
6905	return av;
6906}
6907
6908/* This function will check the file pass through unix socket or binder to see
6909 * if it is a bpf related object. And apply correspinding checks on the bpf
6910 * object based on the type. The bpf maps and programs, not like other files and
6911 * socket, are using a shared anonymous inode inside the kernel as their inode.
6912 * So checking that inode cannot identify if the process have privilege to
6913 * access the bpf object and that's why we have to add this additional check in
6914 * selinux_file_receive and selinux_binder_transfer_files.
6915 */
6916static int bpf_fd_pass(struct file *file, u32 sid)
6917{
6918	struct bpf_security_struct *bpfsec;
6919	struct bpf_prog *prog;
6920	struct bpf_map *map;
6921	int ret;
6922
6923	if (file->f_op == &bpf_map_fops) {
6924		map = file->private_data;
6925		bpfsec = map->security;
6926		ret = avc_has_perm(&selinux_state,
6927				   sid, bpfsec->sid, SECCLASS_BPF,
6928				   bpf_map_fmode_to_av(file->f_mode), NULL);
6929		if (ret)
6930			return ret;
6931	} else if (file->f_op == &bpf_prog_fops) {
6932		prog = file->private_data;
6933		bpfsec = prog->aux->security;
6934		ret = avc_has_perm(&selinux_state,
6935				   sid, bpfsec->sid, SECCLASS_BPF,
6936				   BPF__PROG_RUN, NULL);
6937		if (ret)
6938			return ret;
6939	}
6940	return 0;
6941}
6942
6943static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6944{
6945	u32 sid = current_sid();
6946	struct bpf_security_struct *bpfsec;
6947
6948	bpfsec = map->security;
6949	return avc_has_perm(&selinux_state,
6950			    sid, bpfsec->sid, SECCLASS_BPF,
6951			    bpf_map_fmode_to_av(fmode), NULL);
6952}
6953
6954static int selinux_bpf_prog(struct bpf_prog *prog)
6955{
6956	u32 sid = current_sid();
6957	struct bpf_security_struct *bpfsec;
6958
6959	bpfsec = prog->aux->security;
6960	return avc_has_perm(&selinux_state,
6961			    sid, bpfsec->sid, SECCLASS_BPF,
6962			    BPF__PROG_RUN, NULL);
6963}
6964
6965static int selinux_bpf_map_alloc(struct bpf_map *map)
6966{
6967	struct bpf_security_struct *bpfsec;
6968
6969	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6970	if (!bpfsec)
6971		return -ENOMEM;
6972
6973	bpfsec->sid = current_sid();
6974	map->security = bpfsec;
6975
6976	return 0;
6977}
6978
6979static void selinux_bpf_map_free(struct bpf_map *map)
6980{
6981	struct bpf_security_struct *bpfsec = map->security;
6982
6983	map->security = NULL;
6984	kfree(bpfsec);
6985}
6986
6987static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6988{
6989	struct bpf_security_struct *bpfsec;
6990
6991	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6992	if (!bpfsec)
6993		return -ENOMEM;
6994
6995	bpfsec->sid = current_sid();
6996	aux->security = bpfsec;
6997
6998	return 0;
6999}
7000
7001static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
7002{
7003	struct bpf_security_struct *bpfsec = aux->security;
7004
7005	aux->security = NULL;
7006	kfree(bpfsec);
7007}
7008#endif
7009
7010static int selinux_lockdown(enum lockdown_reason what)
7011{
7012	struct common_audit_data ad;
7013	u32 sid = current_sid();
7014	int invalid_reason = (what <= LOCKDOWN_NONE) ||
7015			     (what == LOCKDOWN_INTEGRITY_MAX) ||
7016			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
7017
7018	if (WARN(invalid_reason, "Invalid lockdown reason")) {
7019		audit_log(audit_context(),
7020			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
7021			  "lockdown_reason=invalid");
7022		return -EINVAL;
7023	}
7024
7025	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
7026	ad.u.reason = what;
7027
7028	if (what <= LOCKDOWN_INTEGRITY_MAX)
7029		return avc_has_perm(&selinux_state,
7030				    sid, sid, SECCLASS_LOCKDOWN,
7031				    LOCKDOWN__INTEGRITY, &ad);
7032	else
7033		return avc_has_perm(&selinux_state,
7034				    sid, sid, SECCLASS_LOCKDOWN,
7035				    LOCKDOWN__CONFIDENTIALITY, &ad);
7036}
7037
7038struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
7039	.lbs_cred = sizeof(struct task_security_struct),
7040	.lbs_file = sizeof(struct file_security_struct),
7041	.lbs_inode = sizeof(struct inode_security_struct),
7042	.lbs_ipc = sizeof(struct ipc_security_struct),
7043	.lbs_msg_msg = sizeof(struct msg_security_struct),
7044	.lbs_superblock = sizeof(struct superblock_security_struct),
7045};
7046
7047#ifdef CONFIG_PERF_EVENTS
7048static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7049{
7050	u32 requested, sid = current_sid();
7051
7052	if (type == PERF_SECURITY_OPEN)
7053		requested = PERF_EVENT__OPEN;
7054	else if (type == PERF_SECURITY_CPU)
7055		requested = PERF_EVENT__CPU;
7056	else if (type == PERF_SECURITY_KERNEL)
7057		requested = PERF_EVENT__KERNEL;
7058	else if (type == PERF_SECURITY_TRACEPOINT)
7059		requested = PERF_EVENT__TRACEPOINT;
7060	else
7061		return -EINVAL;
7062
7063	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
7064			    requested, NULL);
7065}
7066
7067static int selinux_perf_event_alloc(struct perf_event *event)
7068{
7069	struct perf_event_security_struct *perfsec;
7070
7071	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7072	if (!perfsec)
7073		return -ENOMEM;
7074
7075	perfsec->sid = current_sid();
7076	event->security = perfsec;
7077
7078	return 0;
7079}
7080
7081static void selinux_perf_event_free(struct perf_event *event)
7082{
7083	struct perf_event_security_struct *perfsec = event->security;
7084
7085	event->security = NULL;
7086	kfree(perfsec);
7087}
7088
7089static int selinux_perf_event_read(struct perf_event *event)
7090{
7091	struct perf_event_security_struct *perfsec = event->security;
7092	u32 sid = current_sid();
7093
7094	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7095			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7096}
7097
7098static int selinux_perf_event_write(struct perf_event *event)
7099{
7100	struct perf_event_security_struct *perfsec = event->security;
7101	u32 sid = current_sid();
7102
7103	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7104			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7105}
7106#endif
7107
7108/*
7109 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7110 * 1. any hooks that don't belong to (2.) or (3.) below,
7111 * 2. hooks that both access structures allocated by other hooks, and allocate
7112 *    structures that can be later accessed by other hooks (mostly "cloning"
7113 *    hooks),
7114 * 3. hooks that only allocate structures that can be later accessed by other
7115 *    hooks ("allocating" hooks).
7116 *
7117 * Please follow block comment delimiters in the list to keep this order.
7118 *
7119 * This ordering is needed for SELinux runtime disable to work at least somewhat
7120 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7121 * when disabling SELinux at runtime.
7122 */
7123static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7124	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7125	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7126	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7127	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7128
7129	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7130	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7131	LSM_HOOK_INIT(capget, selinux_capget),
7132	LSM_HOOK_INIT(capset, selinux_capset),
7133	LSM_HOOK_INIT(capable, selinux_capable),
7134	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7135	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7136	LSM_HOOK_INIT(syslog, selinux_syslog),
7137	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7138
7139	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7140
7141	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7142	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7143	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7144
7145	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7146	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7147	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7148	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7149	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7150	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7151	LSM_HOOK_INIT(sb_mount, selinux_mount),
7152	LSM_HOOK_INIT(sb_umount, selinux_umount),
7153	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7154	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7155
7156	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7157
7158	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7159	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7160
7161	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7162	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7163	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7164	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7165	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7166	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7167	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7168	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7169	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7170	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7171	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7172	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7173	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7174	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7175	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7176	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7177	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7178	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7179	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7180	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7181	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7182	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7183	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7184	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7185	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7186	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7187	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7188	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7189
7190	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7191
7192	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7193	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7194	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7195	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7196	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7197	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7198	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7199	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7200	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7201	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7202	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7203
7204	LSM_HOOK_INIT(file_open, selinux_file_open),
7205
7206	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7207	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7208	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7209	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7210	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7211	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7212	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7213	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7214	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7215	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7216	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7217	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7218	LSM_HOOK_INIT(task_getsecid_subj, selinux_task_getsecid_subj),
7219	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7220	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7221	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7222	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7223	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7224	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7225	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7226	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7227	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7228	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7229	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7230
7231	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7232	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7233
7234	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7235	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7236	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7237	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7238
7239	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7240	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7241	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7242
7243	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7244	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7245	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7246
7247	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7248
7249	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7250	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7251
7252	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7253	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7254	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7255	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7256	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7257	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7258
7259	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7260	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7261
7262	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7263	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7264	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7265	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7266	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7267	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7268	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7269	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7270	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7271	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7272	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7273	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7274	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7275	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7276	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7277	LSM_HOOK_INIT(socket_getpeersec_stream,
7278			selinux_socket_getpeersec_stream),
7279	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7280	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7281	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7282	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7283	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7284	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7285	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7286	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7287	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7288	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7289	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7290	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7291	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7292	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7293	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7294	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7295	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7296	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7297	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7298	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7299#ifdef CONFIG_SECURITY_INFINIBAND
7300	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7301	LSM_HOOK_INIT(ib_endport_manage_subnet,
7302		      selinux_ib_endport_manage_subnet),
7303	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7304#endif
7305#ifdef CONFIG_SECURITY_NETWORK_XFRM
7306	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7307	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7308	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7309	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7310	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7311	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7312			selinux_xfrm_state_pol_flow_match),
7313	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
 
 
7314#endif
7315
7316#ifdef CONFIG_KEYS
7317	LSM_HOOK_INIT(key_free, selinux_key_free),
7318	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7319	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7320#ifdef CONFIG_KEY_NOTIFICATIONS
7321	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7322#endif
7323#endif
7324
7325#ifdef CONFIG_AUDIT
7326	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7327	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7328	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7329#endif
7330
7331#ifdef CONFIG_BPF_SYSCALL
7332	LSM_HOOK_INIT(bpf, selinux_bpf),
7333	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7334	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7335	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7336	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7337#endif
7338
7339#ifdef CONFIG_PERF_EVENTS
7340	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7341	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7342	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7343	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7344#endif
7345
7346	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7347
7348	/*
7349	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7350	 */
7351	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7352	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7353	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7354	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7355#ifdef CONFIG_SECURITY_NETWORK_XFRM
7356	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7357#endif
7358
7359	/*
7360	 * PUT "ALLOCATING" HOOKS HERE
7361	 */
7362	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7363	LSM_HOOK_INIT(msg_queue_alloc_security,
7364		      selinux_msg_queue_alloc_security),
7365	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7366	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7367	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7368	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7369	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7370	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7371	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7372	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7373#ifdef CONFIG_SECURITY_INFINIBAND
7374	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7375#endif
7376#ifdef CONFIG_SECURITY_NETWORK_XFRM
7377	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7378	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7379	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7380		      selinux_xfrm_state_alloc_acquire),
7381#endif
7382#ifdef CONFIG_KEYS
7383	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7384#endif
7385#ifdef CONFIG_AUDIT
7386	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7387#endif
7388#ifdef CONFIG_BPF_SYSCALL
7389	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7390	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7391#endif
7392#ifdef CONFIG_PERF_EVENTS
7393	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7394#endif
7395};
7396
7397static __init int selinux_init(void)
7398{
7399	pr_info("SELinux:  Initializing.\n");
 
 
 
 
 
 
 
 
7400
7401	memset(&selinux_state, 0, sizeof(selinux_state));
7402	enforcing_set(&selinux_state, selinux_enforcing_boot);
7403	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7404	selinux_avc_init(&selinux_state.avc);
7405	mutex_init(&selinux_state.status_lock);
7406	mutex_init(&selinux_state.policy_mutex);
7407
7408	/* Set the security state for the initial task. */
7409	cred_init_security();
7410
7411	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7412
 
 
 
7413	avc_init();
7414
7415	avtab_cache_init();
7416
7417	ebitmap_cache_init();
7418
7419	hashtab_cache_init();
7420
7421	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7422
7423	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7424		panic("SELinux: Unable to register AVC netcache callback\n");
7425
7426	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7427		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7428
7429	if (selinux_enforcing_boot)
7430		pr_debug("SELinux:  Starting in enforcing mode\n");
7431	else
7432		pr_debug("SELinux:  Starting in permissive mode\n");
7433
7434	fs_validate_description("selinux", selinux_fs_parameters);
7435
7436	return 0;
7437}
7438
7439static void delayed_superblock_init(struct super_block *sb, void *unused)
7440{
7441	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7442}
7443
7444void selinux_complete_init(void)
7445{
7446	pr_debug("SELinux:  Completing initialization.\n");
7447
7448	/* Set up any superblocks initialized prior to the policy load. */
7449	pr_debug("SELinux:  Setting up existing superblocks.\n");
7450	iterate_supers(delayed_superblock_init, NULL);
7451}
7452
7453/* SELinux requires early initialization in order to label
7454   all processes and objects when they are created. */
7455DEFINE_LSM(selinux) = {
7456	.name = "selinux",
7457	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7458	.enabled = &selinux_enabled_boot,
7459	.blobs = &selinux_blob_sizes,
7460	.init = selinux_init,
7461};
7462
7463#if defined(CONFIG_NETFILTER)
7464
7465static const struct nf_hook_ops selinux_nf_ops[] = {
7466	{
7467		.hook =		selinux_ipv4_postroute,
7468		.pf =		NFPROTO_IPV4,
 
7469		.hooknum =	NF_INET_POST_ROUTING,
7470		.priority =	NF_IP_PRI_SELINUX_LAST,
7471	},
7472	{
7473		.hook =		selinux_ipv4_forward,
7474		.pf =		NFPROTO_IPV4,
 
7475		.hooknum =	NF_INET_FORWARD,
7476		.priority =	NF_IP_PRI_SELINUX_FIRST,
7477	},
7478	{
7479		.hook =		selinux_ipv4_output,
7480		.pf =		NFPROTO_IPV4,
 
7481		.hooknum =	NF_INET_LOCAL_OUT,
7482		.priority =	NF_IP_PRI_SELINUX_FIRST,
7483	},
7484#if IS_ENABLED(CONFIG_IPV6)
 
 
 
 
7485	{
7486		.hook =		selinux_ipv6_postroute,
7487		.pf =		NFPROTO_IPV6,
 
7488		.hooknum =	NF_INET_POST_ROUTING,
7489		.priority =	NF_IP6_PRI_SELINUX_LAST,
7490	},
7491	{
7492		.hook =		selinux_ipv6_forward,
7493		.pf =		NFPROTO_IPV6,
 
7494		.hooknum =	NF_INET_FORWARD,
7495		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7496	},
7497	{
7498		.hook =		selinux_ipv6_output,
7499		.pf =		NFPROTO_IPV6,
7500		.hooknum =	NF_INET_LOCAL_OUT,
7501		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7502	},
7503#endif	/* IPV6 */
7504};
7505
7506static int __net_init selinux_nf_register(struct net *net)
7507{
7508	return nf_register_net_hooks(net, selinux_nf_ops,
7509				     ARRAY_SIZE(selinux_nf_ops));
7510}
7511
7512static void __net_exit selinux_nf_unregister(struct net *net)
7513{
7514	nf_unregister_net_hooks(net, selinux_nf_ops,
7515				ARRAY_SIZE(selinux_nf_ops));
7516}
7517
7518static struct pernet_operations selinux_net_ops = {
7519	.init = selinux_nf_register,
7520	.exit = selinux_nf_unregister,
7521};
7522
7523static int __init selinux_nf_ip_init(void)
7524{
7525	int err;
7526
7527	if (!selinux_enabled_boot)
7528		return 0;
7529
7530	pr_debug("SELinux:  Registering netfilter hooks\n");
7531
7532	err = register_pernet_subsys(&selinux_net_ops);
 
7533	if (err)
7534		panic("SELinux: register_pernet_subsys: error %d\n", err);
 
7535
7536	return 0;
 
7537}
 
7538__initcall(selinux_nf_ip_init);
7539
7540#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7541static void selinux_nf_ip_exit(void)
7542{
7543	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7544
7545	unregister_pernet_subsys(&selinux_net_ops);
 
 
 
7546}
7547#endif
7548
7549#else /* CONFIG_NETFILTER */
7550
7551#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7552#define selinux_nf_ip_exit()
7553#endif
7554
7555#endif /* CONFIG_NETFILTER */
7556
7557#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7558int selinux_disable(struct selinux_state *state)
 
 
7559{
7560	if (selinux_initialized(state)) {
 
 
7561		/* Not permitted after initial policy load. */
7562		return -EINVAL;
7563	}
7564
7565	if (selinux_disabled(state)) {
7566		/* Only do this once. */
7567		return -EINVAL;
7568	}
7569
7570	selinux_mark_disabled(state);
7571
7572	pr_info("SELinux:  Disabled at runtime.\n");
 
7573
7574	/*
7575	 * Unregister netfilter hooks.
7576	 * Must be done before security_delete_hooks() to avoid breaking
7577	 * runtime disable.
7578	 */
7579	selinux_nf_ip_exit();
7580
7581	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7582
7583	/* Try to destroy the avc node cache */
7584	avc_disable();
 
 
 
7585
7586	/* Unregister selinuxfs. */
7587	exit_sel_fs();
7588
7589	return 0;
7590}
7591#endif