Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0
2/* Intel(R) Gigabit Ethernet Linux driver
3 * Copyright(c) 2007-2014 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, see <http://www.gnu.org/licenses/>.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 *
20 * Contact Information:
21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/init.h>
30#include <linux/bitops.h>
31#include <linux/vmalloc.h>
32#include <linux/pagemap.h>
33#include <linux/netdevice.h>
34#include <linux/ipv6.h>
35#include <linux/slab.h>
36#include <net/checksum.h>
37#include <net/ip6_checksum.h>
38#include <net/pkt_sched.h>
39#include <linux/net_tstamp.h>
40#include <linux/mii.h>
41#include <linux/ethtool.h>
42#include <linux/if.h>
43#include <linux/if_vlan.h>
44#include <linux/pci.h>
45#include <linux/pci-aspm.h>
46#include <linux/delay.h>
47#include <linux/interrupt.h>
48#include <linux/ip.h>
49#include <linux/tcp.h>
50#include <linux/sctp.h>
51#include <linux/if_ether.h>
52#include <linux/aer.h>
53#include <linux/prefetch.h>
54#include <linux/pm_runtime.h>
55#include <linux/etherdevice.h>
56#ifdef CONFIG_IGB_DCA
57#include <linux/dca.h>
58#endif
59#include <linux/i2c.h>
60#include "igb.h"
61
62#define MAJ 5
63#define MIN 4
64#define BUILD 0
65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66__stringify(BUILD) "-k"
67
68enum queue_mode {
69 QUEUE_MODE_STRICT_PRIORITY,
70 QUEUE_MODE_STREAM_RESERVATION,
71};
72
73enum tx_queue_prio {
74 TX_QUEUE_PRIO_HIGH,
75 TX_QUEUE_PRIO_LOW,
76};
77
78char igb_driver_name[] = "igb";
79char igb_driver_version[] = DRV_VERSION;
80static const char igb_driver_string[] =
81 "Intel(R) Gigabit Ethernet Network Driver";
82static const char igb_copyright[] =
83 "Copyright (c) 2007-2014 Intel Corporation.";
84
85static const struct e1000_info *igb_info_tbl[] = {
86 [board_82575] = &e1000_82575_info,
87};
88
89static const struct pci_device_id igb_pci_tbl[] = {
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
124 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
125 /* required last entry */
126 {0, }
127};
128
129MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
130
131static int igb_setup_all_tx_resources(struct igb_adapter *);
132static int igb_setup_all_rx_resources(struct igb_adapter *);
133static void igb_free_all_tx_resources(struct igb_adapter *);
134static void igb_free_all_rx_resources(struct igb_adapter *);
135static void igb_setup_mrqc(struct igb_adapter *);
136static int igb_probe(struct pci_dev *, const struct pci_device_id *);
137static void igb_remove(struct pci_dev *pdev);
138static int igb_sw_init(struct igb_adapter *);
139int igb_open(struct net_device *);
140int igb_close(struct net_device *);
141static void igb_configure(struct igb_adapter *);
142static void igb_configure_tx(struct igb_adapter *);
143static void igb_configure_rx(struct igb_adapter *);
144static void igb_clean_all_tx_rings(struct igb_adapter *);
145static void igb_clean_all_rx_rings(struct igb_adapter *);
146static void igb_clean_tx_ring(struct igb_ring *);
147static void igb_clean_rx_ring(struct igb_ring *);
148static void igb_set_rx_mode(struct net_device *);
149static void igb_update_phy_info(struct timer_list *);
150static void igb_watchdog(struct timer_list *);
151static void igb_watchdog_task(struct work_struct *);
152static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
153static void igb_get_stats64(struct net_device *dev,
154 struct rtnl_link_stats64 *stats);
155static int igb_change_mtu(struct net_device *, int);
156static int igb_set_mac(struct net_device *, void *);
157static void igb_set_uta(struct igb_adapter *adapter, bool set);
158static irqreturn_t igb_intr(int irq, void *);
159static irqreturn_t igb_intr_msi(int irq, void *);
160static irqreturn_t igb_msix_other(int irq, void *);
161static irqreturn_t igb_msix_ring(int irq, void *);
162#ifdef CONFIG_IGB_DCA
163static void igb_update_dca(struct igb_q_vector *);
164static void igb_setup_dca(struct igb_adapter *);
165#endif /* CONFIG_IGB_DCA */
166static int igb_poll(struct napi_struct *, int);
167static bool igb_clean_tx_irq(struct igb_q_vector *, int);
168static int igb_clean_rx_irq(struct igb_q_vector *, int);
169static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
170static void igb_tx_timeout(struct net_device *);
171static void igb_reset_task(struct work_struct *);
172static void igb_vlan_mode(struct net_device *netdev,
173 netdev_features_t features);
174static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
175static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
176static void igb_restore_vlan(struct igb_adapter *);
177static void igb_rar_set_index(struct igb_adapter *, u32);
178static void igb_ping_all_vfs(struct igb_adapter *);
179static void igb_msg_task(struct igb_adapter *);
180static void igb_vmm_control(struct igb_adapter *);
181static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
182static void igb_flush_mac_table(struct igb_adapter *);
183static int igb_available_rars(struct igb_adapter *, u8);
184static void igb_set_default_mac_filter(struct igb_adapter *);
185static int igb_uc_sync(struct net_device *, const unsigned char *);
186static int igb_uc_unsync(struct net_device *, const unsigned char *);
187static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
188static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
189static int igb_ndo_set_vf_vlan(struct net_device *netdev,
190 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
191static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
192static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
193 bool setting);
194static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
195 bool setting);
196static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
197 struct ifla_vf_info *ivi);
198static void igb_check_vf_rate_limit(struct igb_adapter *);
199static void igb_nfc_filter_exit(struct igb_adapter *adapter);
200static void igb_nfc_filter_restore(struct igb_adapter *adapter);
201
202#ifdef CONFIG_PCI_IOV
203static int igb_vf_configure(struct igb_adapter *adapter, int vf);
204static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
205static int igb_disable_sriov(struct pci_dev *dev);
206static int igb_pci_disable_sriov(struct pci_dev *dev);
207#endif
208
209static int igb_suspend(struct device *);
210static int igb_resume(struct device *);
211static int igb_runtime_suspend(struct device *dev);
212static int igb_runtime_resume(struct device *dev);
213static int igb_runtime_idle(struct device *dev);
214static const struct dev_pm_ops igb_pm_ops = {
215 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
216 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
217 igb_runtime_idle)
218};
219static void igb_shutdown(struct pci_dev *);
220static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
221#ifdef CONFIG_IGB_DCA
222static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
223static struct notifier_block dca_notifier = {
224 .notifier_call = igb_notify_dca,
225 .next = NULL,
226 .priority = 0
227};
228#endif
229#ifdef CONFIG_NET_POLL_CONTROLLER
230/* for netdump / net console */
231static void igb_netpoll(struct net_device *);
232#endif
233#ifdef CONFIG_PCI_IOV
234static unsigned int max_vfs;
235module_param(max_vfs, uint, 0);
236MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
237#endif /* CONFIG_PCI_IOV */
238
239static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
240 pci_channel_state_t);
241static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
242static void igb_io_resume(struct pci_dev *);
243
244static const struct pci_error_handlers igb_err_handler = {
245 .error_detected = igb_io_error_detected,
246 .slot_reset = igb_io_slot_reset,
247 .resume = igb_io_resume,
248};
249
250static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
251
252static struct pci_driver igb_driver = {
253 .name = igb_driver_name,
254 .id_table = igb_pci_tbl,
255 .probe = igb_probe,
256 .remove = igb_remove,
257#ifdef CONFIG_PM
258 .driver.pm = &igb_pm_ops,
259#endif
260 .shutdown = igb_shutdown,
261 .sriov_configure = igb_pci_sriov_configure,
262 .err_handler = &igb_err_handler
263};
264
265MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
266MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
267MODULE_LICENSE("GPL");
268MODULE_VERSION(DRV_VERSION);
269
270#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
271static int debug = -1;
272module_param(debug, int, 0);
273MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
274
275struct igb_reg_info {
276 u32 ofs;
277 char *name;
278};
279
280static const struct igb_reg_info igb_reg_info_tbl[] = {
281
282 /* General Registers */
283 {E1000_CTRL, "CTRL"},
284 {E1000_STATUS, "STATUS"},
285 {E1000_CTRL_EXT, "CTRL_EXT"},
286
287 /* Interrupt Registers */
288 {E1000_ICR, "ICR"},
289
290 /* RX Registers */
291 {E1000_RCTL, "RCTL"},
292 {E1000_RDLEN(0), "RDLEN"},
293 {E1000_RDH(0), "RDH"},
294 {E1000_RDT(0), "RDT"},
295 {E1000_RXDCTL(0), "RXDCTL"},
296 {E1000_RDBAL(0), "RDBAL"},
297 {E1000_RDBAH(0), "RDBAH"},
298
299 /* TX Registers */
300 {E1000_TCTL, "TCTL"},
301 {E1000_TDBAL(0), "TDBAL"},
302 {E1000_TDBAH(0), "TDBAH"},
303 {E1000_TDLEN(0), "TDLEN"},
304 {E1000_TDH(0), "TDH"},
305 {E1000_TDT(0), "TDT"},
306 {E1000_TXDCTL(0), "TXDCTL"},
307 {E1000_TDFH, "TDFH"},
308 {E1000_TDFT, "TDFT"},
309 {E1000_TDFHS, "TDFHS"},
310 {E1000_TDFPC, "TDFPC"},
311
312 /* List Terminator */
313 {}
314};
315
316/* igb_regdump - register printout routine */
317static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
318{
319 int n = 0;
320 char rname[16];
321 u32 regs[8];
322
323 switch (reginfo->ofs) {
324 case E1000_RDLEN(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDLEN(n));
327 break;
328 case E1000_RDH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDH(n));
331 break;
332 case E1000_RDT(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_RDT(n));
335 break;
336 case E1000_RXDCTL(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_RXDCTL(n));
339 break;
340 case E1000_RDBAL(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_RDBAL(n));
343 break;
344 case E1000_RDBAH(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_RDBAH(n));
347 break;
348 case E1000_TDBAL(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_RDBAL(n));
351 break;
352 case E1000_TDBAH(0):
353 for (n = 0; n < 4; n++)
354 regs[n] = rd32(E1000_TDBAH(n));
355 break;
356 case E1000_TDLEN(0):
357 for (n = 0; n < 4; n++)
358 regs[n] = rd32(E1000_TDLEN(n));
359 break;
360 case E1000_TDH(0):
361 for (n = 0; n < 4; n++)
362 regs[n] = rd32(E1000_TDH(n));
363 break;
364 case E1000_TDT(0):
365 for (n = 0; n < 4; n++)
366 regs[n] = rd32(E1000_TDT(n));
367 break;
368 case E1000_TXDCTL(0):
369 for (n = 0; n < 4; n++)
370 regs[n] = rd32(E1000_TXDCTL(n));
371 break;
372 default:
373 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
374 return;
375 }
376
377 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
378 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
379 regs[2], regs[3]);
380}
381
382/* igb_dump - Print registers, Tx-rings and Rx-rings */
383static void igb_dump(struct igb_adapter *adapter)
384{
385 struct net_device *netdev = adapter->netdev;
386 struct e1000_hw *hw = &adapter->hw;
387 struct igb_reg_info *reginfo;
388 struct igb_ring *tx_ring;
389 union e1000_adv_tx_desc *tx_desc;
390 struct my_u0 { u64 a; u64 b; } *u0;
391 struct igb_ring *rx_ring;
392 union e1000_adv_rx_desc *rx_desc;
393 u32 staterr;
394 u16 i, n;
395
396 if (!netif_msg_hw(adapter))
397 return;
398
399 /* Print netdevice Info */
400 if (netdev) {
401 dev_info(&adapter->pdev->dev, "Net device Info\n");
402 pr_info("Device Name state trans_start\n");
403 pr_info("%-15s %016lX %016lX\n", netdev->name,
404 netdev->state, dev_trans_start(netdev));
405 }
406
407 /* Print Registers */
408 dev_info(&adapter->pdev->dev, "Register Dump\n");
409 pr_info(" Register Name Value\n");
410 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
411 reginfo->name; reginfo++) {
412 igb_regdump(hw, reginfo);
413 }
414
415 /* Print TX Ring Summary */
416 if (!netdev || !netif_running(netdev))
417 goto exit;
418
419 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
420 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
421 for (n = 0; n < adapter->num_tx_queues; n++) {
422 struct igb_tx_buffer *buffer_info;
423 tx_ring = adapter->tx_ring[n];
424 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
425 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
426 n, tx_ring->next_to_use, tx_ring->next_to_clean,
427 (u64)dma_unmap_addr(buffer_info, dma),
428 dma_unmap_len(buffer_info, len),
429 buffer_info->next_to_watch,
430 (u64)buffer_info->time_stamp);
431 }
432
433 /* Print TX Rings */
434 if (!netif_msg_tx_done(adapter))
435 goto rx_ring_summary;
436
437 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
438
439 /* Transmit Descriptor Formats
440 *
441 * Advanced Transmit Descriptor
442 * +--------------------------------------------------------------+
443 * 0 | Buffer Address [63:0] |
444 * +--------------------------------------------------------------+
445 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
446 * +--------------------------------------------------------------+
447 * 63 46 45 40 39 38 36 35 32 31 24 15 0
448 */
449
450 for (n = 0; n < adapter->num_tx_queues; n++) {
451 tx_ring = adapter->tx_ring[n];
452 pr_info("------------------------------------\n");
453 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
454 pr_info("------------------------------------\n");
455 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
456
457 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
458 const char *next_desc;
459 struct igb_tx_buffer *buffer_info;
460 tx_desc = IGB_TX_DESC(tx_ring, i);
461 buffer_info = &tx_ring->tx_buffer_info[i];
462 u0 = (struct my_u0 *)tx_desc;
463 if (i == tx_ring->next_to_use &&
464 i == tx_ring->next_to_clean)
465 next_desc = " NTC/U";
466 else if (i == tx_ring->next_to_use)
467 next_desc = " NTU";
468 else if (i == tx_ring->next_to_clean)
469 next_desc = " NTC";
470 else
471 next_desc = "";
472
473 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
474 i, le64_to_cpu(u0->a),
475 le64_to_cpu(u0->b),
476 (u64)dma_unmap_addr(buffer_info, dma),
477 dma_unmap_len(buffer_info, len),
478 buffer_info->next_to_watch,
479 (u64)buffer_info->time_stamp,
480 buffer_info->skb, next_desc);
481
482 if (netif_msg_pktdata(adapter) && buffer_info->skb)
483 print_hex_dump(KERN_INFO, "",
484 DUMP_PREFIX_ADDRESS,
485 16, 1, buffer_info->skb->data,
486 dma_unmap_len(buffer_info, len),
487 true);
488 }
489 }
490
491 /* Print RX Rings Summary */
492rx_ring_summary:
493 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
494 pr_info("Queue [NTU] [NTC]\n");
495 for (n = 0; n < adapter->num_rx_queues; n++) {
496 rx_ring = adapter->rx_ring[n];
497 pr_info(" %5d %5X %5X\n",
498 n, rx_ring->next_to_use, rx_ring->next_to_clean);
499 }
500
501 /* Print RX Rings */
502 if (!netif_msg_rx_status(adapter))
503 goto exit;
504
505 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
506
507 /* Advanced Receive Descriptor (Read) Format
508 * 63 1 0
509 * +-----------------------------------------------------+
510 * 0 | Packet Buffer Address [63:1] |A0/NSE|
511 * +----------------------------------------------+------+
512 * 8 | Header Buffer Address [63:1] | DD |
513 * +-----------------------------------------------------+
514 *
515 *
516 * Advanced Receive Descriptor (Write-Back) Format
517 *
518 * 63 48 47 32 31 30 21 20 17 16 4 3 0
519 * +------------------------------------------------------+
520 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
521 * | Checksum Ident | | | | Type | Type |
522 * +------------------------------------------------------+
523 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
524 * +------------------------------------------------------+
525 * 63 48 47 32 31 20 19 0
526 */
527
528 for (n = 0; n < adapter->num_rx_queues; n++) {
529 rx_ring = adapter->rx_ring[n];
530 pr_info("------------------------------------\n");
531 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
532 pr_info("------------------------------------\n");
533 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
534 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
535
536 for (i = 0; i < rx_ring->count; i++) {
537 const char *next_desc;
538 struct igb_rx_buffer *buffer_info;
539 buffer_info = &rx_ring->rx_buffer_info[i];
540 rx_desc = IGB_RX_DESC(rx_ring, i);
541 u0 = (struct my_u0 *)rx_desc;
542 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
543
544 if (i == rx_ring->next_to_use)
545 next_desc = " NTU";
546 else if (i == rx_ring->next_to_clean)
547 next_desc = " NTC";
548 else
549 next_desc = "";
550
551 if (staterr & E1000_RXD_STAT_DD) {
552 /* Descriptor Done */
553 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
554 "RWB", i,
555 le64_to_cpu(u0->a),
556 le64_to_cpu(u0->b),
557 next_desc);
558 } else {
559 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
560 "R ", i,
561 le64_to_cpu(u0->a),
562 le64_to_cpu(u0->b),
563 (u64)buffer_info->dma,
564 next_desc);
565
566 if (netif_msg_pktdata(adapter) &&
567 buffer_info->dma && buffer_info->page) {
568 print_hex_dump(KERN_INFO, "",
569 DUMP_PREFIX_ADDRESS,
570 16, 1,
571 page_address(buffer_info->page) +
572 buffer_info->page_offset,
573 igb_rx_bufsz(rx_ring), true);
574 }
575 }
576 }
577 }
578
579exit:
580 return;
581}
582
583/**
584 * igb_get_i2c_data - Reads the I2C SDA data bit
585 * @hw: pointer to hardware structure
586 * @i2cctl: Current value of I2CCTL register
587 *
588 * Returns the I2C data bit value
589 **/
590static int igb_get_i2c_data(void *data)
591{
592 struct igb_adapter *adapter = (struct igb_adapter *)data;
593 struct e1000_hw *hw = &adapter->hw;
594 s32 i2cctl = rd32(E1000_I2CPARAMS);
595
596 return !!(i2cctl & E1000_I2C_DATA_IN);
597}
598
599/**
600 * igb_set_i2c_data - Sets the I2C data bit
601 * @data: pointer to hardware structure
602 * @state: I2C data value (0 or 1) to set
603 *
604 * Sets the I2C data bit
605 **/
606static void igb_set_i2c_data(void *data, int state)
607{
608 struct igb_adapter *adapter = (struct igb_adapter *)data;
609 struct e1000_hw *hw = &adapter->hw;
610 s32 i2cctl = rd32(E1000_I2CPARAMS);
611
612 if (state)
613 i2cctl |= E1000_I2C_DATA_OUT;
614 else
615 i2cctl &= ~E1000_I2C_DATA_OUT;
616
617 i2cctl &= ~E1000_I2C_DATA_OE_N;
618 i2cctl |= E1000_I2C_CLK_OE_N;
619 wr32(E1000_I2CPARAMS, i2cctl);
620 wrfl();
621
622}
623
624/**
625 * igb_set_i2c_clk - Sets the I2C SCL clock
626 * @data: pointer to hardware structure
627 * @state: state to set clock
628 *
629 * Sets the I2C clock line to state
630 **/
631static void igb_set_i2c_clk(void *data, int state)
632{
633 struct igb_adapter *adapter = (struct igb_adapter *)data;
634 struct e1000_hw *hw = &adapter->hw;
635 s32 i2cctl = rd32(E1000_I2CPARAMS);
636
637 if (state) {
638 i2cctl |= E1000_I2C_CLK_OUT;
639 i2cctl &= ~E1000_I2C_CLK_OE_N;
640 } else {
641 i2cctl &= ~E1000_I2C_CLK_OUT;
642 i2cctl &= ~E1000_I2C_CLK_OE_N;
643 }
644 wr32(E1000_I2CPARAMS, i2cctl);
645 wrfl();
646}
647
648/**
649 * igb_get_i2c_clk - Gets the I2C SCL clock state
650 * @data: pointer to hardware structure
651 *
652 * Gets the I2C clock state
653 **/
654static int igb_get_i2c_clk(void *data)
655{
656 struct igb_adapter *adapter = (struct igb_adapter *)data;
657 struct e1000_hw *hw = &adapter->hw;
658 s32 i2cctl = rd32(E1000_I2CPARAMS);
659
660 return !!(i2cctl & E1000_I2C_CLK_IN);
661}
662
663static const struct i2c_algo_bit_data igb_i2c_algo = {
664 .setsda = igb_set_i2c_data,
665 .setscl = igb_set_i2c_clk,
666 .getsda = igb_get_i2c_data,
667 .getscl = igb_get_i2c_clk,
668 .udelay = 5,
669 .timeout = 20,
670};
671
672/**
673 * igb_get_hw_dev - return device
674 * @hw: pointer to hardware structure
675 *
676 * used by hardware layer to print debugging information
677 **/
678struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
679{
680 struct igb_adapter *adapter = hw->back;
681 return adapter->netdev;
682}
683
684/**
685 * igb_init_module - Driver Registration Routine
686 *
687 * igb_init_module is the first routine called when the driver is
688 * loaded. All it does is register with the PCI subsystem.
689 **/
690static int __init igb_init_module(void)
691{
692 int ret;
693
694 pr_info("%s - version %s\n",
695 igb_driver_string, igb_driver_version);
696 pr_info("%s\n", igb_copyright);
697
698#ifdef CONFIG_IGB_DCA
699 dca_register_notify(&dca_notifier);
700#endif
701 ret = pci_register_driver(&igb_driver);
702 return ret;
703}
704
705module_init(igb_init_module);
706
707/**
708 * igb_exit_module - Driver Exit Cleanup Routine
709 *
710 * igb_exit_module is called just before the driver is removed
711 * from memory.
712 **/
713static void __exit igb_exit_module(void)
714{
715#ifdef CONFIG_IGB_DCA
716 dca_unregister_notify(&dca_notifier);
717#endif
718 pci_unregister_driver(&igb_driver);
719}
720
721module_exit(igb_exit_module);
722
723#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
724/**
725 * igb_cache_ring_register - Descriptor ring to register mapping
726 * @adapter: board private structure to initialize
727 *
728 * Once we know the feature-set enabled for the device, we'll cache
729 * the register offset the descriptor ring is assigned to.
730 **/
731static void igb_cache_ring_register(struct igb_adapter *adapter)
732{
733 int i = 0, j = 0;
734 u32 rbase_offset = adapter->vfs_allocated_count;
735
736 switch (adapter->hw.mac.type) {
737 case e1000_82576:
738 /* The queues are allocated for virtualization such that VF 0
739 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
740 * In order to avoid collision we start at the first free queue
741 * and continue consuming queues in the same sequence
742 */
743 if (adapter->vfs_allocated_count) {
744 for (; i < adapter->rss_queues; i++)
745 adapter->rx_ring[i]->reg_idx = rbase_offset +
746 Q_IDX_82576(i);
747 }
748 /* Fall through */
749 case e1000_82575:
750 case e1000_82580:
751 case e1000_i350:
752 case e1000_i354:
753 case e1000_i210:
754 case e1000_i211:
755 /* Fall through */
756 default:
757 for (; i < adapter->num_rx_queues; i++)
758 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
759 for (; j < adapter->num_tx_queues; j++)
760 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
761 break;
762 }
763}
764
765u32 igb_rd32(struct e1000_hw *hw, u32 reg)
766{
767 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
768 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
769 u32 value = 0;
770
771 if (E1000_REMOVED(hw_addr))
772 return ~value;
773
774 value = readl(&hw_addr[reg]);
775
776 /* reads should not return all F's */
777 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
778 struct net_device *netdev = igb->netdev;
779 hw->hw_addr = NULL;
780 netdev_err(netdev, "PCIe link lost\n");
781 }
782
783 return value;
784}
785
786/**
787 * igb_write_ivar - configure ivar for given MSI-X vector
788 * @hw: pointer to the HW structure
789 * @msix_vector: vector number we are allocating to a given ring
790 * @index: row index of IVAR register to write within IVAR table
791 * @offset: column offset of in IVAR, should be multiple of 8
792 *
793 * This function is intended to handle the writing of the IVAR register
794 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
795 * each containing an cause allocation for an Rx and Tx ring, and a
796 * variable number of rows depending on the number of queues supported.
797 **/
798static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
799 int index, int offset)
800{
801 u32 ivar = array_rd32(E1000_IVAR0, index);
802
803 /* clear any bits that are currently set */
804 ivar &= ~((u32)0xFF << offset);
805
806 /* write vector and valid bit */
807 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
808
809 array_wr32(E1000_IVAR0, index, ivar);
810}
811
812#define IGB_N0_QUEUE -1
813static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
814{
815 struct igb_adapter *adapter = q_vector->adapter;
816 struct e1000_hw *hw = &adapter->hw;
817 int rx_queue = IGB_N0_QUEUE;
818 int tx_queue = IGB_N0_QUEUE;
819 u32 msixbm = 0;
820
821 if (q_vector->rx.ring)
822 rx_queue = q_vector->rx.ring->reg_idx;
823 if (q_vector->tx.ring)
824 tx_queue = q_vector->tx.ring->reg_idx;
825
826 switch (hw->mac.type) {
827 case e1000_82575:
828 /* The 82575 assigns vectors using a bitmask, which matches the
829 * bitmask for the EICR/EIMS/EIMC registers. To assign one
830 * or more queues to a vector, we write the appropriate bits
831 * into the MSIXBM register for that vector.
832 */
833 if (rx_queue > IGB_N0_QUEUE)
834 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
835 if (tx_queue > IGB_N0_QUEUE)
836 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
837 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
838 msixbm |= E1000_EIMS_OTHER;
839 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
840 q_vector->eims_value = msixbm;
841 break;
842 case e1000_82576:
843 /* 82576 uses a table that essentially consists of 2 columns
844 * with 8 rows. The ordering is column-major so we use the
845 * lower 3 bits as the row index, and the 4th bit as the
846 * column offset.
847 */
848 if (rx_queue > IGB_N0_QUEUE)
849 igb_write_ivar(hw, msix_vector,
850 rx_queue & 0x7,
851 (rx_queue & 0x8) << 1);
852 if (tx_queue > IGB_N0_QUEUE)
853 igb_write_ivar(hw, msix_vector,
854 tx_queue & 0x7,
855 ((tx_queue & 0x8) << 1) + 8);
856 q_vector->eims_value = BIT(msix_vector);
857 break;
858 case e1000_82580:
859 case e1000_i350:
860 case e1000_i354:
861 case e1000_i210:
862 case e1000_i211:
863 /* On 82580 and newer adapters the scheme is similar to 82576
864 * however instead of ordering column-major we have things
865 * ordered row-major. So we traverse the table by using
866 * bit 0 as the column offset, and the remaining bits as the
867 * row index.
868 */
869 if (rx_queue > IGB_N0_QUEUE)
870 igb_write_ivar(hw, msix_vector,
871 rx_queue >> 1,
872 (rx_queue & 0x1) << 4);
873 if (tx_queue > IGB_N0_QUEUE)
874 igb_write_ivar(hw, msix_vector,
875 tx_queue >> 1,
876 ((tx_queue & 0x1) << 4) + 8);
877 q_vector->eims_value = BIT(msix_vector);
878 break;
879 default:
880 BUG();
881 break;
882 }
883
884 /* add q_vector eims value to global eims_enable_mask */
885 adapter->eims_enable_mask |= q_vector->eims_value;
886
887 /* configure q_vector to set itr on first interrupt */
888 q_vector->set_itr = 1;
889}
890
891/**
892 * igb_configure_msix - Configure MSI-X hardware
893 * @adapter: board private structure to initialize
894 *
895 * igb_configure_msix sets up the hardware to properly
896 * generate MSI-X interrupts.
897 **/
898static void igb_configure_msix(struct igb_adapter *adapter)
899{
900 u32 tmp;
901 int i, vector = 0;
902 struct e1000_hw *hw = &adapter->hw;
903
904 adapter->eims_enable_mask = 0;
905
906 /* set vector for other causes, i.e. link changes */
907 switch (hw->mac.type) {
908 case e1000_82575:
909 tmp = rd32(E1000_CTRL_EXT);
910 /* enable MSI-X PBA support*/
911 tmp |= E1000_CTRL_EXT_PBA_CLR;
912
913 /* Auto-Mask interrupts upon ICR read. */
914 tmp |= E1000_CTRL_EXT_EIAME;
915 tmp |= E1000_CTRL_EXT_IRCA;
916
917 wr32(E1000_CTRL_EXT, tmp);
918
919 /* enable msix_other interrupt */
920 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
921 adapter->eims_other = E1000_EIMS_OTHER;
922
923 break;
924
925 case e1000_82576:
926 case e1000_82580:
927 case e1000_i350:
928 case e1000_i354:
929 case e1000_i210:
930 case e1000_i211:
931 /* Turn on MSI-X capability first, or our settings
932 * won't stick. And it will take days to debug.
933 */
934 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
935 E1000_GPIE_PBA | E1000_GPIE_EIAME |
936 E1000_GPIE_NSICR);
937
938 /* enable msix_other interrupt */
939 adapter->eims_other = BIT(vector);
940 tmp = (vector++ | E1000_IVAR_VALID) << 8;
941
942 wr32(E1000_IVAR_MISC, tmp);
943 break;
944 default:
945 /* do nothing, since nothing else supports MSI-X */
946 break;
947 } /* switch (hw->mac.type) */
948
949 adapter->eims_enable_mask |= adapter->eims_other;
950
951 for (i = 0; i < adapter->num_q_vectors; i++)
952 igb_assign_vector(adapter->q_vector[i], vector++);
953
954 wrfl();
955}
956
957/**
958 * igb_request_msix - Initialize MSI-X interrupts
959 * @adapter: board private structure to initialize
960 *
961 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
962 * kernel.
963 **/
964static int igb_request_msix(struct igb_adapter *adapter)
965{
966 struct net_device *netdev = adapter->netdev;
967 int i, err = 0, vector = 0, free_vector = 0;
968
969 err = request_irq(adapter->msix_entries[vector].vector,
970 igb_msix_other, 0, netdev->name, adapter);
971 if (err)
972 goto err_out;
973
974 for (i = 0; i < adapter->num_q_vectors; i++) {
975 struct igb_q_vector *q_vector = adapter->q_vector[i];
976
977 vector++;
978
979 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
980
981 if (q_vector->rx.ring && q_vector->tx.ring)
982 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
983 q_vector->rx.ring->queue_index);
984 else if (q_vector->tx.ring)
985 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
986 q_vector->tx.ring->queue_index);
987 else if (q_vector->rx.ring)
988 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
989 q_vector->rx.ring->queue_index);
990 else
991 sprintf(q_vector->name, "%s-unused", netdev->name);
992
993 err = request_irq(adapter->msix_entries[vector].vector,
994 igb_msix_ring, 0, q_vector->name,
995 q_vector);
996 if (err)
997 goto err_free;
998 }
999
1000 igb_configure_msix(adapter);
1001 return 0;
1002
1003err_free:
1004 /* free already assigned IRQs */
1005 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
1006
1007 vector--;
1008 for (i = 0; i < vector; i++) {
1009 free_irq(adapter->msix_entries[free_vector++].vector,
1010 adapter->q_vector[i]);
1011 }
1012err_out:
1013 return err;
1014}
1015
1016/**
1017 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1018 * @adapter: board private structure to initialize
1019 * @v_idx: Index of vector to be freed
1020 *
1021 * This function frees the memory allocated to the q_vector.
1022 **/
1023static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1024{
1025 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1026
1027 adapter->q_vector[v_idx] = NULL;
1028
1029 /* igb_get_stats64() might access the rings on this vector,
1030 * we must wait a grace period before freeing it.
1031 */
1032 if (q_vector)
1033 kfree_rcu(q_vector, rcu);
1034}
1035
1036/**
1037 * igb_reset_q_vector - Reset config for interrupt vector
1038 * @adapter: board private structure to initialize
1039 * @v_idx: Index of vector to be reset
1040 *
1041 * If NAPI is enabled it will delete any references to the
1042 * NAPI struct. This is preparation for igb_free_q_vector.
1043 **/
1044static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1045{
1046 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1047
1048 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1049 * allocated. So, q_vector is NULL so we should stop here.
1050 */
1051 if (!q_vector)
1052 return;
1053
1054 if (q_vector->tx.ring)
1055 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1056
1057 if (q_vector->rx.ring)
1058 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1059
1060 netif_napi_del(&q_vector->napi);
1061
1062}
1063
1064static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1065{
1066 int v_idx = adapter->num_q_vectors;
1067
1068 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1069 pci_disable_msix(adapter->pdev);
1070 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1071 pci_disable_msi(adapter->pdev);
1072
1073 while (v_idx--)
1074 igb_reset_q_vector(adapter, v_idx);
1075}
1076
1077/**
1078 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1079 * @adapter: board private structure to initialize
1080 *
1081 * This function frees the memory allocated to the q_vectors. In addition if
1082 * NAPI is enabled it will delete any references to the NAPI struct prior
1083 * to freeing the q_vector.
1084 **/
1085static void igb_free_q_vectors(struct igb_adapter *adapter)
1086{
1087 int v_idx = adapter->num_q_vectors;
1088
1089 adapter->num_tx_queues = 0;
1090 adapter->num_rx_queues = 0;
1091 adapter->num_q_vectors = 0;
1092
1093 while (v_idx--) {
1094 igb_reset_q_vector(adapter, v_idx);
1095 igb_free_q_vector(adapter, v_idx);
1096 }
1097}
1098
1099/**
1100 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1101 * @adapter: board private structure to initialize
1102 *
1103 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1104 * MSI-X interrupts allocated.
1105 */
1106static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1107{
1108 igb_free_q_vectors(adapter);
1109 igb_reset_interrupt_capability(adapter);
1110}
1111
1112/**
1113 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1114 * @adapter: board private structure to initialize
1115 * @msix: boolean value of MSIX capability
1116 *
1117 * Attempt to configure interrupts using the best available
1118 * capabilities of the hardware and kernel.
1119 **/
1120static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1121{
1122 int err;
1123 int numvecs, i;
1124
1125 if (!msix)
1126 goto msi_only;
1127 adapter->flags |= IGB_FLAG_HAS_MSIX;
1128
1129 /* Number of supported queues. */
1130 adapter->num_rx_queues = adapter->rss_queues;
1131 if (adapter->vfs_allocated_count)
1132 adapter->num_tx_queues = 1;
1133 else
1134 adapter->num_tx_queues = adapter->rss_queues;
1135
1136 /* start with one vector for every Rx queue */
1137 numvecs = adapter->num_rx_queues;
1138
1139 /* if Tx handler is separate add 1 for every Tx queue */
1140 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1141 numvecs += adapter->num_tx_queues;
1142
1143 /* store the number of vectors reserved for queues */
1144 adapter->num_q_vectors = numvecs;
1145
1146 /* add 1 vector for link status interrupts */
1147 numvecs++;
1148 for (i = 0; i < numvecs; i++)
1149 adapter->msix_entries[i].entry = i;
1150
1151 err = pci_enable_msix_range(adapter->pdev,
1152 adapter->msix_entries,
1153 numvecs,
1154 numvecs);
1155 if (err > 0)
1156 return;
1157
1158 igb_reset_interrupt_capability(adapter);
1159
1160 /* If we can't do MSI-X, try MSI */
1161msi_only:
1162 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1163#ifdef CONFIG_PCI_IOV
1164 /* disable SR-IOV for non MSI-X configurations */
1165 if (adapter->vf_data) {
1166 struct e1000_hw *hw = &adapter->hw;
1167 /* disable iov and allow time for transactions to clear */
1168 pci_disable_sriov(adapter->pdev);
1169 msleep(500);
1170
1171 kfree(adapter->vf_mac_list);
1172 adapter->vf_mac_list = NULL;
1173 kfree(adapter->vf_data);
1174 adapter->vf_data = NULL;
1175 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1176 wrfl();
1177 msleep(100);
1178 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1179 }
1180#endif
1181 adapter->vfs_allocated_count = 0;
1182 adapter->rss_queues = 1;
1183 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1184 adapter->num_rx_queues = 1;
1185 adapter->num_tx_queues = 1;
1186 adapter->num_q_vectors = 1;
1187 if (!pci_enable_msi(adapter->pdev))
1188 adapter->flags |= IGB_FLAG_HAS_MSI;
1189}
1190
1191static void igb_add_ring(struct igb_ring *ring,
1192 struct igb_ring_container *head)
1193{
1194 head->ring = ring;
1195 head->count++;
1196}
1197
1198/**
1199 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1200 * @adapter: board private structure to initialize
1201 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1202 * @v_idx: index of vector in adapter struct
1203 * @txr_count: total number of Tx rings to allocate
1204 * @txr_idx: index of first Tx ring to allocate
1205 * @rxr_count: total number of Rx rings to allocate
1206 * @rxr_idx: index of first Rx ring to allocate
1207 *
1208 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1209 **/
1210static int igb_alloc_q_vector(struct igb_adapter *adapter,
1211 int v_count, int v_idx,
1212 int txr_count, int txr_idx,
1213 int rxr_count, int rxr_idx)
1214{
1215 struct igb_q_vector *q_vector;
1216 struct igb_ring *ring;
1217 int ring_count, size;
1218
1219 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1220 if (txr_count > 1 || rxr_count > 1)
1221 return -ENOMEM;
1222
1223 ring_count = txr_count + rxr_count;
1224 size = sizeof(struct igb_q_vector) +
1225 (sizeof(struct igb_ring) * ring_count);
1226
1227 /* allocate q_vector and rings */
1228 q_vector = adapter->q_vector[v_idx];
1229 if (!q_vector) {
1230 q_vector = kzalloc(size, GFP_KERNEL);
1231 } else if (size > ksize(q_vector)) {
1232 kfree_rcu(q_vector, rcu);
1233 q_vector = kzalloc(size, GFP_KERNEL);
1234 } else {
1235 memset(q_vector, 0, size);
1236 }
1237 if (!q_vector)
1238 return -ENOMEM;
1239
1240 /* initialize NAPI */
1241 netif_napi_add(adapter->netdev, &q_vector->napi,
1242 igb_poll, 64);
1243
1244 /* tie q_vector and adapter together */
1245 adapter->q_vector[v_idx] = q_vector;
1246 q_vector->adapter = adapter;
1247
1248 /* initialize work limits */
1249 q_vector->tx.work_limit = adapter->tx_work_limit;
1250
1251 /* initialize ITR configuration */
1252 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1253 q_vector->itr_val = IGB_START_ITR;
1254
1255 /* initialize pointer to rings */
1256 ring = q_vector->ring;
1257
1258 /* intialize ITR */
1259 if (rxr_count) {
1260 /* rx or rx/tx vector */
1261 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1262 q_vector->itr_val = adapter->rx_itr_setting;
1263 } else {
1264 /* tx only vector */
1265 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1266 q_vector->itr_val = adapter->tx_itr_setting;
1267 }
1268
1269 if (txr_count) {
1270 /* assign generic ring traits */
1271 ring->dev = &adapter->pdev->dev;
1272 ring->netdev = adapter->netdev;
1273
1274 /* configure backlink on ring */
1275 ring->q_vector = q_vector;
1276
1277 /* update q_vector Tx values */
1278 igb_add_ring(ring, &q_vector->tx);
1279
1280 /* For 82575, context index must be unique per ring. */
1281 if (adapter->hw.mac.type == e1000_82575)
1282 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1283
1284 /* apply Tx specific ring traits */
1285 ring->count = adapter->tx_ring_count;
1286 ring->queue_index = txr_idx;
1287
1288 ring->cbs_enable = false;
1289 ring->idleslope = 0;
1290 ring->sendslope = 0;
1291 ring->hicredit = 0;
1292 ring->locredit = 0;
1293
1294 u64_stats_init(&ring->tx_syncp);
1295 u64_stats_init(&ring->tx_syncp2);
1296
1297 /* assign ring to adapter */
1298 adapter->tx_ring[txr_idx] = ring;
1299
1300 /* push pointer to next ring */
1301 ring++;
1302 }
1303
1304 if (rxr_count) {
1305 /* assign generic ring traits */
1306 ring->dev = &adapter->pdev->dev;
1307 ring->netdev = adapter->netdev;
1308
1309 /* configure backlink on ring */
1310 ring->q_vector = q_vector;
1311
1312 /* update q_vector Rx values */
1313 igb_add_ring(ring, &q_vector->rx);
1314
1315 /* set flag indicating ring supports SCTP checksum offload */
1316 if (adapter->hw.mac.type >= e1000_82576)
1317 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1318
1319 /* On i350, i354, i210, and i211, loopback VLAN packets
1320 * have the tag byte-swapped.
1321 */
1322 if (adapter->hw.mac.type >= e1000_i350)
1323 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1324
1325 /* apply Rx specific ring traits */
1326 ring->count = adapter->rx_ring_count;
1327 ring->queue_index = rxr_idx;
1328
1329 u64_stats_init(&ring->rx_syncp);
1330
1331 /* assign ring to adapter */
1332 adapter->rx_ring[rxr_idx] = ring;
1333 }
1334
1335 return 0;
1336}
1337
1338
1339/**
1340 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1341 * @adapter: board private structure to initialize
1342 *
1343 * We allocate one q_vector per queue interrupt. If allocation fails we
1344 * return -ENOMEM.
1345 **/
1346static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1347{
1348 int q_vectors = adapter->num_q_vectors;
1349 int rxr_remaining = adapter->num_rx_queues;
1350 int txr_remaining = adapter->num_tx_queues;
1351 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1352 int err;
1353
1354 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1355 for (; rxr_remaining; v_idx++) {
1356 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1357 0, 0, 1, rxr_idx);
1358
1359 if (err)
1360 goto err_out;
1361
1362 /* update counts and index */
1363 rxr_remaining--;
1364 rxr_idx++;
1365 }
1366 }
1367
1368 for (; v_idx < q_vectors; v_idx++) {
1369 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1370 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1371
1372 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1373 tqpv, txr_idx, rqpv, rxr_idx);
1374
1375 if (err)
1376 goto err_out;
1377
1378 /* update counts and index */
1379 rxr_remaining -= rqpv;
1380 txr_remaining -= tqpv;
1381 rxr_idx++;
1382 txr_idx++;
1383 }
1384
1385 return 0;
1386
1387err_out:
1388 adapter->num_tx_queues = 0;
1389 adapter->num_rx_queues = 0;
1390 adapter->num_q_vectors = 0;
1391
1392 while (v_idx--)
1393 igb_free_q_vector(adapter, v_idx);
1394
1395 return -ENOMEM;
1396}
1397
1398/**
1399 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1400 * @adapter: board private structure to initialize
1401 * @msix: boolean value of MSIX capability
1402 *
1403 * This function initializes the interrupts and allocates all of the queues.
1404 **/
1405static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1406{
1407 struct pci_dev *pdev = adapter->pdev;
1408 int err;
1409
1410 igb_set_interrupt_capability(adapter, msix);
1411
1412 err = igb_alloc_q_vectors(adapter);
1413 if (err) {
1414 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1415 goto err_alloc_q_vectors;
1416 }
1417
1418 igb_cache_ring_register(adapter);
1419
1420 return 0;
1421
1422err_alloc_q_vectors:
1423 igb_reset_interrupt_capability(adapter);
1424 return err;
1425}
1426
1427/**
1428 * igb_request_irq - initialize interrupts
1429 * @adapter: board private structure to initialize
1430 *
1431 * Attempts to configure interrupts using the best available
1432 * capabilities of the hardware and kernel.
1433 **/
1434static int igb_request_irq(struct igb_adapter *adapter)
1435{
1436 struct net_device *netdev = adapter->netdev;
1437 struct pci_dev *pdev = adapter->pdev;
1438 int err = 0;
1439
1440 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1441 err = igb_request_msix(adapter);
1442 if (!err)
1443 goto request_done;
1444 /* fall back to MSI */
1445 igb_free_all_tx_resources(adapter);
1446 igb_free_all_rx_resources(adapter);
1447
1448 igb_clear_interrupt_scheme(adapter);
1449 err = igb_init_interrupt_scheme(adapter, false);
1450 if (err)
1451 goto request_done;
1452
1453 igb_setup_all_tx_resources(adapter);
1454 igb_setup_all_rx_resources(adapter);
1455 igb_configure(adapter);
1456 }
1457
1458 igb_assign_vector(adapter->q_vector[0], 0);
1459
1460 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1461 err = request_irq(pdev->irq, igb_intr_msi, 0,
1462 netdev->name, adapter);
1463 if (!err)
1464 goto request_done;
1465
1466 /* fall back to legacy interrupts */
1467 igb_reset_interrupt_capability(adapter);
1468 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1469 }
1470
1471 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1472 netdev->name, adapter);
1473
1474 if (err)
1475 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1476 err);
1477
1478request_done:
1479 return err;
1480}
1481
1482static void igb_free_irq(struct igb_adapter *adapter)
1483{
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 int vector = 0, i;
1486
1487 free_irq(adapter->msix_entries[vector++].vector, adapter);
1488
1489 for (i = 0; i < adapter->num_q_vectors; i++)
1490 free_irq(adapter->msix_entries[vector++].vector,
1491 adapter->q_vector[i]);
1492 } else {
1493 free_irq(adapter->pdev->irq, adapter);
1494 }
1495}
1496
1497/**
1498 * igb_irq_disable - Mask off interrupt generation on the NIC
1499 * @adapter: board private structure
1500 **/
1501static void igb_irq_disable(struct igb_adapter *adapter)
1502{
1503 struct e1000_hw *hw = &adapter->hw;
1504
1505 /* we need to be careful when disabling interrupts. The VFs are also
1506 * mapped into these registers and so clearing the bits can cause
1507 * issues on the VF drivers so we only need to clear what we set
1508 */
1509 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1510 u32 regval = rd32(E1000_EIAM);
1511
1512 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1513 wr32(E1000_EIMC, adapter->eims_enable_mask);
1514 regval = rd32(E1000_EIAC);
1515 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1516 }
1517
1518 wr32(E1000_IAM, 0);
1519 wr32(E1000_IMC, ~0);
1520 wrfl();
1521 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1522 int i;
1523
1524 for (i = 0; i < adapter->num_q_vectors; i++)
1525 synchronize_irq(adapter->msix_entries[i].vector);
1526 } else {
1527 synchronize_irq(adapter->pdev->irq);
1528 }
1529}
1530
1531/**
1532 * igb_irq_enable - Enable default interrupt generation settings
1533 * @adapter: board private structure
1534 **/
1535static void igb_irq_enable(struct igb_adapter *adapter)
1536{
1537 struct e1000_hw *hw = &adapter->hw;
1538
1539 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1540 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1541 u32 regval = rd32(E1000_EIAC);
1542
1543 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1544 regval = rd32(E1000_EIAM);
1545 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1546 wr32(E1000_EIMS, adapter->eims_enable_mask);
1547 if (adapter->vfs_allocated_count) {
1548 wr32(E1000_MBVFIMR, 0xFF);
1549 ims |= E1000_IMS_VMMB;
1550 }
1551 wr32(E1000_IMS, ims);
1552 } else {
1553 wr32(E1000_IMS, IMS_ENABLE_MASK |
1554 E1000_IMS_DRSTA);
1555 wr32(E1000_IAM, IMS_ENABLE_MASK |
1556 E1000_IMS_DRSTA);
1557 }
1558}
1559
1560static void igb_update_mng_vlan(struct igb_adapter *adapter)
1561{
1562 struct e1000_hw *hw = &adapter->hw;
1563 u16 pf_id = adapter->vfs_allocated_count;
1564 u16 vid = adapter->hw.mng_cookie.vlan_id;
1565 u16 old_vid = adapter->mng_vlan_id;
1566
1567 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1568 /* add VID to filter table */
1569 igb_vfta_set(hw, vid, pf_id, true, true);
1570 adapter->mng_vlan_id = vid;
1571 } else {
1572 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1573 }
1574
1575 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1576 (vid != old_vid) &&
1577 !test_bit(old_vid, adapter->active_vlans)) {
1578 /* remove VID from filter table */
1579 igb_vfta_set(hw, vid, pf_id, false, true);
1580 }
1581}
1582
1583/**
1584 * igb_release_hw_control - release control of the h/w to f/w
1585 * @adapter: address of board private structure
1586 *
1587 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1588 * For ASF and Pass Through versions of f/w this means that the
1589 * driver is no longer loaded.
1590 **/
1591static void igb_release_hw_control(struct igb_adapter *adapter)
1592{
1593 struct e1000_hw *hw = &adapter->hw;
1594 u32 ctrl_ext;
1595
1596 /* Let firmware take over control of h/w */
1597 ctrl_ext = rd32(E1000_CTRL_EXT);
1598 wr32(E1000_CTRL_EXT,
1599 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1600}
1601
1602/**
1603 * igb_get_hw_control - get control of the h/w from f/w
1604 * @adapter: address of board private structure
1605 *
1606 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1607 * For ASF and Pass Through versions of f/w this means that
1608 * the driver is loaded.
1609 **/
1610static void igb_get_hw_control(struct igb_adapter *adapter)
1611{
1612 struct e1000_hw *hw = &adapter->hw;
1613 u32 ctrl_ext;
1614
1615 /* Let firmware know the driver has taken over */
1616 ctrl_ext = rd32(E1000_CTRL_EXT);
1617 wr32(E1000_CTRL_EXT,
1618 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1619}
1620
1621static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1622{
1623 struct net_device *netdev = adapter->netdev;
1624 struct e1000_hw *hw = &adapter->hw;
1625
1626 WARN_ON(hw->mac.type != e1000_i210);
1627
1628 if (enable)
1629 adapter->flags |= IGB_FLAG_FQTSS;
1630 else
1631 adapter->flags &= ~IGB_FLAG_FQTSS;
1632
1633 if (netif_running(netdev))
1634 schedule_work(&adapter->reset_task);
1635}
1636
1637static bool is_fqtss_enabled(struct igb_adapter *adapter)
1638{
1639 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1640}
1641
1642static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1643 enum tx_queue_prio prio)
1644{
1645 u32 val;
1646
1647 WARN_ON(hw->mac.type != e1000_i210);
1648 WARN_ON(queue < 0 || queue > 4);
1649
1650 val = rd32(E1000_I210_TXDCTL(queue));
1651
1652 if (prio == TX_QUEUE_PRIO_HIGH)
1653 val |= E1000_TXDCTL_PRIORITY;
1654 else
1655 val &= ~E1000_TXDCTL_PRIORITY;
1656
1657 wr32(E1000_I210_TXDCTL(queue), val);
1658}
1659
1660static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1661{
1662 u32 val;
1663
1664 WARN_ON(hw->mac.type != e1000_i210);
1665 WARN_ON(queue < 0 || queue > 1);
1666
1667 val = rd32(E1000_I210_TQAVCC(queue));
1668
1669 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1670 val |= E1000_TQAVCC_QUEUEMODE;
1671 else
1672 val &= ~E1000_TQAVCC_QUEUEMODE;
1673
1674 wr32(E1000_I210_TQAVCC(queue), val);
1675}
1676
1677/**
1678 * igb_configure_cbs - Configure Credit-Based Shaper (CBS)
1679 * @adapter: pointer to adapter struct
1680 * @queue: queue number
1681 * @enable: true = enable CBS, false = disable CBS
1682 * @idleslope: idleSlope in kbps
1683 * @sendslope: sendSlope in kbps
1684 * @hicredit: hiCredit in bytes
1685 * @locredit: loCredit in bytes
1686 *
1687 * Configure CBS for a given hardware queue. When disabling, idleslope,
1688 * sendslope, hicredit, locredit arguments are ignored. Returns 0 if
1689 * success. Negative otherwise.
1690 **/
1691static void igb_configure_cbs(struct igb_adapter *adapter, int queue,
1692 bool enable, int idleslope, int sendslope,
1693 int hicredit, int locredit)
1694{
1695 struct net_device *netdev = adapter->netdev;
1696 struct e1000_hw *hw = &adapter->hw;
1697 u32 tqavcc;
1698 u16 value;
1699
1700 WARN_ON(hw->mac.type != e1000_i210);
1701 WARN_ON(queue < 0 || queue > 1);
1702
1703 if (enable || queue == 0) {
1704 /* i210 does not allow the queue 0 to be in the Strict
1705 * Priority mode while the Qav mode is enabled, so,
1706 * instead of disabling strict priority mode, we give
1707 * queue 0 the maximum of credits possible.
1708 *
1709 * See section 8.12.19 of the i210 datasheet, "Note:
1710 * Queue0 QueueMode must be set to 1b when
1711 * TransmitMode is set to Qav."
1712 */
1713 if (queue == 0 && !enable) {
1714 /* max "linkspeed" idleslope in kbps */
1715 idleslope = 1000000;
1716 hicredit = ETH_FRAME_LEN;
1717 }
1718
1719 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1720 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1721
1722 /* According to i210 datasheet section 7.2.7.7, we should set
1723 * the 'idleSlope' field from TQAVCC register following the
1724 * equation:
1725 *
1726 * For 100 Mbps link speed:
1727 *
1728 * value = BW * 0x7735 * 0.2 (E1)
1729 *
1730 * For 1000Mbps link speed:
1731 *
1732 * value = BW * 0x7735 * 2 (E2)
1733 *
1734 * E1 and E2 can be merged into one equation as shown below.
1735 * Note that 'link-speed' is in Mbps.
1736 *
1737 * value = BW * 0x7735 * 2 * link-speed
1738 * -------------- (E3)
1739 * 1000
1740 *
1741 * 'BW' is the percentage bandwidth out of full link speed
1742 * which can be found with the following equation. Note that
1743 * idleSlope here is the parameter from this function which
1744 * is in kbps.
1745 *
1746 * BW = idleSlope
1747 * ----------------- (E4)
1748 * link-speed * 1000
1749 *
1750 * That said, we can come up with a generic equation to
1751 * calculate the value we should set it TQAVCC register by
1752 * replacing 'BW' in E3 by E4. The resulting equation is:
1753 *
1754 * value = idleSlope * 0x7735 * 2 * link-speed
1755 * ----------------- -------------- (E5)
1756 * link-speed * 1000 1000
1757 *
1758 * 'link-speed' is present in both sides of the fraction so
1759 * it is canceled out. The final equation is the following:
1760 *
1761 * value = idleSlope * 61034
1762 * ----------------- (E6)
1763 * 1000000
1764 *
1765 * NOTE: For i210, given the above, we can see that idleslope
1766 * is represented in 16.38431 kbps units by the value at
1767 * the TQAVCC register (1Gbps / 61034), which reduces
1768 * the granularity for idleslope increments.
1769 * For instance, if you want to configure a 2576kbps
1770 * idleslope, the value to be written on the register
1771 * would have to be 157.23. If rounded down, you end
1772 * up with less bandwidth available than originally
1773 * required (~2572 kbps). If rounded up, you end up
1774 * with a higher bandwidth (~2589 kbps). Below the
1775 * approach we take is to always round up the
1776 * calculated value, so the resulting bandwidth might
1777 * be slightly higher for some configurations.
1778 */
1779 value = DIV_ROUND_UP_ULL(idleslope * 61034ULL, 1000000);
1780
1781 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1782 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1783 tqavcc |= value;
1784 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1785
1786 wr32(E1000_I210_TQAVHC(queue), 0x80000000 + hicredit * 0x7735);
1787 } else {
1788 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1789 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1790
1791 /* Set idleSlope to zero. */
1792 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1793 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1794 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1795
1796 /* Set hiCredit to zero. */
1797 wr32(E1000_I210_TQAVHC(queue), 0);
1798 }
1799
1800 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1801 * CBS are not configurable by software so we don't do any 'controller
1802 * configuration' in respect to these parameters.
1803 */
1804
1805 netdev_dbg(netdev, "CBS %s: queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1806 (enable) ? "enabled" : "disabled", queue,
1807 idleslope, sendslope, hicredit, locredit);
1808}
1809
1810static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1811 bool enable, int idleslope, int sendslope,
1812 int hicredit, int locredit)
1813{
1814 struct igb_ring *ring;
1815
1816 if (queue < 0 || queue > adapter->num_tx_queues)
1817 return -EINVAL;
1818
1819 ring = adapter->tx_ring[queue];
1820
1821 ring->cbs_enable = enable;
1822 ring->idleslope = idleslope;
1823 ring->sendslope = sendslope;
1824 ring->hicredit = hicredit;
1825 ring->locredit = locredit;
1826
1827 return 0;
1828}
1829
1830static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1831{
1832 struct igb_ring *ring;
1833 int i;
1834
1835 for (i = 0; i < adapter->num_tx_queues; i++) {
1836 ring = adapter->tx_ring[i];
1837
1838 if (ring->cbs_enable)
1839 return true;
1840 }
1841
1842 return false;
1843}
1844
1845static void igb_setup_tx_mode(struct igb_adapter *adapter)
1846{
1847 struct net_device *netdev = adapter->netdev;
1848 struct e1000_hw *hw = &adapter->hw;
1849 u32 val;
1850
1851 /* Only i210 controller supports changing the transmission mode. */
1852 if (hw->mac.type != e1000_i210)
1853 return;
1854
1855 if (is_fqtss_enabled(adapter)) {
1856 int i, max_queue;
1857
1858 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1859 * set data fetch arbitration to 'round robin' and set data
1860 * transfer arbitration to 'credit shaper algorithm.
1861 */
1862 val = rd32(E1000_I210_TQAVCTRL);
1863 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_DATATRANARB;
1864 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1865 wr32(E1000_I210_TQAVCTRL, val);
1866
1867 /* Configure Tx and Rx packet buffers sizes as described in
1868 * i210 datasheet section 7.2.7.7.
1869 */
1870 val = rd32(E1000_TXPBS);
1871 val &= ~I210_TXPBSIZE_MASK;
1872 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1873 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1874 wr32(E1000_TXPBS, val);
1875
1876 val = rd32(E1000_RXPBS);
1877 val &= ~I210_RXPBSIZE_MASK;
1878 val |= I210_RXPBSIZE_PB_32KB;
1879 wr32(E1000_RXPBS, val);
1880
1881 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1882 * register should not exceed the buffer size programmed in
1883 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1884 * so according to the datasheet we should set MAX_TPKT_SIZE to
1885 * 4kB / 64.
1886 *
1887 * However, when we do so, no frame from queue 2 and 3 are
1888 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1889 * or _equal_ to the buffer size programmed in TXPBS. For this
1890 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1891 */
1892 val = (4096 - 1) / 64;
1893 wr32(E1000_I210_DTXMXPKTSZ, val);
1894
1895 /* Since FQTSS mode is enabled, apply any CBS configuration
1896 * previously set. If no previous CBS configuration has been
1897 * done, then the initial configuration is applied, which means
1898 * CBS is disabled.
1899 */
1900 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1901 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1902
1903 for (i = 0; i < max_queue; i++) {
1904 struct igb_ring *ring = adapter->tx_ring[i];
1905
1906 igb_configure_cbs(adapter, i, ring->cbs_enable,
1907 ring->idleslope, ring->sendslope,
1908 ring->hicredit, ring->locredit);
1909 }
1910 } else {
1911 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1912 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1913 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1914
1915 val = rd32(E1000_I210_TQAVCTRL);
1916 /* According to Section 8.12.21, the other flags we've set when
1917 * enabling FQTSS are not relevant when disabling FQTSS so we
1918 * don't set they here.
1919 */
1920 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1921 wr32(E1000_I210_TQAVCTRL, val);
1922 }
1923
1924 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1925 "enabled" : "disabled");
1926}
1927
1928/**
1929 * igb_configure - configure the hardware for RX and TX
1930 * @adapter: private board structure
1931 **/
1932static void igb_configure(struct igb_adapter *adapter)
1933{
1934 struct net_device *netdev = adapter->netdev;
1935 int i;
1936
1937 igb_get_hw_control(adapter);
1938 igb_set_rx_mode(netdev);
1939 igb_setup_tx_mode(adapter);
1940
1941 igb_restore_vlan(adapter);
1942
1943 igb_setup_tctl(adapter);
1944 igb_setup_mrqc(adapter);
1945 igb_setup_rctl(adapter);
1946
1947 igb_nfc_filter_restore(adapter);
1948 igb_configure_tx(adapter);
1949 igb_configure_rx(adapter);
1950
1951 igb_rx_fifo_flush_82575(&adapter->hw);
1952
1953 /* call igb_desc_unused which always leaves
1954 * at least 1 descriptor unused to make sure
1955 * next_to_use != next_to_clean
1956 */
1957 for (i = 0; i < adapter->num_rx_queues; i++) {
1958 struct igb_ring *ring = adapter->rx_ring[i];
1959 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1960 }
1961}
1962
1963/**
1964 * igb_power_up_link - Power up the phy/serdes link
1965 * @adapter: address of board private structure
1966 **/
1967void igb_power_up_link(struct igb_adapter *adapter)
1968{
1969 igb_reset_phy(&adapter->hw);
1970
1971 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1972 igb_power_up_phy_copper(&adapter->hw);
1973 else
1974 igb_power_up_serdes_link_82575(&adapter->hw);
1975
1976 igb_setup_link(&adapter->hw);
1977}
1978
1979/**
1980 * igb_power_down_link - Power down the phy/serdes link
1981 * @adapter: address of board private structure
1982 */
1983static void igb_power_down_link(struct igb_adapter *adapter)
1984{
1985 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1986 igb_power_down_phy_copper_82575(&adapter->hw);
1987 else
1988 igb_shutdown_serdes_link_82575(&adapter->hw);
1989}
1990
1991/**
1992 * Detect and switch function for Media Auto Sense
1993 * @adapter: address of the board private structure
1994 **/
1995static void igb_check_swap_media(struct igb_adapter *adapter)
1996{
1997 struct e1000_hw *hw = &adapter->hw;
1998 u32 ctrl_ext, connsw;
1999 bool swap_now = false;
2000
2001 ctrl_ext = rd32(E1000_CTRL_EXT);
2002 connsw = rd32(E1000_CONNSW);
2003
2004 /* need to live swap if current media is copper and we have fiber/serdes
2005 * to go to.
2006 */
2007
2008 if ((hw->phy.media_type == e1000_media_type_copper) &&
2009 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2010 swap_now = true;
2011 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2012 /* copper signal takes time to appear */
2013 if (adapter->copper_tries < 4) {
2014 adapter->copper_tries++;
2015 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2016 wr32(E1000_CONNSW, connsw);
2017 return;
2018 } else {
2019 adapter->copper_tries = 0;
2020 if ((connsw & E1000_CONNSW_PHYSD) &&
2021 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2022 swap_now = true;
2023 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2024 wr32(E1000_CONNSW, connsw);
2025 }
2026 }
2027 }
2028
2029 if (!swap_now)
2030 return;
2031
2032 switch (hw->phy.media_type) {
2033 case e1000_media_type_copper:
2034 netdev_info(adapter->netdev,
2035 "MAS: changing media to fiber/serdes\n");
2036 ctrl_ext |=
2037 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2038 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2039 adapter->copper_tries = 0;
2040 break;
2041 case e1000_media_type_internal_serdes:
2042 case e1000_media_type_fiber:
2043 netdev_info(adapter->netdev,
2044 "MAS: changing media to copper\n");
2045 ctrl_ext &=
2046 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2047 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2048 break;
2049 default:
2050 /* shouldn't get here during regular operation */
2051 netdev_err(adapter->netdev,
2052 "AMS: Invalid media type found, returning\n");
2053 break;
2054 }
2055 wr32(E1000_CTRL_EXT, ctrl_ext);
2056}
2057
2058/**
2059 * igb_up - Open the interface and prepare it to handle traffic
2060 * @adapter: board private structure
2061 **/
2062int igb_up(struct igb_adapter *adapter)
2063{
2064 struct e1000_hw *hw = &adapter->hw;
2065 int i;
2066
2067 /* hardware has been reset, we need to reload some things */
2068 igb_configure(adapter);
2069
2070 clear_bit(__IGB_DOWN, &adapter->state);
2071
2072 for (i = 0; i < adapter->num_q_vectors; i++)
2073 napi_enable(&(adapter->q_vector[i]->napi));
2074
2075 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2076 igb_configure_msix(adapter);
2077 else
2078 igb_assign_vector(adapter->q_vector[0], 0);
2079
2080 /* Clear any pending interrupts. */
2081 rd32(E1000_ICR);
2082 igb_irq_enable(adapter);
2083
2084 /* notify VFs that reset has been completed */
2085 if (adapter->vfs_allocated_count) {
2086 u32 reg_data = rd32(E1000_CTRL_EXT);
2087
2088 reg_data |= E1000_CTRL_EXT_PFRSTD;
2089 wr32(E1000_CTRL_EXT, reg_data);
2090 }
2091
2092 netif_tx_start_all_queues(adapter->netdev);
2093
2094 /* start the watchdog. */
2095 hw->mac.get_link_status = 1;
2096 schedule_work(&adapter->watchdog_task);
2097
2098 if ((adapter->flags & IGB_FLAG_EEE) &&
2099 (!hw->dev_spec._82575.eee_disable))
2100 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2101
2102 return 0;
2103}
2104
2105void igb_down(struct igb_adapter *adapter)
2106{
2107 struct net_device *netdev = adapter->netdev;
2108 struct e1000_hw *hw = &adapter->hw;
2109 u32 tctl, rctl;
2110 int i;
2111
2112 /* signal that we're down so the interrupt handler does not
2113 * reschedule our watchdog timer
2114 */
2115 set_bit(__IGB_DOWN, &adapter->state);
2116
2117 /* disable receives in the hardware */
2118 rctl = rd32(E1000_RCTL);
2119 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2120 /* flush and sleep below */
2121
2122 igb_nfc_filter_exit(adapter);
2123
2124 netif_carrier_off(netdev);
2125 netif_tx_stop_all_queues(netdev);
2126
2127 /* disable transmits in the hardware */
2128 tctl = rd32(E1000_TCTL);
2129 tctl &= ~E1000_TCTL_EN;
2130 wr32(E1000_TCTL, tctl);
2131 /* flush both disables and wait for them to finish */
2132 wrfl();
2133 usleep_range(10000, 11000);
2134
2135 igb_irq_disable(adapter);
2136
2137 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2138
2139 for (i = 0; i < adapter->num_q_vectors; i++) {
2140 if (adapter->q_vector[i]) {
2141 napi_synchronize(&adapter->q_vector[i]->napi);
2142 napi_disable(&adapter->q_vector[i]->napi);
2143 }
2144 }
2145
2146 del_timer_sync(&adapter->watchdog_timer);
2147 del_timer_sync(&adapter->phy_info_timer);
2148
2149 /* record the stats before reset*/
2150 spin_lock(&adapter->stats64_lock);
2151 igb_update_stats(adapter);
2152 spin_unlock(&adapter->stats64_lock);
2153
2154 adapter->link_speed = 0;
2155 adapter->link_duplex = 0;
2156
2157 if (!pci_channel_offline(adapter->pdev))
2158 igb_reset(adapter);
2159
2160 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2161 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2162
2163 igb_clean_all_tx_rings(adapter);
2164 igb_clean_all_rx_rings(adapter);
2165#ifdef CONFIG_IGB_DCA
2166
2167 /* since we reset the hardware DCA settings were cleared */
2168 igb_setup_dca(adapter);
2169#endif
2170}
2171
2172void igb_reinit_locked(struct igb_adapter *adapter)
2173{
2174 WARN_ON(in_interrupt());
2175 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2176 usleep_range(1000, 2000);
2177 igb_down(adapter);
2178 igb_up(adapter);
2179 clear_bit(__IGB_RESETTING, &adapter->state);
2180}
2181
2182/** igb_enable_mas - Media Autosense re-enable after swap
2183 *
2184 * @adapter: adapter struct
2185 **/
2186static void igb_enable_mas(struct igb_adapter *adapter)
2187{
2188 struct e1000_hw *hw = &adapter->hw;
2189 u32 connsw = rd32(E1000_CONNSW);
2190
2191 /* configure for SerDes media detect */
2192 if ((hw->phy.media_type == e1000_media_type_copper) &&
2193 (!(connsw & E1000_CONNSW_SERDESD))) {
2194 connsw |= E1000_CONNSW_ENRGSRC;
2195 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2196 wr32(E1000_CONNSW, connsw);
2197 wrfl();
2198 }
2199}
2200
2201void igb_reset(struct igb_adapter *adapter)
2202{
2203 struct pci_dev *pdev = adapter->pdev;
2204 struct e1000_hw *hw = &adapter->hw;
2205 struct e1000_mac_info *mac = &hw->mac;
2206 struct e1000_fc_info *fc = &hw->fc;
2207 u32 pba, hwm;
2208
2209 /* Repartition Pba for greater than 9k mtu
2210 * To take effect CTRL.RST is required.
2211 */
2212 switch (mac->type) {
2213 case e1000_i350:
2214 case e1000_i354:
2215 case e1000_82580:
2216 pba = rd32(E1000_RXPBS);
2217 pba = igb_rxpbs_adjust_82580(pba);
2218 break;
2219 case e1000_82576:
2220 pba = rd32(E1000_RXPBS);
2221 pba &= E1000_RXPBS_SIZE_MASK_82576;
2222 break;
2223 case e1000_82575:
2224 case e1000_i210:
2225 case e1000_i211:
2226 default:
2227 pba = E1000_PBA_34K;
2228 break;
2229 }
2230
2231 if (mac->type == e1000_82575) {
2232 u32 min_rx_space, min_tx_space, needed_tx_space;
2233
2234 /* write Rx PBA so that hardware can report correct Tx PBA */
2235 wr32(E1000_PBA, pba);
2236
2237 /* To maintain wire speed transmits, the Tx FIFO should be
2238 * large enough to accommodate two full transmit packets,
2239 * rounded up to the next 1KB and expressed in KB. Likewise,
2240 * the Rx FIFO should be large enough to accommodate at least
2241 * one full receive packet and is similarly rounded up and
2242 * expressed in KB.
2243 */
2244 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2245
2246 /* The Tx FIFO also stores 16 bytes of information about the Tx
2247 * but don't include Ethernet FCS because hardware appends it.
2248 * We only need to round down to the nearest 512 byte block
2249 * count since the value we care about is 2 frames, not 1.
2250 */
2251 min_tx_space = adapter->max_frame_size;
2252 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2253 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2254
2255 /* upper 16 bits has Tx packet buffer allocation size in KB */
2256 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2257
2258 /* If current Tx allocation is less than the min Tx FIFO size,
2259 * and the min Tx FIFO size is less than the current Rx FIFO
2260 * allocation, take space away from current Rx allocation.
2261 */
2262 if (needed_tx_space < pba) {
2263 pba -= needed_tx_space;
2264
2265 /* if short on Rx space, Rx wins and must trump Tx
2266 * adjustment
2267 */
2268 if (pba < min_rx_space)
2269 pba = min_rx_space;
2270 }
2271
2272 /* adjust PBA for jumbo frames */
2273 wr32(E1000_PBA, pba);
2274 }
2275
2276 /* flow control settings
2277 * The high water mark must be low enough to fit one full frame
2278 * after transmitting the pause frame. As such we must have enough
2279 * space to allow for us to complete our current transmit and then
2280 * receive the frame that is in progress from the link partner.
2281 * Set it to:
2282 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2283 */
2284 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2285
2286 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2287 fc->low_water = fc->high_water - 16;
2288 fc->pause_time = 0xFFFF;
2289 fc->send_xon = 1;
2290 fc->current_mode = fc->requested_mode;
2291
2292 /* disable receive for all VFs and wait one second */
2293 if (adapter->vfs_allocated_count) {
2294 int i;
2295
2296 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2297 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2298
2299 /* ping all the active vfs to let them know we are going down */
2300 igb_ping_all_vfs(adapter);
2301
2302 /* disable transmits and receives */
2303 wr32(E1000_VFRE, 0);
2304 wr32(E1000_VFTE, 0);
2305 }
2306
2307 /* Allow time for pending master requests to run */
2308 hw->mac.ops.reset_hw(hw);
2309 wr32(E1000_WUC, 0);
2310
2311 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2312 /* need to resetup here after media swap */
2313 adapter->ei.get_invariants(hw);
2314 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2315 }
2316 if ((mac->type == e1000_82575) &&
2317 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2318 igb_enable_mas(adapter);
2319 }
2320 if (hw->mac.ops.init_hw(hw))
2321 dev_err(&pdev->dev, "Hardware Error\n");
2322
2323 /* RAR registers were cleared during init_hw, clear mac table */
2324 igb_flush_mac_table(adapter);
2325 __dev_uc_unsync(adapter->netdev, NULL);
2326
2327 /* Recover default RAR entry */
2328 igb_set_default_mac_filter(adapter);
2329
2330 /* Flow control settings reset on hardware reset, so guarantee flow
2331 * control is off when forcing speed.
2332 */
2333 if (!hw->mac.autoneg)
2334 igb_force_mac_fc(hw);
2335
2336 igb_init_dmac(adapter, pba);
2337#ifdef CONFIG_IGB_HWMON
2338 /* Re-initialize the thermal sensor on i350 devices. */
2339 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2340 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2341 /* If present, re-initialize the external thermal sensor
2342 * interface.
2343 */
2344 if (adapter->ets)
2345 mac->ops.init_thermal_sensor_thresh(hw);
2346 }
2347 }
2348#endif
2349 /* Re-establish EEE setting */
2350 if (hw->phy.media_type == e1000_media_type_copper) {
2351 switch (mac->type) {
2352 case e1000_i350:
2353 case e1000_i210:
2354 case e1000_i211:
2355 igb_set_eee_i350(hw, true, true);
2356 break;
2357 case e1000_i354:
2358 igb_set_eee_i354(hw, true, true);
2359 break;
2360 default:
2361 break;
2362 }
2363 }
2364 if (!netif_running(adapter->netdev))
2365 igb_power_down_link(adapter);
2366
2367 igb_update_mng_vlan(adapter);
2368
2369 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2370 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2371
2372 /* Re-enable PTP, where applicable. */
2373 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2374 igb_ptp_reset(adapter);
2375
2376 igb_get_phy_info(hw);
2377}
2378
2379static netdev_features_t igb_fix_features(struct net_device *netdev,
2380 netdev_features_t features)
2381{
2382 /* Since there is no support for separate Rx/Tx vlan accel
2383 * enable/disable make sure Tx flag is always in same state as Rx.
2384 */
2385 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2386 features |= NETIF_F_HW_VLAN_CTAG_TX;
2387 else
2388 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2389
2390 return features;
2391}
2392
2393static int igb_set_features(struct net_device *netdev,
2394 netdev_features_t features)
2395{
2396 netdev_features_t changed = netdev->features ^ features;
2397 struct igb_adapter *adapter = netdev_priv(netdev);
2398
2399 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2400 igb_vlan_mode(netdev, features);
2401
2402 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2403 return 0;
2404
2405 if (!(features & NETIF_F_NTUPLE)) {
2406 struct hlist_node *node2;
2407 struct igb_nfc_filter *rule;
2408
2409 spin_lock(&adapter->nfc_lock);
2410 hlist_for_each_entry_safe(rule, node2,
2411 &adapter->nfc_filter_list, nfc_node) {
2412 igb_erase_filter(adapter, rule);
2413 hlist_del(&rule->nfc_node);
2414 kfree(rule);
2415 }
2416 spin_unlock(&adapter->nfc_lock);
2417 adapter->nfc_filter_count = 0;
2418 }
2419
2420 netdev->features = features;
2421
2422 if (netif_running(netdev))
2423 igb_reinit_locked(adapter);
2424 else
2425 igb_reset(adapter);
2426
2427 return 0;
2428}
2429
2430static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2431 struct net_device *dev,
2432 const unsigned char *addr, u16 vid,
2433 u16 flags)
2434{
2435 /* guarantee we can provide a unique filter for the unicast address */
2436 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2437 struct igb_adapter *adapter = netdev_priv(dev);
2438 int vfn = adapter->vfs_allocated_count;
2439
2440 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2441 return -ENOMEM;
2442 }
2443
2444 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2445}
2446
2447#define IGB_MAX_MAC_HDR_LEN 127
2448#define IGB_MAX_NETWORK_HDR_LEN 511
2449
2450static netdev_features_t
2451igb_features_check(struct sk_buff *skb, struct net_device *dev,
2452 netdev_features_t features)
2453{
2454 unsigned int network_hdr_len, mac_hdr_len;
2455
2456 /* Make certain the headers can be described by a context descriptor */
2457 mac_hdr_len = skb_network_header(skb) - skb->data;
2458 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2459 return features & ~(NETIF_F_HW_CSUM |
2460 NETIF_F_SCTP_CRC |
2461 NETIF_F_HW_VLAN_CTAG_TX |
2462 NETIF_F_TSO |
2463 NETIF_F_TSO6);
2464
2465 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2466 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2467 return features & ~(NETIF_F_HW_CSUM |
2468 NETIF_F_SCTP_CRC |
2469 NETIF_F_TSO |
2470 NETIF_F_TSO6);
2471
2472 /* We can only support IPV4 TSO in tunnels if we can mangle the
2473 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2474 */
2475 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2476 features &= ~NETIF_F_TSO;
2477
2478 return features;
2479}
2480
2481static int igb_offload_cbs(struct igb_adapter *adapter,
2482 struct tc_cbs_qopt_offload *qopt)
2483{
2484 struct e1000_hw *hw = &adapter->hw;
2485 int err;
2486
2487 /* CBS offloading is only supported by i210 controller. */
2488 if (hw->mac.type != e1000_i210)
2489 return -EOPNOTSUPP;
2490
2491 /* CBS offloading is only supported by queue 0 and queue 1. */
2492 if (qopt->queue < 0 || qopt->queue > 1)
2493 return -EINVAL;
2494
2495 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2496 qopt->idleslope, qopt->sendslope,
2497 qopt->hicredit, qopt->locredit);
2498 if (err)
2499 return err;
2500
2501 if (is_fqtss_enabled(adapter)) {
2502 igb_configure_cbs(adapter, qopt->queue, qopt->enable,
2503 qopt->idleslope, qopt->sendslope,
2504 qopt->hicredit, qopt->locredit);
2505
2506 if (!is_any_cbs_enabled(adapter))
2507 enable_fqtss(adapter, false);
2508
2509 } else {
2510 enable_fqtss(adapter, true);
2511 }
2512
2513 return 0;
2514}
2515
2516static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2517 void *type_data)
2518{
2519 struct igb_adapter *adapter = netdev_priv(dev);
2520
2521 switch (type) {
2522 case TC_SETUP_QDISC_CBS:
2523 return igb_offload_cbs(adapter, type_data);
2524
2525 default:
2526 return -EOPNOTSUPP;
2527 }
2528}
2529
2530static const struct net_device_ops igb_netdev_ops = {
2531 .ndo_open = igb_open,
2532 .ndo_stop = igb_close,
2533 .ndo_start_xmit = igb_xmit_frame,
2534 .ndo_get_stats64 = igb_get_stats64,
2535 .ndo_set_rx_mode = igb_set_rx_mode,
2536 .ndo_set_mac_address = igb_set_mac,
2537 .ndo_change_mtu = igb_change_mtu,
2538 .ndo_do_ioctl = igb_ioctl,
2539 .ndo_tx_timeout = igb_tx_timeout,
2540 .ndo_validate_addr = eth_validate_addr,
2541 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2542 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2543 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2544 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2545 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2546 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2547 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
2548 .ndo_get_vf_config = igb_ndo_get_vf_config,
2549#ifdef CONFIG_NET_POLL_CONTROLLER
2550 .ndo_poll_controller = igb_netpoll,
2551#endif
2552 .ndo_fix_features = igb_fix_features,
2553 .ndo_set_features = igb_set_features,
2554 .ndo_fdb_add = igb_ndo_fdb_add,
2555 .ndo_features_check = igb_features_check,
2556 .ndo_setup_tc = igb_setup_tc,
2557};
2558
2559/**
2560 * igb_set_fw_version - Configure version string for ethtool
2561 * @adapter: adapter struct
2562 **/
2563void igb_set_fw_version(struct igb_adapter *adapter)
2564{
2565 struct e1000_hw *hw = &adapter->hw;
2566 struct e1000_fw_version fw;
2567
2568 igb_get_fw_version(hw, &fw);
2569
2570 switch (hw->mac.type) {
2571 case e1000_i210:
2572 case e1000_i211:
2573 if (!(igb_get_flash_presence_i210(hw))) {
2574 snprintf(adapter->fw_version,
2575 sizeof(adapter->fw_version),
2576 "%2d.%2d-%d",
2577 fw.invm_major, fw.invm_minor,
2578 fw.invm_img_type);
2579 break;
2580 }
2581 /* fall through */
2582 default:
2583 /* if option is rom valid, display its version too */
2584 if (fw.or_valid) {
2585 snprintf(adapter->fw_version,
2586 sizeof(adapter->fw_version),
2587 "%d.%d, 0x%08x, %d.%d.%d",
2588 fw.eep_major, fw.eep_minor, fw.etrack_id,
2589 fw.or_major, fw.or_build, fw.or_patch);
2590 /* no option rom */
2591 } else if (fw.etrack_id != 0X0000) {
2592 snprintf(adapter->fw_version,
2593 sizeof(adapter->fw_version),
2594 "%d.%d, 0x%08x",
2595 fw.eep_major, fw.eep_minor, fw.etrack_id);
2596 } else {
2597 snprintf(adapter->fw_version,
2598 sizeof(adapter->fw_version),
2599 "%d.%d.%d",
2600 fw.eep_major, fw.eep_minor, fw.eep_build);
2601 }
2602 break;
2603 }
2604}
2605
2606/**
2607 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2608 *
2609 * @adapter: adapter struct
2610 **/
2611static void igb_init_mas(struct igb_adapter *adapter)
2612{
2613 struct e1000_hw *hw = &adapter->hw;
2614 u16 eeprom_data;
2615
2616 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2617 switch (hw->bus.func) {
2618 case E1000_FUNC_0:
2619 if (eeprom_data & IGB_MAS_ENABLE_0) {
2620 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2621 netdev_info(adapter->netdev,
2622 "MAS: Enabling Media Autosense for port %d\n",
2623 hw->bus.func);
2624 }
2625 break;
2626 case E1000_FUNC_1:
2627 if (eeprom_data & IGB_MAS_ENABLE_1) {
2628 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2629 netdev_info(adapter->netdev,
2630 "MAS: Enabling Media Autosense for port %d\n",
2631 hw->bus.func);
2632 }
2633 break;
2634 case E1000_FUNC_2:
2635 if (eeprom_data & IGB_MAS_ENABLE_2) {
2636 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2637 netdev_info(adapter->netdev,
2638 "MAS: Enabling Media Autosense for port %d\n",
2639 hw->bus.func);
2640 }
2641 break;
2642 case E1000_FUNC_3:
2643 if (eeprom_data & IGB_MAS_ENABLE_3) {
2644 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2645 netdev_info(adapter->netdev,
2646 "MAS: Enabling Media Autosense for port %d\n",
2647 hw->bus.func);
2648 }
2649 break;
2650 default:
2651 /* Shouldn't get here */
2652 netdev_err(adapter->netdev,
2653 "MAS: Invalid port configuration, returning\n");
2654 break;
2655 }
2656}
2657
2658/**
2659 * igb_init_i2c - Init I2C interface
2660 * @adapter: pointer to adapter structure
2661 **/
2662static s32 igb_init_i2c(struct igb_adapter *adapter)
2663{
2664 s32 status = 0;
2665
2666 /* I2C interface supported on i350 devices */
2667 if (adapter->hw.mac.type != e1000_i350)
2668 return 0;
2669
2670 /* Initialize the i2c bus which is controlled by the registers.
2671 * This bus will use the i2c_algo_bit structue that implements
2672 * the protocol through toggling of the 4 bits in the register.
2673 */
2674 adapter->i2c_adap.owner = THIS_MODULE;
2675 adapter->i2c_algo = igb_i2c_algo;
2676 adapter->i2c_algo.data = adapter;
2677 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2678 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2679 strlcpy(adapter->i2c_adap.name, "igb BB",
2680 sizeof(adapter->i2c_adap.name));
2681 status = i2c_bit_add_bus(&adapter->i2c_adap);
2682 return status;
2683}
2684
2685/**
2686 * igb_probe - Device Initialization Routine
2687 * @pdev: PCI device information struct
2688 * @ent: entry in igb_pci_tbl
2689 *
2690 * Returns 0 on success, negative on failure
2691 *
2692 * igb_probe initializes an adapter identified by a pci_dev structure.
2693 * The OS initialization, configuring of the adapter private structure,
2694 * and a hardware reset occur.
2695 **/
2696static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2697{
2698 struct net_device *netdev;
2699 struct igb_adapter *adapter;
2700 struct e1000_hw *hw;
2701 u16 eeprom_data = 0;
2702 s32 ret_val;
2703 static int global_quad_port_a; /* global quad port a indication */
2704 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2705 int err, pci_using_dac;
2706 u8 part_str[E1000_PBANUM_LENGTH];
2707
2708 /* Catch broken hardware that put the wrong VF device ID in
2709 * the PCIe SR-IOV capability.
2710 */
2711 if (pdev->is_virtfn) {
2712 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2713 pci_name(pdev), pdev->vendor, pdev->device);
2714 return -EINVAL;
2715 }
2716
2717 err = pci_enable_device_mem(pdev);
2718 if (err)
2719 return err;
2720
2721 pci_using_dac = 0;
2722 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2723 if (!err) {
2724 pci_using_dac = 1;
2725 } else {
2726 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2727 if (err) {
2728 dev_err(&pdev->dev,
2729 "No usable DMA configuration, aborting\n");
2730 goto err_dma;
2731 }
2732 }
2733
2734 err = pci_request_mem_regions(pdev, igb_driver_name);
2735 if (err)
2736 goto err_pci_reg;
2737
2738 pci_enable_pcie_error_reporting(pdev);
2739
2740 pci_set_master(pdev);
2741 pci_save_state(pdev);
2742
2743 err = -ENOMEM;
2744 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2745 IGB_MAX_TX_QUEUES);
2746 if (!netdev)
2747 goto err_alloc_etherdev;
2748
2749 SET_NETDEV_DEV(netdev, &pdev->dev);
2750
2751 pci_set_drvdata(pdev, netdev);
2752 adapter = netdev_priv(netdev);
2753 adapter->netdev = netdev;
2754 adapter->pdev = pdev;
2755 hw = &adapter->hw;
2756 hw->back = adapter;
2757 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2758
2759 err = -EIO;
2760 adapter->io_addr = pci_iomap(pdev, 0, 0);
2761 if (!adapter->io_addr)
2762 goto err_ioremap;
2763 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2764 hw->hw_addr = adapter->io_addr;
2765
2766 netdev->netdev_ops = &igb_netdev_ops;
2767 igb_set_ethtool_ops(netdev);
2768 netdev->watchdog_timeo = 5 * HZ;
2769
2770 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2771
2772 netdev->mem_start = pci_resource_start(pdev, 0);
2773 netdev->mem_end = pci_resource_end(pdev, 0);
2774
2775 /* PCI config space info */
2776 hw->vendor_id = pdev->vendor;
2777 hw->device_id = pdev->device;
2778 hw->revision_id = pdev->revision;
2779 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2780 hw->subsystem_device_id = pdev->subsystem_device;
2781
2782 /* Copy the default MAC, PHY and NVM function pointers */
2783 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2784 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2785 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2786 /* Initialize skew-specific constants */
2787 err = ei->get_invariants(hw);
2788 if (err)
2789 goto err_sw_init;
2790
2791 /* setup the private structure */
2792 err = igb_sw_init(adapter);
2793 if (err)
2794 goto err_sw_init;
2795
2796 igb_get_bus_info_pcie(hw);
2797
2798 hw->phy.autoneg_wait_to_complete = false;
2799
2800 /* Copper options */
2801 if (hw->phy.media_type == e1000_media_type_copper) {
2802 hw->phy.mdix = AUTO_ALL_MODES;
2803 hw->phy.disable_polarity_correction = false;
2804 hw->phy.ms_type = e1000_ms_hw_default;
2805 }
2806
2807 if (igb_check_reset_block(hw))
2808 dev_info(&pdev->dev,
2809 "PHY reset is blocked due to SOL/IDER session.\n");
2810
2811 /* features is initialized to 0 in allocation, it might have bits
2812 * set by igb_sw_init so we should use an or instead of an
2813 * assignment.
2814 */
2815 netdev->features |= NETIF_F_SG |
2816 NETIF_F_TSO |
2817 NETIF_F_TSO6 |
2818 NETIF_F_RXHASH |
2819 NETIF_F_RXCSUM |
2820 NETIF_F_HW_CSUM;
2821
2822 if (hw->mac.type >= e1000_82576)
2823 netdev->features |= NETIF_F_SCTP_CRC;
2824
2825#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2826 NETIF_F_GSO_GRE_CSUM | \
2827 NETIF_F_GSO_IPXIP4 | \
2828 NETIF_F_GSO_IPXIP6 | \
2829 NETIF_F_GSO_UDP_TUNNEL | \
2830 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2831
2832 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2833 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2834
2835 /* copy netdev features into list of user selectable features */
2836 netdev->hw_features |= netdev->features |
2837 NETIF_F_HW_VLAN_CTAG_RX |
2838 NETIF_F_HW_VLAN_CTAG_TX |
2839 NETIF_F_RXALL;
2840
2841 if (hw->mac.type >= e1000_i350)
2842 netdev->hw_features |= NETIF_F_NTUPLE;
2843
2844 if (pci_using_dac)
2845 netdev->features |= NETIF_F_HIGHDMA;
2846
2847 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2848 netdev->mpls_features |= NETIF_F_HW_CSUM;
2849 netdev->hw_enc_features |= netdev->vlan_features;
2850
2851 /* set this bit last since it cannot be part of vlan_features */
2852 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2853 NETIF_F_HW_VLAN_CTAG_RX |
2854 NETIF_F_HW_VLAN_CTAG_TX;
2855
2856 netdev->priv_flags |= IFF_SUPP_NOFCS;
2857
2858 netdev->priv_flags |= IFF_UNICAST_FLT;
2859
2860 /* MTU range: 68 - 9216 */
2861 netdev->min_mtu = ETH_MIN_MTU;
2862 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2863
2864 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2865
2866 /* before reading the NVM, reset the controller to put the device in a
2867 * known good starting state
2868 */
2869 hw->mac.ops.reset_hw(hw);
2870
2871 /* make sure the NVM is good , i211/i210 parts can have special NVM
2872 * that doesn't contain a checksum
2873 */
2874 switch (hw->mac.type) {
2875 case e1000_i210:
2876 case e1000_i211:
2877 if (igb_get_flash_presence_i210(hw)) {
2878 if (hw->nvm.ops.validate(hw) < 0) {
2879 dev_err(&pdev->dev,
2880 "The NVM Checksum Is Not Valid\n");
2881 err = -EIO;
2882 goto err_eeprom;
2883 }
2884 }
2885 break;
2886 default:
2887 if (hw->nvm.ops.validate(hw) < 0) {
2888 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2889 err = -EIO;
2890 goto err_eeprom;
2891 }
2892 break;
2893 }
2894
2895 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2896 /* copy the MAC address out of the NVM */
2897 if (hw->mac.ops.read_mac_addr(hw))
2898 dev_err(&pdev->dev, "NVM Read Error\n");
2899 }
2900
2901 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2902
2903 if (!is_valid_ether_addr(netdev->dev_addr)) {
2904 dev_err(&pdev->dev, "Invalid MAC Address\n");
2905 err = -EIO;
2906 goto err_eeprom;
2907 }
2908
2909 igb_set_default_mac_filter(adapter);
2910
2911 /* get firmware version for ethtool -i */
2912 igb_set_fw_version(adapter);
2913
2914 /* configure RXPBSIZE and TXPBSIZE */
2915 if (hw->mac.type == e1000_i210) {
2916 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2917 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2918 }
2919
2920 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
2921 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
2922
2923 INIT_WORK(&adapter->reset_task, igb_reset_task);
2924 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2925
2926 /* Initialize link properties that are user-changeable */
2927 adapter->fc_autoneg = true;
2928 hw->mac.autoneg = true;
2929 hw->phy.autoneg_advertised = 0x2f;
2930
2931 hw->fc.requested_mode = e1000_fc_default;
2932 hw->fc.current_mode = e1000_fc_default;
2933
2934 igb_validate_mdi_setting(hw);
2935
2936 /* By default, support wake on port A */
2937 if (hw->bus.func == 0)
2938 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2939
2940 /* Check the NVM for wake support on non-port A ports */
2941 if (hw->mac.type >= e1000_82580)
2942 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2943 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2944 &eeprom_data);
2945 else if (hw->bus.func == 1)
2946 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2947
2948 if (eeprom_data & IGB_EEPROM_APME)
2949 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2950
2951 /* now that we have the eeprom settings, apply the special cases where
2952 * the eeprom may be wrong or the board simply won't support wake on
2953 * lan on a particular port
2954 */
2955 switch (pdev->device) {
2956 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2957 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2958 break;
2959 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2960 case E1000_DEV_ID_82576_FIBER:
2961 case E1000_DEV_ID_82576_SERDES:
2962 /* Wake events only supported on port A for dual fiber
2963 * regardless of eeprom setting
2964 */
2965 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2966 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2967 break;
2968 case E1000_DEV_ID_82576_QUAD_COPPER:
2969 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2970 /* if quad port adapter, disable WoL on all but port A */
2971 if (global_quad_port_a != 0)
2972 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2973 else
2974 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2975 /* Reset for multiple quad port adapters */
2976 if (++global_quad_port_a == 4)
2977 global_quad_port_a = 0;
2978 break;
2979 default:
2980 /* If the device can't wake, don't set software support */
2981 if (!device_can_wakeup(&adapter->pdev->dev))
2982 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2983 }
2984
2985 /* initialize the wol settings based on the eeprom settings */
2986 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2987 adapter->wol |= E1000_WUFC_MAG;
2988
2989 /* Some vendors want WoL disabled by default, but still supported */
2990 if ((hw->mac.type == e1000_i350) &&
2991 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2992 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2993 adapter->wol = 0;
2994 }
2995
2996 /* Some vendors want the ability to Use the EEPROM setting as
2997 * enable/disable only, and not for capability
2998 */
2999 if (((hw->mac.type == e1000_i350) ||
3000 (hw->mac.type == e1000_i354)) &&
3001 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3002 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3003 adapter->wol = 0;
3004 }
3005 if (hw->mac.type == e1000_i350) {
3006 if (((pdev->subsystem_device == 0x5001) ||
3007 (pdev->subsystem_device == 0x5002)) &&
3008 (hw->bus.func == 0)) {
3009 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3010 adapter->wol = 0;
3011 }
3012 if (pdev->subsystem_device == 0x1F52)
3013 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3014 }
3015
3016 device_set_wakeup_enable(&adapter->pdev->dev,
3017 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3018
3019 /* reset the hardware with the new settings */
3020 igb_reset(adapter);
3021
3022 /* Init the I2C interface */
3023 err = igb_init_i2c(adapter);
3024 if (err) {
3025 dev_err(&pdev->dev, "failed to init i2c interface\n");
3026 goto err_eeprom;
3027 }
3028
3029 /* let the f/w know that the h/w is now under the control of the
3030 * driver.
3031 */
3032 igb_get_hw_control(adapter);
3033
3034 strcpy(netdev->name, "eth%d");
3035 err = register_netdev(netdev);
3036 if (err)
3037 goto err_register;
3038
3039 /* carrier off reporting is important to ethtool even BEFORE open */
3040 netif_carrier_off(netdev);
3041
3042#ifdef CONFIG_IGB_DCA
3043 if (dca_add_requester(&pdev->dev) == 0) {
3044 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3045 dev_info(&pdev->dev, "DCA enabled\n");
3046 igb_setup_dca(adapter);
3047 }
3048
3049#endif
3050#ifdef CONFIG_IGB_HWMON
3051 /* Initialize the thermal sensor on i350 devices. */
3052 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3053 u16 ets_word;
3054
3055 /* Read the NVM to determine if this i350 device supports an
3056 * external thermal sensor.
3057 */
3058 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3059 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3060 adapter->ets = true;
3061 else
3062 adapter->ets = false;
3063 if (igb_sysfs_init(adapter))
3064 dev_err(&pdev->dev,
3065 "failed to allocate sysfs resources\n");
3066 } else {
3067 adapter->ets = false;
3068 }
3069#endif
3070 /* Check if Media Autosense is enabled */
3071 adapter->ei = *ei;
3072 if (hw->dev_spec._82575.mas_capable)
3073 igb_init_mas(adapter);
3074
3075 /* do hw tstamp init after resetting */
3076 igb_ptp_init(adapter);
3077
3078 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3079 /* print bus type/speed/width info, not applicable to i354 */
3080 if (hw->mac.type != e1000_i354) {
3081 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3082 netdev->name,
3083 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3084 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3085 "unknown"),
3086 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3087 "Width x4" :
3088 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3089 "Width x2" :
3090 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3091 "Width x1" : "unknown"), netdev->dev_addr);
3092 }
3093
3094 if ((hw->mac.type >= e1000_i210 ||
3095 igb_get_flash_presence_i210(hw))) {
3096 ret_val = igb_read_part_string(hw, part_str,
3097 E1000_PBANUM_LENGTH);
3098 } else {
3099 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3100 }
3101
3102 if (ret_val)
3103 strcpy(part_str, "Unknown");
3104 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3105 dev_info(&pdev->dev,
3106 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3107 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3108 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3109 adapter->num_rx_queues, adapter->num_tx_queues);
3110 if (hw->phy.media_type == e1000_media_type_copper) {
3111 switch (hw->mac.type) {
3112 case e1000_i350:
3113 case e1000_i210:
3114 case e1000_i211:
3115 /* Enable EEE for internal copper PHY devices */
3116 err = igb_set_eee_i350(hw, true, true);
3117 if ((!err) &&
3118 (!hw->dev_spec._82575.eee_disable)) {
3119 adapter->eee_advert =
3120 MDIO_EEE_100TX | MDIO_EEE_1000T;
3121 adapter->flags |= IGB_FLAG_EEE;
3122 }
3123 break;
3124 case e1000_i354:
3125 if ((rd32(E1000_CTRL_EXT) &
3126 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3127 err = igb_set_eee_i354(hw, true, true);
3128 if ((!err) &&
3129 (!hw->dev_spec._82575.eee_disable)) {
3130 adapter->eee_advert =
3131 MDIO_EEE_100TX | MDIO_EEE_1000T;
3132 adapter->flags |= IGB_FLAG_EEE;
3133 }
3134 }
3135 break;
3136 default:
3137 break;
3138 }
3139 }
3140 pm_runtime_put_noidle(&pdev->dev);
3141 return 0;
3142
3143err_register:
3144 igb_release_hw_control(adapter);
3145 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3146err_eeprom:
3147 if (!igb_check_reset_block(hw))
3148 igb_reset_phy(hw);
3149
3150 if (hw->flash_address)
3151 iounmap(hw->flash_address);
3152err_sw_init:
3153 kfree(adapter->mac_table);
3154 kfree(adapter->shadow_vfta);
3155 igb_clear_interrupt_scheme(adapter);
3156#ifdef CONFIG_PCI_IOV
3157 igb_disable_sriov(pdev);
3158#endif
3159 pci_iounmap(pdev, adapter->io_addr);
3160err_ioremap:
3161 free_netdev(netdev);
3162err_alloc_etherdev:
3163 pci_release_mem_regions(pdev);
3164err_pci_reg:
3165err_dma:
3166 pci_disable_device(pdev);
3167 return err;
3168}
3169
3170#ifdef CONFIG_PCI_IOV
3171static int igb_disable_sriov(struct pci_dev *pdev)
3172{
3173 struct net_device *netdev = pci_get_drvdata(pdev);
3174 struct igb_adapter *adapter = netdev_priv(netdev);
3175 struct e1000_hw *hw = &adapter->hw;
3176
3177 /* reclaim resources allocated to VFs */
3178 if (adapter->vf_data) {
3179 /* disable iov and allow time for transactions to clear */
3180 if (pci_vfs_assigned(pdev)) {
3181 dev_warn(&pdev->dev,
3182 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3183 return -EPERM;
3184 } else {
3185 pci_disable_sriov(pdev);
3186 msleep(500);
3187 }
3188
3189 kfree(adapter->vf_mac_list);
3190 adapter->vf_mac_list = NULL;
3191 kfree(adapter->vf_data);
3192 adapter->vf_data = NULL;
3193 adapter->vfs_allocated_count = 0;
3194 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3195 wrfl();
3196 msleep(100);
3197 dev_info(&pdev->dev, "IOV Disabled\n");
3198
3199 /* Re-enable DMA Coalescing flag since IOV is turned off */
3200 adapter->flags |= IGB_FLAG_DMAC;
3201 }
3202
3203 return 0;
3204}
3205
3206static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3207{
3208 struct net_device *netdev = pci_get_drvdata(pdev);
3209 struct igb_adapter *adapter = netdev_priv(netdev);
3210 int old_vfs = pci_num_vf(pdev);
3211 struct vf_mac_filter *mac_list;
3212 int err = 0;
3213 int num_vf_mac_filters, i;
3214
3215 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3216 err = -EPERM;
3217 goto out;
3218 }
3219 if (!num_vfs)
3220 goto out;
3221
3222 if (old_vfs) {
3223 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3224 old_vfs, max_vfs);
3225 adapter->vfs_allocated_count = old_vfs;
3226 } else
3227 adapter->vfs_allocated_count = num_vfs;
3228
3229 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3230 sizeof(struct vf_data_storage), GFP_KERNEL);
3231
3232 /* if allocation failed then we do not support SR-IOV */
3233 if (!adapter->vf_data) {
3234 adapter->vfs_allocated_count = 0;
3235 err = -ENOMEM;
3236 goto out;
3237 }
3238
3239 /* Due to the limited number of RAR entries calculate potential
3240 * number of MAC filters available for the VFs. Reserve entries
3241 * for PF default MAC, PF MAC filters and at least one RAR entry
3242 * for each VF for VF MAC.
3243 */
3244 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3245 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3246 adapter->vfs_allocated_count);
3247
3248 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3249 sizeof(struct vf_mac_filter),
3250 GFP_KERNEL);
3251
3252 mac_list = adapter->vf_mac_list;
3253 INIT_LIST_HEAD(&adapter->vf_macs.l);
3254
3255 if (adapter->vf_mac_list) {
3256 /* Initialize list of VF MAC filters */
3257 for (i = 0; i < num_vf_mac_filters; i++) {
3258 mac_list->vf = -1;
3259 mac_list->free = true;
3260 list_add(&mac_list->l, &adapter->vf_macs.l);
3261 mac_list++;
3262 }
3263 } else {
3264 /* If we could not allocate memory for the VF MAC filters
3265 * we can continue without this feature but warn user.
3266 */
3267 dev_err(&pdev->dev,
3268 "Unable to allocate memory for VF MAC filter list\n");
3269 }
3270
3271 /* only call pci_enable_sriov() if no VFs are allocated already */
3272 if (!old_vfs) {
3273 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3274 if (err)
3275 goto err_out;
3276 }
3277 dev_info(&pdev->dev, "%d VFs allocated\n",
3278 adapter->vfs_allocated_count);
3279 for (i = 0; i < adapter->vfs_allocated_count; i++)
3280 igb_vf_configure(adapter, i);
3281
3282 /* DMA Coalescing is not supported in IOV mode. */
3283 adapter->flags &= ~IGB_FLAG_DMAC;
3284 goto out;
3285
3286err_out:
3287 kfree(adapter->vf_mac_list);
3288 adapter->vf_mac_list = NULL;
3289 kfree(adapter->vf_data);
3290 adapter->vf_data = NULL;
3291 adapter->vfs_allocated_count = 0;
3292out:
3293 return err;
3294}
3295
3296#endif
3297/**
3298 * igb_remove_i2c - Cleanup I2C interface
3299 * @adapter: pointer to adapter structure
3300 **/
3301static void igb_remove_i2c(struct igb_adapter *adapter)
3302{
3303 /* free the adapter bus structure */
3304 i2c_del_adapter(&adapter->i2c_adap);
3305}
3306
3307/**
3308 * igb_remove - Device Removal Routine
3309 * @pdev: PCI device information struct
3310 *
3311 * igb_remove is called by the PCI subsystem to alert the driver
3312 * that it should release a PCI device. The could be caused by a
3313 * Hot-Plug event, or because the driver is going to be removed from
3314 * memory.
3315 **/
3316static void igb_remove(struct pci_dev *pdev)
3317{
3318 struct net_device *netdev = pci_get_drvdata(pdev);
3319 struct igb_adapter *adapter = netdev_priv(netdev);
3320 struct e1000_hw *hw = &adapter->hw;
3321
3322 pm_runtime_get_noresume(&pdev->dev);
3323#ifdef CONFIG_IGB_HWMON
3324 igb_sysfs_exit(adapter);
3325#endif
3326 igb_remove_i2c(adapter);
3327 igb_ptp_stop(adapter);
3328 /* The watchdog timer may be rescheduled, so explicitly
3329 * disable watchdog from being rescheduled.
3330 */
3331 set_bit(__IGB_DOWN, &adapter->state);
3332 del_timer_sync(&adapter->watchdog_timer);
3333 del_timer_sync(&adapter->phy_info_timer);
3334
3335 cancel_work_sync(&adapter->reset_task);
3336 cancel_work_sync(&adapter->watchdog_task);
3337
3338#ifdef CONFIG_IGB_DCA
3339 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3340 dev_info(&pdev->dev, "DCA disabled\n");
3341 dca_remove_requester(&pdev->dev);
3342 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3343 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3344 }
3345#endif
3346
3347 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3348 * would have already happened in close and is redundant.
3349 */
3350 igb_release_hw_control(adapter);
3351
3352#ifdef CONFIG_PCI_IOV
3353 igb_disable_sriov(pdev);
3354#endif
3355
3356 unregister_netdev(netdev);
3357
3358 igb_clear_interrupt_scheme(adapter);
3359
3360 pci_iounmap(pdev, adapter->io_addr);
3361 if (hw->flash_address)
3362 iounmap(hw->flash_address);
3363 pci_release_mem_regions(pdev);
3364
3365 kfree(adapter->mac_table);
3366 kfree(adapter->shadow_vfta);
3367 free_netdev(netdev);
3368
3369 pci_disable_pcie_error_reporting(pdev);
3370
3371 pci_disable_device(pdev);
3372}
3373
3374/**
3375 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3376 * @adapter: board private structure to initialize
3377 *
3378 * This function initializes the vf specific data storage and then attempts to
3379 * allocate the VFs. The reason for ordering it this way is because it is much
3380 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3381 * the memory for the VFs.
3382 **/
3383static void igb_probe_vfs(struct igb_adapter *adapter)
3384{
3385#ifdef CONFIG_PCI_IOV
3386 struct pci_dev *pdev = adapter->pdev;
3387 struct e1000_hw *hw = &adapter->hw;
3388
3389 /* Virtualization features not supported on i210 family. */
3390 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3391 return;
3392
3393 /* Of the below we really only want the effect of getting
3394 * IGB_FLAG_HAS_MSIX set (if available), without which
3395 * igb_enable_sriov() has no effect.
3396 */
3397 igb_set_interrupt_capability(adapter, true);
3398 igb_reset_interrupt_capability(adapter);
3399
3400 pci_sriov_set_totalvfs(pdev, 7);
3401 igb_enable_sriov(pdev, max_vfs);
3402
3403#endif /* CONFIG_PCI_IOV */
3404}
3405
3406unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3407{
3408 struct e1000_hw *hw = &adapter->hw;
3409 unsigned int max_rss_queues;
3410
3411 /* Determine the maximum number of RSS queues supported. */
3412 switch (hw->mac.type) {
3413 case e1000_i211:
3414 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3415 break;
3416 case e1000_82575:
3417 case e1000_i210:
3418 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3419 break;
3420 case e1000_i350:
3421 /* I350 cannot do RSS and SR-IOV at the same time */
3422 if (!!adapter->vfs_allocated_count) {
3423 max_rss_queues = 1;
3424 break;
3425 }
3426 /* fall through */
3427 case e1000_82576:
3428 if (!!adapter->vfs_allocated_count) {
3429 max_rss_queues = 2;
3430 break;
3431 }
3432 /* fall through */
3433 case e1000_82580:
3434 case e1000_i354:
3435 default:
3436 max_rss_queues = IGB_MAX_RX_QUEUES;
3437 break;
3438 }
3439
3440 return max_rss_queues;
3441}
3442
3443static void igb_init_queue_configuration(struct igb_adapter *adapter)
3444{
3445 u32 max_rss_queues;
3446
3447 max_rss_queues = igb_get_max_rss_queues(adapter);
3448 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3449
3450 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3451}
3452
3453void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3454 const u32 max_rss_queues)
3455{
3456 struct e1000_hw *hw = &adapter->hw;
3457
3458 /* Determine if we need to pair queues. */
3459 switch (hw->mac.type) {
3460 case e1000_82575:
3461 case e1000_i211:
3462 /* Device supports enough interrupts without queue pairing. */
3463 break;
3464 case e1000_82576:
3465 case e1000_82580:
3466 case e1000_i350:
3467 case e1000_i354:
3468 case e1000_i210:
3469 default:
3470 /* If rss_queues > half of max_rss_queues, pair the queues in
3471 * order to conserve interrupts due to limited supply.
3472 */
3473 if (adapter->rss_queues > (max_rss_queues / 2))
3474 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3475 else
3476 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3477 break;
3478 }
3479}
3480
3481/**
3482 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3483 * @adapter: board private structure to initialize
3484 *
3485 * igb_sw_init initializes the Adapter private data structure.
3486 * Fields are initialized based on PCI device information and
3487 * OS network device settings (MTU size).
3488 **/
3489static int igb_sw_init(struct igb_adapter *adapter)
3490{
3491 struct e1000_hw *hw = &adapter->hw;
3492 struct net_device *netdev = adapter->netdev;
3493 struct pci_dev *pdev = adapter->pdev;
3494
3495 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3496
3497 /* set default ring sizes */
3498 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3499 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3500
3501 /* set default ITR values */
3502 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3503 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3504
3505 /* set default work limits */
3506 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3507
3508 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3509 VLAN_HLEN;
3510 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3511
3512 spin_lock_init(&adapter->nfc_lock);
3513 spin_lock_init(&adapter->stats64_lock);
3514#ifdef CONFIG_PCI_IOV
3515 switch (hw->mac.type) {
3516 case e1000_82576:
3517 case e1000_i350:
3518 if (max_vfs > 7) {
3519 dev_warn(&pdev->dev,
3520 "Maximum of 7 VFs per PF, using max\n");
3521 max_vfs = adapter->vfs_allocated_count = 7;
3522 } else
3523 adapter->vfs_allocated_count = max_vfs;
3524 if (adapter->vfs_allocated_count)
3525 dev_warn(&pdev->dev,
3526 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3527 break;
3528 default:
3529 break;
3530 }
3531#endif /* CONFIG_PCI_IOV */
3532
3533 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3534 adapter->flags |= IGB_FLAG_HAS_MSIX;
3535
3536 adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3537 hw->mac.rar_entry_count, GFP_ATOMIC);
3538 if (!adapter->mac_table)
3539 return -ENOMEM;
3540
3541 igb_probe_vfs(adapter);
3542
3543 igb_init_queue_configuration(adapter);
3544
3545 /* Setup and initialize a copy of the hw vlan table array */
3546 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3547 GFP_ATOMIC);
3548 if (!adapter->shadow_vfta)
3549 return -ENOMEM;
3550
3551 /* This call may decrease the number of queues */
3552 if (igb_init_interrupt_scheme(adapter, true)) {
3553 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3554 return -ENOMEM;
3555 }
3556
3557 /* Explicitly disable IRQ since the NIC can be in any state. */
3558 igb_irq_disable(adapter);
3559
3560 if (hw->mac.type >= e1000_i350)
3561 adapter->flags &= ~IGB_FLAG_DMAC;
3562
3563 set_bit(__IGB_DOWN, &adapter->state);
3564 return 0;
3565}
3566
3567/**
3568 * igb_open - Called when a network interface is made active
3569 * @netdev: network interface device structure
3570 *
3571 * Returns 0 on success, negative value on failure
3572 *
3573 * The open entry point is called when a network interface is made
3574 * active by the system (IFF_UP). At this point all resources needed
3575 * for transmit and receive operations are allocated, the interrupt
3576 * handler is registered with the OS, the watchdog timer is started,
3577 * and the stack is notified that the interface is ready.
3578 **/
3579static int __igb_open(struct net_device *netdev, bool resuming)
3580{
3581 struct igb_adapter *adapter = netdev_priv(netdev);
3582 struct e1000_hw *hw = &adapter->hw;
3583 struct pci_dev *pdev = adapter->pdev;
3584 int err;
3585 int i;
3586
3587 /* disallow open during test */
3588 if (test_bit(__IGB_TESTING, &adapter->state)) {
3589 WARN_ON(resuming);
3590 return -EBUSY;
3591 }
3592
3593 if (!resuming)
3594 pm_runtime_get_sync(&pdev->dev);
3595
3596 netif_carrier_off(netdev);
3597
3598 /* allocate transmit descriptors */
3599 err = igb_setup_all_tx_resources(adapter);
3600 if (err)
3601 goto err_setup_tx;
3602
3603 /* allocate receive descriptors */
3604 err = igb_setup_all_rx_resources(adapter);
3605 if (err)
3606 goto err_setup_rx;
3607
3608 igb_power_up_link(adapter);
3609
3610 /* before we allocate an interrupt, we must be ready to handle it.
3611 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3612 * as soon as we call pci_request_irq, so we have to setup our
3613 * clean_rx handler before we do so.
3614 */
3615 igb_configure(adapter);
3616
3617 err = igb_request_irq(adapter);
3618 if (err)
3619 goto err_req_irq;
3620
3621 /* Notify the stack of the actual queue counts. */
3622 err = netif_set_real_num_tx_queues(adapter->netdev,
3623 adapter->num_tx_queues);
3624 if (err)
3625 goto err_set_queues;
3626
3627 err = netif_set_real_num_rx_queues(adapter->netdev,
3628 adapter->num_rx_queues);
3629 if (err)
3630 goto err_set_queues;
3631
3632 /* From here on the code is the same as igb_up() */
3633 clear_bit(__IGB_DOWN, &adapter->state);
3634
3635 for (i = 0; i < adapter->num_q_vectors; i++)
3636 napi_enable(&(adapter->q_vector[i]->napi));
3637
3638 /* Clear any pending interrupts. */
3639 rd32(E1000_ICR);
3640
3641 igb_irq_enable(adapter);
3642
3643 /* notify VFs that reset has been completed */
3644 if (adapter->vfs_allocated_count) {
3645 u32 reg_data = rd32(E1000_CTRL_EXT);
3646
3647 reg_data |= E1000_CTRL_EXT_PFRSTD;
3648 wr32(E1000_CTRL_EXT, reg_data);
3649 }
3650
3651 netif_tx_start_all_queues(netdev);
3652
3653 if (!resuming)
3654 pm_runtime_put(&pdev->dev);
3655
3656 /* start the watchdog. */
3657 hw->mac.get_link_status = 1;
3658 schedule_work(&adapter->watchdog_task);
3659
3660 return 0;
3661
3662err_set_queues:
3663 igb_free_irq(adapter);
3664err_req_irq:
3665 igb_release_hw_control(adapter);
3666 igb_power_down_link(adapter);
3667 igb_free_all_rx_resources(adapter);
3668err_setup_rx:
3669 igb_free_all_tx_resources(adapter);
3670err_setup_tx:
3671 igb_reset(adapter);
3672 if (!resuming)
3673 pm_runtime_put(&pdev->dev);
3674
3675 return err;
3676}
3677
3678int igb_open(struct net_device *netdev)
3679{
3680 return __igb_open(netdev, false);
3681}
3682
3683/**
3684 * igb_close - Disables a network interface
3685 * @netdev: network interface device structure
3686 *
3687 * Returns 0, this is not allowed to fail
3688 *
3689 * The close entry point is called when an interface is de-activated
3690 * by the OS. The hardware is still under the driver's control, but
3691 * needs to be disabled. A global MAC reset is issued to stop the
3692 * hardware, and all transmit and receive resources are freed.
3693 **/
3694static int __igb_close(struct net_device *netdev, bool suspending)
3695{
3696 struct igb_adapter *adapter = netdev_priv(netdev);
3697 struct pci_dev *pdev = adapter->pdev;
3698
3699 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3700
3701 if (!suspending)
3702 pm_runtime_get_sync(&pdev->dev);
3703
3704 igb_down(adapter);
3705 igb_free_irq(adapter);
3706
3707 igb_free_all_tx_resources(adapter);
3708 igb_free_all_rx_resources(adapter);
3709
3710 if (!suspending)
3711 pm_runtime_put_sync(&pdev->dev);
3712 return 0;
3713}
3714
3715int igb_close(struct net_device *netdev)
3716{
3717 if (netif_device_present(netdev) || netdev->dismantle)
3718 return __igb_close(netdev, false);
3719 return 0;
3720}
3721
3722/**
3723 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3724 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3725 *
3726 * Return 0 on success, negative on failure
3727 **/
3728int igb_setup_tx_resources(struct igb_ring *tx_ring)
3729{
3730 struct device *dev = tx_ring->dev;
3731 int size;
3732
3733 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3734
3735 tx_ring->tx_buffer_info = vmalloc(size);
3736 if (!tx_ring->tx_buffer_info)
3737 goto err;
3738
3739 /* round up to nearest 4K */
3740 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3741 tx_ring->size = ALIGN(tx_ring->size, 4096);
3742
3743 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3744 &tx_ring->dma, GFP_KERNEL);
3745 if (!tx_ring->desc)
3746 goto err;
3747
3748 tx_ring->next_to_use = 0;
3749 tx_ring->next_to_clean = 0;
3750
3751 return 0;
3752
3753err:
3754 vfree(tx_ring->tx_buffer_info);
3755 tx_ring->tx_buffer_info = NULL;
3756 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3757 return -ENOMEM;
3758}
3759
3760/**
3761 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3762 * (Descriptors) for all queues
3763 * @adapter: board private structure
3764 *
3765 * Return 0 on success, negative on failure
3766 **/
3767static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3768{
3769 struct pci_dev *pdev = adapter->pdev;
3770 int i, err = 0;
3771
3772 for (i = 0; i < adapter->num_tx_queues; i++) {
3773 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3774 if (err) {
3775 dev_err(&pdev->dev,
3776 "Allocation for Tx Queue %u failed\n", i);
3777 for (i--; i >= 0; i--)
3778 igb_free_tx_resources(adapter->tx_ring[i]);
3779 break;
3780 }
3781 }
3782
3783 return err;
3784}
3785
3786/**
3787 * igb_setup_tctl - configure the transmit control registers
3788 * @adapter: Board private structure
3789 **/
3790void igb_setup_tctl(struct igb_adapter *adapter)
3791{
3792 struct e1000_hw *hw = &adapter->hw;
3793 u32 tctl;
3794
3795 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3796 wr32(E1000_TXDCTL(0), 0);
3797
3798 /* Program the Transmit Control Register */
3799 tctl = rd32(E1000_TCTL);
3800 tctl &= ~E1000_TCTL_CT;
3801 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3802 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3803
3804 igb_config_collision_dist(hw);
3805
3806 /* Enable transmits */
3807 tctl |= E1000_TCTL_EN;
3808
3809 wr32(E1000_TCTL, tctl);
3810}
3811
3812/**
3813 * igb_configure_tx_ring - Configure transmit ring after Reset
3814 * @adapter: board private structure
3815 * @ring: tx ring to configure
3816 *
3817 * Configure a transmit ring after a reset.
3818 **/
3819void igb_configure_tx_ring(struct igb_adapter *adapter,
3820 struct igb_ring *ring)
3821{
3822 struct e1000_hw *hw = &adapter->hw;
3823 u32 txdctl = 0;
3824 u64 tdba = ring->dma;
3825 int reg_idx = ring->reg_idx;
3826
3827 /* disable the queue */
3828 wr32(E1000_TXDCTL(reg_idx), 0);
3829 wrfl();
3830 mdelay(10);
3831
3832 wr32(E1000_TDLEN(reg_idx),
3833 ring->count * sizeof(union e1000_adv_tx_desc));
3834 wr32(E1000_TDBAL(reg_idx),
3835 tdba & 0x00000000ffffffffULL);
3836 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3837
3838 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
3839 wr32(E1000_TDH(reg_idx), 0);
3840 writel(0, ring->tail);
3841
3842 txdctl |= IGB_TX_PTHRESH;
3843 txdctl |= IGB_TX_HTHRESH << 8;
3844 txdctl |= IGB_TX_WTHRESH << 16;
3845
3846 /* reinitialize tx_buffer_info */
3847 memset(ring->tx_buffer_info, 0,
3848 sizeof(struct igb_tx_buffer) * ring->count);
3849
3850 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3851 wr32(E1000_TXDCTL(reg_idx), txdctl);
3852}
3853
3854/**
3855 * igb_configure_tx - Configure transmit Unit after Reset
3856 * @adapter: board private structure
3857 *
3858 * Configure the Tx unit of the MAC after a reset.
3859 **/
3860static void igb_configure_tx(struct igb_adapter *adapter)
3861{
3862 int i;
3863
3864 for (i = 0; i < adapter->num_tx_queues; i++)
3865 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3866}
3867
3868/**
3869 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3870 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3871 *
3872 * Returns 0 on success, negative on failure
3873 **/
3874int igb_setup_rx_resources(struct igb_ring *rx_ring)
3875{
3876 struct device *dev = rx_ring->dev;
3877 int size;
3878
3879 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3880
3881 rx_ring->rx_buffer_info = vmalloc(size);
3882 if (!rx_ring->rx_buffer_info)
3883 goto err;
3884
3885 /* Round up to nearest 4K */
3886 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3887 rx_ring->size = ALIGN(rx_ring->size, 4096);
3888
3889 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3890 &rx_ring->dma, GFP_KERNEL);
3891 if (!rx_ring->desc)
3892 goto err;
3893
3894 rx_ring->next_to_alloc = 0;
3895 rx_ring->next_to_clean = 0;
3896 rx_ring->next_to_use = 0;
3897
3898 return 0;
3899
3900err:
3901 vfree(rx_ring->rx_buffer_info);
3902 rx_ring->rx_buffer_info = NULL;
3903 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3904 return -ENOMEM;
3905}
3906
3907/**
3908 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3909 * (Descriptors) for all queues
3910 * @adapter: board private structure
3911 *
3912 * Return 0 on success, negative on failure
3913 **/
3914static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3915{
3916 struct pci_dev *pdev = adapter->pdev;
3917 int i, err = 0;
3918
3919 for (i = 0; i < adapter->num_rx_queues; i++) {
3920 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3921 if (err) {
3922 dev_err(&pdev->dev,
3923 "Allocation for Rx Queue %u failed\n", i);
3924 for (i--; i >= 0; i--)
3925 igb_free_rx_resources(adapter->rx_ring[i]);
3926 break;
3927 }
3928 }
3929
3930 return err;
3931}
3932
3933/**
3934 * igb_setup_mrqc - configure the multiple receive queue control registers
3935 * @adapter: Board private structure
3936 **/
3937static void igb_setup_mrqc(struct igb_adapter *adapter)
3938{
3939 struct e1000_hw *hw = &adapter->hw;
3940 u32 mrqc, rxcsum;
3941 u32 j, num_rx_queues;
3942 u32 rss_key[10];
3943
3944 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3945 for (j = 0; j < 10; j++)
3946 wr32(E1000_RSSRK(j), rss_key[j]);
3947
3948 num_rx_queues = adapter->rss_queues;
3949
3950 switch (hw->mac.type) {
3951 case e1000_82576:
3952 /* 82576 supports 2 RSS queues for SR-IOV */
3953 if (adapter->vfs_allocated_count)
3954 num_rx_queues = 2;
3955 break;
3956 default:
3957 break;
3958 }
3959
3960 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3961 for (j = 0; j < IGB_RETA_SIZE; j++)
3962 adapter->rss_indir_tbl[j] =
3963 (j * num_rx_queues) / IGB_RETA_SIZE;
3964 adapter->rss_indir_tbl_init = num_rx_queues;
3965 }
3966 igb_write_rss_indir_tbl(adapter);
3967
3968 /* Disable raw packet checksumming so that RSS hash is placed in
3969 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3970 * offloads as they are enabled by default
3971 */
3972 rxcsum = rd32(E1000_RXCSUM);
3973 rxcsum |= E1000_RXCSUM_PCSD;
3974
3975 if (adapter->hw.mac.type >= e1000_82576)
3976 /* Enable Receive Checksum Offload for SCTP */
3977 rxcsum |= E1000_RXCSUM_CRCOFL;
3978
3979 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3980 wr32(E1000_RXCSUM, rxcsum);
3981
3982 /* Generate RSS hash based on packet types, TCP/UDP
3983 * port numbers and/or IPv4/v6 src and dst addresses
3984 */
3985 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3986 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3987 E1000_MRQC_RSS_FIELD_IPV6 |
3988 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3989 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3990
3991 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3992 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3993 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3994 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3995
3996 /* If VMDq is enabled then we set the appropriate mode for that, else
3997 * we default to RSS so that an RSS hash is calculated per packet even
3998 * if we are only using one queue
3999 */
4000 if (adapter->vfs_allocated_count) {
4001 if (hw->mac.type > e1000_82575) {
4002 /* Set the default pool for the PF's first queue */
4003 u32 vtctl = rd32(E1000_VT_CTL);
4004
4005 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4006 E1000_VT_CTL_DISABLE_DEF_POOL);
4007 vtctl |= adapter->vfs_allocated_count <<
4008 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4009 wr32(E1000_VT_CTL, vtctl);
4010 }
4011 if (adapter->rss_queues > 1)
4012 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4013 else
4014 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4015 } else {
4016 if (hw->mac.type != e1000_i211)
4017 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4018 }
4019 igb_vmm_control(adapter);
4020
4021 wr32(E1000_MRQC, mrqc);
4022}
4023
4024/**
4025 * igb_setup_rctl - configure the receive control registers
4026 * @adapter: Board private structure
4027 **/
4028void igb_setup_rctl(struct igb_adapter *adapter)
4029{
4030 struct e1000_hw *hw = &adapter->hw;
4031 u32 rctl;
4032
4033 rctl = rd32(E1000_RCTL);
4034
4035 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4036 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4037
4038 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4039 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4040
4041 /* enable stripping of CRC. It's unlikely this will break BMC
4042 * redirection as it did with e1000. Newer features require
4043 * that the HW strips the CRC.
4044 */
4045 rctl |= E1000_RCTL_SECRC;
4046
4047 /* disable store bad packets and clear size bits. */
4048 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4049
4050 /* enable LPE to allow for reception of jumbo frames */
4051 rctl |= E1000_RCTL_LPE;
4052
4053 /* disable queue 0 to prevent tail write w/o re-config */
4054 wr32(E1000_RXDCTL(0), 0);
4055
4056 /* Attention!!! For SR-IOV PF driver operations you must enable
4057 * queue drop for all VF and PF queues to prevent head of line blocking
4058 * if an un-trusted VF does not provide descriptors to hardware.
4059 */
4060 if (adapter->vfs_allocated_count) {
4061 /* set all queue drop enable bits */
4062 wr32(E1000_QDE, ALL_QUEUES);
4063 }
4064
4065 /* This is useful for sniffing bad packets. */
4066 if (adapter->netdev->features & NETIF_F_RXALL) {
4067 /* UPE and MPE will be handled by normal PROMISC logic
4068 * in e1000e_set_rx_mode
4069 */
4070 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4071 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4072 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4073
4074 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4075 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4076 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4077 * and that breaks VLANs.
4078 */
4079 }
4080
4081 wr32(E1000_RCTL, rctl);
4082}
4083
4084static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4085 int vfn)
4086{
4087 struct e1000_hw *hw = &adapter->hw;
4088 u32 vmolr;
4089
4090 if (size > MAX_JUMBO_FRAME_SIZE)
4091 size = MAX_JUMBO_FRAME_SIZE;
4092
4093 vmolr = rd32(E1000_VMOLR(vfn));
4094 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4095 vmolr |= size | E1000_VMOLR_LPE;
4096 wr32(E1000_VMOLR(vfn), vmolr);
4097
4098 return 0;
4099}
4100
4101static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4102 int vfn, bool enable)
4103{
4104 struct e1000_hw *hw = &adapter->hw;
4105 u32 val, reg;
4106
4107 if (hw->mac.type < e1000_82576)
4108 return;
4109
4110 if (hw->mac.type == e1000_i350)
4111 reg = E1000_DVMOLR(vfn);
4112 else
4113 reg = E1000_VMOLR(vfn);
4114
4115 val = rd32(reg);
4116 if (enable)
4117 val |= E1000_VMOLR_STRVLAN;
4118 else
4119 val &= ~(E1000_VMOLR_STRVLAN);
4120 wr32(reg, val);
4121}
4122
4123static inline void igb_set_vmolr(struct igb_adapter *adapter,
4124 int vfn, bool aupe)
4125{
4126 struct e1000_hw *hw = &adapter->hw;
4127 u32 vmolr;
4128
4129 /* This register exists only on 82576 and newer so if we are older then
4130 * we should exit and do nothing
4131 */
4132 if (hw->mac.type < e1000_82576)
4133 return;
4134
4135 vmolr = rd32(E1000_VMOLR(vfn));
4136 if (aupe)
4137 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4138 else
4139 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4140
4141 /* clear all bits that might not be set */
4142 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4143
4144 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4145 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4146 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4147 * multicast packets
4148 */
4149 if (vfn <= adapter->vfs_allocated_count)
4150 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4151
4152 wr32(E1000_VMOLR(vfn), vmolr);
4153}
4154
4155/**
4156 * igb_configure_rx_ring - Configure a receive ring after Reset
4157 * @adapter: board private structure
4158 * @ring: receive ring to be configured
4159 *
4160 * Configure the Rx unit of the MAC after a reset.
4161 **/
4162void igb_configure_rx_ring(struct igb_adapter *adapter,
4163 struct igb_ring *ring)
4164{
4165 struct e1000_hw *hw = &adapter->hw;
4166 union e1000_adv_rx_desc *rx_desc;
4167 u64 rdba = ring->dma;
4168 int reg_idx = ring->reg_idx;
4169 u32 srrctl = 0, rxdctl = 0;
4170
4171 /* disable the queue */
4172 wr32(E1000_RXDCTL(reg_idx), 0);
4173
4174 /* Set DMA base address registers */
4175 wr32(E1000_RDBAL(reg_idx),
4176 rdba & 0x00000000ffffffffULL);
4177 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4178 wr32(E1000_RDLEN(reg_idx),
4179 ring->count * sizeof(union e1000_adv_rx_desc));
4180
4181 /* initialize head and tail */
4182 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4183 wr32(E1000_RDH(reg_idx), 0);
4184 writel(0, ring->tail);
4185
4186 /* set descriptor configuration */
4187 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4188 if (ring_uses_large_buffer(ring))
4189 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4190 else
4191 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4192 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4193 if (hw->mac.type >= e1000_82580)
4194 srrctl |= E1000_SRRCTL_TIMESTAMP;
4195 /* Only set Drop Enable if we are supporting multiple queues */
4196 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4197 srrctl |= E1000_SRRCTL_DROP_EN;
4198
4199 wr32(E1000_SRRCTL(reg_idx), srrctl);
4200
4201 /* set filtering for VMDQ pools */
4202 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4203
4204 rxdctl |= IGB_RX_PTHRESH;
4205 rxdctl |= IGB_RX_HTHRESH << 8;
4206 rxdctl |= IGB_RX_WTHRESH << 16;
4207
4208 /* initialize rx_buffer_info */
4209 memset(ring->rx_buffer_info, 0,
4210 sizeof(struct igb_rx_buffer) * ring->count);
4211
4212 /* initialize Rx descriptor 0 */
4213 rx_desc = IGB_RX_DESC(ring, 0);
4214 rx_desc->wb.upper.length = 0;
4215
4216 /* enable receive descriptor fetching */
4217 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4218 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4219}
4220
4221static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4222 struct igb_ring *rx_ring)
4223{
4224 /* set build_skb and buffer size flags */
4225 clear_ring_build_skb_enabled(rx_ring);
4226 clear_ring_uses_large_buffer(rx_ring);
4227
4228 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4229 return;
4230
4231 set_ring_build_skb_enabled(rx_ring);
4232
4233#if (PAGE_SIZE < 8192)
4234 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4235 return;
4236
4237 set_ring_uses_large_buffer(rx_ring);
4238#endif
4239}
4240
4241/**
4242 * igb_configure_rx - Configure receive Unit after Reset
4243 * @adapter: board private structure
4244 *
4245 * Configure the Rx unit of the MAC after a reset.
4246 **/
4247static void igb_configure_rx(struct igb_adapter *adapter)
4248{
4249 int i;
4250
4251 /* set the correct pool for the PF default MAC address in entry 0 */
4252 igb_set_default_mac_filter(adapter);
4253
4254 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4255 * the Base and Length of the Rx Descriptor Ring
4256 */
4257 for (i = 0; i < adapter->num_rx_queues; i++) {
4258 struct igb_ring *rx_ring = adapter->rx_ring[i];
4259
4260 igb_set_rx_buffer_len(adapter, rx_ring);
4261 igb_configure_rx_ring(adapter, rx_ring);
4262 }
4263}
4264
4265/**
4266 * igb_free_tx_resources - Free Tx Resources per Queue
4267 * @tx_ring: Tx descriptor ring for a specific queue
4268 *
4269 * Free all transmit software resources
4270 **/
4271void igb_free_tx_resources(struct igb_ring *tx_ring)
4272{
4273 igb_clean_tx_ring(tx_ring);
4274
4275 vfree(tx_ring->tx_buffer_info);
4276 tx_ring->tx_buffer_info = NULL;
4277
4278 /* if not set, then don't free */
4279 if (!tx_ring->desc)
4280 return;
4281
4282 dma_free_coherent(tx_ring->dev, tx_ring->size,
4283 tx_ring->desc, tx_ring->dma);
4284
4285 tx_ring->desc = NULL;
4286}
4287
4288/**
4289 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4290 * @adapter: board private structure
4291 *
4292 * Free all transmit software resources
4293 **/
4294static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4295{
4296 int i;
4297
4298 for (i = 0; i < adapter->num_tx_queues; i++)
4299 if (adapter->tx_ring[i])
4300 igb_free_tx_resources(adapter->tx_ring[i]);
4301}
4302
4303/**
4304 * igb_clean_tx_ring - Free Tx Buffers
4305 * @tx_ring: ring to be cleaned
4306 **/
4307static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4308{
4309 u16 i = tx_ring->next_to_clean;
4310 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4311
4312 while (i != tx_ring->next_to_use) {
4313 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4314
4315 /* Free all the Tx ring sk_buffs */
4316 dev_kfree_skb_any(tx_buffer->skb);
4317
4318 /* unmap skb header data */
4319 dma_unmap_single(tx_ring->dev,
4320 dma_unmap_addr(tx_buffer, dma),
4321 dma_unmap_len(tx_buffer, len),
4322 DMA_TO_DEVICE);
4323
4324 /* check for eop_desc to determine the end of the packet */
4325 eop_desc = tx_buffer->next_to_watch;
4326 tx_desc = IGB_TX_DESC(tx_ring, i);
4327
4328 /* unmap remaining buffers */
4329 while (tx_desc != eop_desc) {
4330 tx_buffer++;
4331 tx_desc++;
4332 i++;
4333 if (unlikely(i == tx_ring->count)) {
4334 i = 0;
4335 tx_buffer = tx_ring->tx_buffer_info;
4336 tx_desc = IGB_TX_DESC(tx_ring, 0);
4337 }
4338
4339 /* unmap any remaining paged data */
4340 if (dma_unmap_len(tx_buffer, len))
4341 dma_unmap_page(tx_ring->dev,
4342 dma_unmap_addr(tx_buffer, dma),
4343 dma_unmap_len(tx_buffer, len),
4344 DMA_TO_DEVICE);
4345 }
4346
4347 /* move us one more past the eop_desc for start of next pkt */
4348 tx_buffer++;
4349 i++;
4350 if (unlikely(i == tx_ring->count)) {
4351 i = 0;
4352 tx_buffer = tx_ring->tx_buffer_info;
4353 }
4354 }
4355
4356 /* reset BQL for queue */
4357 netdev_tx_reset_queue(txring_txq(tx_ring));
4358
4359 /* reset next_to_use and next_to_clean */
4360 tx_ring->next_to_use = 0;
4361 tx_ring->next_to_clean = 0;
4362}
4363
4364/**
4365 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4366 * @adapter: board private structure
4367 **/
4368static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4369{
4370 int i;
4371
4372 for (i = 0; i < adapter->num_tx_queues; i++)
4373 if (adapter->tx_ring[i])
4374 igb_clean_tx_ring(adapter->tx_ring[i]);
4375}
4376
4377/**
4378 * igb_free_rx_resources - Free Rx Resources
4379 * @rx_ring: ring to clean the resources from
4380 *
4381 * Free all receive software resources
4382 **/
4383void igb_free_rx_resources(struct igb_ring *rx_ring)
4384{
4385 igb_clean_rx_ring(rx_ring);
4386
4387 vfree(rx_ring->rx_buffer_info);
4388 rx_ring->rx_buffer_info = NULL;
4389
4390 /* if not set, then don't free */
4391 if (!rx_ring->desc)
4392 return;
4393
4394 dma_free_coherent(rx_ring->dev, rx_ring->size,
4395 rx_ring->desc, rx_ring->dma);
4396
4397 rx_ring->desc = NULL;
4398}
4399
4400/**
4401 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4402 * @adapter: board private structure
4403 *
4404 * Free all receive software resources
4405 **/
4406static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4407{
4408 int i;
4409
4410 for (i = 0; i < adapter->num_rx_queues; i++)
4411 if (adapter->rx_ring[i])
4412 igb_free_rx_resources(adapter->rx_ring[i]);
4413}
4414
4415/**
4416 * igb_clean_rx_ring - Free Rx Buffers per Queue
4417 * @rx_ring: ring to free buffers from
4418 **/
4419static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4420{
4421 u16 i = rx_ring->next_to_clean;
4422
4423 if (rx_ring->skb)
4424 dev_kfree_skb(rx_ring->skb);
4425 rx_ring->skb = NULL;
4426
4427 /* Free all the Rx ring sk_buffs */
4428 while (i != rx_ring->next_to_alloc) {
4429 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4430
4431 /* Invalidate cache lines that may have been written to by
4432 * device so that we avoid corrupting memory.
4433 */
4434 dma_sync_single_range_for_cpu(rx_ring->dev,
4435 buffer_info->dma,
4436 buffer_info->page_offset,
4437 igb_rx_bufsz(rx_ring),
4438 DMA_FROM_DEVICE);
4439
4440 /* free resources associated with mapping */
4441 dma_unmap_page_attrs(rx_ring->dev,
4442 buffer_info->dma,
4443 igb_rx_pg_size(rx_ring),
4444 DMA_FROM_DEVICE,
4445 IGB_RX_DMA_ATTR);
4446 __page_frag_cache_drain(buffer_info->page,
4447 buffer_info->pagecnt_bias);
4448
4449 i++;
4450 if (i == rx_ring->count)
4451 i = 0;
4452 }
4453
4454 rx_ring->next_to_alloc = 0;
4455 rx_ring->next_to_clean = 0;
4456 rx_ring->next_to_use = 0;
4457}
4458
4459/**
4460 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4461 * @adapter: board private structure
4462 **/
4463static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4464{
4465 int i;
4466
4467 for (i = 0; i < adapter->num_rx_queues; i++)
4468 if (adapter->rx_ring[i])
4469 igb_clean_rx_ring(adapter->rx_ring[i]);
4470}
4471
4472/**
4473 * igb_set_mac - Change the Ethernet Address of the NIC
4474 * @netdev: network interface device structure
4475 * @p: pointer to an address structure
4476 *
4477 * Returns 0 on success, negative on failure
4478 **/
4479static int igb_set_mac(struct net_device *netdev, void *p)
4480{
4481 struct igb_adapter *adapter = netdev_priv(netdev);
4482 struct e1000_hw *hw = &adapter->hw;
4483 struct sockaddr *addr = p;
4484
4485 if (!is_valid_ether_addr(addr->sa_data))
4486 return -EADDRNOTAVAIL;
4487
4488 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4489 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4490
4491 /* set the correct pool for the new PF MAC address in entry 0 */
4492 igb_set_default_mac_filter(adapter);
4493
4494 return 0;
4495}
4496
4497/**
4498 * igb_write_mc_addr_list - write multicast addresses to MTA
4499 * @netdev: network interface device structure
4500 *
4501 * Writes multicast address list to the MTA hash table.
4502 * Returns: -ENOMEM on failure
4503 * 0 on no addresses written
4504 * X on writing X addresses to MTA
4505 **/
4506static int igb_write_mc_addr_list(struct net_device *netdev)
4507{
4508 struct igb_adapter *adapter = netdev_priv(netdev);
4509 struct e1000_hw *hw = &adapter->hw;
4510 struct netdev_hw_addr *ha;
4511 u8 *mta_list;
4512 int i;
4513
4514 if (netdev_mc_empty(netdev)) {
4515 /* nothing to program, so clear mc list */
4516 igb_update_mc_addr_list(hw, NULL, 0);
4517 igb_restore_vf_multicasts(adapter);
4518 return 0;
4519 }
4520
4521 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4522 if (!mta_list)
4523 return -ENOMEM;
4524
4525 /* The shared function expects a packed array of only addresses. */
4526 i = 0;
4527 netdev_for_each_mc_addr(ha, netdev)
4528 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4529
4530 igb_update_mc_addr_list(hw, mta_list, i);
4531 kfree(mta_list);
4532
4533 return netdev_mc_count(netdev);
4534}
4535
4536static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4537{
4538 struct e1000_hw *hw = &adapter->hw;
4539 u32 i, pf_id;
4540
4541 switch (hw->mac.type) {
4542 case e1000_i210:
4543 case e1000_i211:
4544 case e1000_i350:
4545 /* VLAN filtering needed for VLAN prio filter */
4546 if (adapter->netdev->features & NETIF_F_NTUPLE)
4547 break;
4548 /* fall through */
4549 case e1000_82576:
4550 case e1000_82580:
4551 case e1000_i354:
4552 /* VLAN filtering needed for pool filtering */
4553 if (adapter->vfs_allocated_count)
4554 break;
4555 /* fall through */
4556 default:
4557 return 1;
4558 }
4559
4560 /* We are already in VLAN promisc, nothing to do */
4561 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4562 return 0;
4563
4564 if (!adapter->vfs_allocated_count)
4565 goto set_vfta;
4566
4567 /* Add PF to all active pools */
4568 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4569
4570 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4571 u32 vlvf = rd32(E1000_VLVF(i));
4572
4573 vlvf |= BIT(pf_id);
4574 wr32(E1000_VLVF(i), vlvf);
4575 }
4576
4577set_vfta:
4578 /* Set all bits in the VLAN filter table array */
4579 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4580 hw->mac.ops.write_vfta(hw, i, ~0U);
4581
4582 /* Set flag so we don't redo unnecessary work */
4583 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4584
4585 return 0;
4586}
4587
4588#define VFTA_BLOCK_SIZE 8
4589static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4590{
4591 struct e1000_hw *hw = &adapter->hw;
4592 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4593 u32 vid_start = vfta_offset * 32;
4594 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4595 u32 i, vid, word, bits, pf_id;
4596
4597 /* guarantee that we don't scrub out management VLAN */
4598 vid = adapter->mng_vlan_id;
4599 if (vid >= vid_start && vid < vid_end)
4600 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4601
4602 if (!adapter->vfs_allocated_count)
4603 goto set_vfta;
4604
4605 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4606
4607 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4608 u32 vlvf = rd32(E1000_VLVF(i));
4609
4610 /* pull VLAN ID from VLVF */
4611 vid = vlvf & VLAN_VID_MASK;
4612
4613 /* only concern ourselves with a certain range */
4614 if (vid < vid_start || vid >= vid_end)
4615 continue;
4616
4617 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4618 /* record VLAN ID in VFTA */
4619 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4620
4621 /* if PF is part of this then continue */
4622 if (test_bit(vid, adapter->active_vlans))
4623 continue;
4624 }
4625
4626 /* remove PF from the pool */
4627 bits = ~BIT(pf_id);
4628 bits &= rd32(E1000_VLVF(i));
4629 wr32(E1000_VLVF(i), bits);
4630 }
4631
4632set_vfta:
4633 /* extract values from active_vlans and write back to VFTA */
4634 for (i = VFTA_BLOCK_SIZE; i--;) {
4635 vid = (vfta_offset + i) * 32;
4636 word = vid / BITS_PER_LONG;
4637 bits = vid % BITS_PER_LONG;
4638
4639 vfta[i] |= adapter->active_vlans[word] >> bits;
4640
4641 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4642 }
4643}
4644
4645static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4646{
4647 u32 i;
4648
4649 /* We are not in VLAN promisc, nothing to do */
4650 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4651 return;
4652
4653 /* Set flag so we don't redo unnecessary work */
4654 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4655
4656 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4657 igb_scrub_vfta(adapter, i);
4658}
4659
4660/**
4661 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4662 * @netdev: network interface device structure
4663 *
4664 * The set_rx_mode entry point is called whenever the unicast or multicast
4665 * address lists or the network interface flags are updated. This routine is
4666 * responsible for configuring the hardware for proper unicast, multicast,
4667 * promiscuous mode, and all-multi behavior.
4668 **/
4669static void igb_set_rx_mode(struct net_device *netdev)
4670{
4671 struct igb_adapter *adapter = netdev_priv(netdev);
4672 struct e1000_hw *hw = &adapter->hw;
4673 unsigned int vfn = adapter->vfs_allocated_count;
4674 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4675 int count;
4676
4677 /* Check for Promiscuous and All Multicast modes */
4678 if (netdev->flags & IFF_PROMISC) {
4679 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4680 vmolr |= E1000_VMOLR_MPME;
4681
4682 /* enable use of UTA filter to force packets to default pool */
4683 if (hw->mac.type == e1000_82576)
4684 vmolr |= E1000_VMOLR_ROPE;
4685 } else {
4686 if (netdev->flags & IFF_ALLMULTI) {
4687 rctl |= E1000_RCTL_MPE;
4688 vmolr |= E1000_VMOLR_MPME;
4689 } else {
4690 /* Write addresses to the MTA, if the attempt fails
4691 * then we should just turn on promiscuous mode so
4692 * that we can at least receive multicast traffic
4693 */
4694 count = igb_write_mc_addr_list(netdev);
4695 if (count < 0) {
4696 rctl |= E1000_RCTL_MPE;
4697 vmolr |= E1000_VMOLR_MPME;
4698 } else if (count) {
4699 vmolr |= E1000_VMOLR_ROMPE;
4700 }
4701 }
4702 }
4703
4704 /* Write addresses to available RAR registers, if there is not
4705 * sufficient space to store all the addresses then enable
4706 * unicast promiscuous mode
4707 */
4708 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
4709 rctl |= E1000_RCTL_UPE;
4710 vmolr |= E1000_VMOLR_ROPE;
4711 }
4712
4713 /* enable VLAN filtering by default */
4714 rctl |= E1000_RCTL_VFE;
4715
4716 /* disable VLAN filtering for modes that require it */
4717 if ((netdev->flags & IFF_PROMISC) ||
4718 (netdev->features & NETIF_F_RXALL)) {
4719 /* if we fail to set all rules then just clear VFE */
4720 if (igb_vlan_promisc_enable(adapter))
4721 rctl &= ~E1000_RCTL_VFE;
4722 } else {
4723 igb_vlan_promisc_disable(adapter);
4724 }
4725
4726 /* update state of unicast, multicast, and VLAN filtering modes */
4727 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4728 E1000_RCTL_VFE);
4729 wr32(E1000_RCTL, rctl);
4730
4731#if (PAGE_SIZE < 8192)
4732 if (!adapter->vfs_allocated_count) {
4733 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4734 rlpml = IGB_MAX_FRAME_BUILD_SKB;
4735 }
4736#endif
4737 wr32(E1000_RLPML, rlpml);
4738
4739 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4740 * the VMOLR to enable the appropriate modes. Without this workaround
4741 * we will have issues with VLAN tag stripping not being done for frames
4742 * that are only arriving because we are the default pool
4743 */
4744 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4745 return;
4746
4747 /* set UTA to appropriate mode */
4748 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4749
4750 vmolr |= rd32(E1000_VMOLR(vfn)) &
4751 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4752
4753 /* enable Rx jumbo frames, restrict as needed to support build_skb */
4754 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4755#if (PAGE_SIZE < 8192)
4756 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4757 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
4758 else
4759#endif
4760 vmolr |= MAX_JUMBO_FRAME_SIZE;
4761 vmolr |= E1000_VMOLR_LPE;
4762
4763 wr32(E1000_VMOLR(vfn), vmolr);
4764
4765 igb_restore_vf_multicasts(adapter);
4766}
4767
4768static void igb_check_wvbr(struct igb_adapter *adapter)
4769{
4770 struct e1000_hw *hw = &adapter->hw;
4771 u32 wvbr = 0;
4772
4773 switch (hw->mac.type) {
4774 case e1000_82576:
4775 case e1000_i350:
4776 wvbr = rd32(E1000_WVBR);
4777 if (!wvbr)
4778 return;
4779 break;
4780 default:
4781 break;
4782 }
4783
4784 adapter->wvbr |= wvbr;
4785}
4786
4787#define IGB_STAGGERED_QUEUE_OFFSET 8
4788
4789static void igb_spoof_check(struct igb_adapter *adapter)
4790{
4791 int j;
4792
4793 if (!adapter->wvbr)
4794 return;
4795
4796 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4797 if (adapter->wvbr & BIT(j) ||
4798 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4799 dev_warn(&adapter->pdev->dev,
4800 "Spoof event(s) detected on VF %d\n", j);
4801 adapter->wvbr &=
4802 ~(BIT(j) |
4803 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4804 }
4805 }
4806}
4807
4808/* Need to wait a few seconds after link up to get diagnostic information from
4809 * the phy
4810 */
4811static void igb_update_phy_info(struct timer_list *t)
4812{
4813 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4814 igb_get_phy_info(&adapter->hw);
4815}
4816
4817/**
4818 * igb_has_link - check shared code for link and determine up/down
4819 * @adapter: pointer to driver private info
4820 **/
4821bool igb_has_link(struct igb_adapter *adapter)
4822{
4823 struct e1000_hw *hw = &adapter->hw;
4824 bool link_active = false;
4825
4826 /* get_link_status is set on LSC (link status) interrupt or
4827 * rx sequence error interrupt. get_link_status will stay
4828 * false until the e1000_check_for_link establishes link
4829 * for copper adapters ONLY
4830 */
4831 switch (hw->phy.media_type) {
4832 case e1000_media_type_copper:
4833 if (!hw->mac.get_link_status)
4834 return true;
4835 case e1000_media_type_internal_serdes:
4836 hw->mac.ops.check_for_link(hw);
4837 link_active = !hw->mac.get_link_status;
4838 break;
4839 default:
4840 case e1000_media_type_unknown:
4841 break;
4842 }
4843
4844 if (((hw->mac.type == e1000_i210) ||
4845 (hw->mac.type == e1000_i211)) &&
4846 (hw->phy.id == I210_I_PHY_ID)) {
4847 if (!netif_carrier_ok(adapter->netdev)) {
4848 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4849 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4850 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4851 adapter->link_check_timeout = jiffies;
4852 }
4853 }
4854
4855 return link_active;
4856}
4857
4858static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4859{
4860 bool ret = false;
4861 u32 ctrl_ext, thstat;
4862
4863 /* check for thermal sensor event on i350 copper only */
4864 if (hw->mac.type == e1000_i350) {
4865 thstat = rd32(E1000_THSTAT);
4866 ctrl_ext = rd32(E1000_CTRL_EXT);
4867
4868 if ((hw->phy.media_type == e1000_media_type_copper) &&
4869 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4870 ret = !!(thstat & event);
4871 }
4872
4873 return ret;
4874}
4875
4876/**
4877 * igb_check_lvmmc - check for malformed packets received
4878 * and indicated in LVMMC register
4879 * @adapter: pointer to adapter
4880 **/
4881static void igb_check_lvmmc(struct igb_adapter *adapter)
4882{
4883 struct e1000_hw *hw = &adapter->hw;
4884 u32 lvmmc;
4885
4886 lvmmc = rd32(E1000_LVMMC);
4887 if (lvmmc) {
4888 if (unlikely(net_ratelimit())) {
4889 netdev_warn(adapter->netdev,
4890 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4891 lvmmc);
4892 }
4893 }
4894}
4895
4896/**
4897 * igb_watchdog - Timer Call-back
4898 * @data: pointer to adapter cast into an unsigned long
4899 **/
4900static void igb_watchdog(struct timer_list *t)
4901{
4902 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4903 /* Do the rest outside of interrupt context */
4904 schedule_work(&adapter->watchdog_task);
4905}
4906
4907static void igb_watchdog_task(struct work_struct *work)
4908{
4909 struct igb_adapter *adapter = container_of(work,
4910 struct igb_adapter,
4911 watchdog_task);
4912 struct e1000_hw *hw = &adapter->hw;
4913 struct e1000_phy_info *phy = &hw->phy;
4914 struct net_device *netdev = adapter->netdev;
4915 u32 link;
4916 int i;
4917 u32 connsw;
4918 u16 phy_data, retry_count = 20;
4919
4920 link = igb_has_link(adapter);
4921
4922 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4923 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4924 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4925 else
4926 link = false;
4927 }
4928
4929 /* Force link down if we have fiber to swap to */
4930 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4931 if (hw->phy.media_type == e1000_media_type_copper) {
4932 connsw = rd32(E1000_CONNSW);
4933 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4934 link = 0;
4935 }
4936 }
4937 if (link) {
4938 /* Perform a reset if the media type changed. */
4939 if (hw->dev_spec._82575.media_changed) {
4940 hw->dev_spec._82575.media_changed = false;
4941 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4942 igb_reset(adapter);
4943 }
4944 /* Cancel scheduled suspend requests. */
4945 pm_runtime_resume(netdev->dev.parent);
4946
4947 if (!netif_carrier_ok(netdev)) {
4948 u32 ctrl;
4949
4950 hw->mac.ops.get_speed_and_duplex(hw,
4951 &adapter->link_speed,
4952 &adapter->link_duplex);
4953
4954 ctrl = rd32(E1000_CTRL);
4955 /* Links status message must follow this format */
4956 netdev_info(netdev,
4957 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4958 netdev->name,
4959 adapter->link_speed,
4960 adapter->link_duplex == FULL_DUPLEX ?
4961 "Full" : "Half",
4962 (ctrl & E1000_CTRL_TFCE) &&
4963 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4964 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4965 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4966
4967 /* disable EEE if enabled */
4968 if ((adapter->flags & IGB_FLAG_EEE) &&
4969 (adapter->link_duplex == HALF_DUPLEX)) {
4970 dev_info(&adapter->pdev->dev,
4971 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4972 adapter->hw.dev_spec._82575.eee_disable = true;
4973 adapter->flags &= ~IGB_FLAG_EEE;
4974 }
4975
4976 /* check if SmartSpeed worked */
4977 igb_check_downshift(hw);
4978 if (phy->speed_downgraded)
4979 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4980
4981 /* check for thermal sensor event */
4982 if (igb_thermal_sensor_event(hw,
4983 E1000_THSTAT_LINK_THROTTLE))
4984 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4985
4986 /* adjust timeout factor according to speed/duplex */
4987 adapter->tx_timeout_factor = 1;
4988 switch (adapter->link_speed) {
4989 case SPEED_10:
4990 adapter->tx_timeout_factor = 14;
4991 break;
4992 case SPEED_100:
4993 /* maybe add some timeout factor ? */
4994 break;
4995 }
4996
4997 if (adapter->link_speed != SPEED_1000)
4998 goto no_wait;
4999
5000 /* wait for Remote receiver status OK */
5001retry_read_status:
5002 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5003 &phy_data)) {
5004 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5005 retry_count) {
5006 msleep(100);
5007 retry_count--;
5008 goto retry_read_status;
5009 } else if (!retry_count) {
5010 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5011 }
5012 } else {
5013 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5014 }
5015no_wait:
5016 netif_carrier_on(netdev);
5017
5018 igb_ping_all_vfs(adapter);
5019 igb_check_vf_rate_limit(adapter);
5020
5021 /* link state has changed, schedule phy info update */
5022 if (!test_bit(__IGB_DOWN, &adapter->state))
5023 mod_timer(&adapter->phy_info_timer,
5024 round_jiffies(jiffies + 2 * HZ));
5025 }
5026 } else {
5027 if (netif_carrier_ok(netdev)) {
5028 adapter->link_speed = 0;
5029 adapter->link_duplex = 0;
5030
5031 /* check for thermal sensor event */
5032 if (igb_thermal_sensor_event(hw,
5033 E1000_THSTAT_PWR_DOWN)) {
5034 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5035 }
5036
5037 /* Links status message must follow this format */
5038 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5039 netdev->name);
5040 netif_carrier_off(netdev);
5041
5042 igb_ping_all_vfs(adapter);
5043
5044 /* link state has changed, schedule phy info update */
5045 if (!test_bit(__IGB_DOWN, &adapter->state))
5046 mod_timer(&adapter->phy_info_timer,
5047 round_jiffies(jiffies + 2 * HZ));
5048
5049 /* link is down, time to check for alternate media */
5050 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5051 igb_check_swap_media(adapter);
5052 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5053 schedule_work(&adapter->reset_task);
5054 /* return immediately */
5055 return;
5056 }
5057 }
5058 pm_schedule_suspend(netdev->dev.parent,
5059 MSEC_PER_SEC * 5);
5060
5061 /* also check for alternate media here */
5062 } else if (!netif_carrier_ok(netdev) &&
5063 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5064 igb_check_swap_media(adapter);
5065 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5066 schedule_work(&adapter->reset_task);
5067 /* return immediately */
5068 return;
5069 }
5070 }
5071 }
5072
5073 spin_lock(&adapter->stats64_lock);
5074 igb_update_stats(adapter);
5075 spin_unlock(&adapter->stats64_lock);
5076
5077 for (i = 0; i < adapter->num_tx_queues; i++) {
5078 struct igb_ring *tx_ring = adapter->tx_ring[i];
5079 if (!netif_carrier_ok(netdev)) {
5080 /* We've lost link, so the controller stops DMA,
5081 * but we've got queued Tx work that's never going
5082 * to get done, so reset controller to flush Tx.
5083 * (Do the reset outside of interrupt context).
5084 */
5085 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5086 adapter->tx_timeout_count++;
5087 schedule_work(&adapter->reset_task);
5088 /* return immediately since reset is imminent */
5089 return;
5090 }
5091 }
5092
5093 /* Force detection of hung controller every watchdog period */
5094 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5095 }
5096
5097 /* Cause software interrupt to ensure Rx ring is cleaned */
5098 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5099 u32 eics = 0;
5100
5101 for (i = 0; i < adapter->num_q_vectors; i++)
5102 eics |= adapter->q_vector[i]->eims_value;
5103 wr32(E1000_EICS, eics);
5104 } else {
5105 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5106 }
5107
5108 igb_spoof_check(adapter);
5109 igb_ptp_rx_hang(adapter);
5110 igb_ptp_tx_hang(adapter);
5111
5112 /* Check LVMMC register on i350/i354 only */
5113 if ((adapter->hw.mac.type == e1000_i350) ||
5114 (adapter->hw.mac.type == e1000_i354))
5115 igb_check_lvmmc(adapter);
5116
5117 /* Reset the timer */
5118 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5119 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5120 mod_timer(&adapter->watchdog_timer,
5121 round_jiffies(jiffies + HZ));
5122 else
5123 mod_timer(&adapter->watchdog_timer,
5124 round_jiffies(jiffies + 2 * HZ));
5125 }
5126}
5127
5128enum latency_range {
5129 lowest_latency = 0,
5130 low_latency = 1,
5131 bulk_latency = 2,
5132 latency_invalid = 255
5133};
5134
5135/**
5136 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5137 * @q_vector: pointer to q_vector
5138 *
5139 * Stores a new ITR value based on strictly on packet size. This
5140 * algorithm is less sophisticated than that used in igb_update_itr,
5141 * due to the difficulty of synchronizing statistics across multiple
5142 * receive rings. The divisors and thresholds used by this function
5143 * were determined based on theoretical maximum wire speed and testing
5144 * data, in order to minimize response time while increasing bulk
5145 * throughput.
5146 * This functionality is controlled by ethtool's coalescing settings.
5147 * NOTE: This function is called only when operating in a multiqueue
5148 * receive environment.
5149 **/
5150static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5151{
5152 int new_val = q_vector->itr_val;
5153 int avg_wire_size = 0;
5154 struct igb_adapter *adapter = q_vector->adapter;
5155 unsigned int packets;
5156
5157 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5158 * ints/sec - ITR timer value of 120 ticks.
5159 */
5160 if (adapter->link_speed != SPEED_1000) {
5161 new_val = IGB_4K_ITR;
5162 goto set_itr_val;
5163 }
5164
5165 packets = q_vector->rx.total_packets;
5166 if (packets)
5167 avg_wire_size = q_vector->rx.total_bytes / packets;
5168
5169 packets = q_vector->tx.total_packets;
5170 if (packets)
5171 avg_wire_size = max_t(u32, avg_wire_size,
5172 q_vector->tx.total_bytes / packets);
5173
5174 /* if avg_wire_size isn't set no work was done */
5175 if (!avg_wire_size)
5176 goto clear_counts;
5177
5178 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5179 avg_wire_size += 24;
5180
5181 /* Don't starve jumbo frames */
5182 avg_wire_size = min(avg_wire_size, 3000);
5183
5184 /* Give a little boost to mid-size frames */
5185 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5186 new_val = avg_wire_size / 3;
5187 else
5188 new_val = avg_wire_size / 2;
5189
5190 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5191 if (new_val < IGB_20K_ITR &&
5192 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5193 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5194 new_val = IGB_20K_ITR;
5195
5196set_itr_val:
5197 if (new_val != q_vector->itr_val) {
5198 q_vector->itr_val = new_val;
5199 q_vector->set_itr = 1;
5200 }
5201clear_counts:
5202 q_vector->rx.total_bytes = 0;
5203 q_vector->rx.total_packets = 0;
5204 q_vector->tx.total_bytes = 0;
5205 q_vector->tx.total_packets = 0;
5206}
5207
5208/**
5209 * igb_update_itr - update the dynamic ITR value based on statistics
5210 * @q_vector: pointer to q_vector
5211 * @ring_container: ring info to update the itr for
5212 *
5213 * Stores a new ITR value based on packets and byte
5214 * counts during the last interrupt. The advantage of per interrupt
5215 * computation is faster updates and more accurate ITR for the current
5216 * traffic pattern. Constants in this function were computed
5217 * based on theoretical maximum wire speed and thresholds were set based
5218 * on testing data as well as attempting to minimize response time
5219 * while increasing bulk throughput.
5220 * This functionality is controlled by ethtool's coalescing settings.
5221 * NOTE: These calculations are only valid when operating in a single-
5222 * queue environment.
5223 **/
5224static void igb_update_itr(struct igb_q_vector *q_vector,
5225 struct igb_ring_container *ring_container)
5226{
5227 unsigned int packets = ring_container->total_packets;
5228 unsigned int bytes = ring_container->total_bytes;
5229 u8 itrval = ring_container->itr;
5230
5231 /* no packets, exit with status unchanged */
5232 if (packets == 0)
5233 return;
5234
5235 switch (itrval) {
5236 case lowest_latency:
5237 /* handle TSO and jumbo frames */
5238 if (bytes/packets > 8000)
5239 itrval = bulk_latency;
5240 else if ((packets < 5) && (bytes > 512))
5241 itrval = low_latency;
5242 break;
5243 case low_latency: /* 50 usec aka 20000 ints/s */
5244 if (bytes > 10000) {
5245 /* this if handles the TSO accounting */
5246 if (bytes/packets > 8000)
5247 itrval = bulk_latency;
5248 else if ((packets < 10) || ((bytes/packets) > 1200))
5249 itrval = bulk_latency;
5250 else if ((packets > 35))
5251 itrval = lowest_latency;
5252 } else if (bytes/packets > 2000) {
5253 itrval = bulk_latency;
5254 } else if (packets <= 2 && bytes < 512) {
5255 itrval = lowest_latency;
5256 }
5257 break;
5258 case bulk_latency: /* 250 usec aka 4000 ints/s */
5259 if (bytes > 25000) {
5260 if (packets > 35)
5261 itrval = low_latency;
5262 } else if (bytes < 1500) {
5263 itrval = low_latency;
5264 }
5265 break;
5266 }
5267
5268 /* clear work counters since we have the values we need */
5269 ring_container->total_bytes = 0;
5270 ring_container->total_packets = 0;
5271
5272 /* write updated itr to ring container */
5273 ring_container->itr = itrval;
5274}
5275
5276static void igb_set_itr(struct igb_q_vector *q_vector)
5277{
5278 struct igb_adapter *adapter = q_vector->adapter;
5279 u32 new_itr = q_vector->itr_val;
5280 u8 current_itr = 0;
5281
5282 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5283 if (adapter->link_speed != SPEED_1000) {
5284 current_itr = 0;
5285 new_itr = IGB_4K_ITR;
5286 goto set_itr_now;
5287 }
5288
5289 igb_update_itr(q_vector, &q_vector->tx);
5290 igb_update_itr(q_vector, &q_vector->rx);
5291
5292 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5293
5294 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5295 if (current_itr == lowest_latency &&
5296 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5297 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5298 current_itr = low_latency;
5299
5300 switch (current_itr) {
5301 /* counts and packets in update_itr are dependent on these numbers */
5302 case lowest_latency:
5303 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5304 break;
5305 case low_latency:
5306 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5307 break;
5308 case bulk_latency:
5309 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5310 break;
5311 default:
5312 break;
5313 }
5314
5315set_itr_now:
5316 if (new_itr != q_vector->itr_val) {
5317 /* this attempts to bias the interrupt rate towards Bulk
5318 * by adding intermediate steps when interrupt rate is
5319 * increasing
5320 */
5321 new_itr = new_itr > q_vector->itr_val ?
5322 max((new_itr * q_vector->itr_val) /
5323 (new_itr + (q_vector->itr_val >> 2)),
5324 new_itr) : new_itr;
5325 /* Don't write the value here; it resets the adapter's
5326 * internal timer, and causes us to delay far longer than
5327 * we should between interrupts. Instead, we write the ITR
5328 * value at the beginning of the next interrupt so the timing
5329 * ends up being correct.
5330 */
5331 q_vector->itr_val = new_itr;
5332 q_vector->set_itr = 1;
5333 }
5334}
5335
5336static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
5337 u32 type_tucmd, u32 mss_l4len_idx)
5338{
5339 struct e1000_adv_tx_context_desc *context_desc;
5340 u16 i = tx_ring->next_to_use;
5341
5342 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5343
5344 i++;
5345 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5346
5347 /* set bits to identify this as an advanced context descriptor */
5348 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5349
5350 /* For 82575, context index must be unique per ring. */
5351 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5352 mss_l4len_idx |= tx_ring->reg_idx << 4;
5353
5354 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5355 context_desc->seqnum_seed = 0;
5356 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5357 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5358}
5359
5360static int igb_tso(struct igb_ring *tx_ring,
5361 struct igb_tx_buffer *first,
5362 u8 *hdr_len)
5363{
5364 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5365 struct sk_buff *skb = first->skb;
5366 union {
5367 struct iphdr *v4;
5368 struct ipv6hdr *v6;
5369 unsigned char *hdr;
5370 } ip;
5371 union {
5372 struct tcphdr *tcp;
5373 unsigned char *hdr;
5374 } l4;
5375 u32 paylen, l4_offset;
5376 int err;
5377
5378 if (skb->ip_summed != CHECKSUM_PARTIAL)
5379 return 0;
5380
5381 if (!skb_is_gso(skb))
5382 return 0;
5383
5384 err = skb_cow_head(skb, 0);
5385 if (err < 0)
5386 return err;
5387
5388 ip.hdr = skb_network_header(skb);
5389 l4.hdr = skb_checksum_start(skb);
5390
5391 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5392 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5393
5394 /* initialize outer IP header fields */
5395 if (ip.v4->version == 4) {
5396 unsigned char *csum_start = skb_checksum_start(skb);
5397 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5398
5399 /* IP header will have to cancel out any data that
5400 * is not a part of the outer IP header
5401 */
5402 ip.v4->check = csum_fold(csum_partial(trans_start,
5403 csum_start - trans_start,
5404 0));
5405 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5406
5407 ip.v4->tot_len = 0;
5408 first->tx_flags |= IGB_TX_FLAGS_TSO |
5409 IGB_TX_FLAGS_CSUM |
5410 IGB_TX_FLAGS_IPV4;
5411 } else {
5412 ip.v6->payload_len = 0;
5413 first->tx_flags |= IGB_TX_FLAGS_TSO |
5414 IGB_TX_FLAGS_CSUM;
5415 }
5416
5417 /* determine offset of inner transport header */
5418 l4_offset = l4.hdr - skb->data;
5419
5420 /* compute length of segmentation header */
5421 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5422
5423 /* remove payload length from inner checksum */
5424 paylen = skb->len - l4_offset;
5425 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5426
5427 /* update gso size and bytecount with header size */
5428 first->gso_segs = skb_shinfo(skb)->gso_segs;
5429 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5430
5431 /* MSS L4LEN IDX */
5432 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5433 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5434
5435 /* VLAN MACLEN IPLEN */
5436 vlan_macip_lens = l4.hdr - ip.hdr;
5437 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5438 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5439
5440 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5441
5442 return 1;
5443}
5444
5445static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5446{
5447 unsigned int offset = 0;
5448
5449 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5450
5451 return offset == skb_checksum_start_offset(skb);
5452}
5453
5454static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5455{
5456 struct sk_buff *skb = first->skb;
5457 u32 vlan_macip_lens = 0;
5458 u32 type_tucmd = 0;
5459
5460 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5461csum_failed:
5462 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5463 return;
5464 goto no_csum;
5465 }
5466
5467 switch (skb->csum_offset) {
5468 case offsetof(struct tcphdr, check):
5469 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5470 /* fall through */
5471 case offsetof(struct udphdr, check):
5472 break;
5473 case offsetof(struct sctphdr, checksum):
5474 /* validate that this is actually an SCTP request */
5475 if (((first->protocol == htons(ETH_P_IP)) &&
5476 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5477 ((first->protocol == htons(ETH_P_IPV6)) &&
5478 igb_ipv6_csum_is_sctp(skb))) {
5479 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5480 break;
5481 }
5482 default:
5483 skb_checksum_help(skb);
5484 goto csum_failed;
5485 }
5486
5487 /* update TX checksum flag */
5488 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5489 vlan_macip_lens = skb_checksum_start_offset(skb) -
5490 skb_network_offset(skb);
5491no_csum:
5492 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5493 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5494
5495 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5496}
5497
5498#define IGB_SET_FLAG(_input, _flag, _result) \
5499 ((_flag <= _result) ? \
5500 ((u32)(_input & _flag) * (_result / _flag)) : \
5501 ((u32)(_input & _flag) / (_flag / _result)))
5502
5503static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5504{
5505 /* set type for advanced descriptor with frame checksum insertion */
5506 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5507 E1000_ADVTXD_DCMD_DEXT |
5508 E1000_ADVTXD_DCMD_IFCS;
5509
5510 /* set HW vlan bit if vlan is present */
5511 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5512 (E1000_ADVTXD_DCMD_VLE));
5513
5514 /* set segmentation bits for TSO */
5515 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5516 (E1000_ADVTXD_DCMD_TSE));
5517
5518 /* set timestamp bit if present */
5519 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5520 (E1000_ADVTXD_MAC_TSTAMP));
5521
5522 /* insert frame checksum */
5523 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5524
5525 return cmd_type;
5526}
5527
5528static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5529 union e1000_adv_tx_desc *tx_desc,
5530 u32 tx_flags, unsigned int paylen)
5531{
5532 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5533
5534 /* 82575 requires a unique index per ring */
5535 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5536 olinfo_status |= tx_ring->reg_idx << 4;
5537
5538 /* insert L4 checksum */
5539 olinfo_status |= IGB_SET_FLAG(tx_flags,
5540 IGB_TX_FLAGS_CSUM,
5541 (E1000_TXD_POPTS_TXSM << 8));
5542
5543 /* insert IPv4 checksum */
5544 olinfo_status |= IGB_SET_FLAG(tx_flags,
5545 IGB_TX_FLAGS_IPV4,
5546 (E1000_TXD_POPTS_IXSM << 8));
5547
5548 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5549}
5550
5551static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5552{
5553 struct net_device *netdev = tx_ring->netdev;
5554
5555 netif_stop_subqueue(netdev, tx_ring->queue_index);
5556
5557 /* Herbert's original patch had:
5558 * smp_mb__after_netif_stop_queue();
5559 * but since that doesn't exist yet, just open code it.
5560 */
5561 smp_mb();
5562
5563 /* We need to check again in a case another CPU has just
5564 * made room available.
5565 */
5566 if (igb_desc_unused(tx_ring) < size)
5567 return -EBUSY;
5568
5569 /* A reprieve! */
5570 netif_wake_subqueue(netdev, tx_ring->queue_index);
5571
5572 u64_stats_update_begin(&tx_ring->tx_syncp2);
5573 tx_ring->tx_stats.restart_queue2++;
5574 u64_stats_update_end(&tx_ring->tx_syncp2);
5575
5576 return 0;
5577}
5578
5579static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5580{
5581 if (igb_desc_unused(tx_ring) >= size)
5582 return 0;
5583 return __igb_maybe_stop_tx(tx_ring, size);
5584}
5585
5586static int igb_tx_map(struct igb_ring *tx_ring,
5587 struct igb_tx_buffer *first,
5588 const u8 hdr_len)
5589{
5590 struct sk_buff *skb = first->skb;
5591 struct igb_tx_buffer *tx_buffer;
5592 union e1000_adv_tx_desc *tx_desc;
5593 struct skb_frag_struct *frag;
5594 dma_addr_t dma;
5595 unsigned int data_len, size;
5596 u32 tx_flags = first->tx_flags;
5597 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5598 u16 i = tx_ring->next_to_use;
5599
5600 tx_desc = IGB_TX_DESC(tx_ring, i);
5601
5602 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5603
5604 size = skb_headlen(skb);
5605 data_len = skb->data_len;
5606
5607 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5608
5609 tx_buffer = first;
5610
5611 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5612 if (dma_mapping_error(tx_ring->dev, dma))
5613 goto dma_error;
5614
5615 /* record length, and DMA address */
5616 dma_unmap_len_set(tx_buffer, len, size);
5617 dma_unmap_addr_set(tx_buffer, dma, dma);
5618
5619 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5620
5621 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5622 tx_desc->read.cmd_type_len =
5623 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5624
5625 i++;
5626 tx_desc++;
5627 if (i == tx_ring->count) {
5628 tx_desc = IGB_TX_DESC(tx_ring, 0);
5629 i = 0;
5630 }
5631 tx_desc->read.olinfo_status = 0;
5632
5633 dma += IGB_MAX_DATA_PER_TXD;
5634 size -= IGB_MAX_DATA_PER_TXD;
5635
5636 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5637 }
5638
5639 if (likely(!data_len))
5640 break;
5641
5642 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5643
5644 i++;
5645 tx_desc++;
5646 if (i == tx_ring->count) {
5647 tx_desc = IGB_TX_DESC(tx_ring, 0);
5648 i = 0;
5649 }
5650 tx_desc->read.olinfo_status = 0;
5651
5652 size = skb_frag_size(frag);
5653 data_len -= size;
5654
5655 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5656 size, DMA_TO_DEVICE);
5657
5658 tx_buffer = &tx_ring->tx_buffer_info[i];
5659 }
5660
5661 /* write last descriptor with RS and EOP bits */
5662 cmd_type |= size | IGB_TXD_DCMD;
5663 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5664
5665 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5666
5667 /* set the timestamp */
5668 first->time_stamp = jiffies;
5669
5670 /* Force memory writes to complete before letting h/w know there
5671 * are new descriptors to fetch. (Only applicable for weak-ordered
5672 * memory model archs, such as IA-64).
5673 *
5674 * We also need this memory barrier to make certain all of the
5675 * status bits have been updated before next_to_watch is written.
5676 */
5677 wmb();
5678
5679 /* set next_to_watch value indicating a packet is present */
5680 first->next_to_watch = tx_desc;
5681
5682 i++;
5683 if (i == tx_ring->count)
5684 i = 0;
5685
5686 tx_ring->next_to_use = i;
5687
5688 /* Make sure there is space in the ring for the next send. */
5689 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5690
5691 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5692 writel(i, tx_ring->tail);
5693
5694 /* we need this if more than one processor can write to our tail
5695 * at a time, it synchronizes IO on IA64/Altix systems
5696 */
5697 mmiowb();
5698 }
5699 return 0;
5700
5701dma_error:
5702 dev_err(tx_ring->dev, "TX DMA map failed\n");
5703 tx_buffer = &tx_ring->tx_buffer_info[i];
5704
5705 /* clear dma mappings for failed tx_buffer_info map */
5706 while (tx_buffer != first) {
5707 if (dma_unmap_len(tx_buffer, len))
5708 dma_unmap_page(tx_ring->dev,
5709 dma_unmap_addr(tx_buffer, dma),
5710 dma_unmap_len(tx_buffer, len),
5711 DMA_TO_DEVICE);
5712 dma_unmap_len_set(tx_buffer, len, 0);
5713
5714 if (i-- == 0)
5715 i += tx_ring->count;
5716 tx_buffer = &tx_ring->tx_buffer_info[i];
5717 }
5718
5719 if (dma_unmap_len(tx_buffer, len))
5720 dma_unmap_single(tx_ring->dev,
5721 dma_unmap_addr(tx_buffer, dma),
5722 dma_unmap_len(tx_buffer, len),
5723 DMA_TO_DEVICE);
5724 dma_unmap_len_set(tx_buffer, len, 0);
5725
5726 dev_kfree_skb_any(tx_buffer->skb);
5727 tx_buffer->skb = NULL;
5728
5729 tx_ring->next_to_use = i;
5730
5731 return -1;
5732}
5733
5734netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5735 struct igb_ring *tx_ring)
5736{
5737 struct igb_tx_buffer *first;
5738 int tso;
5739 u32 tx_flags = 0;
5740 unsigned short f;
5741 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5742 __be16 protocol = vlan_get_protocol(skb);
5743 u8 hdr_len = 0;
5744
5745 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5746 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5747 * + 2 desc gap to keep tail from touching head,
5748 * + 1 desc for context descriptor,
5749 * otherwise try next time
5750 */
5751 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5752 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5753
5754 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5755 /* this is a hard error */
5756 return NETDEV_TX_BUSY;
5757 }
5758
5759 /* record the location of the first descriptor for this packet */
5760 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5761 first->skb = skb;
5762 first->bytecount = skb->len;
5763 first->gso_segs = 1;
5764
5765 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5766 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5767
5768 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
5769 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5770 &adapter->state)) {
5771 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5772 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5773
5774 adapter->ptp_tx_skb = skb_get(skb);
5775 adapter->ptp_tx_start = jiffies;
5776 if (adapter->hw.mac.type == e1000_82576)
5777 schedule_work(&adapter->ptp_tx_work);
5778 } else {
5779 adapter->tx_hwtstamp_skipped++;
5780 }
5781 }
5782
5783 skb_tx_timestamp(skb);
5784
5785 if (skb_vlan_tag_present(skb)) {
5786 tx_flags |= IGB_TX_FLAGS_VLAN;
5787 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5788 }
5789
5790 /* record initial flags and protocol */
5791 first->tx_flags = tx_flags;
5792 first->protocol = protocol;
5793
5794 tso = igb_tso(tx_ring, first, &hdr_len);
5795 if (tso < 0)
5796 goto out_drop;
5797 else if (!tso)
5798 igb_tx_csum(tx_ring, first);
5799
5800 if (igb_tx_map(tx_ring, first, hdr_len))
5801 goto cleanup_tx_tstamp;
5802
5803 return NETDEV_TX_OK;
5804
5805out_drop:
5806 dev_kfree_skb_any(first->skb);
5807 first->skb = NULL;
5808cleanup_tx_tstamp:
5809 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
5810 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5811
5812 dev_kfree_skb_any(adapter->ptp_tx_skb);
5813 adapter->ptp_tx_skb = NULL;
5814 if (adapter->hw.mac.type == e1000_82576)
5815 cancel_work_sync(&adapter->ptp_tx_work);
5816 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
5817 }
5818
5819 return NETDEV_TX_OK;
5820}
5821
5822static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5823 struct sk_buff *skb)
5824{
5825 unsigned int r_idx = skb->queue_mapping;
5826
5827 if (r_idx >= adapter->num_tx_queues)
5828 r_idx = r_idx % adapter->num_tx_queues;
5829
5830 return adapter->tx_ring[r_idx];
5831}
5832
5833static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5834 struct net_device *netdev)
5835{
5836 struct igb_adapter *adapter = netdev_priv(netdev);
5837
5838 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5839 * in order to meet this minimum size requirement.
5840 */
5841 if (skb_put_padto(skb, 17))
5842 return NETDEV_TX_OK;
5843
5844 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5845}
5846
5847/**
5848 * igb_tx_timeout - Respond to a Tx Hang
5849 * @netdev: network interface device structure
5850 **/
5851static void igb_tx_timeout(struct net_device *netdev)
5852{
5853 struct igb_adapter *adapter = netdev_priv(netdev);
5854 struct e1000_hw *hw = &adapter->hw;
5855
5856 /* Do the reset outside of interrupt context */
5857 adapter->tx_timeout_count++;
5858
5859 if (hw->mac.type >= e1000_82580)
5860 hw->dev_spec._82575.global_device_reset = true;
5861
5862 schedule_work(&adapter->reset_task);
5863 wr32(E1000_EICS,
5864 (adapter->eims_enable_mask & ~adapter->eims_other));
5865}
5866
5867static void igb_reset_task(struct work_struct *work)
5868{
5869 struct igb_adapter *adapter;
5870 adapter = container_of(work, struct igb_adapter, reset_task);
5871
5872 igb_dump(adapter);
5873 netdev_err(adapter->netdev, "Reset adapter\n");
5874 igb_reinit_locked(adapter);
5875}
5876
5877/**
5878 * igb_get_stats64 - Get System Network Statistics
5879 * @netdev: network interface device structure
5880 * @stats: rtnl_link_stats64 pointer
5881 **/
5882static void igb_get_stats64(struct net_device *netdev,
5883 struct rtnl_link_stats64 *stats)
5884{
5885 struct igb_adapter *adapter = netdev_priv(netdev);
5886
5887 spin_lock(&adapter->stats64_lock);
5888 igb_update_stats(adapter);
5889 memcpy(stats, &adapter->stats64, sizeof(*stats));
5890 spin_unlock(&adapter->stats64_lock);
5891}
5892
5893/**
5894 * igb_change_mtu - Change the Maximum Transfer Unit
5895 * @netdev: network interface device structure
5896 * @new_mtu: new value for maximum frame size
5897 *
5898 * Returns 0 on success, negative on failure
5899 **/
5900static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5901{
5902 struct igb_adapter *adapter = netdev_priv(netdev);
5903 struct pci_dev *pdev = adapter->pdev;
5904 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5905
5906 /* adjust max frame to be at least the size of a standard frame */
5907 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5908 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5909
5910 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5911 usleep_range(1000, 2000);
5912
5913 /* igb_down has a dependency on max_frame_size */
5914 adapter->max_frame_size = max_frame;
5915
5916 if (netif_running(netdev))
5917 igb_down(adapter);
5918
5919 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5920 netdev->mtu, new_mtu);
5921 netdev->mtu = new_mtu;
5922
5923 if (netif_running(netdev))
5924 igb_up(adapter);
5925 else
5926 igb_reset(adapter);
5927
5928 clear_bit(__IGB_RESETTING, &adapter->state);
5929
5930 return 0;
5931}
5932
5933/**
5934 * igb_update_stats - Update the board statistics counters
5935 * @adapter: board private structure
5936 **/
5937void igb_update_stats(struct igb_adapter *adapter)
5938{
5939 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5940 struct e1000_hw *hw = &adapter->hw;
5941 struct pci_dev *pdev = adapter->pdev;
5942 u32 reg, mpc;
5943 int i;
5944 u64 bytes, packets;
5945 unsigned int start;
5946 u64 _bytes, _packets;
5947
5948 /* Prevent stats update while adapter is being reset, or if the pci
5949 * connection is down.
5950 */
5951 if (adapter->link_speed == 0)
5952 return;
5953 if (pci_channel_offline(pdev))
5954 return;
5955
5956 bytes = 0;
5957 packets = 0;
5958
5959 rcu_read_lock();
5960 for (i = 0; i < adapter->num_rx_queues; i++) {
5961 struct igb_ring *ring = adapter->rx_ring[i];
5962 u32 rqdpc = rd32(E1000_RQDPC(i));
5963 if (hw->mac.type >= e1000_i210)
5964 wr32(E1000_RQDPC(i), 0);
5965
5966 if (rqdpc) {
5967 ring->rx_stats.drops += rqdpc;
5968 net_stats->rx_fifo_errors += rqdpc;
5969 }
5970
5971 do {
5972 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5973 _bytes = ring->rx_stats.bytes;
5974 _packets = ring->rx_stats.packets;
5975 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5976 bytes += _bytes;
5977 packets += _packets;
5978 }
5979
5980 net_stats->rx_bytes = bytes;
5981 net_stats->rx_packets = packets;
5982
5983 bytes = 0;
5984 packets = 0;
5985 for (i = 0; i < adapter->num_tx_queues; i++) {
5986 struct igb_ring *ring = adapter->tx_ring[i];
5987 do {
5988 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5989 _bytes = ring->tx_stats.bytes;
5990 _packets = ring->tx_stats.packets;
5991 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5992 bytes += _bytes;
5993 packets += _packets;
5994 }
5995 net_stats->tx_bytes = bytes;
5996 net_stats->tx_packets = packets;
5997 rcu_read_unlock();
5998
5999 /* read stats registers */
6000 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6001 adapter->stats.gprc += rd32(E1000_GPRC);
6002 adapter->stats.gorc += rd32(E1000_GORCL);
6003 rd32(E1000_GORCH); /* clear GORCL */
6004 adapter->stats.bprc += rd32(E1000_BPRC);
6005 adapter->stats.mprc += rd32(E1000_MPRC);
6006 adapter->stats.roc += rd32(E1000_ROC);
6007
6008 adapter->stats.prc64 += rd32(E1000_PRC64);
6009 adapter->stats.prc127 += rd32(E1000_PRC127);
6010 adapter->stats.prc255 += rd32(E1000_PRC255);
6011 adapter->stats.prc511 += rd32(E1000_PRC511);
6012 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6013 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6014 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6015 adapter->stats.sec += rd32(E1000_SEC);
6016
6017 mpc = rd32(E1000_MPC);
6018 adapter->stats.mpc += mpc;
6019 net_stats->rx_fifo_errors += mpc;
6020 adapter->stats.scc += rd32(E1000_SCC);
6021 adapter->stats.ecol += rd32(E1000_ECOL);
6022 adapter->stats.mcc += rd32(E1000_MCC);
6023 adapter->stats.latecol += rd32(E1000_LATECOL);
6024 adapter->stats.dc += rd32(E1000_DC);
6025 adapter->stats.rlec += rd32(E1000_RLEC);
6026 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6027 adapter->stats.xontxc += rd32(E1000_XONTXC);
6028 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6029 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6030 adapter->stats.fcruc += rd32(E1000_FCRUC);
6031 adapter->stats.gptc += rd32(E1000_GPTC);
6032 adapter->stats.gotc += rd32(E1000_GOTCL);
6033 rd32(E1000_GOTCH); /* clear GOTCL */
6034 adapter->stats.rnbc += rd32(E1000_RNBC);
6035 adapter->stats.ruc += rd32(E1000_RUC);
6036 adapter->stats.rfc += rd32(E1000_RFC);
6037 adapter->stats.rjc += rd32(E1000_RJC);
6038 adapter->stats.tor += rd32(E1000_TORH);
6039 adapter->stats.tot += rd32(E1000_TOTH);
6040 adapter->stats.tpr += rd32(E1000_TPR);
6041
6042 adapter->stats.ptc64 += rd32(E1000_PTC64);
6043 adapter->stats.ptc127 += rd32(E1000_PTC127);
6044 adapter->stats.ptc255 += rd32(E1000_PTC255);
6045 adapter->stats.ptc511 += rd32(E1000_PTC511);
6046 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6047 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6048
6049 adapter->stats.mptc += rd32(E1000_MPTC);
6050 adapter->stats.bptc += rd32(E1000_BPTC);
6051
6052 adapter->stats.tpt += rd32(E1000_TPT);
6053 adapter->stats.colc += rd32(E1000_COLC);
6054
6055 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6056 /* read internal phy specific stats */
6057 reg = rd32(E1000_CTRL_EXT);
6058 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6059 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6060
6061 /* this stat has invalid values on i210/i211 */
6062 if ((hw->mac.type != e1000_i210) &&
6063 (hw->mac.type != e1000_i211))
6064 adapter->stats.tncrs += rd32(E1000_TNCRS);
6065 }
6066
6067 adapter->stats.tsctc += rd32(E1000_TSCTC);
6068 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6069
6070 adapter->stats.iac += rd32(E1000_IAC);
6071 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6072 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6073 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6074 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6075 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6076 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6077 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6078 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6079
6080 /* Fill out the OS statistics structure */
6081 net_stats->multicast = adapter->stats.mprc;
6082 net_stats->collisions = adapter->stats.colc;
6083
6084 /* Rx Errors */
6085
6086 /* RLEC on some newer hardware can be incorrect so build
6087 * our own version based on RUC and ROC
6088 */
6089 net_stats->rx_errors = adapter->stats.rxerrc +
6090 adapter->stats.crcerrs + adapter->stats.algnerrc +
6091 adapter->stats.ruc + adapter->stats.roc +
6092 adapter->stats.cexterr;
6093 net_stats->rx_length_errors = adapter->stats.ruc +
6094 adapter->stats.roc;
6095 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6096 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6097 net_stats->rx_missed_errors = adapter->stats.mpc;
6098
6099 /* Tx Errors */
6100 net_stats->tx_errors = adapter->stats.ecol +
6101 adapter->stats.latecol;
6102 net_stats->tx_aborted_errors = adapter->stats.ecol;
6103 net_stats->tx_window_errors = adapter->stats.latecol;
6104 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6105
6106 /* Tx Dropped needs to be maintained elsewhere */
6107
6108 /* Management Stats */
6109 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6110 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6111 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6112
6113 /* OS2BMC Stats */
6114 reg = rd32(E1000_MANC);
6115 if (reg & E1000_MANC_EN_BMC2OS) {
6116 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6117 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6118 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6119 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6120 }
6121}
6122
6123static void igb_tsync_interrupt(struct igb_adapter *adapter)
6124{
6125 struct e1000_hw *hw = &adapter->hw;
6126 struct ptp_clock_event event;
6127 struct timespec64 ts;
6128 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6129
6130 if (tsicr & TSINTR_SYS_WRAP) {
6131 event.type = PTP_CLOCK_PPS;
6132 if (adapter->ptp_caps.pps)
6133 ptp_clock_event(adapter->ptp_clock, &event);
6134 ack |= TSINTR_SYS_WRAP;
6135 }
6136
6137 if (tsicr & E1000_TSICR_TXTS) {
6138 /* retrieve hardware timestamp */
6139 schedule_work(&adapter->ptp_tx_work);
6140 ack |= E1000_TSICR_TXTS;
6141 }
6142
6143 if (tsicr & TSINTR_TT0) {
6144 spin_lock(&adapter->tmreg_lock);
6145 ts = timespec64_add(adapter->perout[0].start,
6146 adapter->perout[0].period);
6147 /* u32 conversion of tv_sec is safe until y2106 */
6148 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6149 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6150 tsauxc = rd32(E1000_TSAUXC);
6151 tsauxc |= TSAUXC_EN_TT0;
6152 wr32(E1000_TSAUXC, tsauxc);
6153 adapter->perout[0].start = ts;
6154 spin_unlock(&adapter->tmreg_lock);
6155 ack |= TSINTR_TT0;
6156 }
6157
6158 if (tsicr & TSINTR_TT1) {
6159 spin_lock(&adapter->tmreg_lock);
6160 ts = timespec64_add(adapter->perout[1].start,
6161 adapter->perout[1].period);
6162 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6163 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6164 tsauxc = rd32(E1000_TSAUXC);
6165 tsauxc |= TSAUXC_EN_TT1;
6166 wr32(E1000_TSAUXC, tsauxc);
6167 adapter->perout[1].start = ts;
6168 spin_unlock(&adapter->tmreg_lock);
6169 ack |= TSINTR_TT1;
6170 }
6171
6172 if (tsicr & TSINTR_AUTT0) {
6173 nsec = rd32(E1000_AUXSTMPL0);
6174 sec = rd32(E1000_AUXSTMPH0);
6175 event.type = PTP_CLOCK_EXTTS;
6176 event.index = 0;
6177 event.timestamp = sec * 1000000000ULL + nsec;
6178 ptp_clock_event(adapter->ptp_clock, &event);
6179 ack |= TSINTR_AUTT0;
6180 }
6181
6182 if (tsicr & TSINTR_AUTT1) {
6183 nsec = rd32(E1000_AUXSTMPL1);
6184 sec = rd32(E1000_AUXSTMPH1);
6185 event.type = PTP_CLOCK_EXTTS;
6186 event.index = 1;
6187 event.timestamp = sec * 1000000000ULL + nsec;
6188 ptp_clock_event(adapter->ptp_clock, &event);
6189 ack |= TSINTR_AUTT1;
6190 }
6191
6192 /* acknowledge the interrupts */
6193 wr32(E1000_TSICR, ack);
6194}
6195
6196static irqreturn_t igb_msix_other(int irq, void *data)
6197{
6198 struct igb_adapter *adapter = data;
6199 struct e1000_hw *hw = &adapter->hw;
6200 u32 icr = rd32(E1000_ICR);
6201 /* reading ICR causes bit 31 of EICR to be cleared */
6202
6203 if (icr & E1000_ICR_DRSTA)
6204 schedule_work(&adapter->reset_task);
6205
6206 if (icr & E1000_ICR_DOUTSYNC) {
6207 /* HW is reporting DMA is out of sync */
6208 adapter->stats.doosync++;
6209 /* The DMA Out of Sync is also indication of a spoof event
6210 * in IOV mode. Check the Wrong VM Behavior register to
6211 * see if it is really a spoof event.
6212 */
6213 igb_check_wvbr(adapter);
6214 }
6215
6216 /* Check for a mailbox event */
6217 if (icr & E1000_ICR_VMMB)
6218 igb_msg_task(adapter);
6219
6220 if (icr & E1000_ICR_LSC) {
6221 hw->mac.get_link_status = 1;
6222 /* guard against interrupt when we're going down */
6223 if (!test_bit(__IGB_DOWN, &adapter->state))
6224 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6225 }
6226
6227 if (icr & E1000_ICR_TS)
6228 igb_tsync_interrupt(adapter);
6229
6230 wr32(E1000_EIMS, adapter->eims_other);
6231
6232 return IRQ_HANDLED;
6233}
6234
6235static void igb_write_itr(struct igb_q_vector *q_vector)
6236{
6237 struct igb_adapter *adapter = q_vector->adapter;
6238 u32 itr_val = q_vector->itr_val & 0x7FFC;
6239
6240 if (!q_vector->set_itr)
6241 return;
6242
6243 if (!itr_val)
6244 itr_val = 0x4;
6245
6246 if (adapter->hw.mac.type == e1000_82575)
6247 itr_val |= itr_val << 16;
6248 else
6249 itr_val |= E1000_EITR_CNT_IGNR;
6250
6251 writel(itr_val, q_vector->itr_register);
6252 q_vector->set_itr = 0;
6253}
6254
6255static irqreturn_t igb_msix_ring(int irq, void *data)
6256{
6257 struct igb_q_vector *q_vector = data;
6258
6259 /* Write the ITR value calculated from the previous interrupt. */
6260 igb_write_itr(q_vector);
6261
6262 napi_schedule(&q_vector->napi);
6263
6264 return IRQ_HANDLED;
6265}
6266
6267#ifdef CONFIG_IGB_DCA
6268static void igb_update_tx_dca(struct igb_adapter *adapter,
6269 struct igb_ring *tx_ring,
6270 int cpu)
6271{
6272 struct e1000_hw *hw = &adapter->hw;
6273 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6274
6275 if (hw->mac.type != e1000_82575)
6276 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6277
6278 /* We can enable relaxed ordering for reads, but not writes when
6279 * DCA is enabled. This is due to a known issue in some chipsets
6280 * which will cause the DCA tag to be cleared.
6281 */
6282 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6283 E1000_DCA_TXCTRL_DATA_RRO_EN |
6284 E1000_DCA_TXCTRL_DESC_DCA_EN;
6285
6286 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6287}
6288
6289static void igb_update_rx_dca(struct igb_adapter *adapter,
6290 struct igb_ring *rx_ring,
6291 int cpu)
6292{
6293 struct e1000_hw *hw = &adapter->hw;
6294 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6295
6296 if (hw->mac.type != e1000_82575)
6297 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6298
6299 /* We can enable relaxed ordering for reads, but not writes when
6300 * DCA is enabled. This is due to a known issue in some chipsets
6301 * which will cause the DCA tag to be cleared.
6302 */
6303 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6304 E1000_DCA_RXCTRL_DESC_DCA_EN;
6305
6306 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6307}
6308
6309static void igb_update_dca(struct igb_q_vector *q_vector)
6310{
6311 struct igb_adapter *adapter = q_vector->adapter;
6312 int cpu = get_cpu();
6313
6314 if (q_vector->cpu == cpu)
6315 goto out_no_update;
6316
6317 if (q_vector->tx.ring)
6318 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6319
6320 if (q_vector->rx.ring)
6321 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6322
6323 q_vector->cpu = cpu;
6324out_no_update:
6325 put_cpu();
6326}
6327
6328static void igb_setup_dca(struct igb_adapter *adapter)
6329{
6330 struct e1000_hw *hw = &adapter->hw;
6331 int i;
6332
6333 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6334 return;
6335
6336 /* Always use CB2 mode, difference is masked in the CB driver. */
6337 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6338
6339 for (i = 0; i < adapter->num_q_vectors; i++) {
6340 adapter->q_vector[i]->cpu = -1;
6341 igb_update_dca(adapter->q_vector[i]);
6342 }
6343}
6344
6345static int __igb_notify_dca(struct device *dev, void *data)
6346{
6347 struct net_device *netdev = dev_get_drvdata(dev);
6348 struct igb_adapter *adapter = netdev_priv(netdev);
6349 struct pci_dev *pdev = adapter->pdev;
6350 struct e1000_hw *hw = &adapter->hw;
6351 unsigned long event = *(unsigned long *)data;
6352
6353 switch (event) {
6354 case DCA_PROVIDER_ADD:
6355 /* if already enabled, don't do it again */
6356 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6357 break;
6358 if (dca_add_requester(dev) == 0) {
6359 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6360 dev_info(&pdev->dev, "DCA enabled\n");
6361 igb_setup_dca(adapter);
6362 break;
6363 }
6364 /* Fall Through since DCA is disabled. */
6365 case DCA_PROVIDER_REMOVE:
6366 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6367 /* without this a class_device is left
6368 * hanging around in the sysfs model
6369 */
6370 dca_remove_requester(dev);
6371 dev_info(&pdev->dev, "DCA disabled\n");
6372 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6373 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6374 }
6375 break;
6376 }
6377
6378 return 0;
6379}
6380
6381static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6382 void *p)
6383{
6384 int ret_val;
6385
6386 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6387 __igb_notify_dca);
6388
6389 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6390}
6391#endif /* CONFIG_IGB_DCA */
6392
6393#ifdef CONFIG_PCI_IOV
6394static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6395{
6396 unsigned char mac_addr[ETH_ALEN];
6397
6398 eth_zero_addr(mac_addr);
6399 igb_set_vf_mac(adapter, vf, mac_addr);
6400
6401 /* By default spoof check is enabled for all VFs */
6402 adapter->vf_data[vf].spoofchk_enabled = true;
6403
6404 /* By default VFs are not trusted */
6405 adapter->vf_data[vf].trusted = false;
6406
6407 return 0;
6408}
6409
6410#endif
6411static void igb_ping_all_vfs(struct igb_adapter *adapter)
6412{
6413 struct e1000_hw *hw = &adapter->hw;
6414 u32 ping;
6415 int i;
6416
6417 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6418 ping = E1000_PF_CONTROL_MSG;
6419 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6420 ping |= E1000_VT_MSGTYPE_CTS;
6421 igb_write_mbx(hw, &ping, 1, i);
6422 }
6423}
6424
6425static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6426{
6427 struct e1000_hw *hw = &adapter->hw;
6428 u32 vmolr = rd32(E1000_VMOLR(vf));
6429 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6430
6431 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6432 IGB_VF_FLAG_MULTI_PROMISC);
6433 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6434
6435 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6436 vmolr |= E1000_VMOLR_MPME;
6437 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6438 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6439 } else {
6440 /* if we have hashes and we are clearing a multicast promisc
6441 * flag we need to write the hashes to the MTA as this step
6442 * was previously skipped
6443 */
6444 if (vf_data->num_vf_mc_hashes > 30) {
6445 vmolr |= E1000_VMOLR_MPME;
6446 } else if (vf_data->num_vf_mc_hashes) {
6447 int j;
6448
6449 vmolr |= E1000_VMOLR_ROMPE;
6450 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6451 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6452 }
6453 }
6454
6455 wr32(E1000_VMOLR(vf), vmolr);
6456
6457 /* there are flags left unprocessed, likely not supported */
6458 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6459 return -EINVAL;
6460
6461 return 0;
6462}
6463
6464static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6465 u32 *msgbuf, u32 vf)
6466{
6467 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6468 u16 *hash_list = (u16 *)&msgbuf[1];
6469 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6470 int i;
6471
6472 /* salt away the number of multicast addresses assigned
6473 * to this VF for later use to restore when the PF multi cast
6474 * list changes
6475 */
6476 vf_data->num_vf_mc_hashes = n;
6477
6478 /* only up to 30 hash values supported */
6479 if (n > 30)
6480 n = 30;
6481
6482 /* store the hashes for later use */
6483 for (i = 0; i < n; i++)
6484 vf_data->vf_mc_hashes[i] = hash_list[i];
6485
6486 /* Flush and reset the mta with the new values */
6487 igb_set_rx_mode(adapter->netdev);
6488
6489 return 0;
6490}
6491
6492static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6493{
6494 struct e1000_hw *hw = &adapter->hw;
6495 struct vf_data_storage *vf_data;
6496 int i, j;
6497
6498 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6499 u32 vmolr = rd32(E1000_VMOLR(i));
6500
6501 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6502
6503 vf_data = &adapter->vf_data[i];
6504
6505 if ((vf_data->num_vf_mc_hashes > 30) ||
6506 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6507 vmolr |= E1000_VMOLR_MPME;
6508 } else if (vf_data->num_vf_mc_hashes) {
6509 vmolr |= E1000_VMOLR_ROMPE;
6510 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6511 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6512 }
6513 wr32(E1000_VMOLR(i), vmolr);
6514 }
6515}
6516
6517static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6518{
6519 struct e1000_hw *hw = &adapter->hw;
6520 u32 pool_mask, vlvf_mask, i;
6521
6522 /* create mask for VF and other pools */
6523 pool_mask = E1000_VLVF_POOLSEL_MASK;
6524 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6525
6526 /* drop PF from pool bits */
6527 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6528 adapter->vfs_allocated_count);
6529
6530 /* Find the vlan filter for this id */
6531 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6532 u32 vlvf = rd32(E1000_VLVF(i));
6533 u32 vfta_mask, vid, vfta;
6534
6535 /* remove the vf from the pool */
6536 if (!(vlvf & vlvf_mask))
6537 continue;
6538
6539 /* clear out bit from VLVF */
6540 vlvf ^= vlvf_mask;
6541
6542 /* if other pools are present, just remove ourselves */
6543 if (vlvf & pool_mask)
6544 goto update_vlvfb;
6545
6546 /* if PF is present, leave VFTA */
6547 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6548 goto update_vlvf;
6549
6550 vid = vlvf & E1000_VLVF_VLANID_MASK;
6551 vfta_mask = BIT(vid % 32);
6552
6553 /* clear bit from VFTA */
6554 vfta = adapter->shadow_vfta[vid / 32];
6555 if (vfta & vfta_mask)
6556 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6557update_vlvf:
6558 /* clear pool selection enable */
6559 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6560 vlvf &= E1000_VLVF_POOLSEL_MASK;
6561 else
6562 vlvf = 0;
6563update_vlvfb:
6564 /* clear pool bits */
6565 wr32(E1000_VLVF(i), vlvf);
6566 }
6567}
6568
6569static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6570{
6571 u32 vlvf;
6572 int idx;
6573
6574 /* short cut the special case */
6575 if (vlan == 0)
6576 return 0;
6577
6578 /* Search for the VLAN id in the VLVF entries */
6579 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6580 vlvf = rd32(E1000_VLVF(idx));
6581 if ((vlvf & VLAN_VID_MASK) == vlan)
6582 break;
6583 }
6584
6585 return idx;
6586}
6587
6588static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6589{
6590 struct e1000_hw *hw = &adapter->hw;
6591 u32 bits, pf_id;
6592 int idx;
6593
6594 idx = igb_find_vlvf_entry(hw, vid);
6595 if (!idx)
6596 return;
6597
6598 /* See if any other pools are set for this VLAN filter
6599 * entry other than the PF.
6600 */
6601 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6602 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6603 bits &= rd32(E1000_VLVF(idx));
6604
6605 /* Disable the filter so this falls into the default pool. */
6606 if (!bits) {
6607 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6608 wr32(E1000_VLVF(idx), BIT(pf_id));
6609 else
6610 wr32(E1000_VLVF(idx), 0);
6611 }
6612}
6613
6614static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6615 bool add, u32 vf)
6616{
6617 int pf_id = adapter->vfs_allocated_count;
6618 struct e1000_hw *hw = &adapter->hw;
6619 int err;
6620
6621 /* If VLAN overlaps with one the PF is currently monitoring make
6622 * sure that we are able to allocate a VLVF entry. This may be
6623 * redundant but it guarantees PF will maintain visibility to
6624 * the VLAN.
6625 */
6626 if (add && test_bit(vid, adapter->active_vlans)) {
6627 err = igb_vfta_set(hw, vid, pf_id, true, false);
6628 if (err)
6629 return err;
6630 }
6631
6632 err = igb_vfta_set(hw, vid, vf, add, false);
6633
6634 if (add && !err)
6635 return err;
6636
6637 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6638 * we may need to drop the PF pool bit in order to allow us to free
6639 * up the VLVF resources.
6640 */
6641 if (test_bit(vid, adapter->active_vlans) ||
6642 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6643 igb_update_pf_vlvf(adapter, vid);
6644
6645 return err;
6646}
6647
6648static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6649{
6650 struct e1000_hw *hw = &adapter->hw;
6651
6652 if (vid)
6653 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6654 else
6655 wr32(E1000_VMVIR(vf), 0);
6656}
6657
6658static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6659 u16 vlan, u8 qos)
6660{
6661 int err;
6662
6663 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6664 if (err)
6665 return err;
6666
6667 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6668 igb_set_vmolr(adapter, vf, !vlan);
6669
6670 /* revoke access to previous VLAN */
6671 if (vlan != adapter->vf_data[vf].pf_vlan)
6672 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6673 false, vf);
6674
6675 adapter->vf_data[vf].pf_vlan = vlan;
6676 adapter->vf_data[vf].pf_qos = qos;
6677 igb_set_vf_vlan_strip(adapter, vf, true);
6678 dev_info(&adapter->pdev->dev,
6679 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6680 if (test_bit(__IGB_DOWN, &adapter->state)) {
6681 dev_warn(&adapter->pdev->dev,
6682 "The VF VLAN has been set, but the PF device is not up.\n");
6683 dev_warn(&adapter->pdev->dev,
6684 "Bring the PF device up before attempting to use the VF device.\n");
6685 }
6686
6687 return err;
6688}
6689
6690static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6691{
6692 /* Restore tagless access via VLAN 0 */
6693 igb_set_vf_vlan(adapter, 0, true, vf);
6694
6695 igb_set_vmvir(adapter, 0, vf);
6696 igb_set_vmolr(adapter, vf, true);
6697
6698 /* Remove any PF assigned VLAN */
6699 if (adapter->vf_data[vf].pf_vlan)
6700 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6701 false, vf);
6702
6703 adapter->vf_data[vf].pf_vlan = 0;
6704 adapter->vf_data[vf].pf_qos = 0;
6705 igb_set_vf_vlan_strip(adapter, vf, false);
6706
6707 return 0;
6708}
6709
6710static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6711 u16 vlan, u8 qos, __be16 vlan_proto)
6712{
6713 struct igb_adapter *adapter = netdev_priv(netdev);
6714
6715 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6716 return -EINVAL;
6717
6718 if (vlan_proto != htons(ETH_P_8021Q))
6719 return -EPROTONOSUPPORT;
6720
6721 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6722 igb_disable_port_vlan(adapter, vf);
6723}
6724
6725static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6726{
6727 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6728 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6729 int ret;
6730
6731 if (adapter->vf_data[vf].pf_vlan)
6732 return -1;
6733
6734 /* VLAN 0 is a special case, don't allow it to be removed */
6735 if (!vid && !add)
6736 return 0;
6737
6738 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6739 if (!ret)
6740 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6741 return ret;
6742}
6743
6744static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6745{
6746 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6747
6748 /* clear flags - except flag that indicates PF has set the MAC */
6749 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6750 vf_data->last_nack = jiffies;
6751
6752 /* reset vlans for device */
6753 igb_clear_vf_vfta(adapter, vf);
6754 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6755 igb_set_vmvir(adapter, vf_data->pf_vlan |
6756 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6757 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6758 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6759
6760 /* reset multicast table array for vf */
6761 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6762
6763 /* Flush and reset the mta with the new values */
6764 igb_set_rx_mode(adapter->netdev);
6765}
6766
6767static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6768{
6769 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6770
6771 /* clear mac address as we were hotplug removed/added */
6772 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6773 eth_zero_addr(vf_mac);
6774
6775 /* process remaining reset events */
6776 igb_vf_reset(adapter, vf);
6777}
6778
6779static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6780{
6781 struct e1000_hw *hw = &adapter->hw;
6782 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6783 u32 reg, msgbuf[3];
6784 u8 *addr = (u8 *)(&msgbuf[1]);
6785
6786 /* process all the same items cleared in a function level reset */
6787 igb_vf_reset(adapter, vf);
6788
6789 /* set vf mac address */
6790 igb_set_vf_mac(adapter, vf, vf_mac);
6791
6792 /* enable transmit and receive for vf */
6793 reg = rd32(E1000_VFTE);
6794 wr32(E1000_VFTE, reg | BIT(vf));
6795 reg = rd32(E1000_VFRE);
6796 wr32(E1000_VFRE, reg | BIT(vf));
6797
6798 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6799
6800 /* reply to reset with ack and vf mac address */
6801 if (!is_zero_ether_addr(vf_mac)) {
6802 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6803 memcpy(addr, vf_mac, ETH_ALEN);
6804 } else {
6805 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6806 }
6807 igb_write_mbx(hw, msgbuf, 3, vf);
6808}
6809
6810static void igb_flush_mac_table(struct igb_adapter *adapter)
6811{
6812 struct e1000_hw *hw = &adapter->hw;
6813 int i;
6814
6815 for (i = 0; i < hw->mac.rar_entry_count; i++) {
6816 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6817 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6818 adapter->mac_table[i].queue = 0;
6819 igb_rar_set_index(adapter, i);
6820 }
6821}
6822
6823static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
6824{
6825 struct e1000_hw *hw = &adapter->hw;
6826 /* do not count rar entries reserved for VFs MAC addresses */
6827 int rar_entries = hw->mac.rar_entry_count -
6828 adapter->vfs_allocated_count;
6829 int i, count = 0;
6830
6831 for (i = 0; i < rar_entries; i++) {
6832 /* do not count default entries */
6833 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
6834 continue;
6835
6836 /* do not count "in use" entries for different queues */
6837 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
6838 (adapter->mac_table[i].queue != queue))
6839 continue;
6840
6841 count++;
6842 }
6843
6844 return count;
6845}
6846
6847/* Set default MAC address for the PF in the first RAR entry */
6848static void igb_set_default_mac_filter(struct igb_adapter *adapter)
6849{
6850 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
6851
6852 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
6853 mac_table->queue = adapter->vfs_allocated_count;
6854 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
6855
6856 igb_rar_set_index(adapter, 0);
6857}
6858
6859static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6860 const u8 queue)
6861{
6862 struct e1000_hw *hw = &adapter->hw;
6863 int rar_entries = hw->mac.rar_entry_count -
6864 adapter->vfs_allocated_count;
6865 int i;
6866
6867 if (is_zero_ether_addr(addr))
6868 return -EINVAL;
6869
6870 /* Search for the first empty entry in the MAC table.
6871 * Do not touch entries at the end of the table reserved for the VF MAC
6872 * addresses.
6873 */
6874 for (i = 0; i < rar_entries; i++) {
6875 if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
6876 continue;
6877
6878 ether_addr_copy(adapter->mac_table[i].addr, addr);
6879 adapter->mac_table[i].queue = queue;
6880 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE;
6881
6882 igb_rar_set_index(adapter, i);
6883 return i;
6884 }
6885
6886 return -ENOSPC;
6887}
6888
6889static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6890 const u8 queue)
6891{
6892 struct e1000_hw *hw = &adapter->hw;
6893 int rar_entries = hw->mac.rar_entry_count -
6894 adapter->vfs_allocated_count;
6895 int i;
6896
6897 if (is_zero_ether_addr(addr))
6898 return -EINVAL;
6899
6900 /* Search for matching entry in the MAC table based on given address
6901 * and queue. Do not touch entries at the end of the table reserved
6902 * for the VF MAC addresses.
6903 */
6904 for (i = 0; i < rar_entries; i++) {
6905 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
6906 continue;
6907 if (adapter->mac_table[i].queue != queue)
6908 continue;
6909 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
6910 continue;
6911
6912 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6913 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6914 adapter->mac_table[i].queue = 0;
6915
6916 igb_rar_set_index(adapter, i);
6917 return 0;
6918 }
6919
6920 return -ENOENT;
6921}
6922
6923static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
6924{
6925 struct igb_adapter *adapter = netdev_priv(netdev);
6926 int ret;
6927
6928 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6929
6930 return min_t(int, ret, 0);
6931}
6932
6933static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
6934{
6935 struct igb_adapter *adapter = netdev_priv(netdev);
6936
6937 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6938
6939 return 0;
6940}
6941
6942static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
6943 const u32 info, const u8 *addr)
6944{
6945 struct pci_dev *pdev = adapter->pdev;
6946 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6947 struct list_head *pos;
6948 struct vf_mac_filter *entry = NULL;
6949 int ret = 0;
6950
6951 switch (info) {
6952 case E1000_VF_MAC_FILTER_CLR:
6953 /* remove all unicast MAC filters related to the current VF */
6954 list_for_each(pos, &adapter->vf_macs.l) {
6955 entry = list_entry(pos, struct vf_mac_filter, l);
6956 if (entry->vf == vf) {
6957 entry->vf = -1;
6958 entry->free = true;
6959 igb_del_mac_filter(adapter, entry->vf_mac, vf);
6960 }
6961 }
6962 break;
6963 case E1000_VF_MAC_FILTER_ADD:
6964 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
6965 !vf_data->trusted) {
6966 dev_warn(&pdev->dev,
6967 "VF %d requested MAC filter but is administratively denied\n",
6968 vf);
6969 return -EINVAL;
6970 }
6971 if (!is_valid_ether_addr(addr)) {
6972 dev_warn(&pdev->dev,
6973 "VF %d attempted to set invalid MAC filter\n",
6974 vf);
6975 return -EINVAL;
6976 }
6977
6978 /* try to find empty slot in the list */
6979 list_for_each(pos, &adapter->vf_macs.l) {
6980 entry = list_entry(pos, struct vf_mac_filter, l);
6981 if (entry->free)
6982 break;
6983 }
6984
6985 if (entry && entry->free) {
6986 entry->free = false;
6987 entry->vf = vf;
6988 ether_addr_copy(entry->vf_mac, addr);
6989
6990 ret = igb_add_mac_filter(adapter, addr, vf);
6991 ret = min_t(int, ret, 0);
6992 } else {
6993 ret = -ENOSPC;
6994 }
6995
6996 if (ret == -ENOSPC)
6997 dev_warn(&pdev->dev,
6998 "VF %d has requested MAC filter but there is no space for it\n",
6999 vf);
7000 break;
7001 default:
7002 ret = -EINVAL;
7003 break;
7004 }
7005
7006 return ret;
7007}
7008
7009static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7010{
7011 struct pci_dev *pdev = adapter->pdev;
7012 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7013 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7014
7015 /* The VF MAC Address is stored in a packed array of bytes
7016 * starting at the second 32 bit word of the msg array
7017 */
7018 unsigned char *addr = (unsigned char *)&msg[1];
7019 int ret = 0;
7020
7021 if (!info) {
7022 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7023 !vf_data->trusted) {
7024 dev_warn(&pdev->dev,
7025 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7026 vf);
7027 return -EINVAL;
7028 }
7029
7030 if (!is_valid_ether_addr(addr)) {
7031 dev_warn(&pdev->dev,
7032 "VF %d attempted to set invalid MAC\n",
7033 vf);
7034 return -EINVAL;
7035 }
7036
7037 ret = igb_set_vf_mac(adapter, vf, addr);
7038 } else {
7039 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7040 }
7041
7042 return ret;
7043}
7044
7045static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7046{
7047 struct e1000_hw *hw = &adapter->hw;
7048 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7049 u32 msg = E1000_VT_MSGTYPE_NACK;
7050
7051 /* if device isn't clear to send it shouldn't be reading either */
7052 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7053 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7054 igb_write_mbx(hw, &msg, 1, vf);
7055 vf_data->last_nack = jiffies;
7056 }
7057}
7058
7059static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7060{
7061 struct pci_dev *pdev = adapter->pdev;
7062 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7063 struct e1000_hw *hw = &adapter->hw;
7064 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7065 s32 retval;
7066
7067 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7068
7069 if (retval) {
7070 /* if receive failed revoke VF CTS stats and restart init */
7071 dev_err(&pdev->dev, "Error receiving message from VF\n");
7072 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7073 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7074 goto unlock;
7075 goto out;
7076 }
7077
7078 /* this is a message we already processed, do nothing */
7079 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7080 goto unlock;
7081
7082 /* until the vf completes a reset it should not be
7083 * allowed to start any configuration.
7084 */
7085 if (msgbuf[0] == E1000_VF_RESET) {
7086 /* unlocks mailbox */
7087 igb_vf_reset_msg(adapter, vf);
7088 return;
7089 }
7090
7091 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7092 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7093 goto unlock;
7094 retval = -1;
7095 goto out;
7096 }
7097
7098 switch ((msgbuf[0] & 0xFFFF)) {
7099 case E1000_VF_SET_MAC_ADDR:
7100 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7101 break;
7102 case E1000_VF_SET_PROMISC:
7103 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7104 break;
7105 case E1000_VF_SET_MULTICAST:
7106 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7107 break;
7108 case E1000_VF_SET_LPE:
7109 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7110 break;
7111 case E1000_VF_SET_VLAN:
7112 retval = -1;
7113 if (vf_data->pf_vlan)
7114 dev_warn(&pdev->dev,
7115 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7116 vf);
7117 else
7118 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7119 break;
7120 default:
7121 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7122 retval = -1;
7123 break;
7124 }
7125
7126 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7127out:
7128 /* notify the VF of the results of what it sent us */
7129 if (retval)
7130 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7131 else
7132 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7133
7134 /* unlocks mailbox */
7135 igb_write_mbx(hw, msgbuf, 1, vf);
7136 return;
7137
7138unlock:
7139 igb_unlock_mbx(hw, vf);
7140}
7141
7142static void igb_msg_task(struct igb_adapter *adapter)
7143{
7144 struct e1000_hw *hw = &adapter->hw;
7145 u32 vf;
7146
7147 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7148 /* process any reset requests */
7149 if (!igb_check_for_rst(hw, vf))
7150 igb_vf_reset_event(adapter, vf);
7151
7152 /* process any messages pending */
7153 if (!igb_check_for_msg(hw, vf))
7154 igb_rcv_msg_from_vf(adapter, vf);
7155
7156 /* process any acks */
7157 if (!igb_check_for_ack(hw, vf))
7158 igb_rcv_ack_from_vf(adapter, vf);
7159 }
7160}
7161
7162/**
7163 * igb_set_uta - Set unicast filter table address
7164 * @adapter: board private structure
7165 * @set: boolean indicating if we are setting or clearing bits
7166 *
7167 * The unicast table address is a register array of 32-bit registers.
7168 * The table is meant to be used in a way similar to how the MTA is used
7169 * however due to certain limitations in the hardware it is necessary to
7170 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7171 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7172 **/
7173static void igb_set_uta(struct igb_adapter *adapter, bool set)
7174{
7175 struct e1000_hw *hw = &adapter->hw;
7176 u32 uta = set ? ~0 : 0;
7177 int i;
7178
7179 /* we only need to do this if VMDq is enabled */
7180 if (!adapter->vfs_allocated_count)
7181 return;
7182
7183 for (i = hw->mac.uta_reg_count; i--;)
7184 array_wr32(E1000_UTA, i, uta);
7185}
7186
7187/**
7188 * igb_intr_msi - Interrupt Handler
7189 * @irq: interrupt number
7190 * @data: pointer to a network interface device structure
7191 **/
7192static irqreturn_t igb_intr_msi(int irq, void *data)
7193{
7194 struct igb_adapter *adapter = data;
7195 struct igb_q_vector *q_vector = adapter->q_vector[0];
7196 struct e1000_hw *hw = &adapter->hw;
7197 /* read ICR disables interrupts using IAM */
7198 u32 icr = rd32(E1000_ICR);
7199
7200 igb_write_itr(q_vector);
7201
7202 if (icr & E1000_ICR_DRSTA)
7203 schedule_work(&adapter->reset_task);
7204
7205 if (icr & E1000_ICR_DOUTSYNC) {
7206 /* HW is reporting DMA is out of sync */
7207 adapter->stats.doosync++;
7208 }
7209
7210 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7211 hw->mac.get_link_status = 1;
7212 if (!test_bit(__IGB_DOWN, &adapter->state))
7213 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7214 }
7215
7216 if (icr & E1000_ICR_TS)
7217 igb_tsync_interrupt(adapter);
7218
7219 napi_schedule(&q_vector->napi);
7220
7221 return IRQ_HANDLED;
7222}
7223
7224/**
7225 * igb_intr - Legacy Interrupt Handler
7226 * @irq: interrupt number
7227 * @data: pointer to a network interface device structure
7228 **/
7229static irqreturn_t igb_intr(int irq, void *data)
7230{
7231 struct igb_adapter *adapter = data;
7232 struct igb_q_vector *q_vector = adapter->q_vector[0];
7233 struct e1000_hw *hw = &adapter->hw;
7234 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7235 * need for the IMC write
7236 */
7237 u32 icr = rd32(E1000_ICR);
7238
7239 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7240 * not set, then the adapter didn't send an interrupt
7241 */
7242 if (!(icr & E1000_ICR_INT_ASSERTED))
7243 return IRQ_NONE;
7244
7245 igb_write_itr(q_vector);
7246
7247 if (icr & E1000_ICR_DRSTA)
7248 schedule_work(&adapter->reset_task);
7249
7250 if (icr & E1000_ICR_DOUTSYNC) {
7251 /* HW is reporting DMA is out of sync */
7252 adapter->stats.doosync++;
7253 }
7254
7255 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7256 hw->mac.get_link_status = 1;
7257 /* guard against interrupt when we're going down */
7258 if (!test_bit(__IGB_DOWN, &adapter->state))
7259 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7260 }
7261
7262 if (icr & E1000_ICR_TS)
7263 igb_tsync_interrupt(adapter);
7264
7265 napi_schedule(&q_vector->napi);
7266
7267 return IRQ_HANDLED;
7268}
7269
7270static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7271{
7272 struct igb_adapter *adapter = q_vector->adapter;
7273 struct e1000_hw *hw = &adapter->hw;
7274
7275 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7276 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7277 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7278 igb_set_itr(q_vector);
7279 else
7280 igb_update_ring_itr(q_vector);
7281 }
7282
7283 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7284 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7285 wr32(E1000_EIMS, q_vector->eims_value);
7286 else
7287 igb_irq_enable(adapter);
7288 }
7289}
7290
7291/**
7292 * igb_poll - NAPI Rx polling callback
7293 * @napi: napi polling structure
7294 * @budget: count of how many packets we should handle
7295 **/
7296static int igb_poll(struct napi_struct *napi, int budget)
7297{
7298 struct igb_q_vector *q_vector = container_of(napi,
7299 struct igb_q_vector,
7300 napi);
7301 bool clean_complete = true;
7302 int work_done = 0;
7303
7304#ifdef CONFIG_IGB_DCA
7305 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7306 igb_update_dca(q_vector);
7307#endif
7308 if (q_vector->tx.ring)
7309 clean_complete = igb_clean_tx_irq(q_vector, budget);
7310
7311 if (q_vector->rx.ring) {
7312 int cleaned = igb_clean_rx_irq(q_vector, budget);
7313
7314 work_done += cleaned;
7315 if (cleaned >= budget)
7316 clean_complete = false;
7317 }
7318
7319 /* If all work not completed, return budget and keep polling */
7320 if (!clean_complete)
7321 return budget;
7322
7323 /* If not enough Rx work done, exit the polling mode */
7324 napi_complete_done(napi, work_done);
7325 igb_ring_irq_enable(q_vector);
7326
7327 return 0;
7328}
7329
7330/**
7331 * igb_clean_tx_irq - Reclaim resources after transmit completes
7332 * @q_vector: pointer to q_vector containing needed info
7333 * @napi_budget: Used to determine if we are in netpoll
7334 *
7335 * returns true if ring is completely cleaned
7336 **/
7337static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7338{
7339 struct igb_adapter *adapter = q_vector->adapter;
7340 struct igb_ring *tx_ring = q_vector->tx.ring;
7341 struct igb_tx_buffer *tx_buffer;
7342 union e1000_adv_tx_desc *tx_desc;
7343 unsigned int total_bytes = 0, total_packets = 0;
7344 unsigned int budget = q_vector->tx.work_limit;
7345 unsigned int i = tx_ring->next_to_clean;
7346
7347 if (test_bit(__IGB_DOWN, &adapter->state))
7348 return true;
7349
7350 tx_buffer = &tx_ring->tx_buffer_info[i];
7351 tx_desc = IGB_TX_DESC(tx_ring, i);
7352 i -= tx_ring->count;
7353
7354 do {
7355 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7356
7357 /* if next_to_watch is not set then there is no work pending */
7358 if (!eop_desc)
7359 break;
7360
7361 /* prevent any other reads prior to eop_desc */
7362 smp_rmb();
7363
7364 /* if DD is not set pending work has not been completed */
7365 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7366 break;
7367
7368 /* clear next_to_watch to prevent false hangs */
7369 tx_buffer->next_to_watch = NULL;
7370
7371 /* update the statistics for this packet */
7372 total_bytes += tx_buffer->bytecount;
7373 total_packets += tx_buffer->gso_segs;
7374
7375 /* free the skb */
7376 napi_consume_skb(tx_buffer->skb, napi_budget);
7377
7378 /* unmap skb header data */
7379 dma_unmap_single(tx_ring->dev,
7380 dma_unmap_addr(tx_buffer, dma),
7381 dma_unmap_len(tx_buffer, len),
7382 DMA_TO_DEVICE);
7383
7384 /* clear tx_buffer data */
7385 dma_unmap_len_set(tx_buffer, len, 0);
7386
7387 /* clear last DMA location and unmap remaining buffers */
7388 while (tx_desc != eop_desc) {
7389 tx_buffer++;
7390 tx_desc++;
7391 i++;
7392 if (unlikely(!i)) {
7393 i -= tx_ring->count;
7394 tx_buffer = tx_ring->tx_buffer_info;
7395 tx_desc = IGB_TX_DESC(tx_ring, 0);
7396 }
7397
7398 /* unmap any remaining paged data */
7399 if (dma_unmap_len(tx_buffer, len)) {
7400 dma_unmap_page(tx_ring->dev,
7401 dma_unmap_addr(tx_buffer, dma),
7402 dma_unmap_len(tx_buffer, len),
7403 DMA_TO_DEVICE);
7404 dma_unmap_len_set(tx_buffer, len, 0);
7405 }
7406 }
7407
7408 /* move us one more past the eop_desc for start of next pkt */
7409 tx_buffer++;
7410 tx_desc++;
7411 i++;
7412 if (unlikely(!i)) {
7413 i -= tx_ring->count;
7414 tx_buffer = tx_ring->tx_buffer_info;
7415 tx_desc = IGB_TX_DESC(tx_ring, 0);
7416 }
7417
7418 /* issue prefetch for next Tx descriptor */
7419 prefetch(tx_desc);
7420
7421 /* update budget accounting */
7422 budget--;
7423 } while (likely(budget));
7424
7425 netdev_tx_completed_queue(txring_txq(tx_ring),
7426 total_packets, total_bytes);
7427 i += tx_ring->count;
7428 tx_ring->next_to_clean = i;
7429 u64_stats_update_begin(&tx_ring->tx_syncp);
7430 tx_ring->tx_stats.bytes += total_bytes;
7431 tx_ring->tx_stats.packets += total_packets;
7432 u64_stats_update_end(&tx_ring->tx_syncp);
7433 q_vector->tx.total_bytes += total_bytes;
7434 q_vector->tx.total_packets += total_packets;
7435
7436 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7437 struct e1000_hw *hw = &adapter->hw;
7438
7439 /* Detect a transmit hang in hardware, this serializes the
7440 * check with the clearing of time_stamp and movement of i
7441 */
7442 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7443 if (tx_buffer->next_to_watch &&
7444 time_after(jiffies, tx_buffer->time_stamp +
7445 (adapter->tx_timeout_factor * HZ)) &&
7446 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7447
7448 /* detected Tx unit hang */
7449 dev_err(tx_ring->dev,
7450 "Detected Tx Unit Hang\n"
7451 " Tx Queue <%d>\n"
7452 " TDH <%x>\n"
7453 " TDT <%x>\n"
7454 " next_to_use <%x>\n"
7455 " next_to_clean <%x>\n"
7456 "buffer_info[next_to_clean]\n"
7457 " time_stamp <%lx>\n"
7458 " next_to_watch <%p>\n"
7459 " jiffies <%lx>\n"
7460 " desc.status <%x>\n",
7461 tx_ring->queue_index,
7462 rd32(E1000_TDH(tx_ring->reg_idx)),
7463 readl(tx_ring->tail),
7464 tx_ring->next_to_use,
7465 tx_ring->next_to_clean,
7466 tx_buffer->time_stamp,
7467 tx_buffer->next_to_watch,
7468 jiffies,
7469 tx_buffer->next_to_watch->wb.status);
7470 netif_stop_subqueue(tx_ring->netdev,
7471 tx_ring->queue_index);
7472
7473 /* we are about to reset, no point in enabling stuff */
7474 return true;
7475 }
7476 }
7477
7478#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7479 if (unlikely(total_packets &&
7480 netif_carrier_ok(tx_ring->netdev) &&
7481 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7482 /* Make sure that anybody stopping the queue after this
7483 * sees the new next_to_clean.
7484 */
7485 smp_mb();
7486 if (__netif_subqueue_stopped(tx_ring->netdev,
7487 tx_ring->queue_index) &&
7488 !(test_bit(__IGB_DOWN, &adapter->state))) {
7489 netif_wake_subqueue(tx_ring->netdev,
7490 tx_ring->queue_index);
7491
7492 u64_stats_update_begin(&tx_ring->tx_syncp);
7493 tx_ring->tx_stats.restart_queue++;
7494 u64_stats_update_end(&tx_ring->tx_syncp);
7495 }
7496 }
7497
7498 return !!budget;
7499}
7500
7501/**
7502 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7503 * @rx_ring: rx descriptor ring to store buffers on
7504 * @old_buff: donor buffer to have page reused
7505 *
7506 * Synchronizes page for reuse by the adapter
7507 **/
7508static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7509 struct igb_rx_buffer *old_buff)
7510{
7511 struct igb_rx_buffer *new_buff;
7512 u16 nta = rx_ring->next_to_alloc;
7513
7514 new_buff = &rx_ring->rx_buffer_info[nta];
7515
7516 /* update, and store next to alloc */
7517 nta++;
7518 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7519
7520 /* Transfer page from old buffer to new buffer.
7521 * Move each member individually to avoid possible store
7522 * forwarding stalls.
7523 */
7524 new_buff->dma = old_buff->dma;
7525 new_buff->page = old_buff->page;
7526 new_buff->page_offset = old_buff->page_offset;
7527 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7528}
7529
7530static inline bool igb_page_is_reserved(struct page *page)
7531{
7532 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7533}
7534
7535static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7536{
7537 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7538 struct page *page = rx_buffer->page;
7539
7540 /* avoid re-using remote pages */
7541 if (unlikely(igb_page_is_reserved(page)))
7542 return false;
7543
7544#if (PAGE_SIZE < 8192)
7545 /* if we are only owner of page we can reuse it */
7546 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7547 return false;
7548#else
7549#define IGB_LAST_OFFSET \
7550 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7551
7552 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7553 return false;
7554#endif
7555
7556 /* If we have drained the page fragment pool we need to update
7557 * the pagecnt_bias and page count so that we fully restock the
7558 * number of references the driver holds.
7559 */
7560 if (unlikely(!pagecnt_bias)) {
7561 page_ref_add(page, USHRT_MAX);
7562 rx_buffer->pagecnt_bias = USHRT_MAX;
7563 }
7564
7565 return true;
7566}
7567
7568/**
7569 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7570 * @rx_ring: rx descriptor ring to transact packets on
7571 * @rx_buffer: buffer containing page to add
7572 * @skb: sk_buff to place the data into
7573 * @size: size of buffer to be added
7574 *
7575 * This function will add the data contained in rx_buffer->page to the skb.
7576 **/
7577static void igb_add_rx_frag(struct igb_ring *rx_ring,
7578 struct igb_rx_buffer *rx_buffer,
7579 struct sk_buff *skb,
7580 unsigned int size)
7581{
7582#if (PAGE_SIZE < 8192)
7583 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7584#else
7585 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7586 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7587 SKB_DATA_ALIGN(size);
7588#endif
7589 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7590 rx_buffer->page_offset, size, truesize);
7591#if (PAGE_SIZE < 8192)
7592 rx_buffer->page_offset ^= truesize;
7593#else
7594 rx_buffer->page_offset += truesize;
7595#endif
7596}
7597
7598static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
7599 struct igb_rx_buffer *rx_buffer,
7600 union e1000_adv_rx_desc *rx_desc,
7601 unsigned int size)
7602{
7603 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7604#if (PAGE_SIZE < 8192)
7605 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7606#else
7607 unsigned int truesize = SKB_DATA_ALIGN(size);
7608#endif
7609 unsigned int headlen;
7610 struct sk_buff *skb;
7611
7612 /* prefetch first cache line of first page */
7613 prefetch(va);
7614#if L1_CACHE_BYTES < 128
7615 prefetch(va + L1_CACHE_BYTES);
7616#endif
7617
7618 /* allocate a skb to store the frags */
7619 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
7620 if (unlikely(!skb))
7621 return NULL;
7622
7623 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
7624 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7625 va += IGB_TS_HDR_LEN;
7626 size -= IGB_TS_HDR_LEN;
7627 }
7628
7629 /* Determine available headroom for copy */
7630 headlen = size;
7631 if (headlen > IGB_RX_HDR_LEN)
7632 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
7633
7634 /* align pull length to size of long to optimize memcpy performance */
7635 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
7636
7637 /* update all of the pointers */
7638 size -= headlen;
7639 if (size) {
7640 skb_add_rx_frag(skb, 0, rx_buffer->page,
7641 (va + headlen) - page_address(rx_buffer->page),
7642 size, truesize);
7643#if (PAGE_SIZE < 8192)
7644 rx_buffer->page_offset ^= truesize;
7645#else
7646 rx_buffer->page_offset += truesize;
7647#endif
7648 } else {
7649 rx_buffer->pagecnt_bias++;
7650 }
7651
7652 return skb;
7653}
7654
7655static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
7656 struct igb_rx_buffer *rx_buffer,
7657 union e1000_adv_rx_desc *rx_desc,
7658 unsigned int size)
7659{
7660 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7661#if (PAGE_SIZE < 8192)
7662 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7663#else
7664 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
7665 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
7666#endif
7667 struct sk_buff *skb;
7668
7669 /* prefetch first cache line of first page */
7670 prefetch(va);
7671#if L1_CACHE_BYTES < 128
7672 prefetch(va + L1_CACHE_BYTES);
7673#endif
7674
7675 /* build an skb around the page buffer */
7676 skb = build_skb(va - IGB_SKB_PAD, truesize);
7677 if (unlikely(!skb))
7678 return NULL;
7679
7680 /* update pointers within the skb to store the data */
7681 skb_reserve(skb, IGB_SKB_PAD);
7682 __skb_put(skb, size);
7683
7684 /* pull timestamp out of packet data */
7685 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7686 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
7687 __skb_pull(skb, IGB_TS_HDR_LEN);
7688 }
7689
7690 /* update buffer offset */
7691#if (PAGE_SIZE < 8192)
7692 rx_buffer->page_offset ^= truesize;
7693#else
7694 rx_buffer->page_offset += truesize;
7695#endif
7696
7697 return skb;
7698}
7699
7700static inline void igb_rx_checksum(struct igb_ring *ring,
7701 union e1000_adv_rx_desc *rx_desc,
7702 struct sk_buff *skb)
7703{
7704 skb_checksum_none_assert(skb);
7705
7706 /* Ignore Checksum bit is set */
7707 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7708 return;
7709
7710 /* Rx checksum disabled via ethtool */
7711 if (!(ring->netdev->features & NETIF_F_RXCSUM))
7712 return;
7713
7714 /* TCP/UDP checksum error bit is set */
7715 if (igb_test_staterr(rx_desc,
7716 E1000_RXDEXT_STATERR_TCPE |
7717 E1000_RXDEXT_STATERR_IPE)) {
7718 /* work around errata with sctp packets where the TCPE aka
7719 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7720 * packets, (aka let the stack check the crc32c)
7721 */
7722 if (!((skb->len == 60) &&
7723 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7724 u64_stats_update_begin(&ring->rx_syncp);
7725 ring->rx_stats.csum_err++;
7726 u64_stats_update_end(&ring->rx_syncp);
7727 }
7728 /* let the stack verify checksum errors */
7729 return;
7730 }
7731 /* It must be a TCP or UDP packet with a valid checksum */
7732 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7733 E1000_RXD_STAT_UDPCS))
7734 skb->ip_summed = CHECKSUM_UNNECESSARY;
7735
7736 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7737 le32_to_cpu(rx_desc->wb.upper.status_error));
7738}
7739
7740static inline void igb_rx_hash(struct igb_ring *ring,
7741 union e1000_adv_rx_desc *rx_desc,
7742 struct sk_buff *skb)
7743{
7744 if (ring->netdev->features & NETIF_F_RXHASH)
7745 skb_set_hash(skb,
7746 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7747 PKT_HASH_TYPE_L3);
7748}
7749
7750/**
7751 * igb_is_non_eop - process handling of non-EOP buffers
7752 * @rx_ring: Rx ring being processed
7753 * @rx_desc: Rx descriptor for current buffer
7754 * @skb: current socket buffer containing buffer in progress
7755 *
7756 * This function updates next to clean. If the buffer is an EOP buffer
7757 * this function exits returning false, otherwise it will place the
7758 * sk_buff in the next buffer to be chained and return true indicating
7759 * that this is in fact a non-EOP buffer.
7760 **/
7761static bool igb_is_non_eop(struct igb_ring *rx_ring,
7762 union e1000_adv_rx_desc *rx_desc)
7763{
7764 u32 ntc = rx_ring->next_to_clean + 1;
7765
7766 /* fetch, update, and store next to clean */
7767 ntc = (ntc < rx_ring->count) ? ntc : 0;
7768 rx_ring->next_to_clean = ntc;
7769
7770 prefetch(IGB_RX_DESC(rx_ring, ntc));
7771
7772 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7773 return false;
7774
7775 return true;
7776}
7777
7778/**
7779 * igb_cleanup_headers - Correct corrupted or empty headers
7780 * @rx_ring: rx descriptor ring packet is being transacted on
7781 * @rx_desc: pointer to the EOP Rx descriptor
7782 * @skb: pointer to current skb being fixed
7783 *
7784 * Address the case where we are pulling data in on pages only
7785 * and as such no data is present in the skb header.
7786 *
7787 * In addition if skb is not at least 60 bytes we need to pad it so that
7788 * it is large enough to qualify as a valid Ethernet frame.
7789 *
7790 * Returns true if an error was encountered and skb was freed.
7791 **/
7792static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7793 union e1000_adv_rx_desc *rx_desc,
7794 struct sk_buff *skb)
7795{
7796 if (unlikely((igb_test_staterr(rx_desc,
7797 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7798 struct net_device *netdev = rx_ring->netdev;
7799 if (!(netdev->features & NETIF_F_RXALL)) {
7800 dev_kfree_skb_any(skb);
7801 return true;
7802 }
7803 }
7804
7805 /* if eth_skb_pad returns an error the skb was freed */
7806 if (eth_skb_pad(skb))
7807 return true;
7808
7809 return false;
7810}
7811
7812/**
7813 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7814 * @rx_ring: rx descriptor ring packet is being transacted on
7815 * @rx_desc: pointer to the EOP Rx descriptor
7816 * @skb: pointer to current skb being populated
7817 *
7818 * This function checks the ring, descriptor, and packet information in
7819 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7820 * other fields within the skb.
7821 **/
7822static void igb_process_skb_fields(struct igb_ring *rx_ring,
7823 union e1000_adv_rx_desc *rx_desc,
7824 struct sk_buff *skb)
7825{
7826 struct net_device *dev = rx_ring->netdev;
7827
7828 igb_rx_hash(rx_ring, rx_desc, skb);
7829
7830 igb_rx_checksum(rx_ring, rx_desc, skb);
7831
7832 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7833 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7834 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7835
7836 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7837 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7838 u16 vid;
7839
7840 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7841 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7842 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7843 else
7844 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7845
7846 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7847 }
7848
7849 skb_record_rx_queue(skb, rx_ring->queue_index);
7850
7851 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7852}
7853
7854static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
7855 const unsigned int size)
7856{
7857 struct igb_rx_buffer *rx_buffer;
7858
7859 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7860 prefetchw(rx_buffer->page);
7861
7862 /* we are reusing so sync this buffer for CPU use */
7863 dma_sync_single_range_for_cpu(rx_ring->dev,
7864 rx_buffer->dma,
7865 rx_buffer->page_offset,
7866 size,
7867 DMA_FROM_DEVICE);
7868
7869 rx_buffer->pagecnt_bias--;
7870
7871 return rx_buffer;
7872}
7873
7874static void igb_put_rx_buffer(struct igb_ring *rx_ring,
7875 struct igb_rx_buffer *rx_buffer)
7876{
7877 if (igb_can_reuse_rx_page(rx_buffer)) {
7878 /* hand second half of page back to the ring */
7879 igb_reuse_rx_page(rx_ring, rx_buffer);
7880 } else {
7881 /* We are not reusing the buffer so unmap it and free
7882 * any references we are holding to it
7883 */
7884 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
7885 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
7886 IGB_RX_DMA_ATTR);
7887 __page_frag_cache_drain(rx_buffer->page,
7888 rx_buffer->pagecnt_bias);
7889 }
7890
7891 /* clear contents of rx_buffer */
7892 rx_buffer->page = NULL;
7893}
7894
7895static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7896{
7897 struct igb_ring *rx_ring = q_vector->rx.ring;
7898 struct sk_buff *skb = rx_ring->skb;
7899 unsigned int total_bytes = 0, total_packets = 0;
7900 u16 cleaned_count = igb_desc_unused(rx_ring);
7901
7902 while (likely(total_packets < budget)) {
7903 union e1000_adv_rx_desc *rx_desc;
7904 struct igb_rx_buffer *rx_buffer;
7905 unsigned int size;
7906
7907 /* return some buffers to hardware, one at a time is too slow */
7908 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7909 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7910 cleaned_count = 0;
7911 }
7912
7913 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7914 size = le16_to_cpu(rx_desc->wb.upper.length);
7915 if (!size)
7916 break;
7917
7918 /* This memory barrier is needed to keep us from reading
7919 * any other fields out of the rx_desc until we know the
7920 * descriptor has been written back
7921 */
7922 dma_rmb();
7923
7924 rx_buffer = igb_get_rx_buffer(rx_ring, size);
7925
7926 /* retrieve a buffer from the ring */
7927 if (skb)
7928 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
7929 else if (ring_uses_build_skb(rx_ring))
7930 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
7931 else
7932 skb = igb_construct_skb(rx_ring, rx_buffer,
7933 rx_desc, size);
7934
7935 /* exit if we failed to retrieve a buffer */
7936 if (!skb) {
7937 rx_ring->rx_stats.alloc_failed++;
7938 rx_buffer->pagecnt_bias++;
7939 break;
7940 }
7941
7942 igb_put_rx_buffer(rx_ring, rx_buffer);
7943 cleaned_count++;
7944
7945 /* fetch next buffer in frame if non-eop */
7946 if (igb_is_non_eop(rx_ring, rx_desc))
7947 continue;
7948
7949 /* verify the packet layout is correct */
7950 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7951 skb = NULL;
7952 continue;
7953 }
7954
7955 /* probably a little skewed due to removing CRC */
7956 total_bytes += skb->len;
7957
7958 /* populate checksum, timestamp, VLAN, and protocol */
7959 igb_process_skb_fields(rx_ring, rx_desc, skb);
7960
7961 napi_gro_receive(&q_vector->napi, skb);
7962
7963 /* reset skb pointer */
7964 skb = NULL;
7965
7966 /* update budget accounting */
7967 total_packets++;
7968 }
7969
7970 /* place incomplete frames back on ring for completion */
7971 rx_ring->skb = skb;
7972
7973 u64_stats_update_begin(&rx_ring->rx_syncp);
7974 rx_ring->rx_stats.packets += total_packets;
7975 rx_ring->rx_stats.bytes += total_bytes;
7976 u64_stats_update_end(&rx_ring->rx_syncp);
7977 q_vector->rx.total_packets += total_packets;
7978 q_vector->rx.total_bytes += total_bytes;
7979
7980 if (cleaned_count)
7981 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7982
7983 return total_packets;
7984}
7985
7986static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
7987{
7988 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
7989}
7990
7991static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7992 struct igb_rx_buffer *bi)
7993{
7994 struct page *page = bi->page;
7995 dma_addr_t dma;
7996
7997 /* since we are recycling buffers we should seldom need to alloc */
7998 if (likely(page))
7999 return true;
8000
8001 /* alloc new page for storage */
8002 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8003 if (unlikely(!page)) {
8004 rx_ring->rx_stats.alloc_failed++;
8005 return false;
8006 }
8007
8008 /* map page for use */
8009 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8010 igb_rx_pg_size(rx_ring),
8011 DMA_FROM_DEVICE,
8012 IGB_RX_DMA_ATTR);
8013
8014 /* if mapping failed free memory back to system since
8015 * there isn't much point in holding memory we can't use
8016 */
8017 if (dma_mapping_error(rx_ring->dev, dma)) {
8018 __free_pages(page, igb_rx_pg_order(rx_ring));
8019
8020 rx_ring->rx_stats.alloc_failed++;
8021 return false;
8022 }
8023
8024 bi->dma = dma;
8025 bi->page = page;
8026 bi->page_offset = igb_rx_offset(rx_ring);
8027 bi->pagecnt_bias = 1;
8028
8029 return true;
8030}
8031
8032/**
8033 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8034 * @adapter: address of board private structure
8035 **/
8036void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8037{
8038 union e1000_adv_rx_desc *rx_desc;
8039 struct igb_rx_buffer *bi;
8040 u16 i = rx_ring->next_to_use;
8041 u16 bufsz;
8042
8043 /* nothing to do */
8044 if (!cleaned_count)
8045 return;
8046
8047 rx_desc = IGB_RX_DESC(rx_ring, i);
8048 bi = &rx_ring->rx_buffer_info[i];
8049 i -= rx_ring->count;
8050
8051 bufsz = igb_rx_bufsz(rx_ring);
8052
8053 do {
8054 if (!igb_alloc_mapped_page(rx_ring, bi))
8055 break;
8056
8057 /* sync the buffer for use by the device */
8058 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8059 bi->page_offset, bufsz,
8060 DMA_FROM_DEVICE);
8061
8062 /* Refresh the desc even if buffer_addrs didn't change
8063 * because each write-back erases this info.
8064 */
8065 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8066
8067 rx_desc++;
8068 bi++;
8069 i++;
8070 if (unlikely(!i)) {
8071 rx_desc = IGB_RX_DESC(rx_ring, 0);
8072 bi = rx_ring->rx_buffer_info;
8073 i -= rx_ring->count;
8074 }
8075
8076 /* clear the length for the next_to_use descriptor */
8077 rx_desc->wb.upper.length = 0;
8078
8079 cleaned_count--;
8080 } while (cleaned_count);
8081
8082 i += rx_ring->count;
8083
8084 if (rx_ring->next_to_use != i) {
8085 /* record the next descriptor to use */
8086 rx_ring->next_to_use = i;
8087
8088 /* update next to alloc since we have filled the ring */
8089 rx_ring->next_to_alloc = i;
8090
8091 /* Force memory writes to complete before letting h/w
8092 * know there are new descriptors to fetch. (Only
8093 * applicable for weak-ordered memory model archs,
8094 * such as IA-64).
8095 */
8096 wmb();
8097 writel(i, rx_ring->tail);
8098 }
8099}
8100
8101/**
8102 * igb_mii_ioctl -
8103 * @netdev:
8104 * @ifreq:
8105 * @cmd:
8106 **/
8107static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8108{
8109 struct igb_adapter *adapter = netdev_priv(netdev);
8110 struct mii_ioctl_data *data = if_mii(ifr);
8111
8112 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8113 return -EOPNOTSUPP;
8114
8115 switch (cmd) {
8116 case SIOCGMIIPHY:
8117 data->phy_id = adapter->hw.phy.addr;
8118 break;
8119 case SIOCGMIIREG:
8120 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8121 &data->val_out))
8122 return -EIO;
8123 break;
8124 case SIOCSMIIREG:
8125 default:
8126 return -EOPNOTSUPP;
8127 }
8128 return 0;
8129}
8130
8131/**
8132 * igb_ioctl -
8133 * @netdev:
8134 * @ifreq:
8135 * @cmd:
8136 **/
8137static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8138{
8139 switch (cmd) {
8140 case SIOCGMIIPHY:
8141 case SIOCGMIIREG:
8142 case SIOCSMIIREG:
8143 return igb_mii_ioctl(netdev, ifr, cmd);
8144 case SIOCGHWTSTAMP:
8145 return igb_ptp_get_ts_config(netdev, ifr);
8146 case SIOCSHWTSTAMP:
8147 return igb_ptp_set_ts_config(netdev, ifr);
8148 default:
8149 return -EOPNOTSUPP;
8150 }
8151}
8152
8153void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8154{
8155 struct igb_adapter *adapter = hw->back;
8156
8157 pci_read_config_word(adapter->pdev, reg, value);
8158}
8159
8160void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8161{
8162 struct igb_adapter *adapter = hw->back;
8163
8164 pci_write_config_word(adapter->pdev, reg, *value);
8165}
8166
8167s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8168{
8169 struct igb_adapter *adapter = hw->back;
8170
8171 if (pcie_capability_read_word(adapter->pdev, reg, value))
8172 return -E1000_ERR_CONFIG;
8173
8174 return 0;
8175}
8176
8177s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8178{
8179 struct igb_adapter *adapter = hw->back;
8180
8181 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8182 return -E1000_ERR_CONFIG;
8183
8184 return 0;
8185}
8186
8187static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8188{
8189 struct igb_adapter *adapter = netdev_priv(netdev);
8190 struct e1000_hw *hw = &adapter->hw;
8191 u32 ctrl, rctl;
8192 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8193
8194 if (enable) {
8195 /* enable VLAN tag insert/strip */
8196 ctrl = rd32(E1000_CTRL);
8197 ctrl |= E1000_CTRL_VME;
8198 wr32(E1000_CTRL, ctrl);
8199
8200 /* Disable CFI check */
8201 rctl = rd32(E1000_RCTL);
8202 rctl &= ~E1000_RCTL_CFIEN;
8203 wr32(E1000_RCTL, rctl);
8204 } else {
8205 /* disable VLAN tag insert/strip */
8206 ctrl = rd32(E1000_CTRL);
8207 ctrl &= ~E1000_CTRL_VME;
8208 wr32(E1000_CTRL, ctrl);
8209 }
8210
8211 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8212}
8213
8214static int igb_vlan_rx_add_vid(struct net_device *netdev,
8215 __be16 proto, u16 vid)
8216{
8217 struct igb_adapter *adapter = netdev_priv(netdev);
8218 struct e1000_hw *hw = &adapter->hw;
8219 int pf_id = adapter->vfs_allocated_count;
8220
8221 /* add the filter since PF can receive vlans w/o entry in vlvf */
8222 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8223 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8224
8225 set_bit(vid, adapter->active_vlans);
8226
8227 return 0;
8228}
8229
8230static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8231 __be16 proto, u16 vid)
8232{
8233 struct igb_adapter *adapter = netdev_priv(netdev);
8234 int pf_id = adapter->vfs_allocated_count;
8235 struct e1000_hw *hw = &adapter->hw;
8236
8237 /* remove VID from filter table */
8238 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8239 igb_vfta_set(hw, vid, pf_id, false, true);
8240
8241 clear_bit(vid, adapter->active_vlans);
8242
8243 return 0;
8244}
8245
8246static void igb_restore_vlan(struct igb_adapter *adapter)
8247{
8248 u16 vid = 1;
8249
8250 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8251 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8252
8253 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8254 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8255}
8256
8257int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8258{
8259 struct pci_dev *pdev = adapter->pdev;
8260 struct e1000_mac_info *mac = &adapter->hw.mac;
8261
8262 mac->autoneg = 0;
8263
8264 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8265 * for the switch() below to work
8266 */
8267 if ((spd & 1) || (dplx & ~1))
8268 goto err_inval;
8269
8270 /* Fiber NIC's only allow 1000 gbps Full duplex
8271 * and 100Mbps Full duplex for 100baseFx sfp
8272 */
8273 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8274 switch (spd + dplx) {
8275 case SPEED_10 + DUPLEX_HALF:
8276 case SPEED_10 + DUPLEX_FULL:
8277 case SPEED_100 + DUPLEX_HALF:
8278 goto err_inval;
8279 default:
8280 break;
8281 }
8282 }
8283
8284 switch (spd + dplx) {
8285 case SPEED_10 + DUPLEX_HALF:
8286 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8287 break;
8288 case SPEED_10 + DUPLEX_FULL:
8289 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8290 break;
8291 case SPEED_100 + DUPLEX_HALF:
8292 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8293 break;
8294 case SPEED_100 + DUPLEX_FULL:
8295 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8296 break;
8297 case SPEED_1000 + DUPLEX_FULL:
8298 mac->autoneg = 1;
8299 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8300 break;
8301 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8302 default:
8303 goto err_inval;
8304 }
8305
8306 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8307 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8308
8309 return 0;
8310
8311err_inval:
8312 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8313 return -EINVAL;
8314}
8315
8316static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8317 bool runtime)
8318{
8319 struct net_device *netdev = pci_get_drvdata(pdev);
8320 struct igb_adapter *adapter = netdev_priv(netdev);
8321 struct e1000_hw *hw = &adapter->hw;
8322 u32 ctrl, rctl, status;
8323 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8324#ifdef CONFIG_PM
8325 int retval = 0;
8326#endif
8327
8328 rtnl_lock();
8329 netif_device_detach(netdev);
8330
8331 if (netif_running(netdev))
8332 __igb_close(netdev, true);
8333
8334 igb_ptp_suspend(adapter);
8335
8336 igb_clear_interrupt_scheme(adapter);
8337 rtnl_unlock();
8338
8339#ifdef CONFIG_PM
8340 retval = pci_save_state(pdev);
8341 if (retval)
8342 return retval;
8343#endif
8344
8345 status = rd32(E1000_STATUS);
8346 if (status & E1000_STATUS_LU)
8347 wufc &= ~E1000_WUFC_LNKC;
8348
8349 if (wufc) {
8350 igb_setup_rctl(adapter);
8351 igb_set_rx_mode(netdev);
8352
8353 /* turn on all-multi mode if wake on multicast is enabled */
8354 if (wufc & E1000_WUFC_MC) {
8355 rctl = rd32(E1000_RCTL);
8356 rctl |= E1000_RCTL_MPE;
8357 wr32(E1000_RCTL, rctl);
8358 }
8359
8360 ctrl = rd32(E1000_CTRL);
8361 /* advertise wake from D3Cold */
8362 #define E1000_CTRL_ADVD3WUC 0x00100000
8363 /* phy power management enable */
8364 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8365 ctrl |= E1000_CTRL_ADVD3WUC;
8366 wr32(E1000_CTRL, ctrl);
8367
8368 /* Allow time for pending master requests to run */
8369 igb_disable_pcie_master(hw);
8370
8371 wr32(E1000_WUC, E1000_WUC_PME_EN);
8372 wr32(E1000_WUFC, wufc);
8373 } else {
8374 wr32(E1000_WUC, 0);
8375 wr32(E1000_WUFC, 0);
8376 }
8377
8378 *enable_wake = wufc || adapter->en_mng_pt;
8379 if (!*enable_wake)
8380 igb_power_down_link(adapter);
8381 else
8382 igb_power_up_link(adapter);
8383
8384 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8385 * would have already happened in close and is redundant.
8386 */
8387 igb_release_hw_control(adapter);
8388
8389 pci_disable_device(pdev);
8390
8391 return 0;
8392}
8393
8394static void igb_deliver_wake_packet(struct net_device *netdev)
8395{
8396 struct igb_adapter *adapter = netdev_priv(netdev);
8397 struct e1000_hw *hw = &adapter->hw;
8398 struct sk_buff *skb;
8399 u32 wupl;
8400
8401 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8402
8403 /* WUPM stores only the first 128 bytes of the wake packet.
8404 * Read the packet only if we have the whole thing.
8405 */
8406 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8407 return;
8408
8409 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8410 if (!skb)
8411 return;
8412
8413 skb_put(skb, wupl);
8414
8415 /* Ensure reads are 32-bit aligned */
8416 wupl = roundup(wupl, 4);
8417
8418 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8419
8420 skb->protocol = eth_type_trans(skb, netdev);
8421 netif_rx(skb);
8422}
8423
8424static int __maybe_unused igb_suspend(struct device *dev)
8425{
8426 int retval;
8427 bool wake;
8428 struct pci_dev *pdev = to_pci_dev(dev);
8429
8430 retval = __igb_shutdown(pdev, &wake, 0);
8431 if (retval)
8432 return retval;
8433
8434 if (wake) {
8435 pci_prepare_to_sleep(pdev);
8436 } else {
8437 pci_wake_from_d3(pdev, false);
8438 pci_set_power_state(pdev, PCI_D3hot);
8439 }
8440
8441 return 0;
8442}
8443
8444static int __maybe_unused igb_resume(struct device *dev)
8445{
8446 struct pci_dev *pdev = to_pci_dev(dev);
8447 struct net_device *netdev = pci_get_drvdata(pdev);
8448 struct igb_adapter *adapter = netdev_priv(netdev);
8449 struct e1000_hw *hw = &adapter->hw;
8450 u32 err, val;
8451
8452 pci_set_power_state(pdev, PCI_D0);
8453 pci_restore_state(pdev);
8454 pci_save_state(pdev);
8455
8456 if (!pci_device_is_present(pdev))
8457 return -ENODEV;
8458 err = pci_enable_device_mem(pdev);
8459 if (err) {
8460 dev_err(&pdev->dev,
8461 "igb: Cannot enable PCI device from suspend\n");
8462 return err;
8463 }
8464 pci_set_master(pdev);
8465
8466 pci_enable_wake(pdev, PCI_D3hot, 0);
8467 pci_enable_wake(pdev, PCI_D3cold, 0);
8468
8469 if (igb_init_interrupt_scheme(adapter, true)) {
8470 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8471 return -ENOMEM;
8472 }
8473
8474 igb_reset(adapter);
8475
8476 /* let the f/w know that the h/w is now under the control of the
8477 * driver.
8478 */
8479 igb_get_hw_control(adapter);
8480
8481 val = rd32(E1000_WUS);
8482 if (val & WAKE_PKT_WUS)
8483 igb_deliver_wake_packet(netdev);
8484
8485 wr32(E1000_WUS, ~0);
8486
8487 rtnl_lock();
8488 if (!err && netif_running(netdev))
8489 err = __igb_open(netdev, true);
8490
8491 if (!err)
8492 netif_device_attach(netdev);
8493 rtnl_unlock();
8494
8495 return err;
8496}
8497
8498static int __maybe_unused igb_runtime_idle(struct device *dev)
8499{
8500 struct pci_dev *pdev = to_pci_dev(dev);
8501 struct net_device *netdev = pci_get_drvdata(pdev);
8502 struct igb_adapter *adapter = netdev_priv(netdev);
8503
8504 if (!igb_has_link(adapter))
8505 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8506
8507 return -EBUSY;
8508}
8509
8510static int __maybe_unused igb_runtime_suspend(struct device *dev)
8511{
8512 struct pci_dev *pdev = to_pci_dev(dev);
8513 int retval;
8514 bool wake;
8515
8516 retval = __igb_shutdown(pdev, &wake, 1);
8517 if (retval)
8518 return retval;
8519
8520 if (wake) {
8521 pci_prepare_to_sleep(pdev);
8522 } else {
8523 pci_wake_from_d3(pdev, false);
8524 pci_set_power_state(pdev, PCI_D3hot);
8525 }
8526
8527 return 0;
8528}
8529
8530static int __maybe_unused igb_runtime_resume(struct device *dev)
8531{
8532 return igb_resume(dev);
8533}
8534
8535static void igb_shutdown(struct pci_dev *pdev)
8536{
8537 bool wake;
8538
8539 __igb_shutdown(pdev, &wake, 0);
8540
8541 if (system_state == SYSTEM_POWER_OFF) {
8542 pci_wake_from_d3(pdev, wake);
8543 pci_set_power_state(pdev, PCI_D3hot);
8544 }
8545}
8546
8547#ifdef CONFIG_PCI_IOV
8548static int igb_sriov_reinit(struct pci_dev *dev)
8549{
8550 struct net_device *netdev = pci_get_drvdata(dev);
8551 struct igb_adapter *adapter = netdev_priv(netdev);
8552 struct pci_dev *pdev = adapter->pdev;
8553
8554 rtnl_lock();
8555
8556 if (netif_running(netdev))
8557 igb_close(netdev);
8558 else
8559 igb_reset(adapter);
8560
8561 igb_clear_interrupt_scheme(adapter);
8562
8563 igb_init_queue_configuration(adapter);
8564
8565 if (igb_init_interrupt_scheme(adapter, true)) {
8566 rtnl_unlock();
8567 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8568 return -ENOMEM;
8569 }
8570
8571 if (netif_running(netdev))
8572 igb_open(netdev);
8573
8574 rtnl_unlock();
8575
8576 return 0;
8577}
8578
8579static int igb_pci_disable_sriov(struct pci_dev *dev)
8580{
8581 int err = igb_disable_sriov(dev);
8582
8583 if (!err)
8584 err = igb_sriov_reinit(dev);
8585
8586 return err;
8587}
8588
8589static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8590{
8591 int err = igb_enable_sriov(dev, num_vfs);
8592
8593 if (err)
8594 goto out;
8595
8596 err = igb_sriov_reinit(dev);
8597 if (!err)
8598 return num_vfs;
8599
8600out:
8601 return err;
8602}
8603
8604#endif
8605static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8606{
8607#ifdef CONFIG_PCI_IOV
8608 if (num_vfs == 0)
8609 return igb_pci_disable_sriov(dev);
8610 else
8611 return igb_pci_enable_sriov(dev, num_vfs);
8612#endif
8613 return 0;
8614}
8615
8616#ifdef CONFIG_NET_POLL_CONTROLLER
8617/* Polling 'interrupt' - used by things like netconsole to send skbs
8618 * without having to re-enable interrupts. It's not called while
8619 * the interrupt routine is executing.
8620 */
8621static void igb_netpoll(struct net_device *netdev)
8622{
8623 struct igb_adapter *adapter = netdev_priv(netdev);
8624 struct e1000_hw *hw = &adapter->hw;
8625 struct igb_q_vector *q_vector;
8626 int i;
8627
8628 for (i = 0; i < adapter->num_q_vectors; i++) {
8629 q_vector = adapter->q_vector[i];
8630 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8631 wr32(E1000_EIMC, q_vector->eims_value);
8632 else
8633 igb_irq_disable(adapter);
8634 napi_schedule(&q_vector->napi);
8635 }
8636}
8637#endif /* CONFIG_NET_POLL_CONTROLLER */
8638
8639/**
8640 * igb_io_error_detected - called when PCI error is detected
8641 * @pdev: Pointer to PCI device
8642 * @state: The current pci connection state
8643 *
8644 * This function is called after a PCI bus error affecting
8645 * this device has been detected.
8646 **/
8647static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8648 pci_channel_state_t state)
8649{
8650 struct net_device *netdev = pci_get_drvdata(pdev);
8651 struct igb_adapter *adapter = netdev_priv(netdev);
8652
8653 netif_device_detach(netdev);
8654
8655 if (state == pci_channel_io_perm_failure)
8656 return PCI_ERS_RESULT_DISCONNECT;
8657
8658 if (netif_running(netdev))
8659 igb_down(adapter);
8660 pci_disable_device(pdev);
8661
8662 /* Request a slot slot reset. */
8663 return PCI_ERS_RESULT_NEED_RESET;
8664}
8665
8666/**
8667 * igb_io_slot_reset - called after the pci bus has been reset.
8668 * @pdev: Pointer to PCI device
8669 *
8670 * Restart the card from scratch, as if from a cold-boot. Implementation
8671 * resembles the first-half of the igb_resume routine.
8672 **/
8673static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
8674{
8675 struct net_device *netdev = pci_get_drvdata(pdev);
8676 struct igb_adapter *adapter = netdev_priv(netdev);
8677 struct e1000_hw *hw = &adapter->hw;
8678 pci_ers_result_t result;
8679 int err;
8680
8681 if (pci_enable_device_mem(pdev)) {
8682 dev_err(&pdev->dev,
8683 "Cannot re-enable PCI device after reset.\n");
8684 result = PCI_ERS_RESULT_DISCONNECT;
8685 } else {
8686 pci_set_master(pdev);
8687 pci_restore_state(pdev);
8688 pci_save_state(pdev);
8689
8690 pci_enable_wake(pdev, PCI_D3hot, 0);
8691 pci_enable_wake(pdev, PCI_D3cold, 0);
8692
8693 /* In case of PCI error, adapter lose its HW address
8694 * so we should re-assign it here.
8695 */
8696 hw->hw_addr = adapter->io_addr;
8697
8698 igb_reset(adapter);
8699 wr32(E1000_WUS, ~0);
8700 result = PCI_ERS_RESULT_RECOVERED;
8701 }
8702
8703 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8704 if (err) {
8705 dev_err(&pdev->dev,
8706 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8707 err);
8708 /* non-fatal, continue */
8709 }
8710
8711 return result;
8712}
8713
8714/**
8715 * igb_io_resume - called when traffic can start flowing again.
8716 * @pdev: Pointer to PCI device
8717 *
8718 * This callback is called when the error recovery driver tells us that
8719 * its OK to resume normal operation. Implementation resembles the
8720 * second-half of the igb_resume routine.
8721 */
8722static void igb_io_resume(struct pci_dev *pdev)
8723{
8724 struct net_device *netdev = pci_get_drvdata(pdev);
8725 struct igb_adapter *adapter = netdev_priv(netdev);
8726
8727 if (netif_running(netdev)) {
8728 if (igb_up(adapter)) {
8729 dev_err(&pdev->dev, "igb_up failed after reset\n");
8730 return;
8731 }
8732 }
8733
8734 netif_device_attach(netdev);
8735
8736 /* let the f/w know that the h/w is now under the control of the
8737 * driver.
8738 */
8739 igb_get_hw_control(adapter);
8740}
8741
8742/**
8743 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
8744 * @adapter: Pointer to adapter structure
8745 * @index: Index of the RAR entry which need to be synced with MAC table
8746 **/
8747static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
8748{
8749 struct e1000_hw *hw = &adapter->hw;
8750 u32 rar_low, rar_high;
8751 u8 *addr = adapter->mac_table[index].addr;
8752
8753 /* HW expects these to be in network order when they are plugged
8754 * into the registers which are little endian. In order to guarantee
8755 * that ordering we need to do an leXX_to_cpup here in order to be
8756 * ready for the byteswap that occurs with writel
8757 */
8758 rar_low = le32_to_cpup((__le32 *)(addr));
8759 rar_high = le16_to_cpup((__le16 *)(addr + 4));
8760
8761 /* Indicate to hardware the Address is Valid. */
8762 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
8763 if (is_valid_ether_addr(addr))
8764 rar_high |= E1000_RAH_AV;
8765
8766 if (hw->mac.type == e1000_82575)
8767 rar_high |= E1000_RAH_POOL_1 *
8768 adapter->mac_table[index].queue;
8769 else
8770 rar_high |= E1000_RAH_POOL_1 <<
8771 adapter->mac_table[index].queue;
8772 }
8773
8774 wr32(E1000_RAL(index), rar_low);
8775 wrfl();
8776 wr32(E1000_RAH(index), rar_high);
8777 wrfl();
8778}
8779
8780static int igb_set_vf_mac(struct igb_adapter *adapter,
8781 int vf, unsigned char *mac_addr)
8782{
8783 struct e1000_hw *hw = &adapter->hw;
8784 /* VF MAC addresses start at end of receive addresses and moves
8785 * towards the first, as a result a collision should not be possible
8786 */
8787 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
8788 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
8789
8790 ether_addr_copy(vf_mac_addr, mac_addr);
8791 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
8792 adapter->mac_table[rar_entry].queue = vf;
8793 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
8794 igb_rar_set_index(adapter, rar_entry);
8795
8796 return 0;
8797}
8798
8799static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
8800{
8801 struct igb_adapter *adapter = netdev_priv(netdev);
8802
8803 if (vf >= adapter->vfs_allocated_count)
8804 return -EINVAL;
8805
8806 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
8807 * flag and allows to overwrite the MAC via VF netdev. This
8808 * is necessary to allow libvirt a way to restore the original
8809 * MAC after unbinding vfio-pci and reloading igbvf after shutting
8810 * down a VM.
8811 */
8812 if (is_zero_ether_addr(mac)) {
8813 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
8814 dev_info(&adapter->pdev->dev,
8815 "remove administratively set MAC on VF %d\n",
8816 vf);
8817 } else if (is_valid_ether_addr(mac)) {
8818 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
8819 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
8820 mac, vf);
8821 dev_info(&adapter->pdev->dev,
8822 "Reload the VF driver to make this change effective.");
8823 /* Generate additional warning if PF is down */
8824 if (test_bit(__IGB_DOWN, &adapter->state)) {
8825 dev_warn(&adapter->pdev->dev,
8826 "The VF MAC address has been set, but the PF device is not up.\n");
8827 dev_warn(&adapter->pdev->dev,
8828 "Bring the PF device up before attempting to use the VF device.\n");
8829 }
8830 } else {
8831 return -EINVAL;
8832 }
8833 return igb_set_vf_mac(adapter, vf, mac);
8834}
8835
8836static int igb_link_mbps(int internal_link_speed)
8837{
8838 switch (internal_link_speed) {
8839 case SPEED_100:
8840 return 100;
8841 case SPEED_1000:
8842 return 1000;
8843 default:
8844 return 0;
8845 }
8846}
8847
8848static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8849 int link_speed)
8850{
8851 int rf_dec, rf_int;
8852 u32 bcnrc_val;
8853
8854 if (tx_rate != 0) {
8855 /* Calculate the rate factor values to set */
8856 rf_int = link_speed / tx_rate;
8857 rf_dec = (link_speed - (rf_int * tx_rate));
8858 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8859 tx_rate;
8860
8861 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8862 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8863 E1000_RTTBCNRC_RF_INT_MASK);
8864 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8865 } else {
8866 bcnrc_val = 0;
8867 }
8868
8869 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8870 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8871 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8872 */
8873 wr32(E1000_RTTBCNRM, 0x14);
8874 wr32(E1000_RTTBCNRC, bcnrc_val);
8875}
8876
8877static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8878{
8879 int actual_link_speed, i;
8880 bool reset_rate = false;
8881
8882 /* VF TX rate limit was not set or not supported */
8883 if ((adapter->vf_rate_link_speed == 0) ||
8884 (adapter->hw.mac.type != e1000_82576))
8885 return;
8886
8887 actual_link_speed = igb_link_mbps(adapter->link_speed);
8888 if (actual_link_speed != adapter->vf_rate_link_speed) {
8889 reset_rate = true;
8890 adapter->vf_rate_link_speed = 0;
8891 dev_info(&adapter->pdev->dev,
8892 "Link speed has been changed. VF Transmit rate is disabled\n");
8893 }
8894
8895 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8896 if (reset_rate)
8897 adapter->vf_data[i].tx_rate = 0;
8898
8899 igb_set_vf_rate_limit(&adapter->hw, i,
8900 adapter->vf_data[i].tx_rate,
8901 actual_link_speed);
8902 }
8903}
8904
8905static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8906 int min_tx_rate, int max_tx_rate)
8907{
8908 struct igb_adapter *adapter = netdev_priv(netdev);
8909 struct e1000_hw *hw = &adapter->hw;
8910 int actual_link_speed;
8911
8912 if (hw->mac.type != e1000_82576)
8913 return -EOPNOTSUPP;
8914
8915 if (min_tx_rate)
8916 return -EINVAL;
8917
8918 actual_link_speed = igb_link_mbps(adapter->link_speed);
8919 if ((vf >= adapter->vfs_allocated_count) ||
8920 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8921 (max_tx_rate < 0) ||
8922 (max_tx_rate > actual_link_speed))
8923 return -EINVAL;
8924
8925 adapter->vf_rate_link_speed = actual_link_speed;
8926 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8927 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8928
8929 return 0;
8930}
8931
8932static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8933 bool setting)
8934{
8935 struct igb_adapter *adapter = netdev_priv(netdev);
8936 struct e1000_hw *hw = &adapter->hw;
8937 u32 reg_val, reg_offset;
8938
8939 if (!adapter->vfs_allocated_count)
8940 return -EOPNOTSUPP;
8941
8942 if (vf >= adapter->vfs_allocated_count)
8943 return -EINVAL;
8944
8945 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8946 reg_val = rd32(reg_offset);
8947 if (setting)
8948 reg_val |= (BIT(vf) |
8949 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8950 else
8951 reg_val &= ~(BIT(vf) |
8952 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8953 wr32(reg_offset, reg_val);
8954
8955 adapter->vf_data[vf].spoofchk_enabled = setting;
8956 return 0;
8957}
8958
8959static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
8960{
8961 struct igb_adapter *adapter = netdev_priv(netdev);
8962
8963 if (vf >= adapter->vfs_allocated_count)
8964 return -EINVAL;
8965 if (adapter->vf_data[vf].trusted == setting)
8966 return 0;
8967
8968 adapter->vf_data[vf].trusted = setting;
8969
8970 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
8971 vf, setting ? "" : "not ");
8972 return 0;
8973}
8974
8975static int igb_ndo_get_vf_config(struct net_device *netdev,
8976 int vf, struct ifla_vf_info *ivi)
8977{
8978 struct igb_adapter *adapter = netdev_priv(netdev);
8979 if (vf >= adapter->vfs_allocated_count)
8980 return -EINVAL;
8981 ivi->vf = vf;
8982 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8983 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8984 ivi->min_tx_rate = 0;
8985 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8986 ivi->qos = adapter->vf_data[vf].pf_qos;
8987 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8988 ivi->trusted = adapter->vf_data[vf].trusted;
8989 return 0;
8990}
8991
8992static void igb_vmm_control(struct igb_adapter *adapter)
8993{
8994 struct e1000_hw *hw = &adapter->hw;
8995 u32 reg;
8996
8997 switch (hw->mac.type) {
8998 case e1000_82575:
8999 case e1000_i210:
9000 case e1000_i211:
9001 case e1000_i354:
9002 default:
9003 /* replication is not supported for 82575 */
9004 return;
9005 case e1000_82576:
9006 /* notify HW that the MAC is adding vlan tags */
9007 reg = rd32(E1000_DTXCTL);
9008 reg |= E1000_DTXCTL_VLAN_ADDED;
9009 wr32(E1000_DTXCTL, reg);
9010 /* Fall through */
9011 case e1000_82580:
9012 /* enable replication vlan tag stripping */
9013 reg = rd32(E1000_RPLOLR);
9014 reg |= E1000_RPLOLR_STRVLAN;
9015 wr32(E1000_RPLOLR, reg);
9016 /* Fall through */
9017 case e1000_i350:
9018 /* none of the above registers are supported by i350 */
9019 break;
9020 }
9021
9022 if (adapter->vfs_allocated_count) {
9023 igb_vmdq_set_loopback_pf(hw, true);
9024 igb_vmdq_set_replication_pf(hw, true);
9025 igb_vmdq_set_anti_spoofing_pf(hw, true,
9026 adapter->vfs_allocated_count);
9027 } else {
9028 igb_vmdq_set_loopback_pf(hw, false);
9029 igb_vmdq_set_replication_pf(hw, false);
9030 }
9031}
9032
9033static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9034{
9035 struct e1000_hw *hw = &adapter->hw;
9036 u32 dmac_thr;
9037 u16 hwm;
9038
9039 if (hw->mac.type > e1000_82580) {
9040 if (adapter->flags & IGB_FLAG_DMAC) {
9041 u32 reg;
9042
9043 /* force threshold to 0. */
9044 wr32(E1000_DMCTXTH, 0);
9045
9046 /* DMA Coalescing high water mark needs to be greater
9047 * than the Rx threshold. Set hwm to PBA - max frame
9048 * size in 16B units, capping it at PBA - 6KB.
9049 */
9050 hwm = 64 * (pba - 6);
9051 reg = rd32(E1000_FCRTC);
9052 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9053 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9054 & E1000_FCRTC_RTH_COAL_MASK);
9055 wr32(E1000_FCRTC, reg);
9056
9057 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9058 * frame size, capping it at PBA - 10KB.
9059 */
9060 dmac_thr = pba - 10;
9061 reg = rd32(E1000_DMACR);
9062 reg &= ~E1000_DMACR_DMACTHR_MASK;
9063 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9064 & E1000_DMACR_DMACTHR_MASK);
9065
9066 /* transition to L0x or L1 if available..*/
9067 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9068
9069 /* watchdog timer= +-1000 usec in 32usec intervals */
9070 reg |= (1000 >> 5);
9071
9072 /* Disable BMC-to-OS Watchdog Enable */
9073 if (hw->mac.type != e1000_i354)
9074 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9075
9076 wr32(E1000_DMACR, reg);
9077
9078 /* no lower threshold to disable
9079 * coalescing(smart fifb)-UTRESH=0
9080 */
9081 wr32(E1000_DMCRTRH, 0);
9082
9083 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9084
9085 wr32(E1000_DMCTLX, reg);
9086
9087 /* free space in tx packet buffer to wake from
9088 * DMA coal
9089 */
9090 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9091 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9092
9093 /* make low power state decision controlled
9094 * by DMA coal
9095 */
9096 reg = rd32(E1000_PCIEMISC);
9097 reg &= ~E1000_PCIEMISC_LX_DECISION;
9098 wr32(E1000_PCIEMISC, reg);
9099 } /* endif adapter->dmac is not disabled */
9100 } else if (hw->mac.type == e1000_82580) {
9101 u32 reg = rd32(E1000_PCIEMISC);
9102
9103 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9104 wr32(E1000_DMACR, 0);
9105 }
9106}
9107
9108/**
9109 * igb_read_i2c_byte - Reads 8 bit word over I2C
9110 * @hw: pointer to hardware structure
9111 * @byte_offset: byte offset to read
9112 * @dev_addr: device address
9113 * @data: value read
9114 *
9115 * Performs byte read operation over I2C interface at
9116 * a specified device address.
9117 **/
9118s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9119 u8 dev_addr, u8 *data)
9120{
9121 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9122 struct i2c_client *this_client = adapter->i2c_client;
9123 s32 status;
9124 u16 swfw_mask = 0;
9125
9126 if (!this_client)
9127 return E1000_ERR_I2C;
9128
9129 swfw_mask = E1000_SWFW_PHY0_SM;
9130
9131 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9132 return E1000_ERR_SWFW_SYNC;
9133
9134 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9135 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9136
9137 if (status < 0)
9138 return E1000_ERR_I2C;
9139 else {
9140 *data = status;
9141 return 0;
9142 }
9143}
9144
9145/**
9146 * igb_write_i2c_byte - Writes 8 bit word over I2C
9147 * @hw: pointer to hardware structure
9148 * @byte_offset: byte offset to write
9149 * @dev_addr: device address
9150 * @data: value to write
9151 *
9152 * Performs byte write operation over I2C interface at
9153 * a specified device address.
9154 **/
9155s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9156 u8 dev_addr, u8 data)
9157{
9158 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9159 struct i2c_client *this_client = adapter->i2c_client;
9160 s32 status;
9161 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9162
9163 if (!this_client)
9164 return E1000_ERR_I2C;
9165
9166 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9167 return E1000_ERR_SWFW_SYNC;
9168 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9169 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9170
9171 if (status)
9172 return E1000_ERR_I2C;
9173 else
9174 return 0;
9175
9176}
9177
9178int igb_reinit_queues(struct igb_adapter *adapter)
9179{
9180 struct net_device *netdev = adapter->netdev;
9181 struct pci_dev *pdev = adapter->pdev;
9182 int err = 0;
9183
9184 if (netif_running(netdev))
9185 igb_close(netdev);
9186
9187 igb_reset_interrupt_capability(adapter);
9188
9189 if (igb_init_interrupt_scheme(adapter, true)) {
9190 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9191 return -ENOMEM;
9192 }
9193
9194 if (netif_running(netdev))
9195 err = igb_open(netdev);
9196
9197 return err;
9198}
9199
9200static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9201{
9202 struct igb_nfc_filter *rule;
9203
9204 spin_lock(&adapter->nfc_lock);
9205
9206 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9207 igb_erase_filter(adapter, rule);
9208
9209 spin_unlock(&adapter->nfc_lock);
9210}
9211
9212static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9213{
9214 struct igb_nfc_filter *rule;
9215
9216 spin_lock(&adapter->nfc_lock);
9217
9218 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9219 igb_add_filter(adapter, rule);
9220
9221 spin_unlock(&adapter->nfc_lock);
9222}
9223/* igb_main.c */