Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v3.1
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/cache.h>
 
 
  25#include <linux/mutex.h>
  26#include <linux/of_device.h>
 
 
  27#include <linux/slab.h>
  28#include <linux/mod_devicetable.h>
  29#include <linux/spi/spi.h>
  30#include <linux/of_spi.h>
 
 
  31#include <linux/pm_runtime.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33static void spidev_release(struct device *dev)
  34{
  35	struct spi_device	*spi = to_spi_device(dev);
  36
  37	/* spi masters may cleanup for released devices */
  38	if (spi->master->cleanup)
  39		spi->master->cleanup(spi);
  40
  41	spi_master_put(spi->master);
 
  42	kfree(spi);
  43}
  44
  45static ssize_t
  46modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  47{
  48	const struct spi_device	*spi = to_spi_device(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49
  50	return sprintf(buf, "%s\n", spi->modalias);
  51}
  52
  53static struct device_attribute spi_dev_attrs[] = {
  54	__ATTR_RO(modalias),
  55	__ATTR_NULL,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56};
  57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  59 * and the sysfs version makes coldplug work too.
  60 */
  61
  62static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  63						const struct spi_device *sdev)
  64{
  65	while (id->name[0]) {
  66		if (!strcmp(sdev->modalias, id->name))
  67			return id;
  68		id++;
  69	}
  70	return NULL;
  71}
  72
  73const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  74{
  75	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  76
  77	return spi_match_id(sdrv->id_table, sdev);
  78}
  79EXPORT_SYMBOL_GPL(spi_get_device_id);
  80
  81static int spi_match_device(struct device *dev, struct device_driver *drv)
  82{
  83	const struct spi_device	*spi = to_spi_device(dev);
  84	const struct spi_driver	*sdrv = to_spi_driver(drv);
  85
 
 
 
 
  86	/* Attempt an OF style match */
  87	if (of_driver_match_device(dev, drv))
  88		return 1;
  89
 
 
 
 
  90	if (sdrv->id_table)
  91		return !!spi_match_id(sdrv->id_table, spi);
  92
  93	return strcmp(spi->modalias, drv->name) == 0;
  94}
  95
  96static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  97{
  98	const struct spi_device		*spi = to_spi_device(dev);
 
  99
 100	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 101	return 0;
 102}
 103
 104#ifdef CONFIG_PM_SLEEP
 105static int spi_legacy_suspend(struct device *dev, pm_message_t message)
 106{
 107	int			value = 0;
 108	struct spi_driver	*drv = to_spi_driver(dev->driver);
 109
 110	/* suspend will stop irqs and dma; no more i/o */
 111	if (drv) {
 112		if (drv->suspend)
 113			value = drv->suspend(to_spi_device(dev), message);
 114		else
 115			dev_dbg(dev, "... can't suspend\n");
 116	}
 117	return value;
 118}
 119
 120static int spi_legacy_resume(struct device *dev)
 121{
 122	int			value = 0;
 123	struct spi_driver	*drv = to_spi_driver(dev->driver);
 124
 125	/* resume may restart the i/o queue */
 126	if (drv) {
 127		if (drv->resume)
 128			value = drv->resume(to_spi_device(dev));
 129		else
 130			dev_dbg(dev, "... can't resume\n");
 131	}
 132	return value;
 133}
 134
 135static int spi_pm_suspend(struct device *dev)
 136{
 137	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 138
 139	if (pm)
 140		return pm_generic_suspend(dev);
 141	else
 142		return spi_legacy_suspend(dev, PMSG_SUSPEND);
 143}
 144
 145static int spi_pm_resume(struct device *dev)
 146{
 147	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 148
 149	if (pm)
 150		return pm_generic_resume(dev);
 151	else
 152		return spi_legacy_resume(dev);
 153}
 154
 155static int spi_pm_freeze(struct device *dev)
 156{
 157	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 158
 159	if (pm)
 160		return pm_generic_freeze(dev);
 161	else
 162		return spi_legacy_suspend(dev, PMSG_FREEZE);
 163}
 164
 165static int spi_pm_thaw(struct device *dev)
 166{
 167	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 168
 169	if (pm)
 170		return pm_generic_thaw(dev);
 171	else
 172		return spi_legacy_resume(dev);
 173}
 174
 175static int spi_pm_poweroff(struct device *dev)
 176{
 177	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 178
 179	if (pm)
 180		return pm_generic_poweroff(dev);
 181	else
 182		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
 183}
 184
 185static int spi_pm_restore(struct device *dev)
 186{
 187	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 188
 189	if (pm)
 190		return pm_generic_restore(dev);
 191	else
 192		return spi_legacy_resume(dev);
 193}
 194#else
 195#define spi_pm_suspend	NULL
 196#define spi_pm_resume	NULL
 197#define spi_pm_freeze	NULL
 198#define spi_pm_thaw	NULL
 199#define spi_pm_poweroff	NULL
 200#define spi_pm_restore	NULL
 201#endif
 202
 203static const struct dev_pm_ops spi_pm = {
 204	.suspend = spi_pm_suspend,
 205	.resume = spi_pm_resume,
 206	.freeze = spi_pm_freeze,
 207	.thaw = spi_pm_thaw,
 208	.poweroff = spi_pm_poweroff,
 209	.restore = spi_pm_restore,
 210	SET_RUNTIME_PM_OPS(
 211		pm_generic_runtime_suspend,
 212		pm_generic_runtime_resume,
 213		pm_generic_runtime_idle
 214	)
 215};
 216
 217struct bus_type spi_bus_type = {
 218	.name		= "spi",
 219	.dev_attrs	= spi_dev_attrs,
 220	.match		= spi_match_device,
 221	.uevent		= spi_uevent,
 222	.pm		= &spi_pm,
 223};
 224EXPORT_SYMBOL_GPL(spi_bus_type);
 225
 226
 227static int spi_drv_probe(struct device *dev)
 228{
 229	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 
 230
 231	return sdrv->probe(to_spi_device(dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232}
 233
 234static int spi_drv_remove(struct device *dev)
 235{
 236	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 
 
 
 237
 238	return sdrv->remove(to_spi_device(dev));
 239}
 240
 241static void spi_drv_shutdown(struct device *dev)
 242{
 243	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 244
 245	sdrv->shutdown(to_spi_device(dev));
 246}
 247
 248/**
 249 * spi_register_driver - register a SPI driver
 
 250 * @sdrv: the driver to register
 251 * Context: can sleep
 
 
 252 */
 253int spi_register_driver(struct spi_driver *sdrv)
 254{
 
 255	sdrv->driver.bus = &spi_bus_type;
 256	if (sdrv->probe)
 257		sdrv->driver.probe = spi_drv_probe;
 258	if (sdrv->remove)
 259		sdrv->driver.remove = spi_drv_remove;
 260	if (sdrv->shutdown)
 261		sdrv->driver.shutdown = spi_drv_shutdown;
 262	return driver_register(&sdrv->driver);
 263}
 264EXPORT_SYMBOL_GPL(spi_register_driver);
 265
 266/*-------------------------------------------------------------------------*/
 267
 268/* SPI devices should normally not be created by SPI device drivers; that
 269 * would make them board-specific.  Similarly with SPI master drivers.
 270 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 271 * with other readonly (flashable) information about mainboard devices.
 272 */
 273
 274struct boardinfo {
 275	struct list_head	list;
 276	struct spi_board_info	board_info;
 277};
 278
 279static LIST_HEAD(board_list);
 280static LIST_HEAD(spi_master_list);
 281
 282/*
 283 * Used to protect add/del opertion for board_info list and
 284 * spi_master list, and their matching process
 
 285 */
 286static DEFINE_MUTEX(board_lock);
 287
 288/**
 289 * spi_alloc_device - Allocate a new SPI device
 290 * @master: Controller to which device is connected
 291 * Context: can sleep
 292 *
 293 * Allows a driver to allocate and initialize a spi_device without
 294 * registering it immediately.  This allows a driver to directly
 295 * fill the spi_device with device parameters before calling
 296 * spi_add_device() on it.
 297 *
 298 * Caller is responsible to call spi_add_device() on the returned
 299 * spi_device structure to add it to the SPI master.  If the caller
 300 * needs to discard the spi_device without adding it, then it should
 301 * call spi_dev_put() on it.
 302 *
 303 * Returns a pointer to the new device, or NULL.
 304 */
 305struct spi_device *spi_alloc_device(struct spi_master *master)
 306{
 307	struct spi_device	*spi;
 308	struct device		*dev = master->dev.parent;
 309
 310	if (!spi_master_get(master))
 311		return NULL;
 312
 313	spi = kzalloc(sizeof *spi, GFP_KERNEL);
 314	if (!spi) {
 315		dev_err(dev, "cannot alloc spi_device\n");
 316		spi_master_put(master);
 317		return NULL;
 318	}
 319
 320	spi->master = master;
 321	spi->dev.parent = dev;
 322	spi->dev.bus = &spi_bus_type;
 323	spi->dev.release = spidev_release;
 
 
 
 
 324	device_initialize(&spi->dev);
 325	return spi;
 326}
 327EXPORT_SYMBOL_GPL(spi_alloc_device);
 328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329/**
 330 * spi_add_device - Add spi_device allocated with spi_alloc_device
 331 * @spi: spi_device to register
 332 *
 333 * Companion function to spi_alloc_device.  Devices allocated with
 334 * spi_alloc_device can be added onto the spi bus with this function.
 335 *
 336 * Returns 0 on success; negative errno on failure
 337 */
 338int spi_add_device(struct spi_device *spi)
 339{
 340	static DEFINE_MUTEX(spi_add_lock);
 341	struct device *dev = spi->master->dev.parent;
 342	struct device *d;
 343	int status;
 344
 345	/* Chipselects are numbered 0..max; validate. */
 346	if (spi->chip_select >= spi->master->num_chipselect) {
 347		dev_err(dev, "cs%d >= max %d\n",
 348			spi->chip_select,
 349			spi->master->num_chipselect);
 350		return -EINVAL;
 351	}
 352
 353	/* Set the bus ID string */
 354	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 355			spi->chip_select);
 356
 357
 358	/* We need to make sure there's no other device with this
 359	 * chipselect **BEFORE** we call setup(), else we'll trash
 360	 * its configuration.  Lock against concurrent add() calls.
 361	 */
 362	mutex_lock(&spi_add_lock);
 363
 364	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
 365	if (d != NULL) {
 366		dev_err(dev, "chipselect %d already in use\n",
 367				spi->chip_select);
 368		put_device(d);
 369		status = -EBUSY;
 370		goto done;
 371	}
 372
 
 
 
 
 
 
 373	/* Drivers may modify this initial i/o setup, but will
 374	 * normally rely on the device being setup.  Devices
 375	 * using SPI_CS_HIGH can't coexist well otherwise...
 376	 */
 377	status = spi_setup(spi);
 378	if (status < 0) {
 379		dev_err(dev, "can't setup %s, status %d\n",
 380				dev_name(&spi->dev), status);
 381		goto done;
 382	}
 383
 384	/* Device may be bound to an active driver when this returns */
 385	status = device_add(&spi->dev);
 386	if (status < 0)
 387		dev_err(dev, "can't add %s, status %d\n",
 388				dev_name(&spi->dev), status);
 389	else
 390		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 391
 392done:
 393	mutex_unlock(&spi_add_lock);
 394	return status;
 395}
 396EXPORT_SYMBOL_GPL(spi_add_device);
 397
 398/**
 399 * spi_new_device - instantiate one new SPI device
 400 * @master: Controller to which device is connected
 401 * @chip: Describes the SPI device
 402 * Context: can sleep
 403 *
 404 * On typical mainboards, this is purely internal; and it's not needed
 405 * after board init creates the hard-wired devices.  Some development
 406 * platforms may not be able to use spi_register_board_info though, and
 407 * this is exported so that for example a USB or parport based adapter
 408 * driver could add devices (which it would learn about out-of-band).
 409 *
 410 * Returns the new device, or NULL.
 411 */
 412struct spi_device *spi_new_device(struct spi_master *master,
 413				  struct spi_board_info *chip)
 414{
 415	struct spi_device	*proxy;
 416	int			status;
 417
 418	/* NOTE:  caller did any chip->bus_num checks necessary.
 419	 *
 420	 * Also, unless we change the return value convention to use
 421	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 422	 * suggests syslogged diagnostics are best here (ugh).
 423	 */
 424
 425	proxy = spi_alloc_device(master);
 426	if (!proxy)
 427		return NULL;
 428
 429	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 430
 431	proxy->chip_select = chip->chip_select;
 432	proxy->max_speed_hz = chip->max_speed_hz;
 433	proxy->mode = chip->mode;
 434	proxy->irq = chip->irq;
 435	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 436	proxy->dev.platform_data = (void *) chip->platform_data;
 437	proxy->controller_data = chip->controller_data;
 438	proxy->controller_state = NULL;
 439
 440	status = spi_add_device(proxy);
 441	if (status < 0) {
 442		spi_dev_put(proxy);
 443		return NULL;
 
 
 
 
 444	}
 445
 
 
 
 
 446	return proxy;
 
 
 
 
 
 
 
 447}
 448EXPORT_SYMBOL_GPL(spi_new_device);
 449
 450static void spi_match_master_to_boardinfo(struct spi_master *master,
 451				struct spi_board_info *bi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 452{
 453	struct spi_device *dev;
 454
 455	if (master->bus_num != bi->bus_num)
 456		return;
 457
 458	dev = spi_new_device(master, bi);
 459	if (!dev)
 460		dev_err(master->dev.parent, "can't create new device for %s\n",
 461			bi->modalias);
 462}
 463
 464/**
 465 * spi_register_board_info - register SPI devices for a given board
 466 * @info: array of chip descriptors
 467 * @n: how many descriptors are provided
 468 * Context: can sleep
 469 *
 470 * Board-specific early init code calls this (probably during arch_initcall)
 471 * with segments of the SPI device table.  Any device nodes are created later,
 472 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 473 * this table of devices forever, so that reloading a controller driver will
 474 * not make Linux forget about these hard-wired devices.
 475 *
 476 * Other code can also call this, e.g. a particular add-on board might provide
 477 * SPI devices through its expansion connector, so code initializing that board
 478 * would naturally declare its SPI devices.
 479 *
 480 * The board info passed can safely be __initdata ... but be careful of
 481 * any embedded pointers (platform_data, etc), they're copied as-is.
 
 
 
 482 */
 483int __init
 484spi_register_board_info(struct spi_board_info const *info, unsigned n)
 485{
 486	struct boardinfo *bi;
 487	int i;
 488
 489	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 
 
 
 490	if (!bi)
 491		return -ENOMEM;
 492
 493	for (i = 0; i < n; i++, bi++, info++) {
 494		struct spi_master *master;
 495
 496		memcpy(&bi->board_info, info, sizeof(*info));
 
 
 
 
 
 
 
 497		mutex_lock(&board_lock);
 498		list_add_tail(&bi->list, &board_list);
 499		list_for_each_entry(master, &spi_master_list, list)
 500			spi_match_master_to_boardinfo(master, &bi->board_info);
 
 501		mutex_unlock(&board_lock);
 502	}
 503
 504	return 0;
 505}
 506
 507/*-------------------------------------------------------------------------*/
 508
 509static void spi_master_release(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510{
 511	struct spi_master *master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512
 513	master = container_of(dev, struct spi_master, dev);
 514	kfree(master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515}
 516
 517static struct class spi_master_class = {
 518	.name		= "spi_master",
 519	.owner		= THIS_MODULE,
 520	.dev_release	= spi_master_release,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521};
 522
 
 
 
 
 
 
 
 
 
 523
 524/**
 525 * spi_alloc_master - allocate SPI master controller
 526 * @dev: the controller, possibly using the platform_bus
 527 * @size: how much zeroed driver-private data to allocate; the pointer to this
 528 *	memory is in the driver_data field of the returned device,
 529 *	accessible with spi_master_get_devdata().
 
 
 
 
 530 * Context: can sleep
 531 *
 532 * This call is used only by SPI master controller drivers, which are the
 533 * only ones directly touching chip registers.  It's how they allocate
 534 * an spi_master structure, prior to calling spi_register_master().
 535 *
 536 * This must be called from context that can sleep.  It returns the SPI
 537 * master structure on success, else NULL.
 
 
 
 
 538 *
 539 * The caller is responsible for assigning the bus number and initializing
 540 * the master's methods before calling spi_register_master(); and (after errors
 541 * adding the device) calling spi_master_put() to prevent a memory leak.
 542 */
 543struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 
 544{
 545	struct spi_master	*master;
 
 546
 547	if (!dev)
 548		return NULL;
 549
 550	master = kzalloc(size + sizeof *master, GFP_KERNEL);
 551	if (!master)
 552		return NULL;
 553
 554	device_initialize(&master->dev);
 555	master->dev.class = &spi_master_class;
 556	master->dev.parent = get_device(dev);
 557	spi_master_set_devdata(master, &master[1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558
 559	return master;
 560}
 561EXPORT_SYMBOL_GPL(spi_alloc_master);
 562
 563/**
 564 * spi_register_master - register SPI master controller
 565 * @master: initialized master, originally from spi_alloc_master()
 
 566 * Context: can sleep
 567 *
 568 * SPI master controllers connect to their drivers using some non-SPI bus,
 569 * such as the platform bus.  The final stage of probe() in that code
 570 * includes calling spi_register_master() to hook up to this SPI bus glue.
 571 *
 572 * SPI controllers use board specific (often SOC specific) bus numbers,
 573 * and board-specific addressing for SPI devices combines those numbers
 574 * with chip select numbers.  Since SPI does not directly support dynamic
 575 * device identification, boards need configuration tables telling which
 576 * chip is at which address.
 577 *
 578 * This must be called from context that can sleep.  It returns zero on
 579 * success, else a negative error code (dropping the master's refcount).
 580 * After a successful return, the caller is responsible for calling
 581 * spi_unregister_master().
 
 
 582 */
 583int spi_register_master(struct spi_master *master)
 584{
 585	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
 586	struct device		*dev = master->dev.parent;
 587	struct boardinfo	*bi;
 588	int			status = -ENODEV;
 589	int			dynamic = 0;
 590
 591	if (!dev)
 592		return -ENODEV;
 593
 594	/* even if it's just one always-selected device, there must
 595	 * be at least one chipselect
 
 596	 */
 597	if (master->num_chipselect == 0)
 598		return -EINVAL;
 
 599
 600	/* convention:  dynamically assigned bus IDs count down from the max */
 601	if (master->bus_num < 0) {
 602		/* FIXME switch to an IDR based scheme, something like
 603		 * I2C now uses, so we can't run out of "dynamic" IDs
 604		 */
 605		master->bus_num = atomic_dec_return(&dyn_bus_id);
 606		dynamic = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	}
 
 
 
 
 
 
 608
 609	spin_lock_init(&master->bus_lock_spinlock);
 610	mutex_init(&master->bus_lock_mutex);
 611	master->bus_lock_flag = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612
 613	/* register the device, then userspace will see it.
 614	 * registration fails if the bus ID is in use.
 615	 */
 616	dev_set_name(&master->dev, "spi%u", master->bus_num);
 617	status = device_add(&master->dev);
 618	if (status < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619		goto done;
 620	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
 621			dynamic ? " (dynamic)" : "");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622
 623	mutex_lock(&board_lock);
 624	list_add_tail(&master->list, &spi_master_list);
 625	list_for_each_entry(bi, &board_list, list)
 626		spi_match_master_to_boardinfo(master, &bi->board_info);
 627	mutex_unlock(&board_lock);
 628
 629	status = 0;
 630
 631	/* Register devices from the device tree */
 632	of_register_spi_devices(master);
 633done:
 634	return status;
 635}
 636EXPORT_SYMBOL_GPL(spi_register_master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637
 
 
 
 638
 639static int __unregister(struct device *dev, void *null)
 640{
 641	spi_unregister_device(to_spi_device(dev));
 642	return 0;
 643}
 644
 645/**
 646 * spi_unregister_master - unregister SPI master controller
 647 * @master: the master being unregistered
 648 * Context: can sleep
 649 *
 650 * This call is used only by SPI master controller drivers, which are the
 651 * only ones directly touching chip registers.
 652 *
 653 * This must be called from context that can sleep.
 
 
 654 */
 655void spi_unregister_master(struct spi_master *master)
 656{
 657	int dummy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 658
 
 
 
 659	mutex_lock(&board_lock);
 660	list_del(&master->list);
 
 661	mutex_unlock(&board_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662
 663	dummy = device_for_each_child(&master->dev, NULL, __unregister);
 664	device_unregister(&master->dev);
 
 
 
 665}
 666EXPORT_SYMBOL_GPL(spi_unregister_master);
 667
 668static int __spi_master_match(struct device *dev, void *data)
 669{
 670	struct spi_master *m;
 671	u16 *bus_num = data;
 672
 673	m = container_of(dev, struct spi_master, dev);
 674	return m->bus_num == *bus_num;
 675}
 676
 677/**
 678 * spi_busnum_to_master - look up master associated with bus_num
 679 * @bus_num: the master's bus number
 680 * Context: can sleep
 681 *
 682 * This call may be used with devices that are registered after
 683 * arch init time.  It returns a refcounted pointer to the relevant
 684 * spi_master (which the caller must release), or NULL if there is
 685 * no such master registered.
 
 
 686 */
 687struct spi_master *spi_busnum_to_master(u16 bus_num)
 688{
 689	struct device		*dev;
 690	struct spi_master	*master = NULL;
 691
 692	dev = class_find_device(&spi_master_class, NULL, &bus_num,
 693				__spi_master_match);
 694	if (dev)
 695		master = container_of(dev, struct spi_master, dev);
 696	/* reference got in class_find_device */
 697	return master;
 698}
 699EXPORT_SYMBOL_GPL(spi_busnum_to_master);
 700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701
 702/*-------------------------------------------------------------------------*/
 703
 704/* Core methods for SPI master protocol drivers.  Some of the
 705 * other core methods are currently defined as inline functions.
 706 */
 707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708/**
 709 * spi_setup - setup SPI mode and clock rate
 710 * @spi: the device whose settings are being modified
 711 * Context: can sleep, and no requests are queued to the device
 712 *
 713 * SPI protocol drivers may need to update the transfer mode if the
 714 * device doesn't work with its default.  They may likewise need
 715 * to update clock rates or word sizes from initial values.  This function
 716 * changes those settings, and must be called from a context that can sleep.
 717 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 718 * effect the next time the device is selected and data is transferred to
 719 * or from it.  When this function returns, the spi device is deselected.
 720 *
 721 * Note that this call will fail if the protocol driver specifies an option
 722 * that the underlying controller or its driver does not support.  For
 723 * example, not all hardware supports wire transfers using nine bit words,
 724 * LSB-first wire encoding, or active-high chipselects.
 
 
 725 */
 726int spi_setup(struct spi_device *spi)
 727{
 728	unsigned	bad_bits;
 729	int		status;
 730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731	/* help drivers fail *cleanly* when they need options
 732	 * that aren't supported with their current master
 
 
 
 
 
 
 733	 */
 734	bad_bits = spi->mode & ~spi->master->mode_bits;
 
 
 
 
 
 
 
 
 
 
 
 735	if (bad_bits) {
 736		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
 737			bad_bits);
 738		return -EINVAL;
 739	}
 740
 741	if (!spi->bits_per_word)
 742		spi->bits_per_word = 8;
 743
 744	status = spi->master->setup(spi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 745
 746	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
 747				"%u bits/w, %u Hz max --> %d\n",
 748			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 749			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
 750			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
 751			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
 752			(spi->mode & SPI_LOOP) ? "loopback, " : "",
 753			spi->bits_per_word, spi->max_speed_hz,
 754			status);
 755
 756	return status;
 757}
 758EXPORT_SYMBOL_GPL(spi_setup);
 759
 760static int __spi_async(struct spi_device *spi, struct spi_message *message)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761{
 762	struct spi_master *master = spi->master;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763
 764	/* Half-duplex links include original MicroWire, and ones with
 765	 * only one data pin like SPI_3WIRE (switches direction) or where
 766	 * either MOSI or MISO is missing.  They can also be caused by
 767	 * software limitations.
 768	 */
 769	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
 770			|| (spi->mode & SPI_3WIRE)) {
 771		struct spi_transfer *xfer;
 772		unsigned flags = master->flags;
 773
 774		list_for_each_entry(xfer, &message->transfers, transfer_list) {
 775			if (xfer->rx_buf && xfer->tx_buf)
 776				return -EINVAL;
 777			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
 778				return -EINVAL;
 779			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
 780				return -EINVAL;
 781		}
 782	}
 783
 784	message->spi = spi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785	message->status = -EINPROGRESS;
 786	return master->transfer(spi, message);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787}
 788
 789/**
 790 * spi_async - asynchronous SPI transfer
 791 * @spi: device with which data will be exchanged
 792 * @message: describes the data transfers, including completion callback
 793 * Context: any (irqs may be blocked, etc)
 794 *
 795 * This call may be used in_irq and other contexts which can't sleep,
 796 * as well as from task contexts which can sleep.
 797 *
 798 * The completion callback is invoked in a context which can't sleep.
 799 * Before that invocation, the value of message->status is undefined.
 800 * When the callback is issued, message->status holds either zero (to
 801 * indicate complete success) or a negative error code.  After that
 802 * callback returns, the driver which issued the transfer request may
 803 * deallocate the associated memory; it's no longer in use by any SPI
 804 * core or controller driver code.
 805 *
 806 * Note that although all messages to a spi_device are handled in
 807 * FIFO order, messages may go to different devices in other orders.
 808 * Some device might be higher priority, or have various "hard" access
 809 * time requirements, for example.
 810 *
 811 * On detection of any fault during the transfer, processing of
 812 * the entire message is aborted, and the device is deselected.
 813 * Until returning from the associated message completion callback,
 814 * no other spi_message queued to that device will be processed.
 815 * (This rule applies equally to all the synchronous transfer calls,
 816 * which are wrappers around this core asynchronous primitive.)
 
 
 817 */
 818int spi_async(struct spi_device *spi, struct spi_message *message)
 819{
 820	struct spi_master *master = spi->master;
 821	int ret;
 822	unsigned long flags;
 823
 824	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 
 
 825
 826	if (master->bus_lock_flag)
 
 
 827		ret = -EBUSY;
 828	else
 829		ret = __spi_async(spi, message);
 830
 831	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 832
 833	return ret;
 834}
 835EXPORT_SYMBOL_GPL(spi_async);
 836
 837/**
 838 * spi_async_locked - version of spi_async with exclusive bus usage
 839 * @spi: device with which data will be exchanged
 840 * @message: describes the data transfers, including completion callback
 841 * Context: any (irqs may be blocked, etc)
 842 *
 843 * This call may be used in_irq and other contexts which can't sleep,
 844 * as well as from task contexts which can sleep.
 845 *
 846 * The completion callback is invoked in a context which can't sleep.
 847 * Before that invocation, the value of message->status is undefined.
 848 * When the callback is issued, message->status holds either zero (to
 849 * indicate complete success) or a negative error code.  After that
 850 * callback returns, the driver which issued the transfer request may
 851 * deallocate the associated memory; it's no longer in use by any SPI
 852 * core or controller driver code.
 853 *
 854 * Note that although all messages to a spi_device are handled in
 855 * FIFO order, messages may go to different devices in other orders.
 856 * Some device might be higher priority, or have various "hard" access
 857 * time requirements, for example.
 858 *
 859 * On detection of any fault during the transfer, processing of
 860 * the entire message is aborted, and the device is deselected.
 861 * Until returning from the associated message completion callback,
 862 * no other spi_message queued to that device will be processed.
 863 * (This rule applies equally to all the synchronous transfer calls,
 864 * which are wrappers around this core asynchronous primitive.)
 
 
 865 */
 866int spi_async_locked(struct spi_device *spi, struct spi_message *message)
 867{
 868	struct spi_master *master = spi->master;
 869	int ret;
 870	unsigned long flags;
 871
 872	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 
 
 
 
 873
 874	ret = __spi_async(spi, message);
 875
 876	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 877
 878	return ret;
 879
 880}
 881EXPORT_SYMBOL_GPL(spi_async_locked);
 882
 883
 884/*-------------------------------------------------------------------------*/
 885
 886/* Utility methods for SPI master protocol drivers, layered on
 887 * top of the core.  Some other utility methods are defined as
 888 * inline functions.
 889 */
 890
 891static void spi_complete(void *arg)
 892{
 893	complete(arg);
 894}
 895
 896static int __spi_sync(struct spi_device *spi, struct spi_message *message,
 897		      int bus_locked)
 898{
 899	DECLARE_COMPLETION_ONSTACK(done);
 900	int status;
 901	struct spi_master *master = spi->master;
 
 
 
 
 
 902
 903	message->complete = spi_complete;
 904	message->context = &done;
 
 
 
 
 
 
 
 
 
 
 
 
 905
 906	if (!bus_locked)
 907		mutex_lock(&master->bus_lock_mutex);
 908
 909	status = spi_async_locked(spi, message);
 910
 911	if (!bus_locked)
 912		mutex_unlock(&master->bus_lock_mutex);
 
 
 913
 914	if (status == 0) {
 
 
 
 
 
 
 
 
 
 
 
 915		wait_for_completion(&done);
 916		status = message->status;
 917	}
 918	message->context = NULL;
 919	return status;
 920}
 921
 922/**
 923 * spi_sync - blocking/synchronous SPI data transfers
 924 * @spi: device with which data will be exchanged
 925 * @message: describes the data transfers
 926 * Context: can sleep
 927 *
 928 * This call may only be used from a context that may sleep.  The sleep
 929 * is non-interruptible, and has no timeout.  Low-overhead controller
 930 * drivers may DMA directly into and out of the message buffers.
 931 *
 932 * Note that the SPI device's chip select is active during the message,
 933 * and then is normally disabled between messages.  Drivers for some
 934 * frequently-used devices may want to minimize costs of selecting a chip,
 935 * by leaving it selected in anticipation that the next message will go
 936 * to the same chip.  (That may increase power usage.)
 937 *
 938 * Also, the caller is guaranteeing that the memory associated with the
 939 * message will not be freed before this call returns.
 940 *
 941 * It returns zero on success, else a negative error code.
 942 */
 943int spi_sync(struct spi_device *spi, struct spi_message *message)
 944{
 945	return __spi_sync(spi, message, 0);
 
 
 
 
 
 
 946}
 947EXPORT_SYMBOL_GPL(spi_sync);
 948
 949/**
 950 * spi_sync_locked - version of spi_sync with exclusive bus usage
 951 * @spi: device with which data will be exchanged
 952 * @message: describes the data transfers
 953 * Context: can sleep
 954 *
 955 * This call may only be used from a context that may sleep.  The sleep
 956 * is non-interruptible, and has no timeout.  Low-overhead controller
 957 * drivers may DMA directly into and out of the message buffers.
 958 *
 959 * This call should be used by drivers that require exclusive access to the
 960 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
 961 * be released by a spi_bus_unlock call when the exclusive access is over.
 962 *
 963 * It returns zero on success, else a negative error code.
 964 */
 965int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
 966{
 967	return __spi_sync(spi, message, 1);
 968}
 969EXPORT_SYMBOL_GPL(spi_sync_locked);
 970
 971/**
 972 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 973 * @master: SPI bus master that should be locked for exclusive bus access
 974 * Context: can sleep
 975 *
 976 * This call may only be used from a context that may sleep.  The sleep
 977 * is non-interruptible, and has no timeout.
 978 *
 979 * This call should be used by drivers that require exclusive access to the
 980 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 981 * exclusive access is over. Data transfer must be done by spi_sync_locked
 982 * and spi_async_locked calls when the SPI bus lock is held.
 983 *
 984 * It returns zero on success, else a negative error code.
 985 */
 986int spi_bus_lock(struct spi_master *master)
 987{
 988	unsigned long flags;
 989
 990	mutex_lock(&master->bus_lock_mutex);
 991
 992	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 993	master->bus_lock_flag = 1;
 994	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 995
 996	/* mutex remains locked until spi_bus_unlock is called */
 997
 998	return 0;
 999}
1000EXPORT_SYMBOL_GPL(spi_bus_lock);
1001
1002/**
1003 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1004 * @master: SPI bus master that was locked for exclusive bus access
1005 * Context: can sleep
1006 *
1007 * This call may only be used from a context that may sleep.  The sleep
1008 * is non-interruptible, and has no timeout.
1009 *
1010 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1011 * call.
1012 *
1013 * It returns zero on success, else a negative error code.
1014 */
1015int spi_bus_unlock(struct spi_master *master)
1016{
1017	master->bus_lock_flag = 0;
1018
1019	mutex_unlock(&master->bus_lock_mutex);
1020
1021	return 0;
1022}
1023EXPORT_SYMBOL_GPL(spi_bus_unlock);
1024
1025/* portable code must never pass more than 32 bytes */
1026#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1027
1028static u8	*buf;
1029
1030/**
1031 * spi_write_then_read - SPI synchronous write followed by read
1032 * @spi: device with which data will be exchanged
1033 * @txbuf: data to be written (need not be dma-safe)
1034 * @n_tx: size of txbuf, in bytes
1035 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1036 * @n_rx: size of rxbuf, in bytes
1037 * Context: can sleep
1038 *
1039 * This performs a half duplex MicroWire style transaction with the
1040 * device, sending txbuf and then reading rxbuf.  The return value
1041 * is zero for success, else a negative errno status code.
1042 * This call may only be used from a context that may sleep.
1043 *
1044 * Parameters to this routine are always copied using a small buffer;
1045 * portable code should never use this for more than 32 bytes.
1046 * Performance-sensitive or bulk transfer code should instead use
1047 * spi_{async,sync}() calls with dma-safe buffers.
 
 
1048 */
1049int spi_write_then_read(struct spi_device *spi,
1050		const void *txbuf, unsigned n_tx,
1051		void *rxbuf, unsigned n_rx)
1052{
1053	static DEFINE_MUTEX(lock);
1054
1055	int			status;
1056	struct spi_message	message;
1057	struct spi_transfer	x[2];
1058	u8			*local_buf;
1059
1060	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
1061	 * (as a pure convenience thing), but we can keep heap costs
1062	 * out of the hot path ...
 
1063	 */
1064	if ((n_tx + n_rx) > SPI_BUFSIZ)
1065		return -EINVAL;
 
 
 
 
 
 
1066
1067	spi_message_init(&message);
1068	memset(x, 0, sizeof x);
1069	if (n_tx) {
1070		x[0].len = n_tx;
1071		spi_message_add_tail(&x[0], &message);
1072	}
1073	if (n_rx) {
1074		x[1].len = n_rx;
1075		spi_message_add_tail(&x[1], &message);
1076	}
1077
1078	/* ... unless someone else is using the pre-allocated buffer */
1079	if (!mutex_trylock(&lock)) {
1080		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1081		if (!local_buf)
1082			return -ENOMEM;
1083	} else
1084		local_buf = buf;
1085
1086	memcpy(local_buf, txbuf, n_tx);
1087	x[0].tx_buf = local_buf;
1088	x[1].rx_buf = local_buf + n_tx;
1089
1090	/* do the i/o */
1091	status = spi_sync(spi, &message);
1092	if (status == 0)
1093		memcpy(rxbuf, x[1].rx_buf, n_rx);
1094
1095	if (x[0].tx_buf == buf)
1096		mutex_unlock(&lock);
1097	else
1098		kfree(local_buf);
1099
1100	return status;
1101}
1102EXPORT_SYMBOL_GPL(spi_write_then_read);
1103
1104/*-------------------------------------------------------------------------*/
1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106static int __init spi_init(void)
1107{
1108	int	status;
1109
1110	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1111	if (!buf) {
1112		status = -ENOMEM;
1113		goto err0;
1114	}
1115
1116	status = bus_register(&spi_bus_type);
1117	if (status < 0)
1118		goto err1;
1119
1120	status = class_register(&spi_master_class);
1121	if (status < 0)
1122		goto err2;
 
 
 
 
 
 
 
 
 
 
 
 
1123	return 0;
1124
 
 
1125err2:
1126	bus_unregister(&spi_bus_type);
1127err1:
1128	kfree(buf);
1129	buf = NULL;
1130err0:
1131	return status;
1132}
1133
1134/* board_info is normally registered in arch_initcall(),
1135 * but even essential drivers wait till later
1136 *
1137 * REVISIT only boardinfo really needs static linking. the rest (device and
1138 * driver registration) _could_ be dynamically linked (modular) ... costs
1139 * include needing to have boardinfo data structures be much more public.
1140 */
1141postcore_initcall(spi_init);
1142
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6
   7#include <linux/kernel.h>
   8#include <linux/device.h>
   9#include <linux/init.h>
  10#include <linux/cache.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/mutex.h>
  14#include <linux/of_device.h>
  15#include <linux/of_irq.h>
  16#include <linux/clk/clk-conf.h>
  17#include <linux/slab.h>
  18#include <linux/mod_devicetable.h>
  19#include <linux/spi/spi.h>
  20#include <linux/spi/spi-mem.h>
  21#include <linux/of_gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/pm_domain.h>
  25#include <linux/property.h>
  26#include <linux/export.h>
  27#include <linux/sched/rt.h>
  28#include <uapi/linux/sched/types.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/ioport.h>
  32#include <linux/acpi.h>
  33#include <linux/highmem.h>
  34#include <linux/idr.h>
  35#include <linux/platform_data/x86/apple.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/spi.h>
  39EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  41
  42#include "internals.h"
  43
  44static DEFINE_IDR(spi_master_idr);
  45
  46static void spidev_release(struct device *dev)
  47{
  48	struct spi_device	*spi = to_spi_device(dev);
  49
  50	/* spi controllers may cleanup for released devices */
  51	if (spi->controller->cleanup)
  52		spi->controller->cleanup(spi);
  53
  54	spi_controller_put(spi->controller);
  55	kfree(spi->driver_override);
  56	kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62	const struct spi_device	*spi = to_spi_device(dev);
  63	int len;
  64
  65	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66	if (len != -ENODEV)
  67		return len;
  68
  69	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
  73static ssize_t driver_override_store(struct device *dev,
  74				     struct device_attribute *a,
  75				     const char *buf, size_t count)
  76{
  77	struct spi_device *spi = to_spi_device(dev);
  78	const char *end = memchr(buf, '\n', count);
  79	const size_t len = end ? end - buf : count;
  80	const char *driver_override, *old;
  81
  82	/* We need to keep extra room for a newline when displaying value */
  83	if (len >= (PAGE_SIZE - 1))
  84		return -EINVAL;
  85
  86	driver_override = kstrndup(buf, len, GFP_KERNEL);
  87	if (!driver_override)
  88		return -ENOMEM;
  89
  90	device_lock(dev);
  91	old = spi->driver_override;
  92	if (len) {
  93		spi->driver_override = driver_override;
  94	} else {
  95		/* Emptry string, disable driver override */
  96		spi->driver_override = NULL;
  97		kfree(driver_override);
  98	}
  99	device_unlock(dev);
 100	kfree(old);
 101
 102	return count;
 103}
 104
 105static ssize_t driver_override_show(struct device *dev,
 106				    struct device_attribute *a, char *buf)
 107{
 108	const struct spi_device *spi = to_spi_device(dev);
 109	ssize_t len;
 110
 111	device_lock(dev);
 112	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
 113	device_unlock(dev);
 114	return len;
 115}
 116static DEVICE_ATTR_RW(driver_override);
 117
 118#define SPI_STATISTICS_ATTRS(field, file)				\
 119static ssize_t spi_controller_##field##_show(struct device *dev,	\
 120					     struct device_attribute *attr, \
 121					     char *buf)			\
 122{									\
 123	struct spi_controller *ctlr = container_of(dev,			\
 124					 struct spi_controller, dev);	\
 125	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
 126}									\
 127static struct device_attribute dev_attr_spi_controller_##field = {	\
 128	.attr = { .name = file, .mode = 0444 },				\
 129	.show = spi_controller_##field##_show,				\
 130};									\
 131static ssize_t spi_device_##field##_show(struct device *dev,		\
 132					 struct device_attribute *attr,	\
 133					char *buf)			\
 134{									\
 135	struct spi_device *spi = to_spi_device(dev);			\
 136	return spi_statistics_##field##_show(&spi->statistics, buf);	\
 137}									\
 138static struct device_attribute dev_attr_spi_device_##field = {		\
 139	.attr = { .name = file, .mode = 0444 },				\
 140	.show = spi_device_##field##_show,				\
 141}
 142
 143#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
 144static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
 145					    char *buf)			\
 146{									\
 147	unsigned long flags;						\
 148	ssize_t len;							\
 149	spin_lock_irqsave(&stat->lock, flags);				\
 150	len = sprintf(buf, format_string, stat->field);			\
 151	spin_unlock_irqrestore(&stat->lock, flags);			\
 152	return len;							\
 153}									\
 154SPI_STATISTICS_ATTRS(name, file)
 155
 156#define SPI_STATISTICS_SHOW(field, format_string)			\
 157	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 158				 field, format_string)
 159
 160SPI_STATISTICS_SHOW(messages, "%lu");
 161SPI_STATISTICS_SHOW(transfers, "%lu");
 162SPI_STATISTICS_SHOW(errors, "%lu");
 163SPI_STATISTICS_SHOW(timedout, "%lu");
 164
 165SPI_STATISTICS_SHOW(spi_sync, "%lu");
 166SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 167SPI_STATISTICS_SHOW(spi_async, "%lu");
 168
 169SPI_STATISTICS_SHOW(bytes, "%llu");
 170SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 171SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 172
 173#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 174	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 175				 "transfer_bytes_histo_" number,	\
 176				 transfer_bytes_histo[index],  "%lu")
 177SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 178SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 179SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 180SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 181SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 182SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 183SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 184SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 185SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 186SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 187SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 188SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 189SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 190SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 191SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 192SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 193SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 194
 195SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 196
 197static struct attribute *spi_dev_attrs[] = {
 198	&dev_attr_modalias.attr,
 199	&dev_attr_driver_override.attr,
 200	NULL,
 201};
 202
 203static const struct attribute_group spi_dev_group = {
 204	.attrs  = spi_dev_attrs,
 205};
 206
 207static struct attribute *spi_device_statistics_attrs[] = {
 208	&dev_attr_spi_device_messages.attr,
 209	&dev_attr_spi_device_transfers.attr,
 210	&dev_attr_spi_device_errors.attr,
 211	&dev_attr_spi_device_timedout.attr,
 212	&dev_attr_spi_device_spi_sync.attr,
 213	&dev_attr_spi_device_spi_sync_immediate.attr,
 214	&dev_attr_spi_device_spi_async.attr,
 215	&dev_attr_spi_device_bytes.attr,
 216	&dev_attr_spi_device_bytes_rx.attr,
 217	&dev_attr_spi_device_bytes_tx.attr,
 218	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 219	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 220	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 221	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 222	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 223	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 224	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 225	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 226	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 227	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 228	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 229	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 230	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 231	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 232	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 233	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 234	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 235	&dev_attr_spi_device_transfers_split_maxsize.attr,
 236	NULL,
 237};
 238
 239static const struct attribute_group spi_device_statistics_group = {
 240	.name  = "statistics",
 241	.attrs  = spi_device_statistics_attrs,
 242};
 243
 244static const struct attribute_group *spi_dev_groups[] = {
 245	&spi_dev_group,
 246	&spi_device_statistics_group,
 247	NULL,
 248};
 249
 250static struct attribute *spi_controller_statistics_attrs[] = {
 251	&dev_attr_spi_controller_messages.attr,
 252	&dev_attr_spi_controller_transfers.attr,
 253	&dev_attr_spi_controller_errors.attr,
 254	&dev_attr_spi_controller_timedout.attr,
 255	&dev_attr_spi_controller_spi_sync.attr,
 256	&dev_attr_spi_controller_spi_sync_immediate.attr,
 257	&dev_attr_spi_controller_spi_async.attr,
 258	&dev_attr_spi_controller_bytes.attr,
 259	&dev_attr_spi_controller_bytes_rx.attr,
 260	&dev_attr_spi_controller_bytes_tx.attr,
 261	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 262	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 263	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 264	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 265	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 266	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 267	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 268	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 269	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 270	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 271	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 272	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 273	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 274	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 275	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 276	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 277	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 278	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 279	NULL,
 280};
 281
 282static const struct attribute_group spi_controller_statistics_group = {
 283	.name  = "statistics",
 284	.attrs  = spi_controller_statistics_attrs,
 285};
 286
 287static const struct attribute_group *spi_master_groups[] = {
 288	&spi_controller_statistics_group,
 289	NULL,
 290};
 291
 292void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 293				       struct spi_transfer *xfer,
 294				       struct spi_controller *ctlr)
 295{
 296	unsigned long flags;
 297	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 298
 299	if (l2len < 0)
 300		l2len = 0;
 301
 302	spin_lock_irqsave(&stats->lock, flags);
 303
 304	stats->transfers++;
 305	stats->transfer_bytes_histo[l2len]++;
 306
 307	stats->bytes += xfer->len;
 308	if ((xfer->tx_buf) &&
 309	    (xfer->tx_buf != ctlr->dummy_tx))
 310		stats->bytes_tx += xfer->len;
 311	if ((xfer->rx_buf) &&
 312	    (xfer->rx_buf != ctlr->dummy_rx))
 313		stats->bytes_rx += xfer->len;
 314
 315	spin_unlock_irqrestore(&stats->lock, flags);
 316}
 317EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 318
 319/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 320 * and the sysfs version makes coldplug work too.
 321 */
 322
 323static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 324						const struct spi_device *sdev)
 325{
 326	while (id->name[0]) {
 327		if (!strcmp(sdev->modalias, id->name))
 328			return id;
 329		id++;
 330	}
 331	return NULL;
 332}
 333
 334const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 335{
 336	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 337
 338	return spi_match_id(sdrv->id_table, sdev);
 339}
 340EXPORT_SYMBOL_GPL(spi_get_device_id);
 341
 342static int spi_match_device(struct device *dev, struct device_driver *drv)
 343{
 344	const struct spi_device	*spi = to_spi_device(dev);
 345	const struct spi_driver	*sdrv = to_spi_driver(drv);
 346
 347	/* Check override first, and if set, only use the named driver */
 348	if (spi->driver_override)
 349		return strcmp(spi->driver_override, drv->name) == 0;
 350
 351	/* Attempt an OF style match */
 352	if (of_driver_match_device(dev, drv))
 353		return 1;
 354
 355	/* Then try ACPI */
 356	if (acpi_driver_match_device(dev, drv))
 357		return 1;
 358
 359	if (sdrv->id_table)
 360		return !!spi_match_id(sdrv->id_table, spi);
 361
 362	return strcmp(spi->modalias, drv->name) == 0;
 363}
 364
 365static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 366{
 367	const struct spi_device		*spi = to_spi_device(dev);
 368	int rc;
 369
 370	rc = acpi_device_uevent_modalias(dev, env);
 371	if (rc != -ENODEV)
 372		return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373
 374	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 
 
 
 375}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 376
 377struct bus_type spi_bus_type = {
 378	.name		= "spi",
 379	.dev_groups	= spi_dev_groups,
 380	.match		= spi_match_device,
 381	.uevent		= spi_uevent,
 
 382};
 383EXPORT_SYMBOL_GPL(spi_bus_type);
 384
 385
 386static int spi_drv_probe(struct device *dev)
 387{
 388	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 389	struct spi_device		*spi = to_spi_device(dev);
 390	int ret;
 391
 392	ret = of_clk_set_defaults(dev->of_node, false);
 393	if (ret)
 394		return ret;
 395
 396	if (dev->of_node) {
 397		spi->irq = of_irq_get(dev->of_node, 0);
 398		if (spi->irq == -EPROBE_DEFER)
 399			return -EPROBE_DEFER;
 400		if (spi->irq < 0)
 401			spi->irq = 0;
 402	}
 403
 404	ret = dev_pm_domain_attach(dev, true);
 405	if (ret)
 406		return ret;
 407
 408	ret = sdrv->probe(spi);
 409	if (ret)
 410		dev_pm_domain_detach(dev, true);
 411
 412	return ret;
 413}
 414
 415static int spi_drv_remove(struct device *dev)
 416{
 417	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 418	int ret;
 419
 420	ret = sdrv->remove(to_spi_device(dev));
 421	dev_pm_domain_detach(dev, true);
 422
 423	return ret;
 424}
 425
 426static void spi_drv_shutdown(struct device *dev)
 427{
 428	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 429
 430	sdrv->shutdown(to_spi_device(dev));
 431}
 432
 433/**
 434 * __spi_register_driver - register a SPI driver
 435 * @owner: owner module of the driver to register
 436 * @sdrv: the driver to register
 437 * Context: can sleep
 438 *
 439 * Return: zero on success, else a negative error code.
 440 */
 441int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 442{
 443	sdrv->driver.owner = owner;
 444	sdrv->driver.bus = &spi_bus_type;
 445	if (sdrv->probe)
 446		sdrv->driver.probe = spi_drv_probe;
 447	if (sdrv->remove)
 448		sdrv->driver.remove = spi_drv_remove;
 449	if (sdrv->shutdown)
 450		sdrv->driver.shutdown = spi_drv_shutdown;
 451	return driver_register(&sdrv->driver);
 452}
 453EXPORT_SYMBOL_GPL(__spi_register_driver);
 454
 455/*-------------------------------------------------------------------------*/
 456
 457/* SPI devices should normally not be created by SPI device drivers; that
 458 * would make them board-specific.  Similarly with SPI controller drivers.
 459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 460 * with other readonly (flashable) information about mainboard devices.
 461 */
 462
 463struct boardinfo {
 464	struct list_head	list;
 465	struct spi_board_info	board_info;
 466};
 467
 468static LIST_HEAD(board_list);
 469static LIST_HEAD(spi_controller_list);
 470
 471/*
 472 * Used to protect add/del opertion for board_info list and
 473 * spi_controller list, and their matching process
 474 * also used to protect object of type struct idr
 475 */
 476static DEFINE_MUTEX(board_lock);
 477
 478/**
 479 * spi_alloc_device - Allocate a new SPI device
 480 * @ctlr: Controller to which device is connected
 481 * Context: can sleep
 482 *
 483 * Allows a driver to allocate and initialize a spi_device without
 484 * registering it immediately.  This allows a driver to directly
 485 * fill the spi_device with device parameters before calling
 486 * spi_add_device() on it.
 487 *
 488 * Caller is responsible to call spi_add_device() on the returned
 489 * spi_device structure to add it to the SPI controller.  If the caller
 490 * needs to discard the spi_device without adding it, then it should
 491 * call spi_dev_put() on it.
 492 *
 493 * Return: a pointer to the new device, or NULL.
 494 */
 495struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 496{
 497	struct spi_device	*spi;
 
 498
 499	if (!spi_controller_get(ctlr))
 500		return NULL;
 501
 502	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 503	if (!spi) {
 504		spi_controller_put(ctlr);
 
 505		return NULL;
 506	}
 507
 508	spi->master = spi->controller = ctlr;
 509	spi->dev.parent = &ctlr->dev;
 510	spi->dev.bus = &spi_bus_type;
 511	spi->dev.release = spidev_release;
 512	spi->cs_gpio = -ENOENT;
 513
 514	spin_lock_init(&spi->statistics.lock);
 515
 516	device_initialize(&spi->dev);
 517	return spi;
 518}
 519EXPORT_SYMBOL_GPL(spi_alloc_device);
 520
 521static void spi_dev_set_name(struct spi_device *spi)
 522{
 523	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 524
 525	if (adev) {
 526		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 527		return;
 528	}
 529
 530	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 531		     spi->chip_select);
 532}
 533
 534static int spi_dev_check(struct device *dev, void *data)
 535{
 536	struct spi_device *spi = to_spi_device(dev);
 537	struct spi_device *new_spi = data;
 538
 539	if (spi->controller == new_spi->controller &&
 540	    spi->chip_select == new_spi->chip_select)
 541		return -EBUSY;
 542	return 0;
 543}
 544
 545/**
 546 * spi_add_device - Add spi_device allocated with spi_alloc_device
 547 * @spi: spi_device to register
 548 *
 549 * Companion function to spi_alloc_device.  Devices allocated with
 550 * spi_alloc_device can be added onto the spi bus with this function.
 551 *
 552 * Return: 0 on success; negative errno on failure
 553 */
 554int spi_add_device(struct spi_device *spi)
 555{
 556	static DEFINE_MUTEX(spi_add_lock);
 557	struct spi_controller *ctlr = spi->controller;
 558	struct device *dev = ctlr->dev.parent;
 559	int status;
 560
 561	/* Chipselects are numbered 0..max; validate. */
 562	if (spi->chip_select >= ctlr->num_chipselect) {
 563		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
 564			ctlr->num_chipselect);
 
 565		return -EINVAL;
 566	}
 567
 568	/* Set the bus ID string */
 569	spi_dev_set_name(spi);
 
 
 570
 571	/* We need to make sure there's no other device with this
 572	 * chipselect **BEFORE** we call setup(), else we'll trash
 573	 * its configuration.  Lock against concurrent add() calls.
 574	 */
 575	mutex_lock(&spi_add_lock);
 576
 577	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 578	if (status) {
 579		dev_err(dev, "chipselect %d already in use\n",
 580				spi->chip_select);
 
 
 581		goto done;
 582	}
 583
 584	/* Descriptors take precedence */
 585	if (ctlr->cs_gpiods)
 586		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
 587	else if (ctlr->cs_gpios)
 588		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
 589
 590	/* Drivers may modify this initial i/o setup, but will
 591	 * normally rely on the device being setup.  Devices
 592	 * using SPI_CS_HIGH can't coexist well otherwise...
 593	 */
 594	status = spi_setup(spi);
 595	if (status < 0) {
 596		dev_err(dev, "can't setup %s, status %d\n",
 597				dev_name(&spi->dev), status);
 598		goto done;
 599	}
 600
 601	/* Device may be bound to an active driver when this returns */
 602	status = device_add(&spi->dev);
 603	if (status < 0)
 604		dev_err(dev, "can't add %s, status %d\n",
 605				dev_name(&spi->dev), status);
 606	else
 607		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 608
 609done:
 610	mutex_unlock(&spi_add_lock);
 611	return status;
 612}
 613EXPORT_SYMBOL_GPL(spi_add_device);
 614
 615/**
 616 * spi_new_device - instantiate one new SPI device
 617 * @ctlr: Controller to which device is connected
 618 * @chip: Describes the SPI device
 619 * Context: can sleep
 620 *
 621 * On typical mainboards, this is purely internal; and it's not needed
 622 * after board init creates the hard-wired devices.  Some development
 623 * platforms may not be able to use spi_register_board_info though, and
 624 * this is exported so that for example a USB or parport based adapter
 625 * driver could add devices (which it would learn about out-of-band).
 626 *
 627 * Return: the new device, or NULL.
 628 */
 629struct spi_device *spi_new_device(struct spi_controller *ctlr,
 630				  struct spi_board_info *chip)
 631{
 632	struct spi_device	*proxy;
 633	int			status;
 634
 635	/* NOTE:  caller did any chip->bus_num checks necessary.
 636	 *
 637	 * Also, unless we change the return value convention to use
 638	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 639	 * suggests syslogged diagnostics are best here (ugh).
 640	 */
 641
 642	proxy = spi_alloc_device(ctlr);
 643	if (!proxy)
 644		return NULL;
 645
 646	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 647
 648	proxy->chip_select = chip->chip_select;
 649	proxy->max_speed_hz = chip->max_speed_hz;
 650	proxy->mode = chip->mode;
 651	proxy->irq = chip->irq;
 652	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 653	proxy->dev.platform_data = (void *) chip->platform_data;
 654	proxy->controller_data = chip->controller_data;
 655	proxy->controller_state = NULL;
 656
 657	if (chip->properties) {
 658		status = device_add_properties(&proxy->dev, chip->properties);
 659		if (status) {
 660			dev_err(&ctlr->dev,
 661				"failed to add properties to '%s': %d\n",
 662				chip->modalias, status);
 663			goto err_dev_put;
 664		}
 665	}
 666
 667	status = spi_add_device(proxy);
 668	if (status < 0)
 669		goto err_remove_props;
 670
 671	return proxy;
 672
 673err_remove_props:
 674	if (chip->properties)
 675		device_remove_properties(&proxy->dev);
 676err_dev_put:
 677	spi_dev_put(proxy);
 678	return NULL;
 679}
 680EXPORT_SYMBOL_GPL(spi_new_device);
 681
 682/**
 683 * spi_unregister_device - unregister a single SPI device
 684 * @spi: spi_device to unregister
 685 *
 686 * Start making the passed SPI device vanish. Normally this would be handled
 687 * by spi_unregister_controller().
 688 */
 689void spi_unregister_device(struct spi_device *spi)
 690{
 691	if (!spi)
 692		return;
 693
 694	if (spi->dev.of_node) {
 695		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 696		of_node_put(spi->dev.of_node);
 697	}
 698	if (ACPI_COMPANION(&spi->dev))
 699		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 700	device_unregister(&spi->dev);
 701}
 702EXPORT_SYMBOL_GPL(spi_unregister_device);
 703
 704static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 705					      struct spi_board_info *bi)
 706{
 707	struct spi_device *dev;
 708
 709	if (ctlr->bus_num != bi->bus_num)
 710		return;
 711
 712	dev = spi_new_device(ctlr, bi);
 713	if (!dev)
 714		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 715			bi->modalias);
 716}
 717
 718/**
 719 * spi_register_board_info - register SPI devices for a given board
 720 * @info: array of chip descriptors
 721 * @n: how many descriptors are provided
 722 * Context: can sleep
 723 *
 724 * Board-specific early init code calls this (probably during arch_initcall)
 725 * with segments of the SPI device table.  Any device nodes are created later,
 726 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 727 * this table of devices forever, so that reloading a controller driver will
 728 * not make Linux forget about these hard-wired devices.
 729 *
 730 * Other code can also call this, e.g. a particular add-on board might provide
 731 * SPI devices through its expansion connector, so code initializing that board
 732 * would naturally declare its SPI devices.
 733 *
 734 * The board info passed can safely be __initdata ... but be careful of
 735 * any embedded pointers (platform_data, etc), they're copied as-is.
 736 * Device properties are deep-copied though.
 737 *
 738 * Return: zero on success, else a negative error code.
 739 */
 740int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 
 741{
 742	struct boardinfo *bi;
 743	int i;
 744
 745	if (!n)
 746		return 0;
 747
 748	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 749	if (!bi)
 750		return -ENOMEM;
 751
 752	for (i = 0; i < n; i++, bi++, info++) {
 753		struct spi_controller *ctlr;
 754
 755		memcpy(&bi->board_info, info, sizeof(*info));
 756		if (info->properties) {
 757			bi->board_info.properties =
 758					property_entries_dup(info->properties);
 759			if (IS_ERR(bi->board_info.properties))
 760				return PTR_ERR(bi->board_info.properties);
 761		}
 762
 763		mutex_lock(&board_lock);
 764		list_add_tail(&bi->list, &board_list);
 765		list_for_each_entry(ctlr, &spi_controller_list, list)
 766			spi_match_controller_to_boardinfo(ctlr,
 767							  &bi->board_info);
 768		mutex_unlock(&board_lock);
 769	}
 770
 771	return 0;
 772}
 773
 774/*-------------------------------------------------------------------------*/
 775
 776static void spi_set_cs(struct spi_device *spi, bool enable)
 777{
 778	if (spi->mode & SPI_CS_HIGH)
 779		enable = !enable;
 780
 781	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
 782		/*
 783		 * Honour the SPI_NO_CS flag and invert the enable line, as
 784		 * active low is default for SPI. Execution paths that handle
 785		 * polarity inversion in gpiolib (such as device tree) will
 786		 * enforce active high using the SPI_CS_HIGH resulting in a
 787		 * double inversion through the code above.
 788		 */
 789		if (!(spi->mode & SPI_NO_CS)) {
 790			if (spi->cs_gpiod)
 791				gpiod_set_value_cansleep(spi->cs_gpiod,
 792							 !enable);
 793			else
 794				gpio_set_value_cansleep(spi->cs_gpio, !enable);
 795		}
 796		/* Some SPI masters need both GPIO CS & slave_select */
 797		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
 798		    spi->controller->set_cs)
 799			spi->controller->set_cs(spi, !enable);
 800	} else if (spi->controller->set_cs) {
 801		spi->controller->set_cs(spi, !enable);
 802	}
 803}
 804
 805#ifdef CONFIG_HAS_DMA
 806int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
 807		struct sg_table *sgt, void *buf, size_t len,
 808		enum dma_data_direction dir)
 809{
 810	const bool vmalloced_buf = is_vmalloc_addr(buf);
 811	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 812#ifdef CONFIG_HIGHMEM
 813	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 814				(unsigned long)buf < (PKMAP_BASE +
 815					(LAST_PKMAP * PAGE_SIZE)));
 816#else
 817	const bool kmap_buf = false;
 818#endif
 819	int desc_len;
 820	int sgs;
 821	struct page *vm_page;
 822	struct scatterlist *sg;
 823	void *sg_buf;
 824	size_t min;
 825	int i, ret;
 826
 827	if (vmalloced_buf || kmap_buf) {
 828		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 829		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 830	} else if (virt_addr_valid(buf)) {
 831		desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
 832		sgs = DIV_ROUND_UP(len, desc_len);
 833	} else {
 834		return -EINVAL;
 835	}
 836
 837	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 838	if (ret != 0)
 839		return ret;
 840
 841	sg = &sgt->sgl[0];
 842	for (i = 0; i < sgs; i++) {
 843
 844		if (vmalloced_buf || kmap_buf) {
 845			/*
 846			 * Next scatterlist entry size is the minimum between
 847			 * the desc_len and the remaining buffer length that
 848			 * fits in a page.
 849			 */
 850			min = min_t(size_t, desc_len,
 851				    min_t(size_t, len,
 852					  PAGE_SIZE - offset_in_page(buf)));
 853			if (vmalloced_buf)
 854				vm_page = vmalloc_to_page(buf);
 855			else
 856				vm_page = kmap_to_page(buf);
 857			if (!vm_page) {
 858				sg_free_table(sgt);
 859				return -ENOMEM;
 860			}
 861			sg_set_page(sg, vm_page,
 862				    min, offset_in_page(buf));
 863		} else {
 864			min = min_t(size_t, len, desc_len);
 865			sg_buf = buf;
 866			sg_set_buf(sg, sg_buf, min);
 867		}
 868
 869		buf += min;
 870		len -= min;
 871		sg = sg_next(sg);
 872	}
 873
 874	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 875	if (!ret)
 876		ret = -ENOMEM;
 877	if (ret < 0) {
 878		sg_free_table(sgt);
 879		return ret;
 880	}
 881
 882	sgt->nents = ret;
 883
 884	return 0;
 885}
 886
 887void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
 888		   struct sg_table *sgt, enum dma_data_direction dir)
 889{
 890	if (sgt->orig_nents) {
 891		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 892		sg_free_table(sgt);
 893	}
 894}
 895
 896static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
 897{
 898	struct device *tx_dev, *rx_dev;
 899	struct spi_transfer *xfer;
 900	int ret;
 901
 902	if (!ctlr->can_dma)
 903		return 0;
 904
 905	if (ctlr->dma_tx)
 906		tx_dev = ctlr->dma_tx->device->dev;
 907	else
 908		tx_dev = ctlr->dev.parent;
 909
 910	if (ctlr->dma_rx)
 911		rx_dev = ctlr->dma_rx->device->dev;
 912	else
 913		rx_dev = ctlr->dev.parent;
 914
 915	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 916		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 917			continue;
 918
 919		if (xfer->tx_buf != NULL) {
 920			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
 921					  (void *)xfer->tx_buf, xfer->len,
 922					  DMA_TO_DEVICE);
 923			if (ret != 0)
 924				return ret;
 925		}
 926
 927		if (xfer->rx_buf != NULL) {
 928			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
 929					  xfer->rx_buf, xfer->len,
 930					  DMA_FROM_DEVICE);
 931			if (ret != 0) {
 932				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
 933					      DMA_TO_DEVICE);
 934				return ret;
 935			}
 936		}
 937	}
 938
 939	ctlr->cur_msg_mapped = true;
 940
 941	return 0;
 942}
 943
 944static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
 945{
 946	struct spi_transfer *xfer;
 947	struct device *tx_dev, *rx_dev;
 948
 949	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
 950		return 0;
 951
 952	if (ctlr->dma_tx)
 953		tx_dev = ctlr->dma_tx->device->dev;
 954	else
 955		tx_dev = ctlr->dev.parent;
 956
 957	if (ctlr->dma_rx)
 958		rx_dev = ctlr->dma_rx->device->dev;
 959	else
 960		rx_dev = ctlr->dev.parent;
 961
 962	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 963		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
 964			continue;
 965
 966		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 967		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 968	}
 969
 970	return 0;
 971}
 972#else /* !CONFIG_HAS_DMA */
 973static inline int __spi_map_msg(struct spi_controller *ctlr,
 974				struct spi_message *msg)
 975{
 976	return 0;
 977}
 978
 979static inline int __spi_unmap_msg(struct spi_controller *ctlr,
 980				  struct spi_message *msg)
 981{
 982	return 0;
 983}
 984#endif /* !CONFIG_HAS_DMA */
 985
 986static inline int spi_unmap_msg(struct spi_controller *ctlr,
 987				struct spi_message *msg)
 988{
 989	struct spi_transfer *xfer;
 990
 991	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 992		/*
 993		 * Restore the original value of tx_buf or rx_buf if they are
 994		 * NULL.
 995		 */
 996		if (xfer->tx_buf == ctlr->dummy_tx)
 997			xfer->tx_buf = NULL;
 998		if (xfer->rx_buf == ctlr->dummy_rx)
 999			xfer->rx_buf = NULL;
1000	}
1001
1002	return __spi_unmap_msg(ctlr, msg);
1003}
1004
1005static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1006{
1007	struct spi_transfer *xfer;
1008	void *tmp;
1009	unsigned int max_tx, max_rx;
1010
1011	if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1012		max_tx = 0;
1013		max_rx = 0;
1014
1015		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1016			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1017			    !xfer->tx_buf)
1018				max_tx = max(xfer->len, max_tx);
1019			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1020			    !xfer->rx_buf)
1021				max_rx = max(xfer->len, max_rx);
1022		}
1023
1024		if (max_tx) {
1025			tmp = krealloc(ctlr->dummy_tx, max_tx,
1026				       GFP_KERNEL | GFP_DMA);
1027			if (!tmp)
1028				return -ENOMEM;
1029			ctlr->dummy_tx = tmp;
1030			memset(tmp, 0, max_tx);
1031		}
1032
1033		if (max_rx) {
1034			tmp = krealloc(ctlr->dummy_rx, max_rx,
1035				       GFP_KERNEL | GFP_DMA);
1036			if (!tmp)
1037				return -ENOMEM;
1038			ctlr->dummy_rx = tmp;
1039		}
1040
1041		if (max_tx || max_rx) {
1042			list_for_each_entry(xfer, &msg->transfers,
1043					    transfer_list) {
1044				if (!xfer->len)
1045					continue;
1046				if (!xfer->tx_buf)
1047					xfer->tx_buf = ctlr->dummy_tx;
1048				if (!xfer->rx_buf)
1049					xfer->rx_buf = ctlr->dummy_rx;
1050			}
1051		}
1052	}
1053
1054	return __spi_map_msg(ctlr, msg);
1055}
1056
1057static int spi_transfer_wait(struct spi_controller *ctlr,
1058			     struct spi_message *msg,
1059			     struct spi_transfer *xfer)
1060{
1061	struct spi_statistics *statm = &ctlr->statistics;
1062	struct spi_statistics *stats = &msg->spi->statistics;
1063	unsigned long long ms = 1;
1064
1065	if (spi_controller_is_slave(ctlr)) {
1066		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1067			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1068			return -EINTR;
1069		}
1070	} else {
1071		ms = 8LL * 1000LL * xfer->len;
1072		do_div(ms, xfer->speed_hz);
1073		ms += ms + 200; /* some tolerance */
1074
1075		if (ms > UINT_MAX)
1076			ms = UINT_MAX;
1077
1078		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1079						 msecs_to_jiffies(ms));
1080
1081		if (ms == 0) {
1082			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1083			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1084			dev_err(&msg->spi->dev,
1085				"SPI transfer timed out\n");
1086			return -ETIMEDOUT;
1087		}
1088	}
1089
1090	return 0;
1091}
1092
1093static void _spi_transfer_delay_ns(u32 ns)
1094{
1095	if (!ns)
1096		return;
1097	if (ns <= 1000) {
1098		ndelay(ns);
1099	} else {
1100		u32 us = DIV_ROUND_UP(ns, 1000);
1101
1102		if (us <= 10)
1103			udelay(us);
1104		else
1105			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1106	}
1107}
1108
1109static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1110					  struct spi_transfer *xfer)
1111{
1112	u32 delay = xfer->cs_change_delay;
1113	u32 unit = xfer->cs_change_delay_unit;
1114	u32 hz;
1115
1116	/* return early on "fast" mode - for everything but USECS */
1117	if (!delay && unit != SPI_DELAY_UNIT_USECS)
1118		return;
1119
1120	switch (unit) {
1121	case SPI_DELAY_UNIT_USECS:
1122		/* for compatibility use default of 10us */
1123		if (!delay)
1124			delay = 10000;
1125		else
1126			delay *= 1000;
1127		break;
1128	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1129		break;
1130	case SPI_DELAY_UNIT_SCK:
1131		/* if there is no effective speed know, then approximate
1132		 * by underestimating with half the requested hz
1133		 */
1134		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1135		delay *= DIV_ROUND_UP(1000000000, hz);
1136		break;
1137	default:
1138		dev_err_once(&msg->spi->dev,
1139			     "Use of unsupported delay unit %i, using default of 10us\n",
1140			     xfer->cs_change_delay_unit);
1141		delay = 10000;
1142	}
1143	/* now sleep for the requested amount of time */
1144	_spi_transfer_delay_ns(delay);
1145}
1146
1147/*
1148 * spi_transfer_one_message - Default implementation of transfer_one_message()
1149 *
1150 * This is a standard implementation of transfer_one_message() for
1151 * drivers which implement a transfer_one() operation.  It provides
1152 * standard handling of delays and chip select management.
1153 */
1154static int spi_transfer_one_message(struct spi_controller *ctlr,
1155				    struct spi_message *msg)
1156{
1157	struct spi_transfer *xfer;
1158	bool keep_cs = false;
1159	int ret = 0;
1160	struct spi_statistics *statm = &ctlr->statistics;
1161	struct spi_statistics *stats = &msg->spi->statistics;
1162
1163	spi_set_cs(msg->spi, true);
1164
1165	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1166	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1167
1168	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1169		trace_spi_transfer_start(msg, xfer);
1170
1171		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1172		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1173
1174		if (xfer->tx_buf || xfer->rx_buf) {
1175			reinit_completion(&ctlr->xfer_completion);
1176
1177			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1178			if (ret < 0) {
1179				SPI_STATISTICS_INCREMENT_FIELD(statm,
1180							       errors);
1181				SPI_STATISTICS_INCREMENT_FIELD(stats,
1182							       errors);
1183				dev_err(&msg->spi->dev,
1184					"SPI transfer failed: %d\n", ret);
1185				goto out;
1186			}
1187
1188			if (ret > 0) {
1189				ret = spi_transfer_wait(ctlr, msg, xfer);
1190				if (ret < 0)
1191					msg->status = ret;
1192			}
1193		} else {
1194			if (xfer->len)
1195				dev_err(&msg->spi->dev,
1196					"Bufferless transfer has length %u\n",
1197					xfer->len);
1198		}
1199
1200		trace_spi_transfer_stop(msg, xfer);
1201
1202		if (msg->status != -EINPROGRESS)
1203			goto out;
1204
1205		if (xfer->delay_usecs)
1206			_spi_transfer_delay_ns(xfer->delay_usecs * 1000);
1207
1208		if (xfer->cs_change) {
1209			if (list_is_last(&xfer->transfer_list,
1210					 &msg->transfers)) {
1211				keep_cs = true;
1212			} else {
1213				spi_set_cs(msg->spi, false);
1214				_spi_transfer_cs_change_delay(msg, xfer);
1215				spi_set_cs(msg->spi, true);
1216			}
1217		}
1218
1219		msg->actual_length += xfer->len;
1220	}
1221
1222out:
1223	if (ret != 0 || !keep_cs)
1224		spi_set_cs(msg->spi, false);
1225
1226	if (msg->status == -EINPROGRESS)
1227		msg->status = ret;
1228
1229	if (msg->status && ctlr->handle_err)
1230		ctlr->handle_err(ctlr, msg);
1231
1232	spi_res_release(ctlr, msg);
1233
1234	spi_finalize_current_message(ctlr);
1235
1236	return ret;
1237}
1238
1239/**
1240 * spi_finalize_current_transfer - report completion of a transfer
1241 * @ctlr: the controller reporting completion
1242 *
1243 * Called by SPI drivers using the core transfer_one_message()
1244 * implementation to notify it that the current interrupt driven
1245 * transfer has finished and the next one may be scheduled.
1246 */
1247void spi_finalize_current_transfer(struct spi_controller *ctlr)
1248{
1249	complete(&ctlr->xfer_completion);
1250}
1251EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1252
1253/**
1254 * __spi_pump_messages - function which processes spi message queue
1255 * @ctlr: controller to process queue for
1256 * @in_kthread: true if we are in the context of the message pump thread
1257 *
1258 * This function checks if there is any spi message in the queue that
1259 * needs processing and if so call out to the driver to initialize hardware
1260 * and transfer each message.
1261 *
1262 * Note that it is called both from the kthread itself and also from
1263 * inside spi_sync(); the queue extraction handling at the top of the
1264 * function should deal with this safely.
1265 */
1266static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1267{
1268	struct spi_message *msg;
1269	bool was_busy = false;
1270	unsigned long flags;
1271	int ret;
1272
1273	/* Lock queue */
1274	spin_lock_irqsave(&ctlr->queue_lock, flags);
1275
1276	/* Make sure we are not already running a message */
1277	if (ctlr->cur_msg) {
1278		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1279		return;
1280	}
1281
1282	/* If another context is idling the device then defer */
1283	if (ctlr->idling) {
1284		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1285		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1286		return;
1287	}
1288
1289	/* Check if the queue is idle */
1290	if (list_empty(&ctlr->queue) || !ctlr->running) {
1291		if (!ctlr->busy) {
1292			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1293			return;
1294		}
1295
1296		/* Only do teardown in the thread */
1297		if (!in_kthread) {
1298			kthread_queue_work(&ctlr->kworker,
1299					   &ctlr->pump_messages);
1300			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1301			return;
1302		}
1303
1304		ctlr->busy = false;
1305		ctlr->idling = true;
1306		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1307
1308		kfree(ctlr->dummy_rx);
1309		ctlr->dummy_rx = NULL;
1310		kfree(ctlr->dummy_tx);
1311		ctlr->dummy_tx = NULL;
1312		if (ctlr->unprepare_transfer_hardware &&
1313		    ctlr->unprepare_transfer_hardware(ctlr))
1314			dev_err(&ctlr->dev,
1315				"failed to unprepare transfer hardware\n");
1316		if (ctlr->auto_runtime_pm) {
1317			pm_runtime_mark_last_busy(ctlr->dev.parent);
1318			pm_runtime_put_autosuspend(ctlr->dev.parent);
1319		}
1320		trace_spi_controller_idle(ctlr);
1321
1322		spin_lock_irqsave(&ctlr->queue_lock, flags);
1323		ctlr->idling = false;
1324		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1325		return;
1326	}
1327
1328	/* Extract head of queue */
1329	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1330	ctlr->cur_msg = msg;
1331
1332	list_del_init(&msg->queue);
1333	if (ctlr->busy)
1334		was_busy = true;
1335	else
1336		ctlr->busy = true;
1337	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1338
1339	mutex_lock(&ctlr->io_mutex);
1340
1341	if (!was_busy && ctlr->auto_runtime_pm) {
1342		ret = pm_runtime_get_sync(ctlr->dev.parent);
1343		if (ret < 0) {
1344			pm_runtime_put_noidle(ctlr->dev.parent);
1345			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1346				ret);
1347			mutex_unlock(&ctlr->io_mutex);
1348			return;
1349		}
1350	}
1351
1352	if (!was_busy)
1353		trace_spi_controller_busy(ctlr);
1354
1355	if (!was_busy && ctlr->prepare_transfer_hardware) {
1356		ret = ctlr->prepare_transfer_hardware(ctlr);
1357		if (ret) {
1358			dev_err(&ctlr->dev,
1359				"failed to prepare transfer hardware: %d\n",
1360				ret);
1361
1362			if (ctlr->auto_runtime_pm)
1363				pm_runtime_put(ctlr->dev.parent);
1364
1365			msg->status = ret;
1366			spi_finalize_current_message(ctlr);
1367
1368			mutex_unlock(&ctlr->io_mutex);
1369			return;
1370		}
1371	}
1372
1373	trace_spi_message_start(msg);
1374
1375	if (ctlr->prepare_message) {
1376		ret = ctlr->prepare_message(ctlr, msg);
1377		if (ret) {
1378			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1379				ret);
1380			msg->status = ret;
1381			spi_finalize_current_message(ctlr);
1382			goto out;
1383		}
1384		ctlr->cur_msg_prepared = true;
1385	}
1386
1387	ret = spi_map_msg(ctlr, msg);
1388	if (ret) {
1389		msg->status = ret;
1390		spi_finalize_current_message(ctlr);
1391		goto out;
1392	}
1393
1394	ret = ctlr->transfer_one_message(ctlr, msg);
1395	if (ret) {
1396		dev_err(&ctlr->dev,
1397			"failed to transfer one message from queue\n");
1398		goto out;
1399	}
1400
1401out:
1402	mutex_unlock(&ctlr->io_mutex);
1403
1404	/* Prod the scheduler in case transfer_one() was busy waiting */
1405	if (!ret)
1406		cond_resched();
1407}
1408
1409/**
1410 * spi_pump_messages - kthread work function which processes spi message queue
1411 * @work: pointer to kthread work struct contained in the controller struct
1412 */
1413static void spi_pump_messages(struct kthread_work *work)
1414{
1415	struct spi_controller *ctlr =
1416		container_of(work, struct spi_controller, pump_messages);
1417
1418	__spi_pump_messages(ctlr, true);
1419}
1420
1421/**
1422 * spi_set_thread_rt - set the controller to pump at realtime priority
1423 * @ctlr: controller to boost priority of
1424 *
1425 * This can be called because the controller requested realtime priority
1426 * (by setting the ->rt value before calling spi_register_controller()) or
1427 * because a device on the bus said that its transfers needed realtime
1428 * priority.
1429 *
1430 * NOTE: at the moment if any device on a bus says it needs realtime then
1431 * the thread will be at realtime priority for all transfers on that
1432 * controller.  If this eventually becomes a problem we may see if we can
1433 * find a way to boost the priority only temporarily during relevant
1434 * transfers.
1435 */
1436static void spi_set_thread_rt(struct spi_controller *ctlr)
1437{
1438	struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 };
1439
1440	dev_info(&ctlr->dev,
1441		"will run message pump with realtime priority\n");
1442	sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, &param);
1443}
1444
1445static int spi_init_queue(struct spi_controller *ctlr)
1446{
1447	ctlr->running = false;
1448	ctlr->busy = false;
1449
1450	kthread_init_worker(&ctlr->kworker);
1451	ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1452					 "%s", dev_name(&ctlr->dev));
1453	if (IS_ERR(ctlr->kworker_task)) {
1454		dev_err(&ctlr->dev, "failed to create message pump task\n");
1455		return PTR_ERR(ctlr->kworker_task);
1456	}
1457	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1458
1459	/*
1460	 * Controller config will indicate if this controller should run the
1461	 * message pump with high (realtime) priority to reduce the transfer
1462	 * latency on the bus by minimising the delay between a transfer
1463	 * request and the scheduling of the message pump thread. Without this
1464	 * setting the message pump thread will remain at default priority.
1465	 */
1466	if (ctlr->rt)
1467		spi_set_thread_rt(ctlr);
1468
1469	return 0;
1470}
1471
1472/**
1473 * spi_get_next_queued_message() - called by driver to check for queued
1474 * messages
1475 * @ctlr: the controller to check for queued messages
1476 *
1477 * If there are more messages in the queue, the next message is returned from
1478 * this call.
1479 *
1480 * Return: the next message in the queue, else NULL if the queue is empty.
1481 */
1482struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1483{
1484	struct spi_message *next;
1485	unsigned long flags;
1486
1487	/* get a pointer to the next message, if any */
1488	spin_lock_irqsave(&ctlr->queue_lock, flags);
1489	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1490					queue);
1491	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492
1493	return next;
1494}
1495EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1496
1497/**
1498 * spi_finalize_current_message() - the current message is complete
1499 * @ctlr: the controller to return the message to
1500 *
1501 * Called by the driver to notify the core that the message in the front of the
1502 * queue is complete and can be removed from the queue.
1503 */
1504void spi_finalize_current_message(struct spi_controller *ctlr)
1505{
1506	struct spi_message *mesg;
1507	unsigned long flags;
1508	int ret;
1509
1510	spin_lock_irqsave(&ctlr->queue_lock, flags);
1511	mesg = ctlr->cur_msg;
1512	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1513
1514	spi_unmap_msg(ctlr, mesg);
1515
1516	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1517		ret = ctlr->unprepare_message(ctlr, mesg);
1518		if (ret) {
1519			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1520				ret);
1521		}
1522	}
1523
1524	spin_lock_irqsave(&ctlr->queue_lock, flags);
1525	ctlr->cur_msg = NULL;
1526	ctlr->cur_msg_prepared = false;
1527	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1528	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1529
1530	trace_spi_message_done(mesg);
1531
1532	mesg->state = NULL;
1533	if (mesg->complete)
1534		mesg->complete(mesg->context);
1535}
1536EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1537
1538static int spi_start_queue(struct spi_controller *ctlr)
1539{
1540	unsigned long flags;
1541
1542	spin_lock_irqsave(&ctlr->queue_lock, flags);
1543
1544	if (ctlr->running || ctlr->busy) {
1545		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1546		return -EBUSY;
1547	}
1548
1549	ctlr->running = true;
1550	ctlr->cur_msg = NULL;
1551	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1552
1553	kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1554
1555	return 0;
1556}
1557
1558static int spi_stop_queue(struct spi_controller *ctlr)
1559{
1560	unsigned long flags;
1561	unsigned limit = 500;
1562	int ret = 0;
1563
1564	spin_lock_irqsave(&ctlr->queue_lock, flags);
1565
1566	/*
1567	 * This is a bit lame, but is optimized for the common execution path.
1568	 * A wait_queue on the ctlr->busy could be used, but then the common
1569	 * execution path (pump_messages) would be required to call wake_up or
1570	 * friends on every SPI message. Do this instead.
1571	 */
1572	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1573		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1574		usleep_range(10000, 11000);
1575		spin_lock_irqsave(&ctlr->queue_lock, flags);
1576	}
1577
1578	if (!list_empty(&ctlr->queue) || ctlr->busy)
1579		ret = -EBUSY;
1580	else
1581		ctlr->running = false;
1582
1583	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1584
1585	if (ret) {
1586		dev_warn(&ctlr->dev, "could not stop message queue\n");
1587		return ret;
1588	}
1589	return ret;
1590}
1591
1592static int spi_destroy_queue(struct spi_controller *ctlr)
1593{
1594	int ret;
1595
1596	ret = spi_stop_queue(ctlr);
1597
1598	/*
1599	 * kthread_flush_worker will block until all work is done.
1600	 * If the reason that stop_queue timed out is that the work will never
1601	 * finish, then it does no good to call flush/stop thread, so
1602	 * return anyway.
1603	 */
1604	if (ret) {
1605		dev_err(&ctlr->dev, "problem destroying queue\n");
1606		return ret;
1607	}
1608
1609	kthread_flush_worker(&ctlr->kworker);
1610	kthread_stop(ctlr->kworker_task);
1611
1612	return 0;
1613}
1614
1615static int __spi_queued_transfer(struct spi_device *spi,
1616				 struct spi_message *msg,
1617				 bool need_pump)
1618{
1619	struct spi_controller *ctlr = spi->controller;
1620	unsigned long flags;
1621
1622	spin_lock_irqsave(&ctlr->queue_lock, flags);
1623
1624	if (!ctlr->running) {
1625		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1626		return -ESHUTDOWN;
1627	}
1628	msg->actual_length = 0;
1629	msg->status = -EINPROGRESS;
1630
1631	list_add_tail(&msg->queue, &ctlr->queue);
1632	if (!ctlr->busy && need_pump)
1633		kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1634
1635	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1636	return 0;
1637}
1638
1639/**
1640 * spi_queued_transfer - transfer function for queued transfers
1641 * @spi: spi device which is requesting transfer
1642 * @msg: spi message which is to handled is queued to driver queue
1643 *
1644 * Return: zero on success, else a negative error code.
1645 */
1646static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1647{
1648	return __spi_queued_transfer(spi, msg, true);
1649}
1650
1651static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1652{
1653	int ret;
1654
1655	ctlr->transfer = spi_queued_transfer;
1656	if (!ctlr->transfer_one_message)
1657		ctlr->transfer_one_message = spi_transfer_one_message;
1658
1659	/* Initialize and start queue */
1660	ret = spi_init_queue(ctlr);
1661	if (ret) {
1662		dev_err(&ctlr->dev, "problem initializing queue\n");
1663		goto err_init_queue;
1664	}
1665	ctlr->queued = true;
1666	ret = spi_start_queue(ctlr);
1667	if (ret) {
1668		dev_err(&ctlr->dev, "problem starting queue\n");
1669		goto err_start_queue;
1670	}
1671
1672	return 0;
1673
1674err_start_queue:
1675	spi_destroy_queue(ctlr);
1676err_init_queue:
1677	return ret;
1678}
1679
1680/**
1681 * spi_flush_queue - Send all pending messages in the queue from the callers'
1682 *		     context
1683 * @ctlr: controller to process queue for
1684 *
1685 * This should be used when one wants to ensure all pending messages have been
1686 * sent before doing something. Is used by the spi-mem code to make sure SPI
1687 * memory operations do not preempt regular SPI transfers that have been queued
1688 * before the spi-mem operation.
1689 */
1690void spi_flush_queue(struct spi_controller *ctlr)
1691{
1692	if (ctlr->transfer == spi_queued_transfer)
1693		__spi_pump_messages(ctlr, false);
1694}
1695
1696/*-------------------------------------------------------------------------*/
1697
1698#if defined(CONFIG_OF)
1699static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1700			   struct device_node *nc)
1701{
1702	u32 value;
1703	int rc;
1704
1705	/* Mode (clock phase/polarity/etc.) */
1706	if (of_property_read_bool(nc, "spi-cpha"))
1707		spi->mode |= SPI_CPHA;
1708	if (of_property_read_bool(nc, "spi-cpol"))
1709		spi->mode |= SPI_CPOL;
1710	if (of_property_read_bool(nc, "spi-3wire"))
1711		spi->mode |= SPI_3WIRE;
1712	if (of_property_read_bool(nc, "spi-lsb-first"))
1713		spi->mode |= SPI_LSB_FIRST;
1714
1715	/*
1716	 * For descriptors associated with the device, polarity inversion is
1717	 * handled in the gpiolib, so all chip selects are "active high" in
1718	 * the logical sense, the gpiolib will invert the line if need be.
1719	 */
1720	if (ctlr->use_gpio_descriptors)
1721		spi->mode |= SPI_CS_HIGH;
1722	else if (of_property_read_bool(nc, "spi-cs-high"))
1723		spi->mode |= SPI_CS_HIGH;
1724
1725	/* Device DUAL/QUAD mode */
1726	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1727		switch (value) {
1728		case 1:
1729			break;
1730		case 2:
1731			spi->mode |= SPI_TX_DUAL;
1732			break;
1733		case 4:
1734			spi->mode |= SPI_TX_QUAD;
1735			break;
1736		case 8:
1737			spi->mode |= SPI_TX_OCTAL;
1738			break;
1739		default:
1740			dev_warn(&ctlr->dev,
1741				"spi-tx-bus-width %d not supported\n",
1742				value);
1743			break;
1744		}
1745	}
1746
1747	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1748		switch (value) {
1749		case 1:
1750			break;
1751		case 2:
1752			spi->mode |= SPI_RX_DUAL;
1753			break;
1754		case 4:
1755			spi->mode |= SPI_RX_QUAD;
1756			break;
1757		case 8:
1758			spi->mode |= SPI_RX_OCTAL;
1759			break;
1760		default:
1761			dev_warn(&ctlr->dev,
1762				"spi-rx-bus-width %d not supported\n",
1763				value);
1764			break;
1765		}
1766	}
1767
1768	if (spi_controller_is_slave(ctlr)) {
1769		if (!of_node_name_eq(nc, "slave")) {
1770			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1771				nc);
1772			return -EINVAL;
1773		}
1774		return 0;
1775	}
1776
1777	/* Device address */
1778	rc = of_property_read_u32(nc, "reg", &value);
1779	if (rc) {
1780		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1781			nc, rc);
1782		return rc;
1783	}
1784	spi->chip_select = value;
1785
1786	/* Device speed */
1787	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1788	if (rc) {
1789		dev_err(&ctlr->dev,
1790			"%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1791		return rc;
1792	}
1793	spi->max_speed_hz = value;
1794
1795	return 0;
1796}
1797
1798static struct spi_device *
1799of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1800{
1801	struct spi_device *spi;
1802	int rc;
1803
1804	/* Alloc an spi_device */
1805	spi = spi_alloc_device(ctlr);
1806	if (!spi) {
1807		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1808		rc = -ENOMEM;
1809		goto err_out;
1810	}
1811
1812	/* Select device driver */
1813	rc = of_modalias_node(nc, spi->modalias,
1814				sizeof(spi->modalias));
1815	if (rc < 0) {
1816		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1817		goto err_out;
1818	}
1819
1820	rc = of_spi_parse_dt(ctlr, spi, nc);
1821	if (rc)
1822		goto err_out;
1823
1824	/* Store a pointer to the node in the device structure */
1825	of_node_get(nc);
1826	spi->dev.of_node = nc;
1827
1828	/* Register the new device */
1829	rc = spi_add_device(spi);
1830	if (rc) {
1831		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1832		goto err_of_node_put;
1833	}
1834
1835	return spi;
1836
1837err_of_node_put:
1838	of_node_put(nc);
1839err_out:
1840	spi_dev_put(spi);
1841	return ERR_PTR(rc);
1842}
1843
1844/**
1845 * of_register_spi_devices() - Register child devices onto the SPI bus
1846 * @ctlr:	Pointer to spi_controller device
1847 *
1848 * Registers an spi_device for each child node of controller node which
1849 * represents a valid SPI slave.
1850 */
1851static void of_register_spi_devices(struct spi_controller *ctlr)
1852{
1853	struct spi_device *spi;
1854	struct device_node *nc;
1855
1856	if (!ctlr->dev.of_node)
1857		return;
1858
1859	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1860		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1861			continue;
1862		spi = of_register_spi_device(ctlr, nc);
1863		if (IS_ERR(spi)) {
1864			dev_warn(&ctlr->dev,
1865				 "Failed to create SPI device for %pOF\n", nc);
1866			of_node_clear_flag(nc, OF_POPULATED);
1867		}
1868	}
1869}
1870#else
1871static void of_register_spi_devices(struct spi_controller *ctlr) { }
1872#endif
1873
1874#ifdef CONFIG_ACPI
1875struct acpi_spi_lookup {
1876	struct spi_controller 	*ctlr;
1877	u32			max_speed_hz;
1878	u32			mode;
1879	int			irq;
1880	u8			bits_per_word;
1881	u8			chip_select;
1882};
1883
1884static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
1885					    struct acpi_spi_lookup *lookup)
1886{
1887	const union acpi_object *obj;
1888
1889	if (!x86_apple_machine)
1890		return;
1891
1892	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1893	    && obj->buffer.length >= 4)
1894		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1895
1896	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1897	    && obj->buffer.length == 8)
1898		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
1899
1900	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1901	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1902		lookup->mode |= SPI_LSB_FIRST;
1903
1904	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1905	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1906		lookup->mode |= SPI_CPOL;
1907
1908	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1909	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
1910		lookup->mode |= SPI_CPHA;
1911}
1912
1913static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1914{
1915	struct acpi_spi_lookup *lookup = data;
1916	struct spi_controller *ctlr = lookup->ctlr;
1917
1918	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1919		struct acpi_resource_spi_serialbus *sb;
1920		acpi_handle parent_handle;
1921		acpi_status status;
1922
1923		sb = &ares->data.spi_serial_bus;
1924		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1925
1926			status = acpi_get_handle(NULL,
1927						 sb->resource_source.string_ptr,
1928						 &parent_handle);
1929
1930			if (ACPI_FAILURE(status) ||
1931			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
1932				return -ENODEV;
1933
1934			/*
1935			 * ACPI DeviceSelection numbering is handled by the
1936			 * host controller driver in Windows and can vary
1937			 * from driver to driver. In Linux we always expect
1938			 * 0 .. max - 1 so we need to ask the driver to
1939			 * translate between the two schemes.
1940			 */
1941			if (ctlr->fw_translate_cs) {
1942				int cs = ctlr->fw_translate_cs(ctlr,
1943						sb->device_selection);
1944				if (cs < 0)
1945					return cs;
1946				lookup->chip_select = cs;
1947			} else {
1948				lookup->chip_select = sb->device_selection;
1949			}
1950
1951			lookup->max_speed_hz = sb->connection_speed;
1952
1953			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1954				lookup->mode |= SPI_CPHA;
1955			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1956				lookup->mode |= SPI_CPOL;
1957			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1958				lookup->mode |= SPI_CS_HIGH;
1959		}
1960	} else if (lookup->irq < 0) {
1961		struct resource r;
1962
1963		if (acpi_dev_resource_interrupt(ares, 0, &r))
1964			lookup->irq = r.start;
1965	}
1966
1967	/* Always tell the ACPI core to skip this resource */
1968	return 1;
1969}
1970
1971static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1972					    struct acpi_device *adev)
1973{
1974	acpi_handle parent_handle = NULL;
1975	struct list_head resource_list;
1976	struct acpi_spi_lookup lookup = {};
1977	struct spi_device *spi;
1978	int ret;
1979
1980	if (acpi_bus_get_status(adev) || !adev->status.present ||
1981	    acpi_device_enumerated(adev))
1982		return AE_OK;
1983
1984	lookup.ctlr		= ctlr;
1985	lookup.irq		= -1;
1986
1987	INIT_LIST_HEAD(&resource_list);
1988	ret = acpi_dev_get_resources(adev, &resource_list,
1989				     acpi_spi_add_resource, &lookup);
1990	acpi_dev_free_resource_list(&resource_list);
1991
1992	if (ret < 0)
1993		/* found SPI in _CRS but it points to another controller */
1994		return AE_OK;
1995
1996	if (!lookup.max_speed_hz &&
1997	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
1998	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
1999		/* Apple does not use _CRS but nested devices for SPI slaves */
2000		acpi_spi_parse_apple_properties(adev, &lookup);
2001	}
2002
2003	if (!lookup.max_speed_hz)
2004		return AE_OK;
2005
2006	spi = spi_alloc_device(ctlr);
2007	if (!spi) {
2008		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2009			dev_name(&adev->dev));
2010		return AE_NO_MEMORY;
2011	}
2012
2013	ACPI_COMPANION_SET(&spi->dev, adev);
2014	spi->max_speed_hz	= lookup.max_speed_hz;
2015	spi->mode		= lookup.mode;
2016	spi->irq		= lookup.irq;
2017	spi->bits_per_word	= lookup.bits_per_word;
2018	spi->chip_select	= lookup.chip_select;
2019
2020	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2021			  sizeof(spi->modalias));
2022
2023	if (spi->irq < 0)
2024		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2025
2026	acpi_device_set_enumerated(adev);
2027
2028	adev->power.flags.ignore_parent = true;
2029	if (spi_add_device(spi)) {
2030		adev->power.flags.ignore_parent = false;
2031		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2032			dev_name(&adev->dev));
2033		spi_dev_put(spi);
2034	}
2035
2036	return AE_OK;
2037}
2038
2039static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2040				       void *data, void **return_value)
2041{
2042	struct spi_controller *ctlr = data;
2043	struct acpi_device *adev;
2044
2045	if (acpi_bus_get_device(handle, &adev))
2046		return AE_OK;
2047
2048	return acpi_register_spi_device(ctlr, adev);
2049}
2050
2051#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2052
2053static void acpi_register_spi_devices(struct spi_controller *ctlr)
2054{
2055	acpi_status status;
2056	acpi_handle handle;
2057
2058	handle = ACPI_HANDLE(ctlr->dev.parent);
2059	if (!handle)
2060		return;
2061
2062	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2063				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2064				     acpi_spi_add_device, NULL, ctlr, NULL);
2065	if (ACPI_FAILURE(status))
2066		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2067}
2068#else
2069static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2070#endif /* CONFIG_ACPI */
2071
2072static void spi_controller_release(struct device *dev)
2073{
2074	struct spi_controller *ctlr;
2075
2076	ctlr = container_of(dev, struct spi_controller, dev);
2077	kfree(ctlr);
2078}
2079
2080static struct class spi_master_class = {
2081	.name		= "spi_master",
2082	.owner		= THIS_MODULE,
2083	.dev_release	= spi_controller_release,
2084	.dev_groups	= spi_master_groups,
2085};
2086
2087#ifdef CONFIG_SPI_SLAVE
2088/**
2089 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2090 *		     controller
2091 * @spi: device used for the current transfer
2092 */
2093int spi_slave_abort(struct spi_device *spi)
2094{
2095	struct spi_controller *ctlr = spi->controller;
2096
2097	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2098		return ctlr->slave_abort(ctlr);
2099
2100	return -ENOTSUPP;
2101}
2102EXPORT_SYMBOL_GPL(spi_slave_abort);
2103
2104static int match_true(struct device *dev, void *data)
2105{
2106	return 1;
2107}
2108
2109static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2110			  char *buf)
2111{
2112	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2113						   dev);
2114	struct device *child;
2115
2116	child = device_find_child(&ctlr->dev, NULL, match_true);
2117	return sprintf(buf, "%s\n",
2118		       child ? to_spi_device(child)->modalias : NULL);
2119}
2120
2121static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2122			   const char *buf, size_t count)
2123{
2124	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2125						   dev);
2126	struct spi_device *spi;
2127	struct device *child;
2128	char name[32];
2129	int rc;
2130
2131	rc = sscanf(buf, "%31s", name);
2132	if (rc != 1 || !name[0])
2133		return -EINVAL;
2134
2135	child = device_find_child(&ctlr->dev, NULL, match_true);
2136	if (child) {
2137		/* Remove registered slave */
2138		device_unregister(child);
2139		put_device(child);
2140	}
2141
2142	if (strcmp(name, "(null)")) {
2143		/* Register new slave */
2144		spi = spi_alloc_device(ctlr);
2145		if (!spi)
2146			return -ENOMEM;
2147
2148		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2149
2150		rc = spi_add_device(spi);
2151		if (rc) {
2152			spi_dev_put(spi);
2153			return rc;
2154		}
2155	}
2156
2157	return count;
2158}
2159
2160static DEVICE_ATTR_RW(slave);
2161
2162static struct attribute *spi_slave_attrs[] = {
2163	&dev_attr_slave.attr,
2164	NULL,
2165};
2166
2167static const struct attribute_group spi_slave_group = {
2168	.attrs = spi_slave_attrs,
2169};
2170
2171static const struct attribute_group *spi_slave_groups[] = {
2172	&spi_controller_statistics_group,
2173	&spi_slave_group,
2174	NULL,
2175};
2176
2177static struct class spi_slave_class = {
2178	.name		= "spi_slave",
2179	.owner		= THIS_MODULE,
2180	.dev_release	= spi_controller_release,
2181	.dev_groups	= spi_slave_groups,
2182};
2183#else
2184extern struct class spi_slave_class;	/* dummy */
2185#endif
2186
2187/**
2188 * __spi_alloc_controller - allocate an SPI master or slave controller
2189 * @dev: the controller, possibly using the platform_bus
2190 * @size: how much zeroed driver-private data to allocate; the pointer to this
2191 *	memory is in the driver_data field of the returned device, accessible
2192 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2193 *	drivers granting DMA access to portions of their private data need to
2194 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2195 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2196 *	slave (true) controller
2197 * Context: can sleep
2198 *
2199 * This call is used only by SPI controller drivers, which are the
2200 * only ones directly touching chip registers.  It's how they allocate
2201 * an spi_controller structure, prior to calling spi_register_controller().
2202 *
2203 * This must be called from context that can sleep.
2204 *
2205 * The caller is responsible for assigning the bus number and initializing the
2206 * controller's methods before calling spi_register_controller(); and (after
2207 * errors adding the device) calling spi_controller_put() to prevent a memory
2208 * leak.
2209 *
2210 * Return: the SPI controller structure on success, else NULL.
 
 
2211 */
2212struct spi_controller *__spi_alloc_controller(struct device *dev,
2213					      unsigned int size, bool slave)
2214{
2215	struct spi_controller	*ctlr;
2216	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2217
2218	if (!dev)
2219		return NULL;
2220
2221	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2222	if (!ctlr)
2223		return NULL;
2224
2225	device_initialize(&ctlr->dev);
2226	ctlr->bus_num = -1;
2227	ctlr->num_chipselect = 1;
2228	ctlr->slave = slave;
2229	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2230		ctlr->dev.class = &spi_slave_class;
2231	else
2232		ctlr->dev.class = &spi_master_class;
2233	ctlr->dev.parent = dev;
2234	pm_suspend_ignore_children(&ctlr->dev, true);
2235	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2236
2237	return ctlr;
2238}
2239EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2240
2241#ifdef CONFIG_OF
2242static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2243{
2244	int nb, i, *cs;
2245	struct device_node *np = ctlr->dev.of_node;
2246
2247	if (!np)
2248		return 0;
2249
2250	nb = of_gpio_named_count(np, "cs-gpios");
2251	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2252
2253	/* Return error only for an incorrectly formed cs-gpios property */
2254	if (nb == 0 || nb == -ENOENT)
2255		return 0;
2256	else if (nb < 0)
2257		return nb;
2258
2259	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2260			  GFP_KERNEL);
2261	ctlr->cs_gpios = cs;
2262
2263	if (!ctlr->cs_gpios)
2264		return -ENOMEM;
2265
2266	for (i = 0; i < ctlr->num_chipselect; i++)
2267		cs[i] = -ENOENT;
2268
2269	for (i = 0; i < nb; i++)
2270		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2271
2272	return 0;
2273}
2274#else
2275static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2276{
2277	return 0;
2278}
2279#endif
2280
2281/**
2282 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2283 * @ctlr: The SPI master to grab GPIO descriptors for
2284 */
2285static int spi_get_gpio_descs(struct spi_controller *ctlr)
2286{
2287	int nb, i;
2288	struct gpio_desc **cs;
2289	struct device *dev = &ctlr->dev;
2290
2291	nb = gpiod_count(dev, "cs");
2292	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2293
2294	/* No GPIOs at all is fine, else return the error */
2295	if (nb == 0 || nb == -ENOENT)
2296		return 0;
2297	else if (nb < 0)
2298		return nb;
2299
2300	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2301			  GFP_KERNEL);
2302	if (!cs)
2303		return -ENOMEM;
2304	ctlr->cs_gpiods = cs;
2305
2306	for (i = 0; i < nb; i++) {
2307		/*
2308		 * Most chipselects are active low, the inverted
2309		 * semantics are handled by special quirks in gpiolib,
2310		 * so initializing them GPIOD_OUT_LOW here means
2311		 * "unasserted", in most cases this will drive the physical
2312		 * line high.
2313		 */
2314		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2315						      GPIOD_OUT_LOW);
2316		if (IS_ERR(cs[i]))
2317			return PTR_ERR(cs[i]);
2318
2319		if (cs[i]) {
2320			/*
2321			 * If we find a CS GPIO, name it after the device and
2322			 * chip select line.
2323			 */
2324			char *gpioname;
2325
2326			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2327						  dev_name(dev), i);
2328			if (!gpioname)
2329				return -ENOMEM;
2330			gpiod_set_consumer_name(cs[i], gpioname);
2331		}
2332	}
2333
2334	return 0;
2335}
2336
2337static int spi_controller_check_ops(struct spi_controller *ctlr)
2338{
2339	/*
2340	 * The controller may implement only the high-level SPI-memory like
2341	 * operations if it does not support regular SPI transfers, and this is
2342	 * valid use case.
2343	 * If ->mem_ops is NULL, we request that at least one of the
2344	 * ->transfer_xxx() method be implemented.
2345	 */
2346	if (ctlr->mem_ops) {
2347		if (!ctlr->mem_ops->exec_op)
2348			return -EINVAL;
2349	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2350		   !ctlr->transfer_one_message) {
2351		return -EINVAL;
2352	}
2353
2354	return 0;
2355}
 
2356
2357/**
2358 * spi_register_controller - register SPI master or slave controller
2359 * @ctlr: initialized master, originally from spi_alloc_master() or
2360 *	spi_alloc_slave()
2361 * Context: can sleep
2362 *
2363 * SPI controllers connect to their drivers using some non-SPI bus,
2364 * such as the platform bus.  The final stage of probe() in that code
2365 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2366 *
2367 * SPI controllers use board specific (often SOC specific) bus numbers,
2368 * and board-specific addressing for SPI devices combines those numbers
2369 * with chip select numbers.  Since SPI does not directly support dynamic
2370 * device identification, boards need configuration tables telling which
2371 * chip is at which address.
2372 *
2373 * This must be called from context that can sleep.  It returns zero on
2374 * success, else a negative error code (dropping the controller's refcount).
2375 * After a successful return, the caller is responsible for calling
2376 * spi_unregister_controller().
2377 *
2378 * Return: zero on success, else a negative error code.
2379 */
2380int spi_register_controller(struct spi_controller *ctlr)
2381{
2382	struct device		*dev = ctlr->dev.parent;
 
2383	struct boardinfo	*bi;
2384	int			status;
2385	int			id, first_dynamic;
2386
2387	if (!dev)
2388		return -ENODEV;
2389
2390	/*
2391	 * Make sure all necessary hooks are implemented before registering
2392	 * the SPI controller.
2393	 */
2394	status = spi_controller_check_ops(ctlr);
2395	if (status)
2396		return status;
2397
2398	if (ctlr->bus_num >= 0) {
2399		/* devices with a fixed bus num must check-in with the num */
2400		mutex_lock(&board_lock);
2401		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2402			ctlr->bus_num + 1, GFP_KERNEL);
2403		mutex_unlock(&board_lock);
2404		if (WARN(id < 0, "couldn't get idr"))
2405			return id == -ENOSPC ? -EBUSY : id;
2406		ctlr->bus_num = id;
2407	} else if (ctlr->dev.of_node) {
2408		/* allocate dynamic bus number using Linux idr */
2409		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2410		if (id >= 0) {
2411			ctlr->bus_num = id;
2412			mutex_lock(&board_lock);
2413			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2414				       ctlr->bus_num + 1, GFP_KERNEL);
2415			mutex_unlock(&board_lock);
2416			if (WARN(id < 0, "couldn't get idr"))
2417				return id == -ENOSPC ? -EBUSY : id;
2418		}
2419	}
2420	if (ctlr->bus_num < 0) {
2421		first_dynamic = of_alias_get_highest_id("spi");
2422		if (first_dynamic < 0)
2423			first_dynamic = 0;
2424		else
2425			first_dynamic++;
2426
2427		mutex_lock(&board_lock);
2428		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2429			       0, GFP_KERNEL);
2430		mutex_unlock(&board_lock);
2431		if (WARN(id < 0, "couldn't get idr"))
2432			return id;
2433		ctlr->bus_num = id;
2434	}
2435	INIT_LIST_HEAD(&ctlr->queue);
2436	spin_lock_init(&ctlr->queue_lock);
2437	spin_lock_init(&ctlr->bus_lock_spinlock);
2438	mutex_init(&ctlr->bus_lock_mutex);
2439	mutex_init(&ctlr->io_mutex);
2440	ctlr->bus_lock_flag = 0;
2441	init_completion(&ctlr->xfer_completion);
2442	if (!ctlr->max_dma_len)
2443		ctlr->max_dma_len = INT_MAX;
2444
2445	/* register the device, then userspace will see it.
2446	 * registration fails if the bus ID is in use.
2447	 */
2448	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2449
2450	if (!spi_controller_is_slave(ctlr)) {
2451		if (ctlr->use_gpio_descriptors) {
2452			status = spi_get_gpio_descs(ctlr);
2453			if (status)
2454				return status;
2455			/*
2456			 * A controller using GPIO descriptors always
2457			 * supports SPI_CS_HIGH if need be.
2458			 */
2459			ctlr->mode_bits |= SPI_CS_HIGH;
2460		} else {
2461			/* Legacy code path for GPIOs from DT */
2462			status = of_spi_get_gpio_numbers(ctlr);
2463			if (status)
2464				return status;
2465		}
2466	}
2467
2468	/*
2469	 * Even if it's just one always-selected device, there must
2470	 * be at least one chipselect.
2471	 */
2472	if (!ctlr->num_chipselect)
2473		return -EINVAL;
2474
2475	status = device_add(&ctlr->dev);
2476	if (status < 0) {
2477		/* free bus id */
2478		mutex_lock(&board_lock);
2479		idr_remove(&spi_master_idr, ctlr->bus_num);
2480		mutex_unlock(&board_lock);
2481		goto done;
2482	}
2483	dev_dbg(dev, "registered %s %s\n",
2484			spi_controller_is_slave(ctlr) ? "slave" : "master",
2485			dev_name(&ctlr->dev));
2486
2487	/*
2488	 * If we're using a queued driver, start the queue. Note that we don't
2489	 * need the queueing logic if the driver is only supporting high-level
2490	 * memory operations.
2491	 */
2492	if (ctlr->transfer) {
2493		dev_info(dev, "controller is unqueued, this is deprecated\n");
2494	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2495		status = spi_controller_initialize_queue(ctlr);
2496		if (status) {
2497			device_del(&ctlr->dev);
2498			/* free bus id */
2499			mutex_lock(&board_lock);
2500			idr_remove(&spi_master_idr, ctlr->bus_num);
2501			mutex_unlock(&board_lock);
2502			goto done;
2503		}
2504	}
2505	/* add statistics */
2506	spin_lock_init(&ctlr->statistics.lock);
2507
2508	mutex_lock(&board_lock);
2509	list_add_tail(&ctlr->list, &spi_controller_list);
2510	list_for_each_entry(bi, &board_list, list)
2511		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2512	mutex_unlock(&board_lock);
2513
2514	/* Register devices from the device tree and ACPI */
2515	of_register_spi_devices(ctlr);
2516	acpi_register_spi_devices(ctlr);
 
2517done:
2518	return status;
2519}
2520EXPORT_SYMBOL_GPL(spi_register_controller);
2521
2522static void devm_spi_unregister(struct device *dev, void *res)
2523{
2524	spi_unregister_controller(*(struct spi_controller **)res);
2525}
2526
2527/**
2528 * devm_spi_register_controller - register managed SPI master or slave
2529 *	controller
2530 * @dev:    device managing SPI controller
2531 * @ctlr: initialized controller, originally from spi_alloc_master() or
2532 *	spi_alloc_slave()
2533 * Context: can sleep
2534 *
2535 * Register a SPI device as with spi_register_controller() which will
2536 * automatically be unregistered and freed.
2537 *
2538 * Return: zero on success, else a negative error code.
2539 */
2540int devm_spi_register_controller(struct device *dev,
2541				 struct spi_controller *ctlr)
2542{
2543	struct spi_controller **ptr;
2544	int ret;
2545
2546	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2547	if (!ptr)
2548		return -ENOMEM;
2549
2550	ret = spi_register_controller(ctlr);
2551	if (!ret) {
2552		*ptr = ctlr;
2553		devres_add(dev, ptr);
2554	} else {
2555		devres_free(ptr);
2556	}
2557
2558	return ret;
2559}
2560EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2561
2562static int __unregister(struct device *dev, void *null)
2563{
2564	spi_unregister_device(to_spi_device(dev));
2565	return 0;
2566}
2567
2568/**
2569 * spi_unregister_controller - unregister SPI master or slave controller
2570 * @ctlr: the controller being unregistered
2571 * Context: can sleep
2572 *
2573 * This call is used only by SPI controller drivers, which are the
2574 * only ones directly touching chip registers.
2575 *
2576 * This must be called from context that can sleep.
2577 *
2578 * Note that this function also drops a reference to the controller.
2579 */
2580void spi_unregister_controller(struct spi_controller *ctlr)
2581{
2582	struct spi_controller *found;
2583	int id = ctlr->bus_num;
2584
2585	/* First make sure that this controller was ever added */
2586	mutex_lock(&board_lock);
2587	found = idr_find(&spi_master_idr, id);
2588	mutex_unlock(&board_lock);
2589	if (ctlr->queued) {
2590		if (spi_destroy_queue(ctlr))
2591			dev_err(&ctlr->dev, "queue remove failed\n");
2592	}
2593	mutex_lock(&board_lock);
2594	list_del(&ctlr->list);
2595	mutex_unlock(&board_lock);
2596
2597	device_for_each_child(&ctlr->dev, NULL, __unregister);
2598	device_unregister(&ctlr->dev);
2599	/* free bus id */
2600	mutex_lock(&board_lock);
2601	if (found == ctlr)
2602		idr_remove(&spi_master_idr, id);
2603	mutex_unlock(&board_lock);
2604}
2605EXPORT_SYMBOL_GPL(spi_unregister_controller);
2606
2607int spi_controller_suspend(struct spi_controller *ctlr)
2608{
2609	int ret;
2610
2611	/* Basically no-ops for non-queued controllers */
2612	if (!ctlr->queued)
2613		return 0;
2614
2615	ret = spi_stop_queue(ctlr);
2616	if (ret)
2617		dev_err(&ctlr->dev, "queue stop failed\n");
2618
2619	return ret;
2620}
2621EXPORT_SYMBOL_GPL(spi_controller_suspend);
2622
2623int spi_controller_resume(struct spi_controller *ctlr)
2624{
2625	int ret;
2626
2627	if (!ctlr->queued)
2628		return 0;
2629
2630	ret = spi_start_queue(ctlr);
2631	if (ret)
2632		dev_err(&ctlr->dev, "queue restart failed\n");
2633
2634	return ret;
2635}
2636EXPORT_SYMBOL_GPL(spi_controller_resume);
2637
2638static int __spi_controller_match(struct device *dev, const void *data)
2639{
2640	struct spi_controller *ctlr;
2641	const u16 *bus_num = data;
2642
2643	ctlr = container_of(dev, struct spi_controller, dev);
2644	return ctlr->bus_num == *bus_num;
2645}
2646
2647/**
2648 * spi_busnum_to_master - look up master associated with bus_num
2649 * @bus_num: the master's bus number
2650 * Context: can sleep
2651 *
2652 * This call may be used with devices that are registered after
2653 * arch init time.  It returns a refcounted pointer to the relevant
2654 * spi_controller (which the caller must release), or NULL if there is
2655 * no such master registered.
2656 *
2657 * Return: the SPI master structure on success, else NULL.
2658 */
2659struct spi_controller *spi_busnum_to_master(u16 bus_num)
2660{
2661	struct device		*dev;
2662	struct spi_controller	*ctlr = NULL;
2663
2664	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2665				__spi_controller_match);
2666	if (dev)
2667		ctlr = container_of(dev, struct spi_controller, dev);
2668	/* reference got in class_find_device */
2669	return ctlr;
2670}
2671EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2672
2673/*-------------------------------------------------------------------------*/
2674
2675/* Core methods for SPI resource management */
2676
2677/**
2678 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2679 *                 during the processing of a spi_message while using
2680 *                 spi_transfer_one
2681 * @spi:     the spi device for which we allocate memory
2682 * @release: the release code to execute for this resource
2683 * @size:    size to alloc and return
2684 * @gfp:     GFP allocation flags
2685 *
2686 * Return: the pointer to the allocated data
2687 *
2688 * This may get enhanced in the future to allocate from a memory pool
2689 * of the @spi_device or @spi_controller to avoid repeated allocations.
2690 */
2691void *spi_res_alloc(struct spi_device *spi,
2692		    spi_res_release_t release,
2693		    size_t size, gfp_t gfp)
2694{
2695	struct spi_res *sres;
2696
2697	sres = kzalloc(sizeof(*sres) + size, gfp);
2698	if (!sres)
2699		return NULL;
2700
2701	INIT_LIST_HEAD(&sres->entry);
2702	sres->release = release;
2703
2704	return sres->data;
2705}
2706EXPORT_SYMBOL_GPL(spi_res_alloc);
2707
2708/**
2709 * spi_res_free - free an spi resource
2710 * @res: pointer to the custom data of a resource
2711 *
2712 */
2713void spi_res_free(void *res)
2714{
2715	struct spi_res *sres = container_of(res, struct spi_res, data);
2716
2717	if (!res)
2718		return;
2719
2720	WARN_ON(!list_empty(&sres->entry));
2721	kfree(sres);
2722}
2723EXPORT_SYMBOL_GPL(spi_res_free);
2724
2725/**
2726 * spi_res_add - add a spi_res to the spi_message
2727 * @message: the spi message
2728 * @res:     the spi_resource
2729 */
2730void spi_res_add(struct spi_message *message, void *res)
2731{
2732	struct spi_res *sres = container_of(res, struct spi_res, data);
2733
2734	WARN_ON(!list_empty(&sres->entry));
2735	list_add_tail(&sres->entry, &message->resources);
2736}
2737EXPORT_SYMBOL_GPL(spi_res_add);
2738
2739/**
2740 * spi_res_release - release all spi resources for this message
2741 * @ctlr:  the @spi_controller
2742 * @message: the @spi_message
2743 */
2744void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2745{
2746	struct spi_res *res, *tmp;
2747
2748	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2749		if (res->release)
2750			res->release(ctlr, message, res->data);
2751
2752		list_del(&res->entry);
2753
2754		kfree(res);
2755	}
2756}
2757EXPORT_SYMBOL_GPL(spi_res_release);
2758
2759/*-------------------------------------------------------------------------*/
2760
2761/* Core methods for spi_message alterations */
2762
2763static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2764					    struct spi_message *msg,
2765					    void *res)
2766{
2767	struct spi_replaced_transfers *rxfer = res;
2768	size_t i;
2769
2770	/* call extra callback if requested */
2771	if (rxfer->release)
2772		rxfer->release(ctlr, msg, res);
2773
2774	/* insert replaced transfers back into the message */
2775	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2776
2777	/* remove the formerly inserted entries */
2778	for (i = 0; i < rxfer->inserted; i++)
2779		list_del(&rxfer->inserted_transfers[i].transfer_list);
2780}
2781
2782/**
2783 * spi_replace_transfers - replace transfers with several transfers
2784 *                         and register change with spi_message.resources
2785 * @msg:           the spi_message we work upon
2786 * @xfer_first:    the first spi_transfer we want to replace
2787 * @remove:        number of transfers to remove
2788 * @insert:        the number of transfers we want to insert instead
2789 * @release:       extra release code necessary in some circumstances
2790 * @extradatasize: extra data to allocate (with alignment guarantees
2791 *                 of struct @spi_transfer)
2792 * @gfp:           gfp flags
2793 *
2794 * Returns: pointer to @spi_replaced_transfers,
2795 *          PTR_ERR(...) in case of errors.
2796 */
2797struct spi_replaced_transfers *spi_replace_transfers(
2798	struct spi_message *msg,
2799	struct spi_transfer *xfer_first,
2800	size_t remove,
2801	size_t insert,
2802	spi_replaced_release_t release,
2803	size_t extradatasize,
2804	gfp_t gfp)
2805{
2806	struct spi_replaced_transfers *rxfer;
2807	struct spi_transfer *xfer;
2808	size_t i;
2809
2810	/* allocate the structure using spi_res */
2811	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2812			      struct_size(rxfer, inserted_transfers, insert)
2813			      + extradatasize,
2814			      gfp);
2815	if (!rxfer)
2816		return ERR_PTR(-ENOMEM);
2817
2818	/* the release code to invoke before running the generic release */
2819	rxfer->release = release;
2820
2821	/* assign extradata */
2822	if (extradatasize)
2823		rxfer->extradata =
2824			&rxfer->inserted_transfers[insert];
2825
2826	/* init the replaced_transfers list */
2827	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2828
2829	/* assign the list_entry after which we should reinsert
2830	 * the @replaced_transfers - it may be spi_message.messages!
2831	 */
2832	rxfer->replaced_after = xfer_first->transfer_list.prev;
2833
2834	/* remove the requested number of transfers */
2835	for (i = 0; i < remove; i++) {
2836		/* if the entry after replaced_after it is msg->transfers
2837		 * then we have been requested to remove more transfers
2838		 * than are in the list
2839		 */
2840		if (rxfer->replaced_after->next == &msg->transfers) {
2841			dev_err(&msg->spi->dev,
2842				"requested to remove more spi_transfers than are available\n");
2843			/* insert replaced transfers back into the message */
2844			list_splice(&rxfer->replaced_transfers,
2845				    rxfer->replaced_after);
2846
2847			/* free the spi_replace_transfer structure */
2848			spi_res_free(rxfer);
2849
2850			/* and return with an error */
2851			return ERR_PTR(-EINVAL);
2852		}
2853
2854		/* remove the entry after replaced_after from list of
2855		 * transfers and add it to list of replaced_transfers
2856		 */
2857		list_move_tail(rxfer->replaced_after->next,
2858			       &rxfer->replaced_transfers);
2859	}
2860
2861	/* create copy of the given xfer with identical settings
2862	 * based on the first transfer to get removed
2863	 */
2864	for (i = 0; i < insert; i++) {
2865		/* we need to run in reverse order */
2866		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2867
2868		/* copy all spi_transfer data */
2869		memcpy(xfer, xfer_first, sizeof(*xfer));
2870
2871		/* add to list */
2872		list_add(&xfer->transfer_list, rxfer->replaced_after);
2873
2874		/* clear cs_change and delay_usecs for all but the last */
2875		if (i) {
2876			xfer->cs_change = false;
2877			xfer->delay_usecs = 0;
2878		}
2879	}
2880
2881	/* set up inserted */
2882	rxfer->inserted = insert;
2883
2884	/* and register it with spi_res/spi_message */
2885	spi_res_add(msg, rxfer);
2886
2887	return rxfer;
2888}
2889EXPORT_SYMBOL_GPL(spi_replace_transfers);
2890
2891static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2892					struct spi_message *msg,
2893					struct spi_transfer **xferp,
2894					size_t maxsize,
2895					gfp_t gfp)
2896{
2897	struct spi_transfer *xfer = *xferp, *xfers;
2898	struct spi_replaced_transfers *srt;
2899	size_t offset;
2900	size_t count, i;
2901
2902	/* calculate how many we have to replace */
2903	count = DIV_ROUND_UP(xfer->len, maxsize);
2904
2905	/* create replacement */
2906	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2907	if (IS_ERR(srt))
2908		return PTR_ERR(srt);
2909	xfers = srt->inserted_transfers;
2910
2911	/* now handle each of those newly inserted spi_transfers
2912	 * note that the replacements spi_transfers all are preset
2913	 * to the same values as *xferp, so tx_buf, rx_buf and len
2914	 * are all identical (as well as most others)
2915	 * so we just have to fix up len and the pointers.
2916	 *
2917	 * this also includes support for the depreciated
2918	 * spi_message.is_dma_mapped interface
2919	 */
2920
2921	/* the first transfer just needs the length modified, so we
2922	 * run it outside the loop
2923	 */
2924	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2925
2926	/* all the others need rx_buf/tx_buf also set */
2927	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2928		/* update rx_buf, tx_buf and dma */
2929		if (xfers[i].rx_buf)
2930			xfers[i].rx_buf += offset;
2931		if (xfers[i].rx_dma)
2932			xfers[i].rx_dma += offset;
2933		if (xfers[i].tx_buf)
2934			xfers[i].tx_buf += offset;
2935		if (xfers[i].tx_dma)
2936			xfers[i].tx_dma += offset;
2937
2938		/* update length */
2939		xfers[i].len = min(maxsize, xfers[i].len - offset);
2940	}
2941
2942	/* we set up xferp to the last entry we have inserted,
2943	 * so that we skip those already split transfers
2944	 */
2945	*xferp = &xfers[count - 1];
2946
2947	/* increment statistics counters */
2948	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2949				       transfers_split_maxsize);
2950	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2951				       transfers_split_maxsize);
2952
2953	return 0;
2954}
2955
2956/**
2957 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2958 *                              when an individual transfer exceeds a
2959 *                              certain size
2960 * @ctlr:    the @spi_controller for this transfer
2961 * @msg:   the @spi_message to transform
2962 * @maxsize:  the maximum when to apply this
2963 * @gfp: GFP allocation flags
2964 *
2965 * Return: status of transformation
2966 */
2967int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2968				struct spi_message *msg,
2969				size_t maxsize,
2970				gfp_t gfp)
2971{
2972	struct spi_transfer *xfer;
2973	int ret;
2974
2975	/* iterate over the transfer_list,
2976	 * but note that xfer is advanced to the last transfer inserted
2977	 * to avoid checking sizes again unnecessarily (also xfer does
2978	 * potentiall belong to a different list by the time the
2979	 * replacement has happened
2980	 */
2981	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2982		if (xfer->len > maxsize) {
2983			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2984							   maxsize, gfp);
2985			if (ret)
2986				return ret;
2987		}
2988	}
2989
2990	return 0;
2991}
2992EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2993
2994/*-------------------------------------------------------------------------*/
2995
2996/* Core methods for SPI controller protocol drivers.  Some of the
2997 * other core methods are currently defined as inline functions.
2998 */
2999
3000static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3001					u8 bits_per_word)
3002{
3003	if (ctlr->bits_per_word_mask) {
3004		/* Only 32 bits fit in the mask */
3005		if (bits_per_word > 32)
3006			return -EINVAL;
3007		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3008			return -EINVAL;
3009	}
3010
3011	return 0;
3012}
3013
3014/**
3015 * spi_setup - setup SPI mode and clock rate
3016 * @spi: the device whose settings are being modified
3017 * Context: can sleep, and no requests are queued to the device
3018 *
3019 * SPI protocol drivers may need to update the transfer mode if the
3020 * device doesn't work with its default.  They may likewise need
3021 * to update clock rates or word sizes from initial values.  This function
3022 * changes those settings, and must be called from a context that can sleep.
3023 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3024 * effect the next time the device is selected and data is transferred to
3025 * or from it.  When this function returns, the spi device is deselected.
3026 *
3027 * Note that this call will fail if the protocol driver specifies an option
3028 * that the underlying controller or its driver does not support.  For
3029 * example, not all hardware supports wire transfers using nine bit words,
3030 * LSB-first wire encoding, or active-high chipselects.
3031 *
3032 * Return: zero on success, else a negative error code.
3033 */
3034int spi_setup(struct spi_device *spi)
3035{
3036	unsigned	bad_bits, ugly_bits;
3037	int		status;
3038
3039	/* check mode to prevent that DUAL and QUAD set at the same time
3040	 */
3041	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3042		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3043		dev_err(&spi->dev,
3044		"setup: can not select dual and quad at the same time\n");
3045		return -EINVAL;
3046	}
3047	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3048	 */
3049	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3050		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3051		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3052		return -EINVAL;
3053	/* help drivers fail *cleanly* when they need options
3054	 * that aren't supported with their current controller
3055	 * SPI_CS_WORD has a fallback software implementation,
3056	 * so it is ignored here.
3057	 */
3058	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3059	/* nothing prevents from working with active-high CS in case if it
3060	 * is driven by GPIO.
3061	 */
3062	if (gpio_is_valid(spi->cs_gpio))
3063		bad_bits &= ~SPI_CS_HIGH;
3064	ugly_bits = bad_bits &
3065		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3066		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3067	if (ugly_bits) {
3068		dev_warn(&spi->dev,
3069			 "setup: ignoring unsupported mode bits %x\n",
3070			 ugly_bits);
3071		spi->mode &= ~ugly_bits;
3072		bad_bits &= ~ugly_bits;
3073	}
3074	if (bad_bits) {
3075		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3076			bad_bits);
3077		return -EINVAL;
3078	}
3079
3080	if (!spi->bits_per_word)
3081		spi->bits_per_word = 8;
3082
3083	status = __spi_validate_bits_per_word(spi->controller,
3084					      spi->bits_per_word);
3085	if (status)
3086		return status;
3087
3088	if (!spi->max_speed_hz)
3089		spi->max_speed_hz = spi->controller->max_speed_hz;
3090
3091	if (spi->controller->setup)
3092		status = spi->controller->setup(spi);
3093
3094	spi_set_cs(spi, false);
3095
3096	if (spi->rt && !spi->controller->rt) {
3097		spi->controller->rt = true;
3098		spi_set_thread_rt(spi->controller);
3099	}
3100
3101	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
 
3102			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3103			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3104			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3105			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3106			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3107			spi->bits_per_word, spi->max_speed_hz,
3108			status);
3109
3110	return status;
3111}
3112EXPORT_SYMBOL_GPL(spi_setup);
3113
3114/**
3115 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3116 * @spi: the device that requires specific CS timing configuration
3117 * @setup: CS setup time in terms of clock count
3118 * @hold: CS hold time in terms of clock count
3119 * @inactive_dly: CS inactive delay between transfers in terms of clock count
3120 */
3121void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold,
3122		       u8 inactive_dly)
3123{
3124	if (spi->controller->set_cs_timing)
3125		spi->controller->set_cs_timing(spi, setup, hold, inactive_dly);
3126}
3127EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3128
3129static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3130{
3131	struct spi_controller *ctlr = spi->controller;
3132	struct spi_transfer *xfer;
3133	int w_size;
3134
3135	if (list_empty(&message->transfers))
3136		return -EINVAL;
3137
3138	/* If an SPI controller does not support toggling the CS line on each
3139	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3140	 * for the CS line, we can emulate the CS-per-word hardware function by
3141	 * splitting transfers into one-word transfers and ensuring that
3142	 * cs_change is set for each transfer.
3143	 */
3144	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3145					  spi->cs_gpiod ||
3146					  gpio_is_valid(spi->cs_gpio))) {
3147		size_t maxsize;
3148		int ret;
3149
3150		maxsize = (spi->bits_per_word + 7) / 8;
3151
3152		/* spi_split_transfers_maxsize() requires message->spi */
3153		message->spi = spi;
3154
3155		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3156						  GFP_KERNEL);
3157		if (ret)
3158			return ret;
3159
3160		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3161			/* don't change cs_change on the last entry in the list */
3162			if (list_is_last(&xfer->transfer_list, &message->transfers))
3163				break;
3164			xfer->cs_change = 1;
3165		}
3166	}
3167
3168	/* Half-duplex links include original MicroWire, and ones with
3169	 * only one data pin like SPI_3WIRE (switches direction) or where
3170	 * either MOSI or MISO is missing.  They can also be caused by
3171	 * software limitations.
3172	 */
3173	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3174	    (spi->mode & SPI_3WIRE)) {
3175		unsigned flags = ctlr->flags;
 
3176
3177		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3178			if (xfer->rx_buf && xfer->tx_buf)
3179				return -EINVAL;
3180			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3181				return -EINVAL;
3182			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3183				return -EINVAL;
3184		}
3185	}
3186
3187	/**
3188	 * Set transfer bits_per_word and max speed as spi device default if
3189	 * it is not set for this transfer.
3190	 * Set transfer tx_nbits and rx_nbits as single transfer default
3191	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3192	 * Ensure transfer word_delay is at least as long as that required by
3193	 * device itself.
3194	 */
3195	message->frame_length = 0;
3196	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3197		xfer->effective_speed_hz = 0;
3198		message->frame_length += xfer->len;
3199		if (!xfer->bits_per_word)
3200			xfer->bits_per_word = spi->bits_per_word;
3201
3202		if (!xfer->speed_hz)
3203			xfer->speed_hz = spi->max_speed_hz;
3204
3205		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3206			xfer->speed_hz = ctlr->max_speed_hz;
3207
3208		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3209			return -EINVAL;
3210
3211		/*
3212		 * SPI transfer length should be multiple of SPI word size
3213		 * where SPI word size should be power-of-two multiple
3214		 */
3215		if (xfer->bits_per_word <= 8)
3216			w_size = 1;
3217		else if (xfer->bits_per_word <= 16)
3218			w_size = 2;
3219		else
3220			w_size = 4;
3221
3222		/* No partial transfers accepted */
3223		if (xfer->len % w_size)
3224			return -EINVAL;
3225
3226		if (xfer->speed_hz && ctlr->min_speed_hz &&
3227		    xfer->speed_hz < ctlr->min_speed_hz)
3228			return -EINVAL;
3229
3230		if (xfer->tx_buf && !xfer->tx_nbits)
3231			xfer->tx_nbits = SPI_NBITS_SINGLE;
3232		if (xfer->rx_buf && !xfer->rx_nbits)
3233			xfer->rx_nbits = SPI_NBITS_SINGLE;
3234		/* check transfer tx/rx_nbits:
3235		 * 1. check the value matches one of single, dual and quad
3236		 * 2. check tx/rx_nbits match the mode in spi_device
3237		 */
3238		if (xfer->tx_buf) {
3239			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3240				xfer->tx_nbits != SPI_NBITS_DUAL &&
3241				xfer->tx_nbits != SPI_NBITS_QUAD)
3242				return -EINVAL;
3243			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3244				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3245				return -EINVAL;
3246			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3247				!(spi->mode & SPI_TX_QUAD))
3248				return -EINVAL;
3249		}
3250		/* check transfer rx_nbits */
3251		if (xfer->rx_buf) {
3252			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3253				xfer->rx_nbits != SPI_NBITS_DUAL &&
3254				xfer->rx_nbits != SPI_NBITS_QUAD)
3255				return -EINVAL;
3256			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3257				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3258				return -EINVAL;
3259			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3260				!(spi->mode & SPI_RX_QUAD))
3261				return -EINVAL;
3262		}
3263
3264		if (xfer->word_delay_usecs < spi->word_delay_usecs)
3265			xfer->word_delay_usecs = spi->word_delay_usecs;
3266	}
3267
3268	message->status = -EINPROGRESS;
3269
3270	return 0;
3271}
3272
3273static int __spi_async(struct spi_device *spi, struct spi_message *message)
3274{
3275	struct spi_controller *ctlr = spi->controller;
3276
3277	/*
3278	 * Some controllers do not support doing regular SPI transfers. Return
3279	 * ENOTSUPP when this is the case.
3280	 */
3281	if (!ctlr->transfer)
3282		return -ENOTSUPP;
3283
3284	message->spi = spi;
3285
3286	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3287	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3288
3289	trace_spi_message_submit(message);
3290
3291	return ctlr->transfer(spi, message);
3292}
3293
3294/**
3295 * spi_async - asynchronous SPI transfer
3296 * @spi: device with which data will be exchanged
3297 * @message: describes the data transfers, including completion callback
3298 * Context: any (irqs may be blocked, etc)
3299 *
3300 * This call may be used in_irq and other contexts which can't sleep,
3301 * as well as from task contexts which can sleep.
3302 *
3303 * The completion callback is invoked in a context which can't sleep.
3304 * Before that invocation, the value of message->status is undefined.
3305 * When the callback is issued, message->status holds either zero (to
3306 * indicate complete success) or a negative error code.  After that
3307 * callback returns, the driver which issued the transfer request may
3308 * deallocate the associated memory; it's no longer in use by any SPI
3309 * core or controller driver code.
3310 *
3311 * Note that although all messages to a spi_device are handled in
3312 * FIFO order, messages may go to different devices in other orders.
3313 * Some device might be higher priority, or have various "hard" access
3314 * time requirements, for example.
3315 *
3316 * On detection of any fault during the transfer, processing of
3317 * the entire message is aborted, and the device is deselected.
3318 * Until returning from the associated message completion callback,
3319 * no other spi_message queued to that device will be processed.
3320 * (This rule applies equally to all the synchronous transfer calls,
3321 * which are wrappers around this core asynchronous primitive.)
3322 *
3323 * Return: zero on success, else a negative error code.
3324 */
3325int spi_async(struct spi_device *spi, struct spi_message *message)
3326{
3327	struct spi_controller *ctlr = spi->controller;
3328	int ret;
3329	unsigned long flags;
3330
3331	ret = __spi_validate(spi, message);
3332	if (ret != 0)
3333		return ret;
3334
3335	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3336
3337	if (ctlr->bus_lock_flag)
3338		ret = -EBUSY;
3339	else
3340		ret = __spi_async(spi, message);
3341
3342	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3343
3344	return ret;
3345}
3346EXPORT_SYMBOL_GPL(spi_async);
3347
3348/**
3349 * spi_async_locked - version of spi_async with exclusive bus usage
3350 * @spi: device with which data will be exchanged
3351 * @message: describes the data transfers, including completion callback
3352 * Context: any (irqs may be blocked, etc)
3353 *
3354 * This call may be used in_irq and other contexts which can't sleep,
3355 * as well as from task contexts which can sleep.
3356 *
3357 * The completion callback is invoked in a context which can't sleep.
3358 * Before that invocation, the value of message->status is undefined.
3359 * When the callback is issued, message->status holds either zero (to
3360 * indicate complete success) or a negative error code.  After that
3361 * callback returns, the driver which issued the transfer request may
3362 * deallocate the associated memory; it's no longer in use by any SPI
3363 * core or controller driver code.
3364 *
3365 * Note that although all messages to a spi_device are handled in
3366 * FIFO order, messages may go to different devices in other orders.
3367 * Some device might be higher priority, or have various "hard" access
3368 * time requirements, for example.
3369 *
3370 * On detection of any fault during the transfer, processing of
3371 * the entire message is aborted, and the device is deselected.
3372 * Until returning from the associated message completion callback,
3373 * no other spi_message queued to that device will be processed.
3374 * (This rule applies equally to all the synchronous transfer calls,
3375 * which are wrappers around this core asynchronous primitive.)
3376 *
3377 * Return: zero on success, else a negative error code.
3378 */
3379int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3380{
3381	struct spi_controller *ctlr = spi->controller;
3382	int ret;
3383	unsigned long flags;
3384
3385	ret = __spi_validate(spi, message);
3386	if (ret != 0)
3387		return ret;
3388
3389	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3390
3391	ret = __spi_async(spi, message);
3392
3393	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3394
3395	return ret;
3396
3397}
3398EXPORT_SYMBOL_GPL(spi_async_locked);
3399
 
3400/*-------------------------------------------------------------------------*/
3401
3402/* Utility methods for SPI protocol drivers, layered on
3403 * top of the core.  Some other utility methods are defined as
3404 * inline functions.
3405 */
3406
3407static void spi_complete(void *arg)
3408{
3409	complete(arg);
3410}
3411
3412static int __spi_sync(struct spi_device *spi, struct spi_message *message)
 
3413{
3414	DECLARE_COMPLETION_ONSTACK(done);
3415	int status;
3416	struct spi_controller *ctlr = spi->controller;
3417	unsigned long flags;
3418
3419	status = __spi_validate(spi, message);
3420	if (status != 0)
3421		return status;
3422
3423	message->complete = spi_complete;
3424	message->context = &done;
3425	message->spi = spi;
3426
3427	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3428	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3429
3430	/* If we're not using the legacy transfer method then we will
3431	 * try to transfer in the calling context so special case.
3432	 * This code would be less tricky if we could remove the
3433	 * support for driver implemented message queues.
3434	 */
3435	if (ctlr->transfer == spi_queued_transfer) {
3436		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3437
3438		trace_spi_message_submit(message);
 
3439
3440		status = __spi_queued_transfer(spi, message, false);
3441
3442		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3443	} else {
3444		status = spi_async_locked(spi, message);
3445	}
3446
3447	if (status == 0) {
3448		/* Push out the messages in the calling context if we
3449		 * can.
3450		 */
3451		if (ctlr->transfer == spi_queued_transfer) {
3452			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3453						       spi_sync_immediate);
3454			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3455						       spi_sync_immediate);
3456			__spi_pump_messages(ctlr, false);
3457		}
3458
3459		wait_for_completion(&done);
3460		status = message->status;
3461	}
3462	message->context = NULL;
3463	return status;
3464}
3465
3466/**
3467 * spi_sync - blocking/synchronous SPI data transfers
3468 * @spi: device with which data will be exchanged
3469 * @message: describes the data transfers
3470 * Context: can sleep
3471 *
3472 * This call may only be used from a context that may sleep.  The sleep
3473 * is non-interruptible, and has no timeout.  Low-overhead controller
3474 * drivers may DMA directly into and out of the message buffers.
3475 *
3476 * Note that the SPI device's chip select is active during the message,
3477 * and then is normally disabled between messages.  Drivers for some
3478 * frequently-used devices may want to minimize costs of selecting a chip,
3479 * by leaving it selected in anticipation that the next message will go
3480 * to the same chip.  (That may increase power usage.)
3481 *
3482 * Also, the caller is guaranteeing that the memory associated with the
3483 * message will not be freed before this call returns.
3484 *
3485 * Return: zero on success, else a negative error code.
3486 */
3487int spi_sync(struct spi_device *spi, struct spi_message *message)
3488{
3489	int ret;
3490
3491	mutex_lock(&spi->controller->bus_lock_mutex);
3492	ret = __spi_sync(spi, message);
3493	mutex_unlock(&spi->controller->bus_lock_mutex);
3494
3495	return ret;
3496}
3497EXPORT_SYMBOL_GPL(spi_sync);
3498
3499/**
3500 * spi_sync_locked - version of spi_sync with exclusive bus usage
3501 * @spi: device with which data will be exchanged
3502 * @message: describes the data transfers
3503 * Context: can sleep
3504 *
3505 * This call may only be used from a context that may sleep.  The sleep
3506 * is non-interruptible, and has no timeout.  Low-overhead controller
3507 * drivers may DMA directly into and out of the message buffers.
3508 *
3509 * This call should be used by drivers that require exclusive access to the
3510 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3511 * be released by a spi_bus_unlock call when the exclusive access is over.
3512 *
3513 * Return: zero on success, else a negative error code.
3514 */
3515int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3516{
3517	return __spi_sync(spi, message);
3518}
3519EXPORT_SYMBOL_GPL(spi_sync_locked);
3520
3521/**
3522 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3523 * @ctlr: SPI bus master that should be locked for exclusive bus access
3524 * Context: can sleep
3525 *
3526 * This call may only be used from a context that may sleep.  The sleep
3527 * is non-interruptible, and has no timeout.
3528 *
3529 * This call should be used by drivers that require exclusive access to the
3530 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3531 * exclusive access is over. Data transfer must be done by spi_sync_locked
3532 * and spi_async_locked calls when the SPI bus lock is held.
3533 *
3534 * Return: always zero.
3535 */
3536int spi_bus_lock(struct spi_controller *ctlr)
3537{
3538	unsigned long flags;
3539
3540	mutex_lock(&ctlr->bus_lock_mutex);
3541
3542	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3543	ctlr->bus_lock_flag = 1;
3544	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3545
3546	/* mutex remains locked until spi_bus_unlock is called */
3547
3548	return 0;
3549}
3550EXPORT_SYMBOL_GPL(spi_bus_lock);
3551
3552/**
3553 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3554 * @ctlr: SPI bus master that was locked for exclusive bus access
3555 * Context: can sleep
3556 *
3557 * This call may only be used from a context that may sleep.  The sleep
3558 * is non-interruptible, and has no timeout.
3559 *
3560 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3561 * call.
3562 *
3563 * Return: always zero.
3564 */
3565int spi_bus_unlock(struct spi_controller *ctlr)
3566{
3567	ctlr->bus_lock_flag = 0;
3568
3569	mutex_unlock(&ctlr->bus_lock_mutex);
3570
3571	return 0;
3572}
3573EXPORT_SYMBOL_GPL(spi_bus_unlock);
3574
3575/* portable code must never pass more than 32 bytes */
3576#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3577
3578static u8	*buf;
3579
3580/**
3581 * spi_write_then_read - SPI synchronous write followed by read
3582 * @spi: device with which data will be exchanged
3583 * @txbuf: data to be written (need not be dma-safe)
3584 * @n_tx: size of txbuf, in bytes
3585 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3586 * @n_rx: size of rxbuf, in bytes
3587 * Context: can sleep
3588 *
3589 * This performs a half duplex MicroWire style transaction with the
3590 * device, sending txbuf and then reading rxbuf.  The return value
3591 * is zero for success, else a negative errno status code.
3592 * This call may only be used from a context that may sleep.
3593 *
3594 * Parameters to this routine are always copied using a small buffer;
3595 * portable code should never use this for more than 32 bytes.
3596 * Performance-sensitive or bulk transfer code should instead use
3597 * spi_{async,sync}() calls with dma-safe buffers.
3598 *
3599 * Return: zero on success, else a negative error code.
3600 */
3601int spi_write_then_read(struct spi_device *spi,
3602		const void *txbuf, unsigned n_tx,
3603		void *rxbuf, unsigned n_rx)
3604{
3605	static DEFINE_MUTEX(lock);
3606
3607	int			status;
3608	struct spi_message	message;
3609	struct spi_transfer	x[2];
3610	u8			*local_buf;
3611
3612	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3613	 * copying here, (as a pure convenience thing), but we can
3614	 * keep heap costs out of the hot path unless someone else is
3615	 * using the pre-allocated buffer or the transfer is too large.
3616	 */
3617	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3618		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3619				    GFP_KERNEL | GFP_DMA);
3620		if (!local_buf)
3621			return -ENOMEM;
3622	} else {
3623		local_buf = buf;
3624	}
3625
3626	spi_message_init(&message);
3627	memset(x, 0, sizeof(x));
3628	if (n_tx) {
3629		x[0].len = n_tx;
3630		spi_message_add_tail(&x[0], &message);
3631	}
3632	if (n_rx) {
3633		x[1].len = n_rx;
3634		spi_message_add_tail(&x[1], &message);
3635	}
3636
 
 
 
 
 
 
 
 
3637	memcpy(local_buf, txbuf, n_tx);
3638	x[0].tx_buf = local_buf;
3639	x[1].rx_buf = local_buf + n_tx;
3640
3641	/* do the i/o */
3642	status = spi_sync(spi, &message);
3643	if (status == 0)
3644		memcpy(rxbuf, x[1].rx_buf, n_rx);
3645
3646	if (x[0].tx_buf == buf)
3647		mutex_unlock(&lock);
3648	else
3649		kfree(local_buf);
3650
3651	return status;
3652}
3653EXPORT_SYMBOL_GPL(spi_write_then_read);
3654
3655/*-------------------------------------------------------------------------*/
3656
3657#if IS_ENABLED(CONFIG_OF)
3658/* must call put_device() when done with returned spi_device device */
3659struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3660{
3661	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3662
3663	return dev ? to_spi_device(dev) : NULL;
3664}
3665EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3666#endif /* IS_ENABLED(CONFIG_OF) */
3667
3668#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3669/* the spi controllers are not using spi_bus, so we find it with another way */
3670static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3671{
3672	struct device *dev;
3673
3674	dev = class_find_device_by_of_node(&spi_master_class, node);
3675	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3676		dev = class_find_device_by_of_node(&spi_slave_class, node);
3677	if (!dev)
3678		return NULL;
3679
3680	/* reference got in class_find_device */
3681	return container_of(dev, struct spi_controller, dev);
3682}
3683
3684static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3685			 void *arg)
3686{
3687	struct of_reconfig_data *rd = arg;
3688	struct spi_controller *ctlr;
3689	struct spi_device *spi;
3690
3691	switch (of_reconfig_get_state_change(action, arg)) {
3692	case OF_RECONFIG_CHANGE_ADD:
3693		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3694		if (ctlr == NULL)
3695			return NOTIFY_OK;	/* not for us */
3696
3697		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3698			put_device(&ctlr->dev);
3699			return NOTIFY_OK;
3700		}
3701
3702		spi = of_register_spi_device(ctlr, rd->dn);
3703		put_device(&ctlr->dev);
3704
3705		if (IS_ERR(spi)) {
3706			pr_err("%s: failed to create for '%pOF'\n",
3707					__func__, rd->dn);
3708			of_node_clear_flag(rd->dn, OF_POPULATED);
3709			return notifier_from_errno(PTR_ERR(spi));
3710		}
3711		break;
3712
3713	case OF_RECONFIG_CHANGE_REMOVE:
3714		/* already depopulated? */
3715		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3716			return NOTIFY_OK;
3717
3718		/* find our device by node */
3719		spi = of_find_spi_device_by_node(rd->dn);
3720		if (spi == NULL)
3721			return NOTIFY_OK;	/* no? not meant for us */
3722
3723		/* unregister takes one ref away */
3724		spi_unregister_device(spi);
3725
3726		/* and put the reference of the find */
3727		put_device(&spi->dev);
3728		break;
3729	}
3730
3731	return NOTIFY_OK;
3732}
3733
3734static struct notifier_block spi_of_notifier = {
3735	.notifier_call = of_spi_notify,
3736};
3737#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3738extern struct notifier_block spi_of_notifier;
3739#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3740
3741#if IS_ENABLED(CONFIG_ACPI)
3742static int spi_acpi_controller_match(struct device *dev, const void *data)
3743{
3744	return ACPI_COMPANION(dev->parent) == data;
3745}
3746
3747static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3748{
3749	struct device *dev;
3750
3751	dev = class_find_device(&spi_master_class, NULL, adev,
3752				spi_acpi_controller_match);
3753	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3754		dev = class_find_device(&spi_slave_class, NULL, adev,
3755					spi_acpi_controller_match);
3756	if (!dev)
3757		return NULL;
3758
3759	return container_of(dev, struct spi_controller, dev);
3760}
3761
3762static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3763{
3764	struct device *dev;
3765
3766	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
3767	return dev ? to_spi_device(dev) : NULL;
3768}
3769
3770static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3771			   void *arg)
3772{
3773	struct acpi_device *adev = arg;
3774	struct spi_controller *ctlr;
3775	struct spi_device *spi;
3776
3777	switch (value) {
3778	case ACPI_RECONFIG_DEVICE_ADD:
3779		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3780		if (!ctlr)
3781			break;
3782
3783		acpi_register_spi_device(ctlr, adev);
3784		put_device(&ctlr->dev);
3785		break;
3786	case ACPI_RECONFIG_DEVICE_REMOVE:
3787		if (!acpi_device_enumerated(adev))
3788			break;
3789
3790		spi = acpi_spi_find_device_by_adev(adev);
3791		if (!spi)
3792			break;
3793
3794		spi_unregister_device(spi);
3795		put_device(&spi->dev);
3796		break;
3797	}
3798
3799	return NOTIFY_OK;
3800}
3801
3802static struct notifier_block spi_acpi_notifier = {
3803	.notifier_call = acpi_spi_notify,
3804};
3805#else
3806extern struct notifier_block spi_acpi_notifier;
3807#endif
3808
3809static int __init spi_init(void)
3810{
3811	int	status;
3812
3813	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3814	if (!buf) {
3815		status = -ENOMEM;
3816		goto err0;
3817	}
3818
3819	status = bus_register(&spi_bus_type);
3820	if (status < 0)
3821		goto err1;
3822
3823	status = class_register(&spi_master_class);
3824	if (status < 0)
3825		goto err2;
3826
3827	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3828		status = class_register(&spi_slave_class);
3829		if (status < 0)
3830			goto err3;
3831	}
3832
3833	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3834		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3835	if (IS_ENABLED(CONFIG_ACPI))
3836		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3837
3838	return 0;
3839
3840err3:
3841	class_unregister(&spi_master_class);
3842err2:
3843	bus_unregister(&spi_bus_type);
3844err1:
3845	kfree(buf);
3846	buf = NULL;
3847err0:
3848	return status;
3849}
3850
3851/* board_info is normally registered in arch_initcall(),
3852 * but even essential drivers wait till later
3853 *
3854 * REVISIT only boardinfo really needs static linking. the rest (device and
3855 * driver registration) _could_ be dynamically linked (modular) ... costs
3856 * include needing to have boardinfo data structures be much more public.
3857 */
3858postcore_initcall(spi_init);