Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
 
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, write to the Free Software
  18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/kernel.h>
 
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/cache.h>
 
 
  25#include <linux/mutex.h>
  26#include <linux/of_device.h>
 
  27#include <linux/slab.h>
  28#include <linux/mod_devicetable.h>
  29#include <linux/spi/spi.h>
  30#include <linux/of_spi.h>
  31#include <linux/pm_runtime.h>
 
 
 
 
 
 
 
 
 
  32
  33static void spidev_release(struct device *dev)
  34{
  35	struct spi_device	*spi = to_spi_device(dev);
  36
  37	/* spi masters may cleanup for released devices */
  38	if (spi->master->cleanup)
  39		spi->master->cleanup(spi);
  40
  41	spi_master_put(spi->master);
  42	kfree(spi);
  43}
  44
  45static ssize_t
  46modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  47{
  48	const struct spi_device	*spi = to_spi_device(dev);
 
 
 
 
 
  49
  50	return sprintf(buf, "%s\n", spi->modalias);
  51}
 
  52
  53static struct device_attribute spi_dev_attrs[] = {
  54	__ATTR_RO(modalias),
  55	__ATTR_NULL,
  56};
 
  57
  58/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  59 * and the sysfs version makes coldplug work too.
  60 */
  61
  62static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  63						const struct spi_device *sdev)
  64{
  65	while (id->name[0]) {
  66		if (!strcmp(sdev->modalias, id->name))
  67			return id;
  68		id++;
  69	}
  70	return NULL;
  71}
  72
  73const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  74{
  75	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  76
  77	return spi_match_id(sdrv->id_table, sdev);
  78}
  79EXPORT_SYMBOL_GPL(spi_get_device_id);
  80
  81static int spi_match_device(struct device *dev, struct device_driver *drv)
  82{
  83	const struct spi_device	*spi = to_spi_device(dev);
  84	const struct spi_driver	*sdrv = to_spi_driver(drv);
  85
  86	/* Attempt an OF style match */
  87	if (of_driver_match_device(dev, drv))
  88		return 1;
  89
 
 
 
 
  90	if (sdrv->id_table)
  91		return !!spi_match_id(sdrv->id_table, spi);
  92
  93	return strcmp(spi->modalias, drv->name) == 0;
  94}
  95
  96static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  97{
  98	const struct spi_device		*spi = to_spi_device(dev);
 
 
 
 
 
  99
 100	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 101	return 0;
 102}
 103
 104#ifdef CONFIG_PM_SLEEP
 105static int spi_legacy_suspend(struct device *dev, pm_message_t message)
 106{
 107	int			value = 0;
 108	struct spi_driver	*drv = to_spi_driver(dev->driver);
 109
 110	/* suspend will stop irqs and dma; no more i/o */
 111	if (drv) {
 112		if (drv->suspend)
 113			value = drv->suspend(to_spi_device(dev), message);
 114		else
 115			dev_dbg(dev, "... can't suspend\n");
 116	}
 117	return value;
 118}
 119
 120static int spi_legacy_resume(struct device *dev)
 121{
 122	int			value = 0;
 123	struct spi_driver	*drv = to_spi_driver(dev->driver);
 124
 125	/* resume may restart the i/o queue */
 126	if (drv) {
 127		if (drv->resume)
 128			value = drv->resume(to_spi_device(dev));
 129		else
 130			dev_dbg(dev, "... can't resume\n");
 131	}
 132	return value;
 133}
 134
 135static int spi_pm_suspend(struct device *dev)
 136{
 137	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 138
 139	if (pm)
 140		return pm_generic_suspend(dev);
 141	else
 142		return spi_legacy_suspend(dev, PMSG_SUSPEND);
 143}
 144
 145static int spi_pm_resume(struct device *dev)
 146{
 147	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 148
 149	if (pm)
 150		return pm_generic_resume(dev);
 151	else
 152		return spi_legacy_resume(dev);
 153}
 154
 155static int spi_pm_freeze(struct device *dev)
 156{
 157	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 158
 159	if (pm)
 160		return pm_generic_freeze(dev);
 161	else
 162		return spi_legacy_suspend(dev, PMSG_FREEZE);
 163}
 164
 165static int spi_pm_thaw(struct device *dev)
 166{
 167	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 168
 169	if (pm)
 170		return pm_generic_thaw(dev);
 171	else
 172		return spi_legacy_resume(dev);
 173}
 174
 175static int spi_pm_poweroff(struct device *dev)
 176{
 177	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 178
 179	if (pm)
 180		return pm_generic_poweroff(dev);
 181	else
 182		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
 183}
 184
 185static int spi_pm_restore(struct device *dev)
 186{
 187	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 188
 189	if (pm)
 190		return pm_generic_restore(dev);
 191	else
 192		return spi_legacy_resume(dev);
 193}
 194#else
 195#define spi_pm_suspend	NULL
 196#define spi_pm_resume	NULL
 197#define spi_pm_freeze	NULL
 198#define spi_pm_thaw	NULL
 199#define spi_pm_poweroff	NULL
 200#define spi_pm_restore	NULL
 201#endif
 202
 203static const struct dev_pm_ops spi_pm = {
 204	.suspend = spi_pm_suspend,
 205	.resume = spi_pm_resume,
 206	.freeze = spi_pm_freeze,
 207	.thaw = spi_pm_thaw,
 208	.poweroff = spi_pm_poweroff,
 209	.restore = spi_pm_restore,
 210	SET_RUNTIME_PM_OPS(
 211		pm_generic_runtime_suspend,
 212		pm_generic_runtime_resume,
 213		pm_generic_runtime_idle
 214	)
 215};
 216
 217struct bus_type spi_bus_type = {
 218	.name		= "spi",
 219	.dev_attrs	= spi_dev_attrs,
 220	.match		= spi_match_device,
 221	.uevent		= spi_uevent,
 222	.pm		= &spi_pm,
 223};
 224EXPORT_SYMBOL_GPL(spi_bus_type);
 225
 226
 227static int spi_drv_probe(struct device *dev)
 228{
 229	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 
 
 
 
 
 230
 231	return sdrv->probe(to_spi_device(dev));
 232}
 233
 234static int spi_drv_remove(struct device *dev)
 235{
 236	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 
 237
 238	return sdrv->remove(to_spi_device(dev));
 
 
 
 239}
 240
 241static void spi_drv_shutdown(struct device *dev)
 242{
 243	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 244
 245	sdrv->shutdown(to_spi_device(dev));
 246}
 247
 248/**
 249 * spi_register_driver - register a SPI driver
 250 * @sdrv: the driver to register
 251 * Context: can sleep
 252 */
 253int spi_register_driver(struct spi_driver *sdrv)
 254{
 255	sdrv->driver.bus = &spi_bus_type;
 256	if (sdrv->probe)
 257		sdrv->driver.probe = spi_drv_probe;
 258	if (sdrv->remove)
 259		sdrv->driver.remove = spi_drv_remove;
 260	if (sdrv->shutdown)
 261		sdrv->driver.shutdown = spi_drv_shutdown;
 262	return driver_register(&sdrv->driver);
 263}
 264EXPORT_SYMBOL_GPL(spi_register_driver);
 265
 266/*-------------------------------------------------------------------------*/
 267
 268/* SPI devices should normally not be created by SPI device drivers; that
 269 * would make them board-specific.  Similarly with SPI master drivers.
 270 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 271 * with other readonly (flashable) information about mainboard devices.
 272 */
 273
 274struct boardinfo {
 275	struct list_head	list;
 276	struct spi_board_info	board_info;
 277};
 278
 279static LIST_HEAD(board_list);
 280static LIST_HEAD(spi_master_list);
 281
 282/*
 283 * Used to protect add/del opertion for board_info list and
 284 * spi_master list, and their matching process
 285 */
 286static DEFINE_MUTEX(board_lock);
 287
 288/**
 289 * spi_alloc_device - Allocate a new SPI device
 290 * @master: Controller to which device is connected
 291 * Context: can sleep
 292 *
 293 * Allows a driver to allocate and initialize a spi_device without
 294 * registering it immediately.  This allows a driver to directly
 295 * fill the spi_device with device parameters before calling
 296 * spi_add_device() on it.
 297 *
 298 * Caller is responsible to call spi_add_device() on the returned
 299 * spi_device structure to add it to the SPI master.  If the caller
 300 * needs to discard the spi_device without adding it, then it should
 301 * call spi_dev_put() on it.
 302 *
 303 * Returns a pointer to the new device, or NULL.
 304 */
 305struct spi_device *spi_alloc_device(struct spi_master *master)
 306{
 307	struct spi_device	*spi;
 308	struct device		*dev = master->dev.parent;
 309
 310	if (!spi_master_get(master))
 311		return NULL;
 312
 313	spi = kzalloc(sizeof *spi, GFP_KERNEL);
 314	if (!spi) {
 315		dev_err(dev, "cannot alloc spi_device\n");
 316		spi_master_put(master);
 317		return NULL;
 318	}
 319
 320	spi->master = master;
 321	spi->dev.parent = dev;
 322	spi->dev.bus = &spi_bus_type;
 323	spi->dev.release = spidev_release;
 
 324	device_initialize(&spi->dev);
 325	return spi;
 326}
 327EXPORT_SYMBOL_GPL(spi_alloc_device);
 328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329/**
 330 * spi_add_device - Add spi_device allocated with spi_alloc_device
 331 * @spi: spi_device to register
 332 *
 333 * Companion function to spi_alloc_device.  Devices allocated with
 334 * spi_alloc_device can be added onto the spi bus with this function.
 335 *
 336 * Returns 0 on success; negative errno on failure
 337 */
 338int spi_add_device(struct spi_device *spi)
 339{
 340	static DEFINE_MUTEX(spi_add_lock);
 341	struct device *dev = spi->master->dev.parent;
 342	struct device *d;
 343	int status;
 344
 345	/* Chipselects are numbered 0..max; validate. */
 346	if (spi->chip_select >= spi->master->num_chipselect) {
 347		dev_err(dev, "cs%d >= max %d\n",
 348			spi->chip_select,
 349			spi->master->num_chipselect);
 350		return -EINVAL;
 351	}
 352
 353	/* Set the bus ID string */
 354	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 355			spi->chip_select);
 356
 357
 358	/* We need to make sure there's no other device with this
 359	 * chipselect **BEFORE** we call setup(), else we'll trash
 360	 * its configuration.  Lock against concurrent add() calls.
 361	 */
 362	mutex_lock(&spi_add_lock);
 363
 364	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
 365	if (d != NULL) {
 366		dev_err(dev, "chipselect %d already in use\n",
 367				spi->chip_select);
 368		put_device(d);
 369		status = -EBUSY;
 370		goto done;
 371	}
 372
 
 
 
 373	/* Drivers may modify this initial i/o setup, but will
 374	 * normally rely on the device being setup.  Devices
 375	 * using SPI_CS_HIGH can't coexist well otherwise...
 376	 */
 377	status = spi_setup(spi);
 378	if (status < 0) {
 379		dev_err(dev, "can't setup %s, status %d\n",
 380				dev_name(&spi->dev), status);
 381		goto done;
 382	}
 383
 384	/* Device may be bound to an active driver when this returns */
 385	status = device_add(&spi->dev);
 386	if (status < 0)
 387		dev_err(dev, "can't add %s, status %d\n",
 388				dev_name(&spi->dev), status);
 389	else
 390		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 391
 392done:
 393	mutex_unlock(&spi_add_lock);
 394	return status;
 395}
 396EXPORT_SYMBOL_GPL(spi_add_device);
 397
 398/**
 399 * spi_new_device - instantiate one new SPI device
 400 * @master: Controller to which device is connected
 401 * @chip: Describes the SPI device
 402 * Context: can sleep
 403 *
 404 * On typical mainboards, this is purely internal; and it's not needed
 405 * after board init creates the hard-wired devices.  Some development
 406 * platforms may not be able to use spi_register_board_info though, and
 407 * this is exported so that for example a USB or parport based adapter
 408 * driver could add devices (which it would learn about out-of-band).
 409 *
 410 * Returns the new device, or NULL.
 411 */
 412struct spi_device *spi_new_device(struct spi_master *master,
 413				  struct spi_board_info *chip)
 414{
 415	struct spi_device	*proxy;
 416	int			status;
 417
 418	/* NOTE:  caller did any chip->bus_num checks necessary.
 419	 *
 420	 * Also, unless we change the return value convention to use
 421	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 422	 * suggests syslogged diagnostics are best here (ugh).
 423	 */
 424
 425	proxy = spi_alloc_device(master);
 426	if (!proxy)
 427		return NULL;
 428
 429	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 430
 431	proxy->chip_select = chip->chip_select;
 432	proxy->max_speed_hz = chip->max_speed_hz;
 433	proxy->mode = chip->mode;
 434	proxy->irq = chip->irq;
 435	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 436	proxy->dev.platform_data = (void *) chip->platform_data;
 437	proxy->controller_data = chip->controller_data;
 438	proxy->controller_state = NULL;
 439
 440	status = spi_add_device(proxy);
 441	if (status < 0) {
 442		spi_dev_put(proxy);
 443		return NULL;
 444	}
 445
 446	return proxy;
 447}
 448EXPORT_SYMBOL_GPL(spi_new_device);
 449
 450static void spi_match_master_to_boardinfo(struct spi_master *master,
 451				struct spi_board_info *bi)
 452{
 453	struct spi_device *dev;
 454
 455	if (master->bus_num != bi->bus_num)
 456		return;
 457
 458	dev = spi_new_device(master, bi);
 459	if (!dev)
 460		dev_err(master->dev.parent, "can't create new device for %s\n",
 461			bi->modalias);
 462}
 463
 464/**
 465 * spi_register_board_info - register SPI devices for a given board
 466 * @info: array of chip descriptors
 467 * @n: how many descriptors are provided
 468 * Context: can sleep
 469 *
 470 * Board-specific early init code calls this (probably during arch_initcall)
 471 * with segments of the SPI device table.  Any device nodes are created later,
 472 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 473 * this table of devices forever, so that reloading a controller driver will
 474 * not make Linux forget about these hard-wired devices.
 475 *
 476 * Other code can also call this, e.g. a particular add-on board might provide
 477 * SPI devices through its expansion connector, so code initializing that board
 478 * would naturally declare its SPI devices.
 479 *
 480 * The board info passed can safely be __initdata ... but be careful of
 481 * any embedded pointers (platform_data, etc), they're copied as-is.
 482 */
 483int __init
 484spi_register_board_info(struct spi_board_info const *info, unsigned n)
 485{
 486	struct boardinfo *bi;
 487	int i;
 488
 489	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 490	if (!bi)
 491		return -ENOMEM;
 492
 493	for (i = 0; i < n; i++, bi++, info++) {
 494		struct spi_master *master;
 495
 496		memcpy(&bi->board_info, info, sizeof(*info));
 497		mutex_lock(&board_lock);
 498		list_add_tail(&bi->list, &board_list);
 499		list_for_each_entry(master, &spi_master_list, list)
 500			spi_match_master_to_boardinfo(master, &bi->board_info);
 501		mutex_unlock(&board_lock);
 502	}
 503
 504	return 0;
 505}
 506
 507/*-------------------------------------------------------------------------*/
 508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509static void spi_master_release(struct device *dev)
 510{
 511	struct spi_master *master;
 512
 513	master = container_of(dev, struct spi_master, dev);
 514	kfree(master);
 515}
 516
 517static struct class spi_master_class = {
 518	.name		= "spi_master",
 519	.owner		= THIS_MODULE,
 520	.dev_release	= spi_master_release,
 521};
 522
 523
 
 524/**
 525 * spi_alloc_master - allocate SPI master controller
 526 * @dev: the controller, possibly using the platform_bus
 527 * @size: how much zeroed driver-private data to allocate; the pointer to this
 528 *	memory is in the driver_data field of the returned device,
 529 *	accessible with spi_master_get_devdata().
 530 * Context: can sleep
 531 *
 532 * This call is used only by SPI master controller drivers, which are the
 533 * only ones directly touching chip registers.  It's how they allocate
 534 * an spi_master structure, prior to calling spi_register_master().
 535 *
 536 * This must be called from context that can sleep.  It returns the SPI
 537 * master structure on success, else NULL.
 538 *
 539 * The caller is responsible for assigning the bus number and initializing
 540 * the master's methods before calling spi_register_master(); and (after errors
 541 * adding the device) calling spi_master_put() to prevent a memory leak.
 
 542 */
 543struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
 544{
 545	struct spi_master	*master;
 546
 547	if (!dev)
 548		return NULL;
 549
 550	master = kzalloc(size + sizeof *master, GFP_KERNEL);
 551	if (!master)
 552		return NULL;
 553
 554	device_initialize(&master->dev);
 
 
 555	master->dev.class = &spi_master_class;
 556	master->dev.parent = get_device(dev);
 557	spi_master_set_devdata(master, &master[1]);
 558
 559	return master;
 560}
 561EXPORT_SYMBOL_GPL(spi_alloc_master);
 562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563/**
 564 * spi_register_master - register SPI master controller
 565 * @master: initialized master, originally from spi_alloc_master()
 566 * Context: can sleep
 567 *
 568 * SPI master controllers connect to their drivers using some non-SPI bus,
 569 * such as the platform bus.  The final stage of probe() in that code
 570 * includes calling spi_register_master() to hook up to this SPI bus glue.
 571 *
 572 * SPI controllers use board specific (often SOC specific) bus numbers,
 573 * and board-specific addressing for SPI devices combines those numbers
 574 * with chip select numbers.  Since SPI does not directly support dynamic
 575 * device identification, boards need configuration tables telling which
 576 * chip is at which address.
 577 *
 578 * This must be called from context that can sleep.  It returns zero on
 579 * success, else a negative error code (dropping the master's refcount).
 580 * After a successful return, the caller is responsible for calling
 581 * spi_unregister_master().
 582 */
 583int spi_register_master(struct spi_master *master)
 584{
 585	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
 586	struct device		*dev = master->dev.parent;
 587	struct boardinfo	*bi;
 588	int			status = -ENODEV;
 589	int			dynamic = 0;
 590
 591	if (!dev)
 592		return -ENODEV;
 593
 
 
 
 
 594	/* even if it's just one always-selected device, there must
 595	 * be at least one chipselect
 596	 */
 597	if (master->num_chipselect == 0)
 598		return -EINVAL;
 599
 
 
 
 600	/* convention:  dynamically assigned bus IDs count down from the max */
 601	if (master->bus_num < 0) {
 602		/* FIXME switch to an IDR based scheme, something like
 603		 * I2C now uses, so we can't run out of "dynamic" IDs
 604		 */
 605		master->bus_num = atomic_dec_return(&dyn_bus_id);
 606		dynamic = 1;
 607	}
 608
 609	spin_lock_init(&master->bus_lock_spinlock);
 610	mutex_init(&master->bus_lock_mutex);
 611	master->bus_lock_flag = 0;
 
 
 
 612
 613	/* register the device, then userspace will see it.
 614	 * registration fails if the bus ID is in use.
 615	 */
 616	dev_set_name(&master->dev, "spi%u", master->bus_num);
 617	status = device_add(&master->dev);
 618	if (status < 0)
 619		goto done;
 620	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
 621			dynamic ? " (dynamic)" : "");
 622
 
 
 
 
 
 
 
 
 
 
 
 623	mutex_lock(&board_lock);
 624	list_add_tail(&master->list, &spi_master_list);
 625	list_for_each_entry(bi, &board_list, list)
 626		spi_match_master_to_boardinfo(master, &bi->board_info);
 627	mutex_unlock(&board_lock);
 628
 629	status = 0;
 630
 631	/* Register devices from the device tree */
 632	of_register_spi_devices(master);
 
 633done:
 634	return status;
 635}
 636EXPORT_SYMBOL_GPL(spi_register_master);
 637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 638
 639static int __unregister(struct device *dev, void *null)
 640{
 641	spi_unregister_device(to_spi_device(dev));
 642	return 0;
 643}
 644
 645/**
 646 * spi_unregister_master - unregister SPI master controller
 647 * @master: the master being unregistered
 648 * Context: can sleep
 649 *
 650 * This call is used only by SPI master controller drivers, which are the
 651 * only ones directly touching chip registers.
 652 *
 653 * This must be called from context that can sleep.
 654 */
 655void spi_unregister_master(struct spi_master *master)
 656{
 657	int dummy;
 658
 
 
 
 
 
 659	mutex_lock(&board_lock);
 660	list_del(&master->list);
 661	mutex_unlock(&board_lock);
 662
 663	dummy = device_for_each_child(&master->dev, NULL, __unregister);
 664	device_unregister(&master->dev);
 665}
 666EXPORT_SYMBOL_GPL(spi_unregister_master);
 667
 668static int __spi_master_match(struct device *dev, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669{
 670	struct spi_master *m;
 671	u16 *bus_num = data;
 672
 673	m = container_of(dev, struct spi_master, dev);
 674	return m->bus_num == *bus_num;
 675}
 676
 677/**
 678 * spi_busnum_to_master - look up master associated with bus_num
 679 * @bus_num: the master's bus number
 680 * Context: can sleep
 681 *
 682 * This call may be used with devices that are registered after
 683 * arch init time.  It returns a refcounted pointer to the relevant
 684 * spi_master (which the caller must release), or NULL if there is
 685 * no such master registered.
 686 */
 687struct spi_master *spi_busnum_to_master(u16 bus_num)
 688{
 689	struct device		*dev;
 690	struct spi_master	*master = NULL;
 691
 692	dev = class_find_device(&spi_master_class, NULL, &bus_num,
 693				__spi_master_match);
 694	if (dev)
 695		master = container_of(dev, struct spi_master, dev);
 696	/* reference got in class_find_device */
 697	return master;
 698}
 699EXPORT_SYMBOL_GPL(spi_busnum_to_master);
 700
 701
 702/*-------------------------------------------------------------------------*/
 703
 704/* Core methods for SPI master protocol drivers.  Some of the
 705 * other core methods are currently defined as inline functions.
 706 */
 707
 708/**
 709 * spi_setup - setup SPI mode and clock rate
 710 * @spi: the device whose settings are being modified
 711 * Context: can sleep, and no requests are queued to the device
 712 *
 713 * SPI protocol drivers may need to update the transfer mode if the
 714 * device doesn't work with its default.  They may likewise need
 715 * to update clock rates or word sizes from initial values.  This function
 716 * changes those settings, and must be called from a context that can sleep.
 717 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 718 * effect the next time the device is selected and data is transferred to
 719 * or from it.  When this function returns, the spi device is deselected.
 720 *
 721 * Note that this call will fail if the protocol driver specifies an option
 722 * that the underlying controller or its driver does not support.  For
 723 * example, not all hardware supports wire transfers using nine bit words,
 724 * LSB-first wire encoding, or active-high chipselects.
 725 */
 726int spi_setup(struct spi_device *spi)
 727{
 728	unsigned	bad_bits;
 729	int		status;
 730
 
 
 
 
 
 
 
 
 
 
 
 
 
 731	/* help drivers fail *cleanly* when they need options
 732	 * that aren't supported with their current master
 733	 */
 734	bad_bits = spi->mode & ~spi->master->mode_bits;
 
 
 
 
 
 
 
 
 
 735	if (bad_bits) {
 736		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
 737			bad_bits);
 738		return -EINVAL;
 739	}
 740
 741	if (!spi->bits_per_word)
 742		spi->bits_per_word = 8;
 743
 744	status = spi->master->setup(spi);
 
 
 
 
 745
 746	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
 747				"%u bits/w, %u Hz max --> %d\n",
 748			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
 749			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
 750			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
 751			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
 752			(spi->mode & SPI_LOOP) ? "loopback, " : "",
 753			spi->bits_per_word, spi->max_speed_hz,
 754			status);
 755
 756	return status;
 757}
 758EXPORT_SYMBOL_GPL(spi_setup);
 759
 760static int __spi_async(struct spi_device *spi, struct spi_message *message)
 761{
 762	struct spi_master *master = spi->master;
 
 
 
 
 
 763
 764	/* Half-duplex links include original MicroWire, and ones with
 765	 * only one data pin like SPI_3WIRE (switches direction) or where
 766	 * either MOSI or MISO is missing.  They can also be caused by
 767	 * software limitations.
 768	 */
 769	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
 770			|| (spi->mode & SPI_3WIRE)) {
 771		struct spi_transfer *xfer;
 772		unsigned flags = master->flags;
 773
 774		list_for_each_entry(xfer, &message->transfers, transfer_list) {
 775			if (xfer->rx_buf && xfer->tx_buf)
 776				return -EINVAL;
 777			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
 778				return -EINVAL;
 779			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
 780				return -EINVAL;
 781		}
 782	}
 783
 784	message->spi = spi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 785	message->status = -EINPROGRESS;
 
 
 
 
 
 
 
 
 
 
 
 
 786	return master->transfer(spi, message);
 787}
 788
 789/**
 790 * spi_async - asynchronous SPI transfer
 791 * @spi: device with which data will be exchanged
 792 * @message: describes the data transfers, including completion callback
 793 * Context: any (irqs may be blocked, etc)
 794 *
 795 * This call may be used in_irq and other contexts which can't sleep,
 796 * as well as from task contexts which can sleep.
 797 *
 798 * The completion callback is invoked in a context which can't sleep.
 799 * Before that invocation, the value of message->status is undefined.
 800 * When the callback is issued, message->status holds either zero (to
 801 * indicate complete success) or a negative error code.  After that
 802 * callback returns, the driver which issued the transfer request may
 803 * deallocate the associated memory; it's no longer in use by any SPI
 804 * core or controller driver code.
 805 *
 806 * Note that although all messages to a spi_device are handled in
 807 * FIFO order, messages may go to different devices in other orders.
 808 * Some device might be higher priority, or have various "hard" access
 809 * time requirements, for example.
 810 *
 811 * On detection of any fault during the transfer, processing of
 812 * the entire message is aborted, and the device is deselected.
 813 * Until returning from the associated message completion callback,
 814 * no other spi_message queued to that device will be processed.
 815 * (This rule applies equally to all the synchronous transfer calls,
 816 * which are wrappers around this core asynchronous primitive.)
 817 */
 818int spi_async(struct spi_device *spi, struct spi_message *message)
 819{
 820	struct spi_master *master = spi->master;
 821	int ret;
 822	unsigned long flags;
 823
 
 
 
 
 824	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 825
 826	if (master->bus_lock_flag)
 827		ret = -EBUSY;
 828	else
 829		ret = __spi_async(spi, message);
 830
 831	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 832
 833	return ret;
 834}
 835EXPORT_SYMBOL_GPL(spi_async);
 836
 837/**
 838 * spi_async_locked - version of spi_async with exclusive bus usage
 839 * @spi: device with which data will be exchanged
 840 * @message: describes the data transfers, including completion callback
 841 * Context: any (irqs may be blocked, etc)
 842 *
 843 * This call may be used in_irq and other contexts which can't sleep,
 844 * as well as from task contexts which can sleep.
 845 *
 846 * The completion callback is invoked in a context which can't sleep.
 847 * Before that invocation, the value of message->status is undefined.
 848 * When the callback is issued, message->status holds either zero (to
 849 * indicate complete success) or a negative error code.  After that
 850 * callback returns, the driver which issued the transfer request may
 851 * deallocate the associated memory; it's no longer in use by any SPI
 852 * core or controller driver code.
 853 *
 854 * Note that although all messages to a spi_device are handled in
 855 * FIFO order, messages may go to different devices in other orders.
 856 * Some device might be higher priority, or have various "hard" access
 857 * time requirements, for example.
 858 *
 859 * On detection of any fault during the transfer, processing of
 860 * the entire message is aborted, and the device is deselected.
 861 * Until returning from the associated message completion callback,
 862 * no other spi_message queued to that device will be processed.
 863 * (This rule applies equally to all the synchronous transfer calls,
 864 * which are wrappers around this core asynchronous primitive.)
 865 */
 866int spi_async_locked(struct spi_device *spi, struct spi_message *message)
 867{
 868	struct spi_master *master = spi->master;
 869	int ret;
 870	unsigned long flags;
 871
 
 
 
 
 872	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 873
 874	ret = __spi_async(spi, message);
 875
 876	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 877
 878	return ret;
 879
 880}
 881EXPORT_SYMBOL_GPL(spi_async_locked);
 882
 883
 884/*-------------------------------------------------------------------------*/
 885
 886/* Utility methods for SPI master protocol drivers, layered on
 887 * top of the core.  Some other utility methods are defined as
 888 * inline functions.
 889 */
 890
 891static void spi_complete(void *arg)
 892{
 893	complete(arg);
 894}
 895
 896static int __spi_sync(struct spi_device *spi, struct spi_message *message,
 897		      int bus_locked)
 898{
 899	DECLARE_COMPLETION_ONSTACK(done);
 900	int status;
 901	struct spi_master *master = spi->master;
 902
 903	message->complete = spi_complete;
 904	message->context = &done;
 905
 906	if (!bus_locked)
 907		mutex_lock(&master->bus_lock_mutex);
 908
 909	status = spi_async_locked(spi, message);
 910
 911	if (!bus_locked)
 912		mutex_unlock(&master->bus_lock_mutex);
 913
 914	if (status == 0) {
 915		wait_for_completion(&done);
 916		status = message->status;
 917	}
 918	message->context = NULL;
 919	return status;
 920}
 921
 922/**
 923 * spi_sync - blocking/synchronous SPI data transfers
 924 * @spi: device with which data will be exchanged
 925 * @message: describes the data transfers
 926 * Context: can sleep
 927 *
 928 * This call may only be used from a context that may sleep.  The sleep
 929 * is non-interruptible, and has no timeout.  Low-overhead controller
 930 * drivers may DMA directly into and out of the message buffers.
 931 *
 932 * Note that the SPI device's chip select is active during the message,
 933 * and then is normally disabled between messages.  Drivers for some
 934 * frequently-used devices may want to minimize costs of selecting a chip,
 935 * by leaving it selected in anticipation that the next message will go
 936 * to the same chip.  (That may increase power usage.)
 937 *
 938 * Also, the caller is guaranteeing that the memory associated with the
 939 * message will not be freed before this call returns.
 940 *
 941 * It returns zero on success, else a negative error code.
 942 */
 943int spi_sync(struct spi_device *spi, struct spi_message *message)
 944{
 945	return __spi_sync(spi, message, 0);
 946}
 947EXPORT_SYMBOL_GPL(spi_sync);
 948
 949/**
 950 * spi_sync_locked - version of spi_sync with exclusive bus usage
 951 * @spi: device with which data will be exchanged
 952 * @message: describes the data transfers
 953 * Context: can sleep
 954 *
 955 * This call may only be used from a context that may sleep.  The sleep
 956 * is non-interruptible, and has no timeout.  Low-overhead controller
 957 * drivers may DMA directly into and out of the message buffers.
 958 *
 959 * This call should be used by drivers that require exclusive access to the
 960 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
 961 * be released by a spi_bus_unlock call when the exclusive access is over.
 962 *
 963 * It returns zero on success, else a negative error code.
 964 */
 965int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
 966{
 967	return __spi_sync(spi, message, 1);
 968}
 969EXPORT_SYMBOL_GPL(spi_sync_locked);
 970
 971/**
 972 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
 973 * @master: SPI bus master that should be locked for exclusive bus access
 974 * Context: can sleep
 975 *
 976 * This call may only be used from a context that may sleep.  The sleep
 977 * is non-interruptible, and has no timeout.
 978 *
 979 * This call should be used by drivers that require exclusive access to the
 980 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
 981 * exclusive access is over. Data transfer must be done by spi_sync_locked
 982 * and spi_async_locked calls when the SPI bus lock is held.
 983 *
 984 * It returns zero on success, else a negative error code.
 985 */
 986int spi_bus_lock(struct spi_master *master)
 987{
 988	unsigned long flags;
 989
 990	mutex_lock(&master->bus_lock_mutex);
 991
 992	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
 993	master->bus_lock_flag = 1;
 994	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
 995
 996	/* mutex remains locked until spi_bus_unlock is called */
 997
 998	return 0;
 999}
1000EXPORT_SYMBOL_GPL(spi_bus_lock);
1001
1002/**
1003 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1004 * @master: SPI bus master that was locked for exclusive bus access
1005 * Context: can sleep
1006 *
1007 * This call may only be used from a context that may sleep.  The sleep
1008 * is non-interruptible, and has no timeout.
1009 *
1010 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1011 * call.
1012 *
1013 * It returns zero on success, else a negative error code.
1014 */
1015int spi_bus_unlock(struct spi_master *master)
1016{
1017	master->bus_lock_flag = 0;
1018
1019	mutex_unlock(&master->bus_lock_mutex);
1020
1021	return 0;
1022}
1023EXPORT_SYMBOL_GPL(spi_bus_unlock);
1024
1025/* portable code must never pass more than 32 bytes */
1026#define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
1027
1028static u8	*buf;
1029
1030/**
1031 * spi_write_then_read - SPI synchronous write followed by read
1032 * @spi: device with which data will be exchanged
1033 * @txbuf: data to be written (need not be dma-safe)
1034 * @n_tx: size of txbuf, in bytes
1035 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1036 * @n_rx: size of rxbuf, in bytes
1037 * Context: can sleep
1038 *
1039 * This performs a half duplex MicroWire style transaction with the
1040 * device, sending txbuf and then reading rxbuf.  The return value
1041 * is zero for success, else a negative errno status code.
1042 * This call may only be used from a context that may sleep.
1043 *
1044 * Parameters to this routine are always copied using a small buffer;
1045 * portable code should never use this for more than 32 bytes.
1046 * Performance-sensitive or bulk transfer code should instead use
1047 * spi_{async,sync}() calls with dma-safe buffers.
1048 */
1049int spi_write_then_read(struct spi_device *spi,
1050		const void *txbuf, unsigned n_tx,
1051		void *rxbuf, unsigned n_rx)
1052{
1053	static DEFINE_MUTEX(lock);
1054
1055	int			status;
1056	struct spi_message	message;
1057	struct spi_transfer	x[2];
1058	u8			*local_buf;
1059
1060	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
1061	 * (as a pure convenience thing), but we can keep heap costs
1062	 * out of the hot path ...
 
1063	 */
1064	if ((n_tx + n_rx) > SPI_BUFSIZ)
1065		return -EINVAL;
 
 
 
 
 
 
1066
1067	spi_message_init(&message);
1068	memset(x, 0, sizeof x);
1069	if (n_tx) {
1070		x[0].len = n_tx;
1071		spi_message_add_tail(&x[0], &message);
1072	}
1073	if (n_rx) {
1074		x[1].len = n_rx;
1075		spi_message_add_tail(&x[1], &message);
1076	}
1077
1078	/* ... unless someone else is using the pre-allocated buffer */
1079	if (!mutex_trylock(&lock)) {
1080		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1081		if (!local_buf)
1082			return -ENOMEM;
1083	} else
1084		local_buf = buf;
1085
1086	memcpy(local_buf, txbuf, n_tx);
1087	x[0].tx_buf = local_buf;
1088	x[1].rx_buf = local_buf + n_tx;
1089
1090	/* do the i/o */
1091	status = spi_sync(spi, &message);
1092	if (status == 0)
1093		memcpy(rxbuf, x[1].rx_buf, n_rx);
1094
1095	if (x[0].tx_buf == buf)
1096		mutex_unlock(&lock);
1097	else
1098		kfree(local_buf);
1099
1100	return status;
1101}
1102EXPORT_SYMBOL_GPL(spi_write_then_read);
1103
1104/*-------------------------------------------------------------------------*/
1105
1106static int __init spi_init(void)
1107{
1108	int	status;
1109
1110	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1111	if (!buf) {
1112		status = -ENOMEM;
1113		goto err0;
1114	}
1115
1116	status = bus_register(&spi_bus_type);
1117	if (status < 0)
1118		goto err1;
1119
1120	status = class_register(&spi_master_class);
1121	if (status < 0)
1122		goto err2;
1123	return 0;
1124
1125err2:
1126	bus_unregister(&spi_bus_type);
1127err1:
1128	kfree(buf);
1129	buf = NULL;
1130err0:
1131	return status;
1132}
1133
1134/* board_info is normally registered in arch_initcall(),
1135 * but even essential drivers wait till later
1136 *
1137 * REVISIT only boardinfo really needs static linking. the rest (device and
1138 * driver registration) _could_ be dynamically linked (modular) ... costs
1139 * include needing to have boardinfo data structures be much more public.
1140 */
1141postcore_initcall(spi_init);
1142
v3.15
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/kmod.h>
  24#include <linux/device.h>
  25#include <linux/init.h>
  26#include <linux/cache.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/dmaengine.h>
  29#include <linux/mutex.h>
  30#include <linux/of_device.h>
  31#include <linux/of_irq.h>
  32#include <linux/slab.h>
  33#include <linux/mod_devicetable.h>
  34#include <linux/spi/spi.h>
  35#include <linux/of_gpio.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/export.h>
  38#include <linux/sched/rt.h>
  39#include <linux/delay.h>
  40#include <linux/kthread.h>
  41#include <linux/ioport.h>
  42#include <linux/acpi.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/spi.h>
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	/* spi masters may cleanup for released devices */
  52	if (spi->master->cleanup)
  53		spi->master->cleanup(spi);
  54
  55	spi_master_put(spi->master);
  56	kfree(spi);
  57}
  58
  59static ssize_t
  60modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  61{
  62	const struct spi_device	*spi = to_spi_device(dev);
  63	int len;
  64
  65	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  66	if (len != -ENODEV)
  67		return len;
  68
  69	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  70}
  71static DEVICE_ATTR_RO(modalias);
  72
  73static struct attribute *spi_dev_attrs[] = {
  74	&dev_attr_modalias.attr,
  75	NULL,
  76};
  77ATTRIBUTE_GROUPS(spi_dev);
  78
  79/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  80 * and the sysfs version makes coldplug work too.
  81 */
  82
  83static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  84						const struct spi_device *sdev)
  85{
  86	while (id->name[0]) {
  87		if (!strcmp(sdev->modalias, id->name))
  88			return id;
  89		id++;
  90	}
  91	return NULL;
  92}
  93
  94const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  95{
  96	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  97
  98	return spi_match_id(sdrv->id_table, sdev);
  99}
 100EXPORT_SYMBOL_GPL(spi_get_device_id);
 101
 102static int spi_match_device(struct device *dev, struct device_driver *drv)
 103{
 104	const struct spi_device	*spi = to_spi_device(dev);
 105	const struct spi_driver	*sdrv = to_spi_driver(drv);
 106
 107	/* Attempt an OF style match */
 108	if (of_driver_match_device(dev, drv))
 109		return 1;
 110
 111	/* Then try ACPI */
 112	if (acpi_driver_match_device(dev, drv))
 113		return 1;
 114
 115	if (sdrv->id_table)
 116		return !!spi_match_id(sdrv->id_table, spi);
 117
 118	return strcmp(spi->modalias, drv->name) == 0;
 119}
 120
 121static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 122{
 123	const struct spi_device		*spi = to_spi_device(dev);
 124	int rc;
 125
 126	rc = acpi_device_uevent_modalias(dev, env);
 127	if (rc != -ENODEV)
 128		return rc;
 129
 130	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 131	return 0;
 132}
 133
 134#ifdef CONFIG_PM_SLEEP
 135static int spi_legacy_suspend(struct device *dev, pm_message_t message)
 136{
 137	int			value = 0;
 138	struct spi_driver	*drv = to_spi_driver(dev->driver);
 139
 140	/* suspend will stop irqs and dma; no more i/o */
 141	if (drv) {
 142		if (drv->suspend)
 143			value = drv->suspend(to_spi_device(dev), message);
 144		else
 145			dev_dbg(dev, "... can't suspend\n");
 146	}
 147	return value;
 148}
 149
 150static int spi_legacy_resume(struct device *dev)
 151{
 152	int			value = 0;
 153	struct spi_driver	*drv = to_spi_driver(dev->driver);
 154
 155	/* resume may restart the i/o queue */
 156	if (drv) {
 157		if (drv->resume)
 158			value = drv->resume(to_spi_device(dev));
 159		else
 160			dev_dbg(dev, "... can't resume\n");
 161	}
 162	return value;
 163}
 164
 165static int spi_pm_suspend(struct device *dev)
 166{
 167	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 168
 169	if (pm)
 170		return pm_generic_suspend(dev);
 171	else
 172		return spi_legacy_suspend(dev, PMSG_SUSPEND);
 173}
 174
 175static int spi_pm_resume(struct device *dev)
 176{
 177	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 178
 179	if (pm)
 180		return pm_generic_resume(dev);
 181	else
 182		return spi_legacy_resume(dev);
 183}
 184
 185static int spi_pm_freeze(struct device *dev)
 186{
 187	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 188
 189	if (pm)
 190		return pm_generic_freeze(dev);
 191	else
 192		return spi_legacy_suspend(dev, PMSG_FREEZE);
 193}
 194
 195static int spi_pm_thaw(struct device *dev)
 196{
 197	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 198
 199	if (pm)
 200		return pm_generic_thaw(dev);
 201	else
 202		return spi_legacy_resume(dev);
 203}
 204
 205static int spi_pm_poweroff(struct device *dev)
 206{
 207	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 208
 209	if (pm)
 210		return pm_generic_poweroff(dev);
 211	else
 212		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
 213}
 214
 215static int spi_pm_restore(struct device *dev)
 216{
 217	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
 218
 219	if (pm)
 220		return pm_generic_restore(dev);
 221	else
 222		return spi_legacy_resume(dev);
 223}
 224#else
 225#define spi_pm_suspend	NULL
 226#define spi_pm_resume	NULL
 227#define spi_pm_freeze	NULL
 228#define spi_pm_thaw	NULL
 229#define spi_pm_poweroff	NULL
 230#define spi_pm_restore	NULL
 231#endif
 232
 233static const struct dev_pm_ops spi_pm = {
 234	.suspend = spi_pm_suspend,
 235	.resume = spi_pm_resume,
 236	.freeze = spi_pm_freeze,
 237	.thaw = spi_pm_thaw,
 238	.poweroff = spi_pm_poweroff,
 239	.restore = spi_pm_restore,
 240	SET_RUNTIME_PM_OPS(
 241		pm_generic_runtime_suspend,
 242		pm_generic_runtime_resume,
 243		NULL
 244	)
 245};
 246
 247struct bus_type spi_bus_type = {
 248	.name		= "spi",
 249	.dev_groups	= spi_dev_groups,
 250	.match		= spi_match_device,
 251	.uevent		= spi_uevent,
 252	.pm		= &spi_pm,
 253};
 254EXPORT_SYMBOL_GPL(spi_bus_type);
 255
 256
 257static int spi_drv_probe(struct device *dev)
 258{
 259	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 260	int ret;
 261
 262	acpi_dev_pm_attach(dev, true);
 263	ret = sdrv->probe(to_spi_device(dev));
 264	if (ret)
 265		acpi_dev_pm_detach(dev, true);
 266
 267	return ret;
 268}
 269
 270static int spi_drv_remove(struct device *dev)
 271{
 272	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 273	int ret;
 274
 275	ret = sdrv->remove(to_spi_device(dev));
 276	acpi_dev_pm_detach(dev, true);
 277
 278	return ret;
 279}
 280
 281static void spi_drv_shutdown(struct device *dev)
 282{
 283	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 284
 285	sdrv->shutdown(to_spi_device(dev));
 286}
 287
 288/**
 289 * spi_register_driver - register a SPI driver
 290 * @sdrv: the driver to register
 291 * Context: can sleep
 292 */
 293int spi_register_driver(struct spi_driver *sdrv)
 294{
 295	sdrv->driver.bus = &spi_bus_type;
 296	if (sdrv->probe)
 297		sdrv->driver.probe = spi_drv_probe;
 298	if (sdrv->remove)
 299		sdrv->driver.remove = spi_drv_remove;
 300	if (sdrv->shutdown)
 301		sdrv->driver.shutdown = spi_drv_shutdown;
 302	return driver_register(&sdrv->driver);
 303}
 304EXPORT_SYMBOL_GPL(spi_register_driver);
 305
 306/*-------------------------------------------------------------------------*/
 307
 308/* SPI devices should normally not be created by SPI device drivers; that
 309 * would make them board-specific.  Similarly with SPI master drivers.
 310 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 311 * with other readonly (flashable) information about mainboard devices.
 312 */
 313
 314struct boardinfo {
 315	struct list_head	list;
 316	struct spi_board_info	board_info;
 317};
 318
 319static LIST_HEAD(board_list);
 320static LIST_HEAD(spi_master_list);
 321
 322/*
 323 * Used to protect add/del opertion for board_info list and
 324 * spi_master list, and their matching process
 325 */
 326static DEFINE_MUTEX(board_lock);
 327
 328/**
 329 * spi_alloc_device - Allocate a new SPI device
 330 * @master: Controller to which device is connected
 331 * Context: can sleep
 332 *
 333 * Allows a driver to allocate and initialize a spi_device without
 334 * registering it immediately.  This allows a driver to directly
 335 * fill the spi_device with device parameters before calling
 336 * spi_add_device() on it.
 337 *
 338 * Caller is responsible to call spi_add_device() on the returned
 339 * spi_device structure to add it to the SPI master.  If the caller
 340 * needs to discard the spi_device without adding it, then it should
 341 * call spi_dev_put() on it.
 342 *
 343 * Returns a pointer to the new device, or NULL.
 344 */
 345struct spi_device *spi_alloc_device(struct spi_master *master)
 346{
 347	struct spi_device	*spi;
 348	struct device		*dev = master->dev.parent;
 349
 350	if (!spi_master_get(master))
 351		return NULL;
 352
 353	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 354	if (!spi) {
 355		dev_err(dev, "cannot alloc spi_device\n");
 356		spi_master_put(master);
 357		return NULL;
 358	}
 359
 360	spi->master = master;
 361	spi->dev.parent = &master->dev;
 362	spi->dev.bus = &spi_bus_type;
 363	spi->dev.release = spidev_release;
 364	spi->cs_gpio = -ENOENT;
 365	device_initialize(&spi->dev);
 366	return spi;
 367}
 368EXPORT_SYMBOL_GPL(spi_alloc_device);
 369
 370static void spi_dev_set_name(struct spi_device *spi)
 371{
 372	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 373
 374	if (adev) {
 375		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 376		return;
 377	}
 378
 379	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 380		     spi->chip_select);
 381}
 382
 383static int spi_dev_check(struct device *dev, void *data)
 384{
 385	struct spi_device *spi = to_spi_device(dev);
 386	struct spi_device *new_spi = data;
 387
 388	if (spi->master == new_spi->master &&
 389	    spi->chip_select == new_spi->chip_select)
 390		return -EBUSY;
 391	return 0;
 392}
 393
 394/**
 395 * spi_add_device - Add spi_device allocated with spi_alloc_device
 396 * @spi: spi_device to register
 397 *
 398 * Companion function to spi_alloc_device.  Devices allocated with
 399 * spi_alloc_device can be added onto the spi bus with this function.
 400 *
 401 * Returns 0 on success; negative errno on failure
 402 */
 403int spi_add_device(struct spi_device *spi)
 404{
 405	static DEFINE_MUTEX(spi_add_lock);
 406	struct spi_master *master = spi->master;
 407	struct device *dev = master->dev.parent;
 408	int status;
 409
 410	/* Chipselects are numbered 0..max; validate. */
 411	if (spi->chip_select >= master->num_chipselect) {
 412		dev_err(dev, "cs%d >= max %d\n",
 413			spi->chip_select,
 414			master->num_chipselect);
 415		return -EINVAL;
 416	}
 417
 418	/* Set the bus ID string */
 419	spi_dev_set_name(spi);
 
 
 420
 421	/* We need to make sure there's no other device with this
 422	 * chipselect **BEFORE** we call setup(), else we'll trash
 423	 * its configuration.  Lock against concurrent add() calls.
 424	 */
 425	mutex_lock(&spi_add_lock);
 426
 427	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 428	if (status) {
 429		dev_err(dev, "chipselect %d already in use\n",
 430				spi->chip_select);
 
 
 431		goto done;
 432	}
 433
 434	if (master->cs_gpios)
 435		spi->cs_gpio = master->cs_gpios[spi->chip_select];
 436
 437	/* Drivers may modify this initial i/o setup, but will
 438	 * normally rely on the device being setup.  Devices
 439	 * using SPI_CS_HIGH can't coexist well otherwise...
 440	 */
 441	status = spi_setup(spi);
 442	if (status < 0) {
 443		dev_err(dev, "can't setup %s, status %d\n",
 444				dev_name(&spi->dev), status);
 445		goto done;
 446	}
 447
 448	/* Device may be bound to an active driver when this returns */
 449	status = device_add(&spi->dev);
 450	if (status < 0)
 451		dev_err(dev, "can't add %s, status %d\n",
 452				dev_name(&spi->dev), status);
 453	else
 454		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 455
 456done:
 457	mutex_unlock(&spi_add_lock);
 458	return status;
 459}
 460EXPORT_SYMBOL_GPL(spi_add_device);
 461
 462/**
 463 * spi_new_device - instantiate one new SPI device
 464 * @master: Controller to which device is connected
 465 * @chip: Describes the SPI device
 466 * Context: can sleep
 467 *
 468 * On typical mainboards, this is purely internal; and it's not needed
 469 * after board init creates the hard-wired devices.  Some development
 470 * platforms may not be able to use spi_register_board_info though, and
 471 * this is exported so that for example a USB or parport based adapter
 472 * driver could add devices (which it would learn about out-of-band).
 473 *
 474 * Returns the new device, or NULL.
 475 */
 476struct spi_device *spi_new_device(struct spi_master *master,
 477				  struct spi_board_info *chip)
 478{
 479	struct spi_device	*proxy;
 480	int			status;
 481
 482	/* NOTE:  caller did any chip->bus_num checks necessary.
 483	 *
 484	 * Also, unless we change the return value convention to use
 485	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 486	 * suggests syslogged diagnostics are best here (ugh).
 487	 */
 488
 489	proxy = spi_alloc_device(master);
 490	if (!proxy)
 491		return NULL;
 492
 493	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 494
 495	proxy->chip_select = chip->chip_select;
 496	proxy->max_speed_hz = chip->max_speed_hz;
 497	proxy->mode = chip->mode;
 498	proxy->irq = chip->irq;
 499	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 500	proxy->dev.platform_data = (void *) chip->platform_data;
 501	proxy->controller_data = chip->controller_data;
 502	proxy->controller_state = NULL;
 503
 504	status = spi_add_device(proxy);
 505	if (status < 0) {
 506		spi_dev_put(proxy);
 507		return NULL;
 508	}
 509
 510	return proxy;
 511}
 512EXPORT_SYMBOL_GPL(spi_new_device);
 513
 514static void spi_match_master_to_boardinfo(struct spi_master *master,
 515				struct spi_board_info *bi)
 516{
 517	struct spi_device *dev;
 518
 519	if (master->bus_num != bi->bus_num)
 520		return;
 521
 522	dev = spi_new_device(master, bi);
 523	if (!dev)
 524		dev_err(master->dev.parent, "can't create new device for %s\n",
 525			bi->modalias);
 526}
 527
 528/**
 529 * spi_register_board_info - register SPI devices for a given board
 530 * @info: array of chip descriptors
 531 * @n: how many descriptors are provided
 532 * Context: can sleep
 533 *
 534 * Board-specific early init code calls this (probably during arch_initcall)
 535 * with segments of the SPI device table.  Any device nodes are created later,
 536 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 537 * this table of devices forever, so that reloading a controller driver will
 538 * not make Linux forget about these hard-wired devices.
 539 *
 540 * Other code can also call this, e.g. a particular add-on board might provide
 541 * SPI devices through its expansion connector, so code initializing that board
 542 * would naturally declare its SPI devices.
 543 *
 544 * The board info passed can safely be __initdata ... but be careful of
 545 * any embedded pointers (platform_data, etc), they're copied as-is.
 546 */
 547int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 
 548{
 549	struct boardinfo *bi;
 550	int i;
 551
 552	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 553	if (!bi)
 554		return -ENOMEM;
 555
 556	for (i = 0; i < n; i++, bi++, info++) {
 557		struct spi_master *master;
 558
 559		memcpy(&bi->board_info, info, sizeof(*info));
 560		mutex_lock(&board_lock);
 561		list_add_tail(&bi->list, &board_list);
 562		list_for_each_entry(master, &spi_master_list, list)
 563			spi_match_master_to_boardinfo(master, &bi->board_info);
 564		mutex_unlock(&board_lock);
 565	}
 566
 567	return 0;
 568}
 569
 570/*-------------------------------------------------------------------------*/
 571
 572static void spi_set_cs(struct spi_device *spi, bool enable)
 573{
 574	if (spi->mode & SPI_CS_HIGH)
 575		enable = !enable;
 576
 577	if (spi->cs_gpio >= 0)
 578		gpio_set_value(spi->cs_gpio, !enable);
 579	else if (spi->master->set_cs)
 580		spi->master->set_cs(spi, !enable);
 581}
 582
 583#ifdef CONFIG_HAS_DMA
 584static int spi_map_buf(struct spi_master *master, struct device *dev,
 585		       struct sg_table *sgt, void *buf, size_t len,
 586		       enum dma_data_direction dir)
 587{
 588	const bool vmalloced_buf = is_vmalloc_addr(buf);
 589	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
 590	const int sgs = DIV_ROUND_UP(len, desc_len);
 591	struct page *vm_page;
 592	void *sg_buf;
 593	size_t min;
 594	int i, ret;
 595
 596	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 597	if (ret != 0)
 598		return ret;
 599
 600	for (i = 0; i < sgs; i++) {
 601		min = min_t(size_t, len, desc_len);
 602
 603		if (vmalloced_buf) {
 604			vm_page = vmalloc_to_page(buf);
 605			if (!vm_page) {
 606				sg_free_table(sgt);
 607				return -ENOMEM;
 608			}
 609			sg_buf = page_address(vm_page) +
 610				((size_t)buf & ~PAGE_MASK);
 611		} else {
 612			sg_buf = buf;
 613		}
 614
 615		sg_set_buf(&sgt->sgl[i], sg_buf, min);
 616
 617		buf += min;
 618		len -= min;
 619	}
 620
 621	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 622	if (ret < 0) {
 623		sg_free_table(sgt);
 624		return ret;
 625	}
 626
 627	sgt->nents = ret;
 628
 629	return 0;
 630}
 631
 632static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 633			  struct sg_table *sgt, enum dma_data_direction dir)
 634{
 635	if (sgt->orig_nents) {
 636		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 637		sg_free_table(sgt);
 638	}
 639}
 640
 641static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 642{
 643	struct device *tx_dev, *rx_dev;
 644	struct spi_transfer *xfer;
 645	int ret;
 646
 647	if (!master->can_dma)
 648		return 0;
 649
 650	tx_dev = &master->dma_tx->dev->device;
 651	rx_dev = &master->dma_rx->dev->device;
 652
 653	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 654		if (!master->can_dma(master, msg->spi, xfer))
 655			continue;
 656
 657		if (xfer->tx_buf != NULL) {
 658			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 659					  (void *)xfer->tx_buf, xfer->len,
 660					  DMA_TO_DEVICE);
 661			if (ret != 0)
 662				return ret;
 663		}
 664
 665		if (xfer->rx_buf != NULL) {
 666			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 667					  xfer->rx_buf, xfer->len,
 668					  DMA_FROM_DEVICE);
 669			if (ret != 0) {
 670				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 671					      DMA_TO_DEVICE);
 672				return ret;
 673			}
 674		}
 675	}
 676
 677	master->cur_msg_mapped = true;
 678
 679	return 0;
 680}
 681
 682static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 683{
 684	struct spi_transfer *xfer;
 685	struct device *tx_dev, *rx_dev;
 686
 687	if (!master->cur_msg_mapped || !master->can_dma)
 688		return 0;
 689
 690	tx_dev = &master->dma_tx->dev->device;
 691	rx_dev = &master->dma_rx->dev->device;
 692
 693	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 694		if (!master->can_dma(master, msg->spi, xfer))
 695			continue;
 696
 697		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 698		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 699	}
 700
 701	return 0;
 702}
 703#else /* !CONFIG_HAS_DMA */
 704static inline int __spi_map_msg(struct spi_master *master,
 705				struct spi_message *msg)
 706{
 707	return 0;
 708}
 709
 710static inline int spi_unmap_msg(struct spi_master *master,
 711				struct spi_message *msg)
 712{
 713	return 0;
 714}
 715#endif /* !CONFIG_HAS_DMA */
 716
 717static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 718{
 719	struct spi_transfer *xfer;
 720	void *tmp;
 721	unsigned int max_tx, max_rx;
 722
 723	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 724		max_tx = 0;
 725		max_rx = 0;
 726
 727		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 728			if ((master->flags & SPI_MASTER_MUST_TX) &&
 729			    !xfer->tx_buf)
 730				max_tx = max(xfer->len, max_tx);
 731			if ((master->flags & SPI_MASTER_MUST_RX) &&
 732			    !xfer->rx_buf)
 733				max_rx = max(xfer->len, max_rx);
 734		}
 735
 736		if (max_tx) {
 737			tmp = krealloc(master->dummy_tx, max_tx,
 738				       GFP_KERNEL | GFP_DMA);
 739			if (!tmp)
 740				return -ENOMEM;
 741			master->dummy_tx = tmp;
 742			memset(tmp, 0, max_tx);
 743		}
 744
 745		if (max_rx) {
 746			tmp = krealloc(master->dummy_rx, max_rx,
 747				       GFP_KERNEL | GFP_DMA);
 748			if (!tmp)
 749				return -ENOMEM;
 750			master->dummy_rx = tmp;
 751		}
 752
 753		if (max_tx || max_rx) {
 754			list_for_each_entry(xfer, &msg->transfers,
 755					    transfer_list) {
 756				if (!xfer->tx_buf)
 757					xfer->tx_buf = master->dummy_tx;
 758				if (!xfer->rx_buf)
 759					xfer->rx_buf = master->dummy_rx;
 760			}
 761		}
 762	}
 763
 764	return __spi_map_msg(master, msg);
 765}
 766
 767/*
 768 * spi_transfer_one_message - Default implementation of transfer_one_message()
 769 *
 770 * This is a standard implementation of transfer_one_message() for
 771 * drivers which impelment a transfer_one() operation.  It provides
 772 * standard handling of delays and chip select management.
 773 */
 774static int spi_transfer_one_message(struct spi_master *master,
 775				    struct spi_message *msg)
 776{
 777	struct spi_transfer *xfer;
 778	bool keep_cs = false;
 779	int ret = 0;
 780	int ms = 1;
 781
 782	spi_set_cs(msg->spi, true);
 783
 784	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 785		trace_spi_transfer_start(msg, xfer);
 786
 787		reinit_completion(&master->xfer_completion);
 788
 789		ret = master->transfer_one(master, msg->spi, xfer);
 790		if (ret < 0) {
 791			dev_err(&msg->spi->dev,
 792				"SPI transfer failed: %d\n", ret);
 793			goto out;
 794		}
 795
 796		if (ret > 0) {
 797			ret = 0;
 798			ms = xfer->len * 8 * 1000 / xfer->speed_hz;
 799			ms += 10; /* some tolerance */
 800
 801			ms = wait_for_completion_timeout(&master->xfer_completion,
 802							 msecs_to_jiffies(ms));
 803		}
 804
 805		if (ms == 0) {
 806			dev_err(&msg->spi->dev, "SPI transfer timed out\n");
 807			msg->status = -ETIMEDOUT;
 808		}
 809
 810		trace_spi_transfer_stop(msg, xfer);
 811
 812		if (msg->status != -EINPROGRESS)
 813			goto out;
 814
 815		if (xfer->delay_usecs)
 816			udelay(xfer->delay_usecs);
 817
 818		if (xfer->cs_change) {
 819			if (list_is_last(&xfer->transfer_list,
 820					 &msg->transfers)) {
 821				keep_cs = true;
 822			} else {
 823				spi_set_cs(msg->spi, false);
 824				udelay(10);
 825				spi_set_cs(msg->spi, true);
 826			}
 827		}
 828
 829		msg->actual_length += xfer->len;
 830	}
 831
 832out:
 833	if (ret != 0 || !keep_cs)
 834		spi_set_cs(msg->spi, false);
 835
 836	if (msg->status == -EINPROGRESS)
 837		msg->status = ret;
 838
 839	spi_finalize_current_message(master);
 840
 841	return ret;
 842}
 843
 844/**
 845 * spi_finalize_current_transfer - report completion of a transfer
 846 *
 847 * Called by SPI drivers using the core transfer_one_message()
 848 * implementation to notify it that the current interrupt driven
 849 * transfer has finished and the next one may be scheduled.
 850 */
 851void spi_finalize_current_transfer(struct spi_master *master)
 852{
 853	complete(&master->xfer_completion);
 854}
 855EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
 856
 857/**
 858 * spi_pump_messages - kthread work function which processes spi message queue
 859 * @work: pointer to kthread work struct contained in the master struct
 860 *
 861 * This function checks if there is any spi message in the queue that
 862 * needs processing and if so call out to the driver to initialize hardware
 863 * and transfer each message.
 864 *
 865 */
 866static void spi_pump_messages(struct kthread_work *work)
 867{
 868	struct spi_master *master =
 869		container_of(work, struct spi_master, pump_messages);
 870	unsigned long flags;
 871	bool was_busy = false;
 872	int ret;
 873
 874	/* Lock queue and check for queue work */
 875	spin_lock_irqsave(&master->queue_lock, flags);
 876	if (list_empty(&master->queue) || !master->running) {
 877		if (!master->busy) {
 878			spin_unlock_irqrestore(&master->queue_lock, flags);
 879			return;
 880		}
 881		master->busy = false;
 882		spin_unlock_irqrestore(&master->queue_lock, flags);
 883		kfree(master->dummy_rx);
 884		master->dummy_rx = NULL;
 885		kfree(master->dummy_tx);
 886		master->dummy_tx = NULL;
 887		if (master->unprepare_transfer_hardware &&
 888		    master->unprepare_transfer_hardware(master))
 889			dev_err(&master->dev,
 890				"failed to unprepare transfer hardware\n");
 891		if (master->auto_runtime_pm) {
 892			pm_runtime_mark_last_busy(master->dev.parent);
 893			pm_runtime_put_autosuspend(master->dev.parent);
 894		}
 895		trace_spi_master_idle(master);
 896		return;
 897	}
 898
 899	/* Make sure we are not already running a message */
 900	if (master->cur_msg) {
 901		spin_unlock_irqrestore(&master->queue_lock, flags);
 902		return;
 903	}
 904	/* Extract head of queue */
 905	master->cur_msg =
 906		list_first_entry(&master->queue, struct spi_message, queue);
 907
 908	list_del_init(&master->cur_msg->queue);
 909	if (master->busy)
 910		was_busy = true;
 911	else
 912		master->busy = true;
 913	spin_unlock_irqrestore(&master->queue_lock, flags);
 914
 915	if (!was_busy && master->auto_runtime_pm) {
 916		ret = pm_runtime_get_sync(master->dev.parent);
 917		if (ret < 0) {
 918			dev_err(&master->dev, "Failed to power device: %d\n",
 919				ret);
 920			return;
 921		}
 922	}
 923
 924	if (!was_busy)
 925		trace_spi_master_busy(master);
 926
 927	if (!was_busy && master->prepare_transfer_hardware) {
 928		ret = master->prepare_transfer_hardware(master);
 929		if (ret) {
 930			dev_err(&master->dev,
 931				"failed to prepare transfer hardware\n");
 932
 933			if (master->auto_runtime_pm)
 934				pm_runtime_put(master->dev.parent);
 935			return;
 936		}
 937	}
 938
 939	trace_spi_message_start(master->cur_msg);
 940
 941	if (master->prepare_message) {
 942		ret = master->prepare_message(master, master->cur_msg);
 943		if (ret) {
 944			dev_err(&master->dev,
 945				"failed to prepare message: %d\n", ret);
 946			master->cur_msg->status = ret;
 947			spi_finalize_current_message(master);
 948			return;
 949		}
 950		master->cur_msg_prepared = true;
 951	}
 952
 953	ret = spi_map_msg(master, master->cur_msg);
 954	if (ret) {
 955		master->cur_msg->status = ret;
 956		spi_finalize_current_message(master);
 957		return;
 958	}
 959
 960	ret = master->transfer_one_message(master, master->cur_msg);
 961	if (ret) {
 962		dev_err(&master->dev,
 963			"failed to transfer one message from queue\n");
 964		return;
 965	}
 966}
 967
 968static int spi_init_queue(struct spi_master *master)
 969{
 970	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 971
 972	INIT_LIST_HEAD(&master->queue);
 973	spin_lock_init(&master->queue_lock);
 974
 975	master->running = false;
 976	master->busy = false;
 977
 978	init_kthread_worker(&master->kworker);
 979	master->kworker_task = kthread_run(kthread_worker_fn,
 980					   &master->kworker, "%s",
 981					   dev_name(&master->dev));
 982	if (IS_ERR(master->kworker_task)) {
 983		dev_err(&master->dev, "failed to create message pump task\n");
 984		return -ENOMEM;
 985	}
 986	init_kthread_work(&master->pump_messages, spi_pump_messages);
 987
 988	/*
 989	 * Master config will indicate if this controller should run the
 990	 * message pump with high (realtime) priority to reduce the transfer
 991	 * latency on the bus by minimising the delay between a transfer
 992	 * request and the scheduling of the message pump thread. Without this
 993	 * setting the message pump thread will remain at default priority.
 994	 */
 995	if (master->rt) {
 996		dev_info(&master->dev,
 997			"will run message pump with realtime priority\n");
 998		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
 999	}
1000
1001	return 0;
1002}
1003
1004/**
1005 * spi_get_next_queued_message() - called by driver to check for queued
1006 * messages
1007 * @master: the master to check for queued messages
1008 *
1009 * If there are more messages in the queue, the next message is returned from
1010 * this call.
1011 */
1012struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1013{
1014	struct spi_message *next;
1015	unsigned long flags;
1016
1017	/* get a pointer to the next message, if any */
1018	spin_lock_irqsave(&master->queue_lock, flags);
1019	next = list_first_entry_or_null(&master->queue, struct spi_message,
1020					queue);
1021	spin_unlock_irqrestore(&master->queue_lock, flags);
1022
1023	return next;
1024}
1025EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1026
1027/**
1028 * spi_finalize_current_message() - the current message is complete
1029 * @master: the master to return the message to
1030 *
1031 * Called by the driver to notify the core that the message in the front of the
1032 * queue is complete and can be removed from the queue.
1033 */
1034void spi_finalize_current_message(struct spi_master *master)
1035{
1036	struct spi_message *mesg;
1037	unsigned long flags;
1038	int ret;
1039
1040	spin_lock_irqsave(&master->queue_lock, flags);
1041	mesg = master->cur_msg;
1042	master->cur_msg = NULL;
1043
1044	queue_kthread_work(&master->kworker, &master->pump_messages);
1045	spin_unlock_irqrestore(&master->queue_lock, flags);
1046
1047	spi_unmap_msg(master, mesg);
1048
1049	if (master->cur_msg_prepared && master->unprepare_message) {
1050		ret = master->unprepare_message(master, mesg);
1051		if (ret) {
1052			dev_err(&master->dev,
1053				"failed to unprepare message: %d\n", ret);
1054		}
1055	}
1056	master->cur_msg_prepared = false;
1057
1058	mesg->state = NULL;
1059	if (mesg->complete)
1060		mesg->complete(mesg->context);
1061
1062	trace_spi_message_done(mesg);
1063}
1064EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1065
1066static int spi_start_queue(struct spi_master *master)
1067{
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&master->queue_lock, flags);
1071
1072	if (master->running || master->busy) {
1073		spin_unlock_irqrestore(&master->queue_lock, flags);
1074		return -EBUSY;
1075	}
1076
1077	master->running = true;
1078	master->cur_msg = NULL;
1079	spin_unlock_irqrestore(&master->queue_lock, flags);
1080
1081	queue_kthread_work(&master->kworker, &master->pump_messages);
1082
1083	return 0;
1084}
1085
1086static int spi_stop_queue(struct spi_master *master)
1087{
1088	unsigned long flags;
1089	unsigned limit = 500;
1090	int ret = 0;
1091
1092	spin_lock_irqsave(&master->queue_lock, flags);
1093
1094	/*
1095	 * This is a bit lame, but is optimized for the common execution path.
1096	 * A wait_queue on the master->busy could be used, but then the common
1097	 * execution path (pump_messages) would be required to call wake_up or
1098	 * friends on every SPI message. Do this instead.
1099	 */
1100	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1101		spin_unlock_irqrestore(&master->queue_lock, flags);
1102		usleep_range(10000, 11000);
1103		spin_lock_irqsave(&master->queue_lock, flags);
1104	}
1105
1106	if (!list_empty(&master->queue) || master->busy)
1107		ret = -EBUSY;
1108	else
1109		master->running = false;
1110
1111	spin_unlock_irqrestore(&master->queue_lock, flags);
1112
1113	if (ret) {
1114		dev_warn(&master->dev,
1115			 "could not stop message queue\n");
1116		return ret;
1117	}
1118	return ret;
1119}
1120
1121static int spi_destroy_queue(struct spi_master *master)
1122{
1123	int ret;
1124
1125	ret = spi_stop_queue(master);
1126
1127	/*
1128	 * flush_kthread_worker will block until all work is done.
1129	 * If the reason that stop_queue timed out is that the work will never
1130	 * finish, then it does no good to call flush/stop thread, so
1131	 * return anyway.
1132	 */
1133	if (ret) {
1134		dev_err(&master->dev, "problem destroying queue\n");
1135		return ret;
1136	}
1137
1138	flush_kthread_worker(&master->kworker);
1139	kthread_stop(master->kworker_task);
1140
1141	return 0;
1142}
1143
1144/**
1145 * spi_queued_transfer - transfer function for queued transfers
1146 * @spi: spi device which is requesting transfer
1147 * @msg: spi message which is to handled is queued to driver queue
1148 */
1149static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1150{
1151	struct spi_master *master = spi->master;
1152	unsigned long flags;
1153
1154	spin_lock_irqsave(&master->queue_lock, flags);
1155
1156	if (!master->running) {
1157		spin_unlock_irqrestore(&master->queue_lock, flags);
1158		return -ESHUTDOWN;
1159	}
1160	msg->actual_length = 0;
1161	msg->status = -EINPROGRESS;
1162
1163	list_add_tail(&msg->queue, &master->queue);
1164	if (!master->busy)
1165		queue_kthread_work(&master->kworker, &master->pump_messages);
1166
1167	spin_unlock_irqrestore(&master->queue_lock, flags);
1168	return 0;
1169}
1170
1171static int spi_master_initialize_queue(struct spi_master *master)
1172{
1173	int ret;
1174
1175	master->transfer = spi_queued_transfer;
1176	if (!master->transfer_one_message)
1177		master->transfer_one_message = spi_transfer_one_message;
1178
1179	/* Initialize and start queue */
1180	ret = spi_init_queue(master);
1181	if (ret) {
1182		dev_err(&master->dev, "problem initializing queue\n");
1183		goto err_init_queue;
1184	}
1185	master->queued = true;
1186	ret = spi_start_queue(master);
1187	if (ret) {
1188		dev_err(&master->dev, "problem starting queue\n");
1189		goto err_start_queue;
1190	}
1191
1192	return 0;
1193
1194err_start_queue:
1195	spi_destroy_queue(master);
1196err_init_queue:
1197	return ret;
1198}
1199
1200/*-------------------------------------------------------------------------*/
1201
1202#if defined(CONFIG_OF)
1203/**
1204 * of_register_spi_devices() - Register child devices onto the SPI bus
1205 * @master:	Pointer to spi_master device
1206 *
1207 * Registers an spi_device for each child node of master node which has a 'reg'
1208 * property.
1209 */
1210static void of_register_spi_devices(struct spi_master *master)
1211{
1212	struct spi_device *spi;
1213	struct device_node *nc;
1214	int rc;
1215	u32 value;
1216
1217	if (!master->dev.of_node)
1218		return;
1219
1220	for_each_available_child_of_node(master->dev.of_node, nc) {
1221		/* Alloc an spi_device */
1222		spi = spi_alloc_device(master);
1223		if (!spi) {
1224			dev_err(&master->dev, "spi_device alloc error for %s\n",
1225				nc->full_name);
1226			spi_dev_put(spi);
1227			continue;
1228		}
1229
1230		/* Select device driver */
1231		if (of_modalias_node(nc, spi->modalias,
1232				     sizeof(spi->modalias)) < 0) {
1233			dev_err(&master->dev, "cannot find modalias for %s\n",
1234				nc->full_name);
1235			spi_dev_put(spi);
1236			continue;
1237		}
1238
1239		/* Device address */
1240		rc = of_property_read_u32(nc, "reg", &value);
1241		if (rc) {
1242			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1243				nc->full_name, rc);
1244			spi_dev_put(spi);
1245			continue;
1246		}
1247		spi->chip_select = value;
1248
1249		/* Mode (clock phase/polarity/etc.) */
1250		if (of_find_property(nc, "spi-cpha", NULL))
1251			spi->mode |= SPI_CPHA;
1252		if (of_find_property(nc, "spi-cpol", NULL))
1253			spi->mode |= SPI_CPOL;
1254		if (of_find_property(nc, "spi-cs-high", NULL))
1255			spi->mode |= SPI_CS_HIGH;
1256		if (of_find_property(nc, "spi-3wire", NULL))
1257			spi->mode |= SPI_3WIRE;
1258
1259		/* Device DUAL/QUAD mode */
1260		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1261			switch (value) {
1262			case 1:
1263				break;
1264			case 2:
1265				spi->mode |= SPI_TX_DUAL;
1266				break;
1267			case 4:
1268				spi->mode |= SPI_TX_QUAD;
1269				break;
1270			default:
1271				dev_err(&master->dev,
1272					"spi-tx-bus-width %d not supported\n",
1273					value);
1274				spi_dev_put(spi);
1275				continue;
1276			}
1277		}
1278
1279		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1280			switch (value) {
1281			case 1:
1282				break;
1283			case 2:
1284				spi->mode |= SPI_RX_DUAL;
1285				break;
1286			case 4:
1287				spi->mode |= SPI_RX_QUAD;
1288				break;
1289			default:
1290				dev_err(&master->dev,
1291					"spi-rx-bus-width %d not supported\n",
1292					value);
1293				spi_dev_put(spi);
1294				continue;
1295			}
1296		}
1297
1298		/* Device speed */
1299		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1300		if (rc) {
1301			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1302				nc->full_name, rc);
1303			spi_dev_put(spi);
1304			continue;
1305		}
1306		spi->max_speed_hz = value;
1307
1308		/* IRQ */
1309		spi->irq = irq_of_parse_and_map(nc, 0);
1310
1311		/* Store a pointer to the node in the device structure */
1312		of_node_get(nc);
1313		spi->dev.of_node = nc;
1314
1315		/* Register the new device */
1316		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1317		rc = spi_add_device(spi);
1318		if (rc) {
1319			dev_err(&master->dev, "spi_device register error %s\n",
1320				nc->full_name);
1321			spi_dev_put(spi);
1322		}
1323
1324	}
1325}
1326#else
1327static void of_register_spi_devices(struct spi_master *master) { }
1328#endif
1329
1330#ifdef CONFIG_ACPI
1331static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1332{
1333	struct spi_device *spi = data;
1334
1335	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1336		struct acpi_resource_spi_serialbus *sb;
1337
1338		sb = &ares->data.spi_serial_bus;
1339		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1340			spi->chip_select = sb->device_selection;
1341			spi->max_speed_hz = sb->connection_speed;
1342
1343			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1344				spi->mode |= SPI_CPHA;
1345			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1346				spi->mode |= SPI_CPOL;
1347			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1348				spi->mode |= SPI_CS_HIGH;
1349		}
1350	} else if (spi->irq < 0) {
1351		struct resource r;
1352
1353		if (acpi_dev_resource_interrupt(ares, 0, &r))
1354			spi->irq = r.start;
1355	}
1356
1357	/* Always tell the ACPI core to skip this resource */
1358	return 1;
1359}
1360
1361static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1362				       void *data, void **return_value)
1363{
1364	struct spi_master *master = data;
1365	struct list_head resource_list;
1366	struct acpi_device *adev;
1367	struct spi_device *spi;
1368	int ret;
1369
1370	if (acpi_bus_get_device(handle, &adev))
1371		return AE_OK;
1372	if (acpi_bus_get_status(adev) || !adev->status.present)
1373		return AE_OK;
1374
1375	spi = spi_alloc_device(master);
1376	if (!spi) {
1377		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1378			dev_name(&adev->dev));
1379		return AE_NO_MEMORY;
1380	}
1381
1382	ACPI_COMPANION_SET(&spi->dev, adev);
1383	spi->irq = -1;
1384
1385	INIT_LIST_HEAD(&resource_list);
1386	ret = acpi_dev_get_resources(adev, &resource_list,
1387				     acpi_spi_add_resource, spi);
1388	acpi_dev_free_resource_list(&resource_list);
1389
1390	if (ret < 0 || !spi->max_speed_hz) {
1391		spi_dev_put(spi);
1392		return AE_OK;
1393	}
1394
1395	adev->power.flags.ignore_parent = true;
1396	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1397	if (spi_add_device(spi)) {
1398		adev->power.flags.ignore_parent = false;
1399		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1400			dev_name(&adev->dev));
1401		spi_dev_put(spi);
1402	}
1403
1404	return AE_OK;
1405}
1406
1407static void acpi_register_spi_devices(struct spi_master *master)
1408{
1409	acpi_status status;
1410	acpi_handle handle;
1411
1412	handle = ACPI_HANDLE(master->dev.parent);
1413	if (!handle)
1414		return;
1415
1416	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1417				     acpi_spi_add_device, NULL,
1418				     master, NULL);
1419	if (ACPI_FAILURE(status))
1420		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1421}
1422#else
1423static inline void acpi_register_spi_devices(struct spi_master *master) {}
1424#endif /* CONFIG_ACPI */
1425
1426static void spi_master_release(struct device *dev)
1427{
1428	struct spi_master *master;
1429
1430	master = container_of(dev, struct spi_master, dev);
1431	kfree(master);
1432}
1433
1434static struct class spi_master_class = {
1435	.name		= "spi_master",
1436	.owner		= THIS_MODULE,
1437	.dev_release	= spi_master_release,
1438};
1439
1440
1441
1442/**
1443 * spi_alloc_master - allocate SPI master controller
1444 * @dev: the controller, possibly using the platform_bus
1445 * @size: how much zeroed driver-private data to allocate; the pointer to this
1446 *	memory is in the driver_data field of the returned device,
1447 *	accessible with spi_master_get_devdata().
1448 * Context: can sleep
1449 *
1450 * This call is used only by SPI master controller drivers, which are the
1451 * only ones directly touching chip registers.  It's how they allocate
1452 * an spi_master structure, prior to calling spi_register_master().
1453 *
1454 * This must be called from context that can sleep.  It returns the SPI
1455 * master structure on success, else NULL.
1456 *
1457 * The caller is responsible for assigning the bus number and initializing
1458 * the master's methods before calling spi_register_master(); and (after errors
1459 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1460 * leak.
1461 */
1462struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1463{
1464	struct spi_master	*master;
1465
1466	if (!dev)
1467		return NULL;
1468
1469	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1470	if (!master)
1471		return NULL;
1472
1473	device_initialize(&master->dev);
1474	master->bus_num = -1;
1475	master->num_chipselect = 1;
1476	master->dev.class = &spi_master_class;
1477	master->dev.parent = get_device(dev);
1478	spi_master_set_devdata(master, &master[1]);
1479
1480	return master;
1481}
1482EXPORT_SYMBOL_GPL(spi_alloc_master);
1483
1484#ifdef CONFIG_OF
1485static int of_spi_register_master(struct spi_master *master)
1486{
1487	int nb, i, *cs;
1488	struct device_node *np = master->dev.of_node;
1489
1490	if (!np)
1491		return 0;
1492
1493	nb = of_gpio_named_count(np, "cs-gpios");
1494	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1495
1496	/* Return error only for an incorrectly formed cs-gpios property */
1497	if (nb == 0 || nb == -ENOENT)
1498		return 0;
1499	else if (nb < 0)
1500		return nb;
1501
1502	cs = devm_kzalloc(&master->dev,
1503			  sizeof(int) * master->num_chipselect,
1504			  GFP_KERNEL);
1505	master->cs_gpios = cs;
1506
1507	if (!master->cs_gpios)
1508		return -ENOMEM;
1509
1510	for (i = 0; i < master->num_chipselect; i++)
1511		cs[i] = -ENOENT;
1512
1513	for (i = 0; i < nb; i++)
1514		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1515
1516	return 0;
1517}
1518#else
1519static int of_spi_register_master(struct spi_master *master)
1520{
1521	return 0;
1522}
1523#endif
1524
1525/**
1526 * spi_register_master - register SPI master controller
1527 * @master: initialized master, originally from spi_alloc_master()
1528 * Context: can sleep
1529 *
1530 * SPI master controllers connect to their drivers using some non-SPI bus,
1531 * such as the platform bus.  The final stage of probe() in that code
1532 * includes calling spi_register_master() to hook up to this SPI bus glue.
1533 *
1534 * SPI controllers use board specific (often SOC specific) bus numbers,
1535 * and board-specific addressing for SPI devices combines those numbers
1536 * with chip select numbers.  Since SPI does not directly support dynamic
1537 * device identification, boards need configuration tables telling which
1538 * chip is at which address.
1539 *
1540 * This must be called from context that can sleep.  It returns zero on
1541 * success, else a negative error code (dropping the master's refcount).
1542 * After a successful return, the caller is responsible for calling
1543 * spi_unregister_master().
1544 */
1545int spi_register_master(struct spi_master *master)
1546{
1547	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1548	struct device		*dev = master->dev.parent;
1549	struct boardinfo	*bi;
1550	int			status = -ENODEV;
1551	int			dynamic = 0;
1552
1553	if (!dev)
1554		return -ENODEV;
1555
1556	status = of_spi_register_master(master);
1557	if (status)
1558		return status;
1559
1560	/* even if it's just one always-selected device, there must
1561	 * be at least one chipselect
1562	 */
1563	if (master->num_chipselect == 0)
1564		return -EINVAL;
1565
1566	if ((master->bus_num < 0) && master->dev.of_node)
1567		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1568
1569	/* convention:  dynamically assigned bus IDs count down from the max */
1570	if (master->bus_num < 0) {
1571		/* FIXME switch to an IDR based scheme, something like
1572		 * I2C now uses, so we can't run out of "dynamic" IDs
1573		 */
1574		master->bus_num = atomic_dec_return(&dyn_bus_id);
1575		dynamic = 1;
1576	}
1577
1578	spin_lock_init(&master->bus_lock_spinlock);
1579	mutex_init(&master->bus_lock_mutex);
1580	master->bus_lock_flag = 0;
1581	init_completion(&master->xfer_completion);
1582	if (!master->max_dma_len)
1583		master->max_dma_len = INT_MAX;
1584
1585	/* register the device, then userspace will see it.
1586	 * registration fails if the bus ID is in use.
1587	 */
1588	dev_set_name(&master->dev, "spi%u", master->bus_num);
1589	status = device_add(&master->dev);
1590	if (status < 0)
1591		goto done;
1592	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1593			dynamic ? " (dynamic)" : "");
1594
1595	/* If we're using a queued driver, start the queue */
1596	if (master->transfer)
1597		dev_info(dev, "master is unqueued, this is deprecated\n");
1598	else {
1599		status = spi_master_initialize_queue(master);
1600		if (status) {
1601			device_del(&master->dev);
1602			goto done;
1603		}
1604	}
1605
1606	mutex_lock(&board_lock);
1607	list_add_tail(&master->list, &spi_master_list);
1608	list_for_each_entry(bi, &board_list, list)
1609		spi_match_master_to_boardinfo(master, &bi->board_info);
1610	mutex_unlock(&board_lock);
1611
1612	/* Register devices from the device tree and ACPI */
 
 
1613	of_register_spi_devices(master);
1614	acpi_register_spi_devices(master);
1615done:
1616	return status;
1617}
1618EXPORT_SYMBOL_GPL(spi_register_master);
1619
1620static void devm_spi_unregister(struct device *dev, void *res)
1621{
1622	spi_unregister_master(*(struct spi_master **)res);
1623}
1624
1625/**
1626 * dev_spi_register_master - register managed SPI master controller
1627 * @dev:    device managing SPI master
1628 * @master: initialized master, originally from spi_alloc_master()
1629 * Context: can sleep
1630 *
1631 * Register a SPI device as with spi_register_master() which will
1632 * automatically be unregister
1633 */
1634int devm_spi_register_master(struct device *dev, struct spi_master *master)
1635{
1636	struct spi_master **ptr;
1637	int ret;
1638
1639	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1640	if (!ptr)
1641		return -ENOMEM;
1642
1643	ret = spi_register_master(master);
1644	if (!ret) {
1645		*ptr = master;
1646		devres_add(dev, ptr);
1647	} else {
1648		devres_free(ptr);
1649	}
1650
1651	return ret;
1652}
1653EXPORT_SYMBOL_GPL(devm_spi_register_master);
1654
1655static int __unregister(struct device *dev, void *null)
1656{
1657	spi_unregister_device(to_spi_device(dev));
1658	return 0;
1659}
1660
1661/**
1662 * spi_unregister_master - unregister SPI master controller
1663 * @master: the master being unregistered
1664 * Context: can sleep
1665 *
1666 * This call is used only by SPI master controller drivers, which are the
1667 * only ones directly touching chip registers.
1668 *
1669 * This must be called from context that can sleep.
1670 */
1671void spi_unregister_master(struct spi_master *master)
1672{
1673	int dummy;
1674
1675	if (master->queued) {
1676		if (spi_destroy_queue(master))
1677			dev_err(&master->dev, "queue remove failed\n");
1678	}
1679
1680	mutex_lock(&board_lock);
1681	list_del(&master->list);
1682	mutex_unlock(&board_lock);
1683
1684	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1685	device_unregister(&master->dev);
1686}
1687EXPORT_SYMBOL_GPL(spi_unregister_master);
1688
1689int spi_master_suspend(struct spi_master *master)
1690{
1691	int ret;
1692
1693	/* Basically no-ops for non-queued masters */
1694	if (!master->queued)
1695		return 0;
1696
1697	ret = spi_stop_queue(master);
1698	if (ret)
1699		dev_err(&master->dev, "queue stop failed\n");
1700
1701	return ret;
1702}
1703EXPORT_SYMBOL_GPL(spi_master_suspend);
1704
1705int spi_master_resume(struct spi_master *master)
1706{
1707	int ret;
1708
1709	if (!master->queued)
1710		return 0;
1711
1712	ret = spi_start_queue(master);
1713	if (ret)
1714		dev_err(&master->dev, "queue restart failed\n");
1715
1716	return ret;
1717}
1718EXPORT_SYMBOL_GPL(spi_master_resume);
1719
1720static int __spi_master_match(struct device *dev, const void *data)
1721{
1722	struct spi_master *m;
1723	const u16 *bus_num = data;
1724
1725	m = container_of(dev, struct spi_master, dev);
1726	return m->bus_num == *bus_num;
1727}
1728
1729/**
1730 * spi_busnum_to_master - look up master associated with bus_num
1731 * @bus_num: the master's bus number
1732 * Context: can sleep
1733 *
1734 * This call may be used with devices that are registered after
1735 * arch init time.  It returns a refcounted pointer to the relevant
1736 * spi_master (which the caller must release), or NULL if there is
1737 * no such master registered.
1738 */
1739struct spi_master *spi_busnum_to_master(u16 bus_num)
1740{
1741	struct device		*dev;
1742	struct spi_master	*master = NULL;
1743
1744	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1745				__spi_master_match);
1746	if (dev)
1747		master = container_of(dev, struct spi_master, dev);
1748	/* reference got in class_find_device */
1749	return master;
1750}
1751EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1752
1753
1754/*-------------------------------------------------------------------------*/
1755
1756/* Core methods for SPI master protocol drivers.  Some of the
1757 * other core methods are currently defined as inline functions.
1758 */
1759
1760/**
1761 * spi_setup - setup SPI mode and clock rate
1762 * @spi: the device whose settings are being modified
1763 * Context: can sleep, and no requests are queued to the device
1764 *
1765 * SPI protocol drivers may need to update the transfer mode if the
1766 * device doesn't work with its default.  They may likewise need
1767 * to update clock rates or word sizes from initial values.  This function
1768 * changes those settings, and must be called from a context that can sleep.
1769 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1770 * effect the next time the device is selected and data is transferred to
1771 * or from it.  When this function returns, the spi device is deselected.
1772 *
1773 * Note that this call will fail if the protocol driver specifies an option
1774 * that the underlying controller or its driver does not support.  For
1775 * example, not all hardware supports wire transfers using nine bit words,
1776 * LSB-first wire encoding, or active-high chipselects.
1777 */
1778int spi_setup(struct spi_device *spi)
1779{
1780	unsigned	bad_bits, ugly_bits;
1781	int		status = 0;
1782
1783	/* check mode to prevent that DUAL and QUAD set at the same time
1784	 */
1785	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1786		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1787		dev_err(&spi->dev,
1788		"setup: can not select dual and quad at the same time\n");
1789		return -EINVAL;
1790	}
1791	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1792	 */
1793	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1794		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1795		return -EINVAL;
1796	/* help drivers fail *cleanly* when they need options
1797	 * that aren't supported with their current master
1798	 */
1799	bad_bits = spi->mode & ~spi->master->mode_bits;
1800	ugly_bits = bad_bits &
1801		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1802	if (ugly_bits) {
1803		dev_warn(&spi->dev,
1804			 "setup: ignoring unsupported mode bits %x\n",
1805			 ugly_bits);
1806		spi->mode &= ~ugly_bits;
1807		bad_bits &= ~ugly_bits;
1808	}
1809	if (bad_bits) {
1810		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1811			bad_bits);
1812		return -EINVAL;
1813	}
1814
1815	if (!spi->bits_per_word)
1816		spi->bits_per_word = 8;
1817
1818	if (!spi->max_speed_hz)
1819		spi->max_speed_hz = spi->master->max_speed_hz;
1820
1821	if (spi->master->setup)
1822		status = spi->master->setup(spi);
1823
1824	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
 
1825			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1826			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1827			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1828			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1829			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1830			spi->bits_per_word, spi->max_speed_hz,
1831			status);
1832
1833	return status;
1834}
1835EXPORT_SYMBOL_GPL(spi_setup);
1836
1837static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1838{
1839	struct spi_master *master = spi->master;
1840	struct spi_transfer *xfer;
1841	int w_size;
1842
1843	if (list_empty(&message->transfers))
1844		return -EINVAL;
1845
1846	/* Half-duplex links include original MicroWire, and ones with
1847	 * only one data pin like SPI_3WIRE (switches direction) or where
1848	 * either MOSI or MISO is missing.  They can also be caused by
1849	 * software limitations.
1850	 */
1851	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1852			|| (spi->mode & SPI_3WIRE)) {
 
1853		unsigned flags = master->flags;
1854
1855		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1856			if (xfer->rx_buf && xfer->tx_buf)
1857				return -EINVAL;
1858			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1859				return -EINVAL;
1860			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1861				return -EINVAL;
1862		}
1863	}
1864
1865	/**
1866	 * Set transfer bits_per_word and max speed as spi device default if
1867	 * it is not set for this transfer.
1868	 * Set transfer tx_nbits and rx_nbits as single transfer default
1869	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1870	 */
1871	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1872		message->frame_length += xfer->len;
1873		if (!xfer->bits_per_word)
1874			xfer->bits_per_word = spi->bits_per_word;
1875
1876		if (!xfer->speed_hz)
1877			xfer->speed_hz = spi->max_speed_hz;
1878
1879		if (master->max_speed_hz &&
1880		    xfer->speed_hz > master->max_speed_hz)
1881			xfer->speed_hz = master->max_speed_hz;
1882
1883		if (master->bits_per_word_mask) {
1884			/* Only 32 bits fit in the mask */
1885			if (xfer->bits_per_word > 32)
1886				return -EINVAL;
1887			if (!(master->bits_per_word_mask &
1888					BIT(xfer->bits_per_word - 1)))
1889				return -EINVAL;
1890		}
1891
1892		/*
1893		 * SPI transfer length should be multiple of SPI word size
1894		 * where SPI word size should be power-of-two multiple
1895		 */
1896		if (xfer->bits_per_word <= 8)
1897			w_size = 1;
1898		else if (xfer->bits_per_word <= 16)
1899			w_size = 2;
1900		else
1901			w_size = 4;
1902
1903		/* No partial transfers accepted */
1904		if (xfer->len % w_size)
1905			return -EINVAL;
1906
1907		if (xfer->speed_hz && master->min_speed_hz &&
1908		    xfer->speed_hz < master->min_speed_hz)
1909			return -EINVAL;
1910
1911		if (xfer->tx_buf && !xfer->tx_nbits)
1912			xfer->tx_nbits = SPI_NBITS_SINGLE;
1913		if (xfer->rx_buf && !xfer->rx_nbits)
1914			xfer->rx_nbits = SPI_NBITS_SINGLE;
1915		/* check transfer tx/rx_nbits:
1916		 * 1. check the value matches one of single, dual and quad
1917		 * 2. check tx/rx_nbits match the mode in spi_device
1918		 */
1919		if (xfer->tx_buf) {
1920			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1921				xfer->tx_nbits != SPI_NBITS_DUAL &&
1922				xfer->tx_nbits != SPI_NBITS_QUAD)
1923				return -EINVAL;
1924			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1925				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1926				return -EINVAL;
1927			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1928				!(spi->mode & SPI_TX_QUAD))
1929				return -EINVAL;
1930		}
1931		/* check transfer rx_nbits */
1932		if (xfer->rx_buf) {
1933			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1934				xfer->rx_nbits != SPI_NBITS_DUAL &&
1935				xfer->rx_nbits != SPI_NBITS_QUAD)
1936				return -EINVAL;
1937			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1938				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1939				return -EINVAL;
1940			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1941				!(spi->mode & SPI_RX_QUAD))
1942				return -EINVAL;
1943		}
1944	}
1945
1946	message->status = -EINPROGRESS;
1947
1948	return 0;
1949}
1950
1951static int __spi_async(struct spi_device *spi, struct spi_message *message)
1952{
1953	struct spi_master *master = spi->master;
1954
1955	message->spi = spi;
1956
1957	trace_spi_message_submit(message);
1958
1959	return master->transfer(spi, message);
1960}
1961
1962/**
1963 * spi_async - asynchronous SPI transfer
1964 * @spi: device with which data will be exchanged
1965 * @message: describes the data transfers, including completion callback
1966 * Context: any (irqs may be blocked, etc)
1967 *
1968 * This call may be used in_irq and other contexts which can't sleep,
1969 * as well as from task contexts which can sleep.
1970 *
1971 * The completion callback is invoked in a context which can't sleep.
1972 * Before that invocation, the value of message->status is undefined.
1973 * When the callback is issued, message->status holds either zero (to
1974 * indicate complete success) or a negative error code.  After that
1975 * callback returns, the driver which issued the transfer request may
1976 * deallocate the associated memory; it's no longer in use by any SPI
1977 * core or controller driver code.
1978 *
1979 * Note that although all messages to a spi_device are handled in
1980 * FIFO order, messages may go to different devices in other orders.
1981 * Some device might be higher priority, or have various "hard" access
1982 * time requirements, for example.
1983 *
1984 * On detection of any fault during the transfer, processing of
1985 * the entire message is aborted, and the device is deselected.
1986 * Until returning from the associated message completion callback,
1987 * no other spi_message queued to that device will be processed.
1988 * (This rule applies equally to all the synchronous transfer calls,
1989 * which are wrappers around this core asynchronous primitive.)
1990 */
1991int spi_async(struct spi_device *spi, struct spi_message *message)
1992{
1993	struct spi_master *master = spi->master;
1994	int ret;
1995	unsigned long flags;
1996
1997	ret = __spi_validate(spi, message);
1998	if (ret != 0)
1999		return ret;
2000
2001	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2002
2003	if (master->bus_lock_flag)
2004		ret = -EBUSY;
2005	else
2006		ret = __spi_async(spi, message);
2007
2008	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2009
2010	return ret;
2011}
2012EXPORT_SYMBOL_GPL(spi_async);
2013
2014/**
2015 * spi_async_locked - version of spi_async with exclusive bus usage
2016 * @spi: device with which data will be exchanged
2017 * @message: describes the data transfers, including completion callback
2018 * Context: any (irqs may be blocked, etc)
2019 *
2020 * This call may be used in_irq and other contexts which can't sleep,
2021 * as well as from task contexts which can sleep.
2022 *
2023 * The completion callback is invoked in a context which can't sleep.
2024 * Before that invocation, the value of message->status is undefined.
2025 * When the callback is issued, message->status holds either zero (to
2026 * indicate complete success) or a negative error code.  After that
2027 * callback returns, the driver which issued the transfer request may
2028 * deallocate the associated memory; it's no longer in use by any SPI
2029 * core or controller driver code.
2030 *
2031 * Note that although all messages to a spi_device are handled in
2032 * FIFO order, messages may go to different devices in other orders.
2033 * Some device might be higher priority, or have various "hard" access
2034 * time requirements, for example.
2035 *
2036 * On detection of any fault during the transfer, processing of
2037 * the entire message is aborted, and the device is deselected.
2038 * Until returning from the associated message completion callback,
2039 * no other spi_message queued to that device will be processed.
2040 * (This rule applies equally to all the synchronous transfer calls,
2041 * which are wrappers around this core asynchronous primitive.)
2042 */
2043int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2044{
2045	struct spi_master *master = spi->master;
2046	int ret;
2047	unsigned long flags;
2048
2049	ret = __spi_validate(spi, message);
2050	if (ret != 0)
2051		return ret;
2052
2053	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2054
2055	ret = __spi_async(spi, message);
2056
2057	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2058
2059	return ret;
2060
2061}
2062EXPORT_SYMBOL_GPL(spi_async_locked);
2063
2064
2065/*-------------------------------------------------------------------------*/
2066
2067/* Utility methods for SPI master protocol drivers, layered on
2068 * top of the core.  Some other utility methods are defined as
2069 * inline functions.
2070 */
2071
2072static void spi_complete(void *arg)
2073{
2074	complete(arg);
2075}
2076
2077static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2078		      int bus_locked)
2079{
2080	DECLARE_COMPLETION_ONSTACK(done);
2081	int status;
2082	struct spi_master *master = spi->master;
2083
2084	message->complete = spi_complete;
2085	message->context = &done;
2086
2087	if (!bus_locked)
2088		mutex_lock(&master->bus_lock_mutex);
2089
2090	status = spi_async_locked(spi, message);
2091
2092	if (!bus_locked)
2093		mutex_unlock(&master->bus_lock_mutex);
2094
2095	if (status == 0) {
2096		wait_for_completion(&done);
2097		status = message->status;
2098	}
2099	message->context = NULL;
2100	return status;
2101}
2102
2103/**
2104 * spi_sync - blocking/synchronous SPI data transfers
2105 * @spi: device with which data will be exchanged
2106 * @message: describes the data transfers
2107 * Context: can sleep
2108 *
2109 * This call may only be used from a context that may sleep.  The sleep
2110 * is non-interruptible, and has no timeout.  Low-overhead controller
2111 * drivers may DMA directly into and out of the message buffers.
2112 *
2113 * Note that the SPI device's chip select is active during the message,
2114 * and then is normally disabled between messages.  Drivers for some
2115 * frequently-used devices may want to minimize costs of selecting a chip,
2116 * by leaving it selected in anticipation that the next message will go
2117 * to the same chip.  (That may increase power usage.)
2118 *
2119 * Also, the caller is guaranteeing that the memory associated with the
2120 * message will not be freed before this call returns.
2121 *
2122 * It returns zero on success, else a negative error code.
2123 */
2124int spi_sync(struct spi_device *spi, struct spi_message *message)
2125{
2126	return __spi_sync(spi, message, 0);
2127}
2128EXPORT_SYMBOL_GPL(spi_sync);
2129
2130/**
2131 * spi_sync_locked - version of spi_sync with exclusive bus usage
2132 * @spi: device with which data will be exchanged
2133 * @message: describes the data transfers
2134 * Context: can sleep
2135 *
2136 * This call may only be used from a context that may sleep.  The sleep
2137 * is non-interruptible, and has no timeout.  Low-overhead controller
2138 * drivers may DMA directly into and out of the message buffers.
2139 *
2140 * This call should be used by drivers that require exclusive access to the
2141 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2142 * be released by a spi_bus_unlock call when the exclusive access is over.
2143 *
2144 * It returns zero on success, else a negative error code.
2145 */
2146int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2147{
2148	return __spi_sync(spi, message, 1);
2149}
2150EXPORT_SYMBOL_GPL(spi_sync_locked);
2151
2152/**
2153 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2154 * @master: SPI bus master that should be locked for exclusive bus access
2155 * Context: can sleep
2156 *
2157 * This call may only be used from a context that may sleep.  The sleep
2158 * is non-interruptible, and has no timeout.
2159 *
2160 * This call should be used by drivers that require exclusive access to the
2161 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2162 * exclusive access is over. Data transfer must be done by spi_sync_locked
2163 * and spi_async_locked calls when the SPI bus lock is held.
2164 *
2165 * It returns zero on success, else a negative error code.
2166 */
2167int spi_bus_lock(struct spi_master *master)
2168{
2169	unsigned long flags;
2170
2171	mutex_lock(&master->bus_lock_mutex);
2172
2173	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2174	master->bus_lock_flag = 1;
2175	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2176
2177	/* mutex remains locked until spi_bus_unlock is called */
2178
2179	return 0;
2180}
2181EXPORT_SYMBOL_GPL(spi_bus_lock);
2182
2183/**
2184 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2185 * @master: SPI bus master that was locked for exclusive bus access
2186 * Context: can sleep
2187 *
2188 * This call may only be used from a context that may sleep.  The sleep
2189 * is non-interruptible, and has no timeout.
2190 *
2191 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2192 * call.
2193 *
2194 * It returns zero on success, else a negative error code.
2195 */
2196int spi_bus_unlock(struct spi_master *master)
2197{
2198	master->bus_lock_flag = 0;
2199
2200	mutex_unlock(&master->bus_lock_mutex);
2201
2202	return 0;
2203}
2204EXPORT_SYMBOL_GPL(spi_bus_unlock);
2205
2206/* portable code must never pass more than 32 bytes */
2207#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2208
2209static u8	*buf;
2210
2211/**
2212 * spi_write_then_read - SPI synchronous write followed by read
2213 * @spi: device with which data will be exchanged
2214 * @txbuf: data to be written (need not be dma-safe)
2215 * @n_tx: size of txbuf, in bytes
2216 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2217 * @n_rx: size of rxbuf, in bytes
2218 * Context: can sleep
2219 *
2220 * This performs a half duplex MicroWire style transaction with the
2221 * device, sending txbuf and then reading rxbuf.  The return value
2222 * is zero for success, else a negative errno status code.
2223 * This call may only be used from a context that may sleep.
2224 *
2225 * Parameters to this routine are always copied using a small buffer;
2226 * portable code should never use this for more than 32 bytes.
2227 * Performance-sensitive or bulk transfer code should instead use
2228 * spi_{async,sync}() calls with dma-safe buffers.
2229 */
2230int spi_write_then_read(struct spi_device *spi,
2231		const void *txbuf, unsigned n_tx,
2232		void *rxbuf, unsigned n_rx)
2233{
2234	static DEFINE_MUTEX(lock);
2235
2236	int			status;
2237	struct spi_message	message;
2238	struct spi_transfer	x[2];
2239	u8			*local_buf;
2240
2241	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2242	 * copying here, (as a pure convenience thing), but we can
2243	 * keep heap costs out of the hot path unless someone else is
2244	 * using the pre-allocated buffer or the transfer is too large.
2245	 */
2246	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2247		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2248				    GFP_KERNEL | GFP_DMA);
2249		if (!local_buf)
2250			return -ENOMEM;
2251	} else {
2252		local_buf = buf;
2253	}
2254
2255	spi_message_init(&message);
2256	memset(x, 0, sizeof(x));
2257	if (n_tx) {
2258		x[0].len = n_tx;
2259		spi_message_add_tail(&x[0], &message);
2260	}
2261	if (n_rx) {
2262		x[1].len = n_rx;
2263		spi_message_add_tail(&x[1], &message);
2264	}
 
 
 
 
 
 
 
 
2265
2266	memcpy(local_buf, txbuf, n_tx);
2267	x[0].tx_buf = local_buf;
2268	x[1].rx_buf = local_buf + n_tx;
2269
2270	/* do the i/o */
2271	status = spi_sync(spi, &message);
2272	if (status == 0)
2273		memcpy(rxbuf, x[1].rx_buf, n_rx);
2274
2275	if (x[0].tx_buf == buf)
2276		mutex_unlock(&lock);
2277	else
2278		kfree(local_buf);
2279
2280	return status;
2281}
2282EXPORT_SYMBOL_GPL(spi_write_then_read);
2283
2284/*-------------------------------------------------------------------------*/
2285
2286static int __init spi_init(void)
2287{
2288	int	status;
2289
2290	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2291	if (!buf) {
2292		status = -ENOMEM;
2293		goto err0;
2294	}
2295
2296	status = bus_register(&spi_bus_type);
2297	if (status < 0)
2298		goto err1;
2299
2300	status = class_register(&spi_master_class);
2301	if (status < 0)
2302		goto err2;
2303	return 0;
2304
2305err2:
2306	bus_unregister(&spi_bus_type);
2307err1:
2308	kfree(buf);
2309	buf = NULL;
2310err0:
2311	return status;
2312}
2313
2314/* board_info is normally registered in arch_initcall(),
2315 * but even essential drivers wait till later
2316 *
2317 * REVISIT only boardinfo really needs static linking. the rest (device and
2318 * driver registration) _could_ be dynamically linked (modular) ... costs
2319 * include needing to have boardinfo data structures be much more public.
2320 */
2321postcore_initcall(spi_init);
2322