Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/bitops.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/netdevice.h>
  13#include <linux/ipv6.h>
  14#include <linux/slab.h>
  15#include <net/checksum.h>
  16#include <net/ip6_checksum.h>
  17#include <net/pkt_sched.h>
  18#include <net/pkt_cls.h>
  19#include <linux/net_tstamp.h>
  20#include <linux/mii.h>
  21#include <linux/ethtool.h>
  22#include <linux/if.h>
  23#include <linux/if_vlan.h>
  24#include <linux/pci.h>
  25#include <linux/delay.h>
  26#include <linux/interrupt.h>
  27#include <linux/ip.h>
  28#include <linux/tcp.h>
  29#include <linux/sctp.h>
  30#include <linux/if_ether.h>
  31#include <linux/aer.h>
  32#include <linux/prefetch.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/etherdevice.h>
  35#ifdef CONFIG_IGB_DCA
  36#include <linux/dca.h>
  37#endif
  38#include <linux/i2c.h>
  39#include "igb.h"
  40
  41#define MAJ 5
  42#define MIN 6
  43#define BUILD 0
  44#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  45__stringify(BUILD) "-k"
  46
  47enum queue_mode {
  48	QUEUE_MODE_STRICT_PRIORITY,
  49	QUEUE_MODE_STREAM_RESERVATION,
  50};
  51
  52enum tx_queue_prio {
  53	TX_QUEUE_PRIO_HIGH,
  54	TX_QUEUE_PRIO_LOW,
  55};
  56
  57char igb_driver_name[] = "igb";
  58char igb_driver_version[] = DRV_VERSION;
  59static const char igb_driver_string[] =
  60				"Intel(R) Gigabit Ethernet Network Driver";
  61static const char igb_copyright[] =
  62				"Copyright (c) 2007-2014 Intel Corporation.";
  63
  64static const struct e1000_info *igb_info_tbl[] = {
  65	[board_82575] = &e1000_82575_info,
  66};
  67
  68static const struct pci_device_id igb_pci_tbl[] = {
  69	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  70	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  71	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  72	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  73	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  74	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  75	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
 100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
 101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
 102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
 103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
 104	/* required last entry */
 105	{0, }
 106};
 107
 108MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 109
 110static int igb_setup_all_tx_resources(struct igb_adapter *);
 111static int igb_setup_all_rx_resources(struct igb_adapter *);
 112static void igb_free_all_tx_resources(struct igb_adapter *);
 113static void igb_free_all_rx_resources(struct igb_adapter *);
 114static void igb_setup_mrqc(struct igb_adapter *);
 115static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 116static void igb_remove(struct pci_dev *pdev);
 117static int igb_sw_init(struct igb_adapter *);
 118int igb_open(struct net_device *);
 119int igb_close(struct net_device *);
 120static void igb_configure(struct igb_adapter *);
 121static void igb_configure_tx(struct igb_adapter *);
 122static void igb_configure_rx(struct igb_adapter *);
 123static void igb_clean_all_tx_rings(struct igb_adapter *);
 124static void igb_clean_all_rx_rings(struct igb_adapter *);
 125static void igb_clean_tx_ring(struct igb_ring *);
 126static void igb_clean_rx_ring(struct igb_ring *);
 127static void igb_set_rx_mode(struct net_device *);
 128static void igb_update_phy_info(struct timer_list *);
 129static void igb_watchdog(struct timer_list *);
 130static void igb_watchdog_task(struct work_struct *);
 131static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 132static void igb_get_stats64(struct net_device *dev,
 133			    struct rtnl_link_stats64 *stats);
 134static int igb_change_mtu(struct net_device *, int);
 135static int igb_set_mac(struct net_device *, void *);
 136static void igb_set_uta(struct igb_adapter *adapter, bool set);
 137static irqreturn_t igb_intr(int irq, void *);
 138static irqreturn_t igb_intr_msi(int irq, void *);
 139static irqreturn_t igb_msix_other(int irq, void *);
 140static irqreturn_t igb_msix_ring(int irq, void *);
 141#ifdef CONFIG_IGB_DCA
 142static void igb_update_dca(struct igb_q_vector *);
 143static void igb_setup_dca(struct igb_adapter *);
 144#endif /* CONFIG_IGB_DCA */
 145static int igb_poll(struct napi_struct *, int);
 146static bool igb_clean_tx_irq(struct igb_q_vector *, int);
 147static int igb_clean_rx_irq(struct igb_q_vector *, int);
 148static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 149static void igb_tx_timeout(struct net_device *);
 150static void igb_reset_task(struct work_struct *);
 151static void igb_vlan_mode(struct net_device *netdev,
 152			  netdev_features_t features);
 153static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 154static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 155static void igb_restore_vlan(struct igb_adapter *);
 156static void igb_rar_set_index(struct igb_adapter *, u32);
 157static void igb_ping_all_vfs(struct igb_adapter *);
 158static void igb_msg_task(struct igb_adapter *);
 159static void igb_vmm_control(struct igb_adapter *);
 160static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 161static void igb_flush_mac_table(struct igb_adapter *);
 162static int igb_available_rars(struct igb_adapter *, u8);
 163static void igb_set_default_mac_filter(struct igb_adapter *);
 164static int igb_uc_sync(struct net_device *, const unsigned char *);
 165static int igb_uc_unsync(struct net_device *, const unsigned char *);
 166static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 167static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 168static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 169			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
 170static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
 171static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 172				   bool setting);
 173static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
 174				bool setting);
 175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 176				 struct ifla_vf_info *ivi);
 177static void igb_check_vf_rate_limit(struct igb_adapter *);
 178static void igb_nfc_filter_exit(struct igb_adapter *adapter);
 179static void igb_nfc_filter_restore(struct igb_adapter *adapter);
 180
 181#ifdef CONFIG_PCI_IOV
 182static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 183static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
 184static int igb_disable_sriov(struct pci_dev *dev);
 185static int igb_pci_disable_sriov(struct pci_dev *dev);
 186#endif
 187
 188static int igb_suspend(struct device *);
 189static int igb_resume(struct device *);
 190static int igb_runtime_suspend(struct device *dev);
 191static int igb_runtime_resume(struct device *dev);
 192static int igb_runtime_idle(struct device *dev);
 193static const struct dev_pm_ops igb_pm_ops = {
 194	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 195	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 196			igb_runtime_idle)
 197};
 198static void igb_shutdown(struct pci_dev *);
 199static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 200#ifdef CONFIG_IGB_DCA
 201static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 202static struct notifier_block dca_notifier = {
 203	.notifier_call	= igb_notify_dca,
 204	.next		= NULL,
 205	.priority	= 0
 206};
 207#endif
 208#ifdef CONFIG_PCI_IOV
 209static unsigned int max_vfs;
 210module_param(max_vfs, uint, 0);
 211MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
 212#endif /* CONFIG_PCI_IOV */
 213
 214static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 215		     pci_channel_state_t);
 216static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 217static void igb_io_resume(struct pci_dev *);
 218
 219static const struct pci_error_handlers igb_err_handler = {
 220	.error_detected = igb_io_error_detected,
 221	.slot_reset = igb_io_slot_reset,
 222	.resume = igb_io_resume,
 223};
 224
 225static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 226
 227static struct pci_driver igb_driver = {
 228	.name     = igb_driver_name,
 229	.id_table = igb_pci_tbl,
 230	.probe    = igb_probe,
 231	.remove   = igb_remove,
 232#ifdef CONFIG_PM
 233	.driver.pm = &igb_pm_ops,
 234#endif
 235	.shutdown = igb_shutdown,
 236	.sriov_configure = igb_pci_sriov_configure,
 237	.err_handler = &igb_err_handler
 238};
 239
 240MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 241MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 242MODULE_LICENSE("GPL v2");
 243MODULE_VERSION(DRV_VERSION);
 244
 245#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 246static int debug = -1;
 247module_param(debug, int, 0);
 248MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 249
 250struct igb_reg_info {
 251	u32 ofs;
 252	char *name;
 253};
 254
 255static const struct igb_reg_info igb_reg_info_tbl[] = {
 256
 257	/* General Registers */
 258	{E1000_CTRL, "CTRL"},
 259	{E1000_STATUS, "STATUS"},
 260	{E1000_CTRL_EXT, "CTRL_EXT"},
 261
 262	/* Interrupt Registers */
 263	{E1000_ICR, "ICR"},
 264
 265	/* RX Registers */
 266	{E1000_RCTL, "RCTL"},
 267	{E1000_RDLEN(0), "RDLEN"},
 268	{E1000_RDH(0), "RDH"},
 269	{E1000_RDT(0), "RDT"},
 270	{E1000_RXDCTL(0), "RXDCTL"},
 271	{E1000_RDBAL(0), "RDBAL"},
 272	{E1000_RDBAH(0), "RDBAH"},
 273
 274	/* TX Registers */
 275	{E1000_TCTL, "TCTL"},
 276	{E1000_TDBAL(0), "TDBAL"},
 277	{E1000_TDBAH(0), "TDBAH"},
 278	{E1000_TDLEN(0), "TDLEN"},
 279	{E1000_TDH(0), "TDH"},
 280	{E1000_TDT(0), "TDT"},
 281	{E1000_TXDCTL(0), "TXDCTL"},
 282	{E1000_TDFH, "TDFH"},
 283	{E1000_TDFT, "TDFT"},
 284	{E1000_TDFHS, "TDFHS"},
 285	{E1000_TDFPC, "TDFPC"},
 286
 287	/* List Terminator */
 288	{}
 289};
 290
 291/* igb_regdump - register printout routine */
 292static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 293{
 294	int n = 0;
 295	char rname[16];
 296	u32 regs[8];
 297
 298	switch (reginfo->ofs) {
 299	case E1000_RDLEN(0):
 300		for (n = 0; n < 4; n++)
 301			regs[n] = rd32(E1000_RDLEN(n));
 302		break;
 303	case E1000_RDH(0):
 304		for (n = 0; n < 4; n++)
 305			regs[n] = rd32(E1000_RDH(n));
 306		break;
 307	case E1000_RDT(0):
 308		for (n = 0; n < 4; n++)
 309			regs[n] = rd32(E1000_RDT(n));
 310		break;
 311	case E1000_RXDCTL(0):
 312		for (n = 0; n < 4; n++)
 313			regs[n] = rd32(E1000_RXDCTL(n));
 314		break;
 315	case E1000_RDBAL(0):
 316		for (n = 0; n < 4; n++)
 317			regs[n] = rd32(E1000_RDBAL(n));
 318		break;
 319	case E1000_RDBAH(0):
 320		for (n = 0; n < 4; n++)
 321			regs[n] = rd32(E1000_RDBAH(n));
 322		break;
 323	case E1000_TDBAL(0):
 324		for (n = 0; n < 4; n++)
 325			regs[n] = rd32(E1000_RDBAL(n));
 326		break;
 327	case E1000_TDBAH(0):
 328		for (n = 0; n < 4; n++)
 329			regs[n] = rd32(E1000_TDBAH(n));
 330		break;
 331	case E1000_TDLEN(0):
 332		for (n = 0; n < 4; n++)
 333			regs[n] = rd32(E1000_TDLEN(n));
 334		break;
 335	case E1000_TDH(0):
 336		for (n = 0; n < 4; n++)
 337			regs[n] = rd32(E1000_TDH(n));
 338		break;
 339	case E1000_TDT(0):
 340		for (n = 0; n < 4; n++)
 341			regs[n] = rd32(E1000_TDT(n));
 342		break;
 343	case E1000_TXDCTL(0):
 344		for (n = 0; n < 4; n++)
 345			regs[n] = rd32(E1000_TXDCTL(n));
 346		break;
 347	default:
 348		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 349		return;
 350	}
 351
 352	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 353	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 354		regs[2], regs[3]);
 355}
 356
 357/* igb_dump - Print registers, Tx-rings and Rx-rings */
 358static void igb_dump(struct igb_adapter *adapter)
 359{
 360	struct net_device *netdev = adapter->netdev;
 361	struct e1000_hw *hw = &adapter->hw;
 362	struct igb_reg_info *reginfo;
 363	struct igb_ring *tx_ring;
 364	union e1000_adv_tx_desc *tx_desc;
 365	struct my_u0 { u64 a; u64 b; } *u0;
 366	struct igb_ring *rx_ring;
 367	union e1000_adv_rx_desc *rx_desc;
 368	u32 staterr;
 369	u16 i, n;
 370
 371	if (!netif_msg_hw(adapter))
 372		return;
 373
 374	/* Print netdevice Info */
 375	if (netdev) {
 376		dev_info(&adapter->pdev->dev, "Net device Info\n");
 377		pr_info("Device Name     state            trans_start\n");
 378		pr_info("%-15s %016lX %016lX\n", netdev->name,
 379			netdev->state, dev_trans_start(netdev));
 380	}
 381
 382	/* Print Registers */
 383	dev_info(&adapter->pdev->dev, "Register Dump\n");
 384	pr_info(" Register Name   Value\n");
 385	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 386	     reginfo->name; reginfo++) {
 387		igb_regdump(hw, reginfo);
 388	}
 389
 390	/* Print TX Ring Summary */
 391	if (!netdev || !netif_running(netdev))
 392		goto exit;
 393
 394	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 395	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 396	for (n = 0; n < adapter->num_tx_queues; n++) {
 397		struct igb_tx_buffer *buffer_info;
 398		tx_ring = adapter->tx_ring[n];
 399		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 400		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 401			n, tx_ring->next_to_use, tx_ring->next_to_clean,
 402			(u64)dma_unmap_addr(buffer_info, dma),
 403			dma_unmap_len(buffer_info, len),
 404			buffer_info->next_to_watch,
 405			(u64)buffer_info->time_stamp);
 406	}
 407
 408	/* Print TX Rings */
 409	if (!netif_msg_tx_done(adapter))
 410		goto rx_ring_summary;
 411
 412	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 413
 414	/* Transmit Descriptor Formats
 415	 *
 416	 * Advanced Transmit Descriptor
 417	 *   +--------------------------------------------------------------+
 418	 * 0 |         Buffer Address [63:0]                                |
 419	 *   +--------------------------------------------------------------+
 420	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 421	 *   +--------------------------------------------------------------+
 422	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
 423	 */
 424
 425	for (n = 0; n < adapter->num_tx_queues; n++) {
 426		tx_ring = adapter->tx_ring[n];
 427		pr_info("------------------------------------\n");
 428		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 429		pr_info("------------------------------------\n");
 430		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
 431
 432		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 433			const char *next_desc;
 434			struct igb_tx_buffer *buffer_info;
 435			tx_desc = IGB_TX_DESC(tx_ring, i);
 436			buffer_info = &tx_ring->tx_buffer_info[i];
 437			u0 = (struct my_u0 *)tx_desc;
 438			if (i == tx_ring->next_to_use &&
 439			    i == tx_ring->next_to_clean)
 440				next_desc = " NTC/U";
 441			else if (i == tx_ring->next_to_use)
 442				next_desc = " NTU";
 443			else if (i == tx_ring->next_to_clean)
 444				next_desc = " NTC";
 445			else
 446				next_desc = "";
 447
 448			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
 449				i, le64_to_cpu(u0->a),
 450				le64_to_cpu(u0->b),
 451				(u64)dma_unmap_addr(buffer_info, dma),
 452				dma_unmap_len(buffer_info, len),
 453				buffer_info->next_to_watch,
 454				(u64)buffer_info->time_stamp,
 455				buffer_info->skb, next_desc);
 456
 457			if (netif_msg_pktdata(adapter) && buffer_info->skb)
 458				print_hex_dump(KERN_INFO, "",
 459					DUMP_PREFIX_ADDRESS,
 460					16, 1, buffer_info->skb->data,
 461					dma_unmap_len(buffer_info, len),
 462					true);
 463		}
 464	}
 465
 466	/* Print RX Rings Summary */
 467rx_ring_summary:
 468	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 469	pr_info("Queue [NTU] [NTC]\n");
 470	for (n = 0; n < adapter->num_rx_queues; n++) {
 471		rx_ring = adapter->rx_ring[n];
 472		pr_info(" %5d %5X %5X\n",
 473			n, rx_ring->next_to_use, rx_ring->next_to_clean);
 474	}
 475
 476	/* Print RX Rings */
 477	if (!netif_msg_rx_status(adapter))
 478		goto exit;
 479
 480	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 481
 482	/* Advanced Receive Descriptor (Read) Format
 483	 *    63                                           1        0
 484	 *    +-----------------------------------------------------+
 485	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 486	 *    +----------------------------------------------+------+
 487	 *  8 |       Header Buffer Address [63:1]           |  DD  |
 488	 *    +-----------------------------------------------------+
 489	 *
 490	 *
 491	 * Advanced Receive Descriptor (Write-Back) Format
 492	 *
 493	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
 494	 *   +------------------------------------------------------+
 495	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 496	 *   | Checksum   Ident  |   |           |    | Type | Type |
 497	 *   +------------------------------------------------------+
 498	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 499	 *   +------------------------------------------------------+
 500	 *   63       48 47    32 31            20 19               0
 501	 */
 502
 503	for (n = 0; n < adapter->num_rx_queues; n++) {
 504		rx_ring = adapter->rx_ring[n];
 505		pr_info("------------------------------------\n");
 506		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 507		pr_info("------------------------------------\n");
 508		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 509		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
 510
 511		for (i = 0; i < rx_ring->count; i++) {
 512			const char *next_desc;
 513			struct igb_rx_buffer *buffer_info;
 514			buffer_info = &rx_ring->rx_buffer_info[i];
 515			rx_desc = IGB_RX_DESC(rx_ring, i);
 516			u0 = (struct my_u0 *)rx_desc;
 517			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 518
 519			if (i == rx_ring->next_to_use)
 520				next_desc = " NTU";
 521			else if (i == rx_ring->next_to_clean)
 522				next_desc = " NTC";
 523			else
 524				next_desc = "";
 525
 526			if (staterr & E1000_RXD_STAT_DD) {
 527				/* Descriptor Done */
 528				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 529					"RWB", i,
 530					le64_to_cpu(u0->a),
 531					le64_to_cpu(u0->b),
 532					next_desc);
 533			} else {
 534				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 535					"R  ", i,
 536					le64_to_cpu(u0->a),
 537					le64_to_cpu(u0->b),
 538					(u64)buffer_info->dma,
 539					next_desc);
 540
 541				if (netif_msg_pktdata(adapter) &&
 542				    buffer_info->dma && buffer_info->page) {
 543					print_hex_dump(KERN_INFO, "",
 544					  DUMP_PREFIX_ADDRESS,
 545					  16, 1,
 546					  page_address(buffer_info->page) +
 547						      buffer_info->page_offset,
 548					  igb_rx_bufsz(rx_ring), true);
 549				}
 550			}
 551		}
 552	}
 553
 554exit:
 555	return;
 556}
 557
 558/**
 559 *  igb_get_i2c_data - Reads the I2C SDA data bit
 560 *  @hw: pointer to hardware structure
 561 *  @i2cctl: Current value of I2CCTL register
 562 *
 563 *  Returns the I2C data bit value
 564 **/
 565static int igb_get_i2c_data(void *data)
 566{
 567	struct igb_adapter *adapter = (struct igb_adapter *)data;
 568	struct e1000_hw *hw = &adapter->hw;
 569	s32 i2cctl = rd32(E1000_I2CPARAMS);
 570
 571	return !!(i2cctl & E1000_I2C_DATA_IN);
 572}
 573
 574/**
 575 *  igb_set_i2c_data - Sets the I2C data bit
 576 *  @data: pointer to hardware structure
 577 *  @state: I2C data value (0 or 1) to set
 578 *
 579 *  Sets the I2C data bit
 580 **/
 581static void igb_set_i2c_data(void *data, int state)
 582{
 583	struct igb_adapter *adapter = (struct igb_adapter *)data;
 584	struct e1000_hw *hw = &adapter->hw;
 585	s32 i2cctl = rd32(E1000_I2CPARAMS);
 586
 587	if (state)
 588		i2cctl |= E1000_I2C_DATA_OUT;
 589	else
 590		i2cctl &= ~E1000_I2C_DATA_OUT;
 591
 592	i2cctl &= ~E1000_I2C_DATA_OE_N;
 593	i2cctl |= E1000_I2C_CLK_OE_N;
 594	wr32(E1000_I2CPARAMS, i2cctl);
 595	wrfl();
 596
 597}
 598
 599/**
 600 *  igb_set_i2c_clk - Sets the I2C SCL clock
 601 *  @data: pointer to hardware structure
 602 *  @state: state to set clock
 603 *
 604 *  Sets the I2C clock line to state
 605 **/
 606static void igb_set_i2c_clk(void *data, int state)
 607{
 608	struct igb_adapter *adapter = (struct igb_adapter *)data;
 609	struct e1000_hw *hw = &adapter->hw;
 610	s32 i2cctl = rd32(E1000_I2CPARAMS);
 611
 612	if (state) {
 613		i2cctl |= E1000_I2C_CLK_OUT;
 614		i2cctl &= ~E1000_I2C_CLK_OE_N;
 615	} else {
 616		i2cctl &= ~E1000_I2C_CLK_OUT;
 617		i2cctl &= ~E1000_I2C_CLK_OE_N;
 618	}
 619	wr32(E1000_I2CPARAMS, i2cctl);
 620	wrfl();
 621}
 622
 623/**
 624 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 625 *  @data: pointer to hardware structure
 626 *
 627 *  Gets the I2C clock state
 628 **/
 629static int igb_get_i2c_clk(void *data)
 630{
 631	struct igb_adapter *adapter = (struct igb_adapter *)data;
 632	struct e1000_hw *hw = &adapter->hw;
 633	s32 i2cctl = rd32(E1000_I2CPARAMS);
 634
 635	return !!(i2cctl & E1000_I2C_CLK_IN);
 636}
 637
 638static const struct i2c_algo_bit_data igb_i2c_algo = {
 639	.setsda		= igb_set_i2c_data,
 640	.setscl		= igb_set_i2c_clk,
 641	.getsda		= igb_get_i2c_data,
 642	.getscl		= igb_get_i2c_clk,
 643	.udelay		= 5,
 644	.timeout	= 20,
 645};
 646
 647/**
 648 *  igb_get_hw_dev - return device
 649 *  @hw: pointer to hardware structure
 650 *
 651 *  used by hardware layer to print debugging information
 652 **/
 653struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 654{
 655	struct igb_adapter *adapter = hw->back;
 656	return adapter->netdev;
 657}
 658
 659/**
 660 *  igb_init_module - Driver Registration Routine
 661 *
 662 *  igb_init_module is the first routine called when the driver is
 663 *  loaded. All it does is register with the PCI subsystem.
 664 **/
 665static int __init igb_init_module(void)
 666{
 667	int ret;
 668
 669	pr_info("%s - version %s\n",
 670	       igb_driver_string, igb_driver_version);
 671	pr_info("%s\n", igb_copyright);
 672
 673#ifdef CONFIG_IGB_DCA
 674	dca_register_notify(&dca_notifier);
 675#endif
 676	ret = pci_register_driver(&igb_driver);
 677	return ret;
 678}
 679
 680module_init(igb_init_module);
 681
 682/**
 683 *  igb_exit_module - Driver Exit Cleanup Routine
 684 *
 685 *  igb_exit_module is called just before the driver is removed
 686 *  from memory.
 687 **/
 688static void __exit igb_exit_module(void)
 689{
 690#ifdef CONFIG_IGB_DCA
 691	dca_unregister_notify(&dca_notifier);
 692#endif
 693	pci_unregister_driver(&igb_driver);
 694}
 695
 696module_exit(igb_exit_module);
 697
 698#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 699/**
 700 *  igb_cache_ring_register - Descriptor ring to register mapping
 701 *  @adapter: board private structure to initialize
 702 *
 703 *  Once we know the feature-set enabled for the device, we'll cache
 704 *  the register offset the descriptor ring is assigned to.
 705 **/
 706static void igb_cache_ring_register(struct igb_adapter *adapter)
 707{
 708	int i = 0, j = 0;
 709	u32 rbase_offset = adapter->vfs_allocated_count;
 710
 711	switch (adapter->hw.mac.type) {
 712	case e1000_82576:
 713		/* The queues are allocated for virtualization such that VF 0
 714		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 715		 * In order to avoid collision we start at the first free queue
 716		 * and continue consuming queues in the same sequence
 717		 */
 718		if (adapter->vfs_allocated_count) {
 719			for (; i < adapter->rss_queues; i++)
 720				adapter->rx_ring[i]->reg_idx = rbase_offset +
 721							       Q_IDX_82576(i);
 722		}
 723		/* Fall through */
 724	case e1000_82575:
 725	case e1000_82580:
 726	case e1000_i350:
 727	case e1000_i354:
 728	case e1000_i210:
 729	case e1000_i211:
 730		/* Fall through */
 731	default:
 732		for (; i < adapter->num_rx_queues; i++)
 733			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 734		for (; j < adapter->num_tx_queues; j++)
 735			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 736		break;
 737	}
 738}
 739
 740u32 igb_rd32(struct e1000_hw *hw, u32 reg)
 741{
 742	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
 743	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
 744	u32 value = 0;
 745
 746	if (E1000_REMOVED(hw_addr))
 747		return ~value;
 748
 749	value = readl(&hw_addr[reg]);
 750
 751	/* reads should not return all F's */
 752	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
 753		struct net_device *netdev = igb->netdev;
 754		hw->hw_addr = NULL;
 755		netdev_err(netdev, "PCIe link lost\n");
 756		WARN(pci_device_is_present(igb->pdev),
 757		     "igb: Failed to read reg 0x%x!\n", reg);
 758	}
 759
 760	return value;
 761}
 762
 763/**
 764 *  igb_write_ivar - configure ivar for given MSI-X vector
 765 *  @hw: pointer to the HW structure
 766 *  @msix_vector: vector number we are allocating to a given ring
 767 *  @index: row index of IVAR register to write within IVAR table
 768 *  @offset: column offset of in IVAR, should be multiple of 8
 769 *
 770 *  This function is intended to handle the writing of the IVAR register
 771 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 772 *  each containing an cause allocation for an Rx and Tx ring, and a
 773 *  variable number of rows depending on the number of queues supported.
 774 **/
 775static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 776			   int index, int offset)
 777{
 778	u32 ivar = array_rd32(E1000_IVAR0, index);
 779
 780	/* clear any bits that are currently set */
 781	ivar &= ~((u32)0xFF << offset);
 782
 783	/* write vector and valid bit */
 784	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 785
 786	array_wr32(E1000_IVAR0, index, ivar);
 787}
 788
 789#define IGB_N0_QUEUE -1
 790static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 791{
 792	struct igb_adapter *adapter = q_vector->adapter;
 793	struct e1000_hw *hw = &adapter->hw;
 794	int rx_queue = IGB_N0_QUEUE;
 795	int tx_queue = IGB_N0_QUEUE;
 796	u32 msixbm = 0;
 797
 798	if (q_vector->rx.ring)
 799		rx_queue = q_vector->rx.ring->reg_idx;
 800	if (q_vector->tx.ring)
 801		tx_queue = q_vector->tx.ring->reg_idx;
 802
 803	switch (hw->mac.type) {
 804	case e1000_82575:
 805		/* The 82575 assigns vectors using a bitmask, which matches the
 806		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 807		 * or more queues to a vector, we write the appropriate bits
 808		 * into the MSIXBM register for that vector.
 809		 */
 810		if (rx_queue > IGB_N0_QUEUE)
 811			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 812		if (tx_queue > IGB_N0_QUEUE)
 813			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 814		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
 815			msixbm |= E1000_EIMS_OTHER;
 816		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 817		q_vector->eims_value = msixbm;
 818		break;
 819	case e1000_82576:
 820		/* 82576 uses a table that essentially consists of 2 columns
 821		 * with 8 rows.  The ordering is column-major so we use the
 822		 * lower 3 bits as the row index, and the 4th bit as the
 823		 * column offset.
 824		 */
 825		if (rx_queue > IGB_N0_QUEUE)
 826			igb_write_ivar(hw, msix_vector,
 827				       rx_queue & 0x7,
 828				       (rx_queue & 0x8) << 1);
 829		if (tx_queue > IGB_N0_QUEUE)
 830			igb_write_ivar(hw, msix_vector,
 831				       tx_queue & 0x7,
 832				       ((tx_queue & 0x8) << 1) + 8);
 833		q_vector->eims_value = BIT(msix_vector);
 834		break;
 835	case e1000_82580:
 836	case e1000_i350:
 837	case e1000_i354:
 838	case e1000_i210:
 839	case e1000_i211:
 840		/* On 82580 and newer adapters the scheme is similar to 82576
 841		 * however instead of ordering column-major we have things
 842		 * ordered row-major.  So we traverse the table by using
 843		 * bit 0 as the column offset, and the remaining bits as the
 844		 * row index.
 845		 */
 846		if (rx_queue > IGB_N0_QUEUE)
 847			igb_write_ivar(hw, msix_vector,
 848				       rx_queue >> 1,
 849				       (rx_queue & 0x1) << 4);
 850		if (tx_queue > IGB_N0_QUEUE)
 851			igb_write_ivar(hw, msix_vector,
 852				       tx_queue >> 1,
 853				       ((tx_queue & 0x1) << 4) + 8);
 854		q_vector->eims_value = BIT(msix_vector);
 855		break;
 856	default:
 857		BUG();
 858		break;
 859	}
 860
 861	/* add q_vector eims value to global eims_enable_mask */
 862	adapter->eims_enable_mask |= q_vector->eims_value;
 863
 864	/* configure q_vector to set itr on first interrupt */
 865	q_vector->set_itr = 1;
 866}
 867
 868/**
 869 *  igb_configure_msix - Configure MSI-X hardware
 870 *  @adapter: board private structure to initialize
 871 *
 872 *  igb_configure_msix sets up the hardware to properly
 873 *  generate MSI-X interrupts.
 874 **/
 875static void igb_configure_msix(struct igb_adapter *adapter)
 876{
 877	u32 tmp;
 878	int i, vector = 0;
 879	struct e1000_hw *hw = &adapter->hw;
 880
 881	adapter->eims_enable_mask = 0;
 882
 883	/* set vector for other causes, i.e. link changes */
 884	switch (hw->mac.type) {
 885	case e1000_82575:
 886		tmp = rd32(E1000_CTRL_EXT);
 887		/* enable MSI-X PBA support*/
 888		tmp |= E1000_CTRL_EXT_PBA_CLR;
 889
 890		/* Auto-Mask interrupts upon ICR read. */
 891		tmp |= E1000_CTRL_EXT_EIAME;
 892		tmp |= E1000_CTRL_EXT_IRCA;
 893
 894		wr32(E1000_CTRL_EXT, tmp);
 895
 896		/* enable msix_other interrupt */
 897		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 898		adapter->eims_other = E1000_EIMS_OTHER;
 899
 900		break;
 901
 902	case e1000_82576:
 903	case e1000_82580:
 904	case e1000_i350:
 905	case e1000_i354:
 906	case e1000_i210:
 907	case e1000_i211:
 908		/* Turn on MSI-X capability first, or our settings
 909		 * won't stick.  And it will take days to debug.
 910		 */
 911		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 912		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 913		     E1000_GPIE_NSICR);
 914
 915		/* enable msix_other interrupt */
 916		adapter->eims_other = BIT(vector);
 917		tmp = (vector++ | E1000_IVAR_VALID) << 8;
 918
 919		wr32(E1000_IVAR_MISC, tmp);
 920		break;
 921	default:
 922		/* do nothing, since nothing else supports MSI-X */
 923		break;
 924	} /* switch (hw->mac.type) */
 925
 926	adapter->eims_enable_mask |= adapter->eims_other;
 927
 928	for (i = 0; i < adapter->num_q_vectors; i++)
 929		igb_assign_vector(adapter->q_vector[i], vector++);
 930
 931	wrfl();
 932}
 933
 934/**
 935 *  igb_request_msix - Initialize MSI-X interrupts
 936 *  @adapter: board private structure to initialize
 937 *
 938 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 939 *  kernel.
 940 **/
 941static int igb_request_msix(struct igb_adapter *adapter)
 942{
 943	struct net_device *netdev = adapter->netdev;
 944	int i, err = 0, vector = 0, free_vector = 0;
 945
 946	err = request_irq(adapter->msix_entries[vector].vector,
 947			  igb_msix_other, 0, netdev->name, adapter);
 948	if (err)
 949		goto err_out;
 950
 951	for (i = 0; i < adapter->num_q_vectors; i++) {
 952		struct igb_q_vector *q_vector = adapter->q_vector[i];
 953
 954		vector++;
 955
 956		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
 957
 958		if (q_vector->rx.ring && q_vector->tx.ring)
 959			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 960				q_vector->rx.ring->queue_index);
 961		else if (q_vector->tx.ring)
 962			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 963				q_vector->tx.ring->queue_index);
 964		else if (q_vector->rx.ring)
 965			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 966				q_vector->rx.ring->queue_index);
 967		else
 968			sprintf(q_vector->name, "%s-unused", netdev->name);
 969
 970		err = request_irq(adapter->msix_entries[vector].vector,
 971				  igb_msix_ring, 0, q_vector->name,
 972				  q_vector);
 973		if (err)
 974			goto err_free;
 975	}
 976
 977	igb_configure_msix(adapter);
 978	return 0;
 979
 980err_free:
 981	/* free already assigned IRQs */
 982	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 983
 984	vector--;
 985	for (i = 0; i < vector; i++) {
 986		free_irq(adapter->msix_entries[free_vector++].vector,
 987			 adapter->q_vector[i]);
 988	}
 989err_out:
 990	return err;
 991}
 992
 993/**
 994 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 995 *  @adapter: board private structure to initialize
 996 *  @v_idx: Index of vector to be freed
 997 *
 998 *  This function frees the memory allocated to the q_vector.
 999 **/
1000static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1001{
1002	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1003
1004	adapter->q_vector[v_idx] = NULL;
1005
1006	/* igb_get_stats64() might access the rings on this vector,
1007	 * we must wait a grace period before freeing it.
1008	 */
1009	if (q_vector)
1010		kfree_rcu(q_vector, rcu);
1011}
1012
1013/**
1014 *  igb_reset_q_vector - Reset config for interrupt vector
1015 *  @adapter: board private structure to initialize
1016 *  @v_idx: Index of vector to be reset
1017 *
1018 *  If NAPI is enabled it will delete any references to the
1019 *  NAPI struct. This is preparation for igb_free_q_vector.
1020 **/
1021static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1022{
1023	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1024
1025	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1026	 * allocated. So, q_vector is NULL so we should stop here.
1027	 */
1028	if (!q_vector)
1029		return;
1030
1031	if (q_vector->tx.ring)
1032		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1033
1034	if (q_vector->rx.ring)
1035		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1036
1037	netif_napi_del(&q_vector->napi);
1038
1039}
1040
1041static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1042{
1043	int v_idx = adapter->num_q_vectors;
1044
1045	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1046		pci_disable_msix(adapter->pdev);
1047	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1048		pci_disable_msi(adapter->pdev);
1049
1050	while (v_idx--)
1051		igb_reset_q_vector(adapter, v_idx);
1052}
1053
1054/**
1055 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1056 *  @adapter: board private structure to initialize
1057 *
1058 *  This function frees the memory allocated to the q_vectors.  In addition if
1059 *  NAPI is enabled it will delete any references to the NAPI struct prior
1060 *  to freeing the q_vector.
1061 **/
1062static void igb_free_q_vectors(struct igb_adapter *adapter)
1063{
1064	int v_idx = adapter->num_q_vectors;
1065
1066	adapter->num_tx_queues = 0;
1067	adapter->num_rx_queues = 0;
1068	adapter->num_q_vectors = 0;
1069
1070	while (v_idx--) {
1071		igb_reset_q_vector(adapter, v_idx);
1072		igb_free_q_vector(adapter, v_idx);
1073	}
1074}
1075
1076/**
1077 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1078 *  @adapter: board private structure to initialize
1079 *
1080 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1081 *  MSI-X interrupts allocated.
1082 */
1083static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1084{
1085	igb_free_q_vectors(adapter);
1086	igb_reset_interrupt_capability(adapter);
1087}
1088
1089/**
1090 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1091 *  @adapter: board private structure to initialize
1092 *  @msix: boolean value of MSIX capability
1093 *
1094 *  Attempt to configure interrupts using the best available
1095 *  capabilities of the hardware and kernel.
1096 **/
1097static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1098{
1099	int err;
1100	int numvecs, i;
1101
1102	if (!msix)
1103		goto msi_only;
1104	adapter->flags |= IGB_FLAG_HAS_MSIX;
1105
1106	/* Number of supported queues. */
1107	adapter->num_rx_queues = adapter->rss_queues;
1108	if (adapter->vfs_allocated_count)
1109		adapter->num_tx_queues = 1;
1110	else
1111		adapter->num_tx_queues = adapter->rss_queues;
1112
1113	/* start with one vector for every Rx queue */
1114	numvecs = adapter->num_rx_queues;
1115
1116	/* if Tx handler is separate add 1 for every Tx queue */
1117	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1118		numvecs += adapter->num_tx_queues;
1119
1120	/* store the number of vectors reserved for queues */
1121	adapter->num_q_vectors = numvecs;
1122
1123	/* add 1 vector for link status interrupts */
1124	numvecs++;
1125	for (i = 0; i < numvecs; i++)
1126		adapter->msix_entries[i].entry = i;
1127
1128	err = pci_enable_msix_range(adapter->pdev,
1129				    adapter->msix_entries,
1130				    numvecs,
1131				    numvecs);
1132	if (err > 0)
1133		return;
1134
1135	igb_reset_interrupt_capability(adapter);
1136
1137	/* If we can't do MSI-X, try MSI */
1138msi_only:
1139	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1140#ifdef CONFIG_PCI_IOV
1141	/* disable SR-IOV for non MSI-X configurations */
1142	if (adapter->vf_data) {
1143		struct e1000_hw *hw = &adapter->hw;
1144		/* disable iov and allow time for transactions to clear */
1145		pci_disable_sriov(adapter->pdev);
1146		msleep(500);
1147
1148		kfree(adapter->vf_mac_list);
1149		adapter->vf_mac_list = NULL;
1150		kfree(adapter->vf_data);
1151		adapter->vf_data = NULL;
1152		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1153		wrfl();
1154		msleep(100);
1155		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1156	}
1157#endif
1158	adapter->vfs_allocated_count = 0;
1159	adapter->rss_queues = 1;
1160	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1161	adapter->num_rx_queues = 1;
1162	adapter->num_tx_queues = 1;
1163	adapter->num_q_vectors = 1;
1164	if (!pci_enable_msi(adapter->pdev))
1165		adapter->flags |= IGB_FLAG_HAS_MSI;
1166}
1167
1168static void igb_add_ring(struct igb_ring *ring,
1169			 struct igb_ring_container *head)
1170{
1171	head->ring = ring;
1172	head->count++;
1173}
1174
1175/**
1176 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1177 *  @adapter: board private structure to initialize
1178 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1179 *  @v_idx: index of vector in adapter struct
1180 *  @txr_count: total number of Tx rings to allocate
1181 *  @txr_idx: index of first Tx ring to allocate
1182 *  @rxr_count: total number of Rx rings to allocate
1183 *  @rxr_idx: index of first Rx ring to allocate
1184 *
1185 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1186 **/
1187static int igb_alloc_q_vector(struct igb_adapter *adapter,
1188			      int v_count, int v_idx,
1189			      int txr_count, int txr_idx,
1190			      int rxr_count, int rxr_idx)
1191{
1192	struct igb_q_vector *q_vector;
1193	struct igb_ring *ring;
1194	int ring_count;
1195	size_t size;
1196
1197	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1198	if (txr_count > 1 || rxr_count > 1)
1199		return -ENOMEM;
1200
1201	ring_count = txr_count + rxr_count;
1202	size = struct_size(q_vector, ring, ring_count);
1203
1204	/* allocate q_vector and rings */
1205	q_vector = adapter->q_vector[v_idx];
1206	if (!q_vector) {
1207		q_vector = kzalloc(size, GFP_KERNEL);
1208	} else if (size > ksize(q_vector)) {
1209		kfree_rcu(q_vector, rcu);
1210		q_vector = kzalloc(size, GFP_KERNEL);
1211	} else {
1212		memset(q_vector, 0, size);
1213	}
1214	if (!q_vector)
1215		return -ENOMEM;
1216
1217	/* initialize NAPI */
1218	netif_napi_add(adapter->netdev, &q_vector->napi,
1219		       igb_poll, 64);
1220
1221	/* tie q_vector and adapter together */
1222	adapter->q_vector[v_idx] = q_vector;
1223	q_vector->adapter = adapter;
1224
1225	/* initialize work limits */
1226	q_vector->tx.work_limit = adapter->tx_work_limit;
1227
1228	/* initialize ITR configuration */
1229	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1230	q_vector->itr_val = IGB_START_ITR;
1231
1232	/* initialize pointer to rings */
1233	ring = q_vector->ring;
1234
1235	/* intialize ITR */
1236	if (rxr_count) {
1237		/* rx or rx/tx vector */
1238		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1239			q_vector->itr_val = adapter->rx_itr_setting;
1240	} else {
1241		/* tx only vector */
1242		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1243			q_vector->itr_val = adapter->tx_itr_setting;
1244	}
1245
1246	if (txr_count) {
1247		/* assign generic ring traits */
1248		ring->dev = &adapter->pdev->dev;
1249		ring->netdev = adapter->netdev;
1250
1251		/* configure backlink on ring */
1252		ring->q_vector = q_vector;
1253
1254		/* update q_vector Tx values */
1255		igb_add_ring(ring, &q_vector->tx);
1256
1257		/* For 82575, context index must be unique per ring. */
1258		if (adapter->hw.mac.type == e1000_82575)
1259			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1260
1261		/* apply Tx specific ring traits */
1262		ring->count = adapter->tx_ring_count;
1263		ring->queue_index = txr_idx;
1264
1265		ring->cbs_enable = false;
1266		ring->idleslope = 0;
1267		ring->sendslope = 0;
1268		ring->hicredit = 0;
1269		ring->locredit = 0;
1270
1271		u64_stats_init(&ring->tx_syncp);
1272		u64_stats_init(&ring->tx_syncp2);
1273
1274		/* assign ring to adapter */
1275		adapter->tx_ring[txr_idx] = ring;
1276
1277		/* push pointer to next ring */
1278		ring++;
1279	}
1280
1281	if (rxr_count) {
1282		/* assign generic ring traits */
1283		ring->dev = &adapter->pdev->dev;
1284		ring->netdev = adapter->netdev;
1285
1286		/* configure backlink on ring */
1287		ring->q_vector = q_vector;
1288
1289		/* update q_vector Rx values */
1290		igb_add_ring(ring, &q_vector->rx);
1291
1292		/* set flag indicating ring supports SCTP checksum offload */
1293		if (adapter->hw.mac.type >= e1000_82576)
1294			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295
1296		/* On i350, i354, i210, and i211, loopback VLAN packets
1297		 * have the tag byte-swapped.
1298		 */
1299		if (adapter->hw.mac.type >= e1000_i350)
1300			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301
1302		/* apply Rx specific ring traits */
1303		ring->count = adapter->rx_ring_count;
1304		ring->queue_index = rxr_idx;
1305
1306		u64_stats_init(&ring->rx_syncp);
1307
1308		/* assign ring to adapter */
1309		adapter->rx_ring[rxr_idx] = ring;
1310	}
1311
1312	return 0;
1313}
1314
1315
1316/**
1317 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318 *  @adapter: board private structure to initialize
1319 *
1320 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321 *  return -ENOMEM.
1322 **/
1323static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324{
1325	int q_vectors = adapter->num_q_vectors;
1326	int rxr_remaining = adapter->num_rx_queues;
1327	int txr_remaining = adapter->num_tx_queues;
1328	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329	int err;
1330
1331	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332		for (; rxr_remaining; v_idx++) {
1333			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334						 0, 0, 1, rxr_idx);
1335
1336			if (err)
1337				goto err_out;
1338
1339			/* update counts and index */
1340			rxr_remaining--;
1341			rxr_idx++;
1342		}
1343	}
1344
1345	for (; v_idx < q_vectors; v_idx++) {
1346		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348
1349		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350					 tqpv, txr_idx, rqpv, rxr_idx);
1351
1352		if (err)
1353			goto err_out;
1354
1355		/* update counts and index */
1356		rxr_remaining -= rqpv;
1357		txr_remaining -= tqpv;
1358		rxr_idx++;
1359		txr_idx++;
1360	}
1361
1362	return 0;
1363
1364err_out:
1365	adapter->num_tx_queues = 0;
1366	adapter->num_rx_queues = 0;
1367	adapter->num_q_vectors = 0;
1368
1369	while (v_idx--)
1370		igb_free_q_vector(adapter, v_idx);
1371
1372	return -ENOMEM;
1373}
1374
1375/**
1376 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377 *  @adapter: board private structure to initialize
1378 *  @msix: boolean value of MSIX capability
1379 *
1380 *  This function initializes the interrupts and allocates all of the queues.
1381 **/
1382static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383{
1384	struct pci_dev *pdev = adapter->pdev;
1385	int err;
1386
1387	igb_set_interrupt_capability(adapter, msix);
1388
1389	err = igb_alloc_q_vectors(adapter);
1390	if (err) {
1391		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392		goto err_alloc_q_vectors;
1393	}
1394
1395	igb_cache_ring_register(adapter);
1396
1397	return 0;
1398
1399err_alloc_q_vectors:
1400	igb_reset_interrupt_capability(adapter);
1401	return err;
1402}
1403
1404/**
1405 *  igb_request_irq - initialize interrupts
1406 *  @adapter: board private structure to initialize
1407 *
1408 *  Attempts to configure interrupts using the best available
1409 *  capabilities of the hardware and kernel.
1410 **/
1411static int igb_request_irq(struct igb_adapter *adapter)
1412{
1413	struct net_device *netdev = adapter->netdev;
1414	struct pci_dev *pdev = adapter->pdev;
1415	int err = 0;
1416
1417	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418		err = igb_request_msix(adapter);
1419		if (!err)
1420			goto request_done;
1421		/* fall back to MSI */
1422		igb_free_all_tx_resources(adapter);
1423		igb_free_all_rx_resources(adapter);
1424
1425		igb_clear_interrupt_scheme(adapter);
1426		err = igb_init_interrupt_scheme(adapter, false);
1427		if (err)
1428			goto request_done;
1429
1430		igb_setup_all_tx_resources(adapter);
1431		igb_setup_all_rx_resources(adapter);
1432		igb_configure(adapter);
1433	}
1434
1435	igb_assign_vector(adapter->q_vector[0], 0);
1436
1437	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438		err = request_irq(pdev->irq, igb_intr_msi, 0,
1439				  netdev->name, adapter);
1440		if (!err)
1441			goto request_done;
1442
1443		/* fall back to legacy interrupts */
1444		igb_reset_interrupt_capability(adapter);
1445		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446	}
1447
1448	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449			  netdev->name, adapter);
1450
1451	if (err)
1452		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453			err);
1454
1455request_done:
1456	return err;
1457}
1458
1459static void igb_free_irq(struct igb_adapter *adapter)
1460{
1461	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462		int vector = 0, i;
1463
1464		free_irq(adapter->msix_entries[vector++].vector, adapter);
1465
1466		for (i = 0; i < adapter->num_q_vectors; i++)
1467			free_irq(adapter->msix_entries[vector++].vector,
1468				 adapter->q_vector[i]);
1469	} else {
1470		free_irq(adapter->pdev->irq, adapter);
1471	}
1472}
1473
1474/**
1475 *  igb_irq_disable - Mask off interrupt generation on the NIC
1476 *  @adapter: board private structure
1477 **/
1478static void igb_irq_disable(struct igb_adapter *adapter)
1479{
1480	struct e1000_hw *hw = &adapter->hw;
1481
1482	/* we need to be careful when disabling interrupts.  The VFs are also
1483	 * mapped into these registers and so clearing the bits can cause
1484	 * issues on the VF drivers so we only need to clear what we set
1485	 */
1486	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487		u32 regval = rd32(E1000_EIAM);
1488
1489		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490		wr32(E1000_EIMC, adapter->eims_enable_mask);
1491		regval = rd32(E1000_EIAC);
1492		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493	}
1494
1495	wr32(E1000_IAM, 0);
1496	wr32(E1000_IMC, ~0);
1497	wrfl();
1498	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499		int i;
1500
1501		for (i = 0; i < adapter->num_q_vectors; i++)
1502			synchronize_irq(adapter->msix_entries[i].vector);
1503	} else {
1504		synchronize_irq(adapter->pdev->irq);
1505	}
1506}
1507
1508/**
1509 *  igb_irq_enable - Enable default interrupt generation settings
1510 *  @adapter: board private structure
1511 **/
1512static void igb_irq_enable(struct igb_adapter *adapter)
1513{
1514	struct e1000_hw *hw = &adapter->hw;
1515
1516	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518		u32 regval = rd32(E1000_EIAC);
1519
1520		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521		regval = rd32(E1000_EIAM);
1522		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523		wr32(E1000_EIMS, adapter->eims_enable_mask);
1524		if (adapter->vfs_allocated_count) {
1525			wr32(E1000_MBVFIMR, 0xFF);
1526			ims |= E1000_IMS_VMMB;
1527		}
1528		wr32(E1000_IMS, ims);
1529	} else {
1530		wr32(E1000_IMS, IMS_ENABLE_MASK |
1531				E1000_IMS_DRSTA);
1532		wr32(E1000_IAM, IMS_ENABLE_MASK |
1533				E1000_IMS_DRSTA);
1534	}
1535}
1536
1537static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538{
1539	struct e1000_hw *hw = &adapter->hw;
1540	u16 pf_id = adapter->vfs_allocated_count;
1541	u16 vid = adapter->hw.mng_cookie.vlan_id;
1542	u16 old_vid = adapter->mng_vlan_id;
1543
1544	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545		/* add VID to filter table */
1546		igb_vfta_set(hw, vid, pf_id, true, true);
1547		adapter->mng_vlan_id = vid;
1548	} else {
1549		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550	}
1551
1552	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553	    (vid != old_vid) &&
1554	    !test_bit(old_vid, adapter->active_vlans)) {
1555		/* remove VID from filter table */
1556		igb_vfta_set(hw, vid, pf_id, false, true);
1557	}
1558}
1559
1560/**
1561 *  igb_release_hw_control - release control of the h/w to f/w
1562 *  @adapter: address of board private structure
1563 *
1564 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565 *  For ASF and Pass Through versions of f/w this means that the
1566 *  driver is no longer loaded.
1567 **/
1568static void igb_release_hw_control(struct igb_adapter *adapter)
1569{
1570	struct e1000_hw *hw = &adapter->hw;
1571	u32 ctrl_ext;
1572
1573	/* Let firmware take over control of h/w */
1574	ctrl_ext = rd32(E1000_CTRL_EXT);
1575	wr32(E1000_CTRL_EXT,
1576			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577}
1578
1579/**
1580 *  igb_get_hw_control - get control of the h/w from f/w
1581 *  @adapter: address of board private structure
1582 *
1583 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584 *  For ASF and Pass Through versions of f/w this means that
1585 *  the driver is loaded.
1586 **/
1587static void igb_get_hw_control(struct igb_adapter *adapter)
1588{
1589	struct e1000_hw *hw = &adapter->hw;
1590	u32 ctrl_ext;
1591
1592	/* Let firmware know the driver has taken over */
1593	ctrl_ext = rd32(E1000_CTRL_EXT);
1594	wr32(E1000_CTRL_EXT,
1595			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596}
1597
1598static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1599{
1600	struct net_device *netdev = adapter->netdev;
1601	struct e1000_hw *hw = &adapter->hw;
1602
1603	WARN_ON(hw->mac.type != e1000_i210);
1604
1605	if (enable)
1606		adapter->flags |= IGB_FLAG_FQTSS;
1607	else
1608		adapter->flags &= ~IGB_FLAG_FQTSS;
1609
1610	if (netif_running(netdev))
1611		schedule_work(&adapter->reset_task);
1612}
1613
1614static bool is_fqtss_enabled(struct igb_adapter *adapter)
1615{
1616	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1617}
1618
1619static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1620				   enum tx_queue_prio prio)
1621{
1622	u32 val;
1623
1624	WARN_ON(hw->mac.type != e1000_i210);
1625	WARN_ON(queue < 0 || queue > 4);
1626
1627	val = rd32(E1000_I210_TXDCTL(queue));
1628
1629	if (prio == TX_QUEUE_PRIO_HIGH)
1630		val |= E1000_TXDCTL_PRIORITY;
1631	else
1632		val &= ~E1000_TXDCTL_PRIORITY;
1633
1634	wr32(E1000_I210_TXDCTL(queue), val);
1635}
1636
1637static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1638{
1639	u32 val;
1640
1641	WARN_ON(hw->mac.type != e1000_i210);
1642	WARN_ON(queue < 0 || queue > 1);
1643
1644	val = rd32(E1000_I210_TQAVCC(queue));
1645
1646	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1647		val |= E1000_TQAVCC_QUEUEMODE;
1648	else
1649		val &= ~E1000_TQAVCC_QUEUEMODE;
1650
1651	wr32(E1000_I210_TQAVCC(queue), val);
1652}
1653
1654static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1655{
1656	int i;
1657
1658	for (i = 0; i < adapter->num_tx_queues; i++) {
1659		if (adapter->tx_ring[i]->cbs_enable)
1660			return true;
1661	}
1662
1663	return false;
1664}
1665
1666static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1667{
1668	int i;
1669
1670	for (i = 0; i < adapter->num_tx_queues; i++) {
1671		if (adapter->tx_ring[i]->launchtime_enable)
1672			return true;
1673	}
1674
1675	return false;
1676}
1677
1678/**
1679 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1680 *  @adapter: pointer to adapter struct
1681 *  @queue: queue number
1682 *
1683 *  Configure CBS and Launchtime for a given hardware queue.
1684 *  Parameters are retrieved from the correct Tx ring, so
1685 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1686 *  for setting those correctly prior to this function being called.
1687 **/
1688static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1689{
1690	struct igb_ring *ring = adapter->tx_ring[queue];
1691	struct net_device *netdev = adapter->netdev;
1692	struct e1000_hw *hw = &adapter->hw;
1693	u32 tqavcc, tqavctrl;
1694	u16 value;
1695
1696	WARN_ON(hw->mac.type != e1000_i210);
1697	WARN_ON(queue < 0 || queue > 1);
1698
1699	/* If any of the Qav features is enabled, configure queues as SR and
1700	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701	 * as SP.
1702	 */
1703	if (ring->cbs_enable || ring->launchtime_enable) {
1704		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706	} else {
1707		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709	}
1710
1711	/* If CBS is enabled, set DataTranARB and config its parameters. */
1712	if (ring->cbs_enable || queue == 0) {
1713		/* i210 does not allow the queue 0 to be in the Strict
1714		 * Priority mode while the Qav mode is enabled, so,
1715		 * instead of disabling strict priority mode, we give
1716		 * queue 0 the maximum of credits possible.
1717		 *
1718		 * See section 8.12.19 of the i210 datasheet, "Note:
1719		 * Queue0 QueueMode must be set to 1b when
1720		 * TransmitMode is set to Qav."
1721		 */
1722		if (queue == 0 && !ring->cbs_enable) {
1723			/* max "linkspeed" idleslope in kbps */
1724			ring->idleslope = 1000000;
1725			ring->hicredit = ETH_FRAME_LEN;
1726		}
1727
1728		/* Always set data transfer arbitration to credit-based
1729		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730		 * the queues.
1731		 */
1732		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735
1736		/* According to i210 datasheet section 7.2.7.7, we should set
1737		 * the 'idleSlope' field from TQAVCC register following the
1738		 * equation:
1739		 *
1740		 * For 100 Mbps link speed:
1741		 *
1742		 *     value = BW * 0x7735 * 0.2                          (E1)
1743		 *
1744		 * For 1000Mbps link speed:
1745		 *
1746		 *     value = BW * 0x7735 * 2                            (E2)
1747		 *
1748		 * E1 and E2 can be merged into one equation as shown below.
1749		 * Note that 'link-speed' is in Mbps.
1750		 *
1751		 *     value = BW * 0x7735 * 2 * link-speed
1752		 *                           --------------               (E3)
1753		 *                                1000
1754		 *
1755		 * 'BW' is the percentage bandwidth out of full link speed
1756		 * which can be found with the following equation. Note that
1757		 * idleSlope here is the parameter from this function which
1758		 * is in kbps.
1759		 *
1760		 *     BW =     idleSlope
1761		 *          -----------------                             (E4)
1762		 *          link-speed * 1000
1763		 *
1764		 * That said, we can come up with a generic equation to
1765		 * calculate the value we should set it TQAVCC register by
1766		 * replacing 'BW' in E3 by E4. The resulting equation is:
1767		 *
1768		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1769		 *         -----------------            --------------    (E5)
1770		 *         link-speed * 1000                 1000
1771		 *
1772		 * 'link-speed' is present in both sides of the fraction so
1773		 * it is canceled out. The final equation is the following:
1774		 *
1775		 *     value = idleSlope * 61034
1776		 *             -----------------                          (E6)
1777		 *                  1000000
1778		 *
1779		 * NOTE: For i210, given the above, we can see that idleslope
1780		 *       is represented in 16.38431 kbps units by the value at
1781		 *       the TQAVCC register (1Gbps / 61034), which reduces
1782		 *       the granularity for idleslope increments.
1783		 *       For instance, if you want to configure a 2576kbps
1784		 *       idleslope, the value to be written on the register
1785		 *       would have to be 157.23. If rounded down, you end
1786		 *       up with less bandwidth available than originally
1787		 *       required (~2572 kbps). If rounded up, you end up
1788		 *       with a higher bandwidth (~2589 kbps). Below the
1789		 *       approach we take is to always round up the
1790		 *       calculated value, so the resulting bandwidth might
1791		 *       be slightly higher for some configurations.
1792		 */
1793		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794
1795		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797		tqavcc |= value;
1798		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800		wr32(E1000_I210_TQAVHC(queue),
1801		     0x80000000 + ring->hicredit * 0x7735);
1802	} else {
1803
1804		/* Set idleSlope to zero. */
1805		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808
1809		/* Set hiCredit to zero. */
1810		wr32(E1000_I210_TQAVHC(queue), 0);
1811
1812		/* If CBS is not enabled for any queues anymore, then return to
1813		 * the default state of Data Transmission Arbitration on
1814		 * TQAVCTRL.
1815		 */
1816		if (!is_any_cbs_enabled(adapter)) {
1817			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820		}
1821	}
1822
1823	/* If LaunchTime is enabled, set DataTranTIM. */
1824	if (ring->launchtime_enable) {
1825		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826		 * for any of the SR queues, and configure fetchtime delta.
1827		 * XXX NOTE:
1828		 *     - LaunchTime will be enabled for all SR queues.
1829		 *     - A fixed offset can be added relative to the launch
1830		 *       time of all packets if configured at reg LAUNCH_OS0.
1831		 *       We are keeping it as 0 for now (default value).
1832		 */
1833		tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835		       E1000_TQAVCTRL_FETCHTIME_DELTA;
1836		wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837	} else {
1838		/* If Launchtime is not enabled for any SR queues anymore,
1839		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840		 * effectively disabling Launchtime.
1841		 */
1842		if (!is_any_txtime_enabled(adapter)) {
1843			tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846			wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847		}
1848	}
1849
1850	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1851	 * CBS are not configurable by software so we don't do any 'controller
1852	 * configuration' in respect to these parameters.
1853	 */
1854
1855	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856		   ring->cbs_enable ? "enabled" : "disabled",
1857		   ring->launchtime_enable ? "enabled" : "disabled",
1858		   queue,
1859		   ring->idleslope, ring->sendslope,
1860		   ring->hicredit, ring->locredit);
1861}
1862
1863static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864				  bool enable)
1865{
1866	struct igb_ring *ring;
1867
1868	if (queue < 0 || queue > adapter->num_tx_queues)
1869		return -EINVAL;
1870
1871	ring = adapter->tx_ring[queue];
1872	ring->launchtime_enable = enable;
1873
1874	return 0;
1875}
1876
1877static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878			       bool enable, int idleslope, int sendslope,
1879			       int hicredit, int locredit)
1880{
1881	struct igb_ring *ring;
1882
1883	if (queue < 0 || queue > adapter->num_tx_queues)
1884		return -EINVAL;
1885
1886	ring = adapter->tx_ring[queue];
1887
1888	ring->cbs_enable = enable;
1889	ring->idleslope = idleslope;
1890	ring->sendslope = sendslope;
1891	ring->hicredit = hicredit;
1892	ring->locredit = locredit;
1893
1894	return 0;
1895}
1896
1897/**
1898 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899 *  @adapter: pointer to adapter struct
1900 *
1901 *  Configure TQAVCTRL register switching the controller's Tx mode
1902 *  if FQTSS mode is enabled or disabled. Additionally, will issue
1903 *  a call to igb_config_tx_modes() per queue so any previously saved
1904 *  Tx parameters are applied.
1905 **/
1906static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907{
1908	struct net_device *netdev = adapter->netdev;
1909	struct e1000_hw *hw = &adapter->hw;
1910	u32 val;
1911
1912	/* Only i210 controller supports changing the transmission mode. */
1913	if (hw->mac.type != e1000_i210)
1914		return;
1915
1916	if (is_fqtss_enabled(adapter)) {
1917		int i, max_queue;
1918
1919		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921		 * so SP queues wait for SR ones.
1922		 */
1923		val = rd32(E1000_I210_TQAVCTRL);
1924		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926		wr32(E1000_I210_TQAVCTRL, val);
1927
1928		/* Configure Tx and Rx packet buffers sizes as described in
1929		 * i210 datasheet section 7.2.7.7.
1930		 */
1931		val = rd32(E1000_TXPBS);
1932		val &= ~I210_TXPBSIZE_MASK;
1933		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1934			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1935		wr32(E1000_TXPBS, val);
1936
1937		val = rd32(E1000_RXPBS);
1938		val &= ~I210_RXPBSIZE_MASK;
1939		val |= I210_RXPBSIZE_PB_30KB;
1940		wr32(E1000_RXPBS, val);
1941
1942		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943		 * register should not exceed the buffer size programmed in
1944		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946		 * 4kB / 64.
1947		 *
1948		 * However, when we do so, no frame from queue 2 and 3 are
1949		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1950		 * or _equal_ to the buffer size programmed in TXPBS. For this
1951		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952		 */
1953		val = (4096 - 1) / 64;
1954		wr32(E1000_I210_DTXMXPKTSZ, val);
1955
1956		/* Since FQTSS mode is enabled, apply any CBS configuration
1957		 * previously set. If no previous CBS configuration has been
1958		 * done, then the initial configuration is applied, which means
1959		 * CBS is disabled.
1960		 */
1961		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963
1964		for (i = 0; i < max_queue; i++) {
1965			igb_config_tx_modes(adapter, i);
1966		}
1967	} else {
1968		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971
1972		val = rd32(E1000_I210_TQAVCTRL);
1973		/* According to Section 8.12.21, the other flags we've set when
1974		 * enabling FQTSS are not relevant when disabling FQTSS so we
1975		 * don't set they here.
1976		 */
1977		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978		wr32(E1000_I210_TQAVCTRL, val);
1979	}
1980
1981	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982		   "enabled" : "disabled");
1983}
1984
1985/**
1986 *  igb_configure - configure the hardware for RX and TX
1987 *  @adapter: private board structure
1988 **/
1989static void igb_configure(struct igb_adapter *adapter)
1990{
1991	struct net_device *netdev = adapter->netdev;
1992	int i;
1993
1994	igb_get_hw_control(adapter);
1995	igb_set_rx_mode(netdev);
1996	igb_setup_tx_mode(adapter);
1997
1998	igb_restore_vlan(adapter);
1999
2000	igb_setup_tctl(adapter);
2001	igb_setup_mrqc(adapter);
2002	igb_setup_rctl(adapter);
2003
2004	igb_nfc_filter_restore(adapter);
2005	igb_configure_tx(adapter);
2006	igb_configure_rx(adapter);
2007
2008	igb_rx_fifo_flush_82575(&adapter->hw);
2009
2010	/* call igb_desc_unused which always leaves
2011	 * at least 1 descriptor unused to make sure
2012	 * next_to_use != next_to_clean
2013	 */
2014	for (i = 0; i < adapter->num_rx_queues; i++) {
2015		struct igb_ring *ring = adapter->rx_ring[i];
2016		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017	}
2018}
2019
2020/**
2021 *  igb_power_up_link - Power up the phy/serdes link
2022 *  @adapter: address of board private structure
2023 **/
2024void igb_power_up_link(struct igb_adapter *adapter)
2025{
2026	igb_reset_phy(&adapter->hw);
2027
2028	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029		igb_power_up_phy_copper(&adapter->hw);
2030	else
2031		igb_power_up_serdes_link_82575(&adapter->hw);
2032
2033	igb_setup_link(&adapter->hw);
2034}
2035
2036/**
2037 *  igb_power_down_link - Power down the phy/serdes link
2038 *  @adapter: address of board private structure
2039 */
2040static void igb_power_down_link(struct igb_adapter *adapter)
2041{
2042	if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043		igb_power_down_phy_copper_82575(&adapter->hw);
2044	else
2045		igb_shutdown_serdes_link_82575(&adapter->hw);
2046}
2047
2048/**
2049 * Detect and switch function for Media Auto Sense
2050 * @adapter: address of the board private structure
2051 **/
2052static void igb_check_swap_media(struct igb_adapter *adapter)
2053{
2054	struct e1000_hw *hw = &adapter->hw;
2055	u32 ctrl_ext, connsw;
2056	bool swap_now = false;
2057
2058	ctrl_ext = rd32(E1000_CTRL_EXT);
2059	connsw = rd32(E1000_CONNSW);
2060
2061	/* need to live swap if current media is copper and we have fiber/serdes
2062	 * to go to.
2063	 */
2064
2065	if ((hw->phy.media_type == e1000_media_type_copper) &&
2066	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067		swap_now = true;
2068	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069		   !(connsw & E1000_CONNSW_SERDESD)) {
2070		/* copper signal takes time to appear */
2071		if (adapter->copper_tries < 4) {
2072			adapter->copper_tries++;
2073			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074			wr32(E1000_CONNSW, connsw);
2075			return;
2076		} else {
2077			adapter->copper_tries = 0;
2078			if ((connsw & E1000_CONNSW_PHYSD) &&
2079			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080				swap_now = true;
2081				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082				wr32(E1000_CONNSW, connsw);
2083			}
2084		}
2085	}
2086
2087	if (!swap_now)
2088		return;
2089
2090	switch (hw->phy.media_type) {
2091	case e1000_media_type_copper:
2092		netdev_info(adapter->netdev,
2093			"MAS: changing media to fiber/serdes\n");
2094		ctrl_ext |=
2095			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097		adapter->copper_tries = 0;
2098		break;
2099	case e1000_media_type_internal_serdes:
2100	case e1000_media_type_fiber:
2101		netdev_info(adapter->netdev,
2102			"MAS: changing media to copper\n");
2103		ctrl_ext &=
2104			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106		break;
2107	default:
2108		/* shouldn't get here during regular operation */
2109		netdev_err(adapter->netdev,
2110			"AMS: Invalid media type found, returning\n");
2111		break;
2112	}
2113	wr32(E1000_CTRL_EXT, ctrl_ext);
2114}
2115
2116/**
2117 *  igb_up - Open the interface and prepare it to handle traffic
2118 *  @adapter: board private structure
2119 **/
2120int igb_up(struct igb_adapter *adapter)
2121{
2122	struct e1000_hw *hw = &adapter->hw;
2123	int i;
2124
2125	/* hardware has been reset, we need to reload some things */
2126	igb_configure(adapter);
2127
2128	clear_bit(__IGB_DOWN, &adapter->state);
2129
2130	for (i = 0; i < adapter->num_q_vectors; i++)
2131		napi_enable(&(adapter->q_vector[i]->napi));
2132
2133	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134		igb_configure_msix(adapter);
2135	else
2136		igb_assign_vector(adapter->q_vector[0], 0);
2137
2138	/* Clear any pending interrupts. */
2139	rd32(E1000_TSICR);
2140	rd32(E1000_ICR);
2141	igb_irq_enable(adapter);
2142
2143	/* notify VFs that reset has been completed */
2144	if (adapter->vfs_allocated_count) {
2145		u32 reg_data = rd32(E1000_CTRL_EXT);
2146
2147		reg_data |= E1000_CTRL_EXT_PFRSTD;
2148		wr32(E1000_CTRL_EXT, reg_data);
2149	}
2150
2151	netif_tx_start_all_queues(adapter->netdev);
2152
2153	/* start the watchdog. */
2154	hw->mac.get_link_status = 1;
2155	schedule_work(&adapter->watchdog_task);
2156
2157	if ((adapter->flags & IGB_FLAG_EEE) &&
2158	    (!hw->dev_spec._82575.eee_disable))
2159		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160
2161	return 0;
2162}
2163
2164void igb_down(struct igb_adapter *adapter)
2165{
2166	struct net_device *netdev = adapter->netdev;
2167	struct e1000_hw *hw = &adapter->hw;
2168	u32 tctl, rctl;
2169	int i;
2170
2171	/* signal that we're down so the interrupt handler does not
2172	 * reschedule our watchdog timer
2173	 */
2174	set_bit(__IGB_DOWN, &adapter->state);
2175
2176	/* disable receives in the hardware */
2177	rctl = rd32(E1000_RCTL);
2178	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179	/* flush and sleep below */
2180
2181	igb_nfc_filter_exit(adapter);
2182
2183	netif_carrier_off(netdev);
2184	netif_tx_stop_all_queues(netdev);
2185
2186	/* disable transmits in the hardware */
2187	tctl = rd32(E1000_TCTL);
2188	tctl &= ~E1000_TCTL_EN;
2189	wr32(E1000_TCTL, tctl);
2190	/* flush both disables and wait for them to finish */
2191	wrfl();
2192	usleep_range(10000, 11000);
2193
2194	igb_irq_disable(adapter);
2195
2196	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197
2198	for (i = 0; i < adapter->num_q_vectors; i++) {
2199		if (adapter->q_vector[i]) {
2200			napi_synchronize(&adapter->q_vector[i]->napi);
2201			napi_disable(&adapter->q_vector[i]->napi);
2202		}
2203	}
2204
2205	del_timer_sync(&adapter->watchdog_timer);
2206	del_timer_sync(&adapter->phy_info_timer);
2207
2208	/* record the stats before reset*/
2209	spin_lock(&adapter->stats64_lock);
2210	igb_update_stats(adapter);
2211	spin_unlock(&adapter->stats64_lock);
2212
2213	adapter->link_speed = 0;
2214	adapter->link_duplex = 0;
2215
2216	if (!pci_channel_offline(adapter->pdev))
2217		igb_reset(adapter);
2218
2219	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2220	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221
2222	igb_clean_all_tx_rings(adapter);
2223	igb_clean_all_rx_rings(adapter);
2224#ifdef CONFIG_IGB_DCA
2225
2226	/* since we reset the hardware DCA settings were cleared */
2227	igb_setup_dca(adapter);
2228#endif
2229}
2230
2231void igb_reinit_locked(struct igb_adapter *adapter)
2232{
2233	WARN_ON(in_interrupt());
2234	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2235		usleep_range(1000, 2000);
2236	igb_down(adapter);
2237	igb_up(adapter);
2238	clear_bit(__IGB_RESETTING, &adapter->state);
2239}
2240
2241/** igb_enable_mas - Media Autosense re-enable after swap
2242 *
2243 * @adapter: adapter struct
2244 **/
2245static void igb_enable_mas(struct igb_adapter *adapter)
2246{
2247	struct e1000_hw *hw = &adapter->hw;
2248	u32 connsw = rd32(E1000_CONNSW);
2249
2250	/* configure for SerDes media detect */
2251	if ((hw->phy.media_type == e1000_media_type_copper) &&
2252	    (!(connsw & E1000_CONNSW_SERDESD))) {
2253		connsw |= E1000_CONNSW_ENRGSRC;
2254		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2255		wr32(E1000_CONNSW, connsw);
2256		wrfl();
2257	}
2258}
2259
2260void igb_reset(struct igb_adapter *adapter)
2261{
2262	struct pci_dev *pdev = adapter->pdev;
2263	struct e1000_hw *hw = &adapter->hw;
2264	struct e1000_mac_info *mac = &hw->mac;
2265	struct e1000_fc_info *fc = &hw->fc;
2266	u32 pba, hwm;
2267
2268	/* Repartition Pba for greater than 9k mtu
2269	 * To take effect CTRL.RST is required.
2270	 */
2271	switch (mac->type) {
2272	case e1000_i350:
2273	case e1000_i354:
2274	case e1000_82580:
2275		pba = rd32(E1000_RXPBS);
2276		pba = igb_rxpbs_adjust_82580(pba);
2277		break;
2278	case e1000_82576:
2279		pba = rd32(E1000_RXPBS);
2280		pba &= E1000_RXPBS_SIZE_MASK_82576;
2281		break;
2282	case e1000_82575:
2283	case e1000_i210:
2284	case e1000_i211:
2285	default:
2286		pba = E1000_PBA_34K;
2287		break;
2288	}
2289
2290	if (mac->type == e1000_82575) {
2291		u32 min_rx_space, min_tx_space, needed_tx_space;
2292
2293		/* write Rx PBA so that hardware can report correct Tx PBA */
2294		wr32(E1000_PBA, pba);
2295
2296		/* To maintain wire speed transmits, the Tx FIFO should be
2297		 * large enough to accommodate two full transmit packets,
2298		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2299		 * the Rx FIFO should be large enough to accommodate at least
2300		 * one full receive packet and is similarly rounded up and
2301		 * expressed in KB.
2302		 */
2303		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2304
2305		/* The Tx FIFO also stores 16 bytes of information about the Tx
2306		 * but don't include Ethernet FCS because hardware appends it.
2307		 * We only need to round down to the nearest 512 byte block
2308		 * count since the value we care about is 2 frames, not 1.
2309		 */
2310		min_tx_space = adapter->max_frame_size;
2311		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2312		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2313
2314		/* upper 16 bits has Tx packet buffer allocation size in KB */
2315		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2316
2317		/* If current Tx allocation is less than the min Tx FIFO size,
2318		 * and the min Tx FIFO size is less than the current Rx FIFO
2319		 * allocation, take space away from current Rx allocation.
2320		 */
2321		if (needed_tx_space < pba) {
2322			pba -= needed_tx_space;
2323
2324			/* if short on Rx space, Rx wins and must trump Tx
2325			 * adjustment
2326			 */
2327			if (pba < min_rx_space)
2328				pba = min_rx_space;
2329		}
2330
2331		/* adjust PBA for jumbo frames */
2332		wr32(E1000_PBA, pba);
2333	}
2334
2335	/* flow control settings
2336	 * The high water mark must be low enough to fit one full frame
2337	 * after transmitting the pause frame.  As such we must have enough
2338	 * space to allow for us to complete our current transmit and then
2339	 * receive the frame that is in progress from the link partner.
2340	 * Set it to:
2341	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2342	 */
2343	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2344
2345	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2346	fc->low_water = fc->high_water - 16;
2347	fc->pause_time = 0xFFFF;
2348	fc->send_xon = 1;
2349	fc->current_mode = fc->requested_mode;
2350
2351	/* disable receive for all VFs and wait one second */
2352	if (adapter->vfs_allocated_count) {
2353		int i;
2354
2355		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2356			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2357
2358		/* ping all the active vfs to let them know we are going down */
2359		igb_ping_all_vfs(adapter);
2360
2361		/* disable transmits and receives */
2362		wr32(E1000_VFRE, 0);
2363		wr32(E1000_VFTE, 0);
2364	}
2365
2366	/* Allow time for pending master requests to run */
2367	hw->mac.ops.reset_hw(hw);
2368	wr32(E1000_WUC, 0);
2369
2370	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2371		/* need to resetup here after media swap */
2372		adapter->ei.get_invariants(hw);
2373		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2374	}
2375	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2376	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2377		igb_enable_mas(adapter);
2378	}
2379	if (hw->mac.ops.init_hw(hw))
2380		dev_err(&pdev->dev, "Hardware Error\n");
2381
2382	/* RAR registers were cleared during init_hw, clear mac table */
2383	igb_flush_mac_table(adapter);
2384	__dev_uc_unsync(adapter->netdev, NULL);
2385
2386	/* Recover default RAR entry */
2387	igb_set_default_mac_filter(adapter);
2388
2389	/* Flow control settings reset on hardware reset, so guarantee flow
2390	 * control is off when forcing speed.
2391	 */
2392	if (!hw->mac.autoneg)
2393		igb_force_mac_fc(hw);
2394
2395	igb_init_dmac(adapter, pba);
2396#ifdef CONFIG_IGB_HWMON
2397	/* Re-initialize the thermal sensor on i350 devices. */
2398	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2399		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2400			/* If present, re-initialize the external thermal sensor
2401			 * interface.
2402			 */
2403			if (adapter->ets)
2404				mac->ops.init_thermal_sensor_thresh(hw);
2405		}
2406	}
2407#endif
2408	/* Re-establish EEE setting */
2409	if (hw->phy.media_type == e1000_media_type_copper) {
2410		switch (mac->type) {
2411		case e1000_i350:
2412		case e1000_i210:
2413		case e1000_i211:
2414			igb_set_eee_i350(hw, true, true);
2415			break;
2416		case e1000_i354:
2417			igb_set_eee_i354(hw, true, true);
2418			break;
2419		default:
2420			break;
2421		}
2422	}
2423	if (!netif_running(adapter->netdev))
2424		igb_power_down_link(adapter);
2425
2426	igb_update_mng_vlan(adapter);
2427
2428	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2429	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2430
2431	/* Re-enable PTP, where applicable. */
2432	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2433		igb_ptp_reset(adapter);
2434
2435	igb_get_phy_info(hw);
2436}
2437
2438static netdev_features_t igb_fix_features(struct net_device *netdev,
2439	netdev_features_t features)
2440{
2441	/* Since there is no support for separate Rx/Tx vlan accel
2442	 * enable/disable make sure Tx flag is always in same state as Rx.
2443	 */
2444	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2445		features |= NETIF_F_HW_VLAN_CTAG_TX;
2446	else
2447		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2448
2449	return features;
2450}
2451
2452static int igb_set_features(struct net_device *netdev,
2453	netdev_features_t features)
2454{
2455	netdev_features_t changed = netdev->features ^ features;
2456	struct igb_adapter *adapter = netdev_priv(netdev);
2457
2458	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2459		igb_vlan_mode(netdev, features);
2460
2461	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2462		return 0;
2463
2464	if (!(features & NETIF_F_NTUPLE)) {
2465		struct hlist_node *node2;
2466		struct igb_nfc_filter *rule;
2467
2468		spin_lock(&adapter->nfc_lock);
2469		hlist_for_each_entry_safe(rule, node2,
2470					  &adapter->nfc_filter_list, nfc_node) {
2471			igb_erase_filter(adapter, rule);
2472			hlist_del(&rule->nfc_node);
2473			kfree(rule);
2474		}
2475		spin_unlock(&adapter->nfc_lock);
2476		adapter->nfc_filter_count = 0;
2477	}
2478
2479	netdev->features = features;
2480
2481	if (netif_running(netdev))
2482		igb_reinit_locked(adapter);
2483	else
2484		igb_reset(adapter);
2485
2486	return 1;
2487}
2488
2489static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2490			   struct net_device *dev,
2491			   const unsigned char *addr, u16 vid,
2492			   u16 flags,
2493			   struct netlink_ext_ack *extack)
2494{
2495	/* guarantee we can provide a unique filter for the unicast address */
2496	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2497		struct igb_adapter *adapter = netdev_priv(dev);
2498		int vfn = adapter->vfs_allocated_count;
2499
2500		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2501			return -ENOMEM;
2502	}
2503
2504	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2505}
2506
2507#define IGB_MAX_MAC_HDR_LEN	127
2508#define IGB_MAX_NETWORK_HDR_LEN	511
2509
2510static netdev_features_t
2511igb_features_check(struct sk_buff *skb, struct net_device *dev,
2512		   netdev_features_t features)
2513{
2514	unsigned int network_hdr_len, mac_hdr_len;
2515
2516	/* Make certain the headers can be described by a context descriptor */
2517	mac_hdr_len = skb_network_header(skb) - skb->data;
2518	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2519		return features & ~(NETIF_F_HW_CSUM |
2520				    NETIF_F_SCTP_CRC |
2521				    NETIF_F_HW_VLAN_CTAG_TX |
2522				    NETIF_F_TSO |
2523				    NETIF_F_TSO6);
2524
2525	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2526	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2527		return features & ~(NETIF_F_HW_CSUM |
2528				    NETIF_F_SCTP_CRC |
2529				    NETIF_F_TSO |
2530				    NETIF_F_TSO6);
2531
2532	/* We can only support IPV4 TSO in tunnels if we can mangle the
2533	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2534	 */
2535	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2536		features &= ~NETIF_F_TSO;
2537
2538	return features;
2539}
2540
2541static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2542{
2543	if (!is_fqtss_enabled(adapter)) {
2544		enable_fqtss(adapter, true);
2545		return;
2546	}
2547
2548	igb_config_tx_modes(adapter, queue);
2549
2550	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2551		enable_fqtss(adapter, false);
2552}
2553
2554static int igb_offload_cbs(struct igb_adapter *adapter,
2555			   struct tc_cbs_qopt_offload *qopt)
2556{
2557	struct e1000_hw *hw = &adapter->hw;
2558	int err;
2559
2560	/* CBS offloading is only supported by i210 controller. */
2561	if (hw->mac.type != e1000_i210)
2562		return -EOPNOTSUPP;
2563
2564	/* CBS offloading is only supported by queue 0 and queue 1. */
2565	if (qopt->queue < 0 || qopt->queue > 1)
2566		return -EINVAL;
2567
2568	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2569				  qopt->idleslope, qopt->sendslope,
2570				  qopt->hicredit, qopt->locredit);
2571	if (err)
2572		return err;
2573
2574	igb_offload_apply(adapter, qopt->queue);
2575
2576	return 0;
2577}
2578
2579#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2580#define VLAN_PRIO_FULL_MASK (0x07)
2581
2582static int igb_parse_cls_flower(struct igb_adapter *adapter,
2583				struct flow_cls_offload *f,
2584				int traffic_class,
2585				struct igb_nfc_filter *input)
2586{
2587	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2588	struct flow_dissector *dissector = rule->match.dissector;
2589	struct netlink_ext_ack *extack = f->common.extack;
2590
2591	if (dissector->used_keys &
2592	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2593	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2594	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2595	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2596		NL_SET_ERR_MSG_MOD(extack,
2597				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2598		return -EOPNOTSUPP;
2599	}
2600
2601	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2602		struct flow_match_eth_addrs match;
2603
2604		flow_rule_match_eth_addrs(rule, &match);
2605		if (!is_zero_ether_addr(match.mask->dst)) {
2606			if (!is_broadcast_ether_addr(match.mask->dst)) {
2607				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608				return -EINVAL;
2609			}
2610
2611			input->filter.match_flags |=
2612				IGB_FILTER_FLAG_DST_MAC_ADDR;
2613			ether_addr_copy(input->filter.dst_addr, match.key->dst);
2614		}
2615
2616		if (!is_zero_ether_addr(match.mask->src)) {
2617			if (!is_broadcast_ether_addr(match.mask->src)) {
2618				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619				return -EINVAL;
2620			}
2621
2622			input->filter.match_flags |=
2623				IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624			ether_addr_copy(input->filter.src_addr, match.key->src);
2625		}
2626	}
2627
2628	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2629		struct flow_match_basic match;
2630
2631		flow_rule_match_basic(rule, &match);
2632		if (match.mask->n_proto) {
2633			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2634				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2635				return -EINVAL;
2636			}
2637
2638			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2639			input->filter.etype = match.key->n_proto;
2640		}
2641	}
2642
2643	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2644		struct flow_match_vlan match;
2645
2646		flow_rule_match_vlan(rule, &match);
2647		if (match.mask->vlan_priority) {
2648			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2649				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2650				return -EINVAL;
2651			}
2652
2653			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2654			input->filter.vlan_tci = match.key->vlan_priority;
2655		}
2656	}
2657
2658	input->action = traffic_class;
2659	input->cookie = f->cookie;
2660
2661	return 0;
2662}
2663
2664static int igb_configure_clsflower(struct igb_adapter *adapter,
2665				   struct flow_cls_offload *cls_flower)
2666{
2667	struct netlink_ext_ack *extack = cls_flower->common.extack;
2668	struct igb_nfc_filter *filter, *f;
2669	int err, tc;
2670
2671	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2672	if (tc < 0) {
2673		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2674		return -EINVAL;
2675	}
2676
2677	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2678	if (!filter)
2679		return -ENOMEM;
2680
2681	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2682	if (err < 0)
2683		goto err_parse;
2684
2685	spin_lock(&adapter->nfc_lock);
2686
2687	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2688		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2689			err = -EEXIST;
2690			NL_SET_ERR_MSG_MOD(extack,
2691					   "This filter is already set in ethtool");
2692			goto err_locked;
2693		}
2694	}
2695
2696	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2697		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2698			err = -EEXIST;
2699			NL_SET_ERR_MSG_MOD(extack,
2700					   "This filter is already set in cls_flower");
2701			goto err_locked;
2702		}
2703	}
2704
2705	err = igb_add_filter(adapter, filter);
2706	if (err < 0) {
2707		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2708		goto err_locked;
2709	}
2710
2711	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2712
2713	spin_unlock(&adapter->nfc_lock);
2714
2715	return 0;
2716
2717err_locked:
2718	spin_unlock(&adapter->nfc_lock);
2719
2720err_parse:
2721	kfree(filter);
2722
2723	return err;
2724}
2725
2726static int igb_delete_clsflower(struct igb_adapter *adapter,
2727				struct flow_cls_offload *cls_flower)
2728{
2729	struct igb_nfc_filter *filter;
2730	int err;
2731
2732	spin_lock(&adapter->nfc_lock);
2733
2734	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2735		if (filter->cookie == cls_flower->cookie)
2736			break;
2737
2738	if (!filter) {
2739		err = -ENOENT;
2740		goto out;
2741	}
2742
2743	err = igb_erase_filter(adapter, filter);
2744	if (err < 0)
2745		goto out;
2746
2747	hlist_del(&filter->nfc_node);
2748	kfree(filter);
2749
2750out:
2751	spin_unlock(&adapter->nfc_lock);
2752
2753	return err;
2754}
2755
2756static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2757				   struct flow_cls_offload *cls_flower)
2758{
2759	switch (cls_flower->command) {
2760	case FLOW_CLS_REPLACE:
2761		return igb_configure_clsflower(adapter, cls_flower);
2762	case FLOW_CLS_DESTROY:
2763		return igb_delete_clsflower(adapter, cls_flower);
2764	case FLOW_CLS_STATS:
2765		return -EOPNOTSUPP;
2766	default:
2767		return -EOPNOTSUPP;
2768	}
2769}
2770
2771static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2772				 void *cb_priv)
2773{
2774	struct igb_adapter *adapter = cb_priv;
2775
2776	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2777		return -EOPNOTSUPP;
2778
2779	switch (type) {
2780	case TC_SETUP_CLSFLOWER:
2781		return igb_setup_tc_cls_flower(adapter, type_data);
2782
2783	default:
2784		return -EOPNOTSUPP;
2785	}
2786}
2787
2788static int igb_offload_txtime(struct igb_adapter *adapter,
2789			      struct tc_etf_qopt_offload *qopt)
2790{
2791	struct e1000_hw *hw = &adapter->hw;
2792	int err;
2793
2794	/* Launchtime offloading is only supported by i210 controller. */
2795	if (hw->mac.type != e1000_i210)
2796		return -EOPNOTSUPP;
2797
2798	/* Launchtime offloading is only supported by queues 0 and 1. */
2799	if (qopt->queue < 0 || qopt->queue > 1)
2800		return -EINVAL;
2801
2802	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2803	if (err)
2804		return err;
2805
2806	igb_offload_apply(adapter, qopt->queue);
2807
2808	return 0;
2809}
2810
2811static LIST_HEAD(igb_block_cb_list);
2812
2813static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2814			void *type_data)
2815{
2816	struct igb_adapter *adapter = netdev_priv(dev);
2817
2818	switch (type) {
2819	case TC_SETUP_QDISC_CBS:
2820		return igb_offload_cbs(adapter, type_data);
2821	case TC_SETUP_BLOCK:
2822		return flow_block_cb_setup_simple(type_data,
2823						  &igb_block_cb_list,
2824						  igb_setup_tc_block_cb,
2825						  adapter, adapter, true);
2826
2827	case TC_SETUP_QDISC_ETF:
2828		return igb_offload_txtime(adapter, type_data);
2829
2830	default:
2831		return -EOPNOTSUPP;
2832	}
2833}
2834
2835static const struct net_device_ops igb_netdev_ops = {
2836	.ndo_open		= igb_open,
2837	.ndo_stop		= igb_close,
2838	.ndo_start_xmit		= igb_xmit_frame,
2839	.ndo_get_stats64	= igb_get_stats64,
2840	.ndo_set_rx_mode	= igb_set_rx_mode,
2841	.ndo_set_mac_address	= igb_set_mac,
2842	.ndo_change_mtu		= igb_change_mtu,
2843	.ndo_do_ioctl		= igb_ioctl,
2844	.ndo_tx_timeout		= igb_tx_timeout,
2845	.ndo_validate_addr	= eth_validate_addr,
2846	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2847	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2848	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2849	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2850	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2851	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2852	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2853	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2854	.ndo_fix_features	= igb_fix_features,
2855	.ndo_set_features	= igb_set_features,
2856	.ndo_fdb_add		= igb_ndo_fdb_add,
2857	.ndo_features_check	= igb_features_check,
2858	.ndo_setup_tc		= igb_setup_tc,
2859};
2860
2861/**
2862 * igb_set_fw_version - Configure version string for ethtool
2863 * @adapter: adapter struct
2864 **/
2865void igb_set_fw_version(struct igb_adapter *adapter)
2866{
2867	struct e1000_hw *hw = &adapter->hw;
2868	struct e1000_fw_version fw;
2869
2870	igb_get_fw_version(hw, &fw);
2871
2872	switch (hw->mac.type) {
2873	case e1000_i210:
2874	case e1000_i211:
2875		if (!(igb_get_flash_presence_i210(hw))) {
2876			snprintf(adapter->fw_version,
2877				 sizeof(adapter->fw_version),
2878				 "%2d.%2d-%d",
2879				 fw.invm_major, fw.invm_minor,
2880				 fw.invm_img_type);
2881			break;
2882		}
2883		/* fall through */
2884	default:
2885		/* if option is rom valid, display its version too */
2886		if (fw.or_valid) {
2887			snprintf(adapter->fw_version,
2888				 sizeof(adapter->fw_version),
2889				 "%d.%d, 0x%08x, %d.%d.%d",
2890				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2891				 fw.or_major, fw.or_build, fw.or_patch);
2892		/* no option rom */
2893		} else if (fw.etrack_id != 0X0000) {
2894			snprintf(adapter->fw_version,
2895			    sizeof(adapter->fw_version),
2896			    "%d.%d, 0x%08x",
2897			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2898		} else {
2899		snprintf(adapter->fw_version,
2900		    sizeof(adapter->fw_version),
2901		    "%d.%d.%d",
2902		    fw.eep_major, fw.eep_minor, fw.eep_build);
2903		}
2904		break;
2905	}
2906}
2907
2908/**
2909 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2910 *
2911 * @adapter: adapter struct
2912 **/
2913static void igb_init_mas(struct igb_adapter *adapter)
2914{
2915	struct e1000_hw *hw = &adapter->hw;
2916	u16 eeprom_data;
2917
2918	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2919	switch (hw->bus.func) {
2920	case E1000_FUNC_0:
2921		if (eeprom_data & IGB_MAS_ENABLE_0) {
2922			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2923			netdev_info(adapter->netdev,
2924				"MAS: Enabling Media Autosense for port %d\n",
2925				hw->bus.func);
2926		}
2927		break;
2928	case E1000_FUNC_1:
2929		if (eeprom_data & IGB_MAS_ENABLE_1) {
2930			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2931			netdev_info(adapter->netdev,
2932				"MAS: Enabling Media Autosense for port %d\n",
2933				hw->bus.func);
2934		}
2935		break;
2936	case E1000_FUNC_2:
2937		if (eeprom_data & IGB_MAS_ENABLE_2) {
2938			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2939			netdev_info(adapter->netdev,
2940				"MAS: Enabling Media Autosense for port %d\n",
2941				hw->bus.func);
2942		}
2943		break;
2944	case E1000_FUNC_3:
2945		if (eeprom_data & IGB_MAS_ENABLE_3) {
2946			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2947			netdev_info(adapter->netdev,
2948				"MAS: Enabling Media Autosense for port %d\n",
2949				hw->bus.func);
2950		}
2951		break;
2952	default:
2953		/* Shouldn't get here */
2954		netdev_err(adapter->netdev,
2955			"MAS: Invalid port configuration, returning\n");
2956		break;
2957	}
2958}
2959
2960/**
2961 *  igb_init_i2c - Init I2C interface
2962 *  @adapter: pointer to adapter structure
2963 **/
2964static s32 igb_init_i2c(struct igb_adapter *adapter)
2965{
2966	s32 status = 0;
2967
2968	/* I2C interface supported on i350 devices */
2969	if (adapter->hw.mac.type != e1000_i350)
2970		return 0;
2971
2972	/* Initialize the i2c bus which is controlled by the registers.
2973	 * This bus will use the i2c_algo_bit structue that implements
2974	 * the protocol through toggling of the 4 bits in the register.
2975	 */
2976	adapter->i2c_adap.owner = THIS_MODULE;
2977	adapter->i2c_algo = igb_i2c_algo;
2978	adapter->i2c_algo.data = adapter;
2979	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2980	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2981	strlcpy(adapter->i2c_adap.name, "igb BB",
2982		sizeof(adapter->i2c_adap.name));
2983	status = i2c_bit_add_bus(&adapter->i2c_adap);
2984	return status;
2985}
2986
2987/**
2988 *  igb_probe - Device Initialization Routine
2989 *  @pdev: PCI device information struct
2990 *  @ent: entry in igb_pci_tbl
2991 *
2992 *  Returns 0 on success, negative on failure
2993 *
2994 *  igb_probe initializes an adapter identified by a pci_dev structure.
2995 *  The OS initialization, configuring of the adapter private structure,
2996 *  and a hardware reset occur.
2997 **/
2998static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2999{
3000	struct net_device *netdev;
3001	struct igb_adapter *adapter;
3002	struct e1000_hw *hw;
3003	u16 eeprom_data = 0;
3004	s32 ret_val;
3005	static int global_quad_port_a; /* global quad port a indication */
3006	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3007	int err, pci_using_dac;
3008	u8 part_str[E1000_PBANUM_LENGTH];
3009
3010	/* Catch broken hardware that put the wrong VF device ID in
3011	 * the PCIe SR-IOV capability.
3012	 */
3013	if (pdev->is_virtfn) {
3014		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3015			pci_name(pdev), pdev->vendor, pdev->device);
3016		return -EINVAL;
3017	}
3018
3019	err = pci_enable_device_mem(pdev);
3020	if (err)
3021		return err;
3022
3023	pci_using_dac = 0;
3024	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3025	if (!err) {
3026		pci_using_dac = 1;
3027	} else {
3028		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3029		if (err) {
3030			dev_err(&pdev->dev,
3031				"No usable DMA configuration, aborting\n");
3032			goto err_dma;
3033		}
3034	}
3035
3036	err = pci_request_mem_regions(pdev, igb_driver_name);
3037	if (err)
3038		goto err_pci_reg;
3039
3040	pci_enable_pcie_error_reporting(pdev);
3041
3042	pci_set_master(pdev);
3043	pci_save_state(pdev);
3044
3045	err = -ENOMEM;
3046	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3047				   IGB_MAX_TX_QUEUES);
3048	if (!netdev)
3049		goto err_alloc_etherdev;
3050
3051	SET_NETDEV_DEV(netdev, &pdev->dev);
3052
3053	pci_set_drvdata(pdev, netdev);
3054	adapter = netdev_priv(netdev);
3055	adapter->netdev = netdev;
3056	adapter->pdev = pdev;
3057	hw = &adapter->hw;
3058	hw->back = adapter;
3059	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3060
3061	err = -EIO;
3062	adapter->io_addr = pci_iomap(pdev, 0, 0);
3063	if (!adapter->io_addr)
3064		goto err_ioremap;
3065	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3066	hw->hw_addr = adapter->io_addr;
3067
3068	netdev->netdev_ops = &igb_netdev_ops;
3069	igb_set_ethtool_ops(netdev);
3070	netdev->watchdog_timeo = 5 * HZ;
3071
3072	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3073
3074	netdev->mem_start = pci_resource_start(pdev, 0);
3075	netdev->mem_end = pci_resource_end(pdev, 0);
3076
3077	/* PCI config space info */
3078	hw->vendor_id = pdev->vendor;
3079	hw->device_id = pdev->device;
3080	hw->revision_id = pdev->revision;
3081	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3082	hw->subsystem_device_id = pdev->subsystem_device;
3083
3084	/* Copy the default MAC, PHY and NVM function pointers */
3085	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3086	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3087	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3088	/* Initialize skew-specific constants */
3089	err = ei->get_invariants(hw);
3090	if (err)
3091		goto err_sw_init;
3092
3093	/* setup the private structure */
3094	err = igb_sw_init(adapter);
3095	if (err)
3096		goto err_sw_init;
3097
3098	igb_get_bus_info_pcie(hw);
3099
3100	hw->phy.autoneg_wait_to_complete = false;
3101
3102	/* Copper options */
3103	if (hw->phy.media_type == e1000_media_type_copper) {
3104		hw->phy.mdix = AUTO_ALL_MODES;
3105		hw->phy.disable_polarity_correction = false;
3106		hw->phy.ms_type = e1000_ms_hw_default;
3107	}
3108
3109	if (igb_check_reset_block(hw))
3110		dev_info(&pdev->dev,
3111			"PHY reset is blocked due to SOL/IDER session.\n");
3112
3113	/* features is initialized to 0 in allocation, it might have bits
3114	 * set by igb_sw_init so we should use an or instead of an
3115	 * assignment.
3116	 */
3117	netdev->features |= NETIF_F_SG |
3118			    NETIF_F_TSO |
3119			    NETIF_F_TSO6 |
3120			    NETIF_F_RXHASH |
3121			    NETIF_F_RXCSUM |
3122			    NETIF_F_HW_CSUM;
3123
3124	if (hw->mac.type >= e1000_82576)
3125		netdev->features |= NETIF_F_SCTP_CRC;
3126
3127	if (hw->mac.type >= e1000_i350)
3128		netdev->features |= NETIF_F_HW_TC;
3129
3130#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3131				  NETIF_F_GSO_GRE_CSUM | \
3132				  NETIF_F_GSO_IPXIP4 | \
3133				  NETIF_F_GSO_IPXIP6 | \
3134				  NETIF_F_GSO_UDP_TUNNEL | \
3135				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3136
3137	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3138	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3139
3140	/* copy netdev features into list of user selectable features */
3141	netdev->hw_features |= netdev->features |
3142			       NETIF_F_HW_VLAN_CTAG_RX |
3143			       NETIF_F_HW_VLAN_CTAG_TX |
3144			       NETIF_F_RXALL;
3145
3146	if (hw->mac.type >= e1000_i350)
3147		netdev->hw_features |= NETIF_F_NTUPLE;
3148
3149	if (pci_using_dac)
3150		netdev->features |= NETIF_F_HIGHDMA;
3151
3152	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3153	netdev->mpls_features |= NETIF_F_HW_CSUM;
3154	netdev->hw_enc_features |= netdev->vlan_features;
3155
3156	/* set this bit last since it cannot be part of vlan_features */
3157	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3158			    NETIF_F_HW_VLAN_CTAG_RX |
3159			    NETIF_F_HW_VLAN_CTAG_TX;
3160
3161	netdev->priv_flags |= IFF_SUPP_NOFCS;
3162
3163	netdev->priv_flags |= IFF_UNICAST_FLT;
3164
3165	/* MTU range: 68 - 9216 */
3166	netdev->min_mtu = ETH_MIN_MTU;
3167	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3168
3169	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3170
3171	/* before reading the NVM, reset the controller to put the device in a
3172	 * known good starting state
3173	 */
3174	hw->mac.ops.reset_hw(hw);
3175
3176	/* make sure the NVM is good , i211/i210 parts can have special NVM
3177	 * that doesn't contain a checksum
3178	 */
3179	switch (hw->mac.type) {
3180	case e1000_i210:
3181	case e1000_i211:
3182		if (igb_get_flash_presence_i210(hw)) {
3183			if (hw->nvm.ops.validate(hw) < 0) {
3184				dev_err(&pdev->dev,
3185					"The NVM Checksum Is Not Valid\n");
3186				err = -EIO;
3187				goto err_eeprom;
3188			}
3189		}
3190		break;
3191	default:
3192		if (hw->nvm.ops.validate(hw) < 0) {
3193			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3194			err = -EIO;
3195			goto err_eeprom;
3196		}
3197		break;
3198	}
3199
3200	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3201		/* copy the MAC address out of the NVM */
3202		if (hw->mac.ops.read_mac_addr(hw))
3203			dev_err(&pdev->dev, "NVM Read Error\n");
3204	}
3205
3206	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3207
3208	if (!is_valid_ether_addr(netdev->dev_addr)) {
3209		dev_err(&pdev->dev, "Invalid MAC Address\n");
3210		err = -EIO;
3211		goto err_eeprom;
3212	}
3213
3214	igb_set_default_mac_filter(adapter);
3215
3216	/* get firmware version for ethtool -i */
3217	igb_set_fw_version(adapter);
3218
3219	/* configure RXPBSIZE and TXPBSIZE */
3220	if (hw->mac.type == e1000_i210) {
3221		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3222		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3223	}
3224
3225	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3226	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3227
3228	INIT_WORK(&adapter->reset_task, igb_reset_task);
3229	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3230
3231	/* Initialize link properties that are user-changeable */
3232	adapter->fc_autoneg = true;
3233	hw->mac.autoneg = true;
3234	hw->phy.autoneg_advertised = 0x2f;
3235
3236	hw->fc.requested_mode = e1000_fc_default;
3237	hw->fc.current_mode = e1000_fc_default;
3238
3239	igb_validate_mdi_setting(hw);
3240
3241	/* By default, support wake on port A */
3242	if (hw->bus.func == 0)
3243		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3244
3245	/* Check the NVM for wake support on non-port A ports */
3246	if (hw->mac.type >= e1000_82580)
3247		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3248				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3249				 &eeprom_data);
3250	else if (hw->bus.func == 1)
3251		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3252
3253	if (eeprom_data & IGB_EEPROM_APME)
3254		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3255
3256	/* now that we have the eeprom settings, apply the special cases where
3257	 * the eeprom may be wrong or the board simply won't support wake on
3258	 * lan on a particular port
3259	 */
3260	switch (pdev->device) {
3261	case E1000_DEV_ID_82575GB_QUAD_COPPER:
3262		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3263		break;
3264	case E1000_DEV_ID_82575EB_FIBER_SERDES:
3265	case E1000_DEV_ID_82576_FIBER:
3266	case E1000_DEV_ID_82576_SERDES:
3267		/* Wake events only supported on port A for dual fiber
3268		 * regardless of eeprom setting
3269		 */
3270		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3271			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3272		break;
3273	case E1000_DEV_ID_82576_QUAD_COPPER:
3274	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3275		/* if quad port adapter, disable WoL on all but port A */
3276		if (global_quad_port_a != 0)
3277			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3278		else
3279			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3280		/* Reset for multiple quad port adapters */
3281		if (++global_quad_port_a == 4)
3282			global_quad_port_a = 0;
3283		break;
3284	default:
3285		/* If the device can't wake, don't set software support */
3286		if (!device_can_wakeup(&adapter->pdev->dev))
3287			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3288	}
3289
3290	/* initialize the wol settings based on the eeprom settings */
3291	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3292		adapter->wol |= E1000_WUFC_MAG;
3293
3294	/* Some vendors want WoL disabled by default, but still supported */
3295	if ((hw->mac.type == e1000_i350) &&
3296	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3297		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3298		adapter->wol = 0;
3299	}
3300
3301	/* Some vendors want the ability to Use the EEPROM setting as
3302	 * enable/disable only, and not for capability
3303	 */
3304	if (((hw->mac.type == e1000_i350) ||
3305	     (hw->mac.type == e1000_i354)) &&
3306	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3307		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3308		adapter->wol = 0;
3309	}
3310	if (hw->mac.type == e1000_i350) {
3311		if (((pdev->subsystem_device == 0x5001) ||
3312		     (pdev->subsystem_device == 0x5002)) &&
3313				(hw->bus.func == 0)) {
3314			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3315			adapter->wol = 0;
3316		}
3317		if (pdev->subsystem_device == 0x1F52)
3318			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3319	}
3320
3321	device_set_wakeup_enable(&adapter->pdev->dev,
3322				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3323
3324	/* reset the hardware with the new settings */
3325	igb_reset(adapter);
3326
3327	/* Init the I2C interface */
3328	err = igb_init_i2c(adapter);
3329	if (err) {
3330		dev_err(&pdev->dev, "failed to init i2c interface\n");
3331		goto err_eeprom;
3332	}
3333
3334	/* let the f/w know that the h/w is now under the control of the
3335	 * driver.
3336	 */
3337	igb_get_hw_control(adapter);
3338
3339	strcpy(netdev->name, "eth%d");
3340	err = register_netdev(netdev);
3341	if (err)
3342		goto err_register;
3343
3344	/* carrier off reporting is important to ethtool even BEFORE open */
3345	netif_carrier_off(netdev);
3346
3347#ifdef CONFIG_IGB_DCA
3348	if (dca_add_requester(&pdev->dev) == 0) {
3349		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3350		dev_info(&pdev->dev, "DCA enabled\n");
3351		igb_setup_dca(adapter);
3352	}
3353
3354#endif
3355#ifdef CONFIG_IGB_HWMON
3356	/* Initialize the thermal sensor on i350 devices. */
3357	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3358		u16 ets_word;
3359
3360		/* Read the NVM to determine if this i350 device supports an
3361		 * external thermal sensor.
3362		 */
3363		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3364		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3365			adapter->ets = true;
3366		else
3367			adapter->ets = false;
3368		if (igb_sysfs_init(adapter))
3369			dev_err(&pdev->dev,
3370				"failed to allocate sysfs resources\n");
3371	} else {
3372		adapter->ets = false;
3373	}
3374#endif
3375	/* Check if Media Autosense is enabled */
3376	adapter->ei = *ei;
3377	if (hw->dev_spec._82575.mas_capable)
3378		igb_init_mas(adapter);
3379
3380	/* do hw tstamp init after resetting */
3381	igb_ptp_init(adapter);
3382
3383	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3384	/* print bus type/speed/width info, not applicable to i354 */
3385	if (hw->mac.type != e1000_i354) {
3386		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3387			 netdev->name,
3388			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3389			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3390			   "unknown"),
3391			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3392			  "Width x4" :
3393			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3394			  "Width x2" :
3395			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3396			  "Width x1" : "unknown"), netdev->dev_addr);
3397	}
3398
3399	if ((hw->mac.type >= e1000_i210 ||
3400	     igb_get_flash_presence_i210(hw))) {
3401		ret_val = igb_read_part_string(hw, part_str,
3402					       E1000_PBANUM_LENGTH);
3403	} else {
3404		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3405	}
3406
3407	if (ret_val)
3408		strcpy(part_str, "Unknown");
3409	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3410	dev_info(&pdev->dev,
3411		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3412		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3413		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3414		adapter->num_rx_queues, adapter->num_tx_queues);
3415	if (hw->phy.media_type == e1000_media_type_copper) {
3416		switch (hw->mac.type) {
3417		case e1000_i350:
3418		case e1000_i210:
3419		case e1000_i211:
3420			/* Enable EEE for internal copper PHY devices */
3421			err = igb_set_eee_i350(hw, true, true);
3422			if ((!err) &&
3423			    (!hw->dev_spec._82575.eee_disable)) {
3424				adapter->eee_advert =
3425					MDIO_EEE_100TX | MDIO_EEE_1000T;
3426				adapter->flags |= IGB_FLAG_EEE;
3427			}
3428			break;
3429		case e1000_i354:
3430			if ((rd32(E1000_CTRL_EXT) &
3431			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3432				err = igb_set_eee_i354(hw, true, true);
3433				if ((!err) &&
3434					(!hw->dev_spec._82575.eee_disable)) {
3435					adapter->eee_advert =
3436					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3437					adapter->flags |= IGB_FLAG_EEE;
3438				}
3439			}
3440			break;
3441		default:
3442			break;
3443		}
3444	}
3445
3446	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3447
3448	pm_runtime_put_noidle(&pdev->dev);
3449	return 0;
3450
3451err_register:
3452	igb_release_hw_control(adapter);
3453	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3454err_eeprom:
3455	if (!igb_check_reset_block(hw))
3456		igb_reset_phy(hw);
3457
3458	if (hw->flash_address)
3459		iounmap(hw->flash_address);
3460err_sw_init:
3461	kfree(adapter->mac_table);
3462	kfree(adapter->shadow_vfta);
3463	igb_clear_interrupt_scheme(adapter);
3464#ifdef CONFIG_PCI_IOV
3465	igb_disable_sriov(pdev);
3466#endif
3467	pci_iounmap(pdev, adapter->io_addr);
3468err_ioremap:
3469	free_netdev(netdev);
3470err_alloc_etherdev:
3471	pci_release_mem_regions(pdev);
3472err_pci_reg:
3473err_dma:
3474	pci_disable_device(pdev);
3475	return err;
3476}
3477
3478#ifdef CONFIG_PCI_IOV
3479static int igb_disable_sriov(struct pci_dev *pdev)
3480{
3481	struct net_device *netdev = pci_get_drvdata(pdev);
3482	struct igb_adapter *adapter = netdev_priv(netdev);
3483	struct e1000_hw *hw = &adapter->hw;
3484
3485	/* reclaim resources allocated to VFs */
3486	if (adapter->vf_data) {
3487		/* disable iov and allow time for transactions to clear */
3488		if (pci_vfs_assigned(pdev)) {
3489			dev_warn(&pdev->dev,
3490				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3491			return -EPERM;
3492		} else {
3493			pci_disable_sriov(pdev);
3494			msleep(500);
3495		}
3496
3497		kfree(adapter->vf_mac_list);
3498		adapter->vf_mac_list = NULL;
3499		kfree(adapter->vf_data);
3500		adapter->vf_data = NULL;
3501		adapter->vfs_allocated_count = 0;
3502		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3503		wrfl();
3504		msleep(100);
3505		dev_info(&pdev->dev, "IOV Disabled\n");
3506
3507		/* Re-enable DMA Coalescing flag since IOV is turned off */
3508		adapter->flags |= IGB_FLAG_DMAC;
3509	}
3510
3511	return 0;
3512}
3513
3514static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3515{
3516	struct net_device *netdev = pci_get_drvdata(pdev);
3517	struct igb_adapter *adapter = netdev_priv(netdev);
3518	int old_vfs = pci_num_vf(pdev);
3519	struct vf_mac_filter *mac_list;
3520	int err = 0;
3521	int num_vf_mac_filters, i;
3522
3523	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3524		err = -EPERM;
3525		goto out;
3526	}
3527	if (!num_vfs)
3528		goto out;
3529
3530	if (old_vfs) {
3531		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3532			 old_vfs, max_vfs);
3533		adapter->vfs_allocated_count = old_vfs;
3534	} else
3535		adapter->vfs_allocated_count = num_vfs;
3536
3537	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3538				sizeof(struct vf_data_storage), GFP_KERNEL);
3539
3540	/* if allocation failed then we do not support SR-IOV */
3541	if (!adapter->vf_data) {
3542		adapter->vfs_allocated_count = 0;
3543		err = -ENOMEM;
3544		goto out;
3545	}
3546
3547	/* Due to the limited number of RAR entries calculate potential
3548	 * number of MAC filters available for the VFs. Reserve entries
3549	 * for PF default MAC, PF MAC filters and at least one RAR entry
3550	 * for each VF for VF MAC.
3551	 */
3552	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3553			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3554			      adapter->vfs_allocated_count);
3555
3556	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3557				       sizeof(struct vf_mac_filter),
3558				       GFP_KERNEL);
3559
3560	mac_list = adapter->vf_mac_list;
3561	INIT_LIST_HEAD(&adapter->vf_macs.l);
3562
3563	if (adapter->vf_mac_list) {
3564		/* Initialize list of VF MAC filters */
3565		for (i = 0; i < num_vf_mac_filters; i++) {
3566			mac_list->vf = -1;
3567			mac_list->free = true;
3568			list_add(&mac_list->l, &adapter->vf_macs.l);
3569			mac_list++;
3570		}
3571	} else {
3572		/* If we could not allocate memory for the VF MAC filters
3573		 * we can continue without this feature but warn user.
3574		 */
3575		dev_err(&pdev->dev,
3576			"Unable to allocate memory for VF MAC filter list\n");
3577	}
3578
3579	/* only call pci_enable_sriov() if no VFs are allocated already */
3580	if (!old_vfs) {
3581		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3582		if (err)
3583			goto err_out;
3584	}
3585	dev_info(&pdev->dev, "%d VFs allocated\n",
3586		 adapter->vfs_allocated_count);
3587	for (i = 0; i < adapter->vfs_allocated_count; i++)
3588		igb_vf_configure(adapter, i);
3589
3590	/* DMA Coalescing is not supported in IOV mode. */
3591	adapter->flags &= ~IGB_FLAG_DMAC;
3592	goto out;
3593
3594err_out:
3595	kfree(adapter->vf_mac_list);
3596	adapter->vf_mac_list = NULL;
3597	kfree(adapter->vf_data);
3598	adapter->vf_data = NULL;
3599	adapter->vfs_allocated_count = 0;
3600out:
3601	return err;
3602}
3603
3604#endif
3605/**
3606 *  igb_remove_i2c - Cleanup  I2C interface
3607 *  @adapter: pointer to adapter structure
3608 **/
3609static void igb_remove_i2c(struct igb_adapter *adapter)
3610{
3611	/* free the adapter bus structure */
3612	i2c_del_adapter(&adapter->i2c_adap);
3613}
3614
3615/**
3616 *  igb_remove - Device Removal Routine
3617 *  @pdev: PCI device information struct
3618 *
3619 *  igb_remove is called by the PCI subsystem to alert the driver
3620 *  that it should release a PCI device.  The could be caused by a
3621 *  Hot-Plug event, or because the driver is going to be removed from
3622 *  memory.
3623 **/
3624static void igb_remove(struct pci_dev *pdev)
3625{
3626	struct net_device *netdev = pci_get_drvdata(pdev);
3627	struct igb_adapter *adapter = netdev_priv(netdev);
3628	struct e1000_hw *hw = &adapter->hw;
3629
3630	pm_runtime_get_noresume(&pdev->dev);
3631#ifdef CONFIG_IGB_HWMON
3632	igb_sysfs_exit(adapter);
3633#endif
3634	igb_remove_i2c(adapter);
3635	igb_ptp_stop(adapter);
3636	/* The watchdog timer may be rescheduled, so explicitly
3637	 * disable watchdog from being rescheduled.
3638	 */
3639	set_bit(__IGB_DOWN, &adapter->state);
3640	del_timer_sync(&adapter->watchdog_timer);
3641	del_timer_sync(&adapter->phy_info_timer);
3642
3643	cancel_work_sync(&adapter->reset_task);
3644	cancel_work_sync(&adapter->watchdog_task);
3645
3646#ifdef CONFIG_IGB_DCA
3647	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3648		dev_info(&pdev->dev, "DCA disabled\n");
3649		dca_remove_requester(&pdev->dev);
3650		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3651		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3652	}
3653#endif
3654
3655	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3656	 * would have already happened in close and is redundant.
3657	 */
3658	igb_release_hw_control(adapter);
3659
3660#ifdef CONFIG_PCI_IOV
3661	igb_disable_sriov(pdev);
3662#endif
3663
3664	unregister_netdev(netdev);
3665
3666	igb_clear_interrupt_scheme(adapter);
3667
3668	pci_iounmap(pdev, adapter->io_addr);
3669	if (hw->flash_address)
3670		iounmap(hw->flash_address);
3671	pci_release_mem_regions(pdev);
3672
3673	kfree(adapter->mac_table);
3674	kfree(adapter->shadow_vfta);
3675	free_netdev(netdev);
3676
3677	pci_disable_pcie_error_reporting(pdev);
3678
3679	pci_disable_device(pdev);
3680}
3681
3682/**
3683 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3684 *  @adapter: board private structure to initialize
3685 *
3686 *  This function initializes the vf specific data storage and then attempts to
3687 *  allocate the VFs.  The reason for ordering it this way is because it is much
3688 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3689 *  the memory for the VFs.
3690 **/
3691static void igb_probe_vfs(struct igb_adapter *adapter)
3692{
3693#ifdef CONFIG_PCI_IOV
3694	struct pci_dev *pdev = adapter->pdev;
3695	struct e1000_hw *hw = &adapter->hw;
3696
3697	/* Virtualization features not supported on i210 family. */
3698	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3699		return;
3700
3701	/* Of the below we really only want the effect of getting
3702	 * IGB_FLAG_HAS_MSIX set (if available), without which
3703	 * igb_enable_sriov() has no effect.
3704	 */
3705	igb_set_interrupt_capability(adapter, true);
3706	igb_reset_interrupt_capability(adapter);
3707
3708	pci_sriov_set_totalvfs(pdev, 7);
3709	igb_enable_sriov(pdev, max_vfs);
3710
3711#endif /* CONFIG_PCI_IOV */
3712}
3713
3714unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3715{
3716	struct e1000_hw *hw = &adapter->hw;
3717	unsigned int max_rss_queues;
3718
3719	/* Determine the maximum number of RSS queues supported. */
3720	switch (hw->mac.type) {
3721	case e1000_i211:
3722		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3723		break;
3724	case e1000_82575:
3725	case e1000_i210:
3726		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3727		break;
3728	case e1000_i350:
3729		/* I350 cannot do RSS and SR-IOV at the same time */
3730		if (!!adapter->vfs_allocated_count) {
3731			max_rss_queues = 1;
3732			break;
3733		}
3734		/* fall through */
3735	case e1000_82576:
3736		if (!!adapter->vfs_allocated_count) {
3737			max_rss_queues = 2;
3738			break;
3739		}
3740		/* fall through */
3741	case e1000_82580:
3742	case e1000_i354:
3743	default:
3744		max_rss_queues = IGB_MAX_RX_QUEUES;
3745		break;
3746	}
3747
3748	return max_rss_queues;
3749}
3750
3751static void igb_init_queue_configuration(struct igb_adapter *adapter)
3752{
3753	u32 max_rss_queues;
3754
3755	max_rss_queues = igb_get_max_rss_queues(adapter);
3756	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3757
3758	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3759}
3760
3761void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3762			      const u32 max_rss_queues)
3763{
3764	struct e1000_hw *hw = &adapter->hw;
3765
3766	/* Determine if we need to pair queues. */
3767	switch (hw->mac.type) {
3768	case e1000_82575:
3769	case e1000_i211:
3770		/* Device supports enough interrupts without queue pairing. */
3771		break;
3772	case e1000_82576:
3773	case e1000_82580:
3774	case e1000_i350:
3775	case e1000_i354:
3776	case e1000_i210:
3777	default:
3778		/* If rss_queues > half of max_rss_queues, pair the queues in
3779		 * order to conserve interrupts due to limited supply.
3780		 */
3781		if (adapter->rss_queues > (max_rss_queues / 2))
3782			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3783		else
3784			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3785		break;
3786	}
3787}
3788
3789/**
3790 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3791 *  @adapter: board private structure to initialize
3792 *
3793 *  igb_sw_init initializes the Adapter private data structure.
3794 *  Fields are initialized based on PCI device information and
3795 *  OS network device settings (MTU size).
3796 **/
3797static int igb_sw_init(struct igb_adapter *adapter)
3798{
3799	struct e1000_hw *hw = &adapter->hw;
3800	struct net_device *netdev = adapter->netdev;
3801	struct pci_dev *pdev = adapter->pdev;
3802
3803	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3804
3805	/* set default ring sizes */
3806	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3807	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3808
3809	/* set default ITR values */
3810	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3811	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3812
3813	/* set default work limits */
3814	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3815
3816	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3817				  VLAN_HLEN;
3818	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3819
3820	spin_lock_init(&adapter->nfc_lock);
3821	spin_lock_init(&adapter->stats64_lock);
3822#ifdef CONFIG_PCI_IOV
3823	switch (hw->mac.type) {
3824	case e1000_82576:
3825	case e1000_i350:
3826		if (max_vfs > 7) {
3827			dev_warn(&pdev->dev,
3828				 "Maximum of 7 VFs per PF, using max\n");
3829			max_vfs = adapter->vfs_allocated_count = 7;
3830		} else
3831			adapter->vfs_allocated_count = max_vfs;
3832		if (adapter->vfs_allocated_count)
3833			dev_warn(&pdev->dev,
3834				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3835		break;
3836	default:
3837		break;
3838	}
3839#endif /* CONFIG_PCI_IOV */
3840
3841	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3842	adapter->flags |= IGB_FLAG_HAS_MSIX;
3843
3844	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3845				     sizeof(struct igb_mac_addr),
3846				     GFP_KERNEL);
3847	if (!adapter->mac_table)
3848		return -ENOMEM;
3849
3850	igb_probe_vfs(adapter);
3851
3852	igb_init_queue_configuration(adapter);
3853
3854	/* Setup and initialize a copy of the hw vlan table array */
3855	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3856				       GFP_KERNEL);
3857	if (!adapter->shadow_vfta)
3858		return -ENOMEM;
3859
3860	/* This call may decrease the number of queues */
3861	if (igb_init_interrupt_scheme(adapter, true)) {
3862		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3863		return -ENOMEM;
3864	}
3865
3866	/* Explicitly disable IRQ since the NIC can be in any state. */
3867	igb_irq_disable(adapter);
3868
3869	if (hw->mac.type >= e1000_i350)
3870		adapter->flags &= ~IGB_FLAG_DMAC;
3871
3872	set_bit(__IGB_DOWN, &adapter->state);
3873	return 0;
3874}
3875
3876/**
3877 *  igb_open - Called when a network interface is made active
3878 *  @netdev: network interface device structure
3879 *
3880 *  Returns 0 on success, negative value on failure
3881 *
3882 *  The open entry point is called when a network interface is made
3883 *  active by the system (IFF_UP).  At this point all resources needed
3884 *  for transmit and receive operations are allocated, the interrupt
3885 *  handler is registered with the OS, the watchdog timer is started,
3886 *  and the stack is notified that the interface is ready.
3887 **/
3888static int __igb_open(struct net_device *netdev, bool resuming)
3889{
3890	struct igb_adapter *adapter = netdev_priv(netdev);
3891	struct e1000_hw *hw = &adapter->hw;
3892	struct pci_dev *pdev = adapter->pdev;
3893	int err;
3894	int i;
3895
3896	/* disallow open during test */
3897	if (test_bit(__IGB_TESTING, &adapter->state)) {
3898		WARN_ON(resuming);
3899		return -EBUSY;
3900	}
3901
3902	if (!resuming)
3903		pm_runtime_get_sync(&pdev->dev);
3904
3905	netif_carrier_off(netdev);
3906
3907	/* allocate transmit descriptors */
3908	err = igb_setup_all_tx_resources(adapter);
3909	if (err)
3910		goto err_setup_tx;
3911
3912	/* allocate receive descriptors */
3913	err = igb_setup_all_rx_resources(adapter);
3914	if (err)
3915		goto err_setup_rx;
3916
3917	igb_power_up_link(adapter);
3918
3919	/* before we allocate an interrupt, we must be ready to handle it.
3920	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3921	 * as soon as we call pci_request_irq, so we have to setup our
3922	 * clean_rx handler before we do so.
3923	 */
3924	igb_configure(adapter);
3925
3926	err = igb_request_irq(adapter);
3927	if (err)
3928		goto err_req_irq;
3929
3930	/* Notify the stack of the actual queue counts. */
3931	err = netif_set_real_num_tx_queues(adapter->netdev,
3932					   adapter->num_tx_queues);
3933	if (err)
3934		goto err_set_queues;
3935
3936	err = netif_set_real_num_rx_queues(adapter->netdev,
3937					   adapter->num_rx_queues);
3938	if (err)
3939		goto err_set_queues;
3940
3941	/* From here on the code is the same as igb_up() */
3942	clear_bit(__IGB_DOWN, &adapter->state);
3943
3944	for (i = 0; i < adapter->num_q_vectors; i++)
3945		napi_enable(&(adapter->q_vector[i]->napi));
3946
3947	/* Clear any pending interrupts. */
3948	rd32(E1000_TSICR);
3949	rd32(E1000_ICR);
3950
3951	igb_irq_enable(adapter);
3952
3953	/* notify VFs that reset has been completed */
3954	if (adapter->vfs_allocated_count) {
3955		u32 reg_data = rd32(E1000_CTRL_EXT);
3956
3957		reg_data |= E1000_CTRL_EXT_PFRSTD;
3958		wr32(E1000_CTRL_EXT, reg_data);
3959	}
3960
3961	netif_tx_start_all_queues(netdev);
3962
3963	if (!resuming)
3964		pm_runtime_put(&pdev->dev);
3965
3966	/* start the watchdog. */
3967	hw->mac.get_link_status = 1;
3968	schedule_work(&adapter->watchdog_task);
3969
3970	return 0;
3971
3972err_set_queues:
3973	igb_free_irq(adapter);
3974err_req_irq:
3975	igb_release_hw_control(adapter);
3976	igb_power_down_link(adapter);
3977	igb_free_all_rx_resources(adapter);
3978err_setup_rx:
3979	igb_free_all_tx_resources(adapter);
3980err_setup_tx:
3981	igb_reset(adapter);
3982	if (!resuming)
3983		pm_runtime_put(&pdev->dev);
3984
3985	return err;
3986}
3987
3988int igb_open(struct net_device *netdev)
3989{
3990	return __igb_open(netdev, false);
3991}
3992
3993/**
3994 *  igb_close - Disables a network interface
3995 *  @netdev: network interface device structure
3996 *
3997 *  Returns 0, this is not allowed to fail
3998 *
3999 *  The close entry point is called when an interface is de-activated
4000 *  by the OS.  The hardware is still under the driver's control, but
4001 *  needs to be disabled.  A global MAC reset is issued to stop the
4002 *  hardware, and all transmit and receive resources are freed.
4003 **/
4004static int __igb_close(struct net_device *netdev, bool suspending)
4005{
4006	struct igb_adapter *adapter = netdev_priv(netdev);
4007	struct pci_dev *pdev = adapter->pdev;
4008
4009	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4010
4011	if (!suspending)
4012		pm_runtime_get_sync(&pdev->dev);
4013
4014	igb_down(adapter);
4015	igb_free_irq(adapter);
4016
4017	igb_free_all_tx_resources(adapter);
4018	igb_free_all_rx_resources(adapter);
4019
4020	if (!suspending)
4021		pm_runtime_put_sync(&pdev->dev);
4022	return 0;
4023}
4024
4025int igb_close(struct net_device *netdev)
4026{
4027	if (netif_device_present(netdev) || netdev->dismantle)
4028		return __igb_close(netdev, false);
4029	return 0;
4030}
4031
4032/**
4033 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4034 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4035 *
4036 *  Return 0 on success, negative on failure
4037 **/
4038int igb_setup_tx_resources(struct igb_ring *tx_ring)
4039{
4040	struct device *dev = tx_ring->dev;
4041	int size;
4042
4043	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4044
4045	tx_ring->tx_buffer_info = vmalloc(size);
4046	if (!tx_ring->tx_buffer_info)
4047		goto err;
4048
4049	/* round up to nearest 4K */
4050	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4051	tx_ring->size = ALIGN(tx_ring->size, 4096);
4052
4053	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4054					   &tx_ring->dma, GFP_KERNEL);
4055	if (!tx_ring->desc)
4056		goto err;
4057
4058	tx_ring->next_to_use = 0;
4059	tx_ring->next_to_clean = 0;
4060
4061	return 0;
4062
4063err:
4064	vfree(tx_ring->tx_buffer_info);
4065	tx_ring->tx_buffer_info = NULL;
4066	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4067	return -ENOMEM;
4068}
4069
4070/**
4071 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4072 *				 (Descriptors) for all queues
4073 *  @adapter: board private structure
4074 *
4075 *  Return 0 on success, negative on failure
4076 **/
4077static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4078{
4079	struct pci_dev *pdev = adapter->pdev;
4080	int i, err = 0;
4081
4082	for (i = 0; i < adapter->num_tx_queues; i++) {
4083		err = igb_setup_tx_resources(adapter->tx_ring[i]);
4084		if (err) {
4085			dev_err(&pdev->dev,
4086				"Allocation for Tx Queue %u failed\n", i);
4087			for (i--; i >= 0; i--)
4088				igb_free_tx_resources(adapter->tx_ring[i]);
4089			break;
4090		}
4091	}
4092
4093	return err;
4094}
4095
4096/**
4097 *  igb_setup_tctl - configure the transmit control registers
4098 *  @adapter: Board private structure
4099 **/
4100void igb_setup_tctl(struct igb_adapter *adapter)
4101{
4102	struct e1000_hw *hw = &adapter->hw;
4103	u32 tctl;
4104
4105	/* disable queue 0 which is enabled by default on 82575 and 82576 */
4106	wr32(E1000_TXDCTL(0), 0);
4107
4108	/* Program the Transmit Control Register */
4109	tctl = rd32(E1000_TCTL);
4110	tctl &= ~E1000_TCTL_CT;
4111	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4112		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4113
4114	igb_config_collision_dist(hw);
4115
4116	/* Enable transmits */
4117	tctl |= E1000_TCTL_EN;
4118
4119	wr32(E1000_TCTL, tctl);
4120}
4121
4122/**
4123 *  igb_configure_tx_ring - Configure transmit ring after Reset
4124 *  @adapter: board private structure
4125 *  @ring: tx ring to configure
4126 *
4127 *  Configure a transmit ring after a reset.
4128 **/
4129void igb_configure_tx_ring(struct igb_adapter *adapter,
4130			   struct igb_ring *ring)
4131{
4132	struct e1000_hw *hw = &adapter->hw;
4133	u32 txdctl = 0;
4134	u64 tdba = ring->dma;
4135	int reg_idx = ring->reg_idx;
4136
4137	wr32(E1000_TDLEN(reg_idx),
4138	     ring->count * sizeof(union e1000_adv_tx_desc));
4139	wr32(E1000_TDBAL(reg_idx),
4140	     tdba & 0x00000000ffffffffULL);
4141	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4142
4143	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4144	wr32(E1000_TDH(reg_idx), 0);
4145	writel(0, ring->tail);
4146
4147	txdctl |= IGB_TX_PTHRESH;
4148	txdctl |= IGB_TX_HTHRESH << 8;
4149	txdctl |= IGB_TX_WTHRESH << 16;
4150
4151	/* reinitialize tx_buffer_info */
4152	memset(ring->tx_buffer_info, 0,
4153	       sizeof(struct igb_tx_buffer) * ring->count);
4154
4155	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4156	wr32(E1000_TXDCTL(reg_idx), txdctl);
4157}
4158
4159/**
4160 *  igb_configure_tx - Configure transmit Unit after Reset
4161 *  @adapter: board private structure
4162 *
4163 *  Configure the Tx unit of the MAC after a reset.
4164 **/
4165static void igb_configure_tx(struct igb_adapter *adapter)
4166{
4167	struct e1000_hw *hw = &adapter->hw;
4168	int i;
4169
4170	/* disable the queues */
4171	for (i = 0; i < adapter->num_tx_queues; i++)
4172		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4173
4174	wrfl();
4175	usleep_range(10000, 20000);
4176
4177	for (i = 0; i < adapter->num_tx_queues; i++)
4178		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4179}
4180
4181/**
4182 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4183 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4184 *
4185 *  Returns 0 on success, negative on failure
4186 **/
4187int igb_setup_rx_resources(struct igb_ring *rx_ring)
4188{
4189	struct device *dev = rx_ring->dev;
4190	int size;
4191
4192	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4193
4194	rx_ring->rx_buffer_info = vmalloc(size);
4195	if (!rx_ring->rx_buffer_info)
4196		goto err;
4197
4198	/* Round up to nearest 4K */
4199	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4200	rx_ring->size = ALIGN(rx_ring->size, 4096);
4201
4202	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4203					   &rx_ring->dma, GFP_KERNEL);
4204	if (!rx_ring->desc)
4205		goto err;
4206
4207	rx_ring->next_to_alloc = 0;
4208	rx_ring->next_to_clean = 0;
4209	rx_ring->next_to_use = 0;
4210
4211	return 0;
4212
4213err:
4214	vfree(rx_ring->rx_buffer_info);
4215	rx_ring->rx_buffer_info = NULL;
4216	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4217	return -ENOMEM;
4218}
4219
4220/**
4221 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4222 *				 (Descriptors) for all queues
4223 *  @adapter: board private structure
4224 *
4225 *  Return 0 on success, negative on failure
4226 **/
4227static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4228{
4229	struct pci_dev *pdev = adapter->pdev;
4230	int i, err = 0;
4231
4232	for (i = 0; i < adapter->num_rx_queues; i++) {
4233		err = igb_setup_rx_resources(adapter->rx_ring[i]);
4234		if (err) {
4235			dev_err(&pdev->dev,
4236				"Allocation for Rx Queue %u failed\n", i);
4237			for (i--; i >= 0; i--)
4238				igb_free_rx_resources(adapter->rx_ring[i]);
4239			break;
4240		}
4241	}
4242
4243	return err;
4244}
4245
4246/**
4247 *  igb_setup_mrqc - configure the multiple receive queue control registers
4248 *  @adapter: Board private structure
4249 **/
4250static void igb_setup_mrqc(struct igb_adapter *adapter)
4251{
4252	struct e1000_hw *hw = &adapter->hw;
4253	u32 mrqc, rxcsum;
4254	u32 j, num_rx_queues;
4255	u32 rss_key[10];
4256
4257	netdev_rss_key_fill(rss_key, sizeof(rss_key));
4258	for (j = 0; j < 10; j++)
4259		wr32(E1000_RSSRK(j), rss_key[j]);
4260
4261	num_rx_queues = adapter->rss_queues;
4262
4263	switch (hw->mac.type) {
4264	case e1000_82576:
4265		/* 82576 supports 2 RSS queues for SR-IOV */
4266		if (adapter->vfs_allocated_count)
4267			num_rx_queues = 2;
4268		break;
4269	default:
4270		break;
4271	}
4272
4273	if (adapter->rss_indir_tbl_init != num_rx_queues) {
4274		for (j = 0; j < IGB_RETA_SIZE; j++)
4275			adapter->rss_indir_tbl[j] =
4276			(j * num_rx_queues) / IGB_RETA_SIZE;
4277		adapter->rss_indir_tbl_init = num_rx_queues;
4278	}
4279	igb_write_rss_indir_tbl(adapter);
4280
4281	/* Disable raw packet checksumming so that RSS hash is placed in
4282	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4283	 * offloads as they are enabled by default
4284	 */
4285	rxcsum = rd32(E1000_RXCSUM);
4286	rxcsum |= E1000_RXCSUM_PCSD;
4287
4288	if (adapter->hw.mac.type >= e1000_82576)
4289		/* Enable Receive Checksum Offload for SCTP */
4290		rxcsum |= E1000_RXCSUM_CRCOFL;
4291
4292	/* Don't need to set TUOFL or IPOFL, they default to 1 */
4293	wr32(E1000_RXCSUM, rxcsum);
4294
4295	/* Generate RSS hash based on packet types, TCP/UDP
4296	 * port numbers and/or IPv4/v6 src and dst addresses
4297	 */
4298	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4299	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
4300	       E1000_MRQC_RSS_FIELD_IPV6 |
4301	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
4302	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4303
4304	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4305		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4306	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4307		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4308
4309	/* If VMDq is enabled then we set the appropriate mode for that, else
4310	 * we default to RSS so that an RSS hash is calculated per packet even
4311	 * if we are only using one queue
4312	 */
4313	if (adapter->vfs_allocated_count) {
4314		if (hw->mac.type > e1000_82575) {
4315			/* Set the default pool for the PF's first queue */
4316			u32 vtctl = rd32(E1000_VT_CTL);
4317
4318			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4319				   E1000_VT_CTL_DISABLE_DEF_POOL);
4320			vtctl |= adapter->vfs_allocated_count <<
4321				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4322			wr32(E1000_VT_CTL, vtctl);
4323		}
4324		if (adapter->rss_queues > 1)
4325			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4326		else
4327			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4328	} else {
4329		if (hw->mac.type != e1000_i211)
4330			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4331	}
4332	igb_vmm_control(adapter);
4333
4334	wr32(E1000_MRQC, mrqc);
4335}
4336
4337/**
4338 *  igb_setup_rctl - configure the receive control registers
4339 *  @adapter: Board private structure
4340 **/
4341void igb_setup_rctl(struct igb_adapter *adapter)
4342{
4343	struct e1000_hw *hw = &adapter->hw;
4344	u32 rctl;
4345
4346	rctl = rd32(E1000_RCTL);
4347
4348	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4349	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4350
4351	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4352		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4353
4354	/* enable stripping of CRC. It's unlikely this will break BMC
4355	 * redirection as it did with e1000. Newer features require
4356	 * that the HW strips the CRC.
4357	 */
4358	rctl |= E1000_RCTL_SECRC;
4359
4360	/* disable store bad packets and clear size bits. */
4361	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4362
4363	/* enable LPE to allow for reception of jumbo frames */
4364	rctl |= E1000_RCTL_LPE;
4365
4366	/* disable queue 0 to prevent tail write w/o re-config */
4367	wr32(E1000_RXDCTL(0), 0);
4368
4369	/* Attention!!!  For SR-IOV PF driver operations you must enable
4370	 * queue drop for all VF and PF queues to prevent head of line blocking
4371	 * if an un-trusted VF does not provide descriptors to hardware.
4372	 */
4373	if (adapter->vfs_allocated_count) {
4374		/* set all queue drop enable bits */
4375		wr32(E1000_QDE, ALL_QUEUES);
4376	}
4377
4378	/* This is useful for sniffing bad packets. */
4379	if (adapter->netdev->features & NETIF_F_RXALL) {
4380		/* UPE and MPE will be handled by normal PROMISC logic
4381		 * in e1000e_set_rx_mode
4382		 */
4383		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4384			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4385			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4386
4387		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4388			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4389		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4390		 * and that breaks VLANs.
4391		 */
4392	}
4393
4394	wr32(E1000_RCTL, rctl);
4395}
4396
4397static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4398				   int vfn)
4399{
4400	struct e1000_hw *hw = &adapter->hw;
4401	u32 vmolr;
4402
4403	if (size > MAX_JUMBO_FRAME_SIZE)
4404		size = MAX_JUMBO_FRAME_SIZE;
4405
4406	vmolr = rd32(E1000_VMOLR(vfn));
4407	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4408	vmolr |= size | E1000_VMOLR_LPE;
4409	wr32(E1000_VMOLR(vfn), vmolr);
4410
4411	return 0;
4412}
4413
4414static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4415					 int vfn, bool enable)
4416{
4417	struct e1000_hw *hw = &adapter->hw;
4418	u32 val, reg;
4419
4420	if (hw->mac.type < e1000_82576)
4421		return;
4422
4423	if (hw->mac.type == e1000_i350)
4424		reg = E1000_DVMOLR(vfn);
4425	else
4426		reg = E1000_VMOLR(vfn);
4427
4428	val = rd32(reg);
4429	if (enable)
4430		val |= E1000_VMOLR_STRVLAN;
4431	else
4432		val &= ~(E1000_VMOLR_STRVLAN);
4433	wr32(reg, val);
4434}
4435
4436static inline void igb_set_vmolr(struct igb_adapter *adapter,
4437				 int vfn, bool aupe)
4438{
4439	struct e1000_hw *hw = &adapter->hw;
4440	u32 vmolr;
4441
4442	/* This register exists only on 82576 and newer so if we are older then
4443	 * we should exit and do nothing
4444	 */
4445	if (hw->mac.type < e1000_82576)
4446		return;
4447
4448	vmolr = rd32(E1000_VMOLR(vfn));
4449	if (aupe)
4450		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4451	else
4452		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4453
4454	/* clear all bits that might not be set */
4455	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4456
4457	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4458		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4459	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4460	 * multicast packets
4461	 */
4462	if (vfn <= adapter->vfs_allocated_count)
4463		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4464
4465	wr32(E1000_VMOLR(vfn), vmolr);
4466}
4467
4468/**
4469 *  igb_configure_rx_ring - Configure a receive ring after Reset
4470 *  @adapter: board private structure
4471 *  @ring: receive ring to be configured
4472 *
4473 *  Configure the Rx unit of the MAC after a reset.
4474 **/
4475void igb_configure_rx_ring(struct igb_adapter *adapter,
4476			   struct igb_ring *ring)
4477{
4478	struct e1000_hw *hw = &adapter->hw;
4479	union e1000_adv_rx_desc *rx_desc;
4480	u64 rdba = ring->dma;
4481	int reg_idx = ring->reg_idx;
4482	u32 srrctl = 0, rxdctl = 0;
4483
4484	/* disable the queue */
4485	wr32(E1000_RXDCTL(reg_idx), 0);
4486
4487	/* Set DMA base address registers */
4488	wr32(E1000_RDBAL(reg_idx),
4489	     rdba & 0x00000000ffffffffULL);
4490	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4491	wr32(E1000_RDLEN(reg_idx),
4492	     ring->count * sizeof(union e1000_adv_rx_desc));
4493
4494	/* initialize head and tail */
4495	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4496	wr32(E1000_RDH(reg_idx), 0);
4497	writel(0, ring->tail);
4498
4499	/* set descriptor configuration */
4500	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4501	if (ring_uses_large_buffer(ring))
4502		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4503	else
4504		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4505	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4506	if (hw->mac.type >= e1000_82580)
4507		srrctl |= E1000_SRRCTL_TIMESTAMP;
4508	/* Only set Drop Enable if we are supporting multiple queues */
4509	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4510		srrctl |= E1000_SRRCTL_DROP_EN;
4511
4512	wr32(E1000_SRRCTL(reg_idx), srrctl);
4513
4514	/* set filtering for VMDQ pools */
4515	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4516
4517	rxdctl |= IGB_RX_PTHRESH;
4518	rxdctl |= IGB_RX_HTHRESH << 8;
4519	rxdctl |= IGB_RX_WTHRESH << 16;
4520
4521	/* initialize rx_buffer_info */
4522	memset(ring->rx_buffer_info, 0,
4523	       sizeof(struct igb_rx_buffer) * ring->count);
4524
4525	/* initialize Rx descriptor 0 */
4526	rx_desc = IGB_RX_DESC(ring, 0);
4527	rx_desc->wb.upper.length = 0;
4528
4529	/* enable receive descriptor fetching */
4530	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4531	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4532}
4533
4534static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4535				  struct igb_ring *rx_ring)
4536{
4537	/* set build_skb and buffer size flags */
4538	clear_ring_build_skb_enabled(rx_ring);
4539	clear_ring_uses_large_buffer(rx_ring);
4540
4541	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4542		return;
4543
4544	set_ring_build_skb_enabled(rx_ring);
4545
4546#if (PAGE_SIZE < 8192)
4547	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4548		return;
4549
4550	set_ring_uses_large_buffer(rx_ring);
4551#endif
4552}
4553
4554/**
4555 *  igb_configure_rx - Configure receive Unit after Reset
4556 *  @adapter: board private structure
4557 *
4558 *  Configure the Rx unit of the MAC after a reset.
4559 **/
4560static void igb_configure_rx(struct igb_adapter *adapter)
4561{
4562	int i;
4563
4564	/* set the correct pool for the PF default MAC address in entry 0 */
4565	igb_set_default_mac_filter(adapter);
4566
4567	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4568	 * the Base and Length of the Rx Descriptor Ring
4569	 */
4570	for (i = 0; i < adapter->num_rx_queues; i++) {
4571		struct igb_ring *rx_ring = adapter->rx_ring[i];
4572
4573		igb_set_rx_buffer_len(adapter, rx_ring);
4574		igb_configure_rx_ring(adapter, rx_ring);
4575	}
4576}
4577
4578/**
4579 *  igb_free_tx_resources - Free Tx Resources per Queue
4580 *  @tx_ring: Tx descriptor ring for a specific queue
4581 *
4582 *  Free all transmit software resources
4583 **/
4584void igb_free_tx_resources(struct igb_ring *tx_ring)
4585{
4586	igb_clean_tx_ring(tx_ring);
4587
4588	vfree(tx_ring->tx_buffer_info);
4589	tx_ring->tx_buffer_info = NULL;
4590
4591	/* if not set, then don't free */
4592	if (!tx_ring->desc)
4593		return;
4594
4595	dma_free_coherent(tx_ring->dev, tx_ring->size,
4596			  tx_ring->desc, tx_ring->dma);
4597
4598	tx_ring->desc = NULL;
4599}
4600
4601/**
4602 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4603 *  @adapter: board private structure
4604 *
4605 *  Free all transmit software resources
4606 **/
4607static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4608{
4609	int i;
4610
4611	for (i = 0; i < adapter->num_tx_queues; i++)
4612		if (adapter->tx_ring[i])
4613			igb_free_tx_resources(adapter->tx_ring[i]);
4614}
4615
4616/**
4617 *  igb_clean_tx_ring - Free Tx Buffers
4618 *  @tx_ring: ring to be cleaned
4619 **/
4620static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4621{
4622	u16 i = tx_ring->next_to_clean;
4623	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4624
4625	while (i != tx_ring->next_to_use) {
4626		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4627
4628		/* Free all the Tx ring sk_buffs */
4629		dev_kfree_skb_any(tx_buffer->skb);
4630
4631		/* unmap skb header data */
4632		dma_unmap_single(tx_ring->dev,
4633				 dma_unmap_addr(tx_buffer, dma),
4634				 dma_unmap_len(tx_buffer, len),
4635				 DMA_TO_DEVICE);
4636
4637		/* check for eop_desc to determine the end of the packet */
4638		eop_desc = tx_buffer->next_to_watch;
4639		tx_desc = IGB_TX_DESC(tx_ring, i);
4640
4641		/* unmap remaining buffers */
4642		while (tx_desc != eop_desc) {
4643			tx_buffer++;
4644			tx_desc++;
4645			i++;
4646			if (unlikely(i == tx_ring->count)) {
4647				i = 0;
4648				tx_buffer = tx_ring->tx_buffer_info;
4649				tx_desc = IGB_TX_DESC(tx_ring, 0);
4650			}
4651
4652			/* unmap any remaining paged data */
4653			if (dma_unmap_len(tx_buffer, len))
4654				dma_unmap_page(tx_ring->dev,
4655					       dma_unmap_addr(tx_buffer, dma),
4656					       dma_unmap_len(tx_buffer, len),
4657					       DMA_TO_DEVICE);
4658		}
4659
4660		/* move us one more past the eop_desc for start of next pkt */
4661		tx_buffer++;
4662		i++;
4663		if (unlikely(i == tx_ring->count)) {
4664			i = 0;
4665			tx_buffer = tx_ring->tx_buffer_info;
4666		}
4667	}
4668
4669	/* reset BQL for queue */
4670	netdev_tx_reset_queue(txring_txq(tx_ring));
4671
4672	/* reset next_to_use and next_to_clean */
4673	tx_ring->next_to_use = 0;
4674	tx_ring->next_to_clean = 0;
4675}
4676
4677/**
4678 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4679 *  @adapter: board private structure
4680 **/
4681static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4682{
4683	int i;
4684
4685	for (i = 0; i < adapter->num_tx_queues; i++)
4686		if (adapter->tx_ring[i])
4687			igb_clean_tx_ring(adapter->tx_ring[i]);
4688}
4689
4690/**
4691 *  igb_free_rx_resources - Free Rx Resources
4692 *  @rx_ring: ring to clean the resources from
4693 *
4694 *  Free all receive software resources
4695 **/
4696void igb_free_rx_resources(struct igb_ring *rx_ring)
4697{
4698	igb_clean_rx_ring(rx_ring);
4699
4700	vfree(rx_ring->rx_buffer_info);
4701	rx_ring->rx_buffer_info = NULL;
4702
4703	/* if not set, then don't free */
4704	if (!rx_ring->desc)
4705		return;
4706
4707	dma_free_coherent(rx_ring->dev, rx_ring->size,
4708			  rx_ring->desc, rx_ring->dma);
4709
4710	rx_ring->desc = NULL;
4711}
4712
4713/**
4714 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4715 *  @adapter: board private structure
4716 *
4717 *  Free all receive software resources
4718 **/
4719static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4720{
4721	int i;
4722
4723	for (i = 0; i < adapter->num_rx_queues; i++)
4724		if (adapter->rx_ring[i])
4725			igb_free_rx_resources(adapter->rx_ring[i]);
4726}
4727
4728/**
4729 *  igb_clean_rx_ring - Free Rx Buffers per Queue
4730 *  @rx_ring: ring to free buffers from
4731 **/
4732static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4733{
4734	u16 i = rx_ring->next_to_clean;
4735
4736	dev_kfree_skb(rx_ring->skb);
4737	rx_ring->skb = NULL;
4738
4739	/* Free all the Rx ring sk_buffs */
4740	while (i != rx_ring->next_to_alloc) {
4741		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4742
4743		/* Invalidate cache lines that may have been written to by
4744		 * device so that we avoid corrupting memory.
4745		 */
4746		dma_sync_single_range_for_cpu(rx_ring->dev,
4747					      buffer_info->dma,
4748					      buffer_info->page_offset,
4749					      igb_rx_bufsz(rx_ring),
4750					      DMA_FROM_DEVICE);
4751
4752		/* free resources associated with mapping */
4753		dma_unmap_page_attrs(rx_ring->dev,
4754				     buffer_info->dma,
4755				     igb_rx_pg_size(rx_ring),
4756				     DMA_FROM_DEVICE,
4757				     IGB_RX_DMA_ATTR);
4758		__page_frag_cache_drain(buffer_info->page,
4759					buffer_info->pagecnt_bias);
4760
4761		i++;
4762		if (i == rx_ring->count)
4763			i = 0;
4764	}
4765
4766	rx_ring->next_to_alloc = 0;
4767	rx_ring->next_to_clean = 0;
4768	rx_ring->next_to_use = 0;
4769}
4770
4771/**
4772 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4773 *  @adapter: board private structure
4774 **/
4775static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4776{
4777	int i;
4778
4779	for (i = 0; i < adapter->num_rx_queues; i++)
4780		if (adapter->rx_ring[i])
4781			igb_clean_rx_ring(adapter->rx_ring[i]);
4782}
4783
4784/**
4785 *  igb_set_mac - Change the Ethernet Address of the NIC
4786 *  @netdev: network interface device structure
4787 *  @p: pointer to an address structure
4788 *
4789 *  Returns 0 on success, negative on failure
4790 **/
4791static int igb_set_mac(struct net_device *netdev, void *p)
4792{
4793	struct igb_adapter *adapter = netdev_priv(netdev);
4794	struct e1000_hw *hw = &adapter->hw;
4795	struct sockaddr *addr = p;
4796
4797	if (!is_valid_ether_addr(addr->sa_data))
4798		return -EADDRNOTAVAIL;
4799
4800	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4801	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4802
4803	/* set the correct pool for the new PF MAC address in entry 0 */
4804	igb_set_default_mac_filter(adapter);
4805
4806	return 0;
4807}
4808
4809/**
4810 *  igb_write_mc_addr_list - write multicast addresses to MTA
4811 *  @netdev: network interface device structure
4812 *
4813 *  Writes multicast address list to the MTA hash table.
4814 *  Returns: -ENOMEM on failure
4815 *           0 on no addresses written
4816 *           X on writing X addresses to MTA
4817 **/
4818static int igb_write_mc_addr_list(struct net_device *netdev)
4819{
4820	struct igb_adapter *adapter = netdev_priv(netdev);
4821	struct e1000_hw *hw = &adapter->hw;
4822	struct netdev_hw_addr *ha;
4823	u8  *mta_list;
4824	int i;
4825
4826	if (netdev_mc_empty(netdev)) {
4827		/* nothing to program, so clear mc list */
4828		igb_update_mc_addr_list(hw, NULL, 0);
4829		igb_restore_vf_multicasts(adapter);
4830		return 0;
4831	}
4832
4833	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4834	if (!mta_list)
4835		return -ENOMEM;
4836
4837	/* The shared function expects a packed array of only addresses. */
4838	i = 0;
4839	netdev_for_each_mc_addr(ha, netdev)
4840		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4841
4842	igb_update_mc_addr_list(hw, mta_list, i);
4843	kfree(mta_list);
4844
4845	return netdev_mc_count(netdev);
4846}
4847
4848static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4849{
4850	struct e1000_hw *hw = &adapter->hw;
4851	u32 i, pf_id;
4852
4853	switch (hw->mac.type) {
4854	case e1000_i210:
4855	case e1000_i211:
4856	case e1000_i350:
4857		/* VLAN filtering needed for VLAN prio filter */
4858		if (adapter->netdev->features & NETIF_F_NTUPLE)
4859			break;
4860		/* fall through */
4861	case e1000_82576:
4862	case e1000_82580:
4863	case e1000_i354:
4864		/* VLAN filtering needed for pool filtering */
4865		if (adapter->vfs_allocated_count)
4866			break;
4867		/* fall through */
4868	default:
4869		return 1;
4870	}
4871
4872	/* We are already in VLAN promisc, nothing to do */
4873	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4874		return 0;
4875
4876	if (!adapter->vfs_allocated_count)
4877		goto set_vfta;
4878
4879	/* Add PF to all active pools */
4880	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4881
4882	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4883		u32 vlvf = rd32(E1000_VLVF(i));
4884
4885		vlvf |= BIT(pf_id);
4886		wr32(E1000_VLVF(i), vlvf);
4887	}
4888
4889set_vfta:
4890	/* Set all bits in the VLAN filter table array */
4891	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4892		hw->mac.ops.write_vfta(hw, i, ~0U);
4893
4894	/* Set flag so we don't redo unnecessary work */
4895	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4896
4897	return 0;
4898}
4899
4900#define VFTA_BLOCK_SIZE 8
4901static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4902{
4903	struct e1000_hw *hw = &adapter->hw;
4904	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4905	u32 vid_start = vfta_offset * 32;
4906	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4907	u32 i, vid, word, bits, pf_id;
4908
4909	/* guarantee that we don't scrub out management VLAN */
4910	vid = adapter->mng_vlan_id;
4911	if (vid >= vid_start && vid < vid_end)
4912		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4913
4914	if (!adapter->vfs_allocated_count)
4915		goto set_vfta;
4916
4917	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4918
4919	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4920		u32 vlvf = rd32(E1000_VLVF(i));
4921
4922		/* pull VLAN ID from VLVF */
4923		vid = vlvf & VLAN_VID_MASK;
4924
4925		/* only concern ourselves with a certain range */
4926		if (vid < vid_start || vid >= vid_end)
4927			continue;
4928
4929		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4930			/* record VLAN ID in VFTA */
4931			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4932
4933			/* if PF is part of this then continue */
4934			if (test_bit(vid, adapter->active_vlans))
4935				continue;
4936		}
4937
4938		/* remove PF from the pool */
4939		bits = ~BIT(pf_id);
4940		bits &= rd32(E1000_VLVF(i));
4941		wr32(E1000_VLVF(i), bits);
4942	}
4943
4944set_vfta:
4945	/* extract values from active_vlans and write back to VFTA */
4946	for (i = VFTA_BLOCK_SIZE; i--;) {
4947		vid = (vfta_offset + i) * 32;
4948		word = vid / BITS_PER_LONG;
4949		bits = vid % BITS_PER_LONG;
4950
4951		vfta[i] |= adapter->active_vlans[word] >> bits;
4952
4953		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4954	}
4955}
4956
4957static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4958{
4959	u32 i;
4960
4961	/* We are not in VLAN promisc, nothing to do */
4962	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4963		return;
4964
4965	/* Set flag so we don't redo unnecessary work */
4966	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4967
4968	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4969		igb_scrub_vfta(adapter, i);
4970}
4971
4972/**
4973 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4974 *  @netdev: network interface device structure
4975 *
4976 *  The set_rx_mode entry point is called whenever the unicast or multicast
4977 *  address lists or the network interface flags are updated.  This routine is
4978 *  responsible for configuring the hardware for proper unicast, multicast,
4979 *  promiscuous mode, and all-multi behavior.
4980 **/
4981static void igb_set_rx_mode(struct net_device *netdev)
4982{
4983	struct igb_adapter *adapter = netdev_priv(netdev);
4984	struct e1000_hw *hw = &adapter->hw;
4985	unsigned int vfn = adapter->vfs_allocated_count;
4986	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4987	int count;
4988
4989	/* Check for Promiscuous and All Multicast modes */
4990	if (netdev->flags & IFF_PROMISC) {
4991		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4992		vmolr |= E1000_VMOLR_MPME;
4993
4994		/* enable use of UTA filter to force packets to default pool */
4995		if (hw->mac.type == e1000_82576)
4996			vmolr |= E1000_VMOLR_ROPE;
4997	} else {
4998		if (netdev->flags & IFF_ALLMULTI) {
4999			rctl |= E1000_RCTL_MPE;
5000			vmolr |= E1000_VMOLR_MPME;
5001		} else {
5002			/* Write addresses to the MTA, if the attempt fails
5003			 * then we should just turn on promiscuous mode so
5004			 * that we can at least receive multicast traffic
5005			 */
5006			count = igb_write_mc_addr_list(netdev);
5007			if (count < 0) {
5008				rctl |= E1000_RCTL_MPE;
5009				vmolr |= E1000_VMOLR_MPME;
5010			} else if (count) {
5011				vmolr |= E1000_VMOLR_ROMPE;
5012			}
5013		}
5014	}
5015
5016	/* Write addresses to available RAR registers, if there is not
5017	 * sufficient space to store all the addresses then enable
5018	 * unicast promiscuous mode
5019	 */
5020	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5021		rctl |= E1000_RCTL_UPE;
5022		vmolr |= E1000_VMOLR_ROPE;
5023	}
5024
5025	/* enable VLAN filtering by default */
5026	rctl |= E1000_RCTL_VFE;
5027
5028	/* disable VLAN filtering for modes that require it */
5029	if ((netdev->flags & IFF_PROMISC) ||
5030	    (netdev->features & NETIF_F_RXALL)) {
5031		/* if we fail to set all rules then just clear VFE */
5032		if (igb_vlan_promisc_enable(adapter))
5033			rctl &= ~E1000_RCTL_VFE;
5034	} else {
5035		igb_vlan_promisc_disable(adapter);
5036	}
5037
5038	/* update state of unicast, multicast, and VLAN filtering modes */
5039	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5040				     E1000_RCTL_VFE);
5041	wr32(E1000_RCTL, rctl);
5042
5043#if (PAGE_SIZE < 8192)
5044	if (!adapter->vfs_allocated_count) {
5045		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5046			rlpml = IGB_MAX_FRAME_BUILD_SKB;
5047	}
5048#endif
5049	wr32(E1000_RLPML, rlpml);
5050
5051	/* In order to support SR-IOV and eventually VMDq it is necessary to set
5052	 * the VMOLR to enable the appropriate modes.  Without this workaround
5053	 * we will have issues with VLAN tag stripping not being done for frames
5054	 * that are only arriving because we are the default pool
5055	 */
5056	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5057		return;
5058
5059	/* set UTA to appropriate mode */
5060	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5061
5062	vmolr |= rd32(E1000_VMOLR(vfn)) &
5063		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5064
5065	/* enable Rx jumbo frames, restrict as needed to support build_skb */
5066	vmolr &= ~E1000_VMOLR_RLPML_MASK;
5067#if (PAGE_SIZE < 8192)
5068	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5069		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5070	else
5071#endif
5072		vmolr |= MAX_JUMBO_FRAME_SIZE;
5073	vmolr |= E1000_VMOLR_LPE;
5074
5075	wr32(E1000_VMOLR(vfn), vmolr);
5076
5077	igb_restore_vf_multicasts(adapter);
5078}
5079
5080static void igb_check_wvbr(struct igb_adapter *adapter)
5081{
5082	struct e1000_hw *hw = &adapter->hw;
5083	u32 wvbr = 0;
5084
5085	switch (hw->mac.type) {
5086	case e1000_82576:
5087	case e1000_i350:
5088		wvbr = rd32(E1000_WVBR);
5089		if (!wvbr)
5090			return;
5091		break;
5092	default:
5093		break;
5094	}
5095
5096	adapter->wvbr |= wvbr;
5097}
5098
5099#define IGB_STAGGERED_QUEUE_OFFSET 8
5100
5101static void igb_spoof_check(struct igb_adapter *adapter)
5102{
5103	int j;
5104
5105	if (!adapter->wvbr)
5106		return;
5107
5108	for (j = 0; j < adapter->vfs_allocated_count; j++) {
5109		if (adapter->wvbr & BIT(j) ||
5110		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5111			dev_warn(&adapter->pdev->dev,
5112				"Spoof event(s) detected on VF %d\n", j);
5113			adapter->wvbr &=
5114				~(BIT(j) |
5115				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5116		}
5117	}
5118}
5119
5120/* Need to wait a few seconds after link up to get diagnostic information from
5121 * the phy
5122 */
5123static void igb_update_phy_info(struct timer_list *t)
5124{
5125	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5126	igb_get_phy_info(&adapter->hw);
5127}
5128
5129/**
5130 *  igb_has_link - check shared code for link and determine up/down
5131 *  @adapter: pointer to driver private info
5132 **/
5133bool igb_has_link(struct igb_adapter *adapter)
5134{
5135	struct e1000_hw *hw = &adapter->hw;
5136	bool link_active = false;
5137
5138	/* get_link_status is set on LSC (link status) interrupt or
5139	 * rx sequence error interrupt.  get_link_status will stay
5140	 * false until the e1000_check_for_link establishes link
5141	 * for copper adapters ONLY
5142	 */
5143	switch (hw->phy.media_type) {
5144	case e1000_media_type_copper:
5145		if (!hw->mac.get_link_status)
5146			return true;
5147		/* fall through */
5148	case e1000_media_type_internal_serdes:
5149		hw->mac.ops.check_for_link(hw);
5150		link_active = !hw->mac.get_link_status;
5151		break;
5152	default:
5153	case e1000_media_type_unknown:
5154		break;
5155	}
5156
5157	if (((hw->mac.type == e1000_i210) ||
5158	     (hw->mac.type == e1000_i211)) &&
5159	     (hw->phy.id == I210_I_PHY_ID)) {
5160		if (!netif_carrier_ok(adapter->netdev)) {
5161			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5162		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5163			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5164			adapter->link_check_timeout = jiffies;
5165		}
5166	}
5167
5168	return link_active;
5169}
5170
5171static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5172{
5173	bool ret = false;
5174	u32 ctrl_ext, thstat;
5175
5176	/* check for thermal sensor event on i350 copper only */
5177	if (hw->mac.type == e1000_i350) {
5178		thstat = rd32(E1000_THSTAT);
5179		ctrl_ext = rd32(E1000_CTRL_EXT);
5180
5181		if ((hw->phy.media_type == e1000_media_type_copper) &&
5182		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5183			ret = !!(thstat & event);
5184	}
5185
5186	return ret;
5187}
5188
5189/**
5190 *  igb_check_lvmmc - check for malformed packets received
5191 *  and indicated in LVMMC register
5192 *  @adapter: pointer to adapter
5193 **/
5194static void igb_check_lvmmc(struct igb_adapter *adapter)
5195{
5196	struct e1000_hw *hw = &adapter->hw;
5197	u32 lvmmc;
5198
5199	lvmmc = rd32(E1000_LVMMC);
5200	if (lvmmc) {
5201		if (unlikely(net_ratelimit())) {
5202			netdev_warn(adapter->netdev,
5203				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5204				    lvmmc);
5205		}
5206	}
5207}
5208
5209/**
5210 *  igb_watchdog - Timer Call-back
5211 *  @data: pointer to adapter cast into an unsigned long
5212 **/
5213static void igb_watchdog(struct timer_list *t)
5214{
5215	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5216	/* Do the rest outside of interrupt context */
5217	schedule_work(&adapter->watchdog_task);
5218}
5219
5220static void igb_watchdog_task(struct work_struct *work)
5221{
5222	struct igb_adapter *adapter = container_of(work,
5223						   struct igb_adapter,
5224						   watchdog_task);
5225	struct e1000_hw *hw = &adapter->hw;
5226	struct e1000_phy_info *phy = &hw->phy;
5227	struct net_device *netdev = adapter->netdev;
5228	u32 link;
5229	int i;
5230	u32 connsw;
5231	u16 phy_data, retry_count = 20;
5232
5233	link = igb_has_link(adapter);
5234
5235	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5236		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5237			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5238		else
5239			link = false;
5240	}
5241
5242	/* Force link down if we have fiber to swap to */
5243	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5244		if (hw->phy.media_type == e1000_media_type_copper) {
5245			connsw = rd32(E1000_CONNSW);
5246			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5247				link = 0;
5248		}
5249	}
5250	if (link) {
5251		/* Perform a reset if the media type changed. */
5252		if (hw->dev_spec._82575.media_changed) {
5253			hw->dev_spec._82575.media_changed = false;
5254			adapter->flags |= IGB_FLAG_MEDIA_RESET;
5255			igb_reset(adapter);
5256		}
5257		/* Cancel scheduled suspend requests. */
5258		pm_runtime_resume(netdev->dev.parent);
5259
5260		if (!netif_carrier_ok(netdev)) {
5261			u32 ctrl;
5262
5263			hw->mac.ops.get_speed_and_duplex(hw,
5264							 &adapter->link_speed,
5265							 &adapter->link_duplex);
5266
5267			ctrl = rd32(E1000_CTRL);
5268			/* Links status message must follow this format */
5269			netdev_info(netdev,
5270			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5271			       netdev->name,
5272			       adapter->link_speed,
5273			       adapter->link_duplex == FULL_DUPLEX ?
5274			       "Full" : "Half",
5275			       (ctrl & E1000_CTRL_TFCE) &&
5276			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5277			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5278			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5279
5280			/* disable EEE if enabled */
5281			if ((adapter->flags & IGB_FLAG_EEE) &&
5282				(adapter->link_duplex == HALF_DUPLEX)) {
5283				dev_info(&adapter->pdev->dev,
5284				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5285				adapter->hw.dev_spec._82575.eee_disable = true;
5286				adapter->flags &= ~IGB_FLAG_EEE;
5287			}
5288
5289			/* check if SmartSpeed worked */
5290			igb_check_downshift(hw);
5291			if (phy->speed_downgraded)
5292				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5293
5294			/* check for thermal sensor event */
5295			if (igb_thermal_sensor_event(hw,
5296			    E1000_THSTAT_LINK_THROTTLE))
5297				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5298
5299			/* adjust timeout factor according to speed/duplex */
5300			adapter->tx_timeout_factor = 1;
5301			switch (adapter->link_speed) {
5302			case SPEED_10:
5303				adapter->tx_timeout_factor = 14;
5304				break;
5305			case SPEED_100:
5306				/* maybe add some timeout factor ? */
5307				break;
5308			}
5309
5310			if (adapter->link_speed != SPEED_1000)
5311				goto no_wait;
5312
5313			/* wait for Remote receiver status OK */
5314retry_read_status:
5315			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5316					      &phy_data)) {
5317				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5318				    retry_count) {
5319					msleep(100);
5320					retry_count--;
5321					goto retry_read_status;
5322				} else if (!retry_count) {
5323					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5324				}
5325			} else {
5326				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5327			}
5328no_wait:
5329			netif_carrier_on(netdev);
5330
5331			igb_ping_all_vfs(adapter);
5332			igb_check_vf_rate_limit(adapter);
5333
5334			/* link state has changed, schedule phy info update */
5335			if (!test_bit(__IGB_DOWN, &adapter->state))
5336				mod_timer(&adapter->phy_info_timer,
5337					  round_jiffies(jiffies + 2 * HZ));
5338		}
5339	} else {
5340		if (netif_carrier_ok(netdev)) {
5341			adapter->link_speed = 0;
5342			adapter->link_duplex = 0;
5343
5344			/* check for thermal sensor event */
5345			if (igb_thermal_sensor_event(hw,
5346			    E1000_THSTAT_PWR_DOWN)) {
5347				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5348			}
5349
5350			/* Links status message must follow this format */
5351			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5352			       netdev->name);
5353			netif_carrier_off(netdev);
5354
5355			igb_ping_all_vfs(adapter);
5356
5357			/* link state has changed, schedule phy info update */
5358			if (!test_bit(__IGB_DOWN, &adapter->state))
5359				mod_timer(&adapter->phy_info_timer,
5360					  round_jiffies(jiffies + 2 * HZ));
5361
5362			/* link is down, time to check for alternate media */
5363			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5364				igb_check_swap_media(adapter);
5365				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5366					schedule_work(&adapter->reset_task);
5367					/* return immediately */
5368					return;
5369				}
5370			}
5371			pm_schedule_suspend(netdev->dev.parent,
5372					    MSEC_PER_SEC * 5);
5373
5374		/* also check for alternate media here */
5375		} else if (!netif_carrier_ok(netdev) &&
5376			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5377			igb_check_swap_media(adapter);
5378			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5379				schedule_work(&adapter->reset_task);
5380				/* return immediately */
5381				return;
5382			}
5383		}
5384	}
5385
5386	spin_lock(&adapter->stats64_lock);
5387	igb_update_stats(adapter);
5388	spin_unlock(&adapter->stats64_lock);
5389
5390	for (i = 0; i < adapter->num_tx_queues; i++) {
5391		struct igb_ring *tx_ring = adapter->tx_ring[i];
5392		if (!netif_carrier_ok(netdev)) {
5393			/* We've lost link, so the controller stops DMA,
5394			 * but we've got queued Tx work that's never going
5395			 * to get done, so reset controller to flush Tx.
5396			 * (Do the reset outside of interrupt context).
5397			 */
5398			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5399				adapter->tx_timeout_count++;
5400				schedule_work(&adapter->reset_task);
5401				/* return immediately since reset is imminent */
5402				return;
5403			}
5404		}
5405
5406		/* Force detection of hung controller every watchdog period */
5407		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5408	}
5409
5410	/* Cause software interrupt to ensure Rx ring is cleaned */
5411	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5412		u32 eics = 0;
5413
5414		for (i = 0; i < adapter->num_q_vectors; i++)
5415			eics |= adapter->q_vector[i]->eims_value;
5416		wr32(E1000_EICS, eics);
5417	} else {
5418		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5419	}
5420
5421	igb_spoof_check(adapter);
5422	igb_ptp_rx_hang(adapter);
5423	igb_ptp_tx_hang(adapter);
5424
5425	/* Check LVMMC register on i350/i354 only */
5426	if ((adapter->hw.mac.type == e1000_i350) ||
5427	    (adapter->hw.mac.type == e1000_i354))
5428		igb_check_lvmmc(adapter);
5429
5430	/* Reset the timer */
5431	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5432		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5433			mod_timer(&adapter->watchdog_timer,
5434				  round_jiffies(jiffies +  HZ));
5435		else
5436			mod_timer(&adapter->watchdog_timer,
5437				  round_jiffies(jiffies + 2 * HZ));
5438	}
5439}
5440
5441enum latency_range {
5442	lowest_latency = 0,
5443	low_latency = 1,
5444	bulk_latency = 2,
5445	latency_invalid = 255
5446};
5447
5448/**
5449 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5450 *  @q_vector: pointer to q_vector
5451 *
5452 *  Stores a new ITR value based on strictly on packet size.  This
5453 *  algorithm is less sophisticated than that used in igb_update_itr,
5454 *  due to the difficulty of synchronizing statistics across multiple
5455 *  receive rings.  The divisors and thresholds used by this function
5456 *  were determined based on theoretical maximum wire speed and testing
5457 *  data, in order to minimize response time while increasing bulk
5458 *  throughput.
5459 *  This functionality is controlled by ethtool's coalescing settings.
5460 *  NOTE:  This function is called only when operating in a multiqueue
5461 *         receive environment.
5462 **/
5463static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5464{
5465	int new_val = q_vector->itr_val;
5466	int avg_wire_size = 0;
5467	struct igb_adapter *adapter = q_vector->adapter;
5468	unsigned int packets;
5469
5470	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5471	 * ints/sec - ITR timer value of 120 ticks.
5472	 */
5473	if (adapter->link_speed != SPEED_1000) {
5474		new_val = IGB_4K_ITR;
5475		goto set_itr_val;
5476	}
5477
5478	packets = q_vector->rx.total_packets;
5479	if (packets)
5480		avg_wire_size = q_vector->rx.total_bytes / packets;
5481
5482	packets = q_vector->tx.total_packets;
5483	if (packets)
5484		avg_wire_size = max_t(u32, avg_wire_size,
5485				      q_vector->tx.total_bytes / packets);
5486
5487	/* if avg_wire_size isn't set no work was done */
5488	if (!avg_wire_size)
5489		goto clear_counts;
5490
5491	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5492	avg_wire_size += 24;
5493
5494	/* Don't starve jumbo frames */
5495	avg_wire_size = min(avg_wire_size, 3000);
5496
5497	/* Give a little boost to mid-size frames */
5498	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5499		new_val = avg_wire_size / 3;
5500	else
5501		new_val = avg_wire_size / 2;
5502
5503	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5504	if (new_val < IGB_20K_ITR &&
5505	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5506	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5507		new_val = IGB_20K_ITR;
5508
5509set_itr_val:
5510	if (new_val != q_vector->itr_val) {
5511		q_vector->itr_val = new_val;
5512		q_vector->set_itr = 1;
5513	}
5514clear_counts:
5515	q_vector->rx.total_bytes = 0;
5516	q_vector->rx.total_packets = 0;
5517	q_vector->tx.total_bytes = 0;
5518	q_vector->tx.total_packets = 0;
5519}
5520
5521/**
5522 *  igb_update_itr - update the dynamic ITR value based on statistics
5523 *  @q_vector: pointer to q_vector
5524 *  @ring_container: ring info to update the itr for
5525 *
5526 *  Stores a new ITR value based on packets and byte
5527 *  counts during the last interrupt.  The advantage of per interrupt
5528 *  computation is faster updates and more accurate ITR for the current
5529 *  traffic pattern.  Constants in this function were computed
5530 *  based on theoretical maximum wire speed and thresholds were set based
5531 *  on testing data as well as attempting to minimize response time
5532 *  while increasing bulk throughput.
5533 *  This functionality is controlled by ethtool's coalescing settings.
5534 *  NOTE:  These calculations are only valid when operating in a single-
5535 *         queue environment.
5536 **/
5537static void igb_update_itr(struct igb_q_vector *q_vector,
5538			   struct igb_ring_container *ring_container)
5539{
5540	unsigned int packets = ring_container->total_packets;
5541	unsigned int bytes = ring_container->total_bytes;
5542	u8 itrval = ring_container->itr;
5543
5544	/* no packets, exit with status unchanged */
5545	if (packets == 0)
5546		return;
5547
5548	switch (itrval) {
5549	case lowest_latency:
5550		/* handle TSO and jumbo frames */
5551		if (bytes/packets > 8000)
5552			itrval = bulk_latency;
5553		else if ((packets < 5) && (bytes > 512))
5554			itrval = low_latency;
5555		break;
5556	case low_latency:  /* 50 usec aka 20000 ints/s */
5557		if (bytes > 10000) {
5558			/* this if handles the TSO accounting */
5559			if (bytes/packets > 8000)
5560				itrval = bulk_latency;
5561			else if ((packets < 10) || ((bytes/packets) > 1200))
5562				itrval = bulk_latency;
5563			else if ((packets > 35))
5564				itrval = lowest_latency;
5565		} else if (bytes/packets > 2000) {
5566			itrval = bulk_latency;
5567		} else if (packets <= 2 && bytes < 512) {
5568			itrval = lowest_latency;
5569		}
5570		break;
5571	case bulk_latency: /* 250 usec aka 4000 ints/s */
5572		if (bytes > 25000) {
5573			if (packets > 35)
5574				itrval = low_latency;
5575		} else if (bytes < 1500) {
5576			itrval = low_latency;
5577		}
5578		break;
5579	}
5580
5581	/* clear work counters since we have the values we need */
5582	ring_container->total_bytes = 0;
5583	ring_container->total_packets = 0;
5584
5585	/* write updated itr to ring container */
5586	ring_container->itr = itrval;
5587}
5588
5589static void igb_set_itr(struct igb_q_vector *q_vector)
5590{
5591	struct igb_adapter *adapter = q_vector->adapter;
5592	u32 new_itr = q_vector->itr_val;
5593	u8 current_itr = 0;
5594
5595	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5596	if (adapter->link_speed != SPEED_1000) {
5597		current_itr = 0;
5598		new_itr = IGB_4K_ITR;
5599		goto set_itr_now;
5600	}
5601
5602	igb_update_itr(q_vector, &q_vector->tx);
5603	igb_update_itr(q_vector, &q_vector->rx);
5604
5605	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5606
5607	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5608	if (current_itr == lowest_latency &&
5609	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5610	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5611		current_itr = low_latency;
5612
5613	switch (current_itr) {
5614	/* counts and packets in update_itr are dependent on these numbers */
5615	case lowest_latency:
5616		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5617		break;
5618	case low_latency:
5619		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5620		break;
5621	case bulk_latency:
5622		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5623		break;
5624	default:
5625		break;
5626	}
5627
5628set_itr_now:
5629	if (new_itr != q_vector->itr_val) {
5630		/* this attempts to bias the interrupt rate towards Bulk
5631		 * by adding intermediate steps when interrupt rate is
5632		 * increasing
5633		 */
5634		new_itr = new_itr > q_vector->itr_val ?
5635			  max((new_itr * q_vector->itr_val) /
5636			  (new_itr + (q_vector->itr_val >> 2)),
5637			  new_itr) : new_itr;
5638		/* Don't write the value here; it resets the adapter's
5639		 * internal timer, and causes us to delay far longer than
5640		 * we should between interrupts.  Instead, we write the ITR
5641		 * value at the beginning of the next interrupt so the timing
5642		 * ends up being correct.
5643		 */
5644		q_vector->itr_val = new_itr;
5645		q_vector->set_itr = 1;
5646	}
5647}
5648
5649static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5650			    struct igb_tx_buffer *first,
5651			    u32 vlan_macip_lens, u32 type_tucmd,
5652			    u32 mss_l4len_idx)
5653{
5654	struct e1000_adv_tx_context_desc *context_desc;
5655	u16 i = tx_ring->next_to_use;
5656	struct timespec64 ts;
5657
5658	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5659
5660	i++;
5661	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5662
5663	/* set bits to identify this as an advanced context descriptor */
5664	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5665
5666	/* For 82575, context index must be unique per ring. */
5667	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5668		mss_l4len_idx |= tx_ring->reg_idx << 4;
5669
5670	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5671	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5672	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5673
5674	/* We assume there is always a valid tx time available. Invalid times
5675	 * should have been handled by the upper layers.
5676	 */
5677	if (tx_ring->launchtime_enable) {
5678		ts = ktime_to_timespec64(first->skb->tstamp);
5679		first->skb->tstamp = ktime_set(0, 0);
5680		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5681	} else {
5682		context_desc->seqnum_seed = 0;
5683	}
5684}
5685
5686static int igb_tso(struct igb_ring *tx_ring,
5687		   struct igb_tx_buffer *first,
5688		   u8 *hdr_len)
5689{
5690	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5691	struct sk_buff *skb = first->skb;
5692	union {
5693		struct iphdr *v4;
5694		struct ipv6hdr *v6;
5695		unsigned char *hdr;
5696	} ip;
5697	union {
5698		struct tcphdr *tcp;
5699		unsigned char *hdr;
5700	} l4;
5701	u32 paylen, l4_offset;
5702	int err;
5703
5704	if (skb->ip_summed != CHECKSUM_PARTIAL)
5705		return 0;
5706
5707	if (!skb_is_gso(skb))
5708		return 0;
5709
5710	err = skb_cow_head(skb, 0);
5711	if (err < 0)
5712		return err;
5713
5714	ip.hdr = skb_network_header(skb);
5715	l4.hdr = skb_checksum_start(skb);
5716
5717	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5718	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5719
5720	/* initialize outer IP header fields */
5721	if (ip.v4->version == 4) {
5722		unsigned char *csum_start = skb_checksum_start(skb);
5723		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5724
5725		/* IP header will have to cancel out any data that
5726		 * is not a part of the outer IP header
5727		 */
5728		ip.v4->check = csum_fold(csum_partial(trans_start,
5729						      csum_start - trans_start,
5730						      0));
5731		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5732
5733		ip.v4->tot_len = 0;
5734		first->tx_flags |= IGB_TX_FLAGS_TSO |
5735				   IGB_TX_FLAGS_CSUM |
5736				   IGB_TX_FLAGS_IPV4;
5737	} else {
5738		ip.v6->payload_len = 0;
5739		first->tx_flags |= IGB_TX_FLAGS_TSO |
5740				   IGB_TX_FLAGS_CSUM;
5741	}
5742
5743	/* determine offset of inner transport header */
5744	l4_offset = l4.hdr - skb->data;
5745
5746	/* compute length of segmentation header */
5747	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5748
5749	/* remove payload length from inner checksum */
5750	paylen = skb->len - l4_offset;
5751	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5752
5753	/* update gso size and bytecount with header size */
5754	first->gso_segs = skb_shinfo(skb)->gso_segs;
5755	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5756
5757	/* MSS L4LEN IDX */
5758	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5759	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5760
5761	/* VLAN MACLEN IPLEN */
5762	vlan_macip_lens = l4.hdr - ip.hdr;
5763	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5764	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5765
5766	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5767			type_tucmd, mss_l4len_idx);
5768
5769	return 1;
5770}
5771
5772static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5773{
5774	unsigned int offset = 0;
5775
5776	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5777
5778	return offset == skb_checksum_start_offset(skb);
5779}
5780
5781static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5782{
5783	struct sk_buff *skb = first->skb;
5784	u32 vlan_macip_lens = 0;
5785	u32 type_tucmd = 0;
5786
5787	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5788csum_failed:
5789		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5790		    !tx_ring->launchtime_enable)
5791			return;
5792		goto no_csum;
5793	}
5794
5795	switch (skb->csum_offset) {
5796	case offsetof(struct tcphdr, check):
5797		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5798		/* fall through */
5799	case offsetof(struct udphdr, check):
5800		break;
5801	case offsetof(struct sctphdr, checksum):
5802		/* validate that this is actually an SCTP request */
5803		if (((first->protocol == htons(ETH_P_IP)) &&
5804		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5805		    ((first->protocol == htons(ETH_P_IPV6)) &&
5806		     igb_ipv6_csum_is_sctp(skb))) {
5807			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5808			break;
5809		}
5810		/* fall through */
5811	default:
5812		skb_checksum_help(skb);
5813		goto csum_failed;
5814	}
5815
5816	/* update TX checksum flag */
5817	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5818	vlan_macip_lens = skb_checksum_start_offset(skb) -
5819			  skb_network_offset(skb);
5820no_csum:
5821	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5822	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5823
5824	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5825}
5826
5827#define IGB_SET_FLAG(_input, _flag, _result) \
5828	((_flag <= _result) ? \
5829	 ((u32)(_input & _flag) * (_result / _flag)) : \
5830	 ((u32)(_input & _flag) / (_flag / _result)))
5831
5832static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5833{
5834	/* set type for advanced descriptor with frame checksum insertion */
5835	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5836		       E1000_ADVTXD_DCMD_DEXT |
5837		       E1000_ADVTXD_DCMD_IFCS;
5838
5839	/* set HW vlan bit if vlan is present */
5840	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5841				 (E1000_ADVTXD_DCMD_VLE));
5842
5843	/* set segmentation bits for TSO */
5844	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5845				 (E1000_ADVTXD_DCMD_TSE));
5846
5847	/* set timestamp bit if present */
5848	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5849				 (E1000_ADVTXD_MAC_TSTAMP));
5850
5851	/* insert frame checksum */
5852	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5853
5854	return cmd_type;
5855}
5856
5857static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5858				 union e1000_adv_tx_desc *tx_desc,
5859				 u32 tx_flags, unsigned int paylen)
5860{
5861	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5862
5863	/* 82575 requires a unique index per ring */
5864	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5865		olinfo_status |= tx_ring->reg_idx << 4;
5866
5867	/* insert L4 checksum */
5868	olinfo_status |= IGB_SET_FLAG(tx_flags,
5869				      IGB_TX_FLAGS_CSUM,
5870				      (E1000_TXD_POPTS_TXSM << 8));
5871
5872	/* insert IPv4 checksum */
5873	olinfo_status |= IGB_SET_FLAG(tx_flags,
5874				      IGB_TX_FLAGS_IPV4,
5875				      (E1000_TXD_POPTS_IXSM << 8));
5876
5877	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5878}
5879
5880static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5881{
5882	struct net_device *netdev = tx_ring->netdev;
5883
5884	netif_stop_subqueue(netdev, tx_ring->queue_index);
5885
5886	/* Herbert's original patch had:
5887	 *  smp_mb__after_netif_stop_queue();
5888	 * but since that doesn't exist yet, just open code it.
5889	 */
5890	smp_mb();
5891
5892	/* We need to check again in a case another CPU has just
5893	 * made room available.
5894	 */
5895	if (igb_desc_unused(tx_ring) < size)
5896		return -EBUSY;
5897
5898	/* A reprieve! */
5899	netif_wake_subqueue(netdev, tx_ring->queue_index);
5900
5901	u64_stats_update_begin(&tx_ring->tx_syncp2);
5902	tx_ring->tx_stats.restart_queue2++;
5903	u64_stats_update_end(&tx_ring->tx_syncp2);
5904
5905	return 0;
5906}
5907
5908static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5909{
5910	if (igb_desc_unused(tx_ring) >= size)
5911		return 0;
5912	return __igb_maybe_stop_tx(tx_ring, size);
5913}
5914
5915static int igb_tx_map(struct igb_ring *tx_ring,
5916		      struct igb_tx_buffer *first,
5917		      const u8 hdr_len)
5918{
5919	struct sk_buff *skb = first->skb;
5920	struct igb_tx_buffer *tx_buffer;
5921	union e1000_adv_tx_desc *tx_desc;
5922	skb_frag_t *frag;
5923	dma_addr_t dma;
5924	unsigned int data_len, size;
5925	u32 tx_flags = first->tx_flags;
5926	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5927	u16 i = tx_ring->next_to_use;
5928
5929	tx_desc = IGB_TX_DESC(tx_ring, i);
5930
5931	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5932
5933	size = skb_headlen(skb);
5934	data_len = skb->data_len;
5935
5936	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5937
5938	tx_buffer = first;
5939
5940	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5941		if (dma_mapping_error(tx_ring->dev, dma))
5942			goto dma_error;
5943
5944		/* record length, and DMA address */
5945		dma_unmap_len_set(tx_buffer, len, size);
5946		dma_unmap_addr_set(tx_buffer, dma, dma);
5947
5948		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5949
5950		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5951			tx_desc->read.cmd_type_len =
5952				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5953
5954			i++;
5955			tx_desc++;
5956			if (i == tx_ring->count) {
5957				tx_desc = IGB_TX_DESC(tx_ring, 0);
5958				i = 0;
5959			}
5960			tx_desc->read.olinfo_status = 0;
5961
5962			dma += IGB_MAX_DATA_PER_TXD;
5963			size -= IGB_MAX_DATA_PER_TXD;
5964
5965			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5966		}
5967
5968		if (likely(!data_len))
5969			break;
5970
5971		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5972
5973		i++;
5974		tx_desc++;
5975		if (i == tx_ring->count) {
5976			tx_desc = IGB_TX_DESC(tx_ring, 0);
5977			i = 0;
5978		}
5979		tx_desc->read.olinfo_status = 0;
5980
5981		size = skb_frag_size(frag);
5982		data_len -= size;
5983
5984		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5985				       size, DMA_TO_DEVICE);
5986
5987		tx_buffer = &tx_ring->tx_buffer_info[i];
5988	}
5989
5990	/* write last descriptor with RS and EOP bits */
5991	cmd_type |= size | IGB_TXD_DCMD;
5992	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5993
5994	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5995
5996	/* set the timestamp */
5997	first->time_stamp = jiffies;
5998
5999	skb_tx_timestamp(skb);
6000
6001	/* Force memory writes to complete before letting h/w know there
6002	 * are new descriptors to fetch.  (Only applicable for weak-ordered
6003	 * memory model archs, such as IA-64).
6004	 *
6005	 * We also need this memory barrier to make certain all of the
6006	 * status bits have been updated before next_to_watch is written.
6007	 */
6008	dma_wmb();
6009
6010	/* set next_to_watch value indicating a packet is present */
6011	first->next_to_watch = tx_desc;
6012
6013	i++;
6014	if (i == tx_ring->count)
6015		i = 0;
6016
6017	tx_ring->next_to_use = i;
6018
6019	/* Make sure there is space in the ring for the next send. */
6020	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6021
6022	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6023		writel(i, tx_ring->tail);
6024	}
6025	return 0;
6026
6027dma_error:
6028	dev_err(tx_ring->dev, "TX DMA map failed\n");
6029	tx_buffer = &tx_ring->tx_buffer_info[i];
6030
6031	/* clear dma mappings for failed tx_buffer_info map */
6032	while (tx_buffer != first) {
6033		if (dma_unmap_len(tx_buffer, len))
6034			dma_unmap_page(tx_ring->dev,
6035				       dma_unmap_addr(tx_buffer, dma),
6036				       dma_unmap_len(tx_buffer, len),
6037				       DMA_TO_DEVICE);
6038		dma_unmap_len_set(tx_buffer, len, 0);
6039
6040		if (i-- == 0)
6041			i += tx_ring->count;
6042		tx_buffer = &tx_ring->tx_buffer_info[i];
6043	}
6044
6045	if (dma_unmap_len(tx_buffer, len))
6046		dma_unmap_single(tx_ring->dev,
6047				 dma_unmap_addr(tx_buffer, dma),
6048				 dma_unmap_len(tx_buffer, len),
6049				 DMA_TO_DEVICE);
6050	dma_unmap_len_set(tx_buffer, len, 0);
6051
6052	dev_kfree_skb_any(tx_buffer->skb);
6053	tx_buffer->skb = NULL;
6054
6055	tx_ring->next_to_use = i;
6056
6057	return -1;
6058}
6059
6060netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6061				struct igb_ring *tx_ring)
6062{
6063	struct igb_tx_buffer *first;
6064	int tso;
6065	u32 tx_flags = 0;
6066	unsigned short f;
6067	u16 count = TXD_USE_COUNT(skb_headlen(skb));
6068	__be16 protocol = vlan_get_protocol(skb);
6069	u8 hdr_len = 0;
6070
6071	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6072	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6073	 *       + 2 desc gap to keep tail from touching head,
6074	 *       + 1 desc for context descriptor,
6075	 * otherwise try next time
6076	 */
6077	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6078		count += TXD_USE_COUNT(skb_frag_size(
6079						&skb_shinfo(skb)->frags[f]));
6080
6081	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6082		/* this is a hard error */
6083		return NETDEV_TX_BUSY;
6084	}
6085
6086	/* record the location of the first descriptor for this packet */
6087	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6088	first->skb = skb;
6089	first->bytecount = skb->len;
6090	first->gso_segs = 1;
6091
6092	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6093		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6094
6095		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6096		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6097					   &adapter->state)) {
6098			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6099			tx_flags |= IGB_TX_FLAGS_TSTAMP;
6100
6101			adapter->ptp_tx_skb = skb_get(skb);
6102			adapter->ptp_tx_start = jiffies;
6103			if (adapter->hw.mac.type == e1000_82576)
6104				schedule_work(&adapter->ptp_tx_work);
6105		} else {
6106			adapter->tx_hwtstamp_skipped++;
6107		}
6108	}
6109
6110	if (skb_vlan_tag_present(skb)) {
6111		tx_flags |= IGB_TX_FLAGS_VLAN;
6112		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6113	}
6114
6115	/* record initial flags and protocol */
6116	first->tx_flags = tx_flags;
6117	first->protocol = protocol;
6118
6119	tso = igb_tso(tx_ring, first, &hdr_len);
6120	if (tso < 0)
6121		goto out_drop;
6122	else if (!tso)
6123		igb_tx_csum(tx_ring, first);
6124
6125	if (igb_tx_map(tx_ring, first, hdr_len))
6126		goto cleanup_tx_tstamp;
6127
6128	return NETDEV_TX_OK;
6129
6130out_drop:
6131	dev_kfree_skb_any(first->skb);
6132	first->skb = NULL;
6133cleanup_tx_tstamp:
6134	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6135		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6136
6137		dev_kfree_skb_any(adapter->ptp_tx_skb);
6138		adapter->ptp_tx_skb = NULL;
6139		if (adapter->hw.mac.type == e1000_82576)
6140			cancel_work_sync(&adapter->ptp_tx_work);
6141		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6142	}
6143
6144	return NETDEV_TX_OK;
6145}
6146
6147static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6148						    struct sk_buff *skb)
6149{
6150	unsigned int r_idx = skb->queue_mapping;
6151
6152	if (r_idx >= adapter->num_tx_queues)
6153		r_idx = r_idx % adapter->num_tx_queues;
6154
6155	return adapter->tx_ring[r_idx];
6156}
6157
6158static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6159				  struct net_device *netdev)
6160{
6161	struct igb_adapter *adapter = netdev_priv(netdev);
6162
6163	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6164	 * in order to meet this minimum size requirement.
6165	 */
6166	if (skb_put_padto(skb, 17))
6167		return NETDEV_TX_OK;
6168
6169	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6170}
6171
6172/**
6173 *  igb_tx_timeout - Respond to a Tx Hang
6174 *  @netdev: network interface device structure
6175 **/
6176static void igb_tx_timeout(struct net_device *netdev)
6177{
6178	struct igb_adapter *adapter = netdev_priv(netdev);
6179	struct e1000_hw *hw = &adapter->hw;
6180
6181	/* Do the reset outside of interrupt context */
6182	adapter->tx_timeout_count++;
6183
6184	if (hw->mac.type >= e1000_82580)
6185		hw->dev_spec._82575.global_device_reset = true;
6186
6187	schedule_work(&adapter->reset_task);
6188	wr32(E1000_EICS,
6189	     (adapter->eims_enable_mask & ~adapter->eims_other));
6190}
6191
6192static void igb_reset_task(struct work_struct *work)
6193{
6194	struct igb_adapter *adapter;
6195	adapter = container_of(work, struct igb_adapter, reset_task);
6196
6197	igb_dump(adapter);
6198	netdev_err(adapter->netdev, "Reset adapter\n");
6199	igb_reinit_locked(adapter);
6200}
6201
6202/**
6203 *  igb_get_stats64 - Get System Network Statistics
6204 *  @netdev: network interface device structure
6205 *  @stats: rtnl_link_stats64 pointer
6206 **/
6207static void igb_get_stats64(struct net_device *netdev,
6208			    struct rtnl_link_stats64 *stats)
6209{
6210	struct igb_adapter *adapter = netdev_priv(netdev);
6211
6212	spin_lock(&adapter->stats64_lock);
6213	igb_update_stats(adapter);
6214	memcpy(stats, &adapter->stats64, sizeof(*stats));
6215	spin_unlock(&adapter->stats64_lock);
6216}
6217
6218/**
6219 *  igb_change_mtu - Change the Maximum Transfer Unit
6220 *  @netdev: network interface device structure
6221 *  @new_mtu: new value for maximum frame size
6222 *
6223 *  Returns 0 on success, negative on failure
6224 **/
6225static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6226{
6227	struct igb_adapter *adapter = netdev_priv(netdev);
6228	struct pci_dev *pdev = adapter->pdev;
6229	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6230
6231	/* adjust max frame to be at least the size of a standard frame */
6232	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6233		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6234
6235	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6236		usleep_range(1000, 2000);
6237
6238	/* igb_down has a dependency on max_frame_size */
6239	adapter->max_frame_size = max_frame;
6240
6241	if (netif_running(netdev))
6242		igb_down(adapter);
6243
6244	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6245		 netdev->mtu, new_mtu);
6246	netdev->mtu = new_mtu;
6247
6248	if (netif_running(netdev))
6249		igb_up(adapter);
6250	else
6251		igb_reset(adapter);
6252
6253	clear_bit(__IGB_RESETTING, &adapter->state);
6254
6255	return 0;
6256}
6257
6258/**
6259 *  igb_update_stats - Update the board statistics counters
6260 *  @adapter: board private structure
6261 **/
6262void igb_update_stats(struct igb_adapter *adapter)
6263{
6264	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6265	struct e1000_hw *hw = &adapter->hw;
6266	struct pci_dev *pdev = adapter->pdev;
6267	u32 reg, mpc;
6268	int i;
6269	u64 bytes, packets;
6270	unsigned int start;
6271	u64 _bytes, _packets;
6272
6273	/* Prevent stats update while adapter is being reset, or if the pci
6274	 * connection is down.
6275	 */
6276	if (adapter->link_speed == 0)
6277		return;
6278	if (pci_channel_offline(pdev))
6279		return;
6280
6281	bytes = 0;
6282	packets = 0;
6283
6284	rcu_read_lock();
6285	for (i = 0; i < adapter->num_rx_queues; i++) {
6286		struct igb_ring *ring = adapter->rx_ring[i];
6287		u32 rqdpc = rd32(E1000_RQDPC(i));
6288		if (hw->mac.type >= e1000_i210)
6289			wr32(E1000_RQDPC(i), 0);
6290
6291		if (rqdpc) {
6292			ring->rx_stats.drops += rqdpc;
6293			net_stats->rx_fifo_errors += rqdpc;
6294		}
6295
6296		do {
6297			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6298			_bytes = ring->rx_stats.bytes;
6299			_packets = ring->rx_stats.packets;
6300		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6301		bytes += _bytes;
6302		packets += _packets;
6303	}
6304
6305	net_stats->rx_bytes = bytes;
6306	net_stats->rx_packets = packets;
6307
6308	bytes = 0;
6309	packets = 0;
6310	for (i = 0; i < adapter->num_tx_queues; i++) {
6311		struct igb_ring *ring = adapter->tx_ring[i];
6312		do {
6313			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6314			_bytes = ring->tx_stats.bytes;
6315			_packets = ring->tx_stats.packets;
6316		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6317		bytes += _bytes;
6318		packets += _packets;
6319	}
6320	net_stats->tx_bytes = bytes;
6321	net_stats->tx_packets = packets;
6322	rcu_read_unlock();
6323
6324	/* read stats registers */
6325	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6326	adapter->stats.gprc += rd32(E1000_GPRC);
6327	adapter->stats.gorc += rd32(E1000_GORCL);
6328	rd32(E1000_GORCH); /* clear GORCL */
6329	adapter->stats.bprc += rd32(E1000_BPRC);
6330	adapter->stats.mprc += rd32(E1000_MPRC);
6331	adapter->stats.roc += rd32(E1000_ROC);
6332
6333	adapter->stats.prc64 += rd32(E1000_PRC64);
6334	adapter->stats.prc127 += rd32(E1000_PRC127);
6335	adapter->stats.prc255 += rd32(E1000_PRC255);
6336	adapter->stats.prc511 += rd32(E1000_PRC511);
6337	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6338	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6339	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6340	adapter->stats.sec += rd32(E1000_SEC);
6341
6342	mpc = rd32(E1000_MPC);
6343	adapter->stats.mpc += mpc;
6344	net_stats->rx_fifo_errors += mpc;
6345	adapter->stats.scc += rd32(E1000_SCC);
6346	adapter->stats.ecol += rd32(E1000_ECOL);
6347	adapter->stats.mcc += rd32(E1000_MCC);
6348	adapter->stats.latecol += rd32(E1000_LATECOL);
6349	adapter->stats.dc += rd32(E1000_DC);
6350	adapter->stats.rlec += rd32(E1000_RLEC);
6351	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6352	adapter->stats.xontxc += rd32(E1000_XONTXC);
6353	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6354	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6355	adapter->stats.fcruc += rd32(E1000_FCRUC);
6356	adapter->stats.gptc += rd32(E1000_GPTC);
6357	adapter->stats.gotc += rd32(E1000_GOTCL);
6358	rd32(E1000_GOTCH); /* clear GOTCL */
6359	adapter->stats.rnbc += rd32(E1000_RNBC);
6360	adapter->stats.ruc += rd32(E1000_RUC);
6361	adapter->stats.rfc += rd32(E1000_RFC);
6362	adapter->stats.rjc += rd32(E1000_RJC);
6363	adapter->stats.tor += rd32(E1000_TORH);
6364	adapter->stats.tot += rd32(E1000_TOTH);
6365	adapter->stats.tpr += rd32(E1000_TPR);
6366
6367	adapter->stats.ptc64 += rd32(E1000_PTC64);
6368	adapter->stats.ptc127 += rd32(E1000_PTC127);
6369	adapter->stats.ptc255 += rd32(E1000_PTC255);
6370	adapter->stats.ptc511 += rd32(E1000_PTC511);
6371	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6372	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6373
6374	adapter->stats.mptc += rd32(E1000_MPTC);
6375	adapter->stats.bptc += rd32(E1000_BPTC);
6376
6377	adapter->stats.tpt += rd32(E1000_TPT);
6378	adapter->stats.colc += rd32(E1000_COLC);
6379
6380	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6381	/* read internal phy specific stats */
6382	reg = rd32(E1000_CTRL_EXT);
6383	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6384		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6385
6386		/* this stat has invalid values on i210/i211 */
6387		if ((hw->mac.type != e1000_i210) &&
6388		    (hw->mac.type != e1000_i211))
6389			adapter->stats.tncrs += rd32(E1000_TNCRS);
6390	}
6391
6392	adapter->stats.tsctc += rd32(E1000_TSCTC);
6393	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6394
6395	adapter->stats.iac += rd32(E1000_IAC);
6396	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6397	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6398	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6399	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6400	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6401	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6402	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6403	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6404
6405	/* Fill out the OS statistics structure */
6406	net_stats->multicast = adapter->stats.mprc;
6407	net_stats->collisions = adapter->stats.colc;
6408
6409	/* Rx Errors */
6410
6411	/* RLEC on some newer hardware can be incorrect so build
6412	 * our own version based on RUC and ROC
6413	 */
6414	net_stats->rx_errors = adapter->stats.rxerrc +
6415		adapter->stats.crcerrs + adapter->stats.algnerrc +
6416		adapter->stats.ruc + adapter->stats.roc +
6417		adapter->stats.cexterr;
6418	net_stats->rx_length_errors = adapter->stats.ruc +
6419				      adapter->stats.roc;
6420	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6421	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6422	net_stats->rx_missed_errors = adapter->stats.mpc;
6423
6424	/* Tx Errors */
6425	net_stats->tx_errors = adapter->stats.ecol +
6426			       adapter->stats.latecol;
6427	net_stats->tx_aborted_errors = adapter->stats.ecol;
6428	net_stats->tx_window_errors = adapter->stats.latecol;
6429	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6430
6431	/* Tx Dropped needs to be maintained elsewhere */
6432
6433	/* Management Stats */
6434	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6435	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6436	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6437
6438	/* OS2BMC Stats */
6439	reg = rd32(E1000_MANC);
6440	if (reg & E1000_MANC_EN_BMC2OS) {
6441		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6442		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6443		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6444		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6445	}
6446}
6447
6448static void igb_tsync_interrupt(struct igb_adapter *adapter)
6449{
6450	struct e1000_hw *hw = &adapter->hw;
6451	struct ptp_clock_event event;
6452	struct timespec64 ts;
6453	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6454
6455	if (tsicr & TSINTR_SYS_WRAP) {
6456		event.type = PTP_CLOCK_PPS;
6457		if (adapter->ptp_caps.pps)
6458			ptp_clock_event(adapter->ptp_clock, &event);
6459		ack |= TSINTR_SYS_WRAP;
6460	}
6461
6462	if (tsicr & E1000_TSICR_TXTS) {
6463		/* retrieve hardware timestamp */
6464		schedule_work(&adapter->ptp_tx_work);
6465		ack |= E1000_TSICR_TXTS;
6466	}
6467
6468	if (tsicr & TSINTR_TT0) {
6469		spin_lock(&adapter->tmreg_lock);
6470		ts = timespec64_add(adapter->perout[0].start,
6471				    adapter->perout[0].period);
6472		/* u32 conversion of tv_sec is safe until y2106 */
6473		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6474		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6475		tsauxc = rd32(E1000_TSAUXC);
6476		tsauxc |= TSAUXC_EN_TT0;
6477		wr32(E1000_TSAUXC, tsauxc);
6478		adapter->perout[0].start = ts;
6479		spin_unlock(&adapter->tmreg_lock);
6480		ack |= TSINTR_TT0;
6481	}
6482
6483	if (tsicr & TSINTR_TT1) {
6484		spin_lock(&adapter->tmreg_lock);
6485		ts = timespec64_add(adapter->perout[1].start,
6486				    adapter->perout[1].period);
6487		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6488		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6489		tsauxc = rd32(E1000_TSAUXC);
6490		tsauxc |= TSAUXC_EN_TT1;
6491		wr32(E1000_TSAUXC, tsauxc);
6492		adapter->perout[1].start = ts;
6493		spin_unlock(&adapter->tmreg_lock);
6494		ack |= TSINTR_TT1;
6495	}
6496
6497	if (tsicr & TSINTR_AUTT0) {
6498		nsec = rd32(E1000_AUXSTMPL0);
6499		sec  = rd32(E1000_AUXSTMPH0);
6500		event.type = PTP_CLOCK_EXTTS;
6501		event.index = 0;
6502		event.timestamp = sec * 1000000000ULL + nsec;
6503		ptp_clock_event(adapter->ptp_clock, &event);
6504		ack |= TSINTR_AUTT0;
6505	}
6506
6507	if (tsicr & TSINTR_AUTT1) {
6508		nsec = rd32(E1000_AUXSTMPL1);
6509		sec  = rd32(E1000_AUXSTMPH1);
6510		event.type = PTP_CLOCK_EXTTS;
6511		event.index = 1;
6512		event.timestamp = sec * 1000000000ULL + nsec;
6513		ptp_clock_event(adapter->ptp_clock, &event);
6514		ack |= TSINTR_AUTT1;
6515	}
6516
6517	/* acknowledge the interrupts */
6518	wr32(E1000_TSICR, ack);
6519}
6520
6521static irqreturn_t igb_msix_other(int irq, void *data)
6522{
6523	struct igb_adapter *adapter = data;
6524	struct e1000_hw *hw = &adapter->hw;
6525	u32 icr = rd32(E1000_ICR);
6526	/* reading ICR causes bit 31 of EICR to be cleared */
6527
6528	if (icr & E1000_ICR_DRSTA)
6529		schedule_work(&adapter->reset_task);
6530
6531	if (icr & E1000_ICR_DOUTSYNC) {
6532		/* HW is reporting DMA is out of sync */
6533		adapter->stats.doosync++;
6534		/* The DMA Out of Sync is also indication of a spoof event
6535		 * in IOV mode. Check the Wrong VM Behavior register to
6536		 * see if it is really a spoof event.
6537		 */
6538		igb_check_wvbr(adapter);
6539	}
6540
6541	/* Check for a mailbox event */
6542	if (icr & E1000_ICR_VMMB)
6543		igb_msg_task(adapter);
6544
6545	if (icr & E1000_ICR_LSC) {
6546		hw->mac.get_link_status = 1;
6547		/* guard against interrupt when we're going down */
6548		if (!test_bit(__IGB_DOWN, &adapter->state))
6549			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6550	}
6551
6552	if (icr & E1000_ICR_TS)
6553		igb_tsync_interrupt(adapter);
6554
6555	wr32(E1000_EIMS, adapter->eims_other);
6556
6557	return IRQ_HANDLED;
6558}
6559
6560static void igb_write_itr(struct igb_q_vector *q_vector)
6561{
6562	struct igb_adapter *adapter = q_vector->adapter;
6563	u32 itr_val = q_vector->itr_val & 0x7FFC;
6564
6565	if (!q_vector->set_itr)
6566		return;
6567
6568	if (!itr_val)
6569		itr_val = 0x4;
6570
6571	if (adapter->hw.mac.type == e1000_82575)
6572		itr_val |= itr_val << 16;
6573	else
6574		itr_val |= E1000_EITR_CNT_IGNR;
6575
6576	writel(itr_val, q_vector->itr_register);
6577	q_vector->set_itr = 0;
6578}
6579
6580static irqreturn_t igb_msix_ring(int irq, void *data)
6581{
6582	struct igb_q_vector *q_vector = data;
6583
6584	/* Write the ITR value calculated from the previous interrupt. */
6585	igb_write_itr(q_vector);
6586
6587	napi_schedule(&q_vector->napi);
6588
6589	return IRQ_HANDLED;
6590}
6591
6592#ifdef CONFIG_IGB_DCA
6593static void igb_update_tx_dca(struct igb_adapter *adapter,
6594			      struct igb_ring *tx_ring,
6595			      int cpu)
6596{
6597	struct e1000_hw *hw = &adapter->hw;
6598	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6599
6600	if (hw->mac.type != e1000_82575)
6601		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6602
6603	/* We can enable relaxed ordering for reads, but not writes when
6604	 * DCA is enabled.  This is due to a known issue in some chipsets
6605	 * which will cause the DCA tag to be cleared.
6606	 */
6607	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6608		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6609		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6610
6611	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6612}
6613
6614static void igb_update_rx_dca(struct igb_adapter *adapter,
6615			      struct igb_ring *rx_ring,
6616			      int cpu)
6617{
6618	struct e1000_hw *hw = &adapter->hw;
6619	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6620
6621	if (hw->mac.type != e1000_82575)
6622		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6623
6624	/* We can enable relaxed ordering for reads, but not writes when
6625	 * DCA is enabled.  This is due to a known issue in some chipsets
6626	 * which will cause the DCA tag to be cleared.
6627	 */
6628	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6629		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6630
6631	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6632}
6633
6634static void igb_update_dca(struct igb_q_vector *q_vector)
6635{
6636	struct igb_adapter *adapter = q_vector->adapter;
6637	int cpu = get_cpu();
6638
6639	if (q_vector->cpu == cpu)
6640		goto out_no_update;
6641
6642	if (q_vector->tx.ring)
6643		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6644
6645	if (q_vector->rx.ring)
6646		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6647
6648	q_vector->cpu = cpu;
6649out_no_update:
6650	put_cpu();
6651}
6652
6653static void igb_setup_dca(struct igb_adapter *adapter)
6654{
6655	struct e1000_hw *hw = &adapter->hw;
6656	int i;
6657
6658	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6659		return;
6660
6661	/* Always use CB2 mode, difference is masked in the CB driver. */
6662	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6663
6664	for (i = 0; i < adapter->num_q_vectors; i++) {
6665		adapter->q_vector[i]->cpu = -1;
6666		igb_update_dca(adapter->q_vector[i]);
6667	}
6668}
6669
6670static int __igb_notify_dca(struct device *dev, void *data)
6671{
6672	struct net_device *netdev = dev_get_drvdata(dev);
6673	struct igb_adapter *adapter = netdev_priv(netdev);
6674	struct pci_dev *pdev = adapter->pdev;
6675	struct e1000_hw *hw = &adapter->hw;
6676	unsigned long event = *(unsigned long *)data;
6677
6678	switch (event) {
6679	case DCA_PROVIDER_ADD:
6680		/* if already enabled, don't do it again */
6681		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6682			break;
6683		if (dca_add_requester(dev) == 0) {
6684			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6685			dev_info(&pdev->dev, "DCA enabled\n");
6686			igb_setup_dca(adapter);
6687			break;
6688		}
6689		/* Fall Through - since DCA is disabled. */
6690	case DCA_PROVIDER_REMOVE:
6691		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6692			/* without this a class_device is left
6693			 * hanging around in the sysfs model
6694			 */
6695			dca_remove_requester(dev);
6696			dev_info(&pdev->dev, "DCA disabled\n");
6697			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6698			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6699		}
6700		break;
6701	}
6702
6703	return 0;
6704}
6705
6706static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6707			  void *p)
6708{
6709	int ret_val;
6710
6711	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6712					 __igb_notify_dca);
6713
6714	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6715}
6716#endif /* CONFIG_IGB_DCA */
6717
6718#ifdef CONFIG_PCI_IOV
6719static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6720{
6721	unsigned char mac_addr[ETH_ALEN];
6722
6723	eth_zero_addr(mac_addr);
6724	igb_set_vf_mac(adapter, vf, mac_addr);
6725
6726	/* By default spoof check is enabled for all VFs */
6727	adapter->vf_data[vf].spoofchk_enabled = true;
6728
6729	/* By default VFs are not trusted */
6730	adapter->vf_data[vf].trusted = false;
6731
6732	return 0;
6733}
6734
6735#endif
6736static void igb_ping_all_vfs(struct igb_adapter *adapter)
6737{
6738	struct e1000_hw *hw = &adapter->hw;
6739	u32 ping;
6740	int i;
6741
6742	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6743		ping = E1000_PF_CONTROL_MSG;
6744		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6745			ping |= E1000_VT_MSGTYPE_CTS;
6746		igb_write_mbx(hw, &ping, 1, i);
6747	}
6748}
6749
6750static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6751{
6752	struct e1000_hw *hw = &adapter->hw;
6753	u32 vmolr = rd32(E1000_VMOLR(vf));
6754	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6755
6756	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6757			    IGB_VF_FLAG_MULTI_PROMISC);
6758	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6759
6760	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6761		vmolr |= E1000_VMOLR_MPME;
6762		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6763		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6764	} else {
6765		/* if we have hashes and we are clearing a multicast promisc
6766		 * flag we need to write the hashes to the MTA as this step
6767		 * was previously skipped
6768		 */
6769		if (vf_data->num_vf_mc_hashes > 30) {
6770			vmolr |= E1000_VMOLR_MPME;
6771		} else if (vf_data->num_vf_mc_hashes) {
6772			int j;
6773
6774			vmolr |= E1000_VMOLR_ROMPE;
6775			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6776				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6777		}
6778	}
6779
6780	wr32(E1000_VMOLR(vf), vmolr);
6781
6782	/* there are flags left unprocessed, likely not supported */
6783	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6784		return -EINVAL;
6785
6786	return 0;
6787}
6788
6789static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6790				  u32 *msgbuf, u32 vf)
6791{
6792	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6793	u16 *hash_list = (u16 *)&msgbuf[1];
6794	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6795	int i;
6796
6797	/* salt away the number of multicast addresses assigned
6798	 * to this VF for later use to restore when the PF multi cast
6799	 * list changes
6800	 */
6801	vf_data->num_vf_mc_hashes = n;
6802
6803	/* only up to 30 hash values supported */
6804	if (n > 30)
6805		n = 30;
6806
6807	/* store the hashes for later use */
6808	for (i = 0; i < n; i++)
6809		vf_data->vf_mc_hashes[i] = hash_list[i];
6810
6811	/* Flush and reset the mta with the new values */
6812	igb_set_rx_mode(adapter->netdev);
6813
6814	return 0;
6815}
6816
6817static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6818{
6819	struct e1000_hw *hw = &adapter->hw;
6820	struct vf_data_storage *vf_data;
6821	int i, j;
6822
6823	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6824		u32 vmolr = rd32(E1000_VMOLR(i));
6825
6826		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6827
6828		vf_data = &adapter->vf_data[i];
6829
6830		if ((vf_data->num_vf_mc_hashes > 30) ||
6831		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6832			vmolr |= E1000_VMOLR_MPME;
6833		} else if (vf_data->num_vf_mc_hashes) {
6834			vmolr |= E1000_VMOLR_ROMPE;
6835			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6836				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6837		}
6838		wr32(E1000_VMOLR(i), vmolr);
6839	}
6840}
6841
6842static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6843{
6844	struct e1000_hw *hw = &adapter->hw;
6845	u32 pool_mask, vlvf_mask, i;
6846
6847	/* create mask for VF and other pools */
6848	pool_mask = E1000_VLVF_POOLSEL_MASK;
6849	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6850
6851	/* drop PF from pool bits */
6852	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6853			     adapter->vfs_allocated_count);
6854
6855	/* Find the vlan filter for this id */
6856	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6857		u32 vlvf = rd32(E1000_VLVF(i));
6858		u32 vfta_mask, vid, vfta;
6859
6860		/* remove the vf from the pool */
6861		if (!(vlvf & vlvf_mask))
6862			continue;
6863
6864		/* clear out bit from VLVF */
6865		vlvf ^= vlvf_mask;
6866
6867		/* if other pools are present, just remove ourselves */
6868		if (vlvf & pool_mask)
6869			goto update_vlvfb;
6870
6871		/* if PF is present, leave VFTA */
6872		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6873			goto update_vlvf;
6874
6875		vid = vlvf & E1000_VLVF_VLANID_MASK;
6876		vfta_mask = BIT(vid % 32);
6877
6878		/* clear bit from VFTA */
6879		vfta = adapter->shadow_vfta[vid / 32];
6880		if (vfta & vfta_mask)
6881			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6882update_vlvf:
6883		/* clear pool selection enable */
6884		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6885			vlvf &= E1000_VLVF_POOLSEL_MASK;
6886		else
6887			vlvf = 0;
6888update_vlvfb:
6889		/* clear pool bits */
6890		wr32(E1000_VLVF(i), vlvf);
6891	}
6892}
6893
6894static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6895{
6896	u32 vlvf;
6897	int idx;
6898
6899	/* short cut the special case */
6900	if (vlan == 0)
6901		return 0;
6902
6903	/* Search for the VLAN id in the VLVF entries */
6904	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6905		vlvf = rd32(E1000_VLVF(idx));
6906		if ((vlvf & VLAN_VID_MASK) == vlan)
6907			break;
6908	}
6909
6910	return idx;
6911}
6912
6913static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6914{
6915	struct e1000_hw *hw = &adapter->hw;
6916	u32 bits, pf_id;
6917	int idx;
6918
6919	idx = igb_find_vlvf_entry(hw, vid);
6920	if (!idx)
6921		return;
6922
6923	/* See if any other pools are set for this VLAN filter
6924	 * entry other than the PF.
6925	 */
6926	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6927	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6928	bits &= rd32(E1000_VLVF(idx));
6929
6930	/* Disable the filter so this falls into the default pool. */
6931	if (!bits) {
6932		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6933			wr32(E1000_VLVF(idx), BIT(pf_id));
6934		else
6935			wr32(E1000_VLVF(idx), 0);
6936	}
6937}
6938
6939static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6940			   bool add, u32 vf)
6941{
6942	int pf_id = adapter->vfs_allocated_count;
6943	struct e1000_hw *hw = &adapter->hw;
6944	int err;
6945
6946	/* If VLAN overlaps with one the PF is currently monitoring make
6947	 * sure that we are able to allocate a VLVF entry.  This may be
6948	 * redundant but it guarantees PF will maintain visibility to
6949	 * the VLAN.
6950	 */
6951	if (add && test_bit(vid, adapter->active_vlans)) {
6952		err = igb_vfta_set(hw, vid, pf_id, true, false);
6953		if (err)
6954			return err;
6955	}
6956
6957	err = igb_vfta_set(hw, vid, vf, add, false);
6958
6959	if (add && !err)
6960		return err;
6961
6962	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6963	 * we may need to drop the PF pool bit in order to allow us to free
6964	 * up the VLVF resources.
6965	 */
6966	if (test_bit(vid, adapter->active_vlans) ||
6967	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6968		igb_update_pf_vlvf(adapter, vid);
6969
6970	return err;
6971}
6972
6973static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6974{
6975	struct e1000_hw *hw = &adapter->hw;
6976
6977	if (vid)
6978		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6979	else
6980		wr32(E1000_VMVIR(vf), 0);
6981}
6982
6983static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6984				u16 vlan, u8 qos)
6985{
6986	int err;
6987
6988	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6989	if (err)
6990		return err;
6991
6992	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6993	igb_set_vmolr(adapter, vf, !vlan);
6994
6995	/* revoke access to previous VLAN */
6996	if (vlan != adapter->vf_data[vf].pf_vlan)
6997		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6998				false, vf);
6999
7000	adapter->vf_data[vf].pf_vlan = vlan;
7001	adapter->vf_data[vf].pf_qos = qos;
7002	igb_set_vf_vlan_strip(adapter, vf, true);
7003	dev_info(&adapter->pdev->dev,
7004		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7005	if (test_bit(__IGB_DOWN, &adapter->state)) {
7006		dev_warn(&adapter->pdev->dev,
7007			 "The VF VLAN has been set, but the PF device is not up.\n");
7008		dev_warn(&adapter->pdev->dev,
7009			 "Bring the PF device up before attempting to use the VF device.\n");
7010	}
7011
7012	return err;
7013}
7014
7015static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7016{
7017	/* Restore tagless access via VLAN 0 */
7018	igb_set_vf_vlan(adapter, 0, true, vf);
7019
7020	igb_set_vmvir(adapter, 0, vf);
7021	igb_set_vmolr(adapter, vf, true);
7022
7023	/* Remove any PF assigned VLAN */
7024	if (adapter->vf_data[vf].pf_vlan)
7025		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7026				false, vf);
7027
7028	adapter->vf_data[vf].pf_vlan = 0;
7029	adapter->vf_data[vf].pf_qos = 0;
7030	igb_set_vf_vlan_strip(adapter, vf, false);
7031
7032	return 0;
7033}
7034
7035static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7036			       u16 vlan, u8 qos, __be16 vlan_proto)
7037{
7038	struct igb_adapter *adapter = netdev_priv(netdev);
7039
7040	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7041		return -EINVAL;
7042
7043	if (vlan_proto != htons(ETH_P_8021Q))
7044		return -EPROTONOSUPPORT;
7045
7046	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7047			       igb_disable_port_vlan(adapter, vf);
7048}
7049
7050static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7051{
7052	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7053	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7054	int ret;
7055
7056	if (adapter->vf_data[vf].pf_vlan)
7057		return -1;
7058
7059	/* VLAN 0 is a special case, don't allow it to be removed */
7060	if (!vid && !add)
7061		return 0;
7062
7063	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7064	if (!ret)
7065		igb_set_vf_vlan_strip(adapter, vf, !!vid);
7066	return ret;
7067}
7068
7069static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7070{
7071	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7072
7073	/* clear flags - except flag that indicates PF has set the MAC */
7074	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7075	vf_data->last_nack = jiffies;
7076
7077	/* reset vlans for device */
7078	igb_clear_vf_vfta(adapter, vf);
7079	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7080	igb_set_vmvir(adapter, vf_data->pf_vlan |
7081			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7082	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7083	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7084
7085	/* reset multicast table array for vf */
7086	adapter->vf_data[vf].num_vf_mc_hashes = 0;
7087
7088	/* Flush and reset the mta with the new values */
7089	igb_set_rx_mode(adapter->netdev);
7090}
7091
7092static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7093{
7094	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7095
7096	/* clear mac address as we were hotplug removed/added */
7097	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7098		eth_zero_addr(vf_mac);
7099
7100	/* process remaining reset events */
7101	igb_vf_reset(adapter, vf);
7102}
7103
7104static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7105{
7106	struct e1000_hw *hw = &adapter->hw;
7107	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7108	u32 reg, msgbuf[3];
7109	u8 *addr = (u8 *)(&msgbuf[1]);
7110
7111	/* process all the same items cleared in a function level reset */
7112	igb_vf_reset(adapter, vf);
7113
7114	/* set vf mac address */
7115	igb_set_vf_mac(adapter, vf, vf_mac);
7116
7117	/* enable transmit and receive for vf */
7118	reg = rd32(E1000_VFTE);
7119	wr32(E1000_VFTE, reg | BIT(vf));
7120	reg = rd32(E1000_VFRE);
7121	wr32(E1000_VFRE, reg | BIT(vf));
7122
7123	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7124
7125	/* reply to reset with ack and vf mac address */
7126	if (!is_zero_ether_addr(vf_mac)) {
7127		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7128		memcpy(addr, vf_mac, ETH_ALEN);
7129	} else {
7130		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7131	}
7132	igb_write_mbx(hw, msgbuf, 3, vf);
7133}
7134
7135static void igb_flush_mac_table(struct igb_adapter *adapter)
7136{
7137	struct e1000_hw *hw = &adapter->hw;
7138	int i;
7139
7140	for (i = 0; i < hw->mac.rar_entry_count; i++) {
7141		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7142		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7143		adapter->mac_table[i].queue = 0;
7144		igb_rar_set_index(adapter, i);
7145	}
7146}
7147
7148static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7149{
7150	struct e1000_hw *hw = &adapter->hw;
7151	/* do not count rar entries reserved for VFs MAC addresses */
7152	int rar_entries = hw->mac.rar_entry_count -
7153			  adapter->vfs_allocated_count;
7154	int i, count = 0;
7155
7156	for (i = 0; i < rar_entries; i++) {
7157		/* do not count default entries */
7158		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7159			continue;
7160
7161		/* do not count "in use" entries for different queues */
7162		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7163		    (adapter->mac_table[i].queue != queue))
7164			continue;
7165
7166		count++;
7167	}
7168
7169	return count;
7170}
7171
7172/* Set default MAC address for the PF in the first RAR entry */
7173static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7174{
7175	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7176
7177	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7178	mac_table->queue = adapter->vfs_allocated_count;
7179	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7180
7181	igb_rar_set_index(adapter, 0);
7182}
7183
7184/* If the filter to be added and an already existing filter express
7185 * the same address and address type, it should be possible to only
7186 * override the other configurations, for example the queue to steer
7187 * traffic.
7188 */
7189static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7190				      const u8 *addr, const u8 flags)
7191{
7192	if (!(entry->state & IGB_MAC_STATE_IN_USE))
7193		return true;
7194
7195	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7196	    (flags & IGB_MAC_STATE_SRC_ADDR))
7197		return false;
7198
7199	if (!ether_addr_equal(addr, entry->addr))
7200		return false;
7201
7202	return true;
7203}
7204
7205/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7206 * 'flags' is used to indicate what kind of match is made, match is by
7207 * default for the destination address, if matching by source address
7208 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7209 */
7210static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7211				    const u8 *addr, const u8 queue,
7212				    const u8 flags)
7213{
7214	struct e1000_hw *hw = &adapter->hw;
7215	int rar_entries = hw->mac.rar_entry_count -
7216			  adapter->vfs_allocated_count;
7217	int i;
7218
7219	if (is_zero_ether_addr(addr))
7220		return -EINVAL;
7221
7222	/* Search for the first empty entry in the MAC table.
7223	 * Do not touch entries at the end of the table reserved for the VF MAC
7224	 * addresses.
7225	 */
7226	for (i = 0; i < rar_entries; i++) {
7227		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7228					       addr, flags))
7229			continue;
7230
7231		ether_addr_copy(adapter->mac_table[i].addr, addr);
7232		adapter->mac_table[i].queue = queue;
7233		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7234
7235		igb_rar_set_index(adapter, i);
7236		return i;
7237	}
7238
7239	return -ENOSPC;
7240}
7241
7242static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7243			      const u8 queue)
7244{
7245	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7246}
7247
7248/* Remove a MAC filter for 'addr' directing matching traffic to
7249 * 'queue', 'flags' is used to indicate what kind of match need to be
7250 * removed, match is by default for the destination address, if
7251 * matching by source address is to be removed the flag
7252 * IGB_MAC_STATE_SRC_ADDR can be used.
7253 */
7254static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7255				    const u8 *addr, const u8 queue,
7256				    const u8 flags)
7257{
7258	struct e1000_hw *hw = &adapter->hw;
7259	int rar_entries = hw->mac.rar_entry_count -
7260			  adapter->vfs_allocated_count;
7261	int i;
7262
7263	if (is_zero_ether_addr(addr))
7264		return -EINVAL;
7265
7266	/* Search for matching entry in the MAC table based on given address
7267	 * and queue. Do not touch entries at the end of the table reserved
7268	 * for the VF MAC addresses.
7269	 */
7270	for (i = 0; i < rar_entries; i++) {
7271		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7272			continue;
7273		if ((adapter->mac_table[i].state & flags) != flags)
7274			continue;
7275		if (adapter->mac_table[i].queue != queue)
7276			continue;
7277		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7278			continue;
7279
7280		/* When a filter for the default address is "deleted",
7281		 * we return it to its initial configuration
7282		 */
7283		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7284			adapter->mac_table[i].state =
7285				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7286			adapter->mac_table[i].queue =
7287				adapter->vfs_allocated_count;
7288		} else {
7289			adapter->mac_table[i].state = 0;
7290			adapter->mac_table[i].queue = 0;
7291			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7292		}
7293
7294		igb_rar_set_index(adapter, i);
7295		return 0;
7296	}
7297
7298	return -ENOENT;
7299}
7300
7301static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7302			      const u8 queue)
7303{
7304	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7305}
7306
7307int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7308				const u8 *addr, u8 queue, u8 flags)
7309{
7310	struct e1000_hw *hw = &adapter->hw;
7311
7312	/* In theory, this should be supported on 82575 as well, but
7313	 * that part wasn't easily accessible during development.
7314	 */
7315	if (hw->mac.type != e1000_i210)
7316		return -EOPNOTSUPP;
7317
7318	return igb_add_mac_filter_flags(adapter, addr, queue,
7319					IGB_MAC_STATE_QUEUE_STEERING | flags);
7320}
7321
7322int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7323				const u8 *addr, u8 queue, u8 flags)
7324{
7325	return igb_del_mac_filter_flags(adapter, addr, queue,
7326					IGB_MAC_STATE_QUEUE_STEERING | flags);
7327}
7328
7329static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7330{
7331	struct igb_adapter *adapter = netdev_priv(netdev);
7332	int ret;
7333
7334	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7335
7336	return min_t(int, ret, 0);
7337}
7338
7339static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7340{
7341	struct igb_adapter *adapter = netdev_priv(netdev);
7342
7343	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7344
7345	return 0;
7346}
7347
7348static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7349				 const u32 info, const u8 *addr)
7350{
7351	struct pci_dev *pdev = adapter->pdev;
7352	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7353	struct list_head *pos;
7354	struct vf_mac_filter *entry = NULL;
7355	int ret = 0;
7356
7357	switch (info) {
7358	case E1000_VF_MAC_FILTER_CLR:
7359		/* remove all unicast MAC filters related to the current VF */
7360		list_for_each(pos, &adapter->vf_macs.l) {
7361			entry = list_entry(pos, struct vf_mac_filter, l);
7362			if (entry->vf == vf) {
7363				entry->vf = -1;
7364				entry->free = true;
7365				igb_del_mac_filter(adapter, entry->vf_mac, vf);
7366			}
7367		}
7368		break;
7369	case E1000_VF_MAC_FILTER_ADD:
7370		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7371		    !vf_data->trusted) {
7372			dev_warn(&pdev->dev,
7373				 "VF %d requested MAC filter but is administratively denied\n",
7374				 vf);
7375			return -EINVAL;
7376		}
7377		if (!is_valid_ether_addr(addr)) {
7378			dev_warn(&pdev->dev,
7379				 "VF %d attempted to set invalid MAC filter\n",
7380				 vf);
7381			return -EINVAL;
7382		}
7383
7384		/* try to find empty slot in the list */
7385		list_for_each(pos, &adapter->vf_macs.l) {
7386			entry = list_entry(pos, struct vf_mac_filter, l);
7387			if (entry->free)
7388				break;
7389		}
7390
7391		if (entry && entry->free) {
7392			entry->free = false;
7393			entry->vf = vf;
7394			ether_addr_copy(entry->vf_mac, addr);
7395
7396			ret = igb_add_mac_filter(adapter, addr, vf);
7397			ret = min_t(int, ret, 0);
7398		} else {
7399			ret = -ENOSPC;
7400		}
7401
7402		if (ret == -ENOSPC)
7403			dev_warn(&pdev->dev,
7404				 "VF %d has requested MAC filter but there is no space for it\n",
7405				 vf);
7406		break;
7407	default:
7408		ret = -EINVAL;
7409		break;
7410	}
7411
7412	return ret;
7413}
7414
7415static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7416{
7417	struct pci_dev *pdev = adapter->pdev;
7418	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7419	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7420
7421	/* The VF MAC Address is stored in a packed array of bytes
7422	 * starting at the second 32 bit word of the msg array
7423	 */
7424	unsigned char *addr = (unsigned char *)&msg[1];
7425	int ret = 0;
7426
7427	if (!info) {
7428		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7429		    !vf_data->trusted) {
7430			dev_warn(&pdev->dev,
7431				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7432				 vf);
7433			return -EINVAL;
7434		}
7435
7436		if (!is_valid_ether_addr(addr)) {
7437			dev_warn(&pdev->dev,
7438				 "VF %d attempted to set invalid MAC\n",
7439				 vf);
7440			return -EINVAL;
7441		}
7442
7443		ret = igb_set_vf_mac(adapter, vf, addr);
7444	} else {
7445		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7446	}
7447
7448	return ret;
7449}
7450
7451static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7452{
7453	struct e1000_hw *hw = &adapter->hw;
7454	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7455	u32 msg = E1000_VT_MSGTYPE_NACK;
7456
7457	/* if device isn't clear to send it shouldn't be reading either */
7458	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7459	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7460		igb_write_mbx(hw, &msg, 1, vf);
7461		vf_data->last_nack = jiffies;
7462	}
7463}
7464
7465static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7466{
7467	struct pci_dev *pdev = adapter->pdev;
7468	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7469	struct e1000_hw *hw = &adapter->hw;
7470	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7471	s32 retval;
7472
7473	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7474
7475	if (retval) {
7476		/* if receive failed revoke VF CTS stats and restart init */
7477		dev_err(&pdev->dev, "Error receiving message from VF\n");
7478		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7479		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7480			goto unlock;
7481		goto out;
7482	}
7483
7484	/* this is a message we already processed, do nothing */
7485	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7486		goto unlock;
7487
7488	/* until the vf completes a reset it should not be
7489	 * allowed to start any configuration.
7490	 */
7491	if (msgbuf[0] == E1000_VF_RESET) {
7492		/* unlocks mailbox */
7493		igb_vf_reset_msg(adapter, vf);
7494		return;
7495	}
7496
7497	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7498		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7499			goto unlock;
7500		retval = -1;
7501		goto out;
7502	}
7503
7504	switch ((msgbuf[0] & 0xFFFF)) {
7505	case E1000_VF_SET_MAC_ADDR:
7506		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7507		break;
7508	case E1000_VF_SET_PROMISC:
7509		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7510		break;
7511	case E1000_VF_SET_MULTICAST:
7512		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7513		break;
7514	case E1000_VF_SET_LPE:
7515		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7516		break;
7517	case E1000_VF_SET_VLAN:
7518		retval = -1;
7519		if (vf_data->pf_vlan)
7520			dev_warn(&pdev->dev,
7521				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7522				 vf);
7523		else
7524			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7525		break;
7526	default:
7527		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7528		retval = -1;
7529		break;
7530	}
7531
7532	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7533out:
7534	/* notify the VF of the results of what it sent us */
7535	if (retval)
7536		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7537	else
7538		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7539
7540	/* unlocks mailbox */
7541	igb_write_mbx(hw, msgbuf, 1, vf);
7542	return;
7543
7544unlock:
7545	igb_unlock_mbx(hw, vf);
7546}
7547
7548static void igb_msg_task(struct igb_adapter *adapter)
7549{
7550	struct e1000_hw *hw = &adapter->hw;
7551	u32 vf;
7552
7553	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7554		/* process any reset requests */
7555		if (!igb_check_for_rst(hw, vf))
7556			igb_vf_reset_event(adapter, vf);
7557
7558		/* process any messages pending */
7559		if (!igb_check_for_msg(hw, vf))
7560			igb_rcv_msg_from_vf(adapter, vf);
7561
7562		/* process any acks */
7563		if (!igb_check_for_ack(hw, vf))
7564			igb_rcv_ack_from_vf(adapter, vf);
7565	}
7566}
7567
7568/**
7569 *  igb_set_uta - Set unicast filter table address
7570 *  @adapter: board private structure
7571 *  @set: boolean indicating if we are setting or clearing bits
7572 *
7573 *  The unicast table address is a register array of 32-bit registers.
7574 *  The table is meant to be used in a way similar to how the MTA is used
7575 *  however due to certain limitations in the hardware it is necessary to
7576 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7577 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7578 **/
7579static void igb_set_uta(struct igb_adapter *adapter, bool set)
7580{
7581	struct e1000_hw *hw = &adapter->hw;
7582	u32 uta = set ? ~0 : 0;
7583	int i;
7584
7585	/* we only need to do this if VMDq is enabled */
7586	if (!adapter->vfs_allocated_count)
7587		return;
7588
7589	for (i = hw->mac.uta_reg_count; i--;)
7590		array_wr32(E1000_UTA, i, uta);
7591}
7592
7593/**
7594 *  igb_intr_msi - Interrupt Handler
7595 *  @irq: interrupt number
7596 *  @data: pointer to a network interface device structure
7597 **/
7598static irqreturn_t igb_intr_msi(int irq, void *data)
7599{
7600	struct igb_adapter *adapter = data;
7601	struct igb_q_vector *q_vector = adapter->q_vector[0];
7602	struct e1000_hw *hw = &adapter->hw;
7603	/* read ICR disables interrupts using IAM */
7604	u32 icr = rd32(E1000_ICR);
7605
7606	igb_write_itr(q_vector);
7607
7608	if (icr & E1000_ICR_DRSTA)
7609		schedule_work(&adapter->reset_task);
7610
7611	if (icr & E1000_ICR_DOUTSYNC) {
7612		/* HW is reporting DMA is out of sync */
7613		adapter->stats.doosync++;
7614	}
7615
7616	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7617		hw->mac.get_link_status = 1;
7618		if (!test_bit(__IGB_DOWN, &adapter->state))
7619			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7620	}
7621
7622	if (icr & E1000_ICR_TS)
7623		igb_tsync_interrupt(adapter);
7624
7625	napi_schedule(&q_vector->napi);
7626
7627	return IRQ_HANDLED;
7628}
7629
7630/**
7631 *  igb_intr - Legacy Interrupt Handler
7632 *  @irq: interrupt number
7633 *  @data: pointer to a network interface device structure
7634 **/
7635static irqreturn_t igb_intr(int irq, void *data)
7636{
7637	struct igb_adapter *adapter = data;
7638	struct igb_q_vector *q_vector = adapter->q_vector[0];
7639	struct e1000_hw *hw = &adapter->hw;
7640	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7641	 * need for the IMC write
7642	 */
7643	u32 icr = rd32(E1000_ICR);
7644
7645	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7646	 * not set, then the adapter didn't send an interrupt
7647	 */
7648	if (!(icr & E1000_ICR_INT_ASSERTED))
7649		return IRQ_NONE;
7650
7651	igb_write_itr(q_vector);
7652
7653	if (icr & E1000_ICR_DRSTA)
7654		schedule_work(&adapter->reset_task);
7655
7656	if (icr & E1000_ICR_DOUTSYNC) {
7657		/* HW is reporting DMA is out of sync */
7658		adapter->stats.doosync++;
7659	}
7660
7661	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7662		hw->mac.get_link_status = 1;
7663		/* guard against interrupt when we're going down */
7664		if (!test_bit(__IGB_DOWN, &adapter->state))
7665			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7666	}
7667
7668	if (icr & E1000_ICR_TS)
7669		igb_tsync_interrupt(adapter);
7670
7671	napi_schedule(&q_vector->napi);
7672
7673	return IRQ_HANDLED;
7674}
7675
7676static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7677{
7678	struct igb_adapter *adapter = q_vector->adapter;
7679	struct e1000_hw *hw = &adapter->hw;
7680
7681	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7682	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7683		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7684			igb_set_itr(q_vector);
7685		else
7686			igb_update_ring_itr(q_vector);
7687	}
7688
7689	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7690		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7691			wr32(E1000_EIMS, q_vector->eims_value);
7692		else
7693			igb_irq_enable(adapter);
7694	}
7695}
7696
7697/**
7698 *  igb_poll - NAPI Rx polling callback
7699 *  @napi: napi polling structure
7700 *  @budget: count of how many packets we should handle
7701 **/
7702static int igb_poll(struct napi_struct *napi, int budget)
7703{
7704	struct igb_q_vector *q_vector = container_of(napi,
7705						     struct igb_q_vector,
7706						     napi);
7707	bool clean_complete = true;
7708	int work_done = 0;
7709
7710#ifdef CONFIG_IGB_DCA
7711	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7712		igb_update_dca(q_vector);
7713#endif
7714	if (q_vector->tx.ring)
7715		clean_complete = igb_clean_tx_irq(q_vector, budget);
7716
7717	if (q_vector->rx.ring) {
7718		int cleaned = igb_clean_rx_irq(q_vector, budget);
7719
7720		work_done += cleaned;
7721		if (cleaned >= budget)
7722			clean_complete = false;
7723	}
7724
7725	/* If all work not completed, return budget and keep polling */
7726	if (!clean_complete)
7727		return budget;
7728
7729	/* Exit the polling mode, but don't re-enable interrupts if stack might
7730	 * poll us due to busy-polling
7731	 */
7732	if (likely(napi_complete_done(napi, work_done)))
7733		igb_ring_irq_enable(q_vector);
7734
7735	return min(work_done, budget - 1);
7736}
7737
7738/**
7739 *  igb_clean_tx_irq - Reclaim resources after transmit completes
7740 *  @q_vector: pointer to q_vector containing needed info
7741 *  @napi_budget: Used to determine if we are in netpoll
7742 *
7743 *  returns true if ring is completely cleaned
7744 **/
7745static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7746{
7747	struct igb_adapter *adapter = q_vector->adapter;
7748	struct igb_ring *tx_ring = q_vector->tx.ring;
7749	struct igb_tx_buffer *tx_buffer;
7750	union e1000_adv_tx_desc *tx_desc;
7751	unsigned int total_bytes = 0, total_packets = 0;
7752	unsigned int budget = q_vector->tx.work_limit;
7753	unsigned int i = tx_ring->next_to_clean;
7754
7755	if (test_bit(__IGB_DOWN, &adapter->state))
7756		return true;
7757
7758	tx_buffer = &tx_ring->tx_buffer_info[i];
7759	tx_desc = IGB_TX_DESC(tx_ring, i);
7760	i -= tx_ring->count;
7761
7762	do {
7763		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7764
7765		/* if next_to_watch is not set then there is no work pending */
7766		if (!eop_desc)
7767			break;
7768
7769		/* prevent any other reads prior to eop_desc */
7770		smp_rmb();
7771
7772		/* if DD is not set pending work has not been completed */
7773		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7774			break;
7775
7776		/* clear next_to_watch to prevent false hangs */
7777		tx_buffer->next_to_watch = NULL;
7778
7779		/* update the statistics for this packet */
7780		total_bytes += tx_buffer->bytecount;
7781		total_packets += tx_buffer->gso_segs;
7782
7783		/* free the skb */
7784		napi_consume_skb(tx_buffer->skb, napi_budget);
7785
7786		/* unmap skb header data */
7787		dma_unmap_single(tx_ring->dev,
7788				 dma_unmap_addr(tx_buffer, dma),
7789				 dma_unmap_len(tx_buffer, len),
7790				 DMA_TO_DEVICE);
7791
7792		/* clear tx_buffer data */
7793		dma_unmap_len_set(tx_buffer, len, 0);
7794
7795		/* clear last DMA location and unmap remaining buffers */
7796		while (tx_desc != eop_desc) {
7797			tx_buffer++;
7798			tx_desc++;
7799			i++;
7800			if (unlikely(!i)) {
7801				i -= tx_ring->count;
7802				tx_buffer = tx_ring->tx_buffer_info;
7803				tx_desc = IGB_TX_DESC(tx_ring, 0);
7804			}
7805
7806			/* unmap any remaining paged data */
7807			if (dma_unmap_len(tx_buffer, len)) {
7808				dma_unmap_page(tx_ring->dev,
7809					       dma_unmap_addr(tx_buffer, dma),
7810					       dma_unmap_len(tx_buffer, len),
7811					       DMA_TO_DEVICE);
7812				dma_unmap_len_set(tx_buffer, len, 0);
7813			}
7814		}
7815
7816		/* move us one more past the eop_desc for start of next pkt */
7817		tx_buffer++;
7818		tx_desc++;
7819		i++;
7820		if (unlikely(!i)) {
7821			i -= tx_ring->count;
7822			tx_buffer = tx_ring->tx_buffer_info;
7823			tx_desc = IGB_TX_DESC(tx_ring, 0);
7824		}
7825
7826		/* issue prefetch for next Tx descriptor */
7827		prefetch(tx_desc);
7828
7829		/* update budget accounting */
7830		budget--;
7831	} while (likely(budget));
7832
7833	netdev_tx_completed_queue(txring_txq(tx_ring),
7834				  total_packets, total_bytes);
7835	i += tx_ring->count;
7836	tx_ring->next_to_clean = i;
7837	u64_stats_update_begin(&tx_ring->tx_syncp);
7838	tx_ring->tx_stats.bytes += total_bytes;
7839	tx_ring->tx_stats.packets += total_packets;
7840	u64_stats_update_end(&tx_ring->tx_syncp);
7841	q_vector->tx.total_bytes += total_bytes;
7842	q_vector->tx.total_packets += total_packets;
7843
7844	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7845		struct e1000_hw *hw = &adapter->hw;
7846
7847		/* Detect a transmit hang in hardware, this serializes the
7848		 * check with the clearing of time_stamp and movement of i
7849		 */
7850		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7851		if (tx_buffer->next_to_watch &&
7852		    time_after(jiffies, tx_buffer->time_stamp +
7853			       (adapter->tx_timeout_factor * HZ)) &&
7854		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7855
7856			/* detected Tx unit hang */
7857			dev_err(tx_ring->dev,
7858				"Detected Tx Unit Hang\n"
7859				"  Tx Queue             <%d>\n"
7860				"  TDH                  <%x>\n"
7861				"  TDT                  <%x>\n"
7862				"  next_to_use          <%x>\n"
7863				"  next_to_clean        <%x>\n"
7864				"buffer_info[next_to_clean]\n"
7865				"  time_stamp           <%lx>\n"
7866				"  next_to_watch        <%p>\n"
7867				"  jiffies              <%lx>\n"
7868				"  desc.status          <%x>\n",
7869				tx_ring->queue_index,
7870				rd32(E1000_TDH(tx_ring->reg_idx)),
7871				readl(tx_ring->tail),
7872				tx_ring->next_to_use,
7873				tx_ring->next_to_clean,
7874				tx_buffer->time_stamp,
7875				tx_buffer->next_to_watch,
7876				jiffies,
7877				tx_buffer->next_to_watch->wb.status);
7878			netif_stop_subqueue(tx_ring->netdev,
7879					    tx_ring->queue_index);
7880
7881			/* we are about to reset, no point in enabling stuff */
7882			return true;
7883		}
7884	}
7885
7886#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7887	if (unlikely(total_packets &&
7888	    netif_carrier_ok(tx_ring->netdev) &&
7889	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7890		/* Make sure that anybody stopping the queue after this
7891		 * sees the new next_to_clean.
7892		 */
7893		smp_mb();
7894		if (__netif_subqueue_stopped(tx_ring->netdev,
7895					     tx_ring->queue_index) &&
7896		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7897			netif_wake_subqueue(tx_ring->netdev,
7898					    tx_ring->queue_index);
7899
7900			u64_stats_update_begin(&tx_ring->tx_syncp);
7901			tx_ring->tx_stats.restart_queue++;
7902			u64_stats_update_end(&tx_ring->tx_syncp);
7903		}
7904	}
7905
7906	return !!budget;
7907}
7908
7909/**
7910 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7911 *  @rx_ring: rx descriptor ring to store buffers on
7912 *  @old_buff: donor buffer to have page reused
7913 *
7914 *  Synchronizes page for reuse by the adapter
7915 **/
7916static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7917			      struct igb_rx_buffer *old_buff)
7918{
7919	struct igb_rx_buffer *new_buff;
7920	u16 nta = rx_ring->next_to_alloc;
7921
7922	new_buff = &rx_ring->rx_buffer_info[nta];
7923
7924	/* update, and store next to alloc */
7925	nta++;
7926	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7927
7928	/* Transfer page from old buffer to new buffer.
7929	 * Move each member individually to avoid possible store
7930	 * forwarding stalls.
7931	 */
7932	new_buff->dma		= old_buff->dma;
7933	new_buff->page		= old_buff->page;
7934	new_buff->page_offset	= old_buff->page_offset;
7935	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7936}
7937
7938static inline bool igb_page_is_reserved(struct page *page)
7939{
7940	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7941}
7942
7943static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7944{
7945	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7946	struct page *page = rx_buffer->page;
7947
7948	/* avoid re-using remote pages */
7949	if (unlikely(igb_page_is_reserved(page)))
7950		return false;
7951
7952#if (PAGE_SIZE < 8192)
7953	/* if we are only owner of page we can reuse it */
7954	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7955		return false;
7956#else
7957#define IGB_LAST_OFFSET \
7958	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7959
7960	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7961		return false;
7962#endif
7963
7964	/* If we have drained the page fragment pool we need to update
7965	 * the pagecnt_bias and page count so that we fully restock the
7966	 * number of references the driver holds.
7967	 */
7968	if (unlikely(!pagecnt_bias)) {
7969		page_ref_add(page, USHRT_MAX);
7970		rx_buffer->pagecnt_bias = USHRT_MAX;
7971	}
7972
7973	return true;
7974}
7975
7976/**
7977 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7978 *  @rx_ring: rx descriptor ring to transact packets on
7979 *  @rx_buffer: buffer containing page to add
7980 *  @skb: sk_buff to place the data into
7981 *  @size: size of buffer to be added
7982 *
7983 *  This function will add the data contained in rx_buffer->page to the skb.
7984 **/
7985static void igb_add_rx_frag(struct igb_ring *rx_ring,
7986			    struct igb_rx_buffer *rx_buffer,
7987			    struct sk_buff *skb,
7988			    unsigned int size)
7989{
7990#if (PAGE_SIZE < 8192)
7991	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7992#else
7993	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7994				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7995				SKB_DATA_ALIGN(size);
7996#endif
7997	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7998			rx_buffer->page_offset, size, truesize);
7999#if (PAGE_SIZE < 8192)
8000	rx_buffer->page_offset ^= truesize;
8001#else
8002	rx_buffer->page_offset += truesize;
8003#endif
8004}
8005
8006static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8007					 struct igb_rx_buffer *rx_buffer,
8008					 union e1000_adv_rx_desc *rx_desc,
8009					 unsigned int size)
8010{
8011	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8012#if (PAGE_SIZE < 8192)
8013	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8014#else
8015	unsigned int truesize = SKB_DATA_ALIGN(size);
8016#endif
8017	unsigned int headlen;
8018	struct sk_buff *skb;
8019
8020	/* prefetch first cache line of first page */
8021	prefetch(va);
8022#if L1_CACHE_BYTES < 128
8023	prefetch(va + L1_CACHE_BYTES);
8024#endif
8025
8026	/* allocate a skb to store the frags */
8027	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8028	if (unlikely(!skb))
8029		return NULL;
8030
8031	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8032		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8033		va += IGB_TS_HDR_LEN;
8034		size -= IGB_TS_HDR_LEN;
8035	}
8036
8037	/* Determine available headroom for copy */
8038	headlen = size;
8039	if (headlen > IGB_RX_HDR_LEN)
8040		headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8041
8042	/* align pull length to size of long to optimize memcpy performance */
8043	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8044
8045	/* update all of the pointers */
8046	size -= headlen;
8047	if (size) {
8048		skb_add_rx_frag(skb, 0, rx_buffer->page,
8049				(va + headlen) - page_address(rx_buffer->page),
8050				size, truesize);
8051#if (PAGE_SIZE < 8192)
8052		rx_buffer->page_offset ^= truesize;
8053#else
8054		rx_buffer->page_offset += truesize;
8055#endif
8056	} else {
8057		rx_buffer->pagecnt_bias++;
8058	}
8059
8060	return skb;
8061}
8062
8063static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8064				     struct igb_rx_buffer *rx_buffer,
8065				     union e1000_adv_rx_desc *rx_desc,
8066				     unsigned int size)
8067{
8068	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8069#if (PAGE_SIZE < 8192)
8070	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8071#else
8072	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8073				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8074#endif
8075	struct sk_buff *skb;
8076
8077	/* prefetch first cache line of first page */
8078	prefetch(va);
8079#if L1_CACHE_BYTES < 128
8080	prefetch(va + L1_CACHE_BYTES);
8081#endif
8082
8083	/* build an skb around the page buffer */
8084	skb = build_skb(va - IGB_SKB_PAD, truesize);
8085	if (unlikely(!skb))
8086		return NULL;
8087
8088	/* update pointers within the skb to store the data */
8089	skb_reserve(skb, IGB_SKB_PAD);
8090	__skb_put(skb, size);
8091
8092	/* pull timestamp out of packet data */
8093	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8094		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8095		__skb_pull(skb, IGB_TS_HDR_LEN);
8096	}
8097
8098	/* update buffer offset */
8099#if (PAGE_SIZE < 8192)
8100	rx_buffer->page_offset ^= truesize;
8101#else
8102	rx_buffer->page_offset += truesize;
8103#endif
8104
8105	return skb;
8106}
8107
8108static inline void igb_rx_checksum(struct igb_ring *ring,
8109				   union e1000_adv_rx_desc *rx_desc,
8110				   struct sk_buff *skb)
8111{
8112	skb_checksum_none_assert(skb);
8113
8114	/* Ignore Checksum bit is set */
8115	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8116		return;
8117
8118	/* Rx checksum disabled via ethtool */
8119	if (!(ring->netdev->features & NETIF_F_RXCSUM))
8120		return;
8121
8122	/* TCP/UDP checksum error bit is set */
8123	if (igb_test_staterr(rx_desc,
8124			     E1000_RXDEXT_STATERR_TCPE |
8125			     E1000_RXDEXT_STATERR_IPE)) {
8126		/* work around errata with sctp packets where the TCPE aka
8127		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8128		 * packets, (aka let the stack check the crc32c)
8129		 */
8130		if (!((skb->len == 60) &&
8131		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8132			u64_stats_update_begin(&ring->rx_syncp);
8133			ring->rx_stats.csum_err++;
8134			u64_stats_update_end(&ring->rx_syncp);
8135		}
8136		/* let the stack verify checksum errors */
8137		return;
8138	}
8139	/* It must be a TCP or UDP packet with a valid checksum */
8140	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8141				      E1000_RXD_STAT_UDPCS))
8142		skb->ip_summed = CHECKSUM_UNNECESSARY;
8143
8144	dev_dbg(ring->dev, "cksum success: bits %08X\n",
8145		le32_to_cpu(rx_desc->wb.upper.status_error));
8146}
8147
8148static inline void igb_rx_hash(struct igb_ring *ring,
8149			       union e1000_adv_rx_desc *rx_desc,
8150			       struct sk_buff *skb)
8151{
8152	if (ring->netdev->features & NETIF_F_RXHASH)
8153		skb_set_hash(skb,
8154			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8155			     PKT_HASH_TYPE_L3);
8156}
8157
8158/**
8159 *  igb_is_non_eop - process handling of non-EOP buffers
8160 *  @rx_ring: Rx ring being processed
8161 *  @rx_desc: Rx descriptor for current buffer
8162 *  @skb: current socket buffer containing buffer in progress
8163 *
8164 *  This function updates next to clean.  If the buffer is an EOP buffer
8165 *  this function exits returning false, otherwise it will place the
8166 *  sk_buff in the next buffer to be chained and return true indicating
8167 *  that this is in fact a non-EOP buffer.
8168 **/
8169static bool igb_is_non_eop(struct igb_ring *rx_ring,
8170			   union e1000_adv_rx_desc *rx_desc)
8171{
8172	u32 ntc = rx_ring->next_to_clean + 1;
8173
8174	/* fetch, update, and store next to clean */
8175	ntc = (ntc < rx_ring->count) ? ntc : 0;
8176	rx_ring->next_to_clean = ntc;
8177
8178	prefetch(IGB_RX_DESC(rx_ring, ntc));
8179
8180	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8181		return false;
8182
8183	return true;
8184}
8185
8186/**
8187 *  igb_cleanup_headers - Correct corrupted or empty headers
8188 *  @rx_ring: rx descriptor ring packet is being transacted on
8189 *  @rx_desc: pointer to the EOP Rx descriptor
8190 *  @skb: pointer to current skb being fixed
8191 *
8192 *  Address the case where we are pulling data in on pages only
8193 *  and as such no data is present in the skb header.
8194 *
8195 *  In addition if skb is not at least 60 bytes we need to pad it so that
8196 *  it is large enough to qualify as a valid Ethernet frame.
8197 *
8198 *  Returns true if an error was encountered and skb was freed.
8199 **/
8200static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8201				union e1000_adv_rx_desc *rx_desc,
8202				struct sk_buff *skb)
8203{
8204	if (unlikely((igb_test_staterr(rx_desc,
8205				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8206		struct net_device *netdev = rx_ring->netdev;
8207		if (!(netdev->features & NETIF_F_RXALL)) {
8208			dev_kfree_skb_any(skb);
8209			return true;
8210		}
8211	}
8212
8213	/* if eth_skb_pad returns an error the skb was freed */
8214	if (eth_skb_pad(skb))
8215		return true;
8216
8217	return false;
8218}
8219
8220/**
8221 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8222 *  @rx_ring: rx descriptor ring packet is being transacted on
8223 *  @rx_desc: pointer to the EOP Rx descriptor
8224 *  @skb: pointer to current skb being populated
8225 *
8226 *  This function checks the ring, descriptor, and packet information in
8227 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8228 *  other fields within the skb.
8229 **/
8230static void igb_process_skb_fields(struct igb_ring *rx_ring,
8231				   union e1000_adv_rx_desc *rx_desc,
8232				   struct sk_buff *skb)
8233{
8234	struct net_device *dev = rx_ring->netdev;
8235
8236	igb_rx_hash(rx_ring, rx_desc, skb);
8237
8238	igb_rx_checksum(rx_ring, rx_desc, skb);
8239
8240	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8241	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8242		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8243
8244	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8245	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8246		u16 vid;
8247
8248		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8249		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8250			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8251		else
8252			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8253
8254		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8255	}
8256
8257	skb_record_rx_queue(skb, rx_ring->queue_index);
8258
8259	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8260}
8261
8262static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8263					       const unsigned int size)
8264{
8265	struct igb_rx_buffer *rx_buffer;
8266
8267	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8268	prefetchw(rx_buffer->page);
8269
8270	/* we are reusing so sync this buffer for CPU use */
8271	dma_sync_single_range_for_cpu(rx_ring->dev,
8272				      rx_buffer->dma,
8273				      rx_buffer->page_offset,
8274				      size,
8275				      DMA_FROM_DEVICE);
8276
8277	rx_buffer->pagecnt_bias--;
8278
8279	return rx_buffer;
8280}
8281
8282static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8283			      struct igb_rx_buffer *rx_buffer)
8284{
8285	if (igb_can_reuse_rx_page(rx_buffer)) {
8286		/* hand second half of page back to the ring */
8287		igb_reuse_rx_page(rx_ring, rx_buffer);
8288	} else {
8289		/* We are not reusing the buffer so unmap it and free
8290		 * any references we are holding to it
8291		 */
8292		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8293				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8294				     IGB_RX_DMA_ATTR);
8295		__page_frag_cache_drain(rx_buffer->page,
8296					rx_buffer->pagecnt_bias);
8297	}
8298
8299	/* clear contents of rx_buffer */
8300	rx_buffer->page = NULL;
8301}
8302
8303static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8304{
8305	struct igb_ring *rx_ring = q_vector->rx.ring;
8306	struct sk_buff *skb = rx_ring->skb;
8307	unsigned int total_bytes = 0, total_packets = 0;
8308	u16 cleaned_count = igb_desc_unused(rx_ring);
8309
8310	while (likely(total_packets < budget)) {
8311		union e1000_adv_rx_desc *rx_desc;
8312		struct igb_rx_buffer *rx_buffer;
8313		unsigned int size;
8314
8315		/* return some buffers to hardware, one at a time is too slow */
8316		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8317			igb_alloc_rx_buffers(rx_ring, cleaned_count);
8318			cleaned_count = 0;
8319		}
8320
8321		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8322		size = le16_to_cpu(rx_desc->wb.upper.length);
8323		if (!size)
8324			break;
8325
8326		/* This memory barrier is needed to keep us from reading
8327		 * any other fields out of the rx_desc until we know the
8328		 * descriptor has been written back
8329		 */
8330		dma_rmb();
8331
8332		rx_buffer = igb_get_rx_buffer(rx_ring, size);
8333
8334		/* retrieve a buffer from the ring */
8335		if (skb)
8336			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8337		else if (ring_uses_build_skb(rx_ring))
8338			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8339		else
8340			skb = igb_construct_skb(rx_ring, rx_buffer,
8341						rx_desc, size);
8342
8343		/* exit if we failed to retrieve a buffer */
8344		if (!skb) {
8345			rx_ring->rx_stats.alloc_failed++;
8346			rx_buffer->pagecnt_bias++;
8347			break;
8348		}
8349
8350		igb_put_rx_buffer(rx_ring, rx_buffer);
8351		cleaned_count++;
8352
8353		/* fetch next buffer in frame if non-eop */
8354		if (igb_is_non_eop(rx_ring, rx_desc))
8355			continue;
8356
8357		/* verify the packet layout is correct */
8358		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8359			skb = NULL;
8360			continue;
8361		}
8362
8363		/* probably a little skewed due to removing CRC */
8364		total_bytes += skb->len;
8365
8366		/* populate checksum, timestamp, VLAN, and protocol */
8367		igb_process_skb_fields(rx_ring, rx_desc, skb);
8368
8369		napi_gro_receive(&q_vector->napi, skb);
8370
8371		/* reset skb pointer */
8372		skb = NULL;
8373
8374		/* update budget accounting */
8375		total_packets++;
8376	}
8377
8378	/* place incomplete frames back on ring for completion */
8379	rx_ring->skb = skb;
8380
8381	u64_stats_update_begin(&rx_ring->rx_syncp);
8382	rx_ring->rx_stats.packets += total_packets;
8383	rx_ring->rx_stats.bytes += total_bytes;
8384	u64_stats_update_end(&rx_ring->rx_syncp);
8385	q_vector->rx.total_packets += total_packets;
8386	q_vector->rx.total_bytes += total_bytes;
8387
8388	if (cleaned_count)
8389		igb_alloc_rx_buffers(rx_ring, cleaned_count);
8390
8391	return total_packets;
8392}
8393
8394static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8395{
8396	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8397}
8398
8399static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8400				  struct igb_rx_buffer *bi)
8401{
8402	struct page *page = bi->page;
8403	dma_addr_t dma;
8404
8405	/* since we are recycling buffers we should seldom need to alloc */
8406	if (likely(page))
8407		return true;
8408
8409	/* alloc new page for storage */
8410	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8411	if (unlikely(!page)) {
8412		rx_ring->rx_stats.alloc_failed++;
8413		return false;
8414	}
8415
8416	/* map page for use */
8417	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8418				 igb_rx_pg_size(rx_ring),
8419				 DMA_FROM_DEVICE,
8420				 IGB_RX_DMA_ATTR);
8421
8422	/* if mapping failed free memory back to system since
8423	 * there isn't much point in holding memory we can't use
8424	 */
8425	if (dma_mapping_error(rx_ring->dev, dma)) {
8426		__free_pages(page, igb_rx_pg_order(rx_ring));
8427
8428		rx_ring->rx_stats.alloc_failed++;
8429		return false;
8430	}
8431
8432	bi->dma = dma;
8433	bi->page = page;
8434	bi->page_offset = igb_rx_offset(rx_ring);
8435	bi->pagecnt_bias = 1;
8436
8437	return true;
8438}
8439
8440/**
8441 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8442 *  @adapter: address of board private structure
8443 **/
8444void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8445{
8446	union e1000_adv_rx_desc *rx_desc;
8447	struct igb_rx_buffer *bi;
8448	u16 i = rx_ring->next_to_use;
8449	u16 bufsz;
8450
8451	/* nothing to do */
8452	if (!cleaned_count)
8453		return;
8454
8455	rx_desc = IGB_RX_DESC(rx_ring, i);
8456	bi = &rx_ring->rx_buffer_info[i];
8457	i -= rx_ring->count;
8458
8459	bufsz = igb_rx_bufsz(rx_ring);
8460
8461	do {
8462		if (!igb_alloc_mapped_page(rx_ring, bi))
8463			break;
8464
8465		/* sync the buffer for use by the device */
8466		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8467						 bi->page_offset, bufsz,
8468						 DMA_FROM_DEVICE);
8469
8470		/* Refresh the desc even if buffer_addrs didn't change
8471		 * because each write-back erases this info.
8472		 */
8473		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8474
8475		rx_desc++;
8476		bi++;
8477		i++;
8478		if (unlikely(!i)) {
8479			rx_desc = IGB_RX_DESC(rx_ring, 0);
8480			bi = rx_ring->rx_buffer_info;
8481			i -= rx_ring->count;
8482		}
8483
8484		/* clear the length for the next_to_use descriptor */
8485		rx_desc->wb.upper.length = 0;
8486
8487		cleaned_count--;
8488	} while (cleaned_count);
8489
8490	i += rx_ring->count;
8491
8492	if (rx_ring->next_to_use != i) {
8493		/* record the next descriptor to use */
8494		rx_ring->next_to_use = i;
8495
8496		/* update next to alloc since we have filled the ring */
8497		rx_ring->next_to_alloc = i;
8498
8499		/* Force memory writes to complete before letting h/w
8500		 * know there are new descriptors to fetch.  (Only
8501		 * applicable for weak-ordered memory model archs,
8502		 * such as IA-64).
8503		 */
8504		dma_wmb();
8505		writel(i, rx_ring->tail);
8506	}
8507}
8508
8509/**
8510 * igb_mii_ioctl -
8511 * @netdev:
8512 * @ifreq:
8513 * @cmd:
8514 **/
8515static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8516{
8517	struct igb_adapter *adapter = netdev_priv(netdev);
8518	struct mii_ioctl_data *data = if_mii(ifr);
8519
8520	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8521		return -EOPNOTSUPP;
8522
8523	switch (cmd) {
8524	case SIOCGMIIPHY:
8525		data->phy_id = adapter->hw.phy.addr;
8526		break;
8527	case SIOCGMIIREG:
8528		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8529				     &data->val_out))
8530			return -EIO;
8531		break;
8532	case SIOCSMIIREG:
8533	default:
8534		return -EOPNOTSUPP;
8535	}
8536	return 0;
8537}
8538
8539/**
8540 * igb_ioctl -
8541 * @netdev:
8542 * @ifreq:
8543 * @cmd:
8544 **/
8545static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8546{
8547	switch (cmd) {
8548	case SIOCGMIIPHY:
8549	case SIOCGMIIREG:
8550	case SIOCSMIIREG:
8551		return igb_mii_ioctl(netdev, ifr, cmd);
8552	case SIOCGHWTSTAMP:
8553		return igb_ptp_get_ts_config(netdev, ifr);
8554	case SIOCSHWTSTAMP:
8555		return igb_ptp_set_ts_config(netdev, ifr);
8556	default:
8557		return -EOPNOTSUPP;
8558	}
8559}
8560
8561void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8562{
8563	struct igb_adapter *adapter = hw->back;
8564
8565	pci_read_config_word(adapter->pdev, reg, value);
8566}
8567
8568void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8569{
8570	struct igb_adapter *adapter = hw->back;
8571
8572	pci_write_config_word(adapter->pdev, reg, *value);
8573}
8574
8575s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8576{
8577	struct igb_adapter *adapter = hw->back;
8578
8579	if (pcie_capability_read_word(adapter->pdev, reg, value))
8580		return -E1000_ERR_CONFIG;
8581
8582	return 0;
8583}
8584
8585s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8586{
8587	struct igb_adapter *adapter = hw->back;
8588
8589	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8590		return -E1000_ERR_CONFIG;
8591
8592	return 0;
8593}
8594
8595static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8596{
8597	struct igb_adapter *adapter = netdev_priv(netdev);
8598	struct e1000_hw *hw = &adapter->hw;
8599	u32 ctrl, rctl;
8600	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8601
8602	if (enable) {
8603		/* enable VLAN tag insert/strip */
8604		ctrl = rd32(E1000_CTRL);
8605		ctrl |= E1000_CTRL_VME;
8606		wr32(E1000_CTRL, ctrl);
8607
8608		/* Disable CFI check */
8609		rctl = rd32(E1000_RCTL);
8610		rctl &= ~E1000_RCTL_CFIEN;
8611		wr32(E1000_RCTL, rctl);
8612	} else {
8613		/* disable VLAN tag insert/strip */
8614		ctrl = rd32(E1000_CTRL);
8615		ctrl &= ~E1000_CTRL_VME;
8616		wr32(E1000_CTRL, ctrl);
8617	}
8618
8619	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8620}
8621
8622static int igb_vlan_rx_add_vid(struct net_device *netdev,
8623			       __be16 proto, u16 vid)
8624{
8625	struct igb_adapter *adapter = netdev_priv(netdev);
8626	struct e1000_hw *hw = &adapter->hw;
8627	int pf_id = adapter->vfs_allocated_count;
8628
8629	/* add the filter since PF can receive vlans w/o entry in vlvf */
8630	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8631		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8632
8633	set_bit(vid, adapter->active_vlans);
8634
8635	return 0;
8636}
8637
8638static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8639				__be16 proto, u16 vid)
8640{
8641	struct igb_adapter *adapter = netdev_priv(netdev);
8642	int pf_id = adapter->vfs_allocated_count;
8643	struct e1000_hw *hw = &adapter->hw;
8644
8645	/* remove VID from filter table */
8646	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8647		igb_vfta_set(hw, vid, pf_id, false, true);
8648
8649	clear_bit(vid, adapter->active_vlans);
8650
8651	return 0;
8652}
8653
8654static void igb_restore_vlan(struct igb_adapter *adapter)
8655{
8656	u16 vid = 1;
8657
8658	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8659	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8660
8661	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8662		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8663}
8664
8665int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8666{
8667	struct pci_dev *pdev = adapter->pdev;
8668	struct e1000_mac_info *mac = &adapter->hw.mac;
8669
8670	mac->autoneg = 0;
8671
8672	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8673	 * for the switch() below to work
8674	 */
8675	if ((spd & 1) || (dplx & ~1))
8676		goto err_inval;
8677
8678	/* Fiber NIC's only allow 1000 gbps Full duplex
8679	 * and 100Mbps Full duplex for 100baseFx sfp
8680	 */
8681	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8682		switch (spd + dplx) {
8683		case SPEED_10 + DUPLEX_HALF:
8684		case SPEED_10 + DUPLEX_FULL:
8685		case SPEED_100 + DUPLEX_HALF:
8686			goto err_inval;
8687		default:
8688			break;
8689		}
8690	}
8691
8692	switch (spd + dplx) {
8693	case SPEED_10 + DUPLEX_HALF:
8694		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8695		break;
8696	case SPEED_10 + DUPLEX_FULL:
8697		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8698		break;
8699	case SPEED_100 + DUPLEX_HALF:
8700		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8701		break;
8702	case SPEED_100 + DUPLEX_FULL:
8703		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8704		break;
8705	case SPEED_1000 + DUPLEX_FULL:
8706		mac->autoneg = 1;
8707		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8708		break;
8709	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8710	default:
8711		goto err_inval;
8712	}
8713
8714	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8715	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8716
8717	return 0;
8718
8719err_inval:
8720	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8721	return -EINVAL;
8722}
8723
8724static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8725			  bool runtime)
8726{
8727	struct net_device *netdev = pci_get_drvdata(pdev);
8728	struct igb_adapter *adapter = netdev_priv(netdev);
8729	struct e1000_hw *hw = &adapter->hw;
8730	u32 ctrl, rctl, status;
8731	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8732	bool wake;
8733
8734	rtnl_lock();
8735	netif_device_detach(netdev);
8736
8737	if (netif_running(netdev))
8738		__igb_close(netdev, true);
8739
8740	igb_ptp_suspend(adapter);
8741
8742	igb_clear_interrupt_scheme(adapter);
8743	rtnl_unlock();
8744
8745	status = rd32(E1000_STATUS);
8746	if (status & E1000_STATUS_LU)
8747		wufc &= ~E1000_WUFC_LNKC;
8748
8749	if (wufc) {
8750		igb_setup_rctl(adapter);
8751		igb_set_rx_mode(netdev);
8752
8753		/* turn on all-multi mode if wake on multicast is enabled */
8754		if (wufc & E1000_WUFC_MC) {
8755			rctl = rd32(E1000_RCTL);
8756			rctl |= E1000_RCTL_MPE;
8757			wr32(E1000_RCTL, rctl);
8758		}
8759
8760		ctrl = rd32(E1000_CTRL);
8761		ctrl |= E1000_CTRL_ADVD3WUC;
8762		wr32(E1000_CTRL, ctrl);
8763
8764		/* Allow time for pending master requests to run */
8765		igb_disable_pcie_master(hw);
8766
8767		wr32(E1000_WUC, E1000_WUC_PME_EN);
8768		wr32(E1000_WUFC, wufc);
8769	} else {
8770		wr32(E1000_WUC, 0);
8771		wr32(E1000_WUFC, 0);
8772	}
8773
8774	wake = wufc || adapter->en_mng_pt;
8775	if (!wake)
8776		igb_power_down_link(adapter);
8777	else
8778		igb_power_up_link(adapter);
8779
8780	if (enable_wake)
8781		*enable_wake = wake;
8782
8783	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8784	 * would have already happened in close and is redundant.
8785	 */
8786	igb_release_hw_control(adapter);
8787
8788	pci_disable_device(pdev);
8789
8790	return 0;
8791}
8792
8793static void igb_deliver_wake_packet(struct net_device *netdev)
8794{
8795	struct igb_adapter *adapter = netdev_priv(netdev);
8796	struct e1000_hw *hw = &adapter->hw;
8797	struct sk_buff *skb;
8798	u32 wupl;
8799
8800	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8801
8802	/* WUPM stores only the first 128 bytes of the wake packet.
8803	 * Read the packet only if we have the whole thing.
8804	 */
8805	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8806		return;
8807
8808	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8809	if (!skb)
8810		return;
8811
8812	skb_put(skb, wupl);
8813
8814	/* Ensure reads are 32-bit aligned */
8815	wupl = roundup(wupl, 4);
8816
8817	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8818
8819	skb->protocol = eth_type_trans(skb, netdev);
8820	netif_rx(skb);
8821}
8822
8823static int __maybe_unused igb_suspend(struct device *dev)
8824{
8825	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8826}
8827
8828static int __maybe_unused igb_resume(struct device *dev)
8829{
8830	struct pci_dev *pdev = to_pci_dev(dev);
8831	struct net_device *netdev = pci_get_drvdata(pdev);
8832	struct igb_adapter *adapter = netdev_priv(netdev);
8833	struct e1000_hw *hw = &adapter->hw;
8834	u32 err, val;
8835
8836	pci_set_power_state(pdev, PCI_D0);
8837	pci_restore_state(pdev);
8838	pci_save_state(pdev);
8839
8840	if (!pci_device_is_present(pdev))
8841		return -ENODEV;
8842	err = pci_enable_device_mem(pdev);
8843	if (err) {
8844		dev_err(&pdev->dev,
8845			"igb: Cannot enable PCI device from suspend\n");
8846		return err;
8847	}
8848	pci_set_master(pdev);
8849
8850	pci_enable_wake(pdev, PCI_D3hot, 0);
8851	pci_enable_wake(pdev, PCI_D3cold, 0);
8852
8853	if (igb_init_interrupt_scheme(adapter, true)) {
8854		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8855		return -ENOMEM;
8856	}
8857
8858	igb_reset(adapter);
8859
8860	/* let the f/w know that the h/w is now under the control of the
8861	 * driver.
8862	 */
8863	igb_get_hw_control(adapter);
8864
8865	val = rd32(E1000_WUS);
8866	if (val & WAKE_PKT_WUS)
8867		igb_deliver_wake_packet(netdev);
8868
8869	wr32(E1000_WUS, ~0);
8870
8871	rtnl_lock();
8872	if (!err && netif_running(netdev))
8873		err = __igb_open(netdev, true);
8874
8875	if (!err)
8876		netif_device_attach(netdev);
8877	rtnl_unlock();
8878
8879	return err;
8880}
8881
8882static int __maybe_unused igb_runtime_idle(struct device *dev)
8883{
8884	struct net_device *netdev = dev_get_drvdata(dev);
8885	struct igb_adapter *adapter = netdev_priv(netdev);
8886
8887	if (!igb_has_link(adapter))
8888		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8889
8890	return -EBUSY;
8891}
8892
8893static int __maybe_unused igb_runtime_suspend(struct device *dev)
8894{
8895	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8896}
8897
8898static int __maybe_unused igb_runtime_resume(struct device *dev)
8899{
8900	return igb_resume(dev);
8901}
8902
8903static void igb_shutdown(struct pci_dev *pdev)
8904{
8905	bool wake;
8906
8907	__igb_shutdown(pdev, &wake, 0);
8908
8909	if (system_state == SYSTEM_POWER_OFF) {
8910		pci_wake_from_d3(pdev, wake);
8911		pci_set_power_state(pdev, PCI_D3hot);
8912	}
8913}
8914
8915#ifdef CONFIG_PCI_IOV
8916static int igb_sriov_reinit(struct pci_dev *dev)
8917{
8918	struct net_device *netdev = pci_get_drvdata(dev);
8919	struct igb_adapter *adapter = netdev_priv(netdev);
8920	struct pci_dev *pdev = adapter->pdev;
8921
8922	rtnl_lock();
8923
8924	if (netif_running(netdev))
8925		igb_close(netdev);
8926	else
8927		igb_reset(adapter);
8928
8929	igb_clear_interrupt_scheme(adapter);
8930
8931	igb_init_queue_configuration(adapter);
8932
8933	if (igb_init_interrupt_scheme(adapter, true)) {
8934		rtnl_unlock();
8935		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8936		return -ENOMEM;
8937	}
8938
8939	if (netif_running(netdev))
8940		igb_open(netdev);
8941
8942	rtnl_unlock();
8943
8944	return 0;
8945}
8946
8947static int igb_pci_disable_sriov(struct pci_dev *dev)
8948{
8949	int err = igb_disable_sriov(dev);
8950
8951	if (!err)
8952		err = igb_sriov_reinit(dev);
8953
8954	return err;
8955}
8956
8957static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8958{
8959	int err = igb_enable_sriov(dev, num_vfs);
8960
8961	if (err)
8962		goto out;
8963
8964	err = igb_sriov_reinit(dev);
8965	if (!err)
8966		return num_vfs;
8967
8968out:
8969	return err;
8970}
8971
8972#endif
8973static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8974{
8975#ifdef CONFIG_PCI_IOV
8976	if (num_vfs == 0)
8977		return igb_pci_disable_sriov(dev);
8978	else
8979		return igb_pci_enable_sriov(dev, num_vfs);
8980#endif
8981	return 0;
8982}
8983
8984/**
8985 *  igb_io_error_detected - called when PCI error is detected
8986 *  @pdev: Pointer to PCI device
8987 *  @state: The current pci connection state
8988 *
8989 *  This function is called after a PCI bus error affecting
8990 *  this device has been detected.
8991 **/
8992static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8993					      pci_channel_state_t state)
8994{
8995	struct net_device *netdev = pci_get_drvdata(pdev);
8996	struct igb_adapter *adapter = netdev_priv(netdev);
8997
8998	netif_device_detach(netdev);
8999
9000	if (state == pci_channel_io_perm_failure)
9001		return PCI_ERS_RESULT_DISCONNECT;
9002
9003	if (netif_running(netdev))
9004		igb_down(adapter);
9005	pci_disable_device(pdev);
9006
9007	/* Request a slot slot reset. */
9008	return PCI_ERS_RESULT_NEED_RESET;
9009}
9010
9011/**
9012 *  igb_io_slot_reset - called after the pci bus has been reset.
9013 *  @pdev: Pointer to PCI device
9014 *
9015 *  Restart the card from scratch, as if from a cold-boot. Implementation
9016 *  resembles the first-half of the igb_resume routine.
9017 **/
9018static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9019{
9020	struct net_device *netdev = pci_get_drvdata(pdev);
9021	struct igb_adapter *adapter = netdev_priv(netdev);
9022	struct e1000_hw *hw = &adapter->hw;
9023	pci_ers_result_t result;
9024
9025	if (pci_enable_device_mem(pdev)) {
9026		dev_err(&pdev->dev,
9027			"Cannot re-enable PCI device after reset.\n");
9028		result = PCI_ERS_RESULT_DISCONNECT;
9029	} else {
9030		pci_set_master(pdev);
9031		pci_restore_state(pdev);
9032		pci_save_state(pdev);
9033
9034		pci_enable_wake(pdev, PCI_D3hot, 0);
9035		pci_enable_wake(pdev, PCI_D3cold, 0);
9036
9037		/* In case of PCI error, adapter lose its HW address
9038		 * so we should re-assign it here.
9039		 */
9040		hw->hw_addr = adapter->io_addr;
9041
9042		igb_reset(adapter);
9043		wr32(E1000_WUS, ~0);
9044		result = PCI_ERS_RESULT_RECOVERED;
9045	}
9046
9047	return result;
9048}
9049
9050/**
9051 *  igb_io_resume - called when traffic can start flowing again.
9052 *  @pdev: Pointer to PCI device
9053 *
9054 *  This callback is called when the error recovery driver tells us that
9055 *  its OK to resume normal operation. Implementation resembles the
9056 *  second-half of the igb_resume routine.
9057 */
9058static void igb_io_resume(struct pci_dev *pdev)
9059{
9060	struct net_device *netdev = pci_get_drvdata(pdev);
9061	struct igb_adapter *adapter = netdev_priv(netdev);
9062
9063	if (netif_running(netdev)) {
9064		if (igb_up(adapter)) {
9065			dev_err(&pdev->dev, "igb_up failed after reset\n");
9066			return;
9067		}
9068	}
9069
9070	netif_device_attach(netdev);
9071
9072	/* let the f/w know that the h/w is now under the control of the
9073	 * driver.
9074	 */
9075	igb_get_hw_control(adapter);
9076}
9077
9078/**
9079 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9080 *  @adapter: Pointer to adapter structure
9081 *  @index: Index of the RAR entry which need to be synced with MAC table
9082 **/
9083static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9084{
9085	struct e1000_hw *hw = &adapter->hw;
9086	u32 rar_low, rar_high;
9087	u8 *addr = adapter->mac_table[index].addr;
9088
9089	/* HW expects these to be in network order when they are plugged
9090	 * into the registers which are little endian.  In order to guarantee
9091	 * that ordering we need to do an leXX_to_cpup here in order to be
9092	 * ready for the byteswap that occurs with writel
9093	 */
9094	rar_low = le32_to_cpup((__le32 *)(addr));
9095	rar_high = le16_to_cpup((__le16 *)(addr + 4));
9096
9097	/* Indicate to hardware the Address is Valid. */
9098	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9099		if (is_valid_ether_addr(addr))
9100			rar_high |= E1000_RAH_AV;
9101
9102		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9103			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9104
9105		switch (hw->mac.type) {
9106		case e1000_82575:
9107		case e1000_i210:
9108			if (adapter->mac_table[index].state &
9109			    IGB_MAC_STATE_QUEUE_STEERING)
9110				rar_high |= E1000_RAH_QSEL_ENABLE;
9111
9112			rar_high |= E1000_RAH_POOL_1 *
9113				    adapter->mac_table[index].queue;
9114			break;
9115		default:
9116			rar_high |= E1000_RAH_POOL_1 <<
9117				    adapter->mac_table[index].queue;
9118			break;
9119		}
9120	}
9121
9122	wr32(E1000_RAL(index), rar_low);
9123	wrfl();
9124	wr32(E1000_RAH(index), rar_high);
9125	wrfl();
9126}
9127
9128static int igb_set_vf_mac(struct igb_adapter *adapter,
9129			  int vf, unsigned char *mac_addr)
9130{
9131	struct e1000_hw *hw = &adapter->hw;
9132	/* VF MAC addresses start at end of receive addresses and moves
9133	 * towards the first, as a result a collision should not be possible
9134	 */
9135	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9136	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9137
9138	ether_addr_copy(vf_mac_addr, mac_addr);
9139	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9140	adapter->mac_table[rar_entry].queue = vf;
9141	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9142	igb_rar_set_index(adapter, rar_entry);
9143
9144	return 0;
9145}
9146
9147static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9148{
9149	struct igb_adapter *adapter = netdev_priv(netdev);
9150
9151	if (vf >= adapter->vfs_allocated_count)
9152		return -EINVAL;
9153
9154	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9155	 * flag and allows to overwrite the MAC via VF netdev.  This
9156	 * is necessary to allow libvirt a way to restore the original
9157	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9158	 * down a VM.
9159	 */
9160	if (is_zero_ether_addr(mac)) {
9161		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9162		dev_info(&adapter->pdev->dev,
9163			 "remove administratively set MAC on VF %d\n",
9164			 vf);
9165	} else if (is_valid_ether_addr(mac)) {
9166		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9167		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9168			 mac, vf);
9169		dev_info(&adapter->pdev->dev,
9170			 "Reload the VF driver to make this change effective.");
9171		/* Generate additional warning if PF is down */
9172		if (test_bit(__IGB_DOWN, &adapter->state)) {
9173			dev_warn(&adapter->pdev->dev,
9174				 "The VF MAC address has been set, but the PF device is not up.\n");
9175			dev_warn(&adapter->pdev->dev,
9176				 "Bring the PF device up before attempting to use the VF device.\n");
9177		}
9178	} else {
9179		return -EINVAL;
9180	}
9181	return igb_set_vf_mac(adapter, vf, mac);
9182}
9183
9184static int igb_link_mbps(int internal_link_speed)
9185{
9186	switch (internal_link_speed) {
9187	case SPEED_100:
9188		return 100;
9189	case SPEED_1000:
9190		return 1000;
9191	default:
9192		return 0;
9193	}
9194}
9195
9196static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9197				  int link_speed)
9198{
9199	int rf_dec, rf_int;
9200	u32 bcnrc_val;
9201
9202	if (tx_rate != 0) {
9203		/* Calculate the rate factor values to set */
9204		rf_int = link_speed / tx_rate;
9205		rf_dec = (link_speed - (rf_int * tx_rate));
9206		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9207			 tx_rate;
9208
9209		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9210		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9211			      E1000_RTTBCNRC_RF_INT_MASK);
9212		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9213	} else {
9214		bcnrc_val = 0;
9215	}
9216
9217	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9218	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9219	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9220	 */
9221	wr32(E1000_RTTBCNRM, 0x14);
9222	wr32(E1000_RTTBCNRC, bcnrc_val);
9223}
9224
9225static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9226{
9227	int actual_link_speed, i;
9228	bool reset_rate = false;
9229
9230	/* VF TX rate limit was not set or not supported */
9231	if ((adapter->vf_rate_link_speed == 0) ||
9232	    (adapter->hw.mac.type != e1000_82576))
9233		return;
9234
9235	actual_link_speed = igb_link_mbps(adapter->link_speed);
9236	if (actual_link_speed != adapter->vf_rate_link_speed) {
9237		reset_rate = true;
9238		adapter->vf_rate_link_speed = 0;
9239		dev_info(&adapter->pdev->dev,
9240			 "Link speed has been changed. VF Transmit rate is disabled\n");
9241	}
9242
9243	for (i = 0; i < adapter->vfs_allocated_count; i++) {
9244		if (reset_rate)
9245			adapter->vf_data[i].tx_rate = 0;
9246
9247		igb_set_vf_rate_limit(&adapter->hw, i,
9248				      adapter->vf_data[i].tx_rate,
9249				      actual_link_speed);
9250	}
9251}
9252
9253static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9254			     int min_tx_rate, int max_tx_rate)
9255{
9256	struct igb_adapter *adapter = netdev_priv(netdev);
9257	struct e1000_hw *hw = &adapter->hw;
9258	int actual_link_speed;
9259
9260	if (hw->mac.type != e1000_82576)
9261		return -EOPNOTSUPP;
9262
9263	if (min_tx_rate)
9264		return -EINVAL;
9265
9266	actual_link_speed = igb_link_mbps(adapter->link_speed);
9267	if ((vf >= adapter->vfs_allocated_count) ||
9268	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9269	    (max_tx_rate < 0) ||
9270	    (max_tx_rate > actual_link_speed))
9271		return -EINVAL;
9272
9273	adapter->vf_rate_link_speed = actual_link_speed;
9274	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9275	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9276
9277	return 0;
9278}
9279
9280static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9281				   bool setting)
9282{
9283	struct igb_adapter *adapter = netdev_priv(netdev);
9284	struct e1000_hw *hw = &adapter->hw;
9285	u32 reg_val, reg_offset;
9286
9287	if (!adapter->vfs_allocated_count)
9288		return -EOPNOTSUPP;
9289
9290	if (vf >= adapter->vfs_allocated_count)
9291		return -EINVAL;
9292
9293	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9294	reg_val = rd32(reg_offset);
9295	if (setting)
9296		reg_val |= (BIT(vf) |
9297			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9298	else
9299		reg_val &= ~(BIT(vf) |
9300			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9301	wr32(reg_offset, reg_val);
9302
9303	adapter->vf_data[vf].spoofchk_enabled = setting;
9304	return 0;
9305}
9306
9307static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9308{
9309	struct igb_adapter *adapter = netdev_priv(netdev);
9310
9311	if (vf >= adapter->vfs_allocated_count)
9312		return -EINVAL;
9313	if (adapter->vf_data[vf].trusted == setting)
9314		return 0;
9315
9316	adapter->vf_data[vf].trusted = setting;
9317
9318	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9319		 vf, setting ? "" : "not ");
9320	return 0;
9321}
9322
9323static int igb_ndo_get_vf_config(struct net_device *netdev,
9324				 int vf, struct ifla_vf_info *ivi)
9325{
9326	struct igb_adapter *adapter = netdev_priv(netdev);
9327	if (vf >= adapter->vfs_allocated_count)
9328		return -EINVAL;
9329	ivi->vf = vf;
9330	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9331	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9332	ivi->min_tx_rate = 0;
9333	ivi->vlan = adapter->vf_data[vf].pf_vlan;
9334	ivi->qos = adapter->vf_data[vf].pf_qos;
9335	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9336	ivi->trusted = adapter->vf_data[vf].trusted;
9337	return 0;
9338}
9339
9340static void igb_vmm_control(struct igb_adapter *adapter)
9341{
9342	struct e1000_hw *hw = &adapter->hw;
9343	u32 reg;
9344
9345	switch (hw->mac.type) {
9346	case e1000_82575:
9347	case e1000_i210:
9348	case e1000_i211:
9349	case e1000_i354:
9350	default:
9351		/* replication is not supported for 82575 */
9352		return;
9353	case e1000_82576:
9354		/* notify HW that the MAC is adding vlan tags */
9355		reg = rd32(E1000_DTXCTL);
9356		reg |= E1000_DTXCTL_VLAN_ADDED;
9357		wr32(E1000_DTXCTL, reg);
9358		/* Fall through */
9359	case e1000_82580:
9360		/* enable replication vlan tag stripping */
9361		reg = rd32(E1000_RPLOLR);
9362		reg |= E1000_RPLOLR_STRVLAN;
9363		wr32(E1000_RPLOLR, reg);
9364		/* Fall through */
9365	case e1000_i350:
9366		/* none of the above registers are supported by i350 */
9367		break;
9368	}
9369
9370	if (adapter->vfs_allocated_count) {
9371		igb_vmdq_set_loopback_pf(hw, true);
9372		igb_vmdq_set_replication_pf(hw, true);
9373		igb_vmdq_set_anti_spoofing_pf(hw, true,
9374					      adapter->vfs_allocated_count);
9375	} else {
9376		igb_vmdq_set_loopback_pf(hw, false);
9377		igb_vmdq_set_replication_pf(hw, false);
9378	}
9379}
9380
9381static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9382{
9383	struct e1000_hw *hw = &adapter->hw;
9384	u32 dmac_thr;
9385	u16 hwm;
9386
9387	if (hw->mac.type > e1000_82580) {
9388		if (adapter->flags & IGB_FLAG_DMAC) {
9389			u32 reg;
9390
9391			/* force threshold to 0. */
9392			wr32(E1000_DMCTXTH, 0);
9393
9394			/* DMA Coalescing high water mark needs to be greater
9395			 * than the Rx threshold. Set hwm to PBA - max frame
9396			 * size in 16B units, capping it at PBA - 6KB.
9397			 */
9398			hwm = 64 * (pba - 6);
9399			reg = rd32(E1000_FCRTC);
9400			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9401			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9402				& E1000_FCRTC_RTH_COAL_MASK);
9403			wr32(E1000_FCRTC, reg);
9404
9405			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9406			 * frame size, capping it at PBA - 10KB.
9407			 */
9408			dmac_thr = pba - 10;
9409			reg = rd32(E1000_DMACR);
9410			reg &= ~E1000_DMACR_DMACTHR_MASK;
9411			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9412				& E1000_DMACR_DMACTHR_MASK);
9413
9414			/* transition to L0x or L1 if available..*/
9415			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9416
9417			/* watchdog timer= +-1000 usec in 32usec intervals */
9418			reg |= (1000 >> 5);
9419
9420			/* Disable BMC-to-OS Watchdog Enable */
9421			if (hw->mac.type != e1000_i354)
9422				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9423
9424			wr32(E1000_DMACR, reg);
9425
9426			/* no lower threshold to disable
9427			 * coalescing(smart fifb)-UTRESH=0
9428			 */
9429			wr32(E1000_DMCRTRH, 0);
9430
9431			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9432
9433			wr32(E1000_DMCTLX, reg);
9434
9435			/* free space in tx packet buffer to wake from
9436			 * DMA coal
9437			 */
9438			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9439			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9440
9441			/* make low power state decision controlled
9442			 * by DMA coal
9443			 */
9444			reg = rd32(E1000_PCIEMISC);
9445			reg &= ~E1000_PCIEMISC_LX_DECISION;
9446			wr32(E1000_PCIEMISC, reg);
9447		} /* endif adapter->dmac is not disabled */
9448	} else if (hw->mac.type == e1000_82580) {
9449		u32 reg = rd32(E1000_PCIEMISC);
9450
9451		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9452		wr32(E1000_DMACR, 0);
9453	}
9454}
9455
9456/**
9457 *  igb_read_i2c_byte - Reads 8 bit word over I2C
9458 *  @hw: pointer to hardware structure
9459 *  @byte_offset: byte offset to read
9460 *  @dev_addr: device address
9461 *  @data: value read
9462 *
9463 *  Performs byte read operation over I2C interface at
9464 *  a specified device address.
9465 **/
9466s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9467		      u8 dev_addr, u8 *data)
9468{
9469	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9470	struct i2c_client *this_client = adapter->i2c_client;
9471	s32 status;
9472	u16 swfw_mask = 0;
9473
9474	if (!this_client)
9475		return E1000_ERR_I2C;
9476
9477	swfw_mask = E1000_SWFW_PHY0_SM;
9478
9479	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9480		return E1000_ERR_SWFW_SYNC;
9481
9482	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9483	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9484
9485	if (status < 0)
9486		return E1000_ERR_I2C;
9487	else {
9488		*data = status;
9489		return 0;
9490	}
9491}
9492
9493/**
9494 *  igb_write_i2c_byte - Writes 8 bit word over I2C
9495 *  @hw: pointer to hardware structure
9496 *  @byte_offset: byte offset to write
9497 *  @dev_addr: device address
9498 *  @data: value to write
9499 *
9500 *  Performs byte write operation over I2C interface at
9501 *  a specified device address.
9502 **/
9503s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9504		       u8 dev_addr, u8 data)
9505{
9506	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9507	struct i2c_client *this_client = adapter->i2c_client;
9508	s32 status;
9509	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9510
9511	if (!this_client)
9512		return E1000_ERR_I2C;
9513
9514	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9515		return E1000_ERR_SWFW_SYNC;
9516	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9517	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9518
9519	if (status)
9520		return E1000_ERR_I2C;
9521	else
9522		return 0;
9523
9524}
9525
9526int igb_reinit_queues(struct igb_adapter *adapter)
9527{
9528	struct net_device *netdev = adapter->netdev;
9529	struct pci_dev *pdev = adapter->pdev;
9530	int err = 0;
9531
9532	if (netif_running(netdev))
9533		igb_close(netdev);
9534
9535	igb_reset_interrupt_capability(adapter);
9536
9537	if (igb_init_interrupt_scheme(adapter, true)) {
9538		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9539		return -ENOMEM;
9540	}
9541
9542	if (netif_running(netdev))
9543		err = igb_open(netdev);
9544
9545	return err;
9546}
9547
9548static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9549{
9550	struct igb_nfc_filter *rule;
9551
9552	spin_lock(&adapter->nfc_lock);
9553
9554	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9555		igb_erase_filter(adapter, rule);
9556
9557	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9558		igb_erase_filter(adapter, rule);
9559
9560	spin_unlock(&adapter->nfc_lock);
9561}
9562
9563static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9564{
9565	struct igb_nfc_filter *rule;
9566
9567	spin_lock(&adapter->nfc_lock);
9568
9569	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9570		igb_add_filter(adapter, rule);
9571
9572	spin_unlock(&adapter->nfc_lock);
9573}
9574/* igb_main.c */