Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21	struct mutex lock;
  22	struct irq_chip irq_chip;
  23
  24	struct regmap *map;
  25	const struct regmap_irq_chip *chip;
  26
  27	int irq_base;
  28	struct irq_domain *domain;
  29
  30	int irq;
  31	int wake_count;
  32
  33	void *status_reg_buf;
  34	unsigned int *main_status_buf;
  35	unsigned int *status_buf;
  36	unsigned int *mask_buf;
  37	unsigned int *mask_buf_def;
  38	unsigned int *wake_buf;
  39	unsigned int *type_buf;
  40	unsigned int *type_buf_def;
  41	unsigned int **virt_buf;
  42
  43	unsigned int irq_reg_stride;
  44	unsigned int type_reg_stride;
  45
  46	bool clear_status:1;
  47};
  48
  49static int sub_irq_reg(struct regmap_irq_chip_data *data,
  50		       unsigned int base_reg, int i)
  51{
  52	const struct regmap_irq_chip *chip = data->chip;
  53	struct regmap *map = data->map;
  54	struct regmap_irq_sub_irq_map *subreg;
  55	unsigned int offset;
  56	int reg = 0;
  57
  58	if (!chip->sub_reg_offsets || !chip->not_fixed_stride) {
  59		/* Assume linear mapping */
  60		reg = base_reg + (i * map->reg_stride * data->irq_reg_stride);
  61	} else {
  62		subreg = &chip->sub_reg_offsets[i];
  63		offset = subreg->offset[0];
  64		reg = base_reg + offset;
  65	}
  66
  67	return reg;
  68}
  69
  70static inline const
  71struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  72				     int irq)
  73{
  74	return &data->chip->irqs[irq];
  75}
  76
  77static void regmap_irq_lock(struct irq_data *data)
  78{
  79	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  80
  81	mutex_lock(&d->lock);
  82}
  83
  84static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
  85				  unsigned int reg, unsigned int mask,
  86				  unsigned int val)
  87{
  88	if (d->chip->mask_writeonly)
  89		return regmap_write_bits(d->map, reg, mask, val);
  90	else
  91		return regmap_update_bits(d->map, reg, mask, val);
  92}
  93
  94static void regmap_irq_sync_unlock(struct irq_data *data)
  95{
  96	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  97	struct regmap *map = d->map;
  98	int i, j, ret;
  99	u32 reg;
 100	u32 unmask_offset;
 101	u32 val;
 102
 103	if (d->chip->runtime_pm) {
 104		ret = pm_runtime_get_sync(map->dev);
 105		if (ret < 0)
 106			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 107				ret);
 108	}
 109
 110	if (d->clear_status) {
 111		for (i = 0; i < d->chip->num_regs; i++) {
 112			reg = sub_irq_reg(d, d->chip->status_base, i);
 113
 114			ret = regmap_read(map, reg, &val);
 115			if (ret)
 116				dev_err(d->map->dev,
 117					"Failed to clear the interrupt status bits\n");
 118		}
 119
 120		d->clear_status = false;
 121	}
 122
 123	/*
 124	 * If there's been a change in the mask write it back to the
 125	 * hardware.  We rely on the use of the regmap core cache to
 126	 * suppress pointless writes.
 127	 */
 128	for (i = 0; i < d->chip->num_regs; i++) {
 129		if (!d->chip->mask_base)
 130			continue;
 131
 132		reg = sub_irq_reg(d, d->chip->mask_base, i);
 133		if (d->chip->mask_invert) {
 134			ret = regmap_irq_update_bits(d, reg,
 135					 d->mask_buf_def[i], ~d->mask_buf[i]);
 136		} else if (d->chip->unmask_base) {
 137			/* set mask with mask_base register */
 138			ret = regmap_irq_update_bits(d, reg,
 139					d->mask_buf_def[i], ~d->mask_buf[i]);
 140			if (ret < 0)
 141				dev_err(d->map->dev,
 142					"Failed to sync unmasks in %x\n",
 143					reg);
 144			unmask_offset = d->chip->unmask_base -
 145							d->chip->mask_base;
 146			/* clear mask with unmask_base register */
 147			ret = regmap_irq_update_bits(d,
 148					reg + unmask_offset,
 149					d->mask_buf_def[i],
 150					d->mask_buf[i]);
 151		} else {
 152			ret = regmap_irq_update_bits(d, reg,
 153					 d->mask_buf_def[i], d->mask_buf[i]);
 154		}
 155		if (ret != 0)
 156			dev_err(d->map->dev, "Failed to sync masks in %x\n",
 157				reg);
 158
 159		reg = sub_irq_reg(d, d->chip->wake_base, i);
 160		if (d->wake_buf) {
 161			if (d->chip->wake_invert)
 162				ret = regmap_irq_update_bits(d, reg,
 163							 d->mask_buf_def[i],
 164							 ~d->wake_buf[i]);
 165			else
 166				ret = regmap_irq_update_bits(d, reg,
 167							 d->mask_buf_def[i],
 168							 d->wake_buf[i]);
 169			if (ret != 0)
 170				dev_err(d->map->dev,
 171					"Failed to sync wakes in %x: %d\n",
 172					reg, ret);
 173		}
 174
 175		if (!d->chip->init_ack_masked)
 176			continue;
 177		/*
 178		 * Ack all the masked interrupts unconditionally,
 179		 * OR if there is masked interrupt which hasn't been Acked,
 180		 * it'll be ignored in irq handler, then may introduce irq storm
 181		 */
 182		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 183			reg = sub_irq_reg(d, d->chip->ack_base, i);
 184
 185			/* some chips ack by write 0 */
 186			if (d->chip->ack_invert)
 187				ret = regmap_write(map, reg, ~d->mask_buf[i]);
 188			else
 189				ret = regmap_write(map, reg, d->mask_buf[i]);
 190			if (d->chip->clear_ack) {
 191				if (d->chip->ack_invert && !ret)
 192					ret = regmap_write(map, reg,
 193							   d->mask_buf[i]);
 194				else if (!ret)
 195					ret = regmap_write(map, reg,
 196							   ~d->mask_buf[i]);
 197			}
 198			if (ret != 0)
 199				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 200					reg, ret);
 201		}
 202	}
 203
 204	/* Don't update the type bits if we're using mask bits for irq type. */
 205	if (!d->chip->type_in_mask) {
 206		for (i = 0; i < d->chip->num_type_reg; i++) {
 207			if (!d->type_buf_def[i])
 208				continue;
 209			reg = sub_irq_reg(d, d->chip->type_base, i);
 210			if (d->chip->type_invert)
 211				ret = regmap_irq_update_bits(d, reg,
 212					d->type_buf_def[i], ~d->type_buf[i]);
 213			else
 214				ret = regmap_irq_update_bits(d, reg,
 215					d->type_buf_def[i], d->type_buf[i]);
 216			if (ret != 0)
 217				dev_err(d->map->dev, "Failed to sync type in %x\n",
 218					reg);
 219		}
 220	}
 221
 222	if (d->chip->num_virt_regs) {
 223		for (i = 0; i < d->chip->num_virt_regs; i++) {
 224			for (j = 0; j < d->chip->num_regs; j++) {
 225				reg = sub_irq_reg(d, d->chip->virt_reg_base[i],
 226						  j);
 227				ret = regmap_write(map, reg, d->virt_buf[i][j]);
 228				if (ret != 0)
 229					dev_err(d->map->dev,
 230						"Failed to write virt 0x%x: %d\n",
 231						reg, ret);
 232			}
 233		}
 234	}
 235
 236	if (d->chip->runtime_pm)
 237		pm_runtime_put(map->dev);
 238
 239	/* If we've changed our wakeup count propagate it to the parent */
 240	if (d->wake_count < 0)
 241		for (i = d->wake_count; i < 0; i++)
 242			irq_set_irq_wake(d->irq, 0);
 243	else if (d->wake_count > 0)
 244		for (i = 0; i < d->wake_count; i++)
 245			irq_set_irq_wake(d->irq, 1);
 246
 247	d->wake_count = 0;
 248
 249	mutex_unlock(&d->lock);
 250}
 251
 252static void regmap_irq_enable(struct irq_data *data)
 253{
 254	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 255	struct regmap *map = d->map;
 256	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 257	unsigned int mask, type;
 258
 259	type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
 260
 261	/*
 262	 * The type_in_mask flag means that the underlying hardware uses
 263	 * separate mask bits for rising and falling edge interrupts, but
 264	 * we want to make them into a single virtual interrupt with
 265	 * configurable edge.
 266	 *
 267	 * If the interrupt we're enabling defines the falling or rising
 268	 * masks then instead of using the regular mask bits for this
 269	 * interrupt, use the value previously written to the type buffer
 270	 * at the corresponding offset in regmap_irq_set_type().
 271	 */
 272	if (d->chip->type_in_mask && type)
 273		mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
 274	else
 275		mask = irq_data->mask;
 276
 277	if (d->chip->clear_on_unmask)
 278		d->clear_status = true;
 279
 280	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
 281}
 282
 283static void regmap_irq_disable(struct irq_data *data)
 284{
 285	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 286	struct regmap *map = d->map;
 287	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 288
 289	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 290}
 291
 292static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 293{
 294	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 295	struct regmap *map = d->map;
 296	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 297	int reg;
 298	const struct regmap_irq_type *t = &irq_data->type;
 299
 300	if ((t->types_supported & type) != type)
 301		return 0;
 302
 303	reg = t->type_reg_offset / map->reg_stride;
 304
 305	if (t->type_reg_mask)
 306		d->type_buf[reg] &= ~t->type_reg_mask;
 307	else
 308		d->type_buf[reg] &= ~(t->type_falling_val |
 309				      t->type_rising_val |
 310				      t->type_level_low_val |
 311				      t->type_level_high_val);
 312	switch (type) {
 313	case IRQ_TYPE_EDGE_FALLING:
 314		d->type_buf[reg] |= t->type_falling_val;
 315		break;
 316
 317	case IRQ_TYPE_EDGE_RISING:
 318		d->type_buf[reg] |= t->type_rising_val;
 319		break;
 320
 321	case IRQ_TYPE_EDGE_BOTH:
 322		d->type_buf[reg] |= (t->type_falling_val |
 323					t->type_rising_val);
 324		break;
 325
 326	case IRQ_TYPE_LEVEL_HIGH:
 327		d->type_buf[reg] |= t->type_level_high_val;
 328		break;
 329
 330	case IRQ_TYPE_LEVEL_LOW:
 331		d->type_buf[reg] |= t->type_level_low_val;
 332		break;
 333	default:
 334		return -EINVAL;
 335	}
 336
 337	if (d->chip->set_type_virt)
 338		return d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
 339					      reg);
 340
 341	return 0;
 342}
 343
 344static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 345{
 346	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 347	struct regmap *map = d->map;
 348	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 349
 350	if (on) {
 351		if (d->wake_buf)
 352			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 353				&= ~irq_data->mask;
 354		d->wake_count++;
 355	} else {
 356		if (d->wake_buf)
 357			d->wake_buf[irq_data->reg_offset / map->reg_stride]
 358				|= irq_data->mask;
 359		d->wake_count--;
 360	}
 361
 362	return 0;
 363}
 364
 365static const struct irq_chip regmap_irq_chip = {
 366	.irq_bus_lock		= regmap_irq_lock,
 367	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
 368	.irq_disable		= regmap_irq_disable,
 369	.irq_enable		= regmap_irq_enable,
 370	.irq_set_type		= regmap_irq_set_type,
 371	.irq_set_wake		= regmap_irq_set_wake,
 372};
 373
 374static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 375					   unsigned int b)
 376{
 377	const struct regmap_irq_chip *chip = data->chip;
 378	struct regmap *map = data->map;
 379	struct regmap_irq_sub_irq_map *subreg;
 380	int i, ret = 0;
 381
 382	if (!chip->sub_reg_offsets) {
 383		/* Assume linear mapping */
 384		ret = regmap_read(map, chip->status_base +
 385				  (b * map->reg_stride * data->irq_reg_stride),
 386				   &data->status_buf[b]);
 387	} else {
 388		subreg = &chip->sub_reg_offsets[b];
 389		for (i = 0; i < subreg->num_regs; i++) {
 390			unsigned int offset = subreg->offset[i];
 391
 392			if (chip->not_fixed_stride)
 393				ret = regmap_read(map,
 394						chip->status_base + offset,
 395						&data->status_buf[b]);
 396			else
 397				ret = regmap_read(map,
 398						chip->status_base + offset,
 399						&data->status_buf[offset]);
 400
 401			if (ret)
 402				break;
 403		}
 404	}
 405	return ret;
 406}
 407
 408static irqreturn_t regmap_irq_thread(int irq, void *d)
 409{
 410	struct regmap_irq_chip_data *data = d;
 411	const struct regmap_irq_chip *chip = data->chip;
 412	struct regmap *map = data->map;
 413	int ret, i;
 414	bool handled = false;
 415	u32 reg;
 416
 417	if (chip->handle_pre_irq)
 418		chip->handle_pre_irq(chip->irq_drv_data);
 419
 420	if (chip->runtime_pm) {
 421		ret = pm_runtime_get_sync(map->dev);
 422		if (ret < 0) {
 423			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 424				ret);
 425			goto exit;
 426		}
 427	}
 428
 429	/*
 430	 * Read only registers with active IRQs if the chip has 'main status
 431	 * register'. Else read in the statuses, using a single bulk read if
 432	 * possible in order to reduce the I/O overheads.
 433	 */
 434
 435	if (chip->num_main_regs) {
 436		unsigned int max_main_bits;
 437		unsigned long size;
 438
 439		size = chip->num_regs * sizeof(unsigned int);
 440
 441		max_main_bits = (chip->num_main_status_bits) ?
 442				 chip->num_main_status_bits : chip->num_regs;
 443		/* Clear the status buf as we don't read all status regs */
 444		memset(data->status_buf, 0, size);
 445
 446		/* We could support bulk read for main status registers
 447		 * but I don't expect to see devices with really many main
 448		 * status registers so let's only support single reads for the
 449		 * sake of simplicity. and add bulk reads only if needed
 450		 */
 451		for (i = 0; i < chip->num_main_regs; i++) {
 452			ret = regmap_read(map, chip->main_status +
 453				  (i * map->reg_stride
 454				   * data->irq_reg_stride),
 455				  &data->main_status_buf[i]);
 456			if (ret) {
 457				dev_err(map->dev,
 458					"Failed to read IRQ status %d\n",
 459					ret);
 460				goto exit;
 461			}
 462		}
 463
 464		/* Read sub registers with active IRQs */
 465		for (i = 0; i < chip->num_main_regs; i++) {
 466			unsigned int b;
 467			const unsigned long mreg = data->main_status_buf[i];
 468
 469			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 470				if (i * map->format.val_bytes * 8 + b >
 471				    max_main_bits)
 472					break;
 473				ret = read_sub_irq_data(data, b);
 474
 475				if (ret != 0) {
 476					dev_err(map->dev,
 477						"Failed to read IRQ status %d\n",
 478						ret);
 479					goto exit;
 480				}
 481			}
 482
 483		}
 484	} else if (!map->use_single_read && map->reg_stride == 1 &&
 485		   data->irq_reg_stride == 1) {
 486
 487		u8 *buf8 = data->status_reg_buf;
 488		u16 *buf16 = data->status_reg_buf;
 489		u32 *buf32 = data->status_reg_buf;
 490
 491		BUG_ON(!data->status_reg_buf);
 492
 493		ret = regmap_bulk_read(map, chip->status_base,
 494				       data->status_reg_buf,
 495				       chip->num_regs);
 496		if (ret != 0) {
 497			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 498				ret);
 499			goto exit;
 500		}
 501
 502		for (i = 0; i < data->chip->num_regs; i++) {
 503			switch (map->format.val_bytes) {
 504			case 1:
 505				data->status_buf[i] = buf8[i];
 506				break;
 507			case 2:
 508				data->status_buf[i] = buf16[i];
 509				break;
 510			case 4:
 511				data->status_buf[i] = buf32[i];
 512				break;
 513			default:
 514				BUG();
 515				goto exit;
 516			}
 517		}
 518
 519	} else {
 520		for (i = 0; i < data->chip->num_regs; i++) {
 521			unsigned int reg = sub_irq_reg(data,
 522					data->chip->status_base, i);
 523			ret = regmap_read(map, reg, &data->status_buf[i]);
 524
 525			if (ret != 0) {
 526				dev_err(map->dev,
 527					"Failed to read IRQ status: %d\n",
 528					ret);
 529				goto exit;
 530			}
 531		}
 532	}
 533
 534	if (chip->status_invert)
 535		for (i = 0; i < data->chip->num_regs; i++)
 536			data->status_buf[i] = ~data->status_buf[i];
 537
 538	/*
 539	 * Ignore masked IRQs and ack if we need to; we ack early so
 540	 * there is no race between handling and acknowleding the
 541	 * interrupt.  We assume that typically few of the interrupts
 542	 * will fire simultaneously so don't worry about overhead from
 543	 * doing a write per register.
 544	 */
 545	for (i = 0; i < data->chip->num_regs; i++) {
 546		data->status_buf[i] &= ~data->mask_buf[i];
 547
 548		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 549			reg = sub_irq_reg(data, data->chip->ack_base, i);
 550
 551			if (chip->ack_invert)
 552				ret = regmap_write(map, reg,
 553						~data->status_buf[i]);
 554			else
 555				ret = regmap_write(map, reg,
 556						data->status_buf[i]);
 557			if (chip->clear_ack) {
 558				if (chip->ack_invert && !ret)
 559					ret = regmap_write(map, reg,
 560							data->status_buf[i]);
 561				else if (!ret)
 562					ret = regmap_write(map, reg,
 563							~data->status_buf[i]);
 564			}
 565			if (ret != 0)
 566				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 567					reg, ret);
 568		}
 569	}
 570
 571	for (i = 0; i < chip->num_irqs; i++) {
 572		if (data->status_buf[chip->irqs[i].reg_offset /
 573				     map->reg_stride] & chip->irqs[i].mask) {
 574			handle_nested_irq(irq_find_mapping(data->domain, i));
 575			handled = true;
 576		}
 577	}
 578
 579exit:
 580	if (chip->runtime_pm)
 581		pm_runtime_put(map->dev);
 582
 583	if (chip->handle_post_irq)
 584		chip->handle_post_irq(chip->irq_drv_data);
 585
 586	if (handled)
 587		return IRQ_HANDLED;
 588	else
 589		return IRQ_NONE;
 590}
 591
 592static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 593			  irq_hw_number_t hw)
 594{
 595	struct regmap_irq_chip_data *data = h->host_data;
 596
 597	irq_set_chip_data(virq, data);
 598	irq_set_chip(virq, &data->irq_chip);
 599	irq_set_nested_thread(virq, 1);
 600	irq_set_parent(virq, data->irq);
 601	irq_set_noprobe(virq);
 602
 603	return 0;
 604}
 605
 606static const struct irq_domain_ops regmap_domain_ops = {
 607	.map	= regmap_irq_map,
 608	.xlate	= irq_domain_xlate_onetwocell,
 609};
 610
 611/**
 612 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 613 *
 614 * @fwnode: The firmware node where the IRQ domain should be added to.
 615 * @map: The regmap for the device.
 616 * @irq: The IRQ the device uses to signal interrupts.
 617 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 618 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 619 * @chip: Configuration for the interrupt controller.
 620 * @data: Runtime data structure for the controller, allocated on success.
 621 *
 622 * Returns 0 on success or an errno on failure.
 623 *
 624 * In order for this to be efficient the chip really should use a
 625 * register cache.  The chip driver is responsible for restoring the
 626 * register values used by the IRQ controller over suspend and resume.
 627 */
 628int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
 629			       struct regmap *map, int irq,
 630			       int irq_flags, int irq_base,
 631			       const struct regmap_irq_chip *chip,
 632			       struct regmap_irq_chip_data **data)
 633{
 634	struct regmap_irq_chip_data *d;
 635	int i;
 636	int ret = -ENOMEM;
 637	int num_type_reg;
 638	u32 reg;
 639	u32 unmask_offset;
 640
 641	if (chip->num_regs <= 0)
 642		return -EINVAL;
 643
 644	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 645		return -EINVAL;
 646
 647	for (i = 0; i < chip->num_irqs; i++) {
 648		if (chip->irqs[i].reg_offset % map->reg_stride)
 649			return -EINVAL;
 650		if (chip->irqs[i].reg_offset / map->reg_stride >=
 651		    chip->num_regs)
 652			return -EINVAL;
 653	}
 654
 655	if (chip->not_fixed_stride) {
 656		for (i = 0; i < chip->num_regs; i++)
 657			if (chip->sub_reg_offsets[i].num_regs != 1)
 658				return -EINVAL;
 659	}
 660
 661	if (irq_base) {
 662		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 663		if (irq_base < 0) {
 664			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 665				 irq_base);
 666			return irq_base;
 667		}
 668	}
 669
 670	d = kzalloc(sizeof(*d), GFP_KERNEL);
 671	if (!d)
 672		return -ENOMEM;
 673
 674	if (chip->num_main_regs) {
 675		d->main_status_buf = kcalloc(chip->num_main_regs,
 676					     sizeof(unsigned int),
 677					     GFP_KERNEL);
 678
 679		if (!d->main_status_buf)
 680			goto err_alloc;
 681	}
 682
 683	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 684				GFP_KERNEL);
 685	if (!d->status_buf)
 686		goto err_alloc;
 687
 688	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 689			      GFP_KERNEL);
 690	if (!d->mask_buf)
 691		goto err_alloc;
 692
 693	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
 694				  GFP_KERNEL);
 695	if (!d->mask_buf_def)
 696		goto err_alloc;
 697
 698	if (chip->wake_base) {
 699		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 700				      GFP_KERNEL);
 701		if (!d->wake_buf)
 702			goto err_alloc;
 703	}
 704
 705	num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
 706	if (num_type_reg) {
 707		d->type_buf_def = kcalloc(num_type_reg,
 708					  sizeof(unsigned int), GFP_KERNEL);
 709		if (!d->type_buf_def)
 710			goto err_alloc;
 711
 712		d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
 713				      GFP_KERNEL);
 714		if (!d->type_buf)
 715			goto err_alloc;
 716	}
 717
 718	if (chip->num_virt_regs) {
 719		/*
 720		 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
 721		 */
 722		d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
 723				      GFP_KERNEL);
 724		if (!d->virt_buf)
 725			goto err_alloc;
 726
 727		for (i = 0; i < chip->num_virt_regs; i++) {
 728			d->virt_buf[i] = kcalloc(chip->num_regs,
 729						 sizeof(unsigned int),
 730						 GFP_KERNEL);
 731			if (!d->virt_buf[i])
 732				goto err_alloc;
 733		}
 734	}
 735
 736	d->irq_chip = regmap_irq_chip;
 737	d->irq_chip.name = chip->name;
 738	d->irq = irq;
 739	d->map = map;
 740	d->chip = chip;
 741	d->irq_base = irq_base;
 742
 743	if (chip->irq_reg_stride)
 744		d->irq_reg_stride = chip->irq_reg_stride;
 745	else
 746		d->irq_reg_stride = 1;
 747
 748	if (chip->type_reg_stride)
 749		d->type_reg_stride = chip->type_reg_stride;
 750	else
 751		d->type_reg_stride = 1;
 752
 753	if (!map->use_single_read && map->reg_stride == 1 &&
 754	    d->irq_reg_stride == 1) {
 755		d->status_reg_buf = kmalloc_array(chip->num_regs,
 756						  map->format.val_bytes,
 757						  GFP_KERNEL);
 758		if (!d->status_reg_buf)
 759			goto err_alloc;
 760	}
 761
 762	mutex_init(&d->lock);
 763
 764	for (i = 0; i < chip->num_irqs; i++)
 765		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 766			|= chip->irqs[i].mask;
 767
 768	/* Mask all the interrupts by default */
 769	for (i = 0; i < chip->num_regs; i++) {
 770		d->mask_buf[i] = d->mask_buf_def[i];
 771		if (!chip->mask_base)
 772			continue;
 773
 774		reg = sub_irq_reg(d, d->chip->mask_base, i);
 775
 776		if (chip->mask_invert)
 777			ret = regmap_irq_update_bits(d, reg,
 778					 d->mask_buf[i], ~d->mask_buf[i]);
 779		else if (d->chip->unmask_base) {
 780			unmask_offset = d->chip->unmask_base -
 781					d->chip->mask_base;
 782			ret = regmap_irq_update_bits(d,
 783					reg + unmask_offset,
 784					d->mask_buf[i],
 785					d->mask_buf[i]);
 786		} else
 787			ret = regmap_irq_update_bits(d, reg,
 788					 d->mask_buf[i], d->mask_buf[i]);
 789		if (ret != 0) {
 790			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 791				reg, ret);
 792			goto err_alloc;
 793		}
 794
 795		if (!chip->init_ack_masked)
 796			continue;
 797
 798		/* Ack masked but set interrupts */
 799		reg = sub_irq_reg(d, d->chip->status_base, i);
 800		ret = regmap_read(map, reg, &d->status_buf[i]);
 801		if (ret != 0) {
 802			dev_err(map->dev, "Failed to read IRQ status: %d\n",
 803				ret);
 804			goto err_alloc;
 805		}
 806
 807		if (chip->status_invert)
 808			d->status_buf[i] = ~d->status_buf[i];
 809
 810		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 811			reg = sub_irq_reg(d, d->chip->ack_base, i);
 812			if (chip->ack_invert)
 813				ret = regmap_write(map, reg,
 814					~(d->status_buf[i] & d->mask_buf[i]));
 815			else
 816				ret = regmap_write(map, reg,
 817					d->status_buf[i] & d->mask_buf[i]);
 818			if (chip->clear_ack) {
 819				if (chip->ack_invert && !ret)
 820					ret = regmap_write(map, reg,
 821						(d->status_buf[i] &
 822						 d->mask_buf[i]));
 823				else if (!ret)
 824					ret = regmap_write(map, reg,
 825						~(d->status_buf[i] &
 826						  d->mask_buf[i]));
 827			}
 828			if (ret != 0) {
 829				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 830					reg, ret);
 831				goto err_alloc;
 832			}
 833		}
 834	}
 835
 836	/* Wake is disabled by default */
 837	if (d->wake_buf) {
 838		for (i = 0; i < chip->num_regs; i++) {
 839			d->wake_buf[i] = d->mask_buf_def[i];
 840			reg = sub_irq_reg(d, d->chip->wake_base, i);
 841
 842			if (chip->wake_invert)
 843				ret = regmap_irq_update_bits(d, reg,
 844							 d->mask_buf_def[i],
 845							 0);
 846			else
 847				ret = regmap_irq_update_bits(d, reg,
 848							 d->mask_buf_def[i],
 849							 d->wake_buf[i]);
 850			if (ret != 0) {
 851				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 852					reg, ret);
 853				goto err_alloc;
 854			}
 855		}
 856	}
 857
 858	if (chip->num_type_reg && !chip->type_in_mask) {
 859		for (i = 0; i < chip->num_type_reg; ++i) {
 860			reg = sub_irq_reg(d, d->chip->type_base, i);
 861
 862			ret = regmap_read(map, reg, &d->type_buf_def[i]);
 863
 864			if (d->chip->type_invert)
 865				d->type_buf_def[i] = ~d->type_buf_def[i];
 866
 867			if (ret) {
 868				dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
 869					reg, ret);
 870				goto err_alloc;
 871			}
 872		}
 873	}
 874
 875	if (irq_base)
 876		d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
 877						     irq_base, 0,
 878						     &regmap_domain_ops, d);
 879	else
 880		d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
 881						     &regmap_domain_ops, d);
 882	if (!d->domain) {
 883		dev_err(map->dev, "Failed to create IRQ domain\n");
 884		ret = -ENOMEM;
 885		goto err_alloc;
 886	}
 887
 888	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
 889				   irq_flags | IRQF_ONESHOT,
 890				   chip->name, d);
 891	if (ret != 0) {
 892		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
 893			irq, chip->name, ret);
 894		goto err_domain;
 895	}
 896
 897	*data = d;
 898
 899	return 0;
 900
 901err_domain:
 902	/* Should really dispose of the domain but... */
 903err_alloc:
 904	kfree(d->type_buf);
 905	kfree(d->type_buf_def);
 906	kfree(d->wake_buf);
 907	kfree(d->mask_buf_def);
 908	kfree(d->mask_buf);
 909	kfree(d->status_buf);
 910	kfree(d->status_reg_buf);
 911	if (d->virt_buf) {
 912		for (i = 0; i < chip->num_virt_regs; i++)
 913			kfree(d->virt_buf[i]);
 914		kfree(d->virt_buf);
 915	}
 916	kfree(d);
 917	return ret;
 918}
 919EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
 920
 921/**
 922 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 923 *
 924 * @map: The regmap for the device.
 925 * @irq: The IRQ the device uses to signal interrupts.
 926 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 927 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 928 * @chip: Configuration for the interrupt controller.
 929 * @data: Runtime data structure for the controller, allocated on success.
 930 *
 931 * Returns 0 on success or an errno on failure.
 932 *
 933 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
 934 * node of the regmap is used.
 935 */
 936int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
 937			int irq_base, const struct regmap_irq_chip *chip,
 938			struct regmap_irq_chip_data **data)
 939{
 940	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
 941					  irq_flags, irq_base, chip, data);
 942}
 943EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
 944
 945/**
 946 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 947 *
 948 * @irq: Primary IRQ for the device
 949 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 950 *
 951 * This function also disposes of all mapped IRQs on the chip.
 952 */
 953void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
 954{
 955	unsigned int virq;
 956	int hwirq;
 957
 958	if (!d)
 959		return;
 960
 961	free_irq(irq, d);
 962
 963	/* Dispose all virtual irq from irq domain before removing it */
 964	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
 965		/* Ignore hwirq if holes in the IRQ list */
 966		if (!d->chip->irqs[hwirq].mask)
 967			continue;
 968
 969		/*
 970		 * Find the virtual irq of hwirq on chip and if it is
 971		 * there then dispose it
 972		 */
 973		virq = irq_find_mapping(d->domain, hwirq);
 974		if (virq)
 975			irq_dispose_mapping(virq);
 976	}
 977
 978	irq_domain_remove(d->domain);
 979	kfree(d->type_buf);
 980	kfree(d->type_buf_def);
 981	kfree(d->wake_buf);
 982	kfree(d->mask_buf_def);
 983	kfree(d->mask_buf);
 984	kfree(d->status_reg_buf);
 985	kfree(d->status_buf);
 986	kfree(d);
 987}
 988EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
 989
 990static void devm_regmap_irq_chip_release(struct device *dev, void *res)
 991{
 992	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
 993
 994	regmap_del_irq_chip(d->irq, d);
 995}
 996
 997static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
 998
 999{
1000	struct regmap_irq_chip_data **r = res;
1001
1002	if (!r || !*r) {
1003		WARN_ON(!r || !*r);
1004		return 0;
1005	}
1006	return *r == data;
1007}
1008
1009/**
1010 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1011 *
1012 * @dev: The device pointer on which irq_chip belongs to.
1013 * @fwnode: The firmware node where the IRQ domain should be added to.
1014 * @map: The regmap for the device.
1015 * @irq: The IRQ the device uses to signal interrupts
1016 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1017 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1018 * @chip: Configuration for the interrupt controller.
1019 * @data: Runtime data structure for the controller, allocated on success
1020 *
1021 * Returns 0 on success or an errno on failure.
1022 *
1023 * The &regmap_irq_chip_data will be automatically released when the device is
1024 * unbound.
1025 */
1026int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1027				    struct fwnode_handle *fwnode,
1028				    struct regmap *map, int irq,
1029				    int irq_flags, int irq_base,
1030				    const struct regmap_irq_chip *chip,
1031				    struct regmap_irq_chip_data **data)
1032{
1033	struct regmap_irq_chip_data **ptr, *d;
1034	int ret;
1035
1036	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1037			   GFP_KERNEL);
1038	if (!ptr)
1039		return -ENOMEM;
1040
1041	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1042					 chip, &d);
1043	if (ret < 0) {
1044		devres_free(ptr);
1045		return ret;
1046	}
1047
1048	*ptr = d;
1049	devres_add(dev, ptr);
1050	*data = d;
1051	return 0;
1052}
1053EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1054
1055/**
1056 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
1057 *
1058 * @dev: The device pointer on which irq_chip belongs to.
1059 * @map: The regmap for the device.
1060 * @irq: The IRQ the device uses to signal interrupts
1061 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1062 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1063 * @chip: Configuration for the interrupt controller.
1064 * @data: Runtime data structure for the controller, allocated on success
1065 *
1066 * Returns 0 on success or an errno on failure.
1067 *
1068 * The &regmap_irq_chip_data will be automatically released when the device is
1069 * unbound.
1070 */
1071int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1072			     int irq_flags, int irq_base,
1073			     const struct regmap_irq_chip *chip,
1074			     struct regmap_irq_chip_data **data)
1075{
1076	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1077					       irq, irq_flags, irq_base, chip,
1078					       data);
1079}
1080EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1081
1082/**
1083 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1084 *
1085 * @dev: Device for which which resource was allocated.
1086 * @irq: Primary IRQ for the device.
1087 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1088 *
1089 * A resource managed version of regmap_del_irq_chip().
1090 */
1091void devm_regmap_del_irq_chip(struct device *dev, int irq,
1092			      struct regmap_irq_chip_data *data)
1093{
1094	int rc;
1095
1096	WARN_ON(irq != data->irq);
1097	rc = devres_release(dev, devm_regmap_irq_chip_release,
1098			    devm_regmap_irq_chip_match, data);
1099
1100	if (rc != 0)
1101		WARN_ON(rc);
1102}
1103EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1104
1105/**
1106 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1107 *
1108 * @data: regmap irq controller to operate on.
1109 *
1110 * Useful for drivers to request their own IRQs.
1111 */
1112int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1113{
1114	WARN_ON(!data->irq_base);
1115	return data->irq_base;
1116}
1117EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1118
1119/**
1120 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1121 *
1122 * @data: regmap irq controller to operate on.
1123 * @irq: index of the interrupt requested in the chip IRQs.
1124 *
1125 * Useful for drivers to request their own IRQs.
1126 */
1127int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1128{
1129	/* Handle holes in the IRQ list */
1130	if (!data->chip->irqs[irq].mask)
1131		return -EINVAL;
1132
1133	return irq_create_mapping(data->domain, irq);
1134}
1135EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1136
1137/**
1138 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1139 *
1140 * @data: regmap_irq controller to operate on.
1141 *
1142 * Useful for drivers to request their own IRQs and for integration
1143 * with subsystems.  For ease of integration NULL is accepted as a
1144 * domain, allowing devices to just call this even if no domain is
1145 * allocated.
1146 */
1147struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1148{
1149	if (data)
1150		return data->domain;
1151	else
1152		return NULL;
1153}
1154EXPORT_SYMBOL_GPL(regmap_irq_get_domain);