Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
 
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/kernel.h>
 
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/cache.h>
  25#include <linux/mutex.h>
  26#include <linux/of_device.h>
 
  27#include <linux/slab.h>
  28#include <linux/mod_devicetable.h>
  29#include <linux/spi/spi.h>
  30#include <linux/of_spi.h>
  31#include <linux/pm_runtime.h>
 
 
 
 
  32
  33static void spidev_release(struct device *dev)
  34{
  35	struct spi_device	*spi = to_spi_device(dev);
  36
  37	/* spi masters may cleanup for released devices */
  38	if (spi->master->cleanup)
  39		spi->master->cleanup(spi);
  40
  41	spi_master_put(spi->master);
  42	kfree(spi);
  43}
  44
  45static ssize_t
  46modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  47{
  48	const struct spi_device	*spi = to_spi_device(dev);
  49
  50	return sprintf(buf, "%s\n", spi->modalias);
  51}
  52
  53static struct device_attribute spi_dev_attrs[] = {
  54	__ATTR_RO(modalias),
  55	__ATTR_NULL,
  56};
  57
  58/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  59 * and the sysfs version makes coldplug work too.
  60 */
  61
  62static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  63						const struct spi_device *sdev)
  64{
  65	while (id->name[0]) {
  66		if (!strcmp(sdev->modalias, id->name))
  67			return id;
  68		id++;
  69	}
  70	return NULL;
  71}
  72
  73const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  74{
  75	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  76
  77	return spi_match_id(sdrv->id_table, sdev);
  78}
  79EXPORT_SYMBOL_GPL(spi_get_device_id);
  80
  81static int spi_match_device(struct device *dev, struct device_driver *drv)
  82{
  83	const struct spi_device	*spi = to_spi_device(dev);
  84	const struct spi_driver	*sdrv = to_spi_driver(drv);
  85
  86	/* Attempt an OF style match */
  87	if (of_driver_match_device(dev, drv))
  88		return 1;
  89
  90	if (sdrv->id_table)
  91		return !!spi_match_id(sdrv->id_table, spi);
  92
  93	return strcmp(spi->modalias, drv->name) == 0;
  94}
  95
  96static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  97{
  98	const struct spi_device		*spi = to_spi_device(dev);
  99
 100	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 101	return 0;
 102}
 103
 104#ifdef CONFIG_PM_SLEEP
 105static int spi_legacy_suspend(struct device *dev, pm_message_t message)
 106{
 107	int			value = 0;
 108	struct spi_driver	*drv = to_spi_driver(dev->driver);
 109
 110	/* suspend will stop irqs and dma; no more i/o */
 111	if (drv) {
 112		if (drv->suspend)
 113			value = drv->suspend(to_spi_device(dev), message);
 114		else
 115			dev_dbg(dev, "... can't suspend\n");
 116	}
 117	return value;
 118}
 119
 120static int spi_legacy_resume(struct device *dev)
 121{
 122	int			value = 0;
 123	struct spi_driver	*drv = to_spi_driver(dev->driver);
 124
 125	/* resume may restart the i/o queue */
 126	if (drv) {
 127		if (drv->resume)
 128			value = drv->resume(to_spi_device(dev));
 129		else
 130			dev_dbg(dev, "... can't resume\n");
 131	}
 132	return value;
 133}
 134
 135static int spi_pm_suspend(struct device *dev)
 136{
 137	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 138
 139	if (pm)
 140		return pm_generic_suspend(dev);
 141	else
 142		return spi_legacy_suspend(dev, PMSG_SUSPEND);
 143}
 144
 145static int spi_pm_resume(struct device *dev)
 146{
 147	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 148
 149	if (pm)
 150		return pm_generic_resume(dev);
 151	else
 152		return spi_legacy_resume(dev);
 153}
 154
 155static int spi_pm_freeze(struct device *dev)
 156{
 157	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 158
 159	if (pm)
 160		return pm_generic_freeze(dev);
 161	else
 162		return spi_legacy_suspend(dev, PMSG_FREEZE);
 163}
 164
 165static int spi_pm_thaw(struct device *dev)
 166{
 167	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 168
 169	if (pm)
 170		return pm_generic_thaw(dev);
 171	else
 172		return spi_legacy_resume(dev);
 173}
 174
 175static int spi_pm_poweroff(struct device *dev)
 176{
 177	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 178
 179	if (pm)
 180		return pm_generic_poweroff(dev);
 181	else
 182		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
 183}
 184
 185static int spi_pm_restore(struct device *dev)
 186{
 187	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 188
 189	if (pm)
 190		return pm_generic_restore(dev);
 191	else
 192		return spi_legacy_resume(dev);
 193}
 194#else
 195#define spi_pm_suspend	NULL
 196#define spi_pm_resume	NULL
 197#define spi_pm_freeze	NULL
 198#define spi_pm_thaw	NULL
 199#define spi_pm_poweroff	NULL
 200#define spi_pm_restore	NULL
 201#endif
 202
 203static const struct dev_pm_ops spi_pm = {
 204	.suspend = spi_pm_suspend,
 205	.resume = spi_pm_resume,
 206	.freeze = spi_pm_freeze,
 207	.thaw = spi_pm_thaw,
 208	.poweroff = spi_pm_poweroff,
 209	.restore = spi_pm_restore,
 210	SET_RUNTIME_PM_OPS(
 211		pm_generic_runtime_suspend,
 212		pm_generic_runtime_resume,
 213		pm_generic_runtime_idle
 214	)
 215};
 216
 217struct bus_type spi_bus_type = {
 218	.name		= "spi",
 219	.dev_attrs	= spi_dev_attrs,
 220	.match		= spi_match_device,
 221	.uevent		= spi_uevent,
 222	.pm		= &spi_pm,
 223};
 224EXPORT_SYMBOL_GPL(spi_bus_type);
 225
 226
 227static int spi_drv_probe(struct device *dev)
 228{
 229	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 230
 231	return sdrv->probe(to_spi_device(dev));
 232}
 233
 234static int spi_drv_remove(struct device *dev)
 235{
 236	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 237
 238	return sdrv->remove(to_spi_device(dev));
 239}
 240
 241static void spi_drv_shutdown(struct device *dev)
 242{
 243	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 244
 245	sdrv->shutdown(to_spi_device(dev));
 246}
 247
 248/**
 249 * spi_register_driver - register a SPI driver
 250 * @sdrv: the driver to register
 251 * Context: can sleep
 252 */
 253int spi_register_driver(struct spi_driver *sdrv)
 254{
 255	sdrv->driver.bus = &spi_bus_type;
 256	if (sdrv->probe)
 257		sdrv->driver.probe = spi_drv_probe;
 258	if (sdrv->remove)
 259		sdrv->driver.remove = spi_drv_remove;
 260	if (sdrv->shutdown)
 261		sdrv->driver.shutdown = spi_drv_shutdown;
 262	return driver_register(&sdrv->driver);
 263}
 264EXPORT_SYMBOL_GPL(spi_register_driver);
 265
 266/*-------------------------------------------------------------------------*/
 267
 268/* SPI devices should normally not be created by SPI device drivers; that
 269 * would make them board-specific.  Similarly with SPI master drivers.
 270 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 271 * with other readonly (flashable) information about mainboard devices.
 272 */
 273
 274struct boardinfo {
 275	struct list_head	list;
 276	struct spi_board_info	board_info;
 277};
 278
 279static LIST_HEAD(board_list);
 280static LIST_HEAD(spi_master_list);
 281
 282/*
 283 * Used to protect add/del opertion for board_info list and
 284 * spi_master list, and their matching process
 285 */
 286static DEFINE_MUTEX(board_lock);
 287
 288/**
 289 * spi_alloc_device - Allocate a new SPI device
 290 * @master: Controller to which device is connected
 291 * Context: can sleep
 292 *
 293 * Allows a driver to allocate and initialize a spi_device without
 294 * registering it immediately.  This allows a driver to directly
 295 * fill the spi_device with device parameters before calling
 296 * spi_add_device() on it.
 297 *
 298 * Caller is responsible to call spi_add_device() on the returned
 299 * spi_device structure to add it to the SPI master.  If the caller
 300 * needs to discard the spi_device without adding it, then it should
 301 * call spi_dev_put() on it.
 302 *
 303 * Returns a pointer to the new device, or NULL.
 304 */
 305struct spi_device *spi_alloc_device(struct spi_master *master)
 306{
 307	struct spi_device	*spi;
 308	struct device		*dev = master->dev.parent;
 309
 310	if (!spi_master_get(master))
 311		return NULL;
 312
 313	spi = kzalloc(sizeof *spi, GFP_KERNEL);
 314	if (!spi) {
 315		dev_err(dev, "cannot alloc spi_device\n");
 316		spi_master_put(master);
 317		return NULL;
 318	}
 319
 320	spi->master = master;
 321	spi->dev.parent = dev;
 322	spi->dev.bus = &spi_bus_type;
 323	spi->dev.release = spidev_release;
 324	device_initialize(&spi->dev);
 325	return spi;
 326}
 327EXPORT_SYMBOL_GPL(spi_alloc_device);
 328
 329/**
 330 * spi_add_device - Add spi_device allocated with spi_alloc_device
 331 * @spi: spi_device to register
 332 *
 333 * Companion function to spi_alloc_device.  Devices allocated with
 334 * spi_alloc_device can be added onto the spi bus with this function.
 335 *
 336 * Returns 0 on success; negative errno on failure
 337 */
 338int spi_add_device(struct spi_device *spi)
 339{
 340	static DEFINE_MUTEX(spi_add_lock);
 341	struct device *dev = spi->master->dev.parent;
 342	struct device *d;
 343	int status;
 344
 345	/* Chipselects are numbered 0..max; validate. */
 346	if (spi->chip_select >= spi->master->num_chipselect) {
 347		dev_err(dev, "cs%d >= max %d\n",
 348			spi->chip_select,
 349			spi->master->num_chipselect);
 350		return -EINVAL;
 351	}
 352
 353	/* Set the bus ID string */
 354	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 355			spi->chip_select);
 356
 357
 358	/* We need to make sure there's no other device with this
 359	 * chipselect **BEFORE** we call setup(), else we'll trash
 360	 * its configuration.  Lock against concurrent add() calls.
 361	 */
 362	mutex_lock(&spi_add_lock);
 363
 364	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
 365	if (d != NULL) {
 366		dev_err(dev, "chipselect %d already in use\n",
 367				spi->chip_select);
 368		put_device(d);
 369		status = -EBUSY;
 370		goto done;
 371	}
 372
 373	/* Drivers may modify this initial i/o setup, but will
 374	 * normally rely on the device being setup.  Devices
 375	 * using SPI_CS_HIGH can't coexist well otherwise...
 376	 */
 377	status = spi_setup(spi);
 378	if (status < 0) {
 379		dev_err(dev, "can't setup %s, status %d\n",
 380				dev_name(&spi->dev), status);
 381		goto done;
 382	}
 383
 384	/* Device may be bound to an active driver when this returns */
 385	status = device_add(&spi->dev);
 386	if (status < 0)
 387		dev_err(dev, "can't add %s, status %d\n",
 388				dev_name(&spi->dev), status);
 389	else
 390		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 391
 392done:
 393	mutex_unlock(&spi_add_lock);
 394	return status;
 395}
 396EXPORT_SYMBOL_GPL(spi_add_device);
 397
 398/**
 399 * spi_new_device - instantiate one new SPI device
 400 * @master: Controller to which device is connected
 401 * @chip: Describes the SPI device
 402 * Context: can sleep
 403 *
 404 * On typical mainboards, this is purely internal; and it's not needed
 405 * after board init creates the hard-wired devices.  Some development
 406 * platforms may not be able to use spi_register_board_info though, and
 407 * this is exported so that for example a USB or parport based adapter
 408 * driver could add devices (which it would learn about out-of-band).
 409 *
 410 * Returns the new device, or NULL.
 411 */
 412struct spi_device *spi_new_device(struct spi_master *master,
 413				  struct spi_board_info *chip)
 414{
 415	struct spi_device	*proxy;
 416	int			status;
 417
 418	/* NOTE:  caller did any chip->bus_num checks necessary.
 419	 *
 420	 * Also, unless we change the return value convention to use
 421	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 422	 * suggests syslogged diagnostics are best here (ugh).
 423	 */
 424
 425	proxy = spi_alloc_device(master);
 426	if (!proxy)
 427		return NULL;
 428
 429	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 430
 431	proxy->chip_select = chip->chip_select;
 432	proxy->max_speed_hz = chip->max_speed_hz;
 433	proxy->mode = chip->mode;
 434	proxy->irq = chip->irq;
 435	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 436	proxy->dev.platform_data = (void *) chip->platform_data;
 437	proxy->controller_data = chip->controller_data;
 438	proxy->controller_state = NULL;
 439
 440	status = spi_add_device(proxy);
 441	if (status < 0) {
 442		spi_dev_put(proxy);
 443		return NULL;
 444	}
 445
 446	return proxy;
 447}
 448EXPORT_SYMBOL_GPL(spi_new_device);
 449
 450static void spi_match_master_to_boardinfo(struct spi_master *master,
 451				struct spi_board_info *bi)
 452{
 453	struct spi_device *dev;
 454
 455	if (master->bus_num != bi->bus_num)
 456		return;
 457
 458	dev = spi_new_device(master, bi);
 459	if (!dev)
 460		dev_err(master->dev.parent, "can't create new device for %s\n",
 461			bi->modalias);
 462}
 463
 464/**
 465 * spi_register_board_info - register SPI devices for a given board
 466 * @info: array of chip descriptors
 467 * @n: how many descriptors are provided
 468 * Context: can sleep
 469 *
 470 * Board-specific early init code calls this (probably during arch_initcall)
 471 * with segments of the SPI device table.  Any device nodes are created later,
 472 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 473 * this table of devices forever, so that reloading a controller driver will
 474 * not make Linux forget about these hard-wired devices.
 475 *
 476 * Other code can also call this, e.g. a particular add-on board might provide
 477 * SPI devices through its expansion connector, so code initializing that board
 478 * would naturally declare its SPI devices.
 479 *
 480 * The board info passed can safely be __initdata ... but be careful of
 481 * any embedded pointers (platform_data, etc), they're copied as-is.
 482 */
 483int __init
 484spi_register_board_info(struct spi_board_info const *info, unsigned n)
 485{
 486	struct boardinfo *bi;
 487	int i;
 488
 489	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 490	if (!bi)
 491		return -ENOMEM;
 492
 493	for (i = 0; i < n; i++, bi++, info++) {
 494		struct spi_master *master;
 495
 496		memcpy(&bi->board_info, info, sizeof(*info));
 497		mutex_lock(&board_lock);
 498		list_add_tail(&bi->list, &board_list);
 499		list_for_each_entry(master, &spi_master_list, list)
 500			spi_match_master_to_boardinfo(master, &bi->board_info);
 501		mutex_unlock(&board_lock);
 502	}
 503
 504	return 0;
 505}
 506
 507/*-------------------------------------------------------------------------*/
 508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509static void spi_master_release(struct device *dev)
 510{
 511	struct spi_master *master;
 512
 513	master = container_of(dev, struct spi_master, dev);
 514	kfree(master);
 515}
 516
 517static struct class spi_master_class = {
 518	.name		= "spi_master",
 519	.owner		= THIS_MODULE,
 520	.dev_release	= spi_master_release,
 521};
 522
 523
 
 524/**
 525 * spi_alloc_master - allocate SPI master controller
 526 * @dev: the controller, possibly using the platform_bus
 527 * @size: how much zeroed driver-private data to allocate; the pointer to this
 528 *	memory is in the driver_data field of the returned device,
 529 *	accessible with spi_master_get_devdata().
 530 * Context: can sleep
 531 *
 532 * This call is used only by SPI master controller drivers, which are the
 533 * only ones directly touching chip registers.  It's how they allocate
 534 * an spi_master structure, prior to calling spi_register_master().
 535 *
 536 * This must be called from context that can sleep.  It returns the SPI
 537 * master structure on success, else NULL.
 538 *
 539 * The caller is responsible for assigning the bus number and initializing
 540 * the master's methods before calling spi_register_master(); and (after errors
 541 * adding the device) calling spi_master_put() to prevent a memory leak.
 
 542 */
 543struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 544{
 545	struct spi_master	*master;
 546
 547	if (!dev)
 548		return NULL;
 549
 550	master = kzalloc(size + sizeof *master, GFP_KERNEL);
 551	if (!master)
 552		return NULL;
 553
 554	device_initialize(&master->dev);
 
 
 555	master->dev.class = &spi_master_class;
 556	master->dev.parent = get_device(dev);
 557	spi_master_set_devdata(master, &master[1]);
 558
 559	return master;
 560}
 561EXPORT_SYMBOL_GPL(spi_alloc_master);
 562
 563/**
 564 * spi_register_master - register SPI master controller
 565 * @master: initialized master, originally from spi_alloc_master()
 566 * Context: can sleep
 567 *
 568 * SPI master controllers connect to their drivers using some non-SPI bus,
 569 * such as the platform bus.  The final stage of probe() in that code
 570 * includes calling spi_register_master() to hook up to this SPI bus glue.
 571 *
 572 * SPI controllers use board specific (often SOC specific) bus numbers,
 573 * and board-specific addressing for SPI devices combines those numbers
 574 * with chip select numbers.  Since SPI does not directly support dynamic
 575 * device identification, boards need configuration tables telling which
 576 * chip is at which address.
 577 *
 578 * This must be called from context that can sleep.  It returns zero on
 579 * success, else a negative error code (dropping the master's refcount).
 580 * After a successful return, the caller is responsible for calling
 581 * spi_unregister_master().
 582 */
 583int spi_register_master(struct spi_master *master)
 584{
 585	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
 586	struct device		*dev = master->dev.parent;
 587	struct boardinfo	*bi;
 588	int			status = -ENODEV;
 589	int			dynamic = 0;
 590
 591	if (!dev)
 592		return -ENODEV;
 593
 594	/* even if it's just one always-selected device, there must
 595	 * be at least one chipselect
 596	 */
 597	if (master->num_chipselect == 0)
 598		return -EINVAL;
 599
 600	/* convention:  dynamically assigned bus IDs count down from the max */
 601	if (master->bus_num < 0) {
 602		/* FIXME switch to an IDR based scheme, something like
 603		 * I2C now uses, so we can't run out of "dynamic" IDs
 604		 */
 605		master->bus_num = atomic_dec_return(&dyn_bus_id);
 606		dynamic = 1;
 607	}
 608
 609	spin_lock_init(&master->bus_lock_spinlock);
 610	mutex_init(&master->bus_lock_mutex);
 611	master->bus_lock_flag = 0;
 612
 613	/* register the device, then userspace will see it.
 614	 * registration fails if the bus ID is in use.
 615	 */
 616	dev_set_name(&master->dev, "spi%u", master->bus_num);
 617	status = device_add(&master->dev);
 618	if (status < 0)
 619		goto done;
 620	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
 621			dynamic ? " (dynamic)" : "");
 622
 
 
 
 
 
 
 
 
 
 
 
 623	mutex_lock(&board_lock);
 624	list_add_tail(&master->list, &spi_master_list);
 625	list_for_each_entry(bi, &board_list, list)
 626		spi_match_master_to_boardinfo(master, &bi->board_info);
 627	mutex_unlock(&board_lock);
 628
 629	status = 0;
 630
 631	/* Register devices from the device tree */
 632	of_register_spi_devices(master);
 633done:
 634	return status;
 635}
 636EXPORT_SYMBOL_GPL(spi_register_master);
 637
 638
 639static int __unregister(struct device *dev, void *null)
 640{
 641	spi_unregister_device(to_spi_device(dev));
 642	return 0;
 643}
 644
 645/**
 646 * spi_unregister_master - unregister SPI master controller
 647 * @master: the master being unregistered
 648 * Context: can sleep
 649 *
 650 * This call is used only by SPI master controller drivers, which are the
 651 * only ones directly touching chip registers.
 652 *
 653 * This must be called from context that can sleep.
 654 */
 655void spi_unregister_master(struct spi_master *master)
 656{
 657	int dummy;
 658
 
 
 
 
 
 659	mutex_lock(&board_lock);
 660	list_del(&master->list);
 661	mutex_unlock(&board_lock);
 662
 663	dummy = device_for_each_child(&master->dev, NULL, __unregister);
 664	device_unregister(&master->dev);
 665}
 666EXPORT_SYMBOL_GPL(spi_unregister_master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667
 668static int __spi_master_match(struct device *dev, void *data)
 669{
 670	struct spi_master *m;
 671	u16 *bus_num = data;
 672
 673	m = container_of(dev, struct spi_master, dev);
 674	return m->bus_num == *bus_num;
 675}
 676
 677/**
 678 * spi_busnum_to_master - look up master associated with bus_num
 679 * @bus_num: the master's bus number
 680 * Context: can sleep
 681 *
 682 * This call may be used with devices that are registered after
 683 * arch init time.  It returns a refcounted pointer to the relevant
 684 * spi_master (which the caller must release), or NULL if there is
 685 * no such master registered.
 686 */
 687struct spi_master *spi_busnum_to_master(u16 bus_num)
 688{
 689	struct device		*dev;
 690	struct spi_master	*master = NULL;
 691
 692	dev = class_find_device(&spi_master_class, NULL, &bus_num,
 693				__spi_master_match);
 694	if (dev)
 695		master = container_of(dev, struct spi_master, dev);
 696	/* reference got in class_find_device */
 697	return master;
 698}
 699EXPORT_SYMBOL_GPL(spi_busnum_to_master);
 700
 701
 702/*-------------------------------------------------------------------------*/
 703
 704/* Core methods for SPI master protocol drivers.  Some of the
 705 * other core methods are currently defined as inline functions.
 706 */
 707
 708/**
 709 * spi_setup - setup SPI mode and clock rate
 710 * @spi: the device whose settings are being modified
 711 * Context: can sleep, and no requests are queued to the device
 712 *
 713 * SPI protocol drivers may need to update the transfer mode if the
 714 * device doesn't work with its default.  They may likewise need
 715 * to update clock rates or word sizes from initial values.  This function
 716 * changes those settings, and must be called from a context that can sleep.
 717 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 718 * effect the next time the device is selected and data is transferred to
 719 * or from it.  When this function returns, the spi device is deselected.
 720 *
 721 * Note that this call will fail if the protocol driver specifies an option
 722 * that the underlying controller or its driver does not support.  For
 723 * example, not all hardware supports wire transfers using nine bit words,
 724 * LSB-first wire encoding, or active-high chipselects.
 725 */
 726int spi_setup(struct spi_device *spi)
 727{
 728	unsigned	bad_bits;
 729	int		status;
 730
 731	/* help drivers fail *cleanly* when they need options
 732	 * that aren't supported with their current master
 733	 */
 734	bad_bits = spi->mode & ~spi->master->mode_bits;
 735	if (bad_bits) {
 736		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
 737			bad_bits);
 738		return -EINVAL;
 739	}
 740
 741	if (!spi->bits_per_word)
 742		spi->bits_per_word = 8;
 743
 744	status = spi->master->setup(spi);
 745
 746	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
 747				"%u bits/w, %u Hz max --> %d\n",
 748			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 749			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
 750			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
 751			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
 752			(spi->mode & SPI_LOOP) ? "loopback, " : "",
 753			spi->bits_per_word, spi->max_speed_hz,
 754			status);
 755
 756	return status;
 757}
 758EXPORT_SYMBOL_GPL(spi_setup);
 759
 760static int __spi_async(struct spi_device *spi, struct spi_message *message)
 761{
 762	struct spi_master *master = spi->master;
 763
 764	/* Half-duplex links include original MicroWire, and ones with
 765	 * only one data pin like SPI_3WIRE (switches direction) or where
 766	 * either MOSI or MISO is missing.  They can also be caused by
 767	 * software limitations.
 768	 */
 769	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
 770			|| (spi->mode & SPI_3WIRE)) {
 771		struct spi_transfer *xfer;
 772		unsigned flags = master->flags;
 773
 774		list_for_each_entry(xfer, &message->transfers, transfer_list) {
 775			if (xfer->rx_buf && xfer->tx_buf)
 776				return -EINVAL;
 777			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
 778				return -EINVAL;
 779			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
 780				return -EINVAL;
 781		}
 782	}
 783
 784	message->spi = spi;
 785	message->status = -EINPROGRESS;
 786	return master->transfer(spi, message);
 787}
 788
 789/**
 790 * spi_async - asynchronous SPI transfer
 791 * @spi: device with which data will be exchanged
 792 * @message: describes the data transfers, including completion callback
 793 * Context: any (irqs may be blocked, etc)
 794 *
 795 * This call may be used in_irq and other contexts which can't sleep,
 796 * as well as from task contexts which can sleep.
 797 *
 798 * The completion callback is invoked in a context which can't sleep.
 799 * Before that invocation, the value of message->status is undefined.
 800 * When the callback is issued, message->status holds either zero (to
 801 * indicate complete success) or a negative error code.  After that
 802 * callback returns, the driver which issued the transfer request may
 803 * deallocate the associated memory; it's no longer in use by any SPI
 804 * core or controller driver code.
 805 *
 806 * Note that although all messages to a spi_device are handled in
 807 * FIFO order, messages may go to different devices in other orders.
 808 * Some device might be higher priority, or have various "hard" access
 809 * time requirements, for example.
 810 *
 811 * On detection of any fault during the transfer, processing of
 812 * the entire message is aborted, and the device is deselected.
 813 * Until returning from the associated message completion callback,
 814 * no other spi_message queued to that device will be processed.
 815 * (This rule applies equally to all the synchronous transfer calls,
 816 * which are wrappers around this core asynchronous primitive.)
 817 */
 818int spi_async(struct spi_device *spi, struct spi_message *message)
 819{
 820	struct spi_master *master = spi->master;
 821	int ret;
 822	unsigned long flags;
 823
 824	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 825
 826	if (master->bus_lock_flag)
 827		ret = -EBUSY;
 828	else
 829		ret = __spi_async(spi, message);
 830
 831	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 832
 833	return ret;
 834}
 835EXPORT_SYMBOL_GPL(spi_async);
 836
 837/**
 838 * spi_async_locked - version of spi_async with exclusive bus usage
 839 * @spi: device with which data will be exchanged
 840 * @message: describes the data transfers, including completion callback
 841 * Context: any (irqs may be blocked, etc)
 842 *
 843 * This call may be used in_irq and other contexts which can't sleep,
 844 * as well as from task contexts which can sleep.
 845 *
 846 * The completion callback is invoked in a context which can't sleep.
 847 * Before that invocation, the value of message->status is undefined.
 848 * When the callback is issued, message->status holds either zero (to
 849 * indicate complete success) or a negative error code.  After that
 850 * callback returns, the driver which issued the transfer request may
 851 * deallocate the associated memory; it's no longer in use by any SPI
 852 * core or controller driver code.
 853 *
 854 * Note that although all messages to a spi_device are handled in
 855 * FIFO order, messages may go to different devices in other orders.
 856 * Some device might be higher priority, or have various "hard" access
 857 * time requirements, for example.
 858 *
 859 * On detection of any fault during the transfer, processing of
 860 * the entire message is aborted, and the device is deselected.
 861 * Until returning from the associated message completion callback,
 862 * no other spi_message queued to that device will be processed.
 863 * (This rule applies equally to all the synchronous transfer calls,
 864 * which are wrappers around this core asynchronous primitive.)
 865 */
 866int spi_async_locked(struct spi_device *spi, struct spi_message *message)
 867{
 868	struct spi_master *master = spi->master;
 869	int ret;
 870	unsigned long flags;
 871
 872	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 873
 874	ret = __spi_async(spi, message);
 875
 876	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 877
 878	return ret;
 879
 880}
 881EXPORT_SYMBOL_GPL(spi_async_locked);
 882
 883
 884/*-------------------------------------------------------------------------*/
 885
 886/* Utility methods for SPI master protocol drivers, layered on
 887 * top of the core.  Some other utility methods are defined as
 888 * inline functions.
 889 */
 890
 891static void spi_complete(void *arg)
 892{
 893	complete(arg);
 894}
 895
 896static int __spi_sync(struct spi_device *spi, struct spi_message *message,
 897		      int bus_locked)
 898{
 899	DECLARE_COMPLETION_ONSTACK(done);
 900	int status;
 901	struct spi_master *master = spi->master;
 902
 903	message->complete = spi_complete;
 904	message->context = &done;
 905
 906	if (!bus_locked)
 907		mutex_lock(&master->bus_lock_mutex);
 908
 909	status = spi_async_locked(spi, message);
 910
 911	if (!bus_locked)
 912		mutex_unlock(&master->bus_lock_mutex);
 913
 914	if (status == 0) {
 915		wait_for_completion(&done);
 916		status = message->status;
 917	}
 918	message->context = NULL;
 919	return status;
 920}
 921
 922/**
 923 * spi_sync - blocking/synchronous SPI data transfers
 924 * @spi: device with which data will be exchanged
 925 * @message: describes the data transfers
 926 * Context: can sleep
 927 *
 928 * This call may only be used from a context that may sleep.  The sleep
 929 * is non-interruptible, and has no timeout.  Low-overhead controller
 930 * drivers may DMA directly into and out of the message buffers.
 931 *
 932 * Note that the SPI device's chip select is active during the message,
 933 * and then is normally disabled between messages.  Drivers for some
 934 * frequently-used devices may want to minimize costs of selecting a chip,
 935 * by leaving it selected in anticipation that the next message will go
 936 * to the same chip.  (That may increase power usage.)
 937 *
 938 * Also, the caller is guaranteeing that the memory associated with the
 939 * message will not be freed before this call returns.
 940 *
 941 * It returns zero on success, else a negative error code.
 942 */
 943int spi_sync(struct spi_device *spi, struct spi_message *message)
 944{
 945	return __spi_sync(spi, message, 0);
 946}
 947EXPORT_SYMBOL_GPL(spi_sync);
 948
 949/**
 950 * spi_sync_locked - version of spi_sync with exclusive bus usage
 951 * @spi: device with which data will be exchanged
 952 * @message: describes the data transfers
 953 * Context: can sleep
 954 *
 955 * This call may only be used from a context that may sleep.  The sleep
 956 * is non-interruptible, and has no timeout.  Low-overhead controller
 957 * drivers may DMA directly into and out of the message buffers.
 958 *
 959 * This call should be used by drivers that require exclusive access to the
 960 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
 961 * be released by a spi_bus_unlock call when the exclusive access is over.
 962 *
 963 * It returns zero on success, else a negative error code.
 964 */
 965int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
 966{
 967	return __spi_sync(spi, message, 1);
 968}
 969EXPORT_SYMBOL_GPL(spi_sync_locked);
 970
 971/**
 972 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 973 * @master: SPI bus master that should be locked for exclusive bus access
 974 * Context: can sleep
 975 *
 976 * This call may only be used from a context that may sleep.  The sleep
 977 * is non-interruptible, and has no timeout.
 978 *
 979 * This call should be used by drivers that require exclusive access to the
 980 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 981 * exclusive access is over. Data transfer must be done by spi_sync_locked
 982 * and spi_async_locked calls when the SPI bus lock is held.
 983 *
 984 * It returns zero on success, else a negative error code.
 985 */
 986int spi_bus_lock(struct spi_master *master)
 987{
 988	unsigned long flags;
 989
 990	mutex_lock(&master->bus_lock_mutex);
 991
 992	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 993	master->bus_lock_flag = 1;
 994	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 995
 996	/* mutex remains locked until spi_bus_unlock is called */
 997
 998	return 0;
 999}
1000EXPORT_SYMBOL_GPL(spi_bus_lock);
1001
1002/**
1003 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1004 * @master: SPI bus master that was locked for exclusive bus access
1005 * Context: can sleep
1006 *
1007 * This call may only be used from a context that may sleep.  The sleep
1008 * is non-interruptible, and has no timeout.
1009 *
1010 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1011 * call.
1012 *
1013 * It returns zero on success, else a negative error code.
1014 */
1015int spi_bus_unlock(struct spi_master *master)
1016{
1017	master->bus_lock_flag = 0;
1018
1019	mutex_unlock(&master->bus_lock_mutex);
1020
1021	return 0;
1022}
1023EXPORT_SYMBOL_GPL(spi_bus_unlock);
1024
1025/* portable code must never pass more than 32 bytes */
1026#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1027
1028static u8	*buf;
1029
1030/**
1031 * spi_write_then_read - SPI synchronous write followed by read
1032 * @spi: device with which data will be exchanged
1033 * @txbuf: data to be written (need not be dma-safe)
1034 * @n_tx: size of txbuf, in bytes
1035 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1036 * @n_rx: size of rxbuf, in bytes
1037 * Context: can sleep
1038 *
1039 * This performs a half duplex MicroWire style transaction with the
1040 * device, sending txbuf and then reading rxbuf.  The return value
1041 * is zero for success, else a negative errno status code.
1042 * This call may only be used from a context that may sleep.
1043 *
1044 * Parameters to this routine are always copied using a small buffer;
1045 * portable code should never use this for more than 32 bytes.
1046 * Performance-sensitive or bulk transfer code should instead use
1047 * spi_{async,sync}() calls with dma-safe buffers.
1048 */
1049int spi_write_then_read(struct spi_device *spi,
1050		const void *txbuf, unsigned n_tx,
1051		void *rxbuf, unsigned n_rx)
1052{
1053	static DEFINE_MUTEX(lock);
1054
1055	int			status;
1056	struct spi_message	message;
1057	struct spi_transfer	x[2];
1058	u8			*local_buf;
1059
1060	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
1061	 * (as a pure convenience thing), but we can keep heap costs
1062	 * out of the hot path ...
1063	 */
1064	if ((n_tx + n_rx) > SPI_BUFSIZ)
1065		return -EINVAL;
1066
1067	spi_message_init(&message);
1068	memset(x, 0, sizeof x);
1069	if (n_tx) {
1070		x[0].len = n_tx;
1071		spi_message_add_tail(&x[0], &message);
1072	}
1073	if (n_rx) {
1074		x[1].len = n_rx;
1075		spi_message_add_tail(&x[1], &message);
1076	}
1077
1078	/* ... unless someone else is using the pre-allocated buffer */
1079	if (!mutex_trylock(&lock)) {
1080		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1081		if (!local_buf)
1082			return -ENOMEM;
1083	} else
1084		local_buf = buf;
1085
1086	memcpy(local_buf, txbuf, n_tx);
1087	x[0].tx_buf = local_buf;
1088	x[1].rx_buf = local_buf + n_tx;
1089
1090	/* do the i/o */
1091	status = spi_sync(spi, &message);
1092	if (status == 0)
1093		memcpy(rxbuf, x[1].rx_buf, n_rx);
1094
1095	if (x[0].tx_buf == buf)
1096		mutex_unlock(&lock);
1097	else
1098		kfree(local_buf);
1099
1100	return status;
1101}
1102EXPORT_SYMBOL_GPL(spi_write_then_read);
1103
1104/*-------------------------------------------------------------------------*/
1105
1106static int __init spi_init(void)
1107{
1108	int	status;
1109
1110	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1111	if (!buf) {
1112		status = -ENOMEM;
1113		goto err0;
1114	}
1115
1116	status = bus_register(&spi_bus_type);
1117	if (status < 0)
1118		goto err1;
1119
1120	status = class_register(&spi_master_class);
1121	if (status < 0)
1122		goto err2;
1123	return 0;
1124
1125err2:
1126	bus_unregister(&spi_bus_type);
1127err1:
1128	kfree(buf);
1129	buf = NULL;
1130err0:
1131	return status;
1132}
1133
1134/* board_info is normally registered in arch_initcall(),
1135 * but even essential drivers wait till later
1136 *
1137 * REVISIT only boardinfo really needs static linking. the rest (device and
1138 * driver registration) _could_ be dynamically linked (modular) ... costs
1139 * include needing to have boardinfo data structures be much more public.
1140 */
1141postcore_initcall(spi_init);
1142
v3.5.6
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/kmod.h>
  24#include <linux/device.h>
  25#include <linux/init.h>
  26#include <linux/cache.h>
  27#include <linux/mutex.h>
  28#include <linux/of_device.h>
  29#include <linux/of_irq.h>
  30#include <linux/slab.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/spi/spi.h>
 
  33#include <linux/pm_runtime.h>
  34#include <linux/export.h>
  35#include <linux/sched.h>
  36#include <linux/delay.h>
  37#include <linux/kthread.h>
  38
  39static void spidev_release(struct device *dev)
  40{
  41	struct spi_device	*spi = to_spi_device(dev);
  42
  43	/* spi masters may cleanup for released devices */
  44	if (spi->master->cleanup)
  45		spi->master->cleanup(spi);
  46
  47	spi_master_put(spi->master);
  48	kfree(spi);
  49}
  50
  51static ssize_t
  52modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  53{
  54	const struct spi_device	*spi = to_spi_device(dev);
  55
  56	return sprintf(buf, "%s\n", spi->modalias);
  57}
  58
  59static struct device_attribute spi_dev_attrs[] = {
  60	__ATTR_RO(modalias),
  61	__ATTR_NULL,
  62};
  63
  64/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  65 * and the sysfs version makes coldplug work too.
  66 */
  67
  68static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  69						const struct spi_device *sdev)
  70{
  71	while (id->name[0]) {
  72		if (!strcmp(sdev->modalias, id->name))
  73			return id;
  74		id++;
  75	}
  76	return NULL;
  77}
  78
  79const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  80{
  81	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  82
  83	return spi_match_id(sdrv->id_table, sdev);
  84}
  85EXPORT_SYMBOL_GPL(spi_get_device_id);
  86
  87static int spi_match_device(struct device *dev, struct device_driver *drv)
  88{
  89	const struct spi_device	*spi = to_spi_device(dev);
  90	const struct spi_driver	*sdrv = to_spi_driver(drv);
  91
  92	/* Attempt an OF style match */
  93	if (of_driver_match_device(dev, drv))
  94		return 1;
  95
  96	if (sdrv->id_table)
  97		return !!spi_match_id(sdrv->id_table, spi);
  98
  99	return strcmp(spi->modalias, drv->name) == 0;
 100}
 101
 102static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 103{
 104	const struct spi_device		*spi = to_spi_device(dev);
 105
 106	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 107	return 0;
 108}
 109
 110#ifdef CONFIG_PM_SLEEP
 111static int spi_legacy_suspend(struct device *dev, pm_message_t message)
 112{
 113	int			value = 0;
 114	struct spi_driver	*drv = to_spi_driver(dev->driver);
 115
 116	/* suspend will stop irqs and dma; no more i/o */
 117	if (drv) {
 118		if (drv->suspend)
 119			value = drv->suspend(to_spi_device(dev), message);
 120		else
 121			dev_dbg(dev, "... can't suspend\n");
 122	}
 123	return value;
 124}
 125
 126static int spi_legacy_resume(struct device *dev)
 127{
 128	int			value = 0;
 129	struct spi_driver	*drv = to_spi_driver(dev->driver);
 130
 131	/* resume may restart the i/o queue */
 132	if (drv) {
 133		if (drv->resume)
 134			value = drv->resume(to_spi_device(dev));
 135		else
 136			dev_dbg(dev, "... can't resume\n");
 137	}
 138	return value;
 139}
 140
 141static int spi_pm_suspend(struct device *dev)
 142{
 143	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 144
 145	if (pm)
 146		return pm_generic_suspend(dev);
 147	else
 148		return spi_legacy_suspend(dev, PMSG_SUSPEND);
 149}
 150
 151static int spi_pm_resume(struct device *dev)
 152{
 153	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 154
 155	if (pm)
 156		return pm_generic_resume(dev);
 157	else
 158		return spi_legacy_resume(dev);
 159}
 160
 161static int spi_pm_freeze(struct device *dev)
 162{
 163	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 164
 165	if (pm)
 166		return pm_generic_freeze(dev);
 167	else
 168		return spi_legacy_suspend(dev, PMSG_FREEZE);
 169}
 170
 171static int spi_pm_thaw(struct device *dev)
 172{
 173	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 174
 175	if (pm)
 176		return pm_generic_thaw(dev);
 177	else
 178		return spi_legacy_resume(dev);
 179}
 180
 181static int spi_pm_poweroff(struct device *dev)
 182{
 183	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 184
 185	if (pm)
 186		return pm_generic_poweroff(dev);
 187	else
 188		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
 189}
 190
 191static int spi_pm_restore(struct device *dev)
 192{
 193	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 194
 195	if (pm)
 196		return pm_generic_restore(dev);
 197	else
 198		return spi_legacy_resume(dev);
 199}
 200#else
 201#define spi_pm_suspend	NULL
 202#define spi_pm_resume	NULL
 203#define spi_pm_freeze	NULL
 204#define spi_pm_thaw	NULL
 205#define spi_pm_poweroff	NULL
 206#define spi_pm_restore	NULL
 207#endif
 208
 209static const struct dev_pm_ops spi_pm = {
 210	.suspend = spi_pm_suspend,
 211	.resume = spi_pm_resume,
 212	.freeze = spi_pm_freeze,
 213	.thaw = spi_pm_thaw,
 214	.poweroff = spi_pm_poweroff,
 215	.restore = spi_pm_restore,
 216	SET_RUNTIME_PM_OPS(
 217		pm_generic_runtime_suspend,
 218		pm_generic_runtime_resume,
 219		pm_generic_runtime_idle
 220	)
 221};
 222
 223struct bus_type spi_bus_type = {
 224	.name		= "spi",
 225	.dev_attrs	= spi_dev_attrs,
 226	.match		= spi_match_device,
 227	.uevent		= spi_uevent,
 228	.pm		= &spi_pm,
 229};
 230EXPORT_SYMBOL_GPL(spi_bus_type);
 231
 232
 233static int spi_drv_probe(struct device *dev)
 234{
 235	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 236
 237	return sdrv->probe(to_spi_device(dev));
 238}
 239
 240static int spi_drv_remove(struct device *dev)
 241{
 242	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 243
 244	return sdrv->remove(to_spi_device(dev));
 245}
 246
 247static void spi_drv_shutdown(struct device *dev)
 248{
 249	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 250
 251	sdrv->shutdown(to_spi_device(dev));
 252}
 253
 254/**
 255 * spi_register_driver - register a SPI driver
 256 * @sdrv: the driver to register
 257 * Context: can sleep
 258 */
 259int spi_register_driver(struct spi_driver *sdrv)
 260{
 261	sdrv->driver.bus = &spi_bus_type;
 262	if (sdrv->probe)
 263		sdrv->driver.probe = spi_drv_probe;
 264	if (sdrv->remove)
 265		sdrv->driver.remove = spi_drv_remove;
 266	if (sdrv->shutdown)
 267		sdrv->driver.shutdown = spi_drv_shutdown;
 268	return driver_register(&sdrv->driver);
 269}
 270EXPORT_SYMBOL_GPL(spi_register_driver);
 271
 272/*-------------------------------------------------------------------------*/
 273
 274/* SPI devices should normally not be created by SPI device drivers; that
 275 * would make them board-specific.  Similarly with SPI master drivers.
 276 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 277 * with other readonly (flashable) information about mainboard devices.
 278 */
 279
 280struct boardinfo {
 281	struct list_head	list;
 282	struct spi_board_info	board_info;
 283};
 284
 285static LIST_HEAD(board_list);
 286static LIST_HEAD(spi_master_list);
 287
 288/*
 289 * Used to protect add/del opertion for board_info list and
 290 * spi_master list, and their matching process
 291 */
 292static DEFINE_MUTEX(board_lock);
 293
 294/**
 295 * spi_alloc_device - Allocate a new SPI device
 296 * @master: Controller to which device is connected
 297 * Context: can sleep
 298 *
 299 * Allows a driver to allocate and initialize a spi_device without
 300 * registering it immediately.  This allows a driver to directly
 301 * fill the spi_device with device parameters before calling
 302 * spi_add_device() on it.
 303 *
 304 * Caller is responsible to call spi_add_device() on the returned
 305 * spi_device structure to add it to the SPI master.  If the caller
 306 * needs to discard the spi_device without adding it, then it should
 307 * call spi_dev_put() on it.
 308 *
 309 * Returns a pointer to the new device, or NULL.
 310 */
 311struct spi_device *spi_alloc_device(struct spi_master *master)
 312{
 313	struct spi_device	*spi;
 314	struct device		*dev = master->dev.parent;
 315
 316	if (!spi_master_get(master))
 317		return NULL;
 318
 319	spi = kzalloc(sizeof *spi, GFP_KERNEL);
 320	if (!spi) {
 321		dev_err(dev, "cannot alloc spi_device\n");
 322		spi_master_put(master);
 323		return NULL;
 324	}
 325
 326	spi->master = master;
 327	spi->dev.parent = &master->dev;
 328	spi->dev.bus = &spi_bus_type;
 329	spi->dev.release = spidev_release;
 330	device_initialize(&spi->dev);
 331	return spi;
 332}
 333EXPORT_SYMBOL_GPL(spi_alloc_device);
 334
 335/**
 336 * spi_add_device - Add spi_device allocated with spi_alloc_device
 337 * @spi: spi_device to register
 338 *
 339 * Companion function to spi_alloc_device.  Devices allocated with
 340 * spi_alloc_device can be added onto the spi bus with this function.
 341 *
 342 * Returns 0 on success; negative errno on failure
 343 */
 344int spi_add_device(struct spi_device *spi)
 345{
 346	static DEFINE_MUTEX(spi_add_lock);
 347	struct device *dev = spi->master->dev.parent;
 348	struct device *d;
 349	int status;
 350
 351	/* Chipselects are numbered 0..max; validate. */
 352	if (spi->chip_select >= spi->master->num_chipselect) {
 353		dev_err(dev, "cs%d >= max %d\n",
 354			spi->chip_select,
 355			spi->master->num_chipselect);
 356		return -EINVAL;
 357	}
 358
 359	/* Set the bus ID string */
 360	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 361			spi->chip_select);
 362
 363
 364	/* We need to make sure there's no other device with this
 365	 * chipselect **BEFORE** we call setup(), else we'll trash
 366	 * its configuration.  Lock against concurrent add() calls.
 367	 */
 368	mutex_lock(&spi_add_lock);
 369
 370	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
 371	if (d != NULL) {
 372		dev_err(dev, "chipselect %d already in use\n",
 373				spi->chip_select);
 374		put_device(d);
 375		status = -EBUSY;
 376		goto done;
 377	}
 378
 379	/* Drivers may modify this initial i/o setup, but will
 380	 * normally rely on the device being setup.  Devices
 381	 * using SPI_CS_HIGH can't coexist well otherwise...
 382	 */
 383	status = spi_setup(spi);
 384	if (status < 0) {
 385		dev_err(dev, "can't setup %s, status %d\n",
 386				dev_name(&spi->dev), status);
 387		goto done;
 388	}
 389
 390	/* Device may be bound to an active driver when this returns */
 391	status = device_add(&spi->dev);
 392	if (status < 0)
 393		dev_err(dev, "can't add %s, status %d\n",
 394				dev_name(&spi->dev), status);
 395	else
 396		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 397
 398done:
 399	mutex_unlock(&spi_add_lock);
 400	return status;
 401}
 402EXPORT_SYMBOL_GPL(spi_add_device);
 403
 404/**
 405 * spi_new_device - instantiate one new SPI device
 406 * @master: Controller to which device is connected
 407 * @chip: Describes the SPI device
 408 * Context: can sleep
 409 *
 410 * On typical mainboards, this is purely internal; and it's not needed
 411 * after board init creates the hard-wired devices.  Some development
 412 * platforms may not be able to use spi_register_board_info though, and
 413 * this is exported so that for example a USB or parport based adapter
 414 * driver could add devices (which it would learn about out-of-band).
 415 *
 416 * Returns the new device, or NULL.
 417 */
 418struct spi_device *spi_new_device(struct spi_master *master,
 419				  struct spi_board_info *chip)
 420{
 421	struct spi_device	*proxy;
 422	int			status;
 423
 424	/* NOTE:  caller did any chip->bus_num checks necessary.
 425	 *
 426	 * Also, unless we change the return value convention to use
 427	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 428	 * suggests syslogged diagnostics are best here (ugh).
 429	 */
 430
 431	proxy = spi_alloc_device(master);
 432	if (!proxy)
 433		return NULL;
 434
 435	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 436
 437	proxy->chip_select = chip->chip_select;
 438	proxy->max_speed_hz = chip->max_speed_hz;
 439	proxy->mode = chip->mode;
 440	proxy->irq = chip->irq;
 441	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 442	proxy->dev.platform_data = (void *) chip->platform_data;
 443	proxy->controller_data = chip->controller_data;
 444	proxy->controller_state = NULL;
 445
 446	status = spi_add_device(proxy);
 447	if (status < 0) {
 448		spi_dev_put(proxy);
 449		return NULL;
 450	}
 451
 452	return proxy;
 453}
 454EXPORT_SYMBOL_GPL(spi_new_device);
 455
 456static void spi_match_master_to_boardinfo(struct spi_master *master,
 457				struct spi_board_info *bi)
 458{
 459	struct spi_device *dev;
 460
 461	if (master->bus_num != bi->bus_num)
 462		return;
 463
 464	dev = spi_new_device(master, bi);
 465	if (!dev)
 466		dev_err(master->dev.parent, "can't create new device for %s\n",
 467			bi->modalias);
 468}
 469
 470/**
 471 * spi_register_board_info - register SPI devices for a given board
 472 * @info: array of chip descriptors
 473 * @n: how many descriptors are provided
 474 * Context: can sleep
 475 *
 476 * Board-specific early init code calls this (probably during arch_initcall)
 477 * with segments of the SPI device table.  Any device nodes are created later,
 478 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 479 * this table of devices forever, so that reloading a controller driver will
 480 * not make Linux forget about these hard-wired devices.
 481 *
 482 * Other code can also call this, e.g. a particular add-on board might provide
 483 * SPI devices through its expansion connector, so code initializing that board
 484 * would naturally declare its SPI devices.
 485 *
 486 * The board info passed can safely be __initdata ... but be careful of
 487 * any embedded pointers (platform_data, etc), they're copied as-is.
 488 */
 489int __devinit
 490spi_register_board_info(struct spi_board_info const *info, unsigned n)
 491{
 492	struct boardinfo *bi;
 493	int i;
 494
 495	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 496	if (!bi)
 497		return -ENOMEM;
 498
 499	for (i = 0; i < n; i++, bi++, info++) {
 500		struct spi_master *master;
 501
 502		memcpy(&bi->board_info, info, sizeof(*info));
 503		mutex_lock(&board_lock);
 504		list_add_tail(&bi->list, &board_list);
 505		list_for_each_entry(master, &spi_master_list, list)
 506			spi_match_master_to_boardinfo(master, &bi->board_info);
 507		mutex_unlock(&board_lock);
 508	}
 509
 510	return 0;
 511}
 512
 513/*-------------------------------------------------------------------------*/
 514
 515/**
 516 * spi_pump_messages - kthread work function which processes spi message queue
 517 * @work: pointer to kthread work struct contained in the master struct
 518 *
 519 * This function checks if there is any spi message in the queue that
 520 * needs processing and if so call out to the driver to initialize hardware
 521 * and transfer each message.
 522 *
 523 */
 524static void spi_pump_messages(struct kthread_work *work)
 525{
 526	struct spi_master *master =
 527		container_of(work, struct spi_master, pump_messages);
 528	unsigned long flags;
 529	bool was_busy = false;
 530	int ret;
 531
 532	/* Lock queue and check for queue work */
 533	spin_lock_irqsave(&master->queue_lock, flags);
 534	if (list_empty(&master->queue) || !master->running) {
 535		if (master->busy && master->unprepare_transfer_hardware) {
 536			ret = master->unprepare_transfer_hardware(master);
 537			if (ret) {
 538				spin_unlock_irqrestore(&master->queue_lock, flags);
 539				dev_err(&master->dev,
 540					"failed to unprepare transfer hardware\n");
 541				return;
 542			}
 543		}
 544		master->busy = false;
 545		spin_unlock_irqrestore(&master->queue_lock, flags);
 546		return;
 547	}
 548
 549	/* Make sure we are not already running a message */
 550	if (master->cur_msg) {
 551		spin_unlock_irqrestore(&master->queue_lock, flags);
 552		return;
 553	}
 554	/* Extract head of queue */
 555	master->cur_msg =
 556	    list_entry(master->queue.next, struct spi_message, queue);
 557
 558	list_del_init(&master->cur_msg->queue);
 559	if (master->busy)
 560		was_busy = true;
 561	else
 562		master->busy = true;
 563	spin_unlock_irqrestore(&master->queue_lock, flags);
 564
 565	if (!was_busy && master->prepare_transfer_hardware) {
 566		ret = master->prepare_transfer_hardware(master);
 567		if (ret) {
 568			dev_err(&master->dev,
 569				"failed to prepare transfer hardware\n");
 570			return;
 571		}
 572	}
 573
 574	ret = master->transfer_one_message(master, master->cur_msg);
 575	if (ret) {
 576		dev_err(&master->dev,
 577			"failed to transfer one message from queue\n");
 578		return;
 579	}
 580}
 581
 582static int spi_init_queue(struct spi_master *master)
 583{
 584	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 585
 586	INIT_LIST_HEAD(&master->queue);
 587	spin_lock_init(&master->queue_lock);
 588
 589	master->running = false;
 590	master->busy = false;
 591
 592	init_kthread_worker(&master->kworker);
 593	master->kworker_task = kthread_run(kthread_worker_fn,
 594					   &master->kworker,
 595					   dev_name(&master->dev));
 596	if (IS_ERR(master->kworker_task)) {
 597		dev_err(&master->dev, "failed to create message pump task\n");
 598		return -ENOMEM;
 599	}
 600	init_kthread_work(&master->pump_messages, spi_pump_messages);
 601
 602	/*
 603	 * Master config will indicate if this controller should run the
 604	 * message pump with high (realtime) priority to reduce the transfer
 605	 * latency on the bus by minimising the delay between a transfer
 606	 * request and the scheduling of the message pump thread. Without this
 607	 * setting the message pump thread will remain at default priority.
 608	 */
 609	if (master->rt) {
 610		dev_info(&master->dev,
 611			"will run message pump with realtime priority\n");
 612		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
 613	}
 614
 615	return 0;
 616}
 617
 618/**
 619 * spi_get_next_queued_message() - called by driver to check for queued
 620 * messages
 621 * @master: the master to check for queued messages
 622 *
 623 * If there are more messages in the queue, the next message is returned from
 624 * this call.
 625 */
 626struct spi_message *spi_get_next_queued_message(struct spi_master *master)
 627{
 628	struct spi_message *next;
 629	unsigned long flags;
 630
 631	/* get a pointer to the next message, if any */
 632	spin_lock_irqsave(&master->queue_lock, flags);
 633	if (list_empty(&master->queue))
 634		next = NULL;
 635	else
 636		next = list_entry(master->queue.next,
 637				  struct spi_message, queue);
 638	spin_unlock_irqrestore(&master->queue_lock, flags);
 639
 640	return next;
 641}
 642EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
 643
 644/**
 645 * spi_finalize_current_message() - the current message is complete
 646 * @master: the master to return the message to
 647 *
 648 * Called by the driver to notify the core that the message in the front of the
 649 * queue is complete and can be removed from the queue.
 650 */
 651void spi_finalize_current_message(struct spi_master *master)
 652{
 653	struct spi_message *mesg;
 654	unsigned long flags;
 655
 656	spin_lock_irqsave(&master->queue_lock, flags);
 657	mesg = master->cur_msg;
 658	master->cur_msg = NULL;
 659
 660	queue_kthread_work(&master->kworker, &master->pump_messages);
 661	spin_unlock_irqrestore(&master->queue_lock, flags);
 662
 663	mesg->state = NULL;
 664	if (mesg->complete)
 665		mesg->complete(mesg->context);
 666}
 667EXPORT_SYMBOL_GPL(spi_finalize_current_message);
 668
 669static int spi_start_queue(struct spi_master *master)
 670{
 671	unsigned long flags;
 672
 673	spin_lock_irqsave(&master->queue_lock, flags);
 674
 675	if (master->running || master->busy) {
 676		spin_unlock_irqrestore(&master->queue_lock, flags);
 677		return -EBUSY;
 678	}
 679
 680	master->running = true;
 681	master->cur_msg = NULL;
 682	spin_unlock_irqrestore(&master->queue_lock, flags);
 683
 684	queue_kthread_work(&master->kworker, &master->pump_messages);
 685
 686	return 0;
 687}
 688
 689static int spi_stop_queue(struct spi_master *master)
 690{
 691	unsigned long flags;
 692	unsigned limit = 500;
 693	int ret = 0;
 694
 695	spin_lock_irqsave(&master->queue_lock, flags);
 696
 697	/*
 698	 * This is a bit lame, but is optimized for the common execution path.
 699	 * A wait_queue on the master->busy could be used, but then the common
 700	 * execution path (pump_messages) would be required to call wake_up or
 701	 * friends on every SPI message. Do this instead.
 702	 */
 703	while ((!list_empty(&master->queue) || master->busy) && limit--) {
 704		spin_unlock_irqrestore(&master->queue_lock, flags);
 705		msleep(10);
 706		spin_lock_irqsave(&master->queue_lock, flags);
 707	}
 708
 709	if (!list_empty(&master->queue) || master->busy)
 710		ret = -EBUSY;
 711	else
 712		master->running = false;
 713
 714	spin_unlock_irqrestore(&master->queue_lock, flags);
 715
 716	if (ret) {
 717		dev_warn(&master->dev,
 718			 "could not stop message queue\n");
 719		return ret;
 720	}
 721	return ret;
 722}
 723
 724static int spi_destroy_queue(struct spi_master *master)
 725{
 726	int ret;
 727
 728	ret = spi_stop_queue(master);
 729
 730	/*
 731	 * flush_kthread_worker will block until all work is done.
 732	 * If the reason that stop_queue timed out is that the work will never
 733	 * finish, then it does no good to call flush/stop thread, so
 734	 * return anyway.
 735	 */
 736	if (ret) {
 737		dev_err(&master->dev, "problem destroying queue\n");
 738		return ret;
 739	}
 740
 741	flush_kthread_worker(&master->kworker);
 742	kthread_stop(master->kworker_task);
 743
 744	return 0;
 745}
 746
 747/**
 748 * spi_queued_transfer - transfer function for queued transfers
 749 * @spi: spi device which is requesting transfer
 750 * @msg: spi message which is to handled is queued to driver queue
 751 */
 752static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
 753{
 754	struct spi_master *master = spi->master;
 755	unsigned long flags;
 756
 757	spin_lock_irqsave(&master->queue_lock, flags);
 758
 759	if (!master->running) {
 760		spin_unlock_irqrestore(&master->queue_lock, flags);
 761		return -ESHUTDOWN;
 762	}
 763	msg->actual_length = 0;
 764	msg->status = -EINPROGRESS;
 765
 766	list_add_tail(&msg->queue, &master->queue);
 767	if (master->running && !master->busy)
 768		queue_kthread_work(&master->kworker, &master->pump_messages);
 769
 770	spin_unlock_irqrestore(&master->queue_lock, flags);
 771	return 0;
 772}
 773
 774static int spi_master_initialize_queue(struct spi_master *master)
 775{
 776	int ret;
 777
 778	master->queued = true;
 779	master->transfer = spi_queued_transfer;
 780
 781	/* Initialize and start queue */
 782	ret = spi_init_queue(master);
 783	if (ret) {
 784		dev_err(&master->dev, "problem initializing queue\n");
 785		goto err_init_queue;
 786	}
 787	ret = spi_start_queue(master);
 788	if (ret) {
 789		dev_err(&master->dev, "problem starting queue\n");
 790		goto err_start_queue;
 791	}
 792
 793	return 0;
 794
 795err_start_queue:
 796err_init_queue:
 797	spi_destroy_queue(master);
 798	return ret;
 799}
 800
 801/*-------------------------------------------------------------------------*/
 802
 803#if defined(CONFIG_OF) && !defined(CONFIG_SPARC)
 804/**
 805 * of_register_spi_devices() - Register child devices onto the SPI bus
 806 * @master:	Pointer to spi_master device
 807 *
 808 * Registers an spi_device for each child node of master node which has a 'reg'
 809 * property.
 810 */
 811static void of_register_spi_devices(struct spi_master *master)
 812{
 813	struct spi_device *spi;
 814	struct device_node *nc;
 815	const __be32 *prop;
 816	int rc;
 817	int len;
 818
 819	if (!master->dev.of_node)
 820		return;
 821
 822	for_each_child_of_node(master->dev.of_node, nc) {
 823		/* Alloc an spi_device */
 824		spi = spi_alloc_device(master);
 825		if (!spi) {
 826			dev_err(&master->dev, "spi_device alloc error for %s\n",
 827				nc->full_name);
 828			spi_dev_put(spi);
 829			continue;
 830		}
 831
 832		/* Select device driver */
 833		if (of_modalias_node(nc, spi->modalias,
 834				     sizeof(spi->modalias)) < 0) {
 835			dev_err(&master->dev, "cannot find modalias for %s\n",
 836				nc->full_name);
 837			spi_dev_put(spi);
 838			continue;
 839		}
 840
 841		/* Device address */
 842		prop = of_get_property(nc, "reg", &len);
 843		if (!prop || len < sizeof(*prop)) {
 844			dev_err(&master->dev, "%s has no 'reg' property\n",
 845				nc->full_name);
 846			spi_dev_put(spi);
 847			continue;
 848		}
 849		spi->chip_select = be32_to_cpup(prop);
 850
 851		/* Mode (clock phase/polarity/etc.) */
 852		if (of_find_property(nc, "spi-cpha", NULL))
 853			spi->mode |= SPI_CPHA;
 854		if (of_find_property(nc, "spi-cpol", NULL))
 855			spi->mode |= SPI_CPOL;
 856		if (of_find_property(nc, "spi-cs-high", NULL))
 857			spi->mode |= SPI_CS_HIGH;
 858
 859		/* Device speed */
 860		prop = of_get_property(nc, "spi-max-frequency", &len);
 861		if (!prop || len < sizeof(*prop)) {
 862			dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
 863				nc->full_name);
 864			spi_dev_put(spi);
 865			continue;
 866		}
 867		spi->max_speed_hz = be32_to_cpup(prop);
 868
 869		/* IRQ */
 870		spi->irq = irq_of_parse_and_map(nc, 0);
 871
 872		/* Store a pointer to the node in the device structure */
 873		of_node_get(nc);
 874		spi->dev.of_node = nc;
 875
 876		/* Register the new device */
 877		request_module(spi->modalias);
 878		rc = spi_add_device(spi);
 879		if (rc) {
 880			dev_err(&master->dev, "spi_device register error %s\n",
 881				nc->full_name);
 882			spi_dev_put(spi);
 883		}
 884
 885	}
 886}
 887#else
 888static void of_register_spi_devices(struct spi_master *master) { }
 889#endif
 890
 891static void spi_master_release(struct device *dev)
 892{
 893	struct spi_master *master;
 894
 895	master = container_of(dev, struct spi_master, dev);
 896	kfree(master);
 897}
 898
 899static struct class spi_master_class = {
 900	.name		= "spi_master",
 901	.owner		= THIS_MODULE,
 902	.dev_release	= spi_master_release,
 903};
 904
 905
 906
 907/**
 908 * spi_alloc_master - allocate SPI master controller
 909 * @dev: the controller, possibly using the platform_bus
 910 * @size: how much zeroed driver-private data to allocate; the pointer to this
 911 *	memory is in the driver_data field of the returned device,
 912 *	accessible with spi_master_get_devdata().
 913 * Context: can sleep
 914 *
 915 * This call is used only by SPI master controller drivers, which are the
 916 * only ones directly touching chip registers.  It's how they allocate
 917 * an spi_master structure, prior to calling spi_register_master().
 918 *
 919 * This must be called from context that can sleep.  It returns the SPI
 920 * master structure on success, else NULL.
 921 *
 922 * The caller is responsible for assigning the bus number and initializing
 923 * the master's methods before calling spi_register_master(); and (after errors
 924 * adding the device) calling spi_master_put() and kfree() to prevent a memory
 925 * leak.
 926 */
 927struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 928{
 929	struct spi_master	*master;
 930
 931	if (!dev)
 932		return NULL;
 933
 934	master = kzalloc(size + sizeof *master, GFP_KERNEL);
 935	if (!master)
 936		return NULL;
 937
 938	device_initialize(&master->dev);
 939	master->bus_num = -1;
 940	master->num_chipselect = 1;
 941	master->dev.class = &spi_master_class;
 942	master->dev.parent = get_device(dev);
 943	spi_master_set_devdata(master, &master[1]);
 944
 945	return master;
 946}
 947EXPORT_SYMBOL_GPL(spi_alloc_master);
 948
 949/**
 950 * spi_register_master - register SPI master controller
 951 * @master: initialized master, originally from spi_alloc_master()
 952 * Context: can sleep
 953 *
 954 * SPI master controllers connect to their drivers using some non-SPI bus,
 955 * such as the platform bus.  The final stage of probe() in that code
 956 * includes calling spi_register_master() to hook up to this SPI bus glue.
 957 *
 958 * SPI controllers use board specific (often SOC specific) bus numbers,
 959 * and board-specific addressing for SPI devices combines those numbers
 960 * with chip select numbers.  Since SPI does not directly support dynamic
 961 * device identification, boards need configuration tables telling which
 962 * chip is at which address.
 963 *
 964 * This must be called from context that can sleep.  It returns zero on
 965 * success, else a negative error code (dropping the master's refcount).
 966 * After a successful return, the caller is responsible for calling
 967 * spi_unregister_master().
 968 */
 969int spi_register_master(struct spi_master *master)
 970{
 971	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
 972	struct device		*dev = master->dev.parent;
 973	struct boardinfo	*bi;
 974	int			status = -ENODEV;
 975	int			dynamic = 0;
 976
 977	if (!dev)
 978		return -ENODEV;
 979
 980	/* even if it's just one always-selected device, there must
 981	 * be at least one chipselect
 982	 */
 983	if (master->num_chipselect == 0)
 984		return -EINVAL;
 985
 986	/* convention:  dynamically assigned bus IDs count down from the max */
 987	if (master->bus_num < 0) {
 988		/* FIXME switch to an IDR based scheme, something like
 989		 * I2C now uses, so we can't run out of "dynamic" IDs
 990		 */
 991		master->bus_num = atomic_dec_return(&dyn_bus_id);
 992		dynamic = 1;
 993	}
 994
 995	spin_lock_init(&master->bus_lock_spinlock);
 996	mutex_init(&master->bus_lock_mutex);
 997	master->bus_lock_flag = 0;
 998
 999	/* register the device, then userspace will see it.
1000	 * registration fails if the bus ID is in use.
1001	 */
1002	dev_set_name(&master->dev, "spi%u", master->bus_num);
1003	status = device_add(&master->dev);
1004	if (status < 0)
1005		goto done;
1006	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1007			dynamic ? " (dynamic)" : "");
1008
1009	/* If we're using a queued driver, start the queue */
1010	if (master->transfer)
1011		dev_info(dev, "master is unqueued, this is deprecated\n");
1012	else {
1013		status = spi_master_initialize_queue(master);
1014		if (status) {
1015			device_unregister(&master->dev);
1016			goto done;
1017		}
1018	}
1019
1020	mutex_lock(&board_lock);
1021	list_add_tail(&master->list, &spi_master_list);
1022	list_for_each_entry(bi, &board_list, list)
1023		spi_match_master_to_boardinfo(master, &bi->board_info);
1024	mutex_unlock(&board_lock);
1025
 
 
1026	/* Register devices from the device tree */
1027	of_register_spi_devices(master);
1028done:
1029	return status;
1030}
1031EXPORT_SYMBOL_GPL(spi_register_master);
1032
 
1033static int __unregister(struct device *dev, void *null)
1034{
1035	spi_unregister_device(to_spi_device(dev));
1036	return 0;
1037}
1038
1039/**
1040 * spi_unregister_master - unregister SPI master controller
1041 * @master: the master being unregistered
1042 * Context: can sleep
1043 *
1044 * This call is used only by SPI master controller drivers, which are the
1045 * only ones directly touching chip registers.
1046 *
1047 * This must be called from context that can sleep.
1048 */
1049void spi_unregister_master(struct spi_master *master)
1050{
1051	int dummy;
1052
1053	if (master->queued) {
1054		if (spi_destroy_queue(master))
1055			dev_err(&master->dev, "queue remove failed\n");
1056	}
1057
1058	mutex_lock(&board_lock);
1059	list_del(&master->list);
1060	mutex_unlock(&board_lock);
1061
1062	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1063	device_unregister(&master->dev);
1064}
1065EXPORT_SYMBOL_GPL(spi_unregister_master);
1066
1067int spi_master_suspend(struct spi_master *master)
1068{
1069	int ret;
1070
1071	/* Basically no-ops for non-queued masters */
1072	if (!master->queued)
1073		return 0;
1074
1075	ret = spi_stop_queue(master);
1076	if (ret)
1077		dev_err(&master->dev, "queue stop failed\n");
1078
1079	return ret;
1080}
1081EXPORT_SYMBOL_GPL(spi_master_suspend);
1082
1083int spi_master_resume(struct spi_master *master)
1084{
1085	int ret;
1086
1087	if (!master->queued)
1088		return 0;
1089
1090	ret = spi_start_queue(master);
1091	if (ret)
1092		dev_err(&master->dev, "queue restart failed\n");
1093
1094	return ret;
1095}
1096EXPORT_SYMBOL_GPL(spi_master_resume);
1097
1098static int __spi_master_match(struct device *dev, void *data)
1099{
1100	struct spi_master *m;
1101	u16 *bus_num = data;
1102
1103	m = container_of(dev, struct spi_master, dev);
1104	return m->bus_num == *bus_num;
1105}
1106
1107/**
1108 * spi_busnum_to_master - look up master associated with bus_num
1109 * @bus_num: the master's bus number
1110 * Context: can sleep
1111 *
1112 * This call may be used with devices that are registered after
1113 * arch init time.  It returns a refcounted pointer to the relevant
1114 * spi_master (which the caller must release), or NULL if there is
1115 * no such master registered.
1116 */
1117struct spi_master *spi_busnum_to_master(u16 bus_num)
1118{
1119	struct device		*dev;
1120	struct spi_master	*master = NULL;
1121
1122	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1123				__spi_master_match);
1124	if (dev)
1125		master = container_of(dev, struct spi_master, dev);
1126	/* reference got in class_find_device */
1127	return master;
1128}
1129EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1130
1131
1132/*-------------------------------------------------------------------------*/
1133
1134/* Core methods for SPI master protocol drivers.  Some of the
1135 * other core methods are currently defined as inline functions.
1136 */
1137
1138/**
1139 * spi_setup - setup SPI mode and clock rate
1140 * @spi: the device whose settings are being modified
1141 * Context: can sleep, and no requests are queued to the device
1142 *
1143 * SPI protocol drivers may need to update the transfer mode if the
1144 * device doesn't work with its default.  They may likewise need
1145 * to update clock rates or word sizes from initial values.  This function
1146 * changes those settings, and must be called from a context that can sleep.
1147 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1148 * effect the next time the device is selected and data is transferred to
1149 * or from it.  When this function returns, the spi device is deselected.
1150 *
1151 * Note that this call will fail if the protocol driver specifies an option
1152 * that the underlying controller or its driver does not support.  For
1153 * example, not all hardware supports wire transfers using nine bit words,
1154 * LSB-first wire encoding, or active-high chipselects.
1155 */
1156int spi_setup(struct spi_device *spi)
1157{
1158	unsigned	bad_bits;
1159	int		status;
1160
1161	/* help drivers fail *cleanly* when they need options
1162	 * that aren't supported with their current master
1163	 */
1164	bad_bits = spi->mode & ~spi->master->mode_bits;
1165	if (bad_bits) {
1166		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1167			bad_bits);
1168		return -EINVAL;
1169	}
1170
1171	if (!spi->bits_per_word)
1172		spi->bits_per_word = 8;
1173
1174	status = spi->master->setup(spi);
1175
1176	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1177				"%u bits/w, %u Hz max --> %d\n",
1178			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1179			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1180			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1181			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1182			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1183			spi->bits_per_word, spi->max_speed_hz,
1184			status);
1185
1186	return status;
1187}
1188EXPORT_SYMBOL_GPL(spi_setup);
1189
1190static int __spi_async(struct spi_device *spi, struct spi_message *message)
1191{
1192	struct spi_master *master = spi->master;
1193
1194	/* Half-duplex links include original MicroWire, and ones with
1195	 * only one data pin like SPI_3WIRE (switches direction) or where
1196	 * either MOSI or MISO is missing.  They can also be caused by
1197	 * software limitations.
1198	 */
1199	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1200			|| (spi->mode & SPI_3WIRE)) {
1201		struct spi_transfer *xfer;
1202		unsigned flags = master->flags;
1203
1204		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1205			if (xfer->rx_buf && xfer->tx_buf)
1206				return -EINVAL;
1207			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1208				return -EINVAL;
1209			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1210				return -EINVAL;
1211		}
1212	}
1213
1214	message->spi = spi;
1215	message->status = -EINPROGRESS;
1216	return master->transfer(spi, message);
1217}
1218
1219/**
1220 * spi_async - asynchronous SPI transfer
1221 * @spi: device with which data will be exchanged
1222 * @message: describes the data transfers, including completion callback
1223 * Context: any (irqs may be blocked, etc)
1224 *
1225 * This call may be used in_irq and other contexts which can't sleep,
1226 * as well as from task contexts which can sleep.
1227 *
1228 * The completion callback is invoked in a context which can't sleep.
1229 * Before that invocation, the value of message->status is undefined.
1230 * When the callback is issued, message->status holds either zero (to
1231 * indicate complete success) or a negative error code.  After that
1232 * callback returns, the driver which issued the transfer request may
1233 * deallocate the associated memory; it's no longer in use by any SPI
1234 * core or controller driver code.
1235 *
1236 * Note that although all messages to a spi_device are handled in
1237 * FIFO order, messages may go to different devices in other orders.
1238 * Some device might be higher priority, or have various "hard" access
1239 * time requirements, for example.
1240 *
1241 * On detection of any fault during the transfer, processing of
1242 * the entire message is aborted, and the device is deselected.
1243 * Until returning from the associated message completion callback,
1244 * no other spi_message queued to that device will be processed.
1245 * (This rule applies equally to all the synchronous transfer calls,
1246 * which are wrappers around this core asynchronous primitive.)
1247 */
1248int spi_async(struct spi_device *spi, struct spi_message *message)
1249{
1250	struct spi_master *master = spi->master;
1251	int ret;
1252	unsigned long flags;
1253
1254	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1255
1256	if (master->bus_lock_flag)
1257		ret = -EBUSY;
1258	else
1259		ret = __spi_async(spi, message);
1260
1261	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1262
1263	return ret;
1264}
1265EXPORT_SYMBOL_GPL(spi_async);
1266
1267/**
1268 * spi_async_locked - version of spi_async with exclusive bus usage
1269 * @spi: device with which data will be exchanged
1270 * @message: describes the data transfers, including completion callback
1271 * Context: any (irqs may be blocked, etc)
1272 *
1273 * This call may be used in_irq and other contexts which can't sleep,
1274 * as well as from task contexts which can sleep.
1275 *
1276 * The completion callback is invoked in a context which can't sleep.
1277 * Before that invocation, the value of message->status is undefined.
1278 * When the callback is issued, message->status holds either zero (to
1279 * indicate complete success) or a negative error code.  After that
1280 * callback returns, the driver which issued the transfer request may
1281 * deallocate the associated memory; it's no longer in use by any SPI
1282 * core or controller driver code.
1283 *
1284 * Note that although all messages to a spi_device are handled in
1285 * FIFO order, messages may go to different devices in other orders.
1286 * Some device might be higher priority, or have various "hard" access
1287 * time requirements, for example.
1288 *
1289 * On detection of any fault during the transfer, processing of
1290 * the entire message is aborted, and the device is deselected.
1291 * Until returning from the associated message completion callback,
1292 * no other spi_message queued to that device will be processed.
1293 * (This rule applies equally to all the synchronous transfer calls,
1294 * which are wrappers around this core asynchronous primitive.)
1295 */
1296int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1297{
1298	struct spi_master *master = spi->master;
1299	int ret;
1300	unsigned long flags;
1301
1302	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1303
1304	ret = __spi_async(spi, message);
1305
1306	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1307
1308	return ret;
1309
1310}
1311EXPORT_SYMBOL_GPL(spi_async_locked);
1312
1313
1314/*-------------------------------------------------------------------------*/
1315
1316/* Utility methods for SPI master protocol drivers, layered on
1317 * top of the core.  Some other utility methods are defined as
1318 * inline functions.
1319 */
1320
1321static void spi_complete(void *arg)
1322{
1323	complete(arg);
1324}
1325
1326static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1327		      int bus_locked)
1328{
1329	DECLARE_COMPLETION_ONSTACK(done);
1330	int status;
1331	struct spi_master *master = spi->master;
1332
1333	message->complete = spi_complete;
1334	message->context = &done;
1335
1336	if (!bus_locked)
1337		mutex_lock(&master->bus_lock_mutex);
1338
1339	status = spi_async_locked(spi, message);
1340
1341	if (!bus_locked)
1342		mutex_unlock(&master->bus_lock_mutex);
1343
1344	if (status == 0) {
1345		wait_for_completion(&done);
1346		status = message->status;
1347	}
1348	message->context = NULL;
1349	return status;
1350}
1351
1352/**
1353 * spi_sync - blocking/synchronous SPI data transfers
1354 * @spi: device with which data will be exchanged
1355 * @message: describes the data transfers
1356 * Context: can sleep
1357 *
1358 * This call may only be used from a context that may sleep.  The sleep
1359 * is non-interruptible, and has no timeout.  Low-overhead controller
1360 * drivers may DMA directly into and out of the message buffers.
1361 *
1362 * Note that the SPI device's chip select is active during the message,
1363 * and then is normally disabled between messages.  Drivers for some
1364 * frequently-used devices may want to minimize costs of selecting a chip,
1365 * by leaving it selected in anticipation that the next message will go
1366 * to the same chip.  (That may increase power usage.)
1367 *
1368 * Also, the caller is guaranteeing that the memory associated with the
1369 * message will not be freed before this call returns.
1370 *
1371 * It returns zero on success, else a negative error code.
1372 */
1373int spi_sync(struct spi_device *spi, struct spi_message *message)
1374{
1375	return __spi_sync(spi, message, 0);
1376}
1377EXPORT_SYMBOL_GPL(spi_sync);
1378
1379/**
1380 * spi_sync_locked - version of spi_sync with exclusive bus usage
1381 * @spi: device with which data will be exchanged
1382 * @message: describes the data transfers
1383 * Context: can sleep
1384 *
1385 * This call may only be used from a context that may sleep.  The sleep
1386 * is non-interruptible, and has no timeout.  Low-overhead controller
1387 * drivers may DMA directly into and out of the message buffers.
1388 *
1389 * This call should be used by drivers that require exclusive access to the
1390 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1391 * be released by a spi_bus_unlock call when the exclusive access is over.
1392 *
1393 * It returns zero on success, else a negative error code.
1394 */
1395int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1396{
1397	return __spi_sync(spi, message, 1);
1398}
1399EXPORT_SYMBOL_GPL(spi_sync_locked);
1400
1401/**
1402 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1403 * @master: SPI bus master that should be locked for exclusive bus access
1404 * Context: can sleep
1405 *
1406 * This call may only be used from a context that may sleep.  The sleep
1407 * is non-interruptible, and has no timeout.
1408 *
1409 * This call should be used by drivers that require exclusive access to the
1410 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1411 * exclusive access is over. Data transfer must be done by spi_sync_locked
1412 * and spi_async_locked calls when the SPI bus lock is held.
1413 *
1414 * It returns zero on success, else a negative error code.
1415 */
1416int spi_bus_lock(struct spi_master *master)
1417{
1418	unsigned long flags;
1419
1420	mutex_lock(&master->bus_lock_mutex);
1421
1422	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1423	master->bus_lock_flag = 1;
1424	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1425
1426	/* mutex remains locked until spi_bus_unlock is called */
1427
1428	return 0;
1429}
1430EXPORT_SYMBOL_GPL(spi_bus_lock);
1431
1432/**
1433 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1434 * @master: SPI bus master that was locked for exclusive bus access
1435 * Context: can sleep
1436 *
1437 * This call may only be used from a context that may sleep.  The sleep
1438 * is non-interruptible, and has no timeout.
1439 *
1440 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1441 * call.
1442 *
1443 * It returns zero on success, else a negative error code.
1444 */
1445int spi_bus_unlock(struct spi_master *master)
1446{
1447	master->bus_lock_flag = 0;
1448
1449	mutex_unlock(&master->bus_lock_mutex);
1450
1451	return 0;
1452}
1453EXPORT_SYMBOL_GPL(spi_bus_unlock);
1454
1455/* portable code must never pass more than 32 bytes */
1456#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1457
1458static u8	*buf;
1459
1460/**
1461 * spi_write_then_read - SPI synchronous write followed by read
1462 * @spi: device with which data will be exchanged
1463 * @txbuf: data to be written (need not be dma-safe)
1464 * @n_tx: size of txbuf, in bytes
1465 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1466 * @n_rx: size of rxbuf, in bytes
1467 * Context: can sleep
1468 *
1469 * This performs a half duplex MicroWire style transaction with the
1470 * device, sending txbuf and then reading rxbuf.  The return value
1471 * is zero for success, else a negative errno status code.
1472 * This call may only be used from a context that may sleep.
1473 *
1474 * Parameters to this routine are always copied using a small buffer;
1475 * portable code should never use this for more than 32 bytes.
1476 * Performance-sensitive or bulk transfer code should instead use
1477 * spi_{async,sync}() calls with dma-safe buffers.
1478 */
1479int spi_write_then_read(struct spi_device *spi,
1480		const void *txbuf, unsigned n_tx,
1481		void *rxbuf, unsigned n_rx)
1482{
1483	static DEFINE_MUTEX(lock);
1484
1485	int			status;
1486	struct spi_message	message;
1487	struct spi_transfer	x[2];
1488	u8			*local_buf;
1489
1490	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
1491	 * (as a pure convenience thing), but we can keep heap costs
1492	 * out of the hot path ...
1493	 */
1494	if ((n_tx + n_rx) > SPI_BUFSIZ)
1495		return -EINVAL;
1496
1497	spi_message_init(&message);
1498	memset(x, 0, sizeof x);
1499	if (n_tx) {
1500		x[0].len = n_tx;
1501		spi_message_add_tail(&x[0], &message);
1502	}
1503	if (n_rx) {
1504		x[1].len = n_rx;
1505		spi_message_add_tail(&x[1], &message);
1506	}
1507
1508	/* ... unless someone else is using the pre-allocated buffer */
1509	if (!mutex_trylock(&lock)) {
1510		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1511		if (!local_buf)
1512			return -ENOMEM;
1513	} else
1514		local_buf = buf;
1515
1516	memcpy(local_buf, txbuf, n_tx);
1517	x[0].tx_buf = local_buf;
1518	x[1].rx_buf = local_buf + n_tx;
1519
1520	/* do the i/o */
1521	status = spi_sync(spi, &message);
1522	if (status == 0)
1523		memcpy(rxbuf, x[1].rx_buf, n_rx);
1524
1525	if (x[0].tx_buf == buf)
1526		mutex_unlock(&lock);
1527	else
1528		kfree(local_buf);
1529
1530	return status;
1531}
1532EXPORT_SYMBOL_GPL(spi_write_then_read);
1533
1534/*-------------------------------------------------------------------------*/
1535
1536static int __init spi_init(void)
1537{
1538	int	status;
1539
1540	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1541	if (!buf) {
1542		status = -ENOMEM;
1543		goto err0;
1544	}
1545
1546	status = bus_register(&spi_bus_type);
1547	if (status < 0)
1548		goto err1;
1549
1550	status = class_register(&spi_master_class);
1551	if (status < 0)
1552		goto err2;
1553	return 0;
1554
1555err2:
1556	bus_unregister(&spi_bus_type);
1557err1:
1558	kfree(buf);
1559	buf = NULL;
1560err0:
1561	return status;
1562}
1563
1564/* board_info is normally registered in arch_initcall(),
1565 * but even essential drivers wait till later
1566 *
1567 * REVISIT only boardinfo really needs static linking. the rest (device and
1568 * driver registration) _could_ be dynamically linked (modular) ... costs
1569 * include needing to have boardinfo data structures be much more public.
1570 */
1571postcore_initcall(spi_init);
1572