Linux Audio

Check our new training course

Loading...
v3.1
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#include <linux/sysrq.h>
 
 
 
  30#include <linux/slab.h>
  31#include "drmP.h"
  32#include "drm.h"
  33#include "i915_drm.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
  34#include "i915_drv.h"
 
  35#include "i915_trace.h"
  36#include "intel_drv.h"
  37
  38#define MAX_NOPID ((u32)~0)
  39
  40/**
  41 * Interrupts that are always left unmasked.
  42 *
  43 * Since pipe events are edge-triggered from the PIPESTAT register to IIR,
  44 * we leave them always unmasked in IMR and then control enabling them through
  45 * PIPESTAT alone.
  46 */
  47#define I915_INTERRUPT_ENABLE_FIX			\
  48	(I915_ASLE_INTERRUPT |				\
  49	 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |		\
  50	 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |		\
  51	 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |	\
  52	 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |	\
  53	 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  54
  55/** Interrupts that we mask and unmask at runtime. */
  56#define I915_INTERRUPT_ENABLE_VAR (I915_USER_INTERRUPT | I915_BSD_USER_INTERRUPT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  57
  58#define I915_PIPE_VBLANK_STATUS	(PIPE_START_VBLANK_INTERRUPT_STATUS |\
  59				 PIPE_VBLANK_INTERRUPT_STATUS)
 
 
 
 
  60
  61#define I915_PIPE_VBLANK_ENABLE	(PIPE_START_VBLANK_INTERRUPT_ENABLE |\
  62				 PIPE_VBLANK_INTERRUPT_ENABLE)
 
 
  63
  64#define DRM_I915_VBLANK_PIPE_ALL	(DRM_I915_VBLANK_PIPE_A | \
  65					 DRM_I915_VBLANK_PIPE_B)
 
 
 
 
 
 
 
  66
  67/* For display hotplug interrupt */
  68static void
  69ironlake_enable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70{
  71	if ((dev_priv->irq_mask & mask) != 0) {
  72		dev_priv->irq_mask &= ~mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
  73		I915_WRITE(DEIMR, dev_priv->irq_mask);
  74		POSTING_READ(DEIMR);
  75	}
  76}
  77
  78static inline void
  79ironlake_disable_display_irq(drm_i915_private_t *dev_priv, u32 mask)
  80{
  81	if ((dev_priv->irq_mask & mask) != mask) {
  82		dev_priv->irq_mask |= mask;
  83		I915_WRITE(DEIMR, dev_priv->irq_mask);
  84		POSTING_READ(DEIMR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85	}
 
  86}
  87
  88void
  89i915_enable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
  90{
  91	if ((dev_priv->pipestat[pipe] & mask) != mask) {
  92		u32 reg = PIPESTAT(pipe);
  93
  94		dev_priv->pipestat[pipe] |= mask;
  95		/* Enable the interrupt, clear any pending status */
  96		I915_WRITE(reg, dev_priv->pipestat[pipe] | (mask >> 16));
  97		POSTING_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98	}
 
  99}
 100
 101void
 102i915_disable_pipestat(drm_i915_private_t *dev_priv, int pipe, u32 mask)
 103{
 104	if ((dev_priv->pipestat[pipe] & mask) != 0) {
 105		u32 reg = PIPESTAT(pipe);
 106
 107		dev_priv->pipestat[pipe] &= ~mask;
 108		I915_WRITE(reg, dev_priv->pipestat[pipe]);
 109		POSTING_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110	}
 111}
 112
 113/**
 114 * intel_enable_asle - enable ASLE interrupt for OpRegion
 
 
 
 
 115 */
 116void intel_enable_asle(struct drm_device *dev)
 
 
 
 117{
 118	drm_i915_private_t *dev_priv = dev->dev_private;
 119	unsigned long irqflags;
 120
 121	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
 122
 123	if (HAS_PCH_SPLIT(dev))
 124		ironlake_enable_display_irq(dev_priv, DE_GSE);
 125	else {
 126		i915_enable_pipestat(dev_priv, 1,
 127				     PIPE_LEGACY_BLC_EVENT_ENABLE);
 128		if (INTEL_INFO(dev)->gen >= 4)
 129			i915_enable_pipestat(dev_priv, 0,
 130					     PIPE_LEGACY_BLC_EVENT_ENABLE);
 
 
 
 
 
 131	}
 
 132
 133	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134}
 135
 136/**
 137 * i915_pipe_enabled - check if a pipe is enabled
 138 * @dev: DRM device
 139 * @pipe: pipe to check
 140 *
 141 * Reading certain registers when the pipe is disabled can hang the chip.
 142 * Use this routine to make sure the PLL is running and the pipe is active
 143 * before reading such registers if unsure.
 144 */
 145static int
 146i915_pipe_enabled(struct drm_device *dev, int pipe)
 147{
 148	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 149	return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
 
 
 
 
 
 
 
 
 
 150}
 151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 152/* Called from drm generic code, passed a 'crtc', which
 153 * we use as a pipe index
 154 */
 155static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
 156{
 157	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 158	unsigned long high_frame;
 159	unsigned long low_frame;
 160	u32 high1, high2, low;
 161
 162	if (!i915_pipe_enabled(dev, pipe)) {
 163		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 164				"pipe %c\n", pipe_name(pipe));
 
 
 
 
 
 
 
 
 
 
 
 
 165		return 0;
 166	}
 
 
 
 
 
 
 
 
 
 
 
 167
 168	high_frame = PIPEFRAME(pipe);
 169	low_frame = PIPEFRAMEPIXEL(pipe);
 170
 
 
 171	/*
 172	 * High & low register fields aren't synchronized, so make sure
 173	 * we get a low value that's stable across two reads of the high
 174	 * register.
 175	 */
 176	do {
 177		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 178		low   = I915_READ(low_frame)  & PIPE_FRAME_LOW_MASK;
 179		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 180	} while (high1 != high2);
 181
 
 
 182	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 
 183	low >>= PIPE_FRAME_LOW_SHIFT;
 184	return (high1 << 8) | low;
 
 
 
 
 
 
 185}
 186
 187static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
 188{
 189	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 190	int reg = PIPE_FRMCOUNT_GM45(pipe);
 191
 192	if (!i915_pipe_enabled(dev, pipe)) {
 193		DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
 194				 "pipe %c\n", pipe_name(pipe));
 195		return 0;
 196	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197
 198	return I915_READ(reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199}
 200
 201static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
 202			     int *vpos, int *hpos)
 203{
 204	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 205	u32 vbl = 0, position = 0;
 206	int vbl_start, vbl_end, htotal, vtotal;
 207	bool in_vbl = true;
 208	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209
 210	if (!i915_pipe_enabled(dev, pipe)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 212				 "pipe %c\n", pipe_name(pipe));
 213		return 0;
 214	}
 215
 216	/* Get vtotal. */
 217	vtotal = 1 + ((I915_READ(VTOTAL(pipe)) >> 16) & 0x1fff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218
 219	if (INTEL_INFO(dev)->gen >= 4) {
 
 
 
 
 220		/* No obvious pixelcount register. Only query vertical
 221		 * scanout position from Display scan line register.
 222		 */
 223		position = I915_READ(PIPEDSL(pipe));
 224
 225		/* Decode into vertical scanout position. Don't have
 226		 * horizontal scanout position.
 227		 */
 228		*vpos = position & 0x1fff;
 229		*hpos = 0;
 230	} else {
 231		/* Have access to pixelcount since start of frame.
 232		 * We can split this into vertical and horizontal
 233		 * scanout position.
 234		 */
 235		position = (I915_READ(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 
 
 
 
 
 236
 237		htotal = 1 + ((I915_READ(HTOTAL(pipe)) >> 16) & 0x1fff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238		*vpos = position / htotal;
 239		*hpos = position - (*vpos * htotal);
 240	}
 241
 242	/* Query vblank area. */
 243	vbl = I915_READ(VBLANK(pipe));
 244
 245	/* Test position against vblank region. */
 246	vbl_start = vbl & 0x1fff;
 247	vbl_end = (vbl >> 16) & 0x1fff;
 248
 249	if ((*vpos < vbl_start) || (*vpos > vbl_end))
 250		in_vbl = false;
 251
 252	/* Inside "upper part" of vblank area? Apply corrective offset: */
 253	if (in_vbl && (*vpos >= vbl_start))
 254		*vpos = *vpos - vtotal;
 255
 256	/* Readouts valid? */
 257	if (vbl > 0)
 258		ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 259
 260	/* In vblank? */
 261	if (in_vbl)
 262		ret |= DRM_SCANOUTPOS_INVBL;
 263
 264	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265}
 266
 267static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
 268			      int *max_error,
 269			      struct timeval *vblank_time,
 270			      unsigned flags)
 271{
 272	struct drm_i915_private *dev_priv = dev->dev_private;
 273	struct drm_crtc *crtc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275	if (pipe < 0 || pipe >= dev_priv->num_pipe) {
 276		DRM_ERROR("Invalid crtc %d\n", pipe);
 277		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 278	}
 
 279
 280	/* Get drm_crtc to timestamp: */
 281	crtc = intel_get_crtc_for_pipe(dev, pipe);
 282	if (crtc == NULL) {
 283		DRM_ERROR("Invalid crtc %d\n", pipe);
 284		return -EINVAL;
 
 
 285	}
 
 286
 287	if (!crtc->enabled) {
 288		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
 289		return -EBUSY;
 
 
 
 
 
 
 
 
 290	}
 
 291
 292	/* Helper routine in DRM core does all the work: */
 293	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 294						     vblank_time, flags,
 295						     crtc);
 
 
 
 
 
 
 
 
 296}
 297
 298/*
 299 * Handle hotplug events outside the interrupt handler proper.
 
 
 
 
 300 */
 301static void i915_hotplug_work_func(struct work_struct *work)
 
 
 
 
 302{
 303	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 304						    hotplug_work);
 305	struct drm_device *dev = dev_priv->dev;
 306	struct drm_mode_config *mode_config = &dev->mode_config;
 307	struct intel_encoder *encoder;
 308
 309	mutex_lock(&mode_config->mutex);
 310	DRM_DEBUG_KMS("running encoder hotplug functions\n");
 311
 312	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
 313		if (encoder->hot_plug)
 314			encoder->hot_plug(encoder);
 315
 316	mutex_unlock(&mode_config->mutex);
 
 
 
 
 
 
 
 317
 318	/* Just fire off a uevent and let userspace tell us what to do */
 319	drm_helper_hpd_irq_event(dev);
 320}
 321
 322static void i915_handle_rps_change(struct drm_device *dev)
 323{
 324	drm_i915_private_t *dev_priv = dev->dev_private;
 325	u32 busy_up, busy_down, max_avg, min_avg;
 326	u8 new_delay = dev_priv->cur_delay;
 327
 328	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
 329	busy_up = I915_READ(RCPREVBSYTUPAVG);
 330	busy_down = I915_READ(RCPREVBSYTDNAVG);
 331	max_avg = I915_READ(RCBMAXAVG);
 332	min_avg = I915_READ(RCBMINAVG);
 333
 334	/* Handle RCS change request from hw */
 335	if (busy_up > max_avg) {
 336		if (dev_priv->cur_delay != dev_priv->max_delay)
 337			new_delay = dev_priv->cur_delay - 1;
 338		if (new_delay < dev_priv->max_delay)
 339			new_delay = dev_priv->max_delay;
 340	} else if (busy_down < min_avg) {
 341		if (dev_priv->cur_delay != dev_priv->min_delay)
 342			new_delay = dev_priv->cur_delay + 1;
 343		if (new_delay > dev_priv->min_delay)
 344			new_delay = dev_priv->min_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345	}
 
 346
 347	if (ironlake_set_drps(dev, new_delay))
 348		dev_priv->cur_delay = new_delay;
 
 
 
 
 
 
 
 
 
 
 349
 350	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351}
 352
 353static void notify_ring(struct drm_device *dev,
 354			struct intel_ring_buffer *ring)
 355{
 356	struct drm_i915_private *dev_priv = dev->dev_private;
 357	u32 seqno;
 
 
 
 
 
 
 
 
 
 358
 359	if (ring->obj == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360		return;
 361
 362	seqno = ring->get_seqno(ring);
 363	trace_i915_gem_request_complete(ring, seqno);
 
 
 
 
 
 
 
 
 
 
 
 364
 365	ring->irq_seqno = seqno;
 366	wake_up_all(&ring->irq_queue);
 367	if (i915_enable_hangcheck) {
 368		dev_priv->hangcheck_count = 0;
 369		mod_timer(&dev_priv->hangcheck_timer,
 370			  jiffies +
 371			  msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
 
 372	}
 
 
 
 
 
 
 
 
 
 373}
 374
 375static void gen6_pm_rps_work(struct work_struct *work)
 376{
 377	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 378						    rps_work);
 379	u8 new_delay = dev_priv->cur_delay;
 380	u32 pm_iir, pm_imr;
 381
 382	spin_lock_irq(&dev_priv->rps_lock);
 383	pm_iir = dev_priv->pm_iir;
 384	dev_priv->pm_iir = 0;
 385	pm_imr = I915_READ(GEN6_PMIMR);
 386	spin_unlock_irq(&dev_priv->rps_lock);
 387
 388	if (!pm_iir)
 389		return;
 390
 391	mutex_lock(&dev_priv->dev->struct_mutex);
 392	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
 393		if (dev_priv->cur_delay != dev_priv->max_delay)
 394			new_delay = dev_priv->cur_delay + 1;
 395		if (new_delay > dev_priv->max_delay)
 396			new_delay = dev_priv->max_delay;
 397	} else if (pm_iir & (GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT)) {
 398		gen6_gt_force_wake_get(dev_priv);
 399		if (dev_priv->cur_delay != dev_priv->min_delay)
 400			new_delay = dev_priv->cur_delay - 1;
 401		if (new_delay < dev_priv->min_delay) {
 402			new_delay = dev_priv->min_delay;
 403			I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
 404				   I915_READ(GEN6_RP_INTERRUPT_LIMITS) |
 405				   ((new_delay << 16) & 0x3f0000));
 406		} else {
 407			/* Make sure we continue to get down interrupts
 408			 * until we hit the minimum frequency */
 409			I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
 410				   I915_READ(GEN6_RP_INTERRUPT_LIMITS) & ~0x3f0000);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411		}
 412		gen6_gt_force_wake_put(dev_priv);
 413	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414
 415	gen6_set_rps(dev_priv->dev, new_delay);
 416	dev_priv->cur_delay = new_delay;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 417
 418	/*
 419	 * rps_lock not held here because clearing is non-destructive. There is
 420	 * an *extremely* unlikely race with gen6_rps_enable() that is prevented
 421	 * by holding struct_mutex for the duration of the write.
 
 422	 */
 423	I915_WRITE(GEN6_PMIMR, pm_imr & ~pm_iir);
 424	mutex_unlock(&dev_priv->dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425}
 426
 427static void pch_irq_handler(struct drm_device *dev)
 428{
 429	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 430	u32 pch_iir;
 431	int pipe;
 
 432
 433	pch_iir = I915_READ(SDEIIR);
 434
 435	if (pch_iir & SDE_AUDIO_POWER_MASK)
 
 
 436		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
 437				 (pch_iir & SDE_AUDIO_POWER_MASK) >>
 438				 SDE_AUDIO_POWER_SHIFT);
 
 
 
 439
 440	if (pch_iir & SDE_GMBUS)
 441		DRM_DEBUG_DRIVER("PCH GMBUS interrupt\n");
 442
 443	if (pch_iir & SDE_AUDIO_HDCP_MASK)
 444		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
 445
 446	if (pch_iir & SDE_AUDIO_TRANS_MASK)
 447		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
 448
 449	if (pch_iir & SDE_POISON)
 450		DRM_ERROR("PCH poison interrupt\n");
 451
 452	if (pch_iir & SDE_FDI_MASK)
 453		for_each_pipe(pipe)
 454			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
 455					 pipe_name(pipe),
 456					 I915_READ(FDI_RX_IIR(pipe)));
 457
 458	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
 459		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
 460
 461	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
 462		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
 463
 464	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
 465		DRM_DEBUG_DRIVER("PCH transcoder B underrun interrupt\n");
 466	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
 467		DRM_DEBUG_DRIVER("PCH transcoder A underrun interrupt\n");
 
 
 
 468}
 469
 470static irqreturn_t ivybridge_irq_handler(DRM_IRQ_ARGS)
 471{
 472	struct drm_device *dev = (struct drm_device *) arg;
 473	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 474	int ret = IRQ_NONE;
 475	u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
 476	struct drm_i915_master_private *master_priv;
 477
 478	atomic_inc(&dev_priv->irq_received);
 
 479
 480	/* disable master interrupt before clearing iir  */
 481	de_ier = I915_READ(DEIER);
 482	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 483	POSTING_READ(DEIER);
 484
 485	de_iir = I915_READ(DEIIR);
 486	gt_iir = I915_READ(GTIIR);
 487	pch_iir = I915_READ(SDEIIR);
 488	pm_iir = I915_READ(GEN6_PMIIR);
 
 
 
 
 
 
 489
 490	if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 && pm_iir == 0)
 491		goto done;
 
 
 492
 493	ret = IRQ_HANDLED;
 
 494
 495	if (dev->primary->master) {
 496		master_priv = dev->primary->master->driver_priv;
 497		if (master_priv->sarea_priv)
 498			master_priv->sarea_priv->last_dispatch =
 499				READ_BREADCRUMB(dev_priv);
 500	}
 501
 502	if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
 503		notify_ring(dev, &dev_priv->ring[RCS]);
 504	if (gt_iir & GT_GEN6_BSD_USER_INTERRUPT)
 505		notify_ring(dev, &dev_priv->ring[VCS]);
 506	if (gt_iir & GT_BLT_USER_INTERRUPT)
 507		notify_ring(dev, &dev_priv->ring[BCS]);
 508
 509	if (de_iir & DE_GSE_IVB)
 510		intel_opregion_gse_intr(dev);
 511
 512	if (de_iir & DE_PLANEA_FLIP_DONE_IVB) {
 513		intel_prepare_page_flip(dev, 0);
 514		intel_finish_page_flip_plane(dev, 0);
 515	}
 
 
 516
 517	if (de_iir & DE_PLANEB_FLIP_DONE_IVB) {
 518		intel_prepare_page_flip(dev, 1);
 519		intel_finish_page_flip_plane(dev, 1);
 
 
 520	}
 521
 522	if (de_iir & DE_PIPEA_VBLANK_IVB)
 523		drm_handle_vblank(dev, 0);
 524
 525	if (de_iir & DE_PIPEB_VBLANK_IVB)
 526		drm_handle_vblank(dev, 1);
 527
 528	/* check event from PCH */
 529	if (de_iir & DE_PCH_EVENT_IVB) {
 530		if (pch_iir & SDE_HOTPLUG_MASK_CPT)
 531			queue_work(dev_priv->wq, &dev_priv->hotplug_work);
 532		pch_irq_handler(dev);
 533	}
 534
 535	if (pm_iir & GEN6_PM_DEFERRED_EVENTS) {
 536		unsigned long flags;
 537		spin_lock_irqsave(&dev_priv->rps_lock, flags);
 538		WARN(dev_priv->pm_iir & pm_iir, "Missed a PM interrupt\n");
 539		I915_WRITE(GEN6_PMIMR, pm_iir);
 540		dev_priv->pm_iir |= pm_iir;
 541		spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
 542		queue_work(dev_priv->wq, &dev_priv->rps_work);
 543	}
 544
 545	/* should clear PCH hotplug event before clear CPU irq */
 546	I915_WRITE(SDEIIR, pch_iir);
 547	I915_WRITE(GTIIR, gt_iir);
 548	I915_WRITE(DEIIR, de_iir);
 549	I915_WRITE(GEN6_PMIIR, pm_iir);
 550
 551done:
 552	I915_WRITE(DEIER, de_ier);
 553	POSTING_READ(DEIER);
 554
 555	return ret;
 
 
 
 
 
 
 
 556}
 557
 558static irqreturn_t ironlake_irq_handler(DRM_IRQ_ARGS)
 
 559{
 560	struct drm_device *dev = (struct drm_device *) arg;
 561	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 562	int ret = IRQ_NONE;
 563	u32 de_iir, gt_iir, de_ier, pch_iir, pm_iir;
 564	u32 hotplug_mask;
 565	struct drm_i915_master_private *master_priv;
 566	u32 bsd_usr_interrupt = GT_BSD_USER_INTERRUPT;
 567
 568	atomic_inc(&dev_priv->irq_received);
 
 
 
 
 
 
 569
 570	if (IS_GEN6(dev))
 571		bsd_usr_interrupt = GT_GEN6_BSD_USER_INTERRUPT;
 572
 573	/* disable master interrupt before clearing iir  */
 574	de_ier = I915_READ(DEIER);
 575	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 576	POSTING_READ(DEIER);
 577
 578	de_iir = I915_READ(DEIIR);
 579	gt_iir = I915_READ(GTIIR);
 580	pch_iir = I915_READ(SDEIIR);
 581	pm_iir = I915_READ(GEN6_PMIIR);
 
 582
 583	if (de_iir == 0 && gt_iir == 0 && pch_iir == 0 &&
 584	    (!IS_GEN6(dev) || pm_iir == 0))
 585		goto done;
 586
 587	if (HAS_PCH_CPT(dev))
 588		hotplug_mask = SDE_HOTPLUG_MASK_CPT;
 589	else
 590		hotplug_mask = SDE_HOTPLUG_MASK;
 591
 592	ret = IRQ_HANDLED;
 
 
 
 
 593
 594	if (dev->primary->master) {
 595		master_priv = dev->primary->master->driver_priv;
 596		if (master_priv->sarea_priv)
 597			master_priv->sarea_priv->last_dispatch =
 598				READ_BREADCRUMB(dev_priv);
 599	}
 600
 601	if (gt_iir & (GT_USER_INTERRUPT | GT_PIPE_NOTIFY))
 602		notify_ring(dev, &dev_priv->ring[RCS]);
 603	if (gt_iir & bsd_usr_interrupt)
 604		notify_ring(dev, &dev_priv->ring[VCS]);
 605	if (gt_iir & GT_BLT_USER_INTERRUPT)
 606		notify_ring(dev, &dev_priv->ring[BCS]);
 607
 608	if (de_iir & DE_GSE)
 609		intel_opregion_gse_intr(dev);
 610
 611	if (de_iir & DE_PLANEA_FLIP_DONE) {
 612		intel_prepare_page_flip(dev, 0);
 613		intel_finish_page_flip_plane(dev, 0);
 614	}
 615
 616	if (de_iir & DE_PLANEB_FLIP_DONE) {
 617		intel_prepare_page_flip(dev, 1);
 618		intel_finish_page_flip_plane(dev, 1);
 619	}
 
 620
 621	if (de_iir & DE_PIPEA_VBLANK)
 622		drm_handle_vblank(dev, 0);
 623
 624	if (de_iir & DE_PIPEB_VBLANK)
 625		drm_handle_vblank(dev, 1);
 626
 627	/* check event from PCH */
 628	if (de_iir & DE_PCH_EVENT) {
 629		if (pch_iir & hotplug_mask)
 630			queue_work(dev_priv->wq, &dev_priv->hotplug_work);
 631		pch_irq_handler(dev);
 632	}
 633
 634	if (de_iir & DE_PCU_EVENT) {
 635		I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 636		i915_handle_rps_change(dev);
 637	}
 638
 639	if (IS_GEN6(dev) && pm_iir & GEN6_PM_DEFERRED_EVENTS) {
 640		/*
 641		 * IIR bits should never already be set because IMR should
 642		 * prevent an interrupt from being shown in IIR. The warning
 643		 * displays a case where we've unsafely cleared
 644		 * dev_priv->pm_iir. Although missing an interrupt of the same
 645		 * type is not a problem, it displays a problem in the logic.
 646		 *
 647		 * The mask bit in IMR is cleared by rps_work.
 648		 */
 649		unsigned long flags;
 650		spin_lock_irqsave(&dev_priv->rps_lock, flags);
 651		WARN(dev_priv->pm_iir & pm_iir, "Missed a PM interrupt\n");
 652		I915_WRITE(GEN6_PMIMR, pm_iir);
 653		dev_priv->pm_iir |= pm_iir;
 654		spin_unlock_irqrestore(&dev_priv->rps_lock, flags);
 655		queue_work(dev_priv->wq, &dev_priv->rps_work);
 656	}
 657
 658	/* should clear PCH hotplug event before clear CPU irq */
 659	I915_WRITE(SDEIIR, pch_iir);
 660	I915_WRITE(GTIIR, gt_iir);
 661	I915_WRITE(DEIIR, de_iir);
 662	I915_WRITE(GEN6_PMIIR, pm_iir);
 663
 664done:
 665	I915_WRITE(DEIER, de_ier);
 666	POSTING_READ(DEIER);
 
 
 667
 668	return ret;
 669}
 670
 671/**
 672 * i915_error_work_func - do process context error handling work
 673 * @work: work struct
 674 *
 675 * Fire an error uevent so userspace can see that a hang or error
 676 * was detected.
 677 */
 678static void i915_error_work_func(struct work_struct *work)
 679{
 680	drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
 681						    error_work);
 682	struct drm_device *dev = dev_priv->dev;
 683	char *error_event[] = { "ERROR=1", NULL };
 684	char *reset_event[] = { "RESET=1", NULL };
 685	char *reset_done_event[] = { "ERROR=0", NULL };
 686
 687	kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, error_event);
 688
 689	if (atomic_read(&dev_priv->mm.wedged)) {
 690		DRM_DEBUG_DRIVER("resetting chip\n");
 691		kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_event);
 692		if (!i915_reset(dev, GRDOM_RENDER)) {
 693			atomic_set(&dev_priv->mm.wedged, 0);
 694			kobject_uevent_env(&dev->primary->kdev.kobj, KOBJ_CHANGE, reset_done_event);
 695		}
 696		complete_all(&dev_priv->error_completion);
 697	}
 698}
 699
 700#ifdef CONFIG_DEBUG_FS
 701static struct drm_i915_error_object *
 702i915_error_object_create(struct drm_i915_private *dev_priv,
 703			 struct drm_i915_gem_object *src)
 704{
 705	struct drm_i915_error_object *dst;
 706	int page, page_count;
 707	u32 reloc_offset;
 
 708
 709	if (src == NULL || src->pages == NULL)
 710		return NULL;
 711
 712	page_count = src->base.size / PAGE_SIZE;
 
 713
 714	dst = kmalloc(sizeof(*dst) + page_count * sizeof (u32 *), GFP_ATOMIC);
 715	if (dst == NULL)
 716		return NULL;
 717
 718	reloc_offset = src->gtt_offset;
 719	for (page = 0; page < page_count; page++) {
 720		unsigned long flags;
 721		void __iomem *s;
 722		void *d;
 723
 724		d = kmalloc(PAGE_SIZE, GFP_ATOMIC);
 725		if (d == NULL)
 726			goto unwind;
 727
 728		local_irq_save(flags);
 729		s = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
 730					     reloc_offset);
 731		memcpy_fromio(d, s, PAGE_SIZE);
 732		io_mapping_unmap_atomic(s);
 733		local_irq_restore(flags);
 734
 735		dst->pages[page] = d;
 
 736
 737		reloc_offset += PAGE_SIZE;
 
 
 738	}
 739	dst->page_count = page_count;
 740	dst->gtt_offset = src->gtt_offset;
 741
 742	return dst;
 
 743
 744unwind:
 745	while (page--)
 746		kfree(dst->pages[page]);
 747	kfree(dst);
 748	return NULL;
 749}
 750
 751static void
 752i915_error_object_free(struct drm_i915_error_object *obj)
 
 753{
 754	int page;
 755
 756	if (obj == NULL)
 757		return;
 758
 759	for (page = 0; page < obj->page_count; page++)
 760		kfree(obj->pages[page]);
 
 761
 762	kfree(obj);
 763}
 764
 765static void
 766i915_error_state_free(struct drm_device *dev,
 767		      struct drm_i915_error_state *error)
 768{
 769	int i;
 
 770
 771	for (i = 0; i < ARRAY_SIZE(error->batchbuffer); i++)
 772		i915_error_object_free(error->batchbuffer[i]);
 773
 774	for (i = 0; i < ARRAY_SIZE(error->ringbuffer); i++)
 775		i915_error_object_free(error->ringbuffer[i]);
 776
 777	kfree(error->active_bo);
 778	kfree(error->overlay);
 779	kfree(error);
 780}
 781
 782static u32 capture_bo_list(struct drm_i915_error_buffer *err,
 783			   int count,
 784			   struct list_head *head)
 785{
 786	struct drm_i915_gem_object *obj;
 787	int i = 0;
 788
 789	list_for_each_entry(obj, head, mm_list) {
 790		err->size = obj->base.size;
 791		err->name = obj->base.name;
 792		err->seqno = obj->last_rendering_seqno;
 793		err->gtt_offset = obj->gtt_offset;
 794		err->read_domains = obj->base.read_domains;
 795		err->write_domain = obj->base.write_domain;
 796		err->fence_reg = obj->fence_reg;
 797		err->pinned = 0;
 798		if (obj->pin_count > 0)
 799			err->pinned = 1;
 800		if (obj->user_pin_count > 0)
 801			err->pinned = -1;
 802		err->tiling = obj->tiling_mode;
 803		err->dirty = obj->dirty;
 804		err->purgeable = obj->madv != I915_MADV_WILLNEED;
 805		err->ring = obj->ring ? obj->ring->id : 0;
 806		err->cache_level = obj->cache_level;
 807
 808		if (++i == count)
 809			break;
 810
 811		err++;
 812	}
 
 813
 814	return i;
 815}
 816
 817static void i915_gem_record_fences(struct drm_device *dev,
 818				   struct drm_i915_error_state *error)
 819{
 820	struct drm_i915_private *dev_priv = dev->dev_private;
 821	int i;
 
 
 822
 823	/* Fences */
 824	switch (INTEL_INFO(dev)->gen) {
 825	case 6:
 826		for (i = 0; i < 16; i++)
 827			error->fence[i] = I915_READ64(FENCE_REG_SANDYBRIDGE_0 + (i * 8));
 828		break;
 829	case 5:
 830	case 4:
 831		for (i = 0; i < 16; i++)
 832			error->fence[i] = I915_READ64(FENCE_REG_965_0 + (i * 8));
 833		break;
 834	case 3:
 835		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
 836			for (i = 0; i < 8; i++)
 837				error->fence[i+8] = I915_READ(FENCE_REG_945_8 + (i * 4));
 838	case 2:
 839		for (i = 0; i < 8; i++)
 840			error->fence[i] = I915_READ(FENCE_REG_830_0 + (i * 4));
 841		break;
 842
 
 
 843	}
 
 
 
 844}
 845
 846static struct drm_i915_error_object *
 847i915_error_first_batchbuffer(struct drm_i915_private *dev_priv,
 848			     struct intel_ring_buffer *ring)
 849{
 850	struct drm_i915_gem_object *obj;
 851	u32 seqno;
 852
 853	if (!ring->get_seqno)
 854		return NULL;
 855
 856	seqno = ring->get_seqno(ring);
 857	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
 858		if (obj->ring != ring)
 859			continue;
 860
 861		if (i915_seqno_passed(seqno, obj->last_rendering_seqno))
 862			continue;
 863
 864		if ((obj->base.read_domains & I915_GEM_DOMAIN_COMMAND) == 0)
 865			continue;
 866
 867		/* We need to copy these to an anonymous buffer as the simplest
 868		 * method to avoid being overwritten by userspace.
 869		 */
 870		return i915_error_object_create(dev_priv, obj);
 
 871	}
 872
 873	return NULL;
 874}
 875
 876/**
 877 * i915_capture_error_state - capture an error record for later analysis
 878 * @dev: drm device
 879 *
 880 * Should be called when an error is detected (either a hang or an error
 881 * interrupt) to capture error state from the time of the error.  Fills
 882 * out a structure which becomes available in debugfs for user level tools
 883 * to pick up.
 884 */
 885static void i915_capture_error_state(struct drm_device *dev)
 886{
 887	struct drm_i915_private *dev_priv = dev->dev_private;
 888	struct drm_i915_gem_object *obj;
 889	struct drm_i915_error_state *error;
 890	unsigned long flags;
 891	int i, pipe;
 892
 893	spin_lock_irqsave(&dev_priv->error_lock, flags);
 894	error = dev_priv->first_error;
 895	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
 896	if (error)
 897		return;
 898
 899	/* Account for pipe specific data like PIPE*STAT */
 900	error = kmalloc(sizeof(*error), GFP_ATOMIC);
 901	if (!error) {
 902		DRM_DEBUG_DRIVER("out of memory, not capturing error state\n");
 903		return;
 904	}
 905
 906	DRM_INFO("capturing error event; look for more information in /debug/dri/%d/i915_error_state\n",
 907		 dev->primary->index);
 908
 909	error->seqno = dev_priv->ring[RCS].get_seqno(&dev_priv->ring[RCS]);
 910	error->eir = I915_READ(EIR);
 911	error->pgtbl_er = I915_READ(PGTBL_ER);
 912	for_each_pipe(pipe)
 913		error->pipestat[pipe] = I915_READ(PIPESTAT(pipe));
 914	error->instpm = I915_READ(INSTPM);
 915	error->error = 0;
 916	if (INTEL_INFO(dev)->gen >= 6) {
 917		error->error = I915_READ(ERROR_GEN6);
 918
 919		error->bcs_acthd = I915_READ(BCS_ACTHD);
 920		error->bcs_ipehr = I915_READ(BCS_IPEHR);
 921		error->bcs_ipeir = I915_READ(BCS_IPEIR);
 922		error->bcs_instdone = I915_READ(BCS_INSTDONE);
 923		error->bcs_seqno = 0;
 924		if (dev_priv->ring[BCS].get_seqno)
 925			error->bcs_seqno = dev_priv->ring[BCS].get_seqno(&dev_priv->ring[BCS]);
 926
 927		error->vcs_acthd = I915_READ(VCS_ACTHD);
 928		error->vcs_ipehr = I915_READ(VCS_IPEHR);
 929		error->vcs_ipeir = I915_READ(VCS_IPEIR);
 930		error->vcs_instdone = I915_READ(VCS_INSTDONE);
 931		error->vcs_seqno = 0;
 932		if (dev_priv->ring[VCS].get_seqno)
 933			error->vcs_seqno = dev_priv->ring[VCS].get_seqno(&dev_priv->ring[VCS]);
 934	}
 935	if (INTEL_INFO(dev)->gen >= 4) {
 936		error->ipeir = I915_READ(IPEIR_I965);
 937		error->ipehr = I915_READ(IPEHR_I965);
 938		error->instdone = I915_READ(INSTDONE_I965);
 939		error->instps = I915_READ(INSTPS);
 940		error->instdone1 = I915_READ(INSTDONE1);
 941		error->acthd = I915_READ(ACTHD_I965);
 942		error->bbaddr = I915_READ64(BB_ADDR);
 943	} else {
 944		error->ipeir = I915_READ(IPEIR);
 945		error->ipehr = I915_READ(IPEHR);
 946		error->instdone = I915_READ(INSTDONE);
 947		error->acthd = I915_READ(ACTHD);
 948		error->bbaddr = 0;
 949	}
 950	i915_gem_record_fences(dev, error);
 951
 952	/* Record the active batch and ring buffers */
 953	for (i = 0; i < I915_NUM_RINGS; i++) {
 954		error->batchbuffer[i] =
 955			i915_error_first_batchbuffer(dev_priv,
 956						     &dev_priv->ring[i]);
 957
 958		error->ringbuffer[i] =
 959			i915_error_object_create(dev_priv,
 960						 dev_priv->ring[i].obj);
 961	}
 962
 963	/* Record buffers on the active and pinned lists. */
 964	error->active_bo = NULL;
 965	error->pinned_bo = NULL;
 966
 967	i = 0;
 968	list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list)
 969		i++;
 970	error->active_bo_count = i;
 971	list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
 972		i++;
 973	error->pinned_bo_count = i - error->active_bo_count;
 974
 975	error->active_bo = NULL;
 976	error->pinned_bo = NULL;
 977	if (i) {
 978		error->active_bo = kmalloc(sizeof(*error->active_bo)*i,
 979					   GFP_ATOMIC);
 980		if (error->active_bo)
 981			error->pinned_bo =
 982				error->active_bo + error->active_bo_count;
 983	}
 984
 985	if (error->active_bo)
 986		error->active_bo_count =
 987			capture_bo_list(error->active_bo,
 988					error->active_bo_count,
 989					&dev_priv->mm.active_list);
 990
 991	if (error->pinned_bo)
 992		error->pinned_bo_count =
 993			capture_bo_list(error->pinned_bo,
 994					error->pinned_bo_count,
 995					&dev_priv->mm.pinned_list);
 996
 997	do_gettimeofday(&error->time);
 998
 999	error->overlay = intel_overlay_capture_error_state(dev);
1000	error->display = intel_display_capture_error_state(dev);
1001
1002	spin_lock_irqsave(&dev_priv->error_lock, flags);
1003	if (dev_priv->first_error == NULL) {
1004		dev_priv->first_error = error;
1005		error = NULL;
1006	}
1007	spin_unlock_irqrestore(&dev_priv->error_lock, flags);
1008
1009	if (error)
1010		i915_error_state_free(dev, error);
1011}
1012
1013void i915_destroy_error_state(struct drm_device *dev)
1014{
1015	struct drm_i915_private *dev_priv = dev->dev_private;
1016	struct drm_i915_error_state *error;
1017
1018	spin_lock(&dev_priv->error_lock);
1019	error = dev_priv->first_error;
1020	dev_priv->first_error = NULL;
1021	spin_unlock(&dev_priv->error_lock);
1022
1023	if (error)
1024		i915_error_state_free(dev, error);
 
1025}
1026#else
1027#define i915_capture_error_state(x)
1028#endif
1029
1030static void i915_report_and_clear_eir(struct drm_device *dev)
 
 
 
 
 
 
 
 
1031{
1032	struct drm_i915_private *dev_priv = dev->dev_private;
1033	u32 eir = I915_READ(EIR);
1034	int pipe;
1035
1036	if (!eir)
1037		return;
1038
1039	printk(KERN_ERR "render error detected, EIR: 0x%08x\n",
1040	       eir);
1041
1042	if (IS_G4X(dev)) {
1043		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
1044			u32 ipeir = I915_READ(IPEIR_I965);
1045
1046			printk(KERN_ERR "  IPEIR: 0x%08x\n",
1047			       I915_READ(IPEIR_I965));
1048			printk(KERN_ERR "  IPEHR: 0x%08x\n",
1049			       I915_READ(IPEHR_I965));
1050			printk(KERN_ERR "  INSTDONE: 0x%08x\n",
1051			       I915_READ(INSTDONE_I965));
1052			printk(KERN_ERR "  INSTPS: 0x%08x\n",
1053			       I915_READ(INSTPS));
1054			printk(KERN_ERR "  INSTDONE1: 0x%08x\n",
1055			       I915_READ(INSTDONE1));
1056			printk(KERN_ERR "  ACTHD: 0x%08x\n",
1057			       I915_READ(ACTHD_I965));
1058			I915_WRITE(IPEIR_I965, ipeir);
1059			POSTING_READ(IPEIR_I965);
1060		}
1061		if (eir & GM45_ERROR_PAGE_TABLE) {
1062			u32 pgtbl_err = I915_READ(PGTBL_ER);
1063			printk(KERN_ERR "page table error\n");
1064			printk(KERN_ERR "  PGTBL_ER: 0x%08x\n",
1065			       pgtbl_err);
1066			I915_WRITE(PGTBL_ER, pgtbl_err);
1067			POSTING_READ(PGTBL_ER);
1068		}
1069	}
1070
1071	if (!IS_GEN2(dev)) {
1072		if (eir & I915_ERROR_PAGE_TABLE) {
1073			u32 pgtbl_err = I915_READ(PGTBL_ER);
1074			printk(KERN_ERR "page table error\n");
1075			printk(KERN_ERR "  PGTBL_ER: 0x%08x\n",
1076			       pgtbl_err);
1077			I915_WRITE(PGTBL_ER, pgtbl_err);
1078			POSTING_READ(PGTBL_ER);
1079		}
 
1080	}
1081
1082	if (eir & I915_ERROR_MEMORY_REFRESH) {
1083		printk(KERN_ERR "memory refresh error:\n");
1084		for_each_pipe(pipe)
1085			printk(KERN_ERR "pipe %c stat: 0x%08x\n",
1086			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
1087		/* pipestat has already been acked */
1088	}
1089	if (eir & I915_ERROR_INSTRUCTION) {
1090		printk(KERN_ERR "instruction error\n");
1091		printk(KERN_ERR "  INSTPM: 0x%08x\n",
1092		       I915_READ(INSTPM));
1093		if (INTEL_INFO(dev)->gen < 4) {
1094			u32 ipeir = I915_READ(IPEIR);
1095
1096			printk(KERN_ERR "  IPEIR: 0x%08x\n",
1097			       I915_READ(IPEIR));
1098			printk(KERN_ERR "  IPEHR: 0x%08x\n",
1099			       I915_READ(IPEHR));
1100			printk(KERN_ERR "  INSTDONE: 0x%08x\n",
1101			       I915_READ(INSTDONE));
1102			printk(KERN_ERR "  ACTHD: 0x%08x\n",
1103			       I915_READ(ACTHD));
1104			I915_WRITE(IPEIR, ipeir);
1105			POSTING_READ(IPEIR);
1106		} else {
1107			u32 ipeir = I915_READ(IPEIR_I965);
1108
1109			printk(KERN_ERR "  IPEIR: 0x%08x\n",
1110			       I915_READ(IPEIR_I965));
1111			printk(KERN_ERR "  IPEHR: 0x%08x\n",
1112			       I915_READ(IPEHR_I965));
1113			printk(KERN_ERR "  INSTDONE: 0x%08x\n",
1114			       I915_READ(INSTDONE_I965));
1115			printk(KERN_ERR "  INSTPS: 0x%08x\n",
1116			       I915_READ(INSTPS));
1117			printk(KERN_ERR "  INSTDONE1: 0x%08x\n",
1118			       I915_READ(INSTDONE1));
1119			printk(KERN_ERR "  ACTHD: 0x%08x\n",
1120			       I915_READ(ACTHD_I965));
1121			I915_WRITE(IPEIR_I965, ipeir);
1122			POSTING_READ(IPEIR_I965);
1123		}
1124	}
1125
1126	I915_WRITE(EIR, eir);
1127	POSTING_READ(EIR);
1128	eir = I915_READ(EIR);
1129	if (eir) {
1130		/*
1131		 * some errors might have become stuck,
1132		 * mask them.
1133		 */
1134		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
1135		I915_WRITE(EMR, I915_READ(EMR) | eir);
1136		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
1137	}
1138}
1139
1140/**
1141 * i915_handle_error - handle an error interrupt
1142 * @dev: drm device
1143 *
1144 * Do some basic checking of regsiter state at error interrupt time and
1145 * dump it to the syslog.  Also call i915_capture_error_state() to make
1146 * sure we get a record and make it available in debugfs.  Fire a uevent
1147 * so userspace knows something bad happened (should trigger collection
1148 * of a ring dump etc.).
1149 */
1150void i915_handle_error(struct drm_device *dev, bool wedged)
1151{
1152	struct drm_i915_private *dev_priv = dev->dev_private;
1153
1154	i915_capture_error_state(dev);
1155	i915_report_and_clear_eir(dev);
1156
1157	if (wedged) {
1158		INIT_COMPLETION(dev_priv->error_completion);
1159		atomic_set(&dev_priv->mm.wedged, 1);
1160
1161		/*
1162		 * Wakeup waiting processes so they don't hang
1163		 */
1164		wake_up_all(&dev_priv->ring[RCS].irq_queue);
1165		if (HAS_BSD(dev))
1166			wake_up_all(&dev_priv->ring[VCS].irq_queue);
1167		if (HAS_BLT(dev))
1168			wake_up_all(&dev_priv->ring[BCS].irq_queue);
1169	}
1170
1171	queue_work(dev_priv->wq, &dev_priv->error_work);
1172}
1173
1174static void i915_pageflip_stall_check(struct drm_device *dev, int pipe)
1175{
1176	drm_i915_private_t *dev_priv = dev->dev_private;
1177	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1178	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1179	struct drm_i915_gem_object *obj;
1180	struct intel_unpin_work *work;
1181	unsigned long flags;
1182	bool stall_detected;
1183
1184	/* Ignore early vblank irqs */
1185	if (intel_crtc == NULL)
1186		return;
 
 
 
 
1187
1188	spin_lock_irqsave(&dev->event_lock, flags);
1189	work = intel_crtc->unpin_work;
1190
1191	if (work == NULL || work->pending || !work->enable_stall_check) {
1192		/* Either the pending flip IRQ arrived, or we're too early. Don't check */
1193		spin_unlock_irqrestore(&dev->event_lock, flags);
1194		return;
1195	}
1196
1197	/* Potential stall - if we see that the flip has happened, assume a missed interrupt */
1198	obj = work->pending_flip_obj;
1199	if (INTEL_INFO(dev)->gen >= 4) {
1200		int dspsurf = DSPSURF(intel_crtc->plane);
1201		stall_detected = I915_READ(dspsurf) == obj->gtt_offset;
1202	} else {
1203		int dspaddr = DSPADDR(intel_crtc->plane);
1204		stall_detected = I915_READ(dspaddr) == (obj->gtt_offset +
1205							crtc->y * crtc->fb->pitch +
1206							crtc->x * crtc->fb->bits_per_pixel/8);
1207	}
1208
1209	spin_unlock_irqrestore(&dev->event_lock, flags);
 
 
 
 
1210
1211	if (stall_detected) {
1212		DRM_DEBUG_DRIVER("Pageflip stall detected\n");
1213		intel_prepare_page_flip(dev, intel_crtc->plane);
1214	}
 
 
 
 
 
1215}
1216
1217static irqreturn_t i915_driver_irq_handler(DRM_IRQ_ARGS)
1218{
1219	struct drm_device *dev = (struct drm_device *) arg;
1220	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1221	struct drm_i915_master_private *master_priv;
1222	u32 iir, new_iir;
1223	u32 pipe_stats[I915_MAX_PIPES];
1224	u32 vblank_status;
1225	int vblank = 0;
1226	unsigned long irqflags;
1227	int irq_received;
1228	int ret = IRQ_NONE, pipe;
1229	bool blc_event = false;
1230
1231	atomic_inc(&dev_priv->irq_received);
 
 
 
 
1232
1233	iir = I915_READ(IIR);
 
 
 
 
1234
1235	if (INTEL_INFO(dev)->gen >= 4)
1236		vblank_status = PIPE_START_VBLANK_INTERRUPT_STATUS;
1237	else
1238		vblank_status = PIPE_VBLANK_INTERRUPT_STATUS;
1239
1240	for (;;) {
1241		irq_received = iir != 0;
1242
1243		/* Can't rely on pipestat interrupt bit in iir as it might
1244		 * have been cleared after the pipestat interrupt was received.
1245		 * It doesn't set the bit in iir again, but it still produces
1246		 * interrupts (for non-MSI).
1247		 */
1248		spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1249		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
1250			i915_handle_error(dev, false);
1251
1252		for_each_pipe(pipe) {
1253			int reg = PIPESTAT(pipe);
1254			pipe_stats[pipe] = I915_READ(reg);
1255
1256			/*
1257			 * Clear the PIPE*STAT regs before the IIR
1258			 */
1259			if (pipe_stats[pipe] & 0x8000ffff) {
1260				if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1261					DRM_DEBUG_DRIVER("pipe %c underrun\n",
1262							 pipe_name(pipe));
1263				I915_WRITE(reg, pipe_stats[pipe]);
1264				irq_received = 1;
1265			}
1266		}
1267		spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1268
1269		if (!irq_received)
1270			break;
 
 
 
 
 
1271
1272		ret = IRQ_HANDLED;
 
 
 
1273
1274		/* Consume port.  Then clear IIR or we'll miss events */
1275		if ((I915_HAS_HOTPLUG(dev)) &&
1276		    (iir & I915_DISPLAY_PORT_INTERRUPT)) {
1277			u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1278
1279			DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1280				  hotplug_status);
1281			if (hotplug_status & dev_priv->hotplug_supported_mask)
1282				queue_work(dev_priv->wq,
1283					   &dev_priv->hotplug_work);
1284
1285			I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1286			I915_READ(PORT_HOTPLUG_STAT);
1287		}
1288
1289		I915_WRITE(IIR, iir);
1290		new_iir = I915_READ(IIR); /* Flush posted writes */
 
 
1291
1292		if (dev->primary->master) {
1293			master_priv = dev->primary->master->driver_priv;
1294			if (master_priv->sarea_priv)
1295				master_priv->sarea_priv->last_dispatch =
1296					READ_BREADCRUMB(dev_priv);
1297		}
1298
1299		if (iir & I915_USER_INTERRUPT)
1300			notify_ring(dev, &dev_priv->ring[RCS]);
1301		if (iir & I915_BSD_USER_INTERRUPT)
1302			notify_ring(dev, &dev_priv->ring[VCS]);
 
 
1303
1304		if (iir & I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT) {
1305			intel_prepare_page_flip(dev, 0);
1306			if (dev_priv->flip_pending_is_done)
1307				intel_finish_page_flip_plane(dev, 0);
 
 
 
 
1308		}
 
1309
1310		if (iir & I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT) {
1311			intel_prepare_page_flip(dev, 1);
1312			if (dev_priv->flip_pending_is_done)
1313				intel_finish_page_flip_plane(dev, 1);
 
 
 
 
1314		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315
1316		for_each_pipe(pipe) {
1317			if (pipe_stats[pipe] & vblank_status &&
1318			    drm_handle_vblank(dev, pipe)) {
1319				vblank++;
1320				if (!dev_priv->flip_pending_is_done) {
1321					i915_pageflip_stall_check(dev, pipe);
1322					intel_finish_page_flip(dev, pipe);
 
 
 
 
 
 
1323				}
1324			}
1325
1326			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1327				blc_event = true;
 
 
 
 
 
1328		}
 
 
 
1329
 
 
1330
1331		if (blc_event || (iir & I915_ASLE_INTERRUPT))
1332			intel_opregion_asle_intr(dev);
1333
1334		/* With MSI, interrupts are only generated when iir
1335		 * transitions from zero to nonzero.  If another bit got
1336		 * set while we were handling the existing iir bits, then
1337		 * we would never get another interrupt.
1338		 *
1339		 * This is fine on non-MSI as well, as if we hit this path
1340		 * we avoid exiting the interrupt handler only to generate
1341		 * another one.
1342		 *
1343		 * Note that for MSI this could cause a stray interrupt report
1344		 * if an interrupt landed in the time between writing IIR and
1345		 * the posting read.  This should be rare enough to never
1346		 * trigger the 99% of 100,000 interrupts test for disabling
1347		 * stray interrupts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348		 */
1349		iir = new_iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1350	}
1351
1352	return ret;
1353}
1354
1355static int i915_emit_irq(struct drm_device * dev)
1356{
1357	drm_i915_private_t *dev_priv = dev->dev_private;
1358	struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1359
1360	i915_kernel_lost_context(dev);
 
 
 
 
 
 
 
1361
1362	DRM_DEBUG_DRIVER("\n");
 
 
 
1363
1364	dev_priv->counter++;
1365	if (dev_priv->counter > 0x7FFFFFFFUL)
1366		dev_priv->counter = 1;
1367	if (master_priv->sarea_priv)
1368		master_priv->sarea_priv->last_enqueue = dev_priv->counter;
 
1369
1370	if (BEGIN_LP_RING(4) == 0) {
1371		OUT_RING(MI_STORE_DWORD_INDEX);
1372		OUT_RING(I915_BREADCRUMB_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1373		OUT_RING(dev_priv->counter);
1374		OUT_RING(MI_USER_INTERRUPT);
1375		ADVANCE_LP_RING();
 
1376	}
1377
1378	return dev_priv->counter;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379}
1380
1381static int i915_wait_irq(struct drm_device * dev, int irq_nr)
 
1382{
1383	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1384	struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1385	int ret = 0;
1386	struct intel_ring_buffer *ring = LP_RING(dev_priv);
1387
1388	DRM_DEBUG_DRIVER("irq_nr=%d breadcrumb=%d\n", irq_nr,
1389		  READ_BREADCRUMB(dev_priv));
1390
1391	if (READ_BREADCRUMB(dev_priv) >= irq_nr) {
1392		if (master_priv->sarea_priv)
1393			master_priv->sarea_priv->last_dispatch = READ_BREADCRUMB(dev_priv);
1394		return 0;
1395	}
1396
1397	if (master_priv->sarea_priv)
1398		master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
 
1399
1400	if (ring->irq_get(ring)) {
1401		DRM_WAIT_ON(ret, ring->irq_queue, 3 * DRM_HZ,
1402			    READ_BREADCRUMB(dev_priv) >= irq_nr);
1403		ring->irq_put(ring);
1404	} else if (wait_for(READ_BREADCRUMB(dev_priv) >= irq_nr, 3000))
1405		ret = -EBUSY;
1406
1407	if (ret == -EBUSY) {
1408		DRM_ERROR("EBUSY -- rec: %d emitted: %d\n",
1409			  READ_BREADCRUMB(dev_priv), (int)dev_priv->counter);
1410	}
1411
1412	return ret;
 
 
 
 
1413}
1414
1415/* Needs the lock as it touches the ring.
1416 */
1417int i915_irq_emit(struct drm_device *dev, void *data,
1418			 struct drm_file *file_priv)
1419{
1420	drm_i915_private_t *dev_priv = dev->dev_private;
1421	drm_i915_irq_emit_t *emit = data;
1422	int result;
1423
1424	if (!dev_priv || !LP_RING(dev_priv)->virtual_start) {
1425		DRM_ERROR("called with no initialization\n");
1426		return -EINVAL;
1427	}
 
 
 
 
1428
1429	RING_LOCK_TEST_WITH_RETURN(dev, file_priv);
 
 
 
1430
1431	mutex_lock(&dev->struct_mutex);
1432	result = i915_emit_irq(dev);
1433	mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
1434
1435	if (DRM_COPY_TO_USER(emit->irq_seq, &result, sizeof(int))) {
1436		DRM_ERROR("copy_to_user\n");
1437		return -EFAULT;
 
1438	}
1439
1440	return 0;
1441}
1442
1443/* Doesn't need the hardware lock.
1444 */
1445int i915_irq_wait(struct drm_device *dev, void *data,
1446			 struct drm_file *file_priv)
1447{
1448	drm_i915_private_t *dev_priv = dev->dev_private;
1449	drm_i915_irq_wait_t *irqwait = data;
1450
1451	if (!dev_priv) {
1452		DRM_ERROR("called with no initialization\n");
1453		return -EINVAL;
 
 
 
 
1454	}
1455
1456	return i915_wait_irq(dev, irqwait->irq_seq);
 
 
 
 
 
 
1457}
1458
1459/* Called from drm generic code, passed 'crtc' which
1460 * we use as a pipe index
1461 */
1462static int i915_enable_vblank(struct drm_device *dev, int pipe)
1463{
1464	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1465	unsigned long irqflags;
1466
1467	if (!i915_pipe_enabled(dev, pipe))
1468		return -EINVAL;
1469
1470	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1471	if (INTEL_INFO(dev)->gen >= 4)
1472		i915_enable_pipestat(dev_priv, pipe,
1473				     PIPE_START_VBLANK_INTERRUPT_ENABLE);
1474	else
1475		i915_enable_pipestat(dev_priv, pipe,
1476				     PIPE_VBLANK_INTERRUPT_ENABLE);
1477
1478	/* maintain vblank delivery even in deep C-states */
1479	if (dev_priv->info->gen == 3)
1480		I915_WRITE(INSTPM, INSTPM_AGPBUSY_DIS << 16);
1481	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1482
1483	return 0;
1484}
1485
1486static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
1487{
1488	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1489	unsigned long irqflags;
1490
1491	if (!i915_pipe_enabled(dev, pipe))
1492		return -EINVAL;
 
 
 
 
 
 
 
 
 
1493
1494	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1495	ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1496				    DE_PIPEA_VBLANK: DE_PIPEB_VBLANK);
1497	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1498
1499	return 0;
1500}
1501
1502static int ivybridge_enable_vblank(struct drm_device *dev, int pipe)
1503{
1504	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1505	unsigned long irqflags;
 
 
1506
1507	if (!i915_pipe_enabled(dev, pipe))
1508		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509
1510	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1511	ironlake_enable_display_irq(dev_priv, (pipe == 0) ?
1512				    DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB);
1513	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1514
 
 
 
 
 
 
1515	return 0;
1516}
1517
1518/* Called from drm generic code, passed 'crtc' which
1519 * we use as a pipe index
1520 */
1521static void i915_disable_vblank(struct drm_device *dev, int pipe)
1522{
1523	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1524	unsigned long irqflags;
1525
1526	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1527	if (dev_priv->info->gen == 3)
1528		I915_WRITE(INSTPM,
1529			   INSTPM_AGPBUSY_DIS << 16 | INSTPM_AGPBUSY_DIS);
 
 
 
 
1530
 
 
 
 
 
 
 
 
 
 
 
 
 
1531	i915_disable_pipestat(dev_priv, pipe,
1532			      PIPE_VBLANK_INTERRUPT_ENABLE |
1533			      PIPE_START_VBLANK_INTERRUPT_ENABLE);
1534	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1535}
1536
1537static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
1538{
1539	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1540	unsigned long irqflags;
 
 
1541
1542	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1543	ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1544				     DE_PIPEA_VBLANK: DE_PIPEB_VBLANK);
1545	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1546}
1547
1548static void ivybridge_disable_vblank(struct drm_device *dev, int pipe)
1549{
1550	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
 
1551	unsigned long irqflags;
1552
1553	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1554	ironlake_disable_display_irq(dev_priv, (pipe == 0) ?
1555				     DE_PIPEA_VBLANK_IVB : DE_PIPEB_VBLANK_IVB);
1556	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1557}
1558
1559/* Set the vblank monitor pipe
1560 */
1561int i915_vblank_pipe_set(struct drm_device *dev, void *data,
1562			 struct drm_file *file_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
1563{
1564	drm_i915_private_t *dev_priv = dev->dev_private;
 
1565
1566	if (!dev_priv) {
1567		DRM_ERROR("called with no initialization\n");
1568		return -EINVAL;
 
 
 
 
 
 
 
1569	}
1570
1571	return 0;
1572}
1573
1574int i915_vblank_pipe_get(struct drm_device *dev, void *data,
1575			 struct drm_file *file_priv)
1576{
1577	drm_i915_private_t *dev_priv = dev->dev_private;
1578	drm_i915_vblank_pipe_t *pipe = data;
1579
1580	if (!dev_priv) {
1581		DRM_ERROR("called with no initialization\n");
1582		return -EINVAL;
1583	}
 
 
1584
1585	pipe->pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
 
 
 
 
1586
1587	return 0;
 
 
 
 
 
 
 
 
 
 
1588}
1589
1590/**
1591 * Schedule buffer swap at given vertical blank.
 
 
 
 
 
1592 */
1593int i915_vblank_swap(struct drm_device *dev, void *data,
1594		     struct drm_file *file_priv)
1595{
1596	/* The delayed swap mechanism was fundamentally racy, and has been
1597	 * removed.  The model was that the client requested a delayed flip/swap
1598	 * from the kernel, then waited for vblank before continuing to perform
1599	 * rendering.  The problem was that the kernel might wake the client
1600	 * up before it dispatched the vblank swap (since the lock has to be
1601	 * held while touching the ringbuffer), in which case the client would
1602	 * clear and start the next frame before the swap occurred, and
1603	 * flicker would occur in addition to likely missing the vblank.
1604	 *
1605	 * In the absence of this ioctl, userland falls back to a correct path
1606	 * of waiting for a vblank, then dispatching the swap on its own.
1607	 * Context switching to userland and back is plenty fast enough for
1608	 * meeting the requirements of vblank swapping.
1609	 */
1610	return -EINVAL;
1611}
1612
1613static u32
1614ring_last_seqno(struct intel_ring_buffer *ring)
1615{
1616	return list_entry(ring->request_list.prev,
1617			  struct drm_i915_gem_request, list)->seqno;
 
 
 
 
 
 
 
 
 
 
 
 
1618}
1619
1620static bool i915_hangcheck_ring_idle(struct intel_ring_buffer *ring, bool *err)
1621{
1622	if (list_empty(&ring->request_list) ||
1623	    i915_seqno_passed(ring->get_seqno(ring), ring_last_seqno(ring))) {
1624		/* Issue a wake-up to catch stuck h/w. */
1625		if (ring->waiting_seqno && waitqueue_active(&ring->irq_queue)) {
1626			DRM_ERROR("Hangcheck timer elapsed... %s idle [waiting on %d, at %d], missed IRQ?\n",
1627				  ring->name,
1628				  ring->waiting_seqno,
1629				  ring->get_seqno(ring));
1630			wake_up_all(&ring->irq_queue);
1631			*err = true;
1632		}
1633		return true;
1634	}
1635	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
1636}
1637
1638static bool kick_ring(struct intel_ring_buffer *ring)
 
 
1639{
1640	struct drm_device *dev = ring->dev;
1641	struct drm_i915_private *dev_priv = dev->dev_private;
1642	u32 tmp = I915_READ_CTL(ring);
1643	if (tmp & RING_WAIT) {
1644		DRM_ERROR("Kicking stuck wait on %s\n",
1645			  ring->name);
1646		I915_WRITE_CTL(ring, tmp);
1647		return true;
1648	}
1649	if (IS_GEN6(dev) &&
1650	    (tmp & RING_WAIT_SEMAPHORE)) {
1651		DRM_ERROR("Kicking stuck semaphore on %s\n",
1652			  ring->name);
1653		I915_WRITE_CTL(ring, tmp);
1654		return true;
1655	}
1656	return false;
 
 
 
1657}
1658
1659/**
1660 * This is called when the chip hasn't reported back with completed
1661 * batchbuffers in a long time. The first time this is called we simply record
1662 * ACTHD. If ACTHD hasn't changed by the time the hangcheck timer elapses
1663 * again, we assume the chip is wedged and try to fix it.
1664 */
1665void i915_hangcheck_elapsed(unsigned long data)
1666{
1667	struct drm_device *dev = (struct drm_device *)data;
1668	drm_i915_private_t *dev_priv = dev->dev_private;
1669	uint32_t acthd, instdone, instdone1;
1670	bool err = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671
1672	if (!i915_enable_hangcheck)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673		return;
 
1674
1675	/* If all work is done then ACTHD clearly hasn't advanced. */
1676	if (i915_hangcheck_ring_idle(&dev_priv->ring[RCS], &err) &&
1677	    i915_hangcheck_ring_idle(&dev_priv->ring[VCS], &err) &&
1678	    i915_hangcheck_ring_idle(&dev_priv->ring[BCS], &err)) {
1679		dev_priv->hangcheck_count = 0;
1680		if (err)
1681			goto repeat;
 
 
 
 
 
 
 
 
 
 
 
1682		return;
1683	}
1684
1685	if (INTEL_INFO(dev)->gen < 4) {
1686		acthd = I915_READ(ACTHD);
1687		instdone = I915_READ(INSTDONE);
1688		instdone1 = 0;
1689	} else {
1690		acthd = I915_READ(ACTHD_I965);
1691		instdone = I915_READ(INSTDONE_I965);
1692		instdone1 = I915_READ(INSTDONE1);
1693	}
1694
1695	if (dev_priv->last_acthd == acthd &&
1696	    dev_priv->last_instdone == instdone &&
1697	    dev_priv->last_instdone1 == instdone1) {
1698		if (dev_priv->hangcheck_count++ > 1) {
1699			DRM_ERROR("Hangcheck timer elapsed... GPU hung\n");
1700
1701			if (!IS_GEN2(dev)) {
1702				/* Is the chip hanging on a WAIT_FOR_EVENT?
1703				 * If so we can simply poke the RB_WAIT bit
1704				 * and break the hang. This should work on
1705				 * all but the second generation chipsets.
1706				 */
1707
1708				if (kick_ring(&dev_priv->ring[RCS]))
1709					goto repeat;
1710
1711				if (HAS_BSD(dev) &&
1712				    kick_ring(&dev_priv->ring[VCS]))
1713					goto repeat;
1714
1715				if (HAS_BLT(dev) &&
1716				    kick_ring(&dev_priv->ring[BCS]))
1717					goto repeat;
1718			}
1719
1720			i915_handle_error(dev, true);
1721			return;
1722		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1723	} else {
1724		dev_priv->hangcheck_count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725
1726		dev_priv->last_acthd = acthd;
1727		dev_priv->last_instdone = instdone;
1728		dev_priv->last_instdone1 = instdone1;
 
1729	}
 
 
 
 
 
 
 
 
 
 
1730
1731repeat:
1732	/* Reset timer case chip hangs without another request being added */
1733	mod_timer(&dev_priv->hangcheck_timer,
1734		  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1735}
1736
1737/* drm_dma.h hooks
1738*/
1739static void ironlake_irq_preinstall(struct drm_device *dev)
1740{
1741	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1742
1743	atomic_set(&dev_priv->irq_received, 0);
 
1744
1745	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
1746	INIT_WORK(&dev_priv->error_work, i915_error_work_func);
1747	if (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
1748		INIT_WORK(&dev_priv->rps_work, gen6_pm_rps_work);
1749
1750	I915_WRITE(HWSTAM, 0xeffe);
1751	if (IS_GEN6(dev) || IS_GEN7(dev)) {
1752		/* Workaround stalls observed on Sandy Bridge GPUs by
1753		 * making the blitter command streamer generate a
1754		 * write to the Hardware Status Page for
1755		 * MI_USER_INTERRUPT.  This appears to serialize the
1756		 * previous seqno write out before the interrupt
1757		 * happens.
1758		 */
1759		I915_WRITE(GEN6_BLITTER_HWSTAM, ~GEN6_BLITTER_USER_INTERRUPT);
1760		I915_WRITE(GEN6_BSD_HWSTAM, ~GEN6_BSD_USER_INTERRUPT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761	}
1762
1763	/* XXX hotplug from PCH */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1764
1765	I915_WRITE(DEIMR, 0xffffffff);
1766	I915_WRITE(DEIER, 0x0);
1767	POSTING_READ(DEIER);
1768
1769	/* and GT */
1770	I915_WRITE(GTIMR, 0xffffffff);
1771	I915_WRITE(GTIER, 0x0);
1772	POSTING_READ(GTIER);
1773
1774	/* south display irq */
1775	I915_WRITE(SDEIMR, 0xffffffff);
1776	I915_WRITE(SDEIER, 0x0);
1777	POSTING_READ(SDEIER);
1778}
1779
1780static int ironlake_irq_postinstall(struct drm_device *dev)
1781{
1782	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1783	/* enable kind of interrupts always enabled */
1784	u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
1785			   DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE;
1786	u32 render_irqs;
1787	u32 hotplug_mask;
1788
1789	DRM_INIT_WAITQUEUE(&dev_priv->ring[RCS].irq_queue);
1790	if (HAS_BSD(dev))
1791		DRM_INIT_WAITQUEUE(&dev_priv->ring[VCS].irq_queue);
1792	if (HAS_BLT(dev))
1793		DRM_INIT_WAITQUEUE(&dev_priv->ring[BCS].irq_queue);
1794
1795	dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1796	dev_priv->irq_mask = ~display_mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1797
1798	/* should always can generate irq */
1799	I915_WRITE(DEIIR, I915_READ(DEIIR));
1800	I915_WRITE(DEIMR, dev_priv->irq_mask);
1801	I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK | DE_PIPEB_VBLANK);
1802	POSTING_READ(DEIER);
1803
1804	dev_priv->gt_irq_mask = ~0;
1805
1806	I915_WRITE(GTIIR, I915_READ(GTIIR));
1807	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1808
1809	if (IS_GEN6(dev))
1810		render_irqs =
1811			GT_USER_INTERRUPT |
1812			GT_GEN6_BSD_USER_INTERRUPT |
1813			GT_BLT_USER_INTERRUPT;
1814	else
1815		render_irqs =
1816			GT_USER_INTERRUPT |
1817			GT_PIPE_NOTIFY |
1818			GT_BSD_USER_INTERRUPT;
1819	I915_WRITE(GTIER, render_irqs);
1820	POSTING_READ(GTIER);
1821
1822	if (HAS_PCH_CPT(dev)) {
1823		hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1824				SDE_PORTB_HOTPLUG_CPT |
1825				SDE_PORTC_HOTPLUG_CPT |
1826				SDE_PORTD_HOTPLUG_CPT);
 
 
1827	} else {
1828		hotplug_mask = (SDE_CRT_HOTPLUG |
1829				SDE_PORTB_HOTPLUG |
1830				SDE_PORTC_HOTPLUG |
1831				SDE_PORTD_HOTPLUG |
1832				SDE_AUX_MASK);
 
1833	}
1834
1835	dev_priv->pch_irq_mask = ~hotplug_mask;
1836
1837	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1838	I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1839	I915_WRITE(SDEIER, hotplug_mask);
1840	POSTING_READ(SDEIER);
1841
1842	if (IS_IRONLAKE_M(dev)) {
1843		/* Clear & enable PCU event interrupts */
1844		I915_WRITE(DEIIR, DE_PCU_EVENT);
1845		I915_WRITE(DEIER, I915_READ(DEIER) | DE_PCU_EVENT);
1846		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847	}
 
1848
1849	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1850}
1851
1852static int ivybridge_irq_postinstall(struct drm_device *dev)
1853{
1854	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1855	/* enable kind of interrupts always enabled */
1856	u32 display_mask = DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
1857		DE_PCH_EVENT_IVB | DE_PLANEA_FLIP_DONE_IVB |
1858		DE_PLANEB_FLIP_DONE_IVB;
1859	u32 render_irqs;
1860	u32 hotplug_mask;
1861
1862	DRM_INIT_WAITQUEUE(&dev_priv->ring[RCS].irq_queue);
1863	if (HAS_BSD(dev))
1864		DRM_INIT_WAITQUEUE(&dev_priv->ring[VCS].irq_queue);
1865	if (HAS_BLT(dev))
1866		DRM_INIT_WAITQUEUE(&dev_priv->ring[BCS].irq_queue);
1867
1868	dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
1869	dev_priv->irq_mask = ~display_mask;
1870
1871	/* should always can generate irq */
1872	I915_WRITE(DEIIR, I915_READ(DEIIR));
1873	I915_WRITE(DEIMR, dev_priv->irq_mask);
1874	I915_WRITE(DEIER, display_mask | DE_PIPEA_VBLANK_IVB |
1875		   DE_PIPEB_VBLANK_IVB);
1876	POSTING_READ(DEIER);
1877
1878	dev_priv->gt_irq_mask = ~0;
1879
1880	I915_WRITE(GTIIR, I915_READ(GTIIR));
1881	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1882
1883	render_irqs = GT_USER_INTERRUPT | GT_GEN6_BSD_USER_INTERRUPT |
1884		GT_BLT_USER_INTERRUPT;
1885	I915_WRITE(GTIER, render_irqs);
1886	POSTING_READ(GTIER);
1887
1888	hotplug_mask = (SDE_CRT_HOTPLUG_CPT |
1889			SDE_PORTB_HOTPLUG_CPT |
1890			SDE_PORTC_HOTPLUG_CPT |
1891			SDE_PORTD_HOTPLUG_CPT);
1892	dev_priv->pch_irq_mask = ~hotplug_mask;
1893
1894	I915_WRITE(SDEIIR, I915_READ(SDEIIR));
1895	I915_WRITE(SDEIMR, dev_priv->pch_irq_mask);
1896	I915_WRITE(SDEIER, hotplug_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1897	POSTING_READ(SDEIER);
1898
1899	return 0;
 
 
 
 
 
 
 
 
 
 
1900}
1901
1902static void i915_driver_irq_preinstall(struct drm_device * dev)
1903{
1904	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1905	int pipe;
1906
1907	atomic_set(&dev_priv->irq_received, 0);
 
1908
1909	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
1910	INIT_WORK(&dev_priv->error_work, i915_error_work_func);
1911
1912	if (I915_HAS_HOTPLUG(dev)) {
1913		I915_WRITE(PORT_HOTPLUG_EN, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1914		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
1915	}
1916
1917	I915_WRITE(HWSTAM, 0xeffe);
1918	for_each_pipe(pipe)
1919		I915_WRITE(PIPESTAT(pipe), 0);
1920	I915_WRITE(IMR, 0xffffffff);
1921	I915_WRITE(IER, 0x0);
1922	POSTING_READ(IER);
1923}
1924
1925/*
1926 * Must be called after intel_modeset_init or hotplug interrupts won't be
1927 * enabled correctly.
1928 */
1929static int i915_driver_irq_postinstall(struct drm_device *dev)
1930{
1931	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
1932	u32 enable_mask = I915_INTERRUPT_ENABLE_FIX | I915_INTERRUPT_ENABLE_VAR;
1933	u32 error_mask;
1934
1935	dev_priv->vblank_pipe = DRM_I915_VBLANK_PIPE_A | DRM_I915_VBLANK_PIPE_B;
 
1936
1937	/* Unmask the interrupts that we always want on. */
1938	dev_priv->irq_mask = ~I915_INTERRUPT_ENABLE_FIX;
1939
1940	dev_priv->pipestat[0] = 0;
1941	dev_priv->pipestat[1] = 0;
 
 
 
 
 
 
 
 
1942
1943	if (I915_HAS_HOTPLUG(dev)) {
1944		/* Enable in IER... */
1945		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
1946		/* and unmask in IMR */
1947		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
1948	}
1949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950	/*
1951	 * Enable some error detection, note the instruction error mask
1952	 * bit is reserved, so we leave it masked.
1953	 */
1954	if (IS_G4X(dev)) {
1955		error_mask = ~(GM45_ERROR_PAGE_TABLE |
1956			       GM45_ERROR_MEM_PRIV |
1957			       GM45_ERROR_CP_PRIV |
1958			       I915_ERROR_MEMORY_REFRESH);
1959	} else {
1960		error_mask = ~(I915_ERROR_PAGE_TABLE |
1961			       I915_ERROR_MEMORY_REFRESH);
1962	}
1963	I915_WRITE(EMR, error_mask);
1964
1965	I915_WRITE(IMR, dev_priv->irq_mask);
1966	I915_WRITE(IER, enable_mask);
1967	POSTING_READ(IER);
1968
1969	if (I915_HAS_HOTPLUG(dev)) {
1970		u32 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
1971
1972		/* Note HDMI and DP share bits */
1973		if (dev_priv->hotplug_supported_mask & HDMIB_HOTPLUG_INT_STATUS)
1974			hotplug_en |= HDMIB_HOTPLUG_INT_EN;
1975		if (dev_priv->hotplug_supported_mask & HDMIC_HOTPLUG_INT_STATUS)
1976			hotplug_en |= HDMIC_HOTPLUG_INT_EN;
1977		if (dev_priv->hotplug_supported_mask & HDMID_HOTPLUG_INT_STATUS)
1978			hotplug_en |= HDMID_HOTPLUG_INT_EN;
1979		if (dev_priv->hotplug_supported_mask & SDVOC_HOTPLUG_INT_STATUS)
1980			hotplug_en |= SDVOC_HOTPLUG_INT_EN;
1981		if (dev_priv->hotplug_supported_mask & SDVOB_HOTPLUG_INT_STATUS)
1982			hotplug_en |= SDVOB_HOTPLUG_INT_EN;
1983		if (dev_priv->hotplug_supported_mask & CRT_HOTPLUG_INT_STATUS) {
1984			hotplug_en |= CRT_HOTPLUG_INT_EN;
1985
1986			/* Programming the CRT detection parameters tends
1987			   to generate a spurious hotplug event about three
1988			   seconds later.  So just do it once.
1989			*/
1990			if (IS_G4X(dev))
1991				hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
1992			hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
1993		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1994
1995		/* Ignore TV since it's buggy */
 
1996
1997		I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
1998	}
1999
2000	intel_opregion_enable_asle(dev);
 
 
 
 
2001
2002	return 0;
2003}
 
2004
2005static void ironlake_irq_uninstall(struct drm_device *dev)
2006{
2007	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2008
2009	if (!dev_priv)
2010		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011
2012	dev_priv->vblank_pipe = 0;
 
2013
2014	I915_WRITE(HWSTAM, 0xffffffff);
 
2015
2016	I915_WRITE(DEIMR, 0xffffffff);
2017	I915_WRITE(DEIER, 0x0);
2018	I915_WRITE(DEIIR, I915_READ(DEIIR));
2019
2020	I915_WRITE(GTIMR, 0xffffffff);
2021	I915_WRITE(GTIER, 0x0);
2022	I915_WRITE(GTIIR, I915_READ(GTIIR));
2023}
2024
2025static void i915_driver_irq_uninstall(struct drm_device * dev)
 
 
 
 
 
 
 
2026{
2027	drm_i915_private_t *dev_priv = (drm_i915_private_t *) dev->dev_private;
2028	int pipe;
 
2029
2030	if (!dev_priv)
2031		return;
2032
2033	dev_priv->vblank_pipe = 0;
2034
2035	if (I915_HAS_HOTPLUG(dev)) {
2036		I915_WRITE(PORT_HOTPLUG_EN, 0);
2037		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2038	}
 
 
 
 
 
 
 
 
 
 
 
2039
2040	I915_WRITE(HWSTAM, 0xffffffff);
2041	for_each_pipe(pipe)
2042		I915_WRITE(PIPESTAT(pipe), 0);
2043	I915_WRITE(IMR, 0xffffffff);
2044	I915_WRITE(IER, 0x0);
2045
2046	for_each_pipe(pipe)
2047		I915_WRITE(PIPESTAT(pipe),
2048			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
2049	I915_WRITE(IIR, I915_READ(IIR));
2050}
2051
2052void intel_irq_init(struct drm_device *dev)
2053{
2054	dev->driver->get_vblank_counter = i915_get_vblank_counter;
2055	dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
2056	if (IS_G4X(dev) || IS_GEN5(dev) || IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
2057		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
2058		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
 
 
 
 
 
 
 
 
 
 
 
 
 
2059	}
 
2060
2061	if (drm_core_check_feature(dev, DRIVER_MODESET))
2062		dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
2063	else
2064		dev->driver->get_vblank_timestamp = NULL;
2065	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2066
2067	if (IS_IVYBRIDGE(dev)) {
2068		/* Share pre & uninstall handlers with ILK/SNB */
2069		dev->driver->irq_handler = ivybridge_irq_handler;
2070		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2071		dev->driver->irq_postinstall = ivybridge_irq_postinstall;
2072		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2073		dev->driver->enable_vblank = ivybridge_enable_vblank;
2074		dev->driver->disable_vblank = ivybridge_disable_vblank;
2075	} else if (HAS_PCH_SPLIT(dev)) {
2076		dev->driver->irq_handler = ironlake_irq_handler;
2077		dev->driver->irq_preinstall = ironlake_irq_preinstall;
2078		dev->driver->irq_postinstall = ironlake_irq_postinstall;
2079		dev->driver->irq_uninstall = ironlake_irq_uninstall;
2080		dev->driver->enable_vblank = ironlake_enable_vblank;
2081		dev->driver->disable_vblank = ironlake_disable_vblank;
2082	} else {
2083		dev->driver->irq_preinstall = i915_driver_irq_preinstall;
2084		dev->driver->irq_postinstall = i915_driver_irq_postinstall;
2085		dev->driver->irq_uninstall = i915_driver_irq_uninstall;
2086		dev->driver->irq_handler = i915_driver_irq_handler;
2087		dev->driver->enable_vblank = i915_enable_vblank;
2088		dev->driver->disable_vblank = i915_disable_vblank;
2089	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090}
v5.4
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/circ_buf.h>
  32#include <linux/cpuidle.h>
  33#include <linux/slab.h>
  34#include <linux/sysrq.h>
  35
  36#include <drm/drm_drv.h>
  37#include <drm/drm_irq.h>
  38#include <drm/i915_drm.h>
  39
  40#include "display/intel_display_types.h"
  41#include "display/intel_fifo_underrun.h"
  42#include "display/intel_hotplug.h"
  43#include "display/intel_lpe_audio.h"
  44#include "display/intel_psr.h"
  45
  46#include "gt/intel_gt.h"
  47#include "gt/intel_gt_irq.h"
  48#include "gt/intel_gt_pm_irq.h"
  49
  50#include "i915_drv.h"
  51#include "i915_irq.h"
  52#include "i915_trace.h"
  53#include "intel_pm.h"
 
 
  54
  55/**
  56 * DOC: interrupt handling
  57 *
  58 * These functions provide the basic support for enabling and disabling the
  59 * interrupt handling support. There's a lot more functionality in i915_irq.c
  60 * and related files, but that will be described in separate chapters.
  61 */
  62
  63typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
  64
  65static const u32 hpd_ilk[HPD_NUM_PINS] = {
  66	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  67};
  68
  69static const u32 hpd_ivb[HPD_NUM_PINS] = {
  70	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  71};
  72
  73static const u32 hpd_bdw[HPD_NUM_PINS] = {
  74	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  75};
  76
  77static const u32 hpd_ibx[HPD_NUM_PINS] = {
  78	[HPD_CRT] = SDE_CRT_HOTPLUG,
  79	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  80	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  81	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  82	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  83};
  84
  85static const u32 hpd_cpt[HPD_NUM_PINS] = {
  86	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  87	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  88	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  89	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  90	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  91};
  92
  93static const u32 hpd_spt[HPD_NUM_PINS] = {
  94	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  95	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  96	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  97	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  98	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  99};
 100
 101static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
 102	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
 103	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
 104	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
 105	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 106	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 107	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
 108};
 109
 110static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 111	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 112	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 113	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 114	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 115	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 116	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 117};
 118
 119static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 120	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 121	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 122	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 123	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 124	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 125	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 126};
 127
 128/* BXT hpd list */
 129static const u32 hpd_bxt[HPD_NUM_PINS] = {
 130	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 131	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 132	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 133};
 134
 135static const u32 hpd_gen11[HPD_NUM_PINS] = {
 136	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 137	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 138	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 139	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
 140};
 141
 142static const u32 hpd_gen12[HPD_NUM_PINS] = {
 143	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 144	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 145	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 146	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
 147	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
 148	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
 149};
 150
 151static const u32 hpd_icp[HPD_NUM_PINS] = {
 152	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 153	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 154	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
 155	[HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
 156	[HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
 157	[HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
 158};
 159
 160static const u32 hpd_mcc[HPD_NUM_PINS] = {
 161	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 162	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 163	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
 164};
 165
 166static const u32 hpd_tgp[HPD_NUM_PINS] = {
 167	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 168	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 169	[HPD_PORT_C] = SDE_DDIC_HOTPLUG_TGP,
 170	[HPD_PORT_D] = SDE_TC1_HOTPLUG_ICP,
 171	[HPD_PORT_E] = SDE_TC2_HOTPLUG_ICP,
 172	[HPD_PORT_F] = SDE_TC3_HOTPLUG_ICP,
 173	[HPD_PORT_G] = SDE_TC4_HOTPLUG_ICP,
 174	[HPD_PORT_H] = SDE_TC5_HOTPLUG_TGP,
 175	[HPD_PORT_I] = SDE_TC6_HOTPLUG_TGP,
 176};
 177
 178void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 179		    i915_reg_t iir, i915_reg_t ier)
 180{
 181	intel_uncore_write(uncore, imr, 0xffffffff);
 182	intel_uncore_posting_read(uncore, imr);
 183
 184	intel_uncore_write(uncore, ier, 0);
 185
 186	/* IIR can theoretically queue up two events. Be paranoid. */
 187	intel_uncore_write(uncore, iir, 0xffffffff);
 188	intel_uncore_posting_read(uncore, iir);
 189	intel_uncore_write(uncore, iir, 0xffffffff);
 190	intel_uncore_posting_read(uncore, iir);
 191}
 192
 193void gen2_irq_reset(struct intel_uncore *uncore)
 194{
 195	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 196	intel_uncore_posting_read16(uncore, GEN2_IMR);
 197
 198	intel_uncore_write16(uncore, GEN2_IER, 0);
 199
 200	/* IIR can theoretically queue up two events. Be paranoid. */
 201	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 202	intel_uncore_posting_read16(uncore, GEN2_IIR);
 203	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 204	intel_uncore_posting_read16(uncore, GEN2_IIR);
 205}
 206
 207/*
 208 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 209 */
 210static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 211{
 212	u32 val = intel_uncore_read(uncore, reg);
 213
 214	if (val == 0)
 215		return;
 216
 217	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 218	     i915_mmio_reg_offset(reg), val);
 219	intel_uncore_write(uncore, reg, 0xffffffff);
 220	intel_uncore_posting_read(uncore, reg);
 221	intel_uncore_write(uncore, reg, 0xffffffff);
 222	intel_uncore_posting_read(uncore, reg);
 223}
 224
 225static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 226{
 227	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 228
 229	if (val == 0)
 230		return;
 231
 232	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 233	     i915_mmio_reg_offset(GEN2_IIR), val);
 234	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 235	intel_uncore_posting_read16(uncore, GEN2_IIR);
 236	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 237	intel_uncore_posting_read16(uncore, GEN2_IIR);
 238}
 239
 240void gen3_irq_init(struct intel_uncore *uncore,
 241		   i915_reg_t imr, u32 imr_val,
 242		   i915_reg_t ier, u32 ier_val,
 243		   i915_reg_t iir)
 244{
 245	gen3_assert_iir_is_zero(uncore, iir);
 246
 247	intel_uncore_write(uncore, ier, ier_val);
 248	intel_uncore_write(uncore, imr, imr_val);
 249	intel_uncore_posting_read(uncore, imr);
 250}
 251
 252void gen2_irq_init(struct intel_uncore *uncore,
 253		   u32 imr_val, u32 ier_val)
 254{
 255	gen2_assert_iir_is_zero(uncore);
 256
 257	intel_uncore_write16(uncore, GEN2_IER, ier_val);
 258	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 259	intel_uncore_posting_read16(uncore, GEN2_IMR);
 260}
 261
 262/* For display hotplug interrupt */
 263static inline void
 264i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 265				     u32 mask,
 266				     u32 bits)
 267{
 268	u32 val;
 269
 270	lockdep_assert_held(&dev_priv->irq_lock);
 271	WARN_ON(bits & ~mask);
 272
 273	val = I915_READ(PORT_HOTPLUG_EN);
 274	val &= ~mask;
 275	val |= bits;
 276	I915_WRITE(PORT_HOTPLUG_EN, val);
 277}
 278
 279/**
 280 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 281 * @dev_priv: driver private
 282 * @mask: bits to update
 283 * @bits: bits to enable
 284 * NOTE: the HPD enable bits are modified both inside and outside
 285 * of an interrupt context. To avoid that read-modify-write cycles
 286 * interfer, these bits are protected by a spinlock. Since this
 287 * function is usually not called from a context where the lock is
 288 * held already, this function acquires the lock itself. A non-locking
 289 * version is also available.
 290 */
 291void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 292				   u32 mask,
 293				   u32 bits)
 294{
 295	spin_lock_irq(&dev_priv->irq_lock);
 296	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 297	spin_unlock_irq(&dev_priv->irq_lock);
 298}
 299
 300/**
 301 * ilk_update_display_irq - update DEIMR
 302 * @dev_priv: driver private
 303 * @interrupt_mask: mask of interrupt bits to update
 304 * @enabled_irq_mask: mask of interrupt bits to enable
 305 */
 306void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 307			    u32 interrupt_mask,
 308			    u32 enabled_irq_mask)
 309{
 310	u32 new_val;
 311
 312	lockdep_assert_held(&dev_priv->irq_lock);
 313
 314	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 315
 316	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 317		return;
 318
 319	new_val = dev_priv->irq_mask;
 320	new_val &= ~interrupt_mask;
 321	new_val |= (~enabled_irq_mask & interrupt_mask);
 322
 323	if (new_val != dev_priv->irq_mask) {
 324		dev_priv->irq_mask = new_val;
 325		I915_WRITE(DEIMR, dev_priv->irq_mask);
 326		POSTING_READ(DEIMR);
 327	}
 328}
 329
 330static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 
 331{
 332	WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
 333
 334	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 335}
 336
 337void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 338{
 339	struct intel_gt *gt = &dev_priv->gt;
 340
 341	spin_lock_irq(&gt->irq_lock);
 342
 343	while (gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM))
 344		;
 345
 346	dev_priv->gt_pm.rps.pm_iir = 0;
 347
 348	spin_unlock_irq(&gt->irq_lock);
 349}
 350
 351void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 352{
 353	struct intel_gt *gt = &dev_priv->gt;
 354
 355	spin_lock_irq(&gt->irq_lock);
 356	gen6_gt_pm_reset_iir(gt, GEN6_PM_RPS_EVENTS);
 357	dev_priv->gt_pm.rps.pm_iir = 0;
 358	spin_unlock_irq(&gt->irq_lock);
 359}
 360
 361void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
 362{
 363	struct intel_gt *gt = &dev_priv->gt;
 364	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 365
 366	if (READ_ONCE(rps->interrupts_enabled))
 367		return;
 368
 369	spin_lock_irq(&gt->irq_lock);
 370	WARN_ON_ONCE(rps->pm_iir);
 371
 372	if (INTEL_GEN(dev_priv) >= 11)
 373		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM));
 374	else
 375		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 376
 377	rps->interrupts_enabled = true;
 378	gen6_gt_pm_enable_irq(gt, dev_priv->pm_rps_events);
 379
 380	spin_unlock_irq(&gt->irq_lock);
 381}
 382
 383u32 gen6_sanitize_rps_pm_mask(const struct drm_i915_private *i915, u32 mask)
 384{
 385	return mask & ~i915->gt_pm.rps.pm_intrmsk_mbz;
 386}
 387
 388void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
 389{
 390	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 391	struct intel_gt *gt = &dev_priv->gt;
 392
 393	if (!READ_ONCE(rps->interrupts_enabled))
 394		return;
 395
 396	spin_lock_irq(&gt->irq_lock);
 397	rps->interrupts_enabled = false;
 398
 399	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
 400
 401	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
 402
 403	spin_unlock_irq(&gt->irq_lock);
 404	intel_synchronize_irq(dev_priv);
 405
 406	/* Now that we will not be generating any more work, flush any
 407	 * outstanding tasks. As we are called on the RPS idle path,
 408	 * we will reset the GPU to minimum frequencies, so the current
 409	 * state of the worker can be discarded.
 410	 */
 411	cancel_work_sync(&rps->work);
 412	if (INTEL_GEN(dev_priv) >= 11)
 413		gen11_reset_rps_interrupts(dev_priv);
 414	else
 415		gen6_reset_rps_interrupts(dev_priv);
 416}
 417
 418void gen9_reset_guc_interrupts(struct intel_guc *guc)
 419{
 420	struct intel_gt *gt = guc_to_gt(guc);
 421
 422	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 423
 424	spin_lock_irq(&gt->irq_lock);
 425	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
 426	spin_unlock_irq(&gt->irq_lock);
 427}
 428
 429void gen9_enable_guc_interrupts(struct intel_guc *guc)
 430{
 431	struct intel_gt *gt = guc_to_gt(guc);
 432
 433	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 434
 435	spin_lock_irq(&gt->irq_lock);
 436	if (!guc->interrupts.enabled) {
 437		WARN_ON_ONCE(intel_uncore_read(gt->uncore,
 438					       gen6_pm_iir(gt->i915)) &
 439			     gt->pm_guc_events);
 440		guc->interrupts.enabled = true;
 441		gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
 442	}
 443	spin_unlock_irq(&gt->irq_lock);
 444}
 445
 446void gen9_disable_guc_interrupts(struct intel_guc *guc)
 
 447{
 448	struct intel_gt *gt = guc_to_gt(guc);
 
 449
 450	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 451
 452	spin_lock_irq(&gt->irq_lock);
 453	guc->interrupts.enabled = false;
 454
 455	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
 456
 457	spin_unlock_irq(&gt->irq_lock);
 458	intel_synchronize_irq(gt->i915);
 459
 460	gen9_reset_guc_interrupts(guc);
 461}
 462
 463void gen11_reset_guc_interrupts(struct intel_guc *guc)
 464{
 465	struct intel_gt *gt = guc_to_gt(guc);
 466
 467	spin_lock_irq(&gt->irq_lock);
 468	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
 469	spin_unlock_irq(&gt->irq_lock);
 470}
 471
 472void gen11_enable_guc_interrupts(struct intel_guc *guc)
 473{
 474	struct intel_gt *gt = guc_to_gt(guc);
 475
 476	spin_lock_irq(&gt->irq_lock);
 477	if (!guc->interrupts.enabled) {
 478		u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
 479
 480		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
 481		intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, events);
 482		intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~events);
 483		guc->interrupts.enabled = true;
 484	}
 485	spin_unlock_irq(&gt->irq_lock);
 486}
 487
 488void gen11_disable_guc_interrupts(struct intel_guc *guc)
 
 489{
 490	struct intel_gt *gt = guc_to_gt(guc);
 
 491
 492	spin_lock_irq(&gt->irq_lock);
 493	guc->interrupts.enabled = false;
 494
 495	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
 496	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
 497
 498	spin_unlock_irq(&gt->irq_lock);
 499	intel_synchronize_irq(gt->i915);
 500
 501	gen11_reset_guc_interrupts(guc);
 502}
 503
 504/**
 505 * bdw_update_port_irq - update DE port interrupt
 506 * @dev_priv: driver private
 507 * @interrupt_mask: mask of interrupt bits to update
 508 * @enabled_irq_mask: mask of interrupt bits to enable
 509 */
 510static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 511				u32 interrupt_mask,
 512				u32 enabled_irq_mask)
 513{
 514	u32 new_val;
 515	u32 old_val;
 516
 517	lockdep_assert_held(&dev_priv->irq_lock);
 518
 519	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 520
 521	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 522		return;
 523
 524	old_val = I915_READ(GEN8_DE_PORT_IMR);
 525
 526	new_val = old_val;
 527	new_val &= ~interrupt_mask;
 528	new_val |= (~enabled_irq_mask & interrupt_mask);
 529
 530	if (new_val != old_val) {
 531		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 532		POSTING_READ(GEN8_DE_PORT_IMR);
 533	}
 534}
 535
 536/**
 537 * bdw_update_pipe_irq - update DE pipe interrupt
 538 * @dev_priv: driver private
 539 * @pipe: pipe whose interrupt to update
 540 * @interrupt_mask: mask of interrupt bits to update
 541 * @enabled_irq_mask: mask of interrupt bits to enable
 542 */
 543void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 544			 enum pipe pipe,
 545			 u32 interrupt_mask,
 546			 u32 enabled_irq_mask)
 547{
 548	u32 new_val;
 
 549
 550	lockdep_assert_held(&dev_priv->irq_lock);
 551
 552	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 553
 554	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 555		return;
 556
 557	new_val = dev_priv->de_irq_mask[pipe];
 558	new_val &= ~interrupt_mask;
 559	new_val |= (~enabled_irq_mask & interrupt_mask);
 560
 561	if (new_val != dev_priv->de_irq_mask[pipe]) {
 562		dev_priv->de_irq_mask[pipe] = new_val;
 563		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 564		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 565	}
 566}
 567
 568/**
 569 * ibx_display_interrupt_update - update SDEIMR
 570 * @dev_priv: driver private
 571 * @interrupt_mask: mask of interrupt bits to update
 572 * @enabled_irq_mask: mask of interrupt bits to enable
 573 */
 574void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 575				  u32 interrupt_mask,
 576				  u32 enabled_irq_mask)
 577{
 578	u32 sdeimr = I915_READ(SDEIMR);
 579	sdeimr &= ~interrupt_mask;
 580	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 581
 582	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 583
 584	lockdep_assert_held(&dev_priv->irq_lock);
 585
 586	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 587		return;
 588
 589	I915_WRITE(SDEIMR, sdeimr);
 590	POSTING_READ(SDEIMR);
 591}
 592
 593u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 594			      enum pipe pipe)
 595{
 596	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 597	u32 enable_mask = status_mask << 16;
 598
 599	lockdep_assert_held(&dev_priv->irq_lock);
 600
 601	if (INTEL_GEN(dev_priv) < 5)
 602		goto out;
 603
 604	/*
 605	 * On pipe A we don't support the PSR interrupt yet,
 606	 * on pipe B and C the same bit MBZ.
 607	 */
 608	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 609		return 0;
 610	/*
 611	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 612	 * A the same bit is for perf counters which we don't use either.
 613	 */
 614	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 615		return 0;
 616
 617	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 618			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 619			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 620	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 621		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 622	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 623		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 624
 625out:
 626	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 627		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
 628		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 629		  pipe_name(pipe), enable_mask, status_mask);
 630
 631	return enable_mask;
 632}
 633
 634void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 635			  enum pipe pipe, u32 status_mask)
 636{
 637	i915_reg_t reg = PIPESTAT(pipe);
 638	u32 enable_mask;
 639
 640	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 641		  "pipe %c: status_mask=0x%x\n",
 642		  pipe_name(pipe), status_mask);
 643
 644	lockdep_assert_held(&dev_priv->irq_lock);
 645	WARN_ON(!intel_irqs_enabled(dev_priv));
 646
 647	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 648		return;
 649
 650	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 651	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 652
 653	I915_WRITE(reg, enable_mask | status_mask);
 654	POSTING_READ(reg);
 655}
 656
 657void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 658			   enum pipe pipe, u32 status_mask)
 659{
 660	i915_reg_t reg = PIPESTAT(pipe);
 661	u32 enable_mask;
 662
 663	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 664		  "pipe %c: status_mask=0x%x\n",
 665		  pipe_name(pipe), status_mask);
 666
 667	lockdep_assert_held(&dev_priv->irq_lock);
 668	WARN_ON(!intel_irqs_enabled(dev_priv));
 669
 670	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 671		return;
 672
 673	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 674	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 675
 676	I915_WRITE(reg, enable_mask | status_mask);
 677	POSTING_READ(reg);
 678}
 679
 680static bool i915_has_asle(struct drm_i915_private *dev_priv)
 681{
 682	if (!dev_priv->opregion.asle)
 683		return false;
 684
 685	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 686}
 687
 688/**
 689 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 690 * @dev_priv: i915 device private
 
 
 
 
 
 691 */
 692static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 
 693{
 694	if (!i915_has_asle(dev_priv))
 695		return;
 696
 697	spin_lock_irq(&dev_priv->irq_lock);
 698
 699	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 700	if (INTEL_GEN(dev_priv) >= 4)
 701		i915_enable_pipestat(dev_priv, PIPE_A,
 702				     PIPE_LEGACY_BLC_EVENT_STATUS);
 703
 704	spin_unlock_irq(&dev_priv->irq_lock);
 705}
 706
 707/*
 708 * This timing diagram depicts the video signal in and
 709 * around the vertical blanking period.
 710 *
 711 * Assumptions about the fictitious mode used in this example:
 712 *  vblank_start >= 3
 713 *  vsync_start = vblank_start + 1
 714 *  vsync_end = vblank_start + 2
 715 *  vtotal = vblank_start + 3
 716 *
 717 *           start of vblank:
 718 *           latch double buffered registers
 719 *           increment frame counter (ctg+)
 720 *           generate start of vblank interrupt (gen4+)
 721 *           |
 722 *           |          frame start:
 723 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 724 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 725 *           |          |
 726 *           |          |  start of vsync:
 727 *           |          |  generate vsync interrupt
 728 *           |          |  |
 729 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 730 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 731 * ----va---> <-----------------vb--------------------> <--------va-------------
 732 *       |          |       <----vs----->                     |
 733 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 734 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 735 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 736 *       |          |                                         |
 737 *       last visible pixel                                   first visible pixel
 738 *                  |                                         increment frame counter (gen3/4)
 739 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 740 *
 741 * x  = horizontal active
 742 * _  = horizontal blanking
 743 * hs = horizontal sync
 744 * va = vertical active
 745 * vb = vertical blanking
 746 * vs = vertical sync
 747 * vbs = vblank_start (number)
 748 *
 749 * Summary:
 750 * - most events happen at the start of horizontal sync
 751 * - frame start happens at the start of horizontal blank, 1-4 lines
 752 *   (depending on PIPECONF settings) after the start of vblank
 753 * - gen3/4 pixel and frame counter are synchronized with the start
 754 *   of horizontal active on the first line of vertical active
 755 */
 756
 757/* Called from drm generic code, passed a 'crtc', which
 758 * we use as a pipe index
 759 */
 760u32 i915_get_vblank_counter(struct drm_crtc *crtc)
 761{
 762	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 763	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 764	const struct drm_display_mode *mode = &vblank->hwmode;
 765	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 766	i915_reg_t high_frame, low_frame;
 767	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 768	unsigned long irqflags;
 769
 770	/*
 771	 * On i965gm TV output the frame counter only works up to
 772	 * the point when we enable the TV encoder. After that the
 773	 * frame counter ceases to work and reads zero. We need a
 774	 * vblank wait before enabling the TV encoder and so we
 775	 * have to enable vblank interrupts while the frame counter
 776	 * is still in a working state. However the core vblank code
 777	 * does not like us returning non-zero frame counter values
 778	 * when we've told it that we don't have a working frame
 779	 * counter. Thus we must stop non-zero values leaking out.
 780	 */
 781	if (!vblank->max_vblank_count)
 782		return 0;
 783
 784	htotal = mode->crtc_htotal;
 785	hsync_start = mode->crtc_hsync_start;
 786	vbl_start = mode->crtc_vblank_start;
 787	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 788		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 789
 790	/* Convert to pixel count */
 791	vbl_start *= htotal;
 792
 793	/* Start of vblank event occurs at start of hsync */
 794	vbl_start -= htotal - hsync_start;
 795
 796	high_frame = PIPEFRAME(pipe);
 797	low_frame = PIPEFRAMEPIXEL(pipe);
 798
 799	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 800
 801	/*
 802	 * High & low register fields aren't synchronized, so make sure
 803	 * we get a low value that's stable across two reads of the high
 804	 * register.
 805	 */
 806	do {
 807		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 808		low   = I915_READ_FW(low_frame);
 809		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 810	} while (high1 != high2);
 811
 812	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 813
 814	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 815	pixel = low & PIPE_PIXEL_MASK;
 816	low >>= PIPE_FRAME_LOW_SHIFT;
 817
 818	/*
 819	 * The frame counter increments at beginning of active.
 820	 * Cook up a vblank counter by also checking the pixel
 821	 * counter against vblank start.
 822	 */
 823	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 824}
 825
 826u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
 827{
 828	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 829	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 830
 831	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 832}
 833
 834/*
 835 * On certain encoders on certain platforms, pipe
 836 * scanline register will not work to get the scanline,
 837 * since the timings are driven from the PORT or issues
 838 * with scanline register updates.
 839 * This function will use Framestamp and current
 840 * timestamp registers to calculate the scanline.
 841 */
 842static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 843{
 844	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 845	struct drm_vblank_crtc *vblank =
 846		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 847	const struct drm_display_mode *mode = &vblank->hwmode;
 848	u32 vblank_start = mode->crtc_vblank_start;
 849	u32 vtotal = mode->crtc_vtotal;
 850	u32 htotal = mode->crtc_htotal;
 851	u32 clock = mode->crtc_clock;
 852	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
 853
 854	/*
 855	 * To avoid the race condition where we might cross into the
 856	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 857	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 858	 * during the same frame.
 859	 */
 860	do {
 861		/*
 862		 * This field provides read back of the display
 863		 * pipe frame time stamp. The time stamp value
 864		 * is sampled at every start of vertical blank.
 865		 */
 866		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 867
 868		/*
 869		 * The TIMESTAMP_CTR register has the current
 870		 * time stamp value.
 871		 */
 872		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
 873
 874		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 875	} while (scan_post_time != scan_prev_time);
 876
 877	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 878					clock), 1000 * htotal);
 879	scanline = min(scanline, vtotal - 1);
 880	scanline = (scanline + vblank_start) % vtotal;
 881
 882	return scanline;
 883}
 884
 885/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 886static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 887{
 888	struct drm_device *dev = crtc->base.dev;
 889	struct drm_i915_private *dev_priv = to_i915(dev);
 890	const struct drm_display_mode *mode;
 891	struct drm_vblank_crtc *vblank;
 892	enum pipe pipe = crtc->pipe;
 893	int position, vtotal;
 894
 895	if (!crtc->active)
 896		return -1;
 897
 898	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 899	mode = &vblank->hwmode;
 900
 901	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 902		return __intel_get_crtc_scanline_from_timestamp(crtc);
 903
 904	vtotal = mode->crtc_vtotal;
 905	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 906		vtotal /= 2;
 907
 908	if (IS_GEN(dev_priv, 2))
 909		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 910	else
 911		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 912
 913	/*
 914	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 915	 * read it just before the start of vblank.  So try it again
 916	 * so we don't accidentally end up spanning a vblank frame
 917	 * increment, causing the pipe_update_end() code to squak at us.
 918	 *
 919	 * The nature of this problem means we can't simply check the ISR
 920	 * bit and return the vblank start value; nor can we use the scanline
 921	 * debug register in the transcoder as it appears to have the same
 922	 * problem.  We may need to extend this to include other platforms,
 923	 * but so far testing only shows the problem on HSW.
 924	 */
 925	if (HAS_DDI(dev_priv) && !position) {
 926		int i, temp;
 927
 928		for (i = 0; i < 100; i++) {
 929			udelay(1);
 930			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 931			if (temp != position) {
 932				position = temp;
 933				break;
 934			}
 935		}
 936	}
 937
 938	/*
 939	 * See update_scanline_offset() for the details on the
 940	 * scanline_offset adjustment.
 941	 */
 942	return (position + crtc->scanline_offset) % vtotal;
 943}
 944
 945bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 946			      bool in_vblank_irq, int *vpos, int *hpos,
 947			      ktime_t *stime, ktime_t *etime,
 948			      const struct drm_display_mode *mode)
 949{
 950	struct drm_i915_private *dev_priv = to_i915(dev);
 951	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
 952								pipe);
 953	int position;
 954	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 955	unsigned long irqflags;
 956	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
 957		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
 958		mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
 959
 960	if (WARN_ON(!mode->crtc_clock)) {
 961		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 962				 "pipe %c\n", pipe_name(pipe));
 963		return false;
 964	}
 965
 966	htotal = mode->crtc_htotal;
 967	hsync_start = mode->crtc_hsync_start;
 968	vtotal = mode->crtc_vtotal;
 969	vbl_start = mode->crtc_vblank_start;
 970	vbl_end = mode->crtc_vblank_end;
 971
 972	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 973		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 974		vbl_end /= 2;
 975		vtotal /= 2;
 976	}
 977
 978	/*
 979	 * Lock uncore.lock, as we will do multiple timing critical raw
 980	 * register reads, potentially with preemption disabled, so the
 981	 * following code must not block on uncore.lock.
 982	 */
 983	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 984
 985	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 986
 987	/* Get optional system timestamp before query. */
 988	if (stime)
 989		*stime = ktime_get();
 990
 991	if (use_scanline_counter) {
 992		/* No obvious pixelcount register. Only query vertical
 993		 * scanout position from Display scan line register.
 994		 */
 995		position = __intel_get_crtc_scanline(intel_crtc);
 
 
 
 
 
 
 996	} else {
 997		/* Have access to pixelcount since start of frame.
 998		 * We can split this into vertical and horizontal
 999		 * scanout position.
1000		 */
1001		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1002
1003		/* convert to pixel counts */
1004		vbl_start *= htotal;
1005		vbl_end *= htotal;
1006		vtotal *= htotal;
1007
1008		/*
1009		 * In interlaced modes, the pixel counter counts all pixels,
1010		 * so one field will have htotal more pixels. In order to avoid
1011		 * the reported position from jumping backwards when the pixel
1012		 * counter is beyond the length of the shorter field, just
1013		 * clamp the position the length of the shorter field. This
1014		 * matches how the scanline counter based position works since
1015		 * the scanline counter doesn't count the two half lines.
1016		 */
1017		if (position >= vtotal)
1018			position = vtotal - 1;
1019
1020		/*
1021		 * Start of vblank interrupt is triggered at start of hsync,
1022		 * just prior to the first active line of vblank. However we
1023		 * consider lines to start at the leading edge of horizontal
1024		 * active. So, should we get here before we've crossed into
1025		 * the horizontal active of the first line in vblank, we would
1026		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1027		 * always add htotal-hsync_start to the current pixel position.
1028		 */
1029		position = (position + htotal - hsync_start) % vtotal;
1030	}
1031
1032	/* Get optional system timestamp after query. */
1033	if (etime)
1034		*etime = ktime_get();
1035
1036	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1037
1038	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1039
1040	/*
1041	 * While in vblank, position will be negative
1042	 * counting up towards 0 at vbl_end. And outside
1043	 * vblank, position will be positive counting
1044	 * up since vbl_end.
1045	 */
1046	if (position >= vbl_start)
1047		position -= vbl_end;
1048	else
1049		position += vtotal - vbl_end;
1050
1051	if (use_scanline_counter) {
1052		*vpos = position;
1053		*hpos = 0;
1054	} else {
1055		*vpos = position / htotal;
1056		*hpos = position - (*vpos * htotal);
1057	}
1058
1059	return true;
1060}
1061
1062int intel_get_crtc_scanline(struct intel_crtc *crtc)
1063{
1064	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1065	unsigned long irqflags;
1066	int position;
 
 
 
 
 
 
 
 
 
 
 
 
 
1067
1068	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1069	position = __intel_get_crtc_scanline(crtc);
1070	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1071
1072	return position;
1073}
1074
1075static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
1076{
1077	struct intel_uncore *uncore = &dev_priv->uncore;
1078	u32 busy_up, busy_down, max_avg, min_avg;
1079	u8 new_delay;
1080
1081	spin_lock(&mchdev_lock);
1082
1083	intel_uncore_write16(uncore,
1084			     MEMINTRSTS,
1085			     intel_uncore_read(uncore, MEMINTRSTS));
1086
1087	new_delay = dev_priv->ips.cur_delay;
1088
1089	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1090	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1091	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1092	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1093	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1094
1095	/* Handle RCS change request from hw */
1096	if (busy_up > max_avg) {
1097		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1098			new_delay = dev_priv->ips.cur_delay - 1;
1099		if (new_delay < dev_priv->ips.max_delay)
1100			new_delay = dev_priv->ips.max_delay;
1101	} else if (busy_down < min_avg) {
1102		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1103			new_delay = dev_priv->ips.cur_delay + 1;
1104		if (new_delay > dev_priv->ips.min_delay)
1105			new_delay = dev_priv->ips.min_delay;
1106	}
1107
1108	if (ironlake_set_drps(dev_priv, new_delay))
1109		dev_priv->ips.cur_delay = new_delay;
1110
1111	spin_unlock(&mchdev_lock);
1112
1113	return;
1114}
1115
1116static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117			struct intel_rps_ei *ei)
1118{
1119	ei->ktime = ktime_get_raw();
1120	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122}
1123
1124void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125{
1126	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
1127}
1128
1129static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130{
1131	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132	const struct intel_rps_ei *prev = &rps->ei;
1133	struct intel_rps_ei now;
1134	u32 events = 0;
1135
1136	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137		return 0;
1138
1139	vlv_c0_read(dev_priv, &now);
1140
1141	if (prev->ktime) {
1142		u64 time, c0;
1143		u32 render, media;
1144
1145		time = ktime_us_delta(now.ktime, prev->ktime);
1146
1147		time *= dev_priv->czclk_freq;
1148
1149		/* Workload can be split between render + media,
1150		 * e.g. SwapBuffers being blitted in X after being rendered in
1151		 * mesa. To account for this we need to combine both engines
1152		 * into our activity counter.
1153		 */
1154		render = now.render_c0 - prev->render_c0;
1155		media = now.media_c0 - prev->media_c0;
1156		c0 = max(render, media);
1157		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158
1159		if (c0 > time * rps->power.up_threshold)
1160			events = GEN6_PM_RP_UP_THRESHOLD;
1161		else if (c0 < time * rps->power.down_threshold)
1162			events = GEN6_PM_RP_DOWN_THRESHOLD;
1163	}
1164
1165	rps->ei = now;
1166	return events;
1167}
1168
1169static void gen6_pm_rps_work(struct work_struct *work)
1170{
1171	struct drm_i915_private *dev_priv =
1172		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173	struct intel_gt *gt = &dev_priv->gt;
1174	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1175	bool client_boost = false;
1176	int new_delay, adj, min, max;
1177	u32 pm_iir = 0;
1178
1179	spin_lock_irq(&gt->irq_lock);
1180	if (rps->interrupts_enabled) {
1181		pm_iir = fetch_and_zero(&rps->pm_iir);
1182		client_boost = atomic_read(&rps->num_waiters);
1183	}
1184	spin_unlock_irq(&gt->irq_lock);
1185
1186	/* Make sure we didn't queue anything we're not going to process. */
1187	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1188	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1189		goto out;
1190
1191	mutex_lock(&rps->lock);
1192
1193	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1194
1195	adj = rps->last_adj;
1196	new_delay = rps->cur_freq;
1197	min = rps->min_freq_softlimit;
1198	max = rps->max_freq_softlimit;
1199	if (client_boost)
1200		max = rps->max_freq;
1201	if (client_boost && new_delay < rps->boost_freq) {
1202		new_delay = rps->boost_freq;
1203		adj = 0;
1204	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1205		if (adj > 0)
1206			adj *= 2;
1207		else /* CHV needs even encode values */
1208			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1209
1210		if (new_delay >= rps->max_freq_softlimit)
1211			adj = 0;
1212	} else if (client_boost) {
1213		adj = 0;
1214	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1215		if (rps->cur_freq > rps->efficient_freq)
1216			new_delay = rps->efficient_freq;
1217		else if (rps->cur_freq > rps->min_freq_softlimit)
1218			new_delay = rps->min_freq_softlimit;
1219		adj = 0;
1220	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1221		if (adj < 0)
1222			adj *= 2;
1223		else /* CHV needs even encode values */
1224			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1225
1226		if (new_delay <= rps->min_freq_softlimit)
1227			adj = 0;
1228	} else { /* unknown event */
1229		adj = 0;
1230	}
1231
1232	rps->last_adj = adj;
1233
1234	/*
1235	 * Limit deboosting and boosting to keep ourselves at the extremes
1236	 * when in the respective power modes (i.e. slowly decrease frequencies
1237	 * while in the HIGH_POWER zone and slowly increase frequencies while
1238	 * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1239	 * to the next level quickly, and conversely if busy we expect to
1240	 * hit a waitboost and rapidly switch into max power.
1241	 */
1242	if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1243	    (adj > 0 && rps->power.mode == LOW_POWER))
1244		rps->last_adj = 0;
1245
1246	/* sysfs frequency interfaces may have snuck in while servicing the
1247	 * interrupt
1248	 */
1249	new_delay += adj;
1250	new_delay = clamp_t(int, new_delay, min, max);
1251
1252	if (intel_set_rps(dev_priv, new_delay)) {
1253		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1254		rps->last_adj = 0;
1255	}
1256
1257	mutex_unlock(&rps->lock);
1258
1259out:
1260	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1261	spin_lock_irq(&gt->irq_lock);
1262	if (rps->interrupts_enabled)
1263		gen6_gt_pm_unmask_irq(gt, dev_priv->pm_rps_events);
1264	spin_unlock_irq(&gt->irq_lock);
1265}
1266
1267
1268/**
1269 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1270 * occurred.
1271 * @work: workqueue struct
1272 *
1273 * Doesn't actually do anything except notify userspace. As a consequence of
1274 * this event, userspace should try to remap the bad rows since statistically
1275 * it is likely the same row is more likely to go bad again.
1276 */
1277static void ivybridge_parity_work(struct work_struct *work)
1278{
1279	struct drm_i915_private *dev_priv =
1280		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1281	struct intel_gt *gt = &dev_priv->gt;
1282	u32 error_status, row, bank, subbank;
1283	char *parity_event[6];
1284	u32 misccpctl;
1285	u8 slice = 0;
1286
1287	/* We must turn off DOP level clock gating to access the L3 registers.
1288	 * In order to prevent a get/put style interface, acquire struct mutex
1289	 * any time we access those registers.
1290	 */
1291	mutex_lock(&dev_priv->drm.struct_mutex);
1292
1293	/* If we've screwed up tracking, just let the interrupt fire again */
1294	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1295		goto out;
1296
1297	misccpctl = I915_READ(GEN7_MISCCPCTL);
1298	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1299	POSTING_READ(GEN7_MISCCPCTL);
1300
1301	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1302		i915_reg_t reg;
1303
1304		slice--;
1305		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1306			break;
1307
1308		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1309
1310		reg = GEN7_L3CDERRST1(slice);
1311
1312		error_status = I915_READ(reg);
1313		row = GEN7_PARITY_ERROR_ROW(error_status);
1314		bank = GEN7_PARITY_ERROR_BANK(error_status);
1315		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1316
1317		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1318		POSTING_READ(reg);
1319
1320		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1321		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1322		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1323		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1324		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1325		parity_event[5] = NULL;
1326
1327		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1328				   KOBJ_CHANGE, parity_event);
1329
1330		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1331			  slice, row, bank, subbank);
1332
1333		kfree(parity_event[4]);
1334		kfree(parity_event[3]);
1335		kfree(parity_event[2]);
1336		kfree(parity_event[1]);
1337	}
1338
1339	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1340
1341out:
1342	WARN_ON(dev_priv->l3_parity.which_slice);
1343	spin_lock_irq(&gt->irq_lock);
1344	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1345	spin_unlock_irq(&gt->irq_lock);
1346
1347	mutex_unlock(&dev_priv->drm.struct_mutex);
1348}
1349
1350static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1351{
1352	switch (pin) {
1353	case HPD_PORT_C:
1354		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1355	case HPD_PORT_D:
1356		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1357	case HPD_PORT_E:
1358		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1359	case HPD_PORT_F:
1360		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1361	default:
1362		return false;
1363	}
1364}
1365
1366static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1367{
1368	switch (pin) {
1369	case HPD_PORT_D:
1370		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1371	case HPD_PORT_E:
1372		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1373	case HPD_PORT_F:
1374		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1375	case HPD_PORT_G:
1376		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1377	case HPD_PORT_H:
1378		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1379	case HPD_PORT_I:
1380		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1381	default:
1382		return false;
1383	}
1384}
1385
1386static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1387{
1388	switch (pin) {
1389	case HPD_PORT_A:
1390		return val & PORTA_HOTPLUG_LONG_DETECT;
1391	case HPD_PORT_B:
1392		return val & PORTB_HOTPLUG_LONG_DETECT;
1393	case HPD_PORT_C:
1394		return val & PORTC_HOTPLUG_LONG_DETECT;
1395	default:
1396		return false;
1397	}
1398}
1399
1400static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1401{
1402	switch (pin) {
1403	case HPD_PORT_A:
1404		return val & ICP_DDIA_HPD_LONG_DETECT;
1405	case HPD_PORT_B:
1406		return val & ICP_DDIB_HPD_LONG_DETECT;
1407	case HPD_PORT_C:
1408		return val & TGP_DDIC_HPD_LONG_DETECT;
1409	default:
1410		return false;
1411	}
1412}
1413
1414static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1415{
1416	switch (pin) {
1417	case HPD_PORT_C:
1418		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1419	case HPD_PORT_D:
1420		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1421	case HPD_PORT_E:
1422		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1423	case HPD_PORT_F:
1424		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1425	default:
1426		return false;
1427	}
1428}
1429
1430static bool tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
 
 
1431{
1432	switch (pin) {
1433	case HPD_PORT_A:
1434		return val & ICP_DDIA_HPD_LONG_DETECT;
1435	case HPD_PORT_B:
1436		return val & ICP_DDIB_HPD_LONG_DETECT;
1437	case HPD_PORT_C:
1438		return val & TGP_DDIC_HPD_LONG_DETECT;
1439	default:
1440		return false;
1441	}
1442}
1443
1444static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1445{
1446	switch (pin) {
1447	case HPD_PORT_D:
1448		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1449	case HPD_PORT_E:
1450		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1451	case HPD_PORT_F:
1452		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1453	case HPD_PORT_G:
1454		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1455	case HPD_PORT_H:
1456		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1457	case HPD_PORT_I:
1458		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1459	default:
1460		return false;
1461	}
1462}
1463
1464static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1465{
1466	switch (pin) {
1467	case HPD_PORT_E:
1468		return val & PORTE_HOTPLUG_LONG_DETECT;
1469	default:
1470		return false;
1471	}
1472}
1473
1474static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1475{
1476	switch (pin) {
1477	case HPD_PORT_A:
1478		return val & PORTA_HOTPLUG_LONG_DETECT;
1479	case HPD_PORT_B:
1480		return val & PORTB_HOTPLUG_LONG_DETECT;
1481	case HPD_PORT_C:
1482		return val & PORTC_HOTPLUG_LONG_DETECT;
1483	case HPD_PORT_D:
1484		return val & PORTD_HOTPLUG_LONG_DETECT;
1485	default:
1486		return false;
1487	}
1488}
1489
1490static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1491{
1492	switch (pin) {
1493	case HPD_PORT_A:
1494		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1495	default:
1496		return false;
1497	}
1498}
1499
1500static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1501{
1502	switch (pin) {
1503	case HPD_PORT_B:
1504		return val & PORTB_HOTPLUG_LONG_DETECT;
1505	case HPD_PORT_C:
1506		return val & PORTC_HOTPLUG_LONG_DETECT;
1507	case HPD_PORT_D:
1508		return val & PORTD_HOTPLUG_LONG_DETECT;
1509	default:
1510		return false;
1511	}
1512}
1513
1514static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1515{
1516	switch (pin) {
1517	case HPD_PORT_B:
1518		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1519	case HPD_PORT_C:
1520		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1521	case HPD_PORT_D:
1522		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1523	default:
1524		return false;
1525	}
1526}
1527
1528/*
1529 * Get a bit mask of pins that have triggered, and which ones may be long.
1530 * This can be called multiple times with the same masks to accumulate
1531 * hotplug detection results from several registers.
1532 *
1533 * Note that the caller is expected to zero out the masks initially.
1534 */
1535static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1536			       u32 *pin_mask, u32 *long_mask,
1537			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1538			       const u32 hpd[HPD_NUM_PINS],
1539			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1540{
1541	enum hpd_pin pin;
 
 
 
 
1542
1543	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
 
1544
1545	for_each_hpd_pin(pin) {
1546		if ((hpd[pin] & hotplug_trigger) == 0)
1547			continue;
1548
1549		*pin_mask |= BIT(pin);
1550
1551		if (long_pulse_detect(pin, dig_hotplug_reg))
1552			*long_mask |= BIT(pin);
1553	}
1554
1555	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1556			 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1557
 
 
1558}
1559
1560static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1561{
1562	wake_up_all(&dev_priv->gmbus_wait_queue);
1563}
 
1564
1565static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1566{
1567	wake_up_all(&dev_priv->gmbus_wait_queue);
1568}
 
1569
1570#if defined(CONFIG_DEBUG_FS)
1571static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1572					 enum pipe pipe,
1573					 u32 crc0, u32 crc1,
1574					 u32 crc2, u32 crc3,
1575					 u32 crc4)
1576{
1577	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1578	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1579	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1580
1581	trace_intel_pipe_crc(crtc, crcs);
1582
1583	spin_lock(&pipe_crc->lock);
1584	/*
1585	 * For some not yet identified reason, the first CRC is
1586	 * bonkers. So let's just wait for the next vblank and read
1587	 * out the buggy result.
1588	 *
1589	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1590	 * don't trust that one either.
1591	 */
1592	if (pipe_crc->skipped <= 0 ||
1593	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1594		pipe_crc->skipped++;
1595		spin_unlock(&pipe_crc->lock);
1596		return;
1597	}
1598	spin_unlock(&pipe_crc->lock);
1599
1600	drm_crtc_add_crc_entry(&crtc->base, true,
1601				drm_crtc_accurate_vblank_count(&crtc->base),
1602				crcs);
1603}
1604#else
1605static inline void
1606display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607			     enum pipe pipe,
1608			     u32 crc0, u32 crc1,
1609			     u32 crc2, u32 crc3,
1610			     u32 crc4) {}
1611#endif
1612
1613
1614static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615				     enum pipe pipe)
1616{
1617	display_pipe_crc_irq_handler(dev_priv, pipe,
1618				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619				     0, 0, 0, 0);
1620}
1621
1622static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1623				     enum pipe pipe)
1624{
1625	display_pipe_crc_irq_handler(dev_priv, pipe,
1626				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1627				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1628				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1629				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1630				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1631}
1632
1633static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1634				      enum pipe pipe)
1635{
1636	u32 res1, res2;
1637
1638	if (INTEL_GEN(dev_priv) >= 3)
1639		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1640	else
1641		res1 = 0;
1642
1643	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1644		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1645	else
1646		res2 = 0;
1647
1648	display_pipe_crc_irq_handler(dev_priv, pipe,
1649				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1650				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1651				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1652				     res1, res2);
1653}
1654
1655/* The RPS events need forcewake, so we add them to a work queue and mask their
1656 * IMR bits until the work is done. Other interrupts can be processed without
1657 * the work queue. */
1658void gen11_rps_irq_handler(struct intel_gt *gt, u32 pm_iir)
1659{
1660	struct drm_i915_private *i915 = gt->i915;
1661	struct intel_rps *rps = &i915->gt_pm.rps;
1662	const u32 events = i915->pm_rps_events & pm_iir;
1663
1664	lockdep_assert_held(&gt->irq_lock);
1665
1666	if (unlikely(!events))
1667		return;
1668
1669	gen6_gt_pm_mask_irq(gt, events);
1670
1671	if (!rps->interrupts_enabled)
1672		return;
1673
1674	rps->pm_iir |= events;
1675	schedule_work(&rps->work);
1676}
1677
1678void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1679{
1680	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1681	struct intel_gt *gt = &dev_priv->gt;
1682
1683	if (pm_iir & dev_priv->pm_rps_events) {
1684		spin_lock(&gt->irq_lock);
1685		gen6_gt_pm_mask_irq(gt, pm_iir & dev_priv->pm_rps_events);
1686		if (rps->interrupts_enabled) {
1687			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1688			schedule_work(&rps->work);
1689		}
1690		spin_unlock(&gt->irq_lock);
1691	}
1692
1693	if (INTEL_GEN(dev_priv) >= 8)
1694		return;
1695
1696	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1697		intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
1698
1699	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1700		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1701}
1702
1703static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1704{
1705	enum pipe pipe;
1706
1707	for_each_pipe(dev_priv, pipe) {
1708		I915_WRITE(PIPESTAT(pipe),
1709			   PIPESTAT_INT_STATUS_MASK |
1710			   PIPE_FIFO_UNDERRUN_STATUS);
1711
1712		dev_priv->pipestat_irq_mask[pipe] = 0;
1713	}
1714}
1715
1716static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1717				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1718{
1719	int pipe;
1720
1721	spin_lock(&dev_priv->irq_lock);
1722
1723	if (!dev_priv->display_irqs_enabled) {
1724		spin_unlock(&dev_priv->irq_lock);
1725		return;
1726	}
1727
1728	for_each_pipe(dev_priv, pipe) {
1729		i915_reg_t reg;
1730		u32 status_mask, enable_mask, iir_bit = 0;
1731
1732		/*
1733		 * PIPESTAT bits get signalled even when the interrupt is
1734		 * disabled with the mask bits, and some of the status bits do
1735		 * not generate interrupts at all (like the underrun bit). Hence
1736		 * we need to be careful that we only handle what we want to
1737		 * handle.
1738		 */
1739
1740		/* fifo underruns are filterered in the underrun handler. */
1741		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1742
1743		switch (pipe) {
1744		case PIPE_A:
1745			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1746			break;
1747		case PIPE_B:
1748			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1749			break;
1750		case PIPE_C:
1751			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1752			break;
1753		}
1754		if (iir & iir_bit)
1755			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1756
1757		if (!status_mask)
1758			continue;
1759
1760		reg = PIPESTAT(pipe);
1761		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1762		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1763
1764		/*
1765		 * Clear the PIPE*STAT regs before the IIR
1766		 *
1767		 * Toggle the enable bits to make sure we get an
1768		 * edge in the ISR pipe event bit if we don't clear
1769		 * all the enabled status bits. Otherwise the edge
1770		 * triggered IIR on i965/g4x wouldn't notice that
1771		 * an interrupt is still pending.
1772		 */
1773		if (pipe_stats[pipe]) {
1774			I915_WRITE(reg, pipe_stats[pipe]);
1775			I915_WRITE(reg, enable_mask);
1776		}
1777	}
1778	spin_unlock(&dev_priv->irq_lock);
1779}
1780
1781static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1782				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1783{
1784	enum pipe pipe;
1785
1786	for_each_pipe(dev_priv, pipe) {
1787		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1788			drm_handle_vblank(&dev_priv->drm, pipe);
1789
1790		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1791			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1792
1793		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1794			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1795	}
1796}
1797
1798static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1799				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1800{
1801	bool blc_event = false;
1802	enum pipe pipe;
1803
1804	for_each_pipe(dev_priv, pipe) {
1805		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1806			drm_handle_vblank(&dev_priv->drm, pipe);
1807
1808		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1809			blc_event = true;
1810
1811		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1812			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1813
1814		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1815			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1816	}
1817
1818	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1819		intel_opregion_asle_intr(dev_priv);
1820}
1821
1822static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1823				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1824{
1825	bool blc_event = false;
1826	enum pipe pipe;
1827
1828	for_each_pipe(dev_priv, pipe) {
1829		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1830			drm_handle_vblank(&dev_priv->drm, pipe);
1831
1832		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1833			blc_event = true;
1834
1835		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1836			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1837
1838		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1839			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1840	}
1841
1842	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1843		intel_opregion_asle_intr(dev_priv);
1844
1845	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1846		gmbus_irq_handler(dev_priv);
1847}
1848
1849static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1850					    u32 pipe_stats[I915_MAX_PIPES])
1851{
1852	enum pipe pipe;
1853
1854	for_each_pipe(dev_priv, pipe) {
1855		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1856			drm_handle_vblank(&dev_priv->drm, pipe);
1857
1858		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1859			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1860
1861		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1862			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1863	}
1864
1865	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1866		gmbus_irq_handler(dev_priv);
1867}
1868
1869static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1870{
1871	u32 hotplug_status = 0, hotplug_status_mask;
1872	int i;
1873
1874	if (IS_G4X(dev_priv) ||
1875	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1876		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1877			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1878	else
1879		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1880
1881	/*
1882	 * We absolutely have to clear all the pending interrupt
1883	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1884	 * interrupt bit won't have an edge, and the i965/g4x
1885	 * edge triggered IIR will not notice that an interrupt
1886	 * is still pending. We can't use PORT_HOTPLUG_EN to
1887	 * guarantee the edge as the act of toggling the enable
1888	 * bits can itself generate a new hotplug interrupt :(
1889	 */
1890	for (i = 0; i < 10; i++) {
1891		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1892
1893		if (tmp == 0)
1894			return hotplug_status;
1895
1896		hotplug_status |= tmp;
1897		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1898	}
1899
1900	WARN_ONCE(1,
1901		  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1902		  I915_READ(PORT_HOTPLUG_STAT));
1903
1904	return hotplug_status;
1905}
1906
1907static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1908				 u32 hotplug_status)
1909{
1910	u32 pin_mask = 0, long_mask = 0;
1911
1912	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1913	    IS_CHERRYVIEW(dev_priv)) {
1914		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1915
1916		if (hotplug_trigger) {
1917			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1918					   hotplug_trigger, hotplug_trigger,
1919					   hpd_status_g4x,
1920					   i9xx_port_hotplug_long_detect);
1921
1922			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1923		}
1924
1925		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1926			dp_aux_irq_handler(dev_priv);
1927	} else {
1928		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1929
1930		if (hotplug_trigger) {
1931			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932					   hotplug_trigger, hotplug_trigger,
1933					   hpd_status_i915,
1934					   i9xx_port_hotplug_long_detect);
1935			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1936		}
 
1937	}
1938}
1939
1940static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1941{
1942	struct drm_i915_private *dev_priv = arg;
1943	irqreturn_t ret = IRQ_NONE;
1944
1945	if (!intel_irqs_enabled(dev_priv))
1946		return IRQ_NONE;
1947
1948	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1949	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1950
1951	do {
1952		u32 iir, gt_iir, pm_iir;
1953		u32 pipe_stats[I915_MAX_PIPES] = {};
1954		u32 hotplug_status = 0;
1955		u32 ier = 0;
1956
1957		gt_iir = I915_READ(GTIIR);
1958		pm_iir = I915_READ(GEN6_PMIIR);
1959		iir = I915_READ(VLV_IIR);
1960
1961		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1962			break;
1963
1964		ret = IRQ_HANDLED;
1965
1966		/*
1967		 * Theory on interrupt generation, based on empirical evidence:
1968		 *
1969		 * x = ((VLV_IIR & VLV_IER) ||
1970		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1971		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1972		 *
1973		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1974		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1975		 * guarantee the CPU interrupt will be raised again even if we
1976		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1977		 * bits this time around.
1978		 */
1979		I915_WRITE(VLV_MASTER_IER, 0);
1980		ier = I915_READ(VLV_IER);
1981		I915_WRITE(VLV_IER, 0);
1982
1983		if (gt_iir)
1984			I915_WRITE(GTIIR, gt_iir);
1985		if (pm_iir)
1986			I915_WRITE(GEN6_PMIIR, pm_iir);
1987
1988		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1989			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1990
1991		/* Call regardless, as some status bits might not be
1992		 * signalled in iir */
1993		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1994
1995		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1996			   I915_LPE_PIPE_B_INTERRUPT))
1997			intel_lpe_audio_irq_handler(dev_priv);
1998
1999		/*
2000		 * VLV_IIR is single buffered, and reflects the level
2001		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2002		 */
2003		if (iir)
2004			I915_WRITE(VLV_IIR, iir);
2005
2006		I915_WRITE(VLV_IER, ier);
2007		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2008
2009		if (gt_iir)
2010			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2011		if (pm_iir)
2012			gen6_rps_irq_handler(dev_priv, pm_iir);
2013
2014		if (hotplug_status)
2015			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018	} while (0);
2019
2020	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2021
2022	return ret;
2023}
2024
2025static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2026{
2027	struct drm_i915_private *dev_priv = arg;
2028	irqreturn_t ret = IRQ_NONE;
2029
2030	if (!intel_irqs_enabled(dev_priv))
2031		return IRQ_NONE;
2032
2033	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2034	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2035
2036	do {
2037		u32 master_ctl, iir;
2038		u32 pipe_stats[I915_MAX_PIPES] = {};
2039		u32 hotplug_status = 0;
2040		u32 gt_iir[4];
2041		u32 ier = 0;
2042
2043		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2044		iir = I915_READ(VLV_IIR);
2045
2046		if (master_ctl == 0 && iir == 0)
2047			break;
2048
2049		ret = IRQ_HANDLED;
2050
2051		/*
2052		 * Theory on interrupt generation, based on empirical evidence:
2053		 *
2054		 * x = ((VLV_IIR & VLV_IER) ||
2055		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2056		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2057		 *
2058		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2059		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2060		 * guarantee the CPU interrupt will be raised again even if we
2061		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2062		 * bits this time around.
2063		 */
2064		I915_WRITE(GEN8_MASTER_IRQ, 0);
2065		ier = I915_READ(VLV_IER);
2066		I915_WRITE(VLV_IER, 0);
2067
2068		gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2069
2070		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2071			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2072
2073		/* Call regardless, as some status bits might not be
2074		 * signalled in iir */
2075		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2076
2077		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2078			   I915_LPE_PIPE_B_INTERRUPT |
2079			   I915_LPE_PIPE_C_INTERRUPT))
2080			intel_lpe_audio_irq_handler(dev_priv);
2081
2082		/*
2083		 * VLV_IIR is single buffered, and reflects the level
2084		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2085		 */
2086		if (iir)
2087			I915_WRITE(VLV_IIR, iir);
2088
2089		I915_WRITE(VLV_IER, ier);
2090		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2091
2092		gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2093
2094		if (hotplug_status)
2095			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2096
2097		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2098	} while (0);
2099
2100	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2101
2102	return ret;
2103}
2104
2105static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2106				u32 hotplug_trigger,
2107				const u32 hpd[HPD_NUM_PINS])
2108{
2109	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2110
2111	/*
2112	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2113	 * unless we touch the hotplug register, even if hotplug_trigger is
2114	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2115	 * errors.
2116	 */
2117	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118	if (!hotplug_trigger) {
2119		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2120			PORTD_HOTPLUG_STATUS_MASK |
2121			PORTC_HOTPLUG_STATUS_MASK |
2122			PORTB_HOTPLUG_STATUS_MASK;
2123		dig_hotplug_reg &= ~mask;
2124	}
2125
2126	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2127	if (!hotplug_trigger)
2128		return;
2129
2130	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2131			   dig_hotplug_reg, hpd,
2132			   pch_port_hotplug_long_detect);
2133
2134	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2135}
2136
2137static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2138{
 
 
2139	int pipe;
2140	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2141
2142	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2143
2144	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2145		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2146			       SDE_AUDIO_POWER_SHIFT);
2147		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2148				 port_name(port));
2149	}
2150
2151	if (pch_iir & SDE_AUX_MASK)
2152		dp_aux_irq_handler(dev_priv);
2153
2154	if (pch_iir & SDE_GMBUS)
2155		gmbus_irq_handler(dev_priv);
2156
2157	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2158		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2159
2160	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2161		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2162
2163	if (pch_iir & SDE_POISON)
2164		DRM_ERROR("PCH poison interrupt\n");
2165
2166	if (pch_iir & SDE_FDI_MASK)
2167		for_each_pipe(dev_priv, pipe)
2168			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2169					 pipe_name(pipe),
2170					 I915_READ(FDI_RX_IIR(pipe)));
2171
2172	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2173		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2174
2175	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2176		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2177
 
 
2178	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2179		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2180
2181	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2182		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2183}
2184
2185static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2186{
2187	u32 err_int = I915_READ(GEN7_ERR_INT);
2188	enum pipe pipe;
 
 
 
2189
2190	if (err_int & ERR_INT_POISON)
2191		DRM_ERROR("Poison interrupt\n");
2192
2193	for_each_pipe(dev_priv, pipe) {
2194		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2195			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
 
2196
2197		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2198			if (IS_IVYBRIDGE(dev_priv))
2199				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2200			else
2201				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2202		}
2203	}
2204
2205	I915_WRITE(GEN7_ERR_INT, err_int);
2206}
2207
2208static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2209{
2210	u32 serr_int = I915_READ(SERR_INT);
2211	enum pipe pipe;
2212
2213	if (serr_int & SERR_INT_POISON)
2214		DRM_ERROR("PCH poison interrupt\n");
2215
2216	for_each_pipe(dev_priv, pipe)
2217		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2218			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
 
 
 
 
 
 
 
 
 
 
2219
2220	I915_WRITE(SERR_INT, serr_int);
2221}
2222
2223static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2224{
2225	int pipe;
2226	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2227
2228	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2229
2230	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2231		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2232			       SDE_AUDIO_POWER_SHIFT_CPT);
2233		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2234				 port_name(port));
2235	}
2236
2237	if (pch_iir & SDE_AUX_MASK_CPT)
2238		dp_aux_irq_handler(dev_priv);
2239
2240	if (pch_iir & SDE_GMBUS_CPT)
2241		gmbus_irq_handler(dev_priv);
2242
2243	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2244		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2245
2246	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2247		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
 
2248
2249	if (pch_iir & SDE_FDI_MASK_CPT)
2250		for_each_pipe(dev_priv, pipe)
2251			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2252					 pipe_name(pipe),
2253					 I915_READ(FDI_RX_IIR(pipe)));
2254
2255	if (pch_iir & SDE_ERROR_CPT)
2256		cpt_serr_int_handler(dev_priv);
2257}
2258
2259static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2260			    const u32 *pins)
2261{
2262	u32 ddi_hotplug_trigger;
2263	u32 tc_hotplug_trigger;
2264	u32 pin_mask = 0, long_mask = 0;
 
 
 
 
2265
2266	if (HAS_PCH_MCC(dev_priv)) {
2267		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2268		tc_hotplug_trigger = 0;
2269	} else {
2270		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2271		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2272	}
2273
2274	if (ddi_hotplug_trigger) {
2275		u32 dig_hotplug_reg;
2276
2277		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2278		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
 
 
2279
2280		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2281				   ddi_hotplug_trigger,
2282				   dig_hotplug_reg, pins,
2283				   icp_ddi_port_hotplug_long_detect);
2284	}
2285
2286	if (tc_hotplug_trigger) {
2287		u32 dig_hotplug_reg;
 
2288
2289		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2290		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
 
 
2291
2292		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2293				   tc_hotplug_trigger,
2294				   dig_hotplug_reg, pins,
2295				   icp_tc_port_hotplug_long_detect);
2296	}
2297
2298	if (pin_mask)
2299		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
 
 
 
 
 
 
 
 
 
 
 
2300
2301	if (pch_iir & SDE_GMBUS_ICP)
2302		gmbus_irq_handler(dev_priv);
2303}
 
 
 
 
2304
2305static void tgp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2306{
2307	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2308	u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
2309	u32 pin_mask = 0, long_mask = 0;
2310
2311	if (ddi_hotplug_trigger) {
2312		u32 dig_hotplug_reg;
2313
2314		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2315		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2316
2317		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2318				   ddi_hotplug_trigger,
2319				   dig_hotplug_reg, hpd_tgp,
2320				   tgp_ddi_port_hotplug_long_detect);
 
2321	}
2322
2323	if (tc_hotplug_trigger) {
2324		u32 dig_hotplug_reg;
 
 
2325
2326		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2327		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2328
2329		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2330				   tc_hotplug_trigger,
2331				   dig_hotplug_reg, hpd_tgp,
2332				   tgp_tc_port_hotplug_long_detect);
2333	}
2334
2335	if (pin_mask)
2336		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2337
2338	if (pch_iir & SDE_GMBUS_ICP)
2339		gmbus_irq_handler(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2340}
2341
2342static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
 
 
 
2343{
2344	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2345		~SDE_PORTE_HOTPLUG_SPT;
2346	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2347	u32 pin_mask = 0, long_mask = 0;
2348
2349	if (hotplug_trigger) {
2350		u32 dig_hotplug_reg;
2351
2352		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2353		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2354
2355		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2356				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2357				   spt_port_hotplug_long_detect);
2358	}
 
 
 
 
 
 
 
 
 
2359
2360	if (hotplug2_trigger) {
2361		u32 dig_hotplug_reg;
 
 
 
 
2362
2363		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2364		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2365
2366		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2367				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2368				   spt_port_hotplug2_long_detect);
2369	}
 
 
2370
2371	if (pin_mask)
2372		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2373
2374	if (pch_iir & SDE_GMBUS_CPT)
2375		gmbus_irq_handler(dev_priv);
 
 
 
2376}
2377
2378static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2379				u32 hotplug_trigger,
2380				const u32 hpd[HPD_NUM_PINS])
2381{
2382	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2383
2384	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2385	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2386
2387	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2388			   dig_hotplug_reg, hpd,
2389			   ilk_port_hotplug_long_detect);
2390
2391	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2392}
2393
2394static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2395				    u32 de_iir)
 
2396{
2397	enum pipe pipe;
2398	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2399
2400	if (hotplug_trigger)
2401		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2402
2403	if (de_iir & DE_AUX_CHANNEL_A)
2404		dp_aux_irq_handler(dev_priv);
2405
2406	if (de_iir & DE_GSE)
2407		intel_opregion_asle_intr(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2408
2409	if (de_iir & DE_POISON)
2410		DRM_ERROR("Poison interrupt\n");
2411
2412	for_each_pipe(dev_priv, pipe) {
2413		if (de_iir & DE_PIPE_VBLANK(pipe))
2414			drm_handle_vblank(&dev_priv->drm, pipe);
2415
2416		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2417			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2418
2419		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2420			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2421	}
2422
2423	/* check event from PCH */
2424	if (de_iir & DE_PCH_EVENT) {
2425		u32 pch_iir = I915_READ(SDEIIR);
2426
2427		if (HAS_PCH_CPT(dev_priv))
2428			cpt_irq_handler(dev_priv, pch_iir);
2429		else
2430			ibx_irq_handler(dev_priv, pch_iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2431
2432		/* should clear PCH hotplug event before clear CPU irq */
2433		I915_WRITE(SDEIIR, pch_iir);
2434	}
2435
2436	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2437		ironlake_rps_change_irq_handler(dev_priv);
2438}
2439
2440static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2441				    u32 de_iir)
2442{
2443	enum pipe pipe;
2444	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
 
 
 
 
 
 
 
 
 
2445
2446	if (hotplug_trigger)
2447		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2448
2449	if (de_iir & DE_ERR_INT_IVB)
2450		ivb_err_int_handler(dev_priv);
2451
2452	if (de_iir & DE_EDP_PSR_INT_HSW) {
2453		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2454
2455		intel_psr_irq_handler(dev_priv, psr_iir);
2456		I915_WRITE(EDP_PSR_IIR, psr_iir);
2457	}
2458
2459	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2460		dp_aux_irq_handler(dev_priv);
2461
2462	if (de_iir & DE_GSE_IVB)
2463		intel_opregion_asle_intr(dev_priv);
2464
2465	for_each_pipe(dev_priv, pipe) {
2466		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2467			drm_handle_vblank(&dev_priv->drm, pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2468	}
2469
2470	/* check event from PCH */
2471	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2472		u32 pch_iir = I915_READ(SDEIIR);
2473
2474		cpt_irq_handler(dev_priv, pch_iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2475
2476		/* clear PCH hotplug event before clear CPU irq */
2477		I915_WRITE(SDEIIR, pch_iir);
2478	}
2479}
 
 
 
2480
2481/*
2482 * To handle irqs with the minimum potential races with fresh interrupts, we:
2483 * 1 - Disable Master Interrupt Control.
2484 * 2 - Find the source(s) of the interrupt.
2485 * 3 - Clear the Interrupt Identity bits (IIR).
2486 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2487 * 5 - Re-enable Master Interrupt Control.
2488 */
2489static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2490{
2491	struct drm_i915_private *dev_priv = arg;
2492	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2493	irqreturn_t ret = IRQ_NONE;
2494
2495	if (!intel_irqs_enabled(dev_priv))
2496		return IRQ_NONE;
2497
2498	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2499	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2500
2501	/* disable master interrupt before clearing iir  */
2502	de_ier = I915_READ(DEIER);
2503	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2504
2505	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2506	 * interrupts will will be stored on its back queue, and then we'll be
2507	 * able to process them after we restore SDEIER (as soon as we restore
2508	 * it, we'll get an interrupt if SDEIIR still has something to process
2509	 * due to its back queue). */
2510	if (!HAS_PCH_NOP(dev_priv)) {
2511		sde_ier = I915_READ(SDEIER);
2512		I915_WRITE(SDEIER, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2513	}
2514
2515	/* Find, clear, then process each source of interrupt */
2516
2517	gt_iir = I915_READ(GTIIR);
2518	if (gt_iir) {
2519		I915_WRITE(GTIIR, gt_iir);
2520		ret = IRQ_HANDLED;
2521		if (INTEL_GEN(dev_priv) >= 6)
2522			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2523		else
2524			gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2525	}
2526
2527	de_iir = I915_READ(DEIIR);
2528	if (de_iir) {
2529		I915_WRITE(DEIIR, de_iir);
2530		ret = IRQ_HANDLED;
2531		if (INTEL_GEN(dev_priv) >= 7)
2532			ivb_display_irq_handler(dev_priv, de_iir);
2533		else
2534			ilk_display_irq_handler(dev_priv, de_iir);
2535	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2536
2537	if (INTEL_GEN(dev_priv) >= 6) {
2538		u32 pm_iir = I915_READ(GEN6_PMIIR);
2539		if (pm_iir) {
2540			I915_WRITE(GEN6_PMIIR, pm_iir);
2541			ret = IRQ_HANDLED;
2542			gen6_rps_irq_handler(dev_priv, pm_iir);
 
 
 
 
 
 
 
 
2543		}
2544	}
2545
2546	I915_WRITE(DEIER, de_ier);
2547	if (!HAS_PCH_NOP(dev_priv))
2548		I915_WRITE(SDEIER, sde_ier);
2549
2550	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2551	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2552
2553	return ret;
 
 
 
 
2554}
2555
2556static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2557				u32 hotplug_trigger,
2558				const u32 hpd[HPD_NUM_PINS])
2559{
2560	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2561
2562	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2563	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2564
2565	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2566			   dig_hotplug_reg, hpd,
2567			   bxt_port_hotplug_long_detect);
 
 
 
2568
2569	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2570}
2571
2572static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2573{
2574	u32 pin_mask = 0, long_mask = 0;
2575	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2576	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2577	long_pulse_detect_func long_pulse_detect;
2578	const u32 *hpd;
 
 
2579
2580	if (INTEL_GEN(dev_priv) >= 12) {
2581		long_pulse_detect = gen12_port_hotplug_long_detect;
2582		hpd = hpd_gen12;
2583	} else {
2584		long_pulse_detect = gen11_port_hotplug_long_detect;
2585		hpd = hpd_gen11;
2586	}
2587
2588	if (trigger_tc) {
2589		u32 dig_hotplug_reg;
2590
2591		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2592		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
 
 
 
2593
2594		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2595				   dig_hotplug_reg, hpd, long_pulse_detect);
 
 
 
 
 
 
 
 
2596	}
2597
2598	if (trigger_tbt) {
2599		u32 dig_hotplug_reg;
2600
2601		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2602		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2603
2604		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2605				   dig_hotplug_reg, hpd, long_pulse_detect);
 
2606	}
2607
2608	if (pin_mask)
2609		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2610	else
2611		DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2612}
2613
2614static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2615{
2616	u32 mask;
 
 
 
 
 
 
 
 
 
 
2617
2618	if (INTEL_GEN(dev_priv) >= 12)
2619		/* TODO: Add AUX entries for USBC */
2620		return TGL_DE_PORT_AUX_DDIA |
2621			TGL_DE_PORT_AUX_DDIB |
2622			TGL_DE_PORT_AUX_DDIC;
2623
2624	mask = GEN8_AUX_CHANNEL_A;
2625	if (INTEL_GEN(dev_priv) >= 9)
2626		mask |= GEN9_AUX_CHANNEL_B |
2627			GEN9_AUX_CHANNEL_C |
2628			GEN9_AUX_CHANNEL_D;
2629
2630	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2631		mask |= CNL_AUX_CHANNEL_F;
 
 
2632
2633	if (IS_GEN(dev_priv, 11))
2634		mask |= ICL_AUX_CHANNEL_E;
2635
2636	return mask;
2637}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2638
2639static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2640{
2641	if (INTEL_GEN(dev_priv) >= 9)
2642		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2643	else
2644		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2645}
2646
2647static void
2648gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2649{
2650	bool found = false;
2651
2652	if (iir & GEN8_DE_MISC_GSE) {
2653		intel_opregion_asle_intr(dev_priv);
2654		found = true;
2655	}
 
 
 
 
 
 
2656
2657	if (iir & GEN8_DE_EDP_PSR) {
2658		u32 psr_iir = I915_READ(EDP_PSR_IIR);
 
2659
2660		intel_psr_irq_handler(dev_priv, psr_iir);
2661		I915_WRITE(EDP_PSR_IIR, psr_iir);
2662		found = true;
2663	}
2664
2665	if (!found)
2666		DRM_ERROR("Unexpected DE Misc interrupt\n");
2667}
 
 
 
2668
2669static irqreturn_t
2670gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2671{
2672	irqreturn_t ret = IRQ_NONE;
2673	u32 iir;
2674	enum pipe pipe;
2675
2676	if (master_ctl & GEN8_DE_MISC_IRQ) {
2677		iir = I915_READ(GEN8_DE_MISC_IIR);
2678		if (iir) {
2679			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2680			ret = IRQ_HANDLED;
2681			gen8_de_misc_irq_handler(dev_priv, iir);
2682		} else {
2683			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2684		}
2685	}
2686
2687	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2688		iir = I915_READ(GEN11_DE_HPD_IIR);
2689		if (iir) {
2690			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2691			ret = IRQ_HANDLED;
2692			gen11_hpd_irq_handler(dev_priv, iir);
2693		} else {
2694			DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2695		}
2696	}
2697
2698	if (master_ctl & GEN8_DE_PORT_IRQ) {
2699		iir = I915_READ(GEN8_DE_PORT_IIR);
2700		if (iir) {
2701			u32 tmp_mask;
2702			bool found = false;
2703
2704			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2705			ret = IRQ_HANDLED;
2706
2707			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2708				dp_aux_irq_handler(dev_priv);
2709				found = true;
2710			}
2711
2712			if (IS_GEN9_LP(dev_priv)) {
2713				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2714				if (tmp_mask) {
2715					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2716							    hpd_bxt);
2717					found = true;
2718				}
2719			} else if (IS_BROADWELL(dev_priv)) {
2720				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2721				if (tmp_mask) {
2722					ilk_hpd_irq_handler(dev_priv,
2723							    tmp_mask, hpd_bdw);
2724					found = true;
2725				}
2726			}
2727
2728			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2729				gmbus_irq_handler(dev_priv);
2730				found = true;
2731			}
2732
2733			if (!found)
2734				DRM_ERROR("Unexpected DE Port interrupt\n");
2735		}
2736		else
2737			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2738	}
2739
2740	for_each_pipe(dev_priv, pipe) {
2741		u32 fault_errors;
2742
2743		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2744			continue;
2745
2746		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2747		if (!iir) {
2748			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2749			continue;
2750		}
2751
2752		ret = IRQ_HANDLED;
2753		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2754
2755		if (iir & GEN8_PIPE_VBLANK)
2756			drm_handle_vblank(&dev_priv->drm, pipe);
2757
2758		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2759			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2760
2761		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2762			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2763
2764		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2765		if (fault_errors)
2766			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2767				  pipe_name(pipe),
2768				  fault_errors);
2769	}
2770
2771	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2772	    master_ctl & GEN8_DE_PCH_IRQ) {
2773		/*
2774		 * FIXME(BDW): Assume for now that the new interrupt handling
2775		 * scheme also closed the SDE interrupt handling race we've seen
2776		 * on older pch-split platforms. But this needs testing.
2777		 */
2778		iir = I915_READ(SDEIIR);
2779		if (iir) {
2780			I915_WRITE(SDEIIR, iir);
2781			ret = IRQ_HANDLED;
2782
2783			if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
2784				tgp_irq_handler(dev_priv, iir);
2785			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2786				icp_irq_handler(dev_priv, iir, hpd_mcc);
2787			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2788				icp_irq_handler(dev_priv, iir, hpd_icp);
2789			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2790				spt_irq_handler(dev_priv, iir);
2791			else
2792				cpt_irq_handler(dev_priv, iir);
2793		} else {
2794			/*
2795			 * Like on previous PCH there seems to be something
2796			 * fishy going on with forwarding PCH interrupts.
2797			 */
2798			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2799		}
2800	}
2801
2802	return ret;
2803}
2804
2805static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2806{
2807	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
 
2808
2809	/*
2810	 * Now with master disabled, get a sample of level indications
2811	 * for this interrupt. Indications will be cleared on related acks.
2812	 * New indications can and will light up during processing,
2813	 * and will generate new interrupt after enabling master.
2814	 */
2815	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2816}
2817
2818static inline void gen8_master_intr_enable(void __iomem * const regs)
2819{
2820	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2821}
2822
2823static irqreturn_t gen8_irq_handler(int irq, void *arg)
2824{
2825	struct drm_i915_private *dev_priv = arg;
2826	void __iomem * const regs = dev_priv->uncore.regs;
2827	u32 master_ctl;
2828	u32 gt_iir[4];
2829
2830	if (!intel_irqs_enabled(dev_priv))
2831		return IRQ_NONE;
2832
2833	master_ctl = gen8_master_intr_disable(regs);
2834	if (!master_ctl) {
2835		gen8_master_intr_enable(regs);
2836		return IRQ_NONE;
2837	}
2838
2839	/* Find, clear, then process each source of interrupt */
2840	gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2841
2842	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2843	if (master_ctl & ~GEN8_GT_IRQS) {
2844		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2845		gen8_de_irq_handler(dev_priv, master_ctl);
2846		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2847	}
2848
2849	gen8_master_intr_enable(regs);
2850
2851	gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2852
2853	return IRQ_HANDLED;
2854}
2855
2856static u32
2857gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2858{
2859	void __iomem * const regs = gt->uncore->regs;
2860	u32 iir;
 
 
 
 
 
2861
2862	if (!(master_ctl & GEN11_GU_MISC_IRQ))
 
 
2863		return 0;
 
2864
2865	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2866	if (likely(iir))
2867		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2868
2869	return iir;
2870}
 
 
 
 
 
 
 
 
 
2871
2872static void
2873gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2874{
2875	if (iir & GEN11_GU_MISC_GSE)
2876		intel_opregion_asle_intr(gt->i915);
2877}
2878
2879static inline u32 gen11_master_intr_disable(void __iomem * const regs)
 
 
 
2880{
2881	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
 
 
2882
2883	/*
2884	 * Now with master disabled, get a sample of level indications
2885	 * for this interrupt. Indications will be cleared on related acks.
2886	 * New indications can and will light up during processing,
2887	 * and will generate new interrupt after enabling master.
2888	 */
2889	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2890}
2891
2892static inline void gen11_master_intr_enable(void __iomem * const regs)
2893{
2894	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2895}
2896
2897static irqreturn_t gen11_irq_handler(int irq, void *arg)
2898{
2899	struct drm_i915_private * const i915 = arg;
2900	void __iomem * const regs = i915->uncore.regs;
2901	struct intel_gt *gt = &i915->gt;
2902	u32 master_ctl;
2903	u32 gu_misc_iir;
2904
2905	if (!intel_irqs_enabled(i915))
2906		return IRQ_NONE;
2907
2908	master_ctl = gen11_master_intr_disable(regs);
2909	if (!master_ctl) {
2910		gen11_master_intr_enable(regs);
2911		return IRQ_NONE;
2912	}
2913
2914	/* Find, clear, then process each source of interrupt. */
2915	gen11_gt_irq_handler(gt, master_ctl);
2916
2917	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2918	if (master_ctl & GEN11_DISPLAY_IRQ) {
2919		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
 
 
 
 
2920
2921		disable_rpm_wakeref_asserts(&i915->runtime_pm);
2922		/*
2923		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2924		 * for the display related bits.
2925		 */
2926		gen8_de_irq_handler(i915, disp_ctl);
2927		enable_rpm_wakeref_asserts(&i915->runtime_pm);
2928	}
2929
2930	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2931
2932	gen11_master_intr_enable(regs);
2933
2934	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2935
2936	return IRQ_HANDLED;
2937}
2938
2939/* Called from drm generic code, passed 'crtc' which
2940 * we use as a pipe index
2941 */
2942int i8xx_enable_vblank(struct drm_crtc *crtc)
2943{
2944	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2945	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2946	unsigned long irqflags;
2947
 
 
 
2948	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2949	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
 
 
 
 
 
 
 
2950	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2951
2952	return 0;
2953}
2954
2955int i945gm_enable_vblank(struct drm_crtc *crtc)
2956{
2957	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 
2958
2959	if (dev_priv->i945gm_vblank.enabled++ == 0)
2960		schedule_work(&dev_priv->i945gm_vblank.work);
2961
2962	return i8xx_enable_vblank(crtc);
2963}
2964
2965int i965_enable_vblank(struct drm_crtc *crtc)
2966{
2967	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2968	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2969	unsigned long irqflags;
2970
2971	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2972	i915_enable_pipestat(dev_priv, pipe,
2973			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2974	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2975
2976	return 0;
2977}
2978
2979int ilk_enable_vblank(struct drm_crtc *crtc)
2980{
2981	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2982	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2983	unsigned long irqflags;
2984	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2985		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2986
2987	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2988	ilk_enable_display_irq(dev_priv, bit);
2989	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2990
2991	/* Even though there is no DMC, frame counter can get stuck when
2992	 * PSR is active as no frames are generated.
2993	 */
2994	if (HAS_PSR(dev_priv))
2995		drm_crtc_vblank_restore(crtc);
2996
2997	return 0;
2998}
2999
3000int bdw_enable_vblank(struct drm_crtc *crtc)
3001{
3002	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3003	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3004	unsigned long irqflags;
3005
3006	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3007	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
 
3008	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3009
3010	/* Even if there is no DMC, frame counter can get stuck when
3011	 * PSR is active as no frames are generated, so check only for PSR.
3012	 */
3013	if (HAS_PSR(dev_priv))
3014		drm_crtc_vblank_restore(crtc);
3015
3016	return 0;
3017}
3018
3019/* Called from drm generic code, passed 'crtc' which
3020 * we use as a pipe index
3021 */
3022void i8xx_disable_vblank(struct drm_crtc *crtc)
3023{
3024	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3025	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3026	unsigned long irqflags;
3027
3028	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3029	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
3030	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3031}
3032
3033void i945gm_disable_vblank(struct drm_crtc *crtc)
3034{
3035	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3036
3037	i8xx_disable_vblank(crtc);
3038
3039	if (--dev_priv->i945gm_vblank.enabled == 0)
3040		schedule_work(&dev_priv->i945gm_vblank.work);
3041}
3042
3043void i965_disable_vblank(struct drm_crtc *crtc)
3044{
3045	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3046	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3047	unsigned long irqflags;
3048
3049	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3050	i915_disable_pipestat(dev_priv, pipe,
3051			      PIPE_START_VBLANK_INTERRUPT_STATUS);
 
3052	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3053}
3054
3055void ilk_disable_vblank(struct drm_crtc *crtc)
3056{
3057	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3058	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3059	unsigned long irqflags;
3060	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3061		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3062
3063	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3064	ilk_disable_display_irq(dev_priv, bit);
 
3065	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3066}
3067
3068void bdw_disable_vblank(struct drm_crtc *crtc)
3069{
3070	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3071	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3072	unsigned long irqflags;
3073
3074	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3075	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
 
3076	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3077}
3078
3079static void i945gm_vblank_work_func(struct work_struct *work)
3080{
3081	struct drm_i915_private *dev_priv =
3082		container_of(work, struct drm_i915_private, i945gm_vblank.work);
3083
3084	/*
3085	 * Vblank interrupts fail to wake up the device from C3,
3086	 * hence we want to prevent C3 usage while vblank interrupts
3087	 * are enabled.
3088	 */
3089	pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3090			      READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3091			      dev_priv->i945gm_vblank.c3_disable_latency :
3092			      PM_QOS_DEFAULT_VALUE);
3093}
3094
3095static int cstate_disable_latency(const char *name)
3096{
3097	const struct cpuidle_driver *drv;
3098	int i;
3099
3100	drv = cpuidle_get_driver();
3101	if (!drv)
3102		return 0;
3103
3104	for (i = 0; i < drv->state_count; i++) {
3105		const struct cpuidle_state *state = &drv->states[i];
3106
3107		if (!strcmp(state->name, name))
3108			return state->exit_latency ?
3109				state->exit_latency - 1 : 0;
3110	}
3111
3112	return 0;
3113}
3114
3115static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
 
3116{
3117	INIT_WORK(&dev_priv->i945gm_vblank.work,
3118		  i945gm_vblank_work_func);
3119
3120	dev_priv->i945gm_vblank.c3_disable_latency =
3121		cstate_disable_latency("C3");
3122	pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3123			   PM_QOS_CPU_DMA_LATENCY,
3124			   PM_QOS_DEFAULT_VALUE);
3125}
3126
3127static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3128{
3129	cancel_work_sync(&dev_priv->i945gm_vblank.work);
3130	pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
3131}
3132
3133static void ibx_irq_reset(struct drm_i915_private *dev_priv)
3134{
3135	struct intel_uncore *uncore = &dev_priv->uncore;
3136
3137	if (HAS_PCH_NOP(dev_priv))
3138		return;
3139
3140	GEN3_IRQ_RESET(uncore, SDE);
3141
3142	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3143		I915_WRITE(SERR_INT, 0xffffffff);
3144}
3145
3146/*
3147 * SDEIER is also touched by the interrupt handler to work around missed PCH
3148 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3149 * instead we unconditionally enable all PCH interrupt sources here, but then
3150 * only unmask them as needed with SDEIMR.
3151 *
3152 * This function needs to be called before interrupts are enabled.
3153 */
3154static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
 
3155{
3156	if (HAS_PCH_NOP(dev_priv))
3157		return;
3158
3159	WARN_ON(I915_READ(SDEIER) != 0);
3160	I915_WRITE(SDEIER, 0xffffffff);
3161	POSTING_READ(SDEIER);
 
 
 
 
 
 
 
 
 
3162}
3163
3164static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
 
3165{
3166	struct intel_uncore *uncore = &dev_priv->uncore;
3167
3168	if (IS_CHERRYVIEW(dev_priv))
3169		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3170	else
3171		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
3172
3173	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3174	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3175
3176	i9xx_pipestat_irq_reset(dev_priv);
3177
3178	GEN3_IRQ_RESET(uncore, VLV_);
3179	dev_priv->irq_mask = ~0u;
3180}
3181
3182static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3183{
3184	struct intel_uncore *uncore = &dev_priv->uncore;
3185
3186	u32 pipestat_mask;
3187	u32 enable_mask;
3188	enum pipe pipe;
3189
3190	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3191
3192	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3193	for_each_pipe(dev_priv, pipe)
3194		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3195
3196	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3197		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3198		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3199		I915_LPE_PIPE_A_INTERRUPT |
3200		I915_LPE_PIPE_B_INTERRUPT;
3201
3202	if (IS_CHERRYVIEW(dev_priv))
3203		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3204			I915_LPE_PIPE_C_INTERRUPT;
3205
3206	WARN_ON(dev_priv->irq_mask != ~0u);
3207
3208	dev_priv->irq_mask = ~enable_mask;
3209
3210	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
3211}
3212
3213/* drm_dma.h hooks
3214*/
3215static void ironlake_irq_reset(struct drm_i915_private *dev_priv)
3216{
3217	struct intel_uncore *uncore = &dev_priv->uncore;
3218
3219	GEN3_IRQ_RESET(uncore, DE);
3220	if (IS_GEN(dev_priv, 7))
3221		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3222
3223	if (IS_HASWELL(dev_priv)) {
3224		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3225		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
 
 
 
 
 
 
3226	}
3227
3228	gen5_gt_irq_reset(&dev_priv->gt);
3229
3230	ibx_irq_reset(dev_priv);
3231}
3232
3233static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
3234{
3235	I915_WRITE(VLV_MASTER_IER, 0);
3236	POSTING_READ(VLV_MASTER_IER);
3237
3238	gen5_gt_irq_reset(&dev_priv->gt);
3239
3240	spin_lock_irq(&dev_priv->irq_lock);
3241	if (dev_priv->display_irqs_enabled)
3242		vlv_display_irq_reset(dev_priv);
3243	spin_unlock_irq(&dev_priv->irq_lock);
3244}
3245
3246static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3247{
3248	struct intel_uncore *uncore = &dev_priv->uncore;
3249	int pipe;
3250
3251	gen8_master_intr_disable(dev_priv->uncore.regs);
3252
3253	gen8_gt_irq_reset(&dev_priv->gt);
3254
3255	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3256	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3257
3258	for_each_pipe(dev_priv, pipe)
3259		if (intel_display_power_is_enabled(dev_priv,
3260						   POWER_DOMAIN_PIPE(pipe)))
3261			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3262
3263	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3264	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3265	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3266
3267	if (HAS_PCH_SPLIT(dev_priv))
3268		ibx_irq_reset(dev_priv);
3269}
3270
3271static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3272{
3273	struct intel_uncore *uncore = &dev_priv->uncore;
3274	int pipe;
3275
3276	gen11_master_intr_disable(dev_priv->uncore.regs);
3277
3278	gen11_gt_irq_reset(&dev_priv->gt);
3279
3280	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3281
3282	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3283	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3284
3285	for_each_pipe(dev_priv, pipe)
3286		if (intel_display_power_is_enabled(dev_priv,
3287						   POWER_DOMAIN_PIPE(pipe)))
3288			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3289
3290	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3291	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3292	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3293	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3294	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3295
3296	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3297		GEN3_IRQ_RESET(uncore, SDE);
3298}
3299
3300void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3301				     u8 pipe_mask)
3302{
3303	struct intel_uncore *uncore = &dev_priv->uncore;
3304
3305	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3306	enum pipe pipe;
3307
3308	spin_lock_irq(&dev_priv->irq_lock);
3309
3310	if (!intel_irqs_enabled(dev_priv)) {
3311		spin_unlock_irq(&dev_priv->irq_lock);
3312		return;
3313	}
3314
3315	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3316		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3317				  dev_priv->de_irq_mask[pipe],
3318				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3319
3320	spin_unlock_irq(&dev_priv->irq_lock);
3321}
3322
3323void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3324				     u8 pipe_mask)
3325{
3326	struct intel_uncore *uncore = &dev_priv->uncore;
3327	enum pipe pipe;
3328
3329	spin_lock_irq(&dev_priv->irq_lock);
3330
3331	if (!intel_irqs_enabled(dev_priv)) {
3332		spin_unlock_irq(&dev_priv->irq_lock);
3333		return;
3334	}
3335
3336	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3337		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3338
3339	spin_unlock_irq(&dev_priv->irq_lock);
3340
3341	/* make sure we're done processing display irqs */
3342	intel_synchronize_irq(dev_priv);
3343}
3344
3345static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3346{
3347	struct intel_uncore *uncore = &dev_priv->uncore;
3348
3349	I915_WRITE(GEN8_MASTER_IRQ, 0);
3350	POSTING_READ(GEN8_MASTER_IRQ);
3351
3352	gen8_gt_irq_reset(&dev_priv->gt);
3353
3354	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3355
3356	spin_lock_irq(&dev_priv->irq_lock);
3357	if (dev_priv->display_irqs_enabled)
3358		vlv_display_irq_reset(dev_priv);
3359	spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3363				  const u32 hpd[HPD_NUM_PINS])
3364{
3365	struct intel_encoder *encoder;
3366	u32 enabled_irqs = 0;
3367
3368	for_each_intel_encoder(&dev_priv->drm, encoder)
3369		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3370			enabled_irqs |= hpd[encoder->hpd_pin];
3371
3372	return enabled_irqs;
3373}
3374
3375static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3376{
3377	u32 hotplug;
3378
3379	/*
3380	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3381	 * duration to 2ms (which is the minimum in the Display Port spec).
3382	 * The pulse duration bits are reserved on LPT+.
3383	 */
3384	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3385	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3386		     PORTC_PULSE_DURATION_MASK |
3387		     PORTD_PULSE_DURATION_MASK);
3388	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3389	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3390	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3391	/*
3392	 * When CPU and PCH are on the same package, port A
3393	 * HPD must be enabled in both north and south.
3394	 */
3395	if (HAS_PCH_LPT_LP(dev_priv))
3396		hotplug |= PORTA_HOTPLUG_ENABLE;
3397	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3398}
3399
3400static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3401{
3402	u32 hotplug_irqs, enabled_irqs;
3403
3404	if (HAS_PCH_IBX(dev_priv)) {
3405		hotplug_irqs = SDE_HOTPLUG_MASK;
3406		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3407	} else {
3408		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3409		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3410	}
3411
3412	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3413
3414	ibx_hpd_detection_setup(dev_priv);
3415}
3416
3417static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3418				    u32 ddi_hotplug_enable_mask,
3419				    u32 tc_hotplug_enable_mask)
3420{
3421	u32 hotplug;
3422
3423	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3424	hotplug |= ddi_hotplug_enable_mask;
3425	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3426
3427	if (tc_hotplug_enable_mask) {
3428		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3429		hotplug |= tc_hotplug_enable_mask;
3430		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3431	}
3432}
3433
3434static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3435{
3436	u32 hotplug_irqs, enabled_irqs;
3437
3438	hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3439	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3440
3441	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443	icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3444				ICP_TC_HPD_ENABLE_MASK);
 
 
3445}
3446
3447static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
 
 
3448{
3449	u32 hotplug_irqs, enabled_irqs;
3450
3451	hotplug_irqs = SDE_DDI_MASK_TGP;
3452	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_mcc);
3453
3454	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3455
3456	icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3457}
3458
3459static void tgp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3460{
3461	u32 hotplug_irqs, enabled_irqs;
3462
3463	hotplug_irqs = SDE_DDI_MASK_TGP | SDE_TC_MASK_TGP;
3464	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_tgp);
3465
3466	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3467
3468	icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3469				TGP_TC_HPD_ENABLE_MASK);
3470}
3471
3472static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3473{
3474	u32 hotplug;
3475
3476	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3477	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3478		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3479		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3480		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3481	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3482
3483	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3484	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3485		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3486		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3487		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3488	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3489}
3490
3491static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492{
3493	u32 hotplug_irqs, enabled_irqs;
3494	const u32 *hpd;
3495	u32 val;
3496
3497	hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3498	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3499	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501	val = I915_READ(GEN11_DE_HPD_IMR);
3502	val &= ~hotplug_irqs;
3503	I915_WRITE(GEN11_DE_HPD_IMR, val);
3504	POSTING_READ(GEN11_DE_HPD_IMR);
3505
3506	gen11_hpd_detection_setup(dev_priv);
3507
3508	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3509		tgp_hpd_irq_setup(dev_priv);
3510	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3511		icp_hpd_irq_setup(dev_priv);
3512}
3513
3514static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3515{
3516	u32 val, hotplug;
3517
3518	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3519	if (HAS_PCH_CNP(dev_priv)) {
3520		val = I915_READ(SOUTH_CHICKEN1);
3521		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3522		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3523		I915_WRITE(SOUTH_CHICKEN1, val);
3524	}
3525
3526	/* Enable digital hotplug on the PCH */
3527	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3528	hotplug |= PORTA_HOTPLUG_ENABLE |
3529		   PORTB_HOTPLUG_ENABLE |
3530		   PORTC_HOTPLUG_ENABLE |
3531		   PORTD_HOTPLUG_ENABLE;
3532	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3533
3534	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3535	hotplug |= PORTE_HOTPLUG_ENABLE;
3536	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3537}
3538
3539static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3540{
3541	u32 hotplug_irqs, enabled_irqs;
3542
3543	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3544	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
 
3545
3546	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
 
 
 
3547
3548	spt_hpd_detection_setup(dev_priv);
 
 
 
3549}
3550
3551static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3552{
3553	u32 hotplug;
 
 
 
 
 
 
 
 
 
 
 
3554
3555	/*
3556	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3557	 * duration to 2ms (which is the minimum in the Display Port spec)
3558	 * The pulse duration bits are reserved on HSW+.
3559	 */
3560	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3561	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3562	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3563		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3564	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3565}
3566
3567static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3568{
3569	u32 hotplug_irqs, enabled_irqs;
3570
3571	if (INTEL_GEN(dev_priv) >= 8) {
3572		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3573		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3574
3575		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3576	} else if (INTEL_GEN(dev_priv) >= 7) {
3577		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3578		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3579
3580		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3581	} else {
3582		hotplug_irqs = DE_DP_A_HOTPLUG;
3583		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3584
3585		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3586	}
3587
3588	ilk_hpd_detection_setup(dev_priv);
3589
3590	ibx_hpd_irq_setup(dev_priv);
3591}
3592
3593static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3594				      u32 enabled_irqs)
3595{
3596	u32 hotplug;
3597
3598	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3599	hotplug |= PORTA_HOTPLUG_ENABLE |
3600		   PORTB_HOTPLUG_ENABLE |
3601		   PORTC_HOTPLUG_ENABLE;
3602
3603	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3604		      hotplug, enabled_irqs);
3605	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3606
3607	/*
3608	 * For BXT invert bit has to be set based on AOB design
3609	 * for HPD detection logic, update it based on VBT fields.
3610	 */
3611	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3612	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3613		hotplug |= BXT_DDIA_HPD_INVERT;
3614	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3615	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3616		hotplug |= BXT_DDIB_HPD_INVERT;
3617	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3618	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3619		hotplug |= BXT_DDIC_HPD_INVERT;
3620
3621	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3622}
3623
3624static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3625{
3626	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3627}
3628
3629static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3630{
3631	u32 hotplug_irqs, enabled_irqs;
3632
3633	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3634	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3635
3636	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3637
3638	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3639}
3640
3641static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3642{
3643	u32 mask;
3644
3645	if (HAS_PCH_NOP(dev_priv))
3646		return;
3647
3648	if (HAS_PCH_IBX(dev_priv))
3649		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3650	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3651		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3652	else
3653		mask = SDE_GMBUS_CPT;
3654
3655	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3656	I915_WRITE(SDEIMR, ~mask);
3657
3658	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3659	    HAS_PCH_LPT(dev_priv))
3660		ibx_hpd_detection_setup(dev_priv);
 
 
 
 
 
 
 
 
 
 
3661	else
3662		spt_hpd_detection_setup(dev_priv);
3663}
3664
3665static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv)
3666{
3667	struct intel_uncore *uncore = &dev_priv->uncore;
3668	u32 display_mask, extra_mask;
3669
3670	if (INTEL_GEN(dev_priv) >= 7) {
3671		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3672				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3673		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3674			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3675			      DE_DP_A_HOTPLUG_IVB);
3676	} else {
3677		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3678				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3679				DE_PIPEA_CRC_DONE | DE_POISON);
3680		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3681			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3682			      DE_DP_A_HOTPLUG);
3683	}
3684
3685	if (IS_HASWELL(dev_priv)) {
3686		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3687		intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3688		display_mask |= DE_EDP_PSR_INT_HSW;
3689	}
 
3690
3691	dev_priv->irq_mask = ~display_mask;
3692
3693	ibx_irq_pre_postinstall(dev_priv);
3694
3695	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3696		      display_mask | extra_mask);
3697
3698	gen5_gt_irq_postinstall(&dev_priv->gt);
3699
3700	ilk_hpd_detection_setup(dev_priv);
3701
3702	ibx_irq_postinstall(dev_priv);
3703
3704	if (IS_IRONLAKE_M(dev_priv)) {
3705		/* Enable PCU event interrupts
3706		 *
3707		 * spinlocking not required here for correctness since interrupt
3708		 * setup is guaranteed to run in single-threaded context. But we
3709		 * need it to make the assert_spin_locked happy. */
3710		spin_lock_irq(&dev_priv->irq_lock);
3711		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3712		spin_unlock_irq(&dev_priv->irq_lock);
3713	}
3714}
3715
3716void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3717{
3718	lockdep_assert_held(&dev_priv->irq_lock);
3719
3720	if (dev_priv->display_irqs_enabled)
3721		return;
3722
3723	dev_priv->display_irqs_enabled = true;
3724
3725	if (intel_irqs_enabled(dev_priv)) {
3726		vlv_display_irq_reset(dev_priv);
3727		vlv_display_irq_postinstall(dev_priv);
3728	}
3729}
3730
3731void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3732{
3733	lockdep_assert_held(&dev_priv->irq_lock);
3734
3735	if (!dev_priv->display_irqs_enabled)
3736		return;
3737
3738	dev_priv->display_irqs_enabled = false;
3739
3740	if (intel_irqs_enabled(dev_priv))
3741		vlv_display_irq_reset(dev_priv);
3742}
 
 
 
3743
 
 
3744
3745static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3746{
3747	gen5_gt_irq_postinstall(&dev_priv->gt);
3748
3749	spin_lock_irq(&dev_priv->irq_lock);
3750	if (dev_priv->display_irqs_enabled)
3751		vlv_display_irq_postinstall(dev_priv);
3752	spin_unlock_irq(&dev_priv->irq_lock);
3753
3754	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3755	POSTING_READ(VLV_MASTER_IER);
3756}
3757
3758static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3759{
3760	struct intel_uncore *uncore = &dev_priv->uncore;
3761
3762	u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3763	u32 de_pipe_enables;
3764	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3765	u32 de_port_enables;
3766	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3767	enum pipe pipe;
3768
3769	if (INTEL_GEN(dev_priv) <= 10)
3770		de_misc_masked |= GEN8_DE_MISC_GSE;
3771
3772	if (INTEL_GEN(dev_priv) >= 9) {
3773		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3774		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3775				  GEN9_AUX_CHANNEL_D;
3776		if (IS_GEN9_LP(dev_priv))
3777			de_port_masked |= BXT_DE_PORT_GMBUS;
3778	} else {
3779		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3780	}
3781
3782	if (INTEL_GEN(dev_priv) >= 11)
3783		de_port_masked |= ICL_AUX_CHANNEL_E;
3784
3785	if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3786		de_port_masked |= CNL_AUX_CHANNEL_F;
3787
3788	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789					   GEN8_PIPE_FIFO_UNDERRUN;
3790
3791	de_port_enables = de_port_masked;
3792	if (IS_GEN9_LP(dev_priv))
3793		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3794	else if (IS_BROADWELL(dev_priv))
3795		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3796
3797	gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3798	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3799
3800	for_each_pipe(dev_priv, pipe) {
3801		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3802
3803		if (intel_display_power_is_enabled(dev_priv,
3804				POWER_DOMAIN_PIPE(pipe)))
3805			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3806					  dev_priv->de_irq_mask[pipe],
3807					  de_pipe_enables);
3808	}
3809
3810	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3811	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3812
3813	if (INTEL_GEN(dev_priv) >= 11) {
3814		u32 de_hpd_masked = 0;
3815		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3816				     GEN11_DE_TBT_HOTPLUG_MASK;
3817
3818		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3819			      de_hpd_enables);
3820		gen11_hpd_detection_setup(dev_priv);
3821	} else if (IS_GEN9_LP(dev_priv)) {
3822		bxt_hpd_detection_setup(dev_priv);
3823	} else if (IS_BROADWELL(dev_priv)) {
3824		ilk_hpd_detection_setup(dev_priv);
3825	}
3826}
3827
3828static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3829{
3830	if (HAS_PCH_SPLIT(dev_priv))
3831		ibx_irq_pre_postinstall(dev_priv);
3832
3833	gen8_gt_irq_postinstall(&dev_priv->gt);
3834	gen8_de_irq_postinstall(dev_priv);
3835
3836	if (HAS_PCH_SPLIT(dev_priv))
3837		ibx_irq_postinstall(dev_priv);
3838
3839	gen8_master_intr_enable(dev_priv->uncore.regs);
3840}
3841
3842static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3843{
3844	u32 mask = SDE_GMBUS_ICP;
3845
3846	WARN_ON(I915_READ(SDEIER) != 0);
3847	I915_WRITE(SDEIER, 0xffffffff);
3848	POSTING_READ(SDEIER);
3849
3850	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3851	I915_WRITE(SDEIMR, ~mask);
3852
3853	if (HAS_PCH_TGP(dev_priv))
3854		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3855					TGP_TC_HPD_ENABLE_MASK);
3856	else if (HAS_PCH_MCC(dev_priv))
3857		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3858	else
3859		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3860					ICP_TC_HPD_ENABLE_MASK);
3861}
3862
3863static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3864{
3865	struct intel_uncore *uncore = &dev_priv->uncore;
3866	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3867
3868	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3869		icp_irq_postinstall(dev_priv);
3870
3871	gen11_gt_irq_postinstall(&dev_priv->gt);
3872	gen8_de_irq_postinstall(dev_priv);
3873
3874	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3875
3876	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3877
3878	gen11_master_intr_enable(uncore->regs);
3879	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3880}
3881
3882static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3883{
3884	gen8_gt_irq_postinstall(&dev_priv->gt);
3885
3886	spin_lock_irq(&dev_priv->irq_lock);
3887	if (dev_priv->display_irqs_enabled)
3888		vlv_display_irq_postinstall(dev_priv);
3889	spin_unlock_irq(&dev_priv->irq_lock);
3890
3891	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3892	POSTING_READ(GEN8_MASTER_IRQ);
3893}
3894
3895static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3896{
3897	struct intel_uncore *uncore = &dev_priv->uncore;
3898
3899	i9xx_pipestat_irq_reset(dev_priv);
3900
3901	GEN2_IRQ_RESET(uncore);
3902}
3903
3904static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3905{
3906	struct intel_uncore *uncore = &dev_priv->uncore;
3907	u16 enable_mask;
3908
3909	intel_uncore_write16(uncore,
3910			     EMR,
3911			     ~(I915_ERROR_PAGE_TABLE |
3912			       I915_ERROR_MEMORY_REFRESH));
3913
3914	/* Unmask the interrupts that we always want on. */
3915	dev_priv->irq_mask =
3916		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918		  I915_MASTER_ERROR_INTERRUPT);
3919
3920	enable_mask =
3921		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923		I915_MASTER_ERROR_INTERRUPT |
3924		I915_USER_INTERRUPT;
3925
3926	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3927
3928	/* Interrupt setup is already guaranteed to be single-threaded, this is
3929	 * just to make the assert_spin_locked check happy. */
3930	spin_lock_irq(&dev_priv->irq_lock);
3931	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3932	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3933	spin_unlock_irq(&dev_priv->irq_lock);
3934}
3935
3936static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3937			       u16 *eir, u16 *eir_stuck)
3938{
3939	struct intel_uncore *uncore = &i915->uncore;
3940	u16 emr;
3941
3942	*eir = intel_uncore_read16(uncore, EIR);
3943
3944	if (*eir)
3945		intel_uncore_write16(uncore, EIR, *eir);
3946
3947	*eir_stuck = intel_uncore_read16(uncore, EIR);
3948	if (*eir_stuck == 0)
3949		return;
3950
3951	/*
3952	 * Toggle all EMR bits to make sure we get an edge
3953	 * in the ISR master error bit if we don't clear
3954	 * all the EIR bits. Otherwise the edge triggered
3955	 * IIR on i965/g4x wouldn't notice that an interrupt
3956	 * is still pending. Also some EIR bits can't be
3957	 * cleared except by handling the underlying error
3958	 * (or by a GPU reset) so we mask any bit that
3959	 * remains set.
3960	 */
3961	emr = intel_uncore_read16(uncore, EMR);
3962	intel_uncore_write16(uncore, EMR, 0xffff);
3963	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3964}
3965
3966static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3967				   u16 eir, u16 eir_stuck)
3968{
3969	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3970
3971	if (eir_stuck)
3972		DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
3973}
3974
3975static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3976			       u32 *eir, u32 *eir_stuck)
3977{
3978	u32 emr;
3979
3980	*eir = I915_READ(EIR);
3981
3982	I915_WRITE(EIR, *eir);
3983
3984	*eir_stuck = I915_READ(EIR);
3985	if (*eir_stuck == 0)
3986		return;
3987
3988	/*
3989	 * Toggle all EMR bits to make sure we get an edge
3990	 * in the ISR master error bit if we don't clear
3991	 * all the EIR bits. Otherwise the edge triggered
3992	 * IIR on i965/g4x wouldn't notice that an interrupt
3993	 * is still pending. Also some EIR bits can't be
3994	 * cleared except by handling the underlying error
3995	 * (or by a GPU reset) so we mask any bit that
3996	 * remains set.
3997	 */
3998	emr = I915_READ(EMR);
3999	I915_WRITE(EMR, 0xffffffff);
4000	I915_WRITE(EMR, emr | *eir_stuck);
4001}
4002
4003static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4004				   u32 eir, u32 eir_stuck)
4005{
4006	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4007
4008	if (eir_stuck)
4009		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
4010}
4011
4012static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4013{
4014	struct drm_i915_private *dev_priv = arg;
4015	irqreturn_t ret = IRQ_NONE;
4016
4017	if (!intel_irqs_enabled(dev_priv))
4018		return IRQ_NONE;
4019
4020	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4021	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4022
4023	do {
4024		u32 pipe_stats[I915_MAX_PIPES] = {};
4025		u16 eir = 0, eir_stuck = 0;
4026		u16 iir;
4027
4028		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4029		if (iir == 0)
4030			break;
4031
4032		ret = IRQ_HANDLED;
4033
4034		/* Call regardless, as some status bits might not be
4035		 * signalled in iir */
4036		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4037
4038		if (iir & I915_MASTER_ERROR_INTERRUPT)
4039			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4040
4041		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
4042
4043		if (iir & I915_USER_INTERRUPT)
4044			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4045
4046		if (iir & I915_MASTER_ERROR_INTERRUPT)
4047			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4048
4049		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4050	} while (0);
4051
4052	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4053
4054	return ret;
4055}
4056
4057static void i915_irq_reset(struct drm_i915_private *dev_priv)
4058{
4059	struct intel_uncore *uncore = &dev_priv->uncore;
4060
4061	if (I915_HAS_HOTPLUG(dev_priv)) {
4062		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4063		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4064	}
4065
4066	i9xx_pipestat_irq_reset(dev_priv);
4067
4068	GEN3_IRQ_RESET(uncore, GEN2_);
 
 
 
4069}
4070
4071static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
 
 
 
 
4072{
4073	struct intel_uncore *uncore = &dev_priv->uncore;
4074	u32 enable_mask;
 
4075
4076	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4077			  I915_ERROR_MEMORY_REFRESH));
4078
4079	/* Unmask the interrupts that we always want on. */
4080	dev_priv->irq_mask =
4081		~(I915_ASLE_INTERRUPT |
4082		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4083		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4084		  I915_MASTER_ERROR_INTERRUPT);
4085
4086	enable_mask =
4087		I915_ASLE_INTERRUPT |
4088		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4089		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4090		I915_MASTER_ERROR_INTERRUPT |
4091		I915_USER_INTERRUPT;
4092
4093	if (I915_HAS_HOTPLUG(dev_priv)) {
4094		/* Enable in IER... */
4095		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4096		/* and unmask in IMR */
4097		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4098	}
4099
4100	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4101
4102	/* Interrupt setup is already guaranteed to be single-threaded, this is
4103	 * just to make the assert_spin_locked check happy. */
4104	spin_lock_irq(&dev_priv->irq_lock);
4105	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4106	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107	spin_unlock_irq(&dev_priv->irq_lock);
4108
4109	i915_enable_asle_pipestat(dev_priv);
4110}
4111
4112static irqreturn_t i915_irq_handler(int irq, void *arg)
4113{
4114	struct drm_i915_private *dev_priv = arg;
4115	irqreturn_t ret = IRQ_NONE;
4116
4117	if (!intel_irqs_enabled(dev_priv))
4118		return IRQ_NONE;
4119
4120	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4121	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4122
4123	do {
4124		u32 pipe_stats[I915_MAX_PIPES] = {};
4125		u32 eir = 0, eir_stuck = 0;
4126		u32 hotplug_status = 0;
4127		u32 iir;
4128
4129		iir = I915_READ(GEN2_IIR);
4130		if (iir == 0)
4131			break;
4132
4133		ret = IRQ_HANDLED;
4134
4135		if (I915_HAS_HOTPLUG(dev_priv) &&
4136		    iir & I915_DISPLAY_PORT_INTERRUPT)
4137			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4138
4139		/* Call regardless, as some status bits might not be
4140		 * signalled in iir */
4141		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4142
4143		if (iir & I915_MASTER_ERROR_INTERRUPT)
4144			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4145
4146		I915_WRITE(GEN2_IIR, iir);
4147
4148		if (iir & I915_USER_INTERRUPT)
4149			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4150
4151		if (iir & I915_MASTER_ERROR_INTERRUPT)
4152			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4153
4154		if (hotplug_status)
4155			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4156
4157		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4158	} while (0);
4159
4160	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4161
4162	return ret;
4163}
4164
4165static void i965_irq_reset(struct drm_i915_private *dev_priv)
4166{
4167	struct intel_uncore *uncore = &dev_priv->uncore;
4168
4169	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4170	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4171
4172	i9xx_pipestat_irq_reset(dev_priv);
4173
4174	GEN3_IRQ_RESET(uncore, GEN2_);
4175}
4176
4177static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4178{
4179	struct intel_uncore *uncore = &dev_priv->uncore;
4180	u32 enable_mask;
4181	u32 error_mask;
4182
4183	/*
4184	 * Enable some error detection, note the instruction error mask
4185	 * bit is reserved, so we leave it masked.
4186	 */
4187	if (IS_G4X(dev_priv)) {
4188		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4189			       GM45_ERROR_MEM_PRIV |
4190			       GM45_ERROR_CP_PRIV |
4191			       I915_ERROR_MEMORY_REFRESH);
4192	} else {
4193		error_mask = ~(I915_ERROR_PAGE_TABLE |
4194			       I915_ERROR_MEMORY_REFRESH);
4195	}
4196	I915_WRITE(EMR, error_mask);
4197
4198	/* Unmask the interrupts that we always want on. */
4199	dev_priv->irq_mask =
4200		~(I915_ASLE_INTERRUPT |
4201		  I915_DISPLAY_PORT_INTERRUPT |
4202		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4203		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4204		  I915_MASTER_ERROR_INTERRUPT);
4205
4206	enable_mask =
4207		I915_ASLE_INTERRUPT |
4208		I915_DISPLAY_PORT_INTERRUPT |
4209		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4210		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4211		I915_MASTER_ERROR_INTERRUPT |
4212		I915_USER_INTERRUPT;
4213
4214	if (IS_G4X(dev_priv))
4215		enable_mask |= I915_BSD_USER_INTERRUPT;
4216
4217	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4218
4219	/* Interrupt setup is already guaranteed to be single-threaded, this is
4220	 * just to make the assert_spin_locked check happy. */
4221	spin_lock_irq(&dev_priv->irq_lock);
4222	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4223	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4224	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4225	spin_unlock_irq(&dev_priv->irq_lock);
4226
4227	i915_enable_asle_pipestat(dev_priv);
4228}
4229
4230static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4231{
4232	u32 hotplug_en;
4233
4234	lockdep_assert_held(&dev_priv->irq_lock);
4235
4236	/* Note HDMI and DP share hotplug bits */
4237	/* enable bits are the same for all generations */
4238	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4239	/* Programming the CRT detection parameters tends
4240	   to generate a spurious hotplug event about three
4241	   seconds later.  So just do it once.
4242	*/
4243	if (IS_G4X(dev_priv))
4244		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4245	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4246
4247	/* Ignore TV since it's buggy */
4248	i915_hotplug_interrupt_update_locked(dev_priv,
4249					     HOTPLUG_INT_EN_MASK |
4250					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4251					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4252					     hotplug_en);
4253}
4254
4255static irqreturn_t i965_irq_handler(int irq, void *arg)
4256{
4257	struct drm_i915_private *dev_priv = arg;
4258	irqreturn_t ret = IRQ_NONE;
4259
4260	if (!intel_irqs_enabled(dev_priv))
4261		return IRQ_NONE;
4262
4263	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4264	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4265
4266	do {
4267		u32 pipe_stats[I915_MAX_PIPES] = {};
4268		u32 eir = 0, eir_stuck = 0;
4269		u32 hotplug_status = 0;
4270		u32 iir;
4271
4272		iir = I915_READ(GEN2_IIR);
4273		if (iir == 0)
4274			break;
4275
4276		ret = IRQ_HANDLED;
 
 
4277
4278		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4279			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4280
4281		/* Call regardless, as some status bits might not be
4282		 * signalled in iir */
4283		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4284
4285		if (iir & I915_MASTER_ERROR_INTERRUPT)
4286			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4287
4288		I915_WRITE(GEN2_IIR, iir);
4289
4290		if (iir & I915_USER_INTERRUPT)
4291			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4292
4293		if (iir & I915_BSD_USER_INTERRUPT)
4294			intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
4295
4296		if (iir & I915_MASTER_ERROR_INTERRUPT)
4297			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4298
4299		if (hotplug_status)
4300			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4301
4302		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4303	} while (0);
 
4304
4305	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4306
4307	return ret;
4308}
4309
4310/**
4311 * intel_irq_init - initializes irq support
4312 * @dev_priv: i915 device instance
4313 *
4314 * This function initializes all the irq support including work items, timers
4315 * and all the vtables. It does not setup the interrupt itself though.
4316 */
4317void intel_irq_init(struct drm_i915_private *dev_priv)
4318{
4319	struct drm_device *dev = &dev_priv->drm;
4320	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4321	int i;
4322
4323	if (IS_I945GM(dev_priv))
4324		i945gm_vblank_work_init(dev_priv);
4325
4326	intel_hpd_init_work(dev_priv);
4327
4328	INIT_WORK(&rps->work, gen6_pm_rps_work);
4329
4330	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4331	for (i = 0; i < MAX_L3_SLICES; ++i)
4332		dev_priv->l3_parity.remap_info[i] = NULL;
4333
4334	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4335	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4336		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4337
4338	/* Let's track the enabled rps events */
4339	if (IS_VALLEYVIEW(dev_priv))
4340		/* WaGsvRC0ResidencyMethod:vlv */
4341		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4342	else
4343		dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4344					   GEN6_PM_RP_DOWN_THRESHOLD |
4345					   GEN6_PM_RP_DOWN_TIMEOUT);
4346
4347	/* We share the register with other engine */
4348	if (INTEL_GEN(dev_priv) > 9)
4349		GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4350
4351	rps->pm_intrmsk_mbz = 0;
4352
4353	/*
4354	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4355	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4356	 *
4357	 * TODO: verify if this can be reproduced on VLV,CHV.
4358	 */
4359	if (INTEL_GEN(dev_priv) <= 7)
4360		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4361
4362	if (INTEL_GEN(dev_priv) >= 8)
4363		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4364
4365	dev->vblank_disable_immediate = true;
4366
4367	/* Most platforms treat the display irq block as an always-on
4368	 * power domain. vlv/chv can disable it at runtime and need
4369	 * special care to avoid writing any of the display block registers
4370	 * outside of the power domain. We defer setting up the display irqs
4371	 * in this case to the runtime pm.
4372	 */
4373	dev_priv->display_irqs_enabled = true;
4374	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4375		dev_priv->display_irqs_enabled = false;
4376
4377	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4378	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4379	 * detection, as short HPD storms will occur as a natural part of
4380	 * sideband messaging with MST.
4381	 * On older platforms however, IRQ storms can occur with both long and
4382	 * short pulses, as seen on some G4x systems.
4383	 */
4384	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4385
4386	if (HAS_GMCH(dev_priv)) {
4387		if (I915_HAS_HOTPLUG(dev_priv))
4388			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4389	} else {
4390		if (HAS_PCH_MCC(dev_priv))
4391			/* EHL doesn't need most of gen11_hpd_irq_setup */
4392			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4393		else if (INTEL_GEN(dev_priv) >= 11)
4394			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4395		else if (IS_GEN9_LP(dev_priv))
4396			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4397		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4398			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4399		else
4400			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4401	}
4402}
4403
4404/**
4405 * intel_irq_fini - deinitializes IRQ support
4406 * @i915: i915 device instance
4407 *
4408 * This function deinitializes all the IRQ support.
4409 */
4410void intel_irq_fini(struct drm_i915_private *i915)
4411{
4412	int i;
4413
4414	if (IS_I945GM(i915))
4415		i945gm_vblank_work_fini(i915);
 
 
 
4416
4417	for (i = 0; i < MAX_L3_SLICES; ++i)
4418		kfree(i915->l3_parity.remap_info[i]);
 
 
4419}
4420
4421static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4422{
4423	if (HAS_GMCH(dev_priv)) {
4424		if (IS_CHERRYVIEW(dev_priv))
4425			return cherryview_irq_handler;
4426		else if (IS_VALLEYVIEW(dev_priv))
4427			return valleyview_irq_handler;
4428		else if (IS_GEN(dev_priv, 4))
4429			return i965_irq_handler;
4430		else if (IS_GEN(dev_priv, 3))
4431			return i915_irq_handler;
4432		else
4433			return i8xx_irq_handler;
4434	} else {
4435		if (INTEL_GEN(dev_priv) >= 11)
4436			return gen11_irq_handler;
4437		else if (INTEL_GEN(dev_priv) >= 8)
4438			return gen8_irq_handler;
4439		else
4440			return ironlake_irq_handler;
4441	}
4442}
4443
4444static void intel_irq_reset(struct drm_i915_private *dev_priv)
4445{
4446	if (HAS_GMCH(dev_priv)) {
4447		if (IS_CHERRYVIEW(dev_priv))
4448			cherryview_irq_reset(dev_priv);
4449		else if (IS_VALLEYVIEW(dev_priv))
4450			valleyview_irq_reset(dev_priv);
4451		else if (IS_GEN(dev_priv, 4))
4452			i965_irq_reset(dev_priv);
4453		else if (IS_GEN(dev_priv, 3))
4454			i915_irq_reset(dev_priv);
4455		else
4456			i8xx_irq_reset(dev_priv);
4457	} else {
4458		if (INTEL_GEN(dev_priv) >= 11)
4459			gen11_irq_reset(dev_priv);
4460		else if (INTEL_GEN(dev_priv) >= 8)
4461			gen8_irq_reset(dev_priv);
4462		else
4463			ironlake_irq_reset(dev_priv);
4464	}
4465}
4466
4467static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4468{
4469	if (HAS_GMCH(dev_priv)) {
4470		if (IS_CHERRYVIEW(dev_priv))
4471			cherryview_irq_postinstall(dev_priv);
4472		else if (IS_VALLEYVIEW(dev_priv))
4473			valleyview_irq_postinstall(dev_priv);
4474		else if (IS_GEN(dev_priv, 4))
4475			i965_irq_postinstall(dev_priv);
4476		else if (IS_GEN(dev_priv, 3))
4477			i915_irq_postinstall(dev_priv);
4478		else
4479			i8xx_irq_postinstall(dev_priv);
 
 
4480	} else {
4481		if (INTEL_GEN(dev_priv) >= 11)
4482			gen11_irq_postinstall(dev_priv);
4483		else if (INTEL_GEN(dev_priv) >= 8)
4484			gen8_irq_postinstall(dev_priv);
4485		else
4486			ironlake_irq_postinstall(dev_priv);
4487	}
4488}
4489
4490/**
4491 * intel_irq_install - enables the hardware interrupt
4492 * @dev_priv: i915 device instance
4493 *
4494 * This function enables the hardware interrupt handling, but leaves the hotplug
4495 * handling still disabled. It is called after intel_irq_init().
4496 *
4497 * In the driver load and resume code we need working interrupts in a few places
4498 * but don't want to deal with the hassle of concurrent probe and hotplug
4499 * workers. Hence the split into this two-stage approach.
4500 */
4501int intel_irq_install(struct drm_i915_private *dev_priv)
4502{
4503	int irq = dev_priv->drm.pdev->irq;
4504	int ret;
4505
4506	/*
4507	 * We enable some interrupt sources in our postinstall hooks, so mark
4508	 * interrupts as enabled _before_ actually enabling them to avoid
4509	 * special cases in our ordering checks.
4510	 */
4511	dev_priv->runtime_pm.irqs_enabled = true;
4512
4513	dev_priv->drm.irq_enabled = true;
4514
4515	intel_irq_reset(dev_priv);
4516
4517	ret = request_irq(irq, intel_irq_handler(dev_priv),
4518			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4519	if (ret < 0) {
4520		dev_priv->drm.irq_enabled = false;
4521		return ret;
4522	}
4523
4524	intel_irq_postinstall(dev_priv);
4525
4526	return ret;
4527}
4528
4529/**
4530 * intel_irq_uninstall - finilizes all irq handling
4531 * @dev_priv: i915 device instance
4532 *
4533 * This stops interrupt and hotplug handling and unregisters and frees all
4534 * resources acquired in the init functions.
4535 */
4536void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4537{
4538	int irq = dev_priv->drm.pdev->irq;
4539
4540	/*
4541	 * FIXME we can get called twice during driver load
4542	 * error handling due to intel_modeset_cleanup()
4543	 * calling us out of sequence. Would be nice if
4544	 * it didn't do that...
4545	 */
4546	if (!dev_priv->drm.irq_enabled)
4547		return;
4548
4549	dev_priv->drm.irq_enabled = false;
4550
4551	intel_irq_reset(dev_priv);
4552
4553	free_irq(irq, dev_priv);
4554
4555	intel_hpd_cancel_work(dev_priv);
4556	dev_priv->runtime_pm.irqs_enabled = false;
4557}
4558
4559/**
4560 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4561 * @dev_priv: i915 device instance
4562 *
4563 * This function is used to disable interrupts at runtime, both in the runtime
4564 * pm and the system suspend/resume code.
4565 */
4566void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4567{
4568	intel_irq_reset(dev_priv);
4569	dev_priv->runtime_pm.irqs_enabled = false;
4570	intel_synchronize_irq(dev_priv);
4571}
4572
4573/**
4574 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4575 * @dev_priv: i915 device instance
4576 *
4577 * This function is used to enable interrupts at runtime, both in the runtime
4578 * pm and the system suspend/resume code.
4579 */
4580void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4581{
4582	dev_priv->runtime_pm.irqs_enabled = true;
4583	intel_irq_reset(dev_priv);
4584	intel_irq_postinstall(dev_priv);
4585}
4586
4587bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4588{
4589	/*
4590	 * We only use drm_irq_uninstall() at unload and VT switch, so
4591	 * this is the only thing we need to check.
4592	 */
4593	return dev_priv->runtime_pm.irqs_enabled;
4594}
4595
4596void intel_synchronize_irq(struct drm_i915_private *i915)
4597{
4598	synchronize_irq(i915->drm.pdev->irq);
4599}