Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * regmap based irq_chip
  3 *
  4 * Copyright 2011 Wolfson Microelectronics plc
  5 *
  6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/device.h>
 14#include <linux/export.h>
 15#include <linux/interrupt.h>
 16#include <linux/irq.h>
 17#include <linux/irqdomain.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/regmap.h>
 20#include <linux/slab.h>
 21
 22#include "internal.h"
 23
 24struct regmap_irq_chip_data {
 25	struct mutex lock;
 26	struct irq_chip irq_chip;
 27
 28	struct regmap *map;
 29	const struct regmap_irq_chip *chip;
 30
 31	int irq_base;
 32	struct irq_domain *domain;
 33
 34	int irq;
 35	int wake_count;
 36
 37	void *status_reg_buf;
 38	unsigned int *status_buf;
 39	unsigned int *mask_buf;
 40	unsigned int *mask_buf_def;
 41	unsigned int *wake_buf;
 42	unsigned int *type_buf;
 43	unsigned int *type_buf_def;
 44
 45	unsigned int irq_reg_stride;
 46	unsigned int type_reg_stride;
 47};
 48
 49static inline const
 50struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
 51				     int irq)
 52{
 53	return &data->chip->irqs[irq];
 54}
 55
 56static void regmap_irq_lock(struct irq_data *data)
 57{
 58	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 59
 60	mutex_lock(&d->lock);
 61}
 62
 63static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
 64				  unsigned int reg, unsigned int mask,
 65				  unsigned int val)
 66{
 67	if (d->chip->mask_writeonly)
 68		return regmap_write_bits(d->map, reg, mask, val);
 69	else
 70		return regmap_update_bits(d->map, reg, mask, val);
 71}
 72
 73static void regmap_irq_sync_unlock(struct irq_data *data)
 74{
 75	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 76	struct regmap *map = d->map;
 77	int i, ret;
 78	u32 reg;
 79	u32 unmask_offset;
 80
 81	if (d->chip->runtime_pm) {
 82		ret = pm_runtime_get_sync(map->dev);
 83		if (ret < 0)
 84			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 85				ret);
 86	}
 87
 88	/*
 89	 * If there's been a change in the mask write it back to the
 90	 * hardware.  We rely on the use of the regmap core cache to
 91	 * suppress pointless writes.
 92	 */
 93	for (i = 0; i < d->chip->num_regs; i++) {
 94		reg = d->chip->mask_base +
 95			(i * map->reg_stride * d->irq_reg_stride);
 96		if (d->chip->mask_invert) {
 97			ret = regmap_irq_update_bits(d, reg,
 98					 d->mask_buf_def[i], ~d->mask_buf[i]);
 99		} else if (d->chip->unmask_base) {
100			/* set mask with mask_base register */
101			ret = regmap_irq_update_bits(d, reg,
102					d->mask_buf_def[i], ~d->mask_buf[i]);
103			if (ret < 0)
104				dev_err(d->map->dev,
105					"Failed to sync unmasks in %x\n",
106					reg);
107			unmask_offset = d->chip->unmask_base -
108							d->chip->mask_base;
109			/* clear mask with unmask_base register */
110			ret = regmap_irq_update_bits(d,
111					reg + unmask_offset,
112					d->mask_buf_def[i],
113					d->mask_buf[i]);
114		} else {
115			ret = regmap_irq_update_bits(d, reg,
116					 d->mask_buf_def[i], d->mask_buf[i]);
117		}
118		if (ret != 0)
119			dev_err(d->map->dev, "Failed to sync masks in %x\n",
120				reg);
121
122		reg = d->chip->wake_base +
123			(i * map->reg_stride * d->irq_reg_stride);
124		if (d->wake_buf) {
125			if (d->chip->wake_invert)
126				ret = regmap_irq_update_bits(d, reg,
127							 d->mask_buf_def[i],
128							 ~d->wake_buf[i]);
129			else
130				ret = regmap_irq_update_bits(d, reg,
131							 d->mask_buf_def[i],
132							 d->wake_buf[i]);
133			if (ret != 0)
134				dev_err(d->map->dev,
135					"Failed to sync wakes in %x: %d\n",
136					reg, ret);
137		}
138
139		if (!d->chip->init_ack_masked)
140			continue;
141		/*
142		 * Ack all the masked interrupts unconditionally,
143		 * OR if there is masked interrupt which hasn't been Acked,
144		 * it'll be ignored in irq handler, then may introduce irq storm
145		 */
146		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
147			reg = d->chip->ack_base +
148				(i * map->reg_stride * d->irq_reg_stride);
149			/* some chips ack by write 0 */
150			if (d->chip->ack_invert)
151				ret = regmap_write(map, reg, ~d->mask_buf[i]);
152			else
153				ret = regmap_write(map, reg, d->mask_buf[i]);
154			if (ret != 0)
155				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
156					reg, ret);
157		}
158	}
159
160	for (i = 0; i < d->chip->num_type_reg; i++) {
161		if (!d->type_buf_def[i])
162			continue;
163		reg = d->chip->type_base +
164			(i * map->reg_stride * d->type_reg_stride);
165		if (d->chip->type_invert)
166			ret = regmap_irq_update_bits(d, reg,
167				d->type_buf_def[i], ~d->type_buf[i]);
168		else
169			ret = regmap_irq_update_bits(d, reg,
170				d->type_buf_def[i], d->type_buf[i]);
171		if (ret != 0)
172			dev_err(d->map->dev, "Failed to sync type in %x\n",
173				reg);
174	}
175
176	if (d->chip->runtime_pm)
177		pm_runtime_put(map->dev);
178
179	/* If we've changed our wakeup count propagate it to the parent */
180	if (d->wake_count < 0)
181		for (i = d->wake_count; i < 0; i++)
182			irq_set_irq_wake(d->irq, 0);
183	else if (d->wake_count > 0)
184		for (i = 0; i < d->wake_count; i++)
185			irq_set_irq_wake(d->irq, 1);
186
187	d->wake_count = 0;
188
189	mutex_unlock(&d->lock);
190}
191
192static void regmap_irq_enable(struct irq_data *data)
193{
194	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
195	struct regmap *map = d->map;
196	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
197
198	d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~irq_data->mask;
199}
200
201static void regmap_irq_disable(struct irq_data *data)
202{
203	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
204	struct regmap *map = d->map;
205	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
206
207	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
208}
209
210static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
211{
212	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
213	struct regmap *map = d->map;
214	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
215	int reg = irq_data->type_reg_offset / map->reg_stride;
216
217	if (!(irq_data->type_rising_mask | irq_data->type_falling_mask))
218		return 0;
219
220	d->type_buf[reg] &= ~(irq_data->type_falling_mask |
221					irq_data->type_rising_mask);
222	switch (type) {
223	case IRQ_TYPE_EDGE_FALLING:
224		d->type_buf[reg] |= irq_data->type_falling_mask;
225		break;
226
227	case IRQ_TYPE_EDGE_RISING:
228		d->type_buf[reg] |= irq_data->type_rising_mask;
229		break;
230
231	case IRQ_TYPE_EDGE_BOTH:
232		d->type_buf[reg] |= (irq_data->type_falling_mask |
233					irq_data->type_rising_mask);
234		break;
235
236	default:
237		return -EINVAL;
238	}
239	return 0;
240}
241
242static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
243{
244	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
245	struct regmap *map = d->map;
246	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
247
248	if (on) {
249		if (d->wake_buf)
250			d->wake_buf[irq_data->reg_offset / map->reg_stride]
251				&= ~irq_data->mask;
252		d->wake_count++;
253	} else {
254		if (d->wake_buf)
255			d->wake_buf[irq_data->reg_offset / map->reg_stride]
256				|= irq_data->mask;
257		d->wake_count--;
258	}
259
260	return 0;
261}
262
263static const struct irq_chip regmap_irq_chip = {
264	.irq_bus_lock		= regmap_irq_lock,
265	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
266	.irq_disable		= regmap_irq_disable,
267	.irq_enable		= regmap_irq_enable,
268	.irq_set_type		= regmap_irq_set_type,
269	.irq_set_wake		= regmap_irq_set_wake,
270};
271
272static irqreturn_t regmap_irq_thread(int irq, void *d)
273{
274	struct regmap_irq_chip_data *data = d;
275	const struct regmap_irq_chip *chip = data->chip;
276	struct regmap *map = data->map;
277	int ret, i;
278	bool handled = false;
279	u32 reg;
280
281	if (chip->handle_pre_irq)
282		chip->handle_pre_irq(chip->irq_drv_data);
283
284	if (chip->runtime_pm) {
285		ret = pm_runtime_get_sync(map->dev);
286		if (ret < 0) {
287			dev_err(map->dev, "IRQ thread failed to resume: %d\n",
288				ret);
289			pm_runtime_put(map->dev);
290			goto exit;
291		}
292	}
293
294	/*
295	 * Read in the statuses, using a single bulk read if possible
296	 * in order to reduce the I/O overheads.
297	 */
298	if (!map->use_single_read && map->reg_stride == 1 &&
299	    data->irq_reg_stride == 1) {
300		u8 *buf8 = data->status_reg_buf;
301		u16 *buf16 = data->status_reg_buf;
302		u32 *buf32 = data->status_reg_buf;
303
304		BUG_ON(!data->status_reg_buf);
305
306		ret = regmap_bulk_read(map, chip->status_base,
307				       data->status_reg_buf,
308				       chip->num_regs);
309		if (ret != 0) {
310			dev_err(map->dev, "Failed to read IRQ status: %d\n",
311				ret);
312			goto exit;
313		}
314
315		for (i = 0; i < data->chip->num_regs; i++) {
316			switch (map->format.val_bytes) {
317			case 1:
318				data->status_buf[i] = buf8[i];
319				break;
320			case 2:
321				data->status_buf[i] = buf16[i];
322				break;
323			case 4:
324				data->status_buf[i] = buf32[i];
325				break;
326			default:
327				BUG();
328				goto exit;
329			}
330		}
331
332	} else {
333		for (i = 0; i < data->chip->num_regs; i++) {
334			ret = regmap_read(map, chip->status_base +
335					  (i * map->reg_stride
336					   * data->irq_reg_stride),
337					  &data->status_buf[i]);
338
339			if (ret != 0) {
340				dev_err(map->dev,
341					"Failed to read IRQ status: %d\n",
342					ret);
343				if (chip->runtime_pm)
344					pm_runtime_put(map->dev);
345				goto exit;
346			}
347		}
348	}
349
350	/*
351	 * Ignore masked IRQs and ack if we need to; we ack early so
352	 * there is no race between handling and acknowleding the
353	 * interrupt.  We assume that typically few of the interrupts
354	 * will fire simultaneously so don't worry about overhead from
355	 * doing a write per register.
356	 */
357	for (i = 0; i < data->chip->num_regs; i++) {
358		data->status_buf[i] &= ~data->mask_buf[i];
359
360		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
361			reg = chip->ack_base +
362				(i * map->reg_stride * data->irq_reg_stride);
363			ret = regmap_write(map, reg, data->status_buf[i]);
364			if (ret != 0)
365				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
366					reg, ret);
367		}
368	}
369
370	for (i = 0; i < chip->num_irqs; i++) {
371		if (data->status_buf[chip->irqs[i].reg_offset /
372				     map->reg_stride] & chip->irqs[i].mask) {
373			handle_nested_irq(irq_find_mapping(data->domain, i));
374			handled = true;
375		}
376	}
377
378	if (chip->runtime_pm)
379		pm_runtime_put(map->dev);
380
381exit:
382	if (chip->handle_post_irq)
383		chip->handle_post_irq(chip->irq_drv_data);
384
385	if (handled)
386		return IRQ_HANDLED;
387	else
388		return IRQ_NONE;
389}
390
391static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
392			  irq_hw_number_t hw)
393{
394	struct regmap_irq_chip_data *data = h->host_data;
395
396	irq_set_chip_data(virq, data);
397	irq_set_chip(virq, &data->irq_chip);
398	irq_set_nested_thread(virq, 1);
399	irq_set_parent(virq, data->irq);
400	irq_set_noprobe(virq);
401
402	return 0;
403}
404
405static const struct irq_domain_ops regmap_domain_ops = {
406	.map	= regmap_irq_map,
407	.xlate	= irq_domain_xlate_onetwocell,
408};
409
410/**
411 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
412 *
413 * @map: The regmap for the device.
414 * @irq: The IRQ the device uses to signal interrupts.
415 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
416 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
417 * @chip: Configuration for the interrupt controller.
418 * @data: Runtime data structure for the controller, allocated on success.
419 *
420 * Returns 0 on success or an errno on failure.
421 *
422 * In order for this to be efficient the chip really should use a
423 * register cache.  The chip driver is responsible for restoring the
424 * register values used by the IRQ controller over suspend and resume.
425 */
426int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
427			int irq_base, const struct regmap_irq_chip *chip,
428			struct regmap_irq_chip_data **data)
429{
430	struct regmap_irq_chip_data *d;
431	int i;
432	int ret = -ENOMEM;
433	u32 reg;
434	u32 unmask_offset;
435
436	if (chip->num_regs <= 0)
437		return -EINVAL;
438
439	for (i = 0; i < chip->num_irqs; i++) {
440		if (chip->irqs[i].reg_offset % map->reg_stride)
441			return -EINVAL;
442		if (chip->irqs[i].reg_offset / map->reg_stride >=
443		    chip->num_regs)
444			return -EINVAL;
445	}
446
447	if (irq_base) {
448		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
449		if (irq_base < 0) {
450			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
451				 irq_base);
452			return irq_base;
453		}
454	}
455
456	d = kzalloc(sizeof(*d), GFP_KERNEL);
457	if (!d)
458		return -ENOMEM;
459
460	d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
461				GFP_KERNEL);
462	if (!d->status_buf)
463		goto err_alloc;
464
465	d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
466			      GFP_KERNEL);
467	if (!d->mask_buf)
468		goto err_alloc;
469
470	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
471				  GFP_KERNEL);
472	if (!d->mask_buf_def)
473		goto err_alloc;
474
475	if (chip->wake_base) {
476		d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
477				      GFP_KERNEL);
478		if (!d->wake_buf)
479			goto err_alloc;
480	}
481
482	if (chip->num_type_reg) {
483		d->type_buf_def = kcalloc(chip->num_type_reg,
484					sizeof(unsigned int), GFP_KERNEL);
485		if (!d->type_buf_def)
486			goto err_alloc;
487
488		d->type_buf = kcalloc(chip->num_type_reg, sizeof(unsigned int),
489				      GFP_KERNEL);
490		if (!d->type_buf)
491			goto err_alloc;
492	}
493
494	d->irq_chip = regmap_irq_chip;
495	d->irq_chip.name = chip->name;
496	d->irq = irq;
497	d->map = map;
498	d->chip = chip;
499	d->irq_base = irq_base;
500
501	if (chip->irq_reg_stride)
502		d->irq_reg_stride = chip->irq_reg_stride;
503	else
504		d->irq_reg_stride = 1;
505
506	if (chip->type_reg_stride)
507		d->type_reg_stride = chip->type_reg_stride;
508	else
509		d->type_reg_stride = 1;
510
511	if (!map->use_single_read && map->reg_stride == 1 &&
512	    d->irq_reg_stride == 1) {
513		d->status_reg_buf = kmalloc_array(chip->num_regs,
514						  map->format.val_bytes,
515						  GFP_KERNEL);
516		if (!d->status_reg_buf)
517			goto err_alloc;
518	}
519
520	mutex_init(&d->lock);
521
522	for (i = 0; i < chip->num_irqs; i++)
523		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
524			|= chip->irqs[i].mask;
525
526	/* Mask all the interrupts by default */
527	for (i = 0; i < chip->num_regs; i++) {
528		d->mask_buf[i] = d->mask_buf_def[i];
529		reg = chip->mask_base +
530			(i * map->reg_stride * d->irq_reg_stride);
531		if (chip->mask_invert)
532			ret = regmap_irq_update_bits(d, reg,
533					 d->mask_buf[i], ~d->mask_buf[i]);
534		else if (d->chip->unmask_base) {
535			unmask_offset = d->chip->unmask_base -
536					d->chip->mask_base;
537			ret = regmap_irq_update_bits(d,
538					reg + unmask_offset,
539					d->mask_buf[i],
540					d->mask_buf[i]);
541		} else
542			ret = regmap_irq_update_bits(d, reg,
543					 d->mask_buf[i], d->mask_buf[i]);
544		if (ret != 0) {
545			dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
546				reg, ret);
547			goto err_alloc;
548		}
549
550		if (!chip->init_ack_masked)
551			continue;
552
553		/* Ack masked but set interrupts */
554		reg = chip->status_base +
555			(i * map->reg_stride * d->irq_reg_stride);
556		ret = regmap_read(map, reg, &d->status_buf[i]);
557		if (ret != 0) {
558			dev_err(map->dev, "Failed to read IRQ status: %d\n",
559				ret);
560			goto err_alloc;
561		}
562
563		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
564			reg = chip->ack_base +
565				(i * map->reg_stride * d->irq_reg_stride);
566			if (chip->ack_invert)
567				ret = regmap_write(map, reg,
568					~(d->status_buf[i] & d->mask_buf[i]));
569			else
570				ret = regmap_write(map, reg,
571					d->status_buf[i] & d->mask_buf[i]);
572			if (ret != 0) {
573				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
574					reg, ret);
575				goto err_alloc;
576			}
577		}
578	}
579
580	/* Wake is disabled by default */
581	if (d->wake_buf) {
582		for (i = 0; i < chip->num_regs; i++) {
583			d->wake_buf[i] = d->mask_buf_def[i];
584			reg = chip->wake_base +
585				(i * map->reg_stride * d->irq_reg_stride);
586
587			if (chip->wake_invert)
588				ret = regmap_irq_update_bits(d, reg,
589							 d->mask_buf_def[i],
590							 0);
591			else
592				ret = regmap_irq_update_bits(d, reg,
593							 d->mask_buf_def[i],
594							 d->wake_buf[i]);
595			if (ret != 0) {
596				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
597					reg, ret);
598				goto err_alloc;
599			}
600		}
601	}
602
603	if (chip->num_type_reg) {
604		for (i = 0; i < chip->num_irqs; i++) {
605			reg = chip->irqs[i].type_reg_offset / map->reg_stride;
606			d->type_buf_def[reg] |= chip->irqs[i].type_rising_mask |
607					chip->irqs[i].type_falling_mask;
608		}
609		for (i = 0; i < chip->num_type_reg; ++i) {
610			if (!d->type_buf_def[i])
611				continue;
612
613			reg = chip->type_base +
614				(i * map->reg_stride * d->type_reg_stride);
615			if (chip->type_invert)
616				ret = regmap_irq_update_bits(d, reg,
617					d->type_buf_def[i], 0xFF);
618			else
619				ret = regmap_irq_update_bits(d, reg,
620					d->type_buf_def[i], 0x0);
621			if (ret != 0) {
622				dev_err(map->dev,
623					"Failed to set type in 0x%x: %x\n",
624					reg, ret);
625				goto err_alloc;
626			}
627		}
628	}
629
630	if (irq_base)
631		d->domain = irq_domain_add_legacy(map->dev->of_node,
632						  chip->num_irqs, irq_base, 0,
633						  &regmap_domain_ops, d);
634	else
635		d->domain = irq_domain_add_linear(map->dev->of_node,
636						  chip->num_irqs,
637						  &regmap_domain_ops, d);
638	if (!d->domain) {
639		dev_err(map->dev, "Failed to create IRQ domain\n");
640		ret = -ENOMEM;
641		goto err_alloc;
642	}
643
644	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
645				   irq_flags | IRQF_ONESHOT,
646				   chip->name, d);
647	if (ret != 0) {
648		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
649			irq, chip->name, ret);
650		goto err_domain;
651	}
652
653	*data = d;
654
655	return 0;
656
657err_domain:
658	/* Should really dispose of the domain but... */
659err_alloc:
660	kfree(d->type_buf);
661	kfree(d->type_buf_def);
662	kfree(d->wake_buf);
663	kfree(d->mask_buf_def);
664	kfree(d->mask_buf);
665	kfree(d->status_buf);
666	kfree(d->status_reg_buf);
667	kfree(d);
668	return ret;
669}
670EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
671
672/**
673 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
674 *
675 * @irq: Primary IRQ for the device
676 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
677 *
678 * This function also disposes of all mapped IRQs on the chip.
679 */
680void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
681{
682	unsigned int virq;
683	int hwirq;
684
685	if (!d)
686		return;
687
688	free_irq(irq, d);
689
690	/* Dispose all virtual irq from irq domain before removing it */
691	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
692		/* Ignore hwirq if holes in the IRQ list */
693		if (!d->chip->irqs[hwirq].mask)
694			continue;
695
696		/*
697		 * Find the virtual irq of hwirq on chip and if it is
698		 * there then dispose it
699		 */
700		virq = irq_find_mapping(d->domain, hwirq);
701		if (virq)
702			irq_dispose_mapping(virq);
703	}
704
705	irq_domain_remove(d->domain);
706	kfree(d->type_buf);
707	kfree(d->type_buf_def);
708	kfree(d->wake_buf);
709	kfree(d->mask_buf_def);
710	kfree(d->mask_buf);
711	kfree(d->status_reg_buf);
712	kfree(d->status_buf);
713	kfree(d);
714}
715EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
716
717static void devm_regmap_irq_chip_release(struct device *dev, void *res)
718{
719	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
720
721	regmap_del_irq_chip(d->irq, d);
722}
723
724static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
725
726{
727	struct regmap_irq_chip_data **r = res;
728
729	if (!r || !*r) {
730		WARN_ON(!r || !*r);
731		return 0;
732	}
733	return *r == data;
734}
735
736/**
737 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
738 *
739 * @dev: The device pointer on which irq_chip belongs to.
740 * @map: The regmap for the device.
741 * @irq: The IRQ the device uses to signal interrupts
742 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
743 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
744 * @chip: Configuration for the interrupt controller.
745 * @data: Runtime data structure for the controller, allocated on success
746 *
747 * Returns 0 on success or an errno on failure.
748 *
749 * The &regmap_irq_chip_data will be automatically released when the device is
750 * unbound.
751 */
752int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
753			     int irq_flags, int irq_base,
754			     const struct regmap_irq_chip *chip,
755			     struct regmap_irq_chip_data **data)
756{
757	struct regmap_irq_chip_data **ptr, *d;
758	int ret;
759
760	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
761			   GFP_KERNEL);
762	if (!ptr)
763		return -ENOMEM;
764
765	ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
766				  chip, &d);
767	if (ret < 0) {
768		devres_free(ptr);
769		return ret;
770	}
771
772	*ptr = d;
773	devres_add(dev, ptr);
774	*data = d;
775	return 0;
776}
777EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
778
779/**
780 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
781 *
782 * @dev: Device for which which resource was allocated.
783 * @irq: Primary IRQ for the device.
784 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
785 *
786 * A resource managed version of regmap_del_irq_chip().
787 */
788void devm_regmap_del_irq_chip(struct device *dev, int irq,
789			      struct regmap_irq_chip_data *data)
790{
791	int rc;
792
793	WARN_ON(irq != data->irq);
794	rc = devres_release(dev, devm_regmap_irq_chip_release,
795			    devm_regmap_irq_chip_match, data);
796
797	if (rc != 0)
798		WARN_ON(rc);
799}
800EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
801
802/**
803 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
804 *
805 * @data: regmap irq controller to operate on.
806 *
807 * Useful for drivers to request their own IRQs.
808 */
809int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
810{
811	WARN_ON(!data->irq_base);
812	return data->irq_base;
813}
814EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
815
816/**
817 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
818 *
819 * @data: regmap irq controller to operate on.
820 * @irq: index of the interrupt requested in the chip IRQs.
821 *
822 * Useful for drivers to request their own IRQs.
823 */
824int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
825{
826	/* Handle holes in the IRQ list */
827	if (!data->chip->irqs[irq].mask)
828		return -EINVAL;
829
830	return irq_create_mapping(data->domain, irq);
831}
832EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
833
834/**
835 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
836 *
837 * @data: regmap_irq controller to operate on.
838 *
839 * Useful for drivers to request their own IRQs and for integration
840 * with subsystems.  For ease of integration NULL is accepted as a
841 * domain, allowing devices to just call this even if no domain is
842 * allocated.
843 */
844struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
845{
846	if (data)
847		return data->domain;
848	else
849		return NULL;
850}
851EXPORT_SYMBOL_GPL(regmap_irq_get_domain);