Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2//
  3// regmap based irq_chip
  4//
  5// Copyright 2011 Wolfson Microelectronics plc
  6//
  7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  8
  9#include <linux/device.h>
 10#include <linux/export.h>
 11#include <linux/interrupt.h>
 12#include <linux/irq.h>
 13#include <linux/irqdomain.h>
 14#include <linux/pm_runtime.h>
 15#include <linux/regmap.h>
 16#include <linux/slab.h>
 17
 18#include "internal.h"
 19
 20struct regmap_irq_chip_data {
 21	struct mutex lock;
 22	struct irq_chip irq_chip;
 23
 24	struct regmap *map;
 25	const struct regmap_irq_chip *chip;
 26
 27	int irq_base;
 28	struct irq_domain *domain;
 29
 30	int irq;
 31	int wake_count;
 32
 33	void *status_reg_buf;
 34	unsigned int *main_status_buf;
 35	unsigned int *status_buf;
 36	unsigned int *mask_buf;
 37	unsigned int *mask_buf_def;
 38	unsigned int *wake_buf;
 39	unsigned int *type_buf;
 40	unsigned int *type_buf_def;
 41
 42	unsigned int irq_reg_stride;
 43	unsigned int type_reg_stride;
 44
 45	bool clear_status:1;
 46};
 47
 48static inline const
 49struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
 50				     int irq)
 51{
 52	return &data->chip->irqs[irq];
 53}
 54
 55static void regmap_irq_lock(struct irq_data *data)
 56{
 57	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 58
 59	mutex_lock(&d->lock);
 60}
 61
 62static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
 63				  unsigned int reg, unsigned int mask,
 64				  unsigned int val)
 65{
 66	if (d->chip->mask_writeonly)
 67		return regmap_write_bits(d->map, reg, mask, val);
 68	else
 69		return regmap_update_bits(d->map, reg, mask, val);
 70}
 71
 72static void regmap_irq_sync_unlock(struct irq_data *data)
 73{
 74	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 75	struct regmap *map = d->map;
 76	int i, ret;
 77	u32 reg;
 78	u32 unmask_offset;
 79	u32 val;
 80
 81	if (d->chip->runtime_pm) {
 82		ret = pm_runtime_get_sync(map->dev);
 83		if (ret < 0)
 84			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 85				ret);
 86	}
 87
 88	if (d->clear_status) {
 89		for (i = 0; i < d->chip->num_regs; i++) {
 90			reg = d->chip->status_base +
 91				(i * map->reg_stride * d->irq_reg_stride);
 92
 93			ret = regmap_read(map, reg, &val);
 94			if (ret)
 95				dev_err(d->map->dev,
 96					"Failed to clear the interrupt status bits\n");
 97		}
 98
 99		d->clear_status = false;
100	}
101
102	/*
103	 * If there's been a change in the mask write it back to the
104	 * hardware.  We rely on the use of the regmap core cache to
105	 * suppress pointless writes.
106	 */
107	for (i = 0; i < d->chip->num_regs; i++) {
108		if (!d->chip->mask_base)
109			continue;
110
111		reg = d->chip->mask_base +
112			(i * map->reg_stride * d->irq_reg_stride);
113		if (d->chip->mask_invert) {
114			ret = regmap_irq_update_bits(d, reg,
115					 d->mask_buf_def[i], ~d->mask_buf[i]);
116		} else if (d->chip->unmask_base) {
117			/* set mask with mask_base register */
118			ret = regmap_irq_update_bits(d, reg,
119					d->mask_buf_def[i], ~d->mask_buf[i]);
120			if (ret < 0)
121				dev_err(d->map->dev,
122					"Failed to sync unmasks in %x\n",
123					reg);
124			unmask_offset = d->chip->unmask_base -
125							d->chip->mask_base;
126			/* clear mask with unmask_base register */
127			ret = regmap_irq_update_bits(d,
128					reg + unmask_offset,
129					d->mask_buf_def[i],
130					d->mask_buf[i]);
131		} else {
132			ret = regmap_irq_update_bits(d, reg,
133					 d->mask_buf_def[i], d->mask_buf[i]);
134		}
135		if (ret != 0)
136			dev_err(d->map->dev, "Failed to sync masks in %x\n",
137				reg);
138
139		reg = d->chip->wake_base +
140			(i * map->reg_stride * d->irq_reg_stride);
141		if (d->wake_buf) {
142			if (d->chip->wake_invert)
143				ret = regmap_irq_update_bits(d, reg,
144							 d->mask_buf_def[i],
145							 ~d->wake_buf[i]);
146			else
147				ret = regmap_irq_update_bits(d, reg,
148							 d->mask_buf_def[i],
149							 d->wake_buf[i]);
150			if (ret != 0)
151				dev_err(d->map->dev,
152					"Failed to sync wakes in %x: %d\n",
153					reg, ret);
154		}
155
156		if (!d->chip->init_ack_masked)
157			continue;
158		/*
159		 * Ack all the masked interrupts unconditionally,
160		 * OR if there is masked interrupt which hasn't been Acked,
161		 * it'll be ignored in irq handler, then may introduce irq storm
162		 */
163		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164			reg = d->chip->ack_base +
165				(i * map->reg_stride * d->irq_reg_stride);
166			/* some chips ack by write 0 */
167			if (d->chip->ack_invert)
168				ret = regmap_write(map, reg, ~d->mask_buf[i]);
169			else
170				ret = regmap_write(map, reg, d->mask_buf[i]);
171			if (ret != 0)
172				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173					reg, ret);
174		}
175	}
176
177	/* Don't update the type bits if we're using mask bits for irq type. */
178	if (!d->chip->type_in_mask) {
179		for (i = 0; i < d->chip->num_type_reg; i++) {
180			if (!d->type_buf_def[i])
181				continue;
182			reg = d->chip->type_base +
183				(i * map->reg_stride * d->type_reg_stride);
184			if (d->chip->type_invert)
185				ret = regmap_irq_update_bits(d, reg,
186					d->type_buf_def[i], ~d->type_buf[i]);
187			else
188				ret = regmap_irq_update_bits(d, reg,
189					d->type_buf_def[i], d->type_buf[i]);
190			if (ret != 0)
191				dev_err(d->map->dev, "Failed to sync type in %x\n",
192					reg);
193		}
194	}
195
196	if (d->chip->runtime_pm)
197		pm_runtime_put(map->dev);
198
199	/* If we've changed our wakeup count propagate it to the parent */
200	if (d->wake_count < 0)
201		for (i = d->wake_count; i < 0; i++)
202			irq_set_irq_wake(d->irq, 0);
203	else if (d->wake_count > 0)
204		for (i = 0; i < d->wake_count; i++)
205			irq_set_irq_wake(d->irq, 1);
206
207	d->wake_count = 0;
208
209	mutex_unlock(&d->lock);
210}
211
212static void regmap_irq_enable(struct irq_data *data)
213{
214	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215	struct regmap *map = d->map;
216	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217	unsigned int mask, type;
218
219	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220
221	/*
222	 * The type_in_mask flag means that the underlying hardware uses
223	 * separate mask bits for rising and falling edge interrupts, but
224	 * we want to make them into a single virtual interrupt with
225	 * configurable edge.
226	 *
227	 * If the interrupt we're enabling defines the falling or rising
228	 * masks then instead of using the regular mask bits for this
229	 * interrupt, use the value previously written to the type buffer
230	 * at the corresponding offset in regmap_irq_set_type().
231	 */
232	if (d->chip->type_in_mask && type)
233		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234	else
235		mask = irq_data->mask;
236
237	if (d->chip->clear_on_unmask)
238		d->clear_status = true;
239
240	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241}
242
243static void regmap_irq_disable(struct irq_data *data)
244{
245	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246	struct regmap *map = d->map;
247	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248
249	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250}
251
252static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
253{
254	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255	struct regmap *map = d->map;
256	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257	int reg;
258	const struct regmap_irq_type *t = &irq_data->type;
259
260	if ((t->types_supported & type) != type)
261		return 0;
262
263	reg = t->type_reg_offset / map->reg_stride;
264
265	if (t->type_reg_mask)
266		d->type_buf[reg] &= ~t->type_reg_mask;
267	else
268		d->type_buf[reg] &= ~(t->type_falling_val |
269				      t->type_rising_val |
270				      t->type_level_low_val |
271				      t->type_level_high_val);
272	switch (type) {
273	case IRQ_TYPE_EDGE_FALLING:
274		d->type_buf[reg] |= t->type_falling_val;
275		break;
276
277	case IRQ_TYPE_EDGE_RISING:
278		d->type_buf[reg] |= t->type_rising_val;
279		break;
280
281	case IRQ_TYPE_EDGE_BOTH:
282		d->type_buf[reg] |= (t->type_falling_val |
283					t->type_rising_val);
284		break;
285
286	case IRQ_TYPE_LEVEL_HIGH:
287		d->type_buf[reg] |= t->type_level_high_val;
288		break;
289
290	case IRQ_TYPE_LEVEL_LOW:
291		d->type_buf[reg] |= t->type_level_low_val;
292		break;
293	default:
294		return -EINVAL;
295	}
296	return 0;
297}
298
299static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
300{
301	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302	struct regmap *map = d->map;
303	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
304
305	if (on) {
306		if (d->wake_buf)
307			d->wake_buf[irq_data->reg_offset / map->reg_stride]
308				&= ~irq_data->mask;
309		d->wake_count++;
310	} else {
311		if (d->wake_buf)
312			d->wake_buf[irq_data->reg_offset / map->reg_stride]
313				|= irq_data->mask;
314		d->wake_count--;
315	}
316
317	return 0;
318}
319
320static const struct irq_chip regmap_irq_chip = {
321	.irq_bus_lock		= regmap_irq_lock,
322	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
323	.irq_disable		= regmap_irq_disable,
324	.irq_enable		= regmap_irq_enable,
325	.irq_set_type		= regmap_irq_set_type,
326	.irq_set_wake		= regmap_irq_set_wake,
327};
328
329static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330					   unsigned int b)
331{
332	const struct regmap_irq_chip *chip = data->chip;
333	struct regmap *map = data->map;
334	struct regmap_irq_sub_irq_map *subreg;
335	int i, ret = 0;
336
337	if (!chip->sub_reg_offsets) {
338		/* Assume linear mapping */
339		ret = regmap_read(map, chip->status_base +
340				  (b * map->reg_stride * data->irq_reg_stride),
341				   &data->status_buf[b]);
342	} else {
343		subreg = &chip->sub_reg_offsets[b];
344		for (i = 0; i < subreg->num_regs; i++) {
345			unsigned int offset = subreg->offset[i];
346
347			ret = regmap_read(map, chip->status_base + offset,
348					  &data->status_buf[offset]);
349			if (ret)
350				break;
351		}
352	}
353	return ret;
354}
355
356static irqreturn_t regmap_irq_thread(int irq, void *d)
357{
358	struct regmap_irq_chip_data *data = d;
359	const struct regmap_irq_chip *chip = data->chip;
360	struct regmap *map = data->map;
361	int ret, i;
362	bool handled = false;
363	u32 reg;
364
365	if (chip->handle_pre_irq)
366		chip->handle_pre_irq(chip->irq_drv_data);
367
368	if (chip->runtime_pm) {
369		ret = pm_runtime_get_sync(map->dev);
370		if (ret < 0) {
371			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372				ret);
373			goto exit;
374		}
375	}
376
377	/*
378	 * Read only registers with active IRQs if the chip has 'main status
379	 * register'. Else read in the statuses, using a single bulk read if
380	 * possible in order to reduce the I/O overheads.
381	 */
382
383	if (chip->num_main_regs) {
384		unsigned int max_main_bits;
385		unsigned long size;
386
387		size = chip->num_regs * sizeof(unsigned int);
388
389		max_main_bits = (chip->num_main_status_bits) ?
390				 chip->num_main_status_bits : chip->num_regs;
391		/* Clear the status buf as we don't read all status regs */
392		memset(data->status_buf, 0, size);
393
394		/* We could support bulk read for main status registers
395		 * but I don't expect to see devices with really many main
396		 * status registers so let's only support single reads for the
397		 * sake of simplicity. and add bulk reads only if needed
398		 */
399		for (i = 0; i < chip->num_main_regs; i++) {
400			ret = regmap_read(map, chip->main_status +
401				  (i * map->reg_stride
402				   * data->irq_reg_stride),
403				  &data->main_status_buf[i]);
404			if (ret) {
405				dev_err(map->dev,
406					"Failed to read IRQ status %d\n",
407					ret);
408				goto exit;
409			}
410		}
411
412		/* Read sub registers with active IRQs */
413		for (i = 0; i < chip->num_main_regs; i++) {
414			unsigned int b;
415			const unsigned long mreg = data->main_status_buf[i];
416
417			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
418				if (i * map->format.val_bytes * 8 + b >
419				    max_main_bits)
420					break;
421				ret = read_sub_irq_data(data, b);
422
423				if (ret != 0) {
424					dev_err(map->dev,
425						"Failed to read IRQ status %d\n",
426						ret);
427					goto exit;
428				}
429			}
430
431		}
432	} else if (!map->use_single_read && map->reg_stride == 1 &&
433		   data->irq_reg_stride == 1) {
434
435		u8 *buf8 = data->status_reg_buf;
436		u16 *buf16 = data->status_reg_buf;
437		u32 *buf32 = data->status_reg_buf;
438
439		BUG_ON(!data->status_reg_buf);
440
441		ret = regmap_bulk_read(map, chip->status_base,
442				       data->status_reg_buf,
443				       chip->num_regs);
444		if (ret != 0) {
445			dev_err(map->dev, "Failed to read IRQ status: %d\n",
446				ret);
447			goto exit;
448		}
449
450		for (i = 0; i < data->chip->num_regs; i++) {
451			switch (map->format.val_bytes) {
452			case 1:
453				data->status_buf[i] = buf8[i];
454				break;
455			case 2:
456				data->status_buf[i] = buf16[i];
457				break;
458			case 4:
459				data->status_buf[i] = buf32[i];
460				break;
461			default:
462				BUG();
463				goto exit;
464			}
465		}
466
467	} else {
468		for (i = 0; i < data->chip->num_regs; i++) {
469			ret = regmap_read(map, chip->status_base +
470					  (i * map->reg_stride
471					   * data->irq_reg_stride),
472					  &data->status_buf[i]);
473
474			if (ret != 0) {
475				dev_err(map->dev,
476					"Failed to read IRQ status: %d\n",
477					ret);
478				goto exit;
479			}
480		}
481	}
482
483	/*
484	 * Ignore masked IRQs and ack if we need to; we ack early so
485	 * there is no race between handling and acknowleding the
486	 * interrupt.  We assume that typically few of the interrupts
487	 * will fire simultaneously so don't worry about overhead from
488	 * doing a write per register.
489	 */
490	for (i = 0; i < data->chip->num_regs; i++) {
491		data->status_buf[i] &= ~data->mask_buf[i];
492
493		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
494			reg = chip->ack_base +
495				(i * map->reg_stride * data->irq_reg_stride);
496			ret = regmap_write(map, reg, data->status_buf[i]);
497			if (ret != 0)
498				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
499					reg, ret);
500		}
501	}
502
503	for (i = 0; i < chip->num_irqs; i++) {
504		if (data->status_buf[chip->irqs[i].reg_offset /
505				     map->reg_stride] & chip->irqs[i].mask) {
506			handle_nested_irq(irq_find_mapping(data->domain, i));
507			handled = true;
508		}
509	}
510
511exit:
512	if (chip->runtime_pm)
513		pm_runtime_put(map->dev);
514
515	if (chip->handle_post_irq)
516		chip->handle_post_irq(chip->irq_drv_data);
517
518	if (handled)
519		return IRQ_HANDLED;
520	else
521		return IRQ_NONE;
522}
523
524static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
525			  irq_hw_number_t hw)
526{
527	struct regmap_irq_chip_data *data = h->host_data;
528
529	irq_set_chip_data(virq, data);
530	irq_set_chip(virq, &data->irq_chip);
531	irq_set_nested_thread(virq, 1);
532	irq_set_parent(virq, data->irq);
533	irq_set_noprobe(virq);
534
535	return 0;
536}
537
538static const struct irq_domain_ops regmap_domain_ops = {
539	.map	= regmap_irq_map,
540	.xlate	= irq_domain_xlate_onetwocell,
541};
542
543/**
544 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
545 *
546 * @map: The regmap for the device.
547 * @irq: The IRQ the device uses to signal interrupts.
548 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
549 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
550 * @chip: Configuration for the interrupt controller.
551 * @data: Runtime data structure for the controller, allocated on success.
552 *
553 * Returns 0 on success or an errno on failure.
554 *
555 * In order for this to be efficient the chip really should use a
556 * register cache.  The chip driver is responsible for restoring the
557 * register values used by the IRQ controller over suspend and resume.
558 */
559int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
560			int irq_base, const struct regmap_irq_chip *chip,
561			struct regmap_irq_chip_data **data)
562{
563	struct regmap_irq_chip_data *d;
564	int i;
565	int ret = -ENOMEM;
566	int num_type_reg;
567	u32 reg;
568	u32 unmask_offset;
569
570	if (chip->num_regs <= 0)
571		return -EINVAL;
572
573	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
574		return -EINVAL;
575
576	for (i = 0; i < chip->num_irqs; i++) {
577		if (chip->irqs[i].reg_offset % map->reg_stride)
578			return -EINVAL;
579		if (chip->irqs[i].reg_offset / map->reg_stride >=
580		    chip->num_regs)
581			return -EINVAL;
582	}
583
584	if (irq_base) {
585		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
586		if (irq_base < 0) {
587			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
588				 irq_base);
589			return irq_base;
590		}
591	}
592
593	d = kzalloc(sizeof(*d), GFP_KERNEL);
594	if (!d)
595		return -ENOMEM;
596
597	if (chip->num_main_regs) {
598		d->main_status_buf = kcalloc(chip->num_main_regs,
599					     sizeof(unsigned int),
600					     GFP_KERNEL);
601
602		if (!d->main_status_buf)
603			goto err_alloc;
604	}
605
606	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
607				GFP_KERNEL);
608	if (!d->status_buf)
609		goto err_alloc;
610
611	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
612			      GFP_KERNEL);
613	if (!d->mask_buf)
614		goto err_alloc;
615
616	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
617				  GFP_KERNEL);
618	if (!d->mask_buf_def)
619		goto err_alloc;
620
621	if (chip->wake_base) {
622		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
623				      GFP_KERNEL);
624		if (!d->wake_buf)
625			goto err_alloc;
626	}
627
628	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
629	if (num_type_reg) {
630		d->type_buf_def = kcalloc(num_type_reg,
631					  sizeof(unsigned int), GFP_KERNEL);
632		if (!d->type_buf_def)
633			goto err_alloc;
634
635		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
636				      GFP_KERNEL);
637		if (!d->type_buf)
638			goto err_alloc;
639	}
640
641	d->irq_chip = regmap_irq_chip;
642	d->irq_chip.name = chip->name;
643	d->irq = irq;
644	d->map = map;
645	d->chip = chip;
646	d->irq_base = irq_base;
647
648	if (chip->irq_reg_stride)
649		d->irq_reg_stride = chip->irq_reg_stride;
650	else
651		d->irq_reg_stride = 1;
652
653	if (chip->type_reg_stride)
654		d->type_reg_stride = chip->type_reg_stride;
655	else
656		d->type_reg_stride = 1;
657
658	if (!map->use_single_read && map->reg_stride == 1 &&
659	    d->irq_reg_stride == 1) {
660		d->status_reg_buf = kmalloc_array(chip->num_regs,
661						  map->format.val_bytes,
662						  GFP_KERNEL);
663		if (!d->status_reg_buf)
664			goto err_alloc;
665	}
666
667	mutex_init(&d->lock);
668
669	for (i = 0; i < chip->num_irqs; i++)
670		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
671			|= chip->irqs[i].mask;
672
673	/* Mask all the interrupts by default */
674	for (i = 0; i < chip->num_regs; i++) {
675		d->mask_buf[i] = d->mask_buf_def[i];
676		if (!chip->mask_base)
677			continue;
678
679		reg = chip->mask_base +
680			(i * map->reg_stride * d->irq_reg_stride);
681		if (chip->mask_invert)
682			ret = regmap_irq_update_bits(d, reg,
683					 d->mask_buf[i], ~d->mask_buf[i]);
684		else if (d->chip->unmask_base) {
685			unmask_offset = d->chip->unmask_base -
686					d->chip->mask_base;
687			ret = regmap_irq_update_bits(d,
688					reg + unmask_offset,
689					d->mask_buf[i],
690					d->mask_buf[i]);
691		} else
692			ret = regmap_irq_update_bits(d, reg,
693					 d->mask_buf[i], d->mask_buf[i]);
694		if (ret != 0) {
695			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
696				reg, ret);
697			goto err_alloc;
698		}
699
700		if (!chip->init_ack_masked)
701			continue;
702
703		/* Ack masked but set interrupts */
704		reg = chip->status_base +
705			(i * map->reg_stride * d->irq_reg_stride);
706		ret = regmap_read(map, reg, &d->status_buf[i]);
707		if (ret != 0) {
708			dev_err(map->dev, "Failed to read IRQ status: %d\n",
709				ret);
710			goto err_alloc;
711		}
712
713		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
714			reg = chip->ack_base +
715				(i * map->reg_stride * d->irq_reg_stride);
716			if (chip->ack_invert)
717				ret = regmap_write(map, reg,
718					~(d->status_buf[i] & d->mask_buf[i]));
719			else
720				ret = regmap_write(map, reg,
721					d->status_buf[i] & d->mask_buf[i]);
722			if (ret != 0) {
723				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
724					reg, ret);
725				goto err_alloc;
726			}
727		}
728	}
729
730	/* Wake is disabled by default */
731	if (d->wake_buf) {
732		for (i = 0; i < chip->num_regs; i++) {
733			d->wake_buf[i] = d->mask_buf_def[i];
734			reg = chip->wake_base +
735				(i * map->reg_stride * d->irq_reg_stride);
736
737			if (chip->wake_invert)
738				ret = regmap_irq_update_bits(d, reg,
739							 d->mask_buf_def[i],
740							 0);
741			else
742				ret = regmap_irq_update_bits(d, reg,
743							 d->mask_buf_def[i],
744							 d->wake_buf[i]);
745			if (ret != 0) {
746				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
747					reg, ret);
748				goto err_alloc;
749			}
750		}
751	}
752
753	if (chip->num_type_reg && !chip->type_in_mask) {
754		for (i = 0; i < chip->num_type_reg; ++i) {
755			reg = chip->type_base +
756				(i * map->reg_stride * d->type_reg_stride);
757
758			ret = regmap_read(map, reg, &d->type_buf_def[i]);
759
760			if (d->chip->type_invert)
761				d->type_buf_def[i] = ~d->type_buf_def[i];
762
763			if (ret) {
764				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
765					reg, ret);
766				goto err_alloc;
767			}
768		}
769	}
770
771	if (irq_base)
772		d->domain = irq_domain_add_legacy(map->dev->of_node,
773						  chip->num_irqs, irq_base, 0,
774						  &regmap_domain_ops, d);
775	else
776		d->domain = irq_domain_add_linear(map->dev->of_node,
777						  chip->num_irqs,
778						  &regmap_domain_ops, d);
779	if (!d->domain) {
780		dev_err(map->dev, "Failed to create IRQ domain\n");
781		ret = -ENOMEM;
782		goto err_alloc;
783	}
784
785	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
786				   irq_flags | IRQF_ONESHOT,
787				   chip->name, d);
788	if (ret != 0) {
789		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
790			irq, chip->name, ret);
791		goto err_domain;
792	}
793
794	*data = d;
795
796	return 0;
797
798err_domain:
799	/* Should really dispose of the domain but... */
800err_alloc:
801	kfree(d->type_buf);
802	kfree(d->type_buf_def);
803	kfree(d->wake_buf);
804	kfree(d->mask_buf_def);
805	kfree(d->mask_buf);
806	kfree(d->status_buf);
807	kfree(d->status_reg_buf);
808	kfree(d);
809	return ret;
810}
811EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
812
813/**
814 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
815 *
816 * @irq: Primary IRQ for the device
817 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
818 *
819 * This function also disposes of all mapped IRQs on the chip.
820 */
821void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
822{
823	unsigned int virq;
824	int hwirq;
825
826	if (!d)
827		return;
828
829	free_irq(irq, d);
830
831	/* Dispose all virtual irq from irq domain before removing it */
832	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
833		/* Ignore hwirq if holes in the IRQ list */
834		if (!d->chip->irqs[hwirq].mask)
835			continue;
836
837		/*
838		 * Find the virtual irq of hwirq on chip and if it is
839		 * there then dispose it
840		 */
841		virq = irq_find_mapping(d->domain, hwirq);
842		if (virq)
843			irq_dispose_mapping(virq);
844	}
845
846	irq_domain_remove(d->domain);
847	kfree(d->type_buf);
848	kfree(d->type_buf_def);
849	kfree(d->wake_buf);
850	kfree(d->mask_buf_def);
851	kfree(d->mask_buf);
852	kfree(d->status_reg_buf);
853	kfree(d->status_buf);
854	kfree(d);
855}
856EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
857
858static void devm_regmap_irq_chip_release(struct device *dev, void *res)
859{
860	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
861
862	regmap_del_irq_chip(d->irq, d);
863}
864
865static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
866
867{
868	struct regmap_irq_chip_data **r = res;
869
870	if (!r || !*r) {
871		WARN_ON(!r || !*r);
872		return 0;
873	}
874	return *r == data;
875}
876
877/**
878 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
879 *
880 * @dev: The device pointer on which irq_chip belongs to.
881 * @map: The regmap for the device.
882 * @irq: The IRQ the device uses to signal interrupts
883 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
884 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
885 * @chip: Configuration for the interrupt controller.
886 * @data: Runtime data structure for the controller, allocated on success
887 *
888 * Returns 0 on success or an errno on failure.
889 *
890 * The &regmap_irq_chip_data will be automatically released when the device is
891 * unbound.
892 */
893int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
894			     int irq_flags, int irq_base,
895			     const struct regmap_irq_chip *chip,
896			     struct regmap_irq_chip_data **data)
897{
898	struct regmap_irq_chip_data **ptr, *d;
899	int ret;
900
901	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
902			   GFP_KERNEL);
903	if (!ptr)
904		return -ENOMEM;
905
906	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
907				  chip, &d);
908	if (ret < 0) {
909		devres_free(ptr);
910		return ret;
911	}
912
913	*ptr = d;
914	devres_add(dev, ptr);
915	*data = d;
916	return 0;
917}
918EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
919
920/**
921 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
922 *
923 * @dev: Device for which which resource was allocated.
924 * @irq: Primary IRQ for the device.
925 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
926 *
927 * A resource managed version of regmap_del_irq_chip().
928 */
929void devm_regmap_del_irq_chip(struct device *dev, int irq,
930			      struct regmap_irq_chip_data *data)
931{
932	int rc;
933
934	WARN_ON(irq != data->irq);
935	rc = devres_release(dev, devm_regmap_irq_chip_release,
936			    devm_regmap_irq_chip_match, data);
937
938	if (rc != 0)
939		WARN_ON(rc);
940}
941EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
942
943/**
944 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
945 *
946 * @data: regmap irq controller to operate on.
947 *
948 * Useful for drivers to request their own IRQs.
949 */
950int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
951{
952	WARN_ON(!data->irq_base);
953	return data->irq_base;
954}
955EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
956
957/**
958 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
959 *
960 * @data: regmap irq controller to operate on.
961 * @irq: index of the interrupt requested in the chip IRQs.
962 *
963 * Useful for drivers to request their own IRQs.
964 */
965int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
966{
967	/* Handle holes in the IRQ list */
968	if (!data->chip->irqs[irq].mask)
969		return -EINVAL;
970
971	return irq_create_mapping(data->domain, irq);
972}
973EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
974
975/**
976 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
977 *
978 * @data: regmap_irq controller to operate on.
979 *
980 * Useful for drivers to request their own IRQs and for integration
981 * with subsystems.  For ease of integration NULL is accepted as a
982 * domain, allowing devices to just call this even if no domain is
983 * allocated.
984 */
985struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
986{
987	if (data)
988		return data->domain;
989	else
990		return NULL;
991}
992EXPORT_SYMBOL_GPL(regmap_irq_get_domain);