Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2015 Broadcom
  4 */
  5
  6/**
  7 * DOC: VC4 HVS module.
  8 *
  9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
 10 * translation, scaling, colorspace conversion, and compositing of
 11 * pixels stored in framebuffers into a FIFO of pixels going out to
 12 * the Pixel Valve (CRTC).  It operates at the system clock rate (the
 13 * system audio clock gate, specifically), which is much higher than
 14 * the pixel clock rate.
 15 *
 16 * There is a single global HVS, with multiple output FIFOs that can
 17 * be consumed by the PVs.  This file just manages the resources for
 18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
 19 * each CRTC.
 20 */
 21
 22#include <linux/component.h>
 23#include <linux/platform_device.h>
 24
 25#include <drm/drm_atomic_helper.h>
 26
 27#include "vc4_drv.h"
 28#include "vc4_regs.h"
 29
 30static const struct debugfs_reg32 hvs_regs[] = {
 31	VC4_REG32(SCALER_DISPCTRL),
 32	VC4_REG32(SCALER_DISPSTAT),
 33	VC4_REG32(SCALER_DISPID),
 34	VC4_REG32(SCALER_DISPECTRL),
 35	VC4_REG32(SCALER_DISPPROF),
 36	VC4_REG32(SCALER_DISPDITHER),
 37	VC4_REG32(SCALER_DISPEOLN),
 38	VC4_REG32(SCALER_DISPLIST0),
 39	VC4_REG32(SCALER_DISPLIST1),
 40	VC4_REG32(SCALER_DISPLIST2),
 41	VC4_REG32(SCALER_DISPLSTAT),
 42	VC4_REG32(SCALER_DISPLACT0),
 43	VC4_REG32(SCALER_DISPLACT1),
 44	VC4_REG32(SCALER_DISPLACT2),
 45	VC4_REG32(SCALER_DISPCTRL0),
 46	VC4_REG32(SCALER_DISPBKGND0),
 47	VC4_REG32(SCALER_DISPSTAT0),
 48	VC4_REG32(SCALER_DISPBASE0),
 49	VC4_REG32(SCALER_DISPCTRL1),
 50	VC4_REG32(SCALER_DISPBKGND1),
 51	VC4_REG32(SCALER_DISPSTAT1),
 52	VC4_REG32(SCALER_DISPBASE1),
 53	VC4_REG32(SCALER_DISPCTRL2),
 54	VC4_REG32(SCALER_DISPBKGND2),
 55	VC4_REG32(SCALER_DISPSTAT2),
 56	VC4_REG32(SCALER_DISPBASE2),
 57	VC4_REG32(SCALER_DISPALPHA2),
 58	VC4_REG32(SCALER_OLEDOFFS),
 59	VC4_REG32(SCALER_OLEDCOEF0),
 60	VC4_REG32(SCALER_OLEDCOEF1),
 61	VC4_REG32(SCALER_OLEDCOEF2),
 62};
 63
 64void vc4_hvs_dump_state(struct drm_device *dev)
 65{
 66	struct vc4_dev *vc4 = to_vc4_dev(dev);
 67	struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
 68	int i;
 69
 70	drm_print_regset32(&p, &vc4->hvs->regset);
 71
 72	DRM_INFO("HVS ctx:\n");
 73	for (i = 0; i < 64; i += 4) {
 74		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
 75			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
 76			 readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
 77			 readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
 78			 readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
 79			 readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
 80	}
 81}
 82
 83static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
 84{
 85	struct drm_info_node *node = m->private;
 86	struct drm_device *dev = node->minor->dev;
 87	struct vc4_dev *vc4 = to_vc4_dev(dev);
 88	struct drm_printer p = drm_seq_file_printer(m);
 89
 90	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
 91
 92	return 0;
 93}
 94
 95/* The filter kernel is composed of dwords each containing 3 9-bit
 96 * signed integers packed next to each other.
 97 */
 98#define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
 99#define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
100	((((c0) & 0x1ff) << 0) |				\
101	 (((c1) & 0x1ff) << 9) |				\
102	 (((c2) & 0x1ff) << 18))
103
104/* The whole filter kernel is arranged as the coefficients 0-16 going
105 * up, then a pad, then 17-31 going down and reversed within the
106 * dwords.  This means that a linear phase kernel (where it's
107 * symmetrical at the boundary between 15 and 16) has the last 5
108 * dwords matching the first 5, but reversed.
109 */
110#define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
111				c9, c10, c11, c12, c13, c14, c15)	\
112	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
113	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
114	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
115	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
116	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
117	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
118
119#define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
120#define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
121
122/* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
123 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
124 */
125static const u32 mitchell_netravali_1_3_1_3_kernel[] =
126	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
127				50, 82, 119, 155, 187, 213, 227);
128
129static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
130					struct drm_mm_node *space,
131					const u32 *kernel)
132{
133	int ret, i;
134	u32 __iomem *dst_kernel;
135
136	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
137	if (ret) {
138		DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
139			  ret);
140		return ret;
141	}
142
143	dst_kernel = hvs->dlist + space->start;
144
145	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
146		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
147			writel(kernel[i], &dst_kernel[i]);
148		else {
149			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
150			       &dst_kernel[i]);
151		}
152	}
153
154	return 0;
155}
156
157void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
158{
159	struct vc4_dev *vc4 = to_vc4_dev(dev);
160	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
161
162	dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
163
164	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
165}
166
167void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
168{
169	struct vc4_dev *vc4 = to_vc4_dev(dev);
170	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
171
172	dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
173
174	HVS_WRITE(SCALER_DISPSTAT,
175		  SCALER_DISPSTAT_EUFLOW(channel));
176	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
177}
178
179static void vc4_hvs_report_underrun(struct drm_device *dev)
180{
181	struct vc4_dev *vc4 = to_vc4_dev(dev);
182
183	atomic_inc(&vc4->underrun);
184	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
185}
186
187static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
188{
189	struct drm_device *dev = data;
190	struct vc4_dev *vc4 = to_vc4_dev(dev);
191	irqreturn_t irqret = IRQ_NONE;
192	int channel;
193	u32 control;
194	u32 status;
195
196	status = HVS_READ(SCALER_DISPSTAT);
197	control = HVS_READ(SCALER_DISPCTRL);
198
199	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
200		/* Interrupt masking is not always honored, so check it here. */
201		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
202		    control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
203			vc4_hvs_mask_underrun(dev, channel);
204			vc4_hvs_report_underrun(dev);
205
206			irqret = IRQ_HANDLED;
207		}
208	}
209
210	/* Clear every per-channel interrupt flag. */
211	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
212				   SCALER_DISPSTAT_IRQMASK(1) |
213				   SCALER_DISPSTAT_IRQMASK(2));
214
215	return irqret;
216}
217
218static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
219{
220	struct platform_device *pdev = to_platform_device(dev);
221	struct drm_device *drm = dev_get_drvdata(master);
222	struct vc4_dev *vc4 = drm->dev_private;
223	struct vc4_hvs *hvs = NULL;
224	int ret;
225	u32 dispctrl;
226
227	hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
228	if (!hvs)
229		return -ENOMEM;
230
231	hvs->pdev = pdev;
232
233	hvs->regs = vc4_ioremap_regs(pdev, 0);
234	if (IS_ERR(hvs->regs))
235		return PTR_ERR(hvs->regs);
236
237	hvs->regset.base = hvs->regs;
238	hvs->regset.regs = hvs_regs;
239	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
240
241	hvs->dlist = hvs->regs + SCALER_DLIST_START;
242
243	spin_lock_init(&hvs->mm_lock);
244
245	/* Set up the HVS display list memory manager.  We never
246	 * overwrite the setup from the bootloader (just 128b out of
247	 * our 16K), since we don't want to scramble the screen when
248	 * transitioning from the firmware's boot setup to runtime.
249	 */
250	drm_mm_init(&hvs->dlist_mm,
251		    HVS_BOOTLOADER_DLIST_END,
252		    (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
253
254	/* Set up the HVS LBM memory manager.  We could have some more
255	 * complicated data structure that allowed reuse of LBM areas
256	 * between planes when they don't overlap on the screen, but
257	 * for now we just allocate globally.
258	 */
259	drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024);
260
261	/* Upload filter kernels.  We only have the one for now, so we
262	 * keep it around for the lifetime of the driver.
263	 */
264	ret = vc4_hvs_upload_linear_kernel(hvs,
265					   &hvs->mitchell_netravali_filter,
266					   mitchell_netravali_1_3_1_3_kernel);
267	if (ret)
268		return ret;
269
270	vc4->hvs = hvs;
271
272	dispctrl = HVS_READ(SCALER_DISPCTRL);
273
274	dispctrl |= SCALER_DISPCTRL_ENABLE;
275	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
276		    SCALER_DISPCTRL_DISPEIRQ(1) |
277		    SCALER_DISPCTRL_DISPEIRQ(2);
278
279	/* Set DSP3 (PV1) to use HVS channel 2, which would otherwise
280	 * be unused.
281	 */
282	dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
283	dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
284		      SCALER_DISPCTRL_SLVWREIRQ |
285		      SCALER_DISPCTRL_SLVRDEIRQ |
286		      SCALER_DISPCTRL_DSPEIEOF(0) |
287		      SCALER_DISPCTRL_DSPEIEOF(1) |
288		      SCALER_DISPCTRL_DSPEIEOF(2) |
289		      SCALER_DISPCTRL_DSPEIEOLN(0) |
290		      SCALER_DISPCTRL_DSPEIEOLN(1) |
291		      SCALER_DISPCTRL_DSPEIEOLN(2) |
292		      SCALER_DISPCTRL_DSPEISLUR(0) |
293		      SCALER_DISPCTRL_DSPEISLUR(1) |
294		      SCALER_DISPCTRL_DSPEISLUR(2) |
295		      SCALER_DISPCTRL_SCLEIRQ);
296	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
297
298	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
299
300	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
301			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
302	if (ret)
303		return ret;
304
305	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
306	vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
307			     NULL);
308
309	return 0;
310}
311
312static void vc4_hvs_unbind(struct device *dev, struct device *master,
313			   void *data)
314{
315	struct drm_device *drm = dev_get_drvdata(master);
316	struct vc4_dev *vc4 = drm->dev_private;
317
318	if (vc4->hvs->mitchell_netravali_filter.allocated)
319		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
320
321	drm_mm_takedown(&vc4->hvs->dlist_mm);
322	drm_mm_takedown(&vc4->hvs->lbm_mm);
323
324	vc4->hvs = NULL;
325}
326
327static const struct component_ops vc4_hvs_ops = {
328	.bind   = vc4_hvs_bind,
329	.unbind = vc4_hvs_unbind,
330};
331
332static int vc4_hvs_dev_probe(struct platform_device *pdev)
333{
334	return component_add(&pdev->dev, &vc4_hvs_ops);
335}
336
337static int vc4_hvs_dev_remove(struct platform_device *pdev)
338{
339	component_del(&pdev->dev, &vc4_hvs_ops);
340	return 0;
341}
342
343static const struct of_device_id vc4_hvs_dt_match[] = {
344	{ .compatible = "brcm,bcm2835-hvs" },
345	{}
346};
347
348struct platform_driver vc4_hvs_driver = {
349	.probe = vc4_hvs_dev_probe,
350	.remove = vc4_hvs_dev_remove,
351	.driver = {
352		.name = "vc4_hvs",
353		.of_match_table = vc4_hvs_dt_match,
354	},
355};