Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel(R) Gigabit Ethernet Linux driver
   3 * Copyright(c) 2007-2014 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * The full GNU General Public License is included in this distribution in
  18 * the file called "COPYING".
  19 *
  20 * Contact Information:
  21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23 */
  24
  25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  26
  27#include <linux/module.h>
  28#include <linux/types.h>
  29#include <linux/init.h>
  30#include <linux/bitops.h>
  31#include <linux/vmalloc.h>
  32#include <linux/pagemap.h>
  33#include <linux/netdevice.h>
  34#include <linux/ipv6.h>
  35#include <linux/slab.h>
  36#include <net/checksum.h>
  37#include <net/ip6_checksum.h>
  38#include <net/pkt_sched.h>
  39#include <linux/net_tstamp.h>
  40#include <linux/mii.h>
  41#include <linux/ethtool.h>
  42#include <linux/if.h>
  43#include <linux/if_vlan.h>
  44#include <linux/pci.h>
  45#include <linux/pci-aspm.h>
  46#include <linux/delay.h>
  47#include <linux/interrupt.h>
  48#include <linux/ip.h>
  49#include <linux/tcp.h>
  50#include <linux/sctp.h>
  51#include <linux/if_ether.h>
  52#include <linux/aer.h>
  53#include <linux/prefetch.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/etherdevice.h>
  56#ifdef CONFIG_IGB_DCA
  57#include <linux/dca.h>
  58#endif
  59#include <linux/i2c.h>
  60#include "igb.h"
  61
  62#define MAJ 5
  63#define MIN 4
  64#define BUILD 0
  65#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  66__stringify(BUILD) "-k"
  67
  68enum queue_mode {
  69	QUEUE_MODE_STRICT_PRIORITY,
  70	QUEUE_MODE_STREAM_RESERVATION,
  71};
  72
  73enum tx_queue_prio {
  74	TX_QUEUE_PRIO_HIGH,
  75	TX_QUEUE_PRIO_LOW,
  76};
  77
  78char igb_driver_name[] = "igb";
  79char igb_driver_version[] = DRV_VERSION;
  80static const char igb_driver_string[] =
  81				"Intel(R) Gigabit Ethernet Network Driver";
  82static const char igb_copyright[] =
  83				"Copyright (c) 2007-2014 Intel Corporation.";
  84
  85static const struct e1000_info *igb_info_tbl[] = {
  86	[board_82575] = &e1000_82575_info,
  87};
  88
  89static const struct pci_device_id igb_pci_tbl[] = {
  90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
 100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
 101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
 102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
 103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
 104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
 105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
 106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
 107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
 108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
 109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
 110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
 111	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
 112	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
 113	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
 114	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
 115	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
 116	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
 117	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
 118	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
 119	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
 120	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
 121	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
 122	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
 123	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
 124	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
 125	/* required last entry */
 126	{0, }
 127};
 128
 129MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 130
 131static int igb_setup_all_tx_resources(struct igb_adapter *);
 132static int igb_setup_all_rx_resources(struct igb_adapter *);
 133static void igb_free_all_tx_resources(struct igb_adapter *);
 134static void igb_free_all_rx_resources(struct igb_adapter *);
 135static void igb_setup_mrqc(struct igb_adapter *);
 136static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 137static void igb_remove(struct pci_dev *pdev);
 138static int igb_sw_init(struct igb_adapter *);
 139int igb_open(struct net_device *);
 140int igb_close(struct net_device *);
 141static void igb_configure(struct igb_adapter *);
 142static void igb_configure_tx(struct igb_adapter *);
 143static void igb_configure_rx(struct igb_adapter *);
 144static void igb_clean_all_tx_rings(struct igb_adapter *);
 145static void igb_clean_all_rx_rings(struct igb_adapter *);
 146static void igb_clean_tx_ring(struct igb_ring *);
 147static void igb_clean_rx_ring(struct igb_ring *);
 148static void igb_set_rx_mode(struct net_device *);
 149static void igb_update_phy_info(struct timer_list *);
 150static void igb_watchdog(struct timer_list *);
 151static void igb_watchdog_task(struct work_struct *);
 152static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 153static void igb_get_stats64(struct net_device *dev,
 154			    struct rtnl_link_stats64 *stats);
 155static int igb_change_mtu(struct net_device *, int);
 156static int igb_set_mac(struct net_device *, void *);
 157static void igb_set_uta(struct igb_adapter *adapter, bool set);
 158static irqreturn_t igb_intr(int irq, void *);
 159static irqreturn_t igb_intr_msi(int irq, void *);
 160static irqreturn_t igb_msix_other(int irq, void *);
 161static irqreturn_t igb_msix_ring(int irq, void *);
 162#ifdef CONFIG_IGB_DCA
 163static void igb_update_dca(struct igb_q_vector *);
 164static void igb_setup_dca(struct igb_adapter *);
 165#endif /* CONFIG_IGB_DCA */
 166static int igb_poll(struct napi_struct *, int);
 167static bool igb_clean_tx_irq(struct igb_q_vector *, int);
 168static int igb_clean_rx_irq(struct igb_q_vector *, int);
 169static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 170static void igb_tx_timeout(struct net_device *);
 171static void igb_reset_task(struct work_struct *);
 172static void igb_vlan_mode(struct net_device *netdev,
 173			  netdev_features_t features);
 174static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 175static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 176static void igb_restore_vlan(struct igb_adapter *);
 177static void igb_rar_set_index(struct igb_adapter *, u32);
 178static void igb_ping_all_vfs(struct igb_adapter *);
 179static void igb_msg_task(struct igb_adapter *);
 180static void igb_vmm_control(struct igb_adapter *);
 181static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 182static void igb_flush_mac_table(struct igb_adapter *);
 183static int igb_available_rars(struct igb_adapter *, u8);
 184static void igb_set_default_mac_filter(struct igb_adapter *);
 185static int igb_uc_sync(struct net_device *, const unsigned char *);
 186static int igb_uc_unsync(struct net_device *, const unsigned char *);
 187static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 188static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 189static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 190			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
 191static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
 192static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 193				   bool setting);
 194static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
 195				bool setting);
 196static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 197				 struct ifla_vf_info *ivi);
 198static void igb_check_vf_rate_limit(struct igb_adapter *);
 199static void igb_nfc_filter_exit(struct igb_adapter *adapter);
 200static void igb_nfc_filter_restore(struct igb_adapter *adapter);
 201
 202#ifdef CONFIG_PCI_IOV
 203static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 204static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
 205static int igb_disable_sriov(struct pci_dev *dev);
 206static int igb_pci_disable_sriov(struct pci_dev *dev);
 207#endif
 208
 209static int igb_suspend(struct device *);
 210static int igb_resume(struct device *);
 211static int igb_runtime_suspend(struct device *dev);
 212static int igb_runtime_resume(struct device *dev);
 213static int igb_runtime_idle(struct device *dev);
 214static const struct dev_pm_ops igb_pm_ops = {
 215	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 216	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 217			igb_runtime_idle)
 218};
 219static void igb_shutdown(struct pci_dev *);
 220static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 221#ifdef CONFIG_IGB_DCA
 222static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 223static struct notifier_block dca_notifier = {
 224	.notifier_call	= igb_notify_dca,
 225	.next		= NULL,
 226	.priority	= 0
 227};
 228#endif
 229#ifdef CONFIG_NET_POLL_CONTROLLER
 230/* for netdump / net console */
 231static void igb_netpoll(struct net_device *);
 232#endif
 233#ifdef CONFIG_PCI_IOV
 234static unsigned int max_vfs;
 235module_param(max_vfs, uint, 0);
 236MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
 237#endif /* CONFIG_PCI_IOV */
 238
 239static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 240		     pci_channel_state_t);
 241static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 242static void igb_io_resume(struct pci_dev *);
 243
 244static const struct pci_error_handlers igb_err_handler = {
 245	.error_detected = igb_io_error_detected,
 246	.slot_reset = igb_io_slot_reset,
 247	.resume = igb_io_resume,
 248};
 249
 250static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 251
 252static struct pci_driver igb_driver = {
 253	.name     = igb_driver_name,
 254	.id_table = igb_pci_tbl,
 255	.probe    = igb_probe,
 256	.remove   = igb_remove,
 257#ifdef CONFIG_PM
 258	.driver.pm = &igb_pm_ops,
 259#endif
 260	.shutdown = igb_shutdown,
 261	.sriov_configure = igb_pci_sriov_configure,
 262	.err_handler = &igb_err_handler
 263};
 264
 265MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 266MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 267MODULE_LICENSE("GPL");
 268MODULE_VERSION(DRV_VERSION);
 269
 270#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 271static int debug = -1;
 272module_param(debug, int, 0);
 273MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 274
 275struct igb_reg_info {
 276	u32 ofs;
 277	char *name;
 278};
 279
 280static const struct igb_reg_info igb_reg_info_tbl[] = {
 281
 282	/* General Registers */
 283	{E1000_CTRL, "CTRL"},
 284	{E1000_STATUS, "STATUS"},
 285	{E1000_CTRL_EXT, "CTRL_EXT"},
 286
 287	/* Interrupt Registers */
 288	{E1000_ICR, "ICR"},
 289
 290	/* RX Registers */
 291	{E1000_RCTL, "RCTL"},
 292	{E1000_RDLEN(0), "RDLEN"},
 293	{E1000_RDH(0), "RDH"},
 294	{E1000_RDT(0), "RDT"},
 295	{E1000_RXDCTL(0), "RXDCTL"},
 296	{E1000_RDBAL(0), "RDBAL"},
 297	{E1000_RDBAH(0), "RDBAH"},
 298
 299	/* TX Registers */
 300	{E1000_TCTL, "TCTL"},
 301	{E1000_TDBAL(0), "TDBAL"},
 302	{E1000_TDBAH(0), "TDBAH"},
 303	{E1000_TDLEN(0), "TDLEN"},
 304	{E1000_TDH(0), "TDH"},
 305	{E1000_TDT(0), "TDT"},
 306	{E1000_TXDCTL(0), "TXDCTL"},
 307	{E1000_TDFH, "TDFH"},
 308	{E1000_TDFT, "TDFT"},
 309	{E1000_TDFHS, "TDFHS"},
 310	{E1000_TDFPC, "TDFPC"},
 311
 312	/* List Terminator */
 313	{}
 314};
 315
 316/* igb_regdump - register printout routine */
 317static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 318{
 319	int n = 0;
 320	char rname[16];
 321	u32 regs[8];
 322
 323	switch (reginfo->ofs) {
 324	case E1000_RDLEN(0):
 325		for (n = 0; n < 4; n++)
 326			regs[n] = rd32(E1000_RDLEN(n));
 327		break;
 328	case E1000_RDH(0):
 329		for (n = 0; n < 4; n++)
 330			regs[n] = rd32(E1000_RDH(n));
 331		break;
 332	case E1000_RDT(0):
 333		for (n = 0; n < 4; n++)
 334			regs[n] = rd32(E1000_RDT(n));
 335		break;
 336	case E1000_RXDCTL(0):
 337		for (n = 0; n < 4; n++)
 338			regs[n] = rd32(E1000_RXDCTL(n));
 339		break;
 340	case E1000_RDBAL(0):
 341		for (n = 0; n < 4; n++)
 342			regs[n] = rd32(E1000_RDBAL(n));
 343		break;
 344	case E1000_RDBAH(0):
 345		for (n = 0; n < 4; n++)
 346			regs[n] = rd32(E1000_RDBAH(n));
 347		break;
 348	case E1000_TDBAL(0):
 349		for (n = 0; n < 4; n++)
 350			regs[n] = rd32(E1000_RDBAL(n));
 351		break;
 352	case E1000_TDBAH(0):
 353		for (n = 0; n < 4; n++)
 354			regs[n] = rd32(E1000_TDBAH(n));
 355		break;
 356	case E1000_TDLEN(0):
 357		for (n = 0; n < 4; n++)
 358			regs[n] = rd32(E1000_TDLEN(n));
 359		break;
 360	case E1000_TDH(0):
 361		for (n = 0; n < 4; n++)
 362			regs[n] = rd32(E1000_TDH(n));
 363		break;
 364	case E1000_TDT(0):
 365		for (n = 0; n < 4; n++)
 366			regs[n] = rd32(E1000_TDT(n));
 367		break;
 368	case E1000_TXDCTL(0):
 369		for (n = 0; n < 4; n++)
 370			regs[n] = rd32(E1000_TXDCTL(n));
 371		break;
 372	default:
 373		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 374		return;
 375	}
 376
 377	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 378	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 379		regs[2], regs[3]);
 380}
 381
 382/* igb_dump - Print registers, Tx-rings and Rx-rings */
 383static void igb_dump(struct igb_adapter *adapter)
 384{
 385	struct net_device *netdev = adapter->netdev;
 386	struct e1000_hw *hw = &adapter->hw;
 387	struct igb_reg_info *reginfo;
 388	struct igb_ring *tx_ring;
 389	union e1000_adv_tx_desc *tx_desc;
 390	struct my_u0 { u64 a; u64 b; } *u0;
 391	struct igb_ring *rx_ring;
 392	union e1000_adv_rx_desc *rx_desc;
 393	u32 staterr;
 394	u16 i, n;
 395
 396	if (!netif_msg_hw(adapter))
 397		return;
 398
 399	/* Print netdevice Info */
 400	if (netdev) {
 401		dev_info(&adapter->pdev->dev, "Net device Info\n");
 402		pr_info("Device Name     state            trans_start\n");
 403		pr_info("%-15s %016lX %016lX\n", netdev->name,
 404			netdev->state, dev_trans_start(netdev));
 405	}
 406
 407	/* Print Registers */
 408	dev_info(&adapter->pdev->dev, "Register Dump\n");
 409	pr_info(" Register Name   Value\n");
 410	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 411	     reginfo->name; reginfo++) {
 412		igb_regdump(hw, reginfo);
 413	}
 414
 415	/* Print TX Ring Summary */
 416	if (!netdev || !netif_running(netdev))
 417		goto exit;
 418
 419	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 420	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 421	for (n = 0; n < adapter->num_tx_queues; n++) {
 422		struct igb_tx_buffer *buffer_info;
 423		tx_ring = adapter->tx_ring[n];
 424		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 425		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 426			n, tx_ring->next_to_use, tx_ring->next_to_clean,
 427			(u64)dma_unmap_addr(buffer_info, dma),
 428			dma_unmap_len(buffer_info, len),
 429			buffer_info->next_to_watch,
 430			(u64)buffer_info->time_stamp);
 431	}
 432
 433	/* Print TX Rings */
 434	if (!netif_msg_tx_done(adapter))
 435		goto rx_ring_summary;
 436
 437	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 438
 439	/* Transmit Descriptor Formats
 440	 *
 441	 * Advanced Transmit Descriptor
 442	 *   +--------------------------------------------------------------+
 443	 * 0 |         Buffer Address [63:0]                                |
 444	 *   +--------------------------------------------------------------+
 445	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 446	 *   +--------------------------------------------------------------+
 447	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
 448	 */
 449
 450	for (n = 0; n < adapter->num_tx_queues; n++) {
 451		tx_ring = adapter->tx_ring[n];
 452		pr_info("------------------------------------\n");
 453		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 454		pr_info("------------------------------------\n");
 455		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
 456
 457		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 458			const char *next_desc;
 459			struct igb_tx_buffer *buffer_info;
 460			tx_desc = IGB_TX_DESC(tx_ring, i);
 461			buffer_info = &tx_ring->tx_buffer_info[i];
 462			u0 = (struct my_u0 *)tx_desc;
 463			if (i == tx_ring->next_to_use &&
 464			    i == tx_ring->next_to_clean)
 465				next_desc = " NTC/U";
 466			else if (i == tx_ring->next_to_use)
 467				next_desc = " NTU";
 468			else if (i == tx_ring->next_to_clean)
 469				next_desc = " NTC";
 470			else
 471				next_desc = "";
 472
 473			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
 474				i, le64_to_cpu(u0->a),
 475				le64_to_cpu(u0->b),
 476				(u64)dma_unmap_addr(buffer_info, dma),
 477				dma_unmap_len(buffer_info, len),
 478				buffer_info->next_to_watch,
 479				(u64)buffer_info->time_stamp,
 480				buffer_info->skb, next_desc);
 481
 482			if (netif_msg_pktdata(adapter) && buffer_info->skb)
 483				print_hex_dump(KERN_INFO, "",
 484					DUMP_PREFIX_ADDRESS,
 485					16, 1, buffer_info->skb->data,
 486					dma_unmap_len(buffer_info, len),
 487					true);
 488		}
 489	}
 490
 491	/* Print RX Rings Summary */
 492rx_ring_summary:
 493	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 494	pr_info("Queue [NTU] [NTC]\n");
 495	for (n = 0; n < adapter->num_rx_queues; n++) {
 496		rx_ring = adapter->rx_ring[n];
 497		pr_info(" %5d %5X %5X\n",
 498			n, rx_ring->next_to_use, rx_ring->next_to_clean);
 499	}
 500
 501	/* Print RX Rings */
 502	if (!netif_msg_rx_status(adapter))
 503		goto exit;
 504
 505	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 506
 507	/* Advanced Receive Descriptor (Read) Format
 508	 *    63                                           1        0
 509	 *    +-----------------------------------------------------+
 510	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 511	 *    +----------------------------------------------+------+
 512	 *  8 |       Header Buffer Address [63:1]           |  DD  |
 513	 *    +-----------------------------------------------------+
 514	 *
 515	 *
 516	 * Advanced Receive Descriptor (Write-Back) Format
 517	 *
 518	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
 519	 *   +------------------------------------------------------+
 520	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 521	 *   | Checksum   Ident  |   |           |    | Type | Type |
 522	 *   +------------------------------------------------------+
 523	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 524	 *   +------------------------------------------------------+
 525	 *   63       48 47    32 31            20 19               0
 526	 */
 527
 528	for (n = 0; n < adapter->num_rx_queues; n++) {
 529		rx_ring = adapter->rx_ring[n];
 530		pr_info("------------------------------------\n");
 531		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 532		pr_info("------------------------------------\n");
 533		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 534		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
 535
 536		for (i = 0; i < rx_ring->count; i++) {
 537			const char *next_desc;
 538			struct igb_rx_buffer *buffer_info;
 539			buffer_info = &rx_ring->rx_buffer_info[i];
 540			rx_desc = IGB_RX_DESC(rx_ring, i);
 541			u0 = (struct my_u0 *)rx_desc;
 542			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 543
 544			if (i == rx_ring->next_to_use)
 545				next_desc = " NTU";
 546			else if (i == rx_ring->next_to_clean)
 547				next_desc = " NTC";
 548			else
 549				next_desc = "";
 550
 551			if (staterr & E1000_RXD_STAT_DD) {
 552				/* Descriptor Done */
 553				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 554					"RWB", i,
 555					le64_to_cpu(u0->a),
 556					le64_to_cpu(u0->b),
 557					next_desc);
 558			} else {
 559				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 560					"R  ", i,
 561					le64_to_cpu(u0->a),
 562					le64_to_cpu(u0->b),
 563					(u64)buffer_info->dma,
 564					next_desc);
 565
 566				if (netif_msg_pktdata(adapter) &&
 567				    buffer_info->dma && buffer_info->page) {
 568					print_hex_dump(KERN_INFO, "",
 569					  DUMP_PREFIX_ADDRESS,
 570					  16, 1,
 571					  page_address(buffer_info->page) +
 572						      buffer_info->page_offset,
 573					  igb_rx_bufsz(rx_ring), true);
 574				}
 575			}
 576		}
 577	}
 578
 579exit:
 580	return;
 581}
 582
 583/**
 584 *  igb_get_i2c_data - Reads the I2C SDA data bit
 585 *  @hw: pointer to hardware structure
 586 *  @i2cctl: Current value of I2CCTL register
 587 *
 588 *  Returns the I2C data bit value
 589 **/
 590static int igb_get_i2c_data(void *data)
 591{
 592	struct igb_adapter *adapter = (struct igb_adapter *)data;
 593	struct e1000_hw *hw = &adapter->hw;
 594	s32 i2cctl = rd32(E1000_I2CPARAMS);
 595
 596	return !!(i2cctl & E1000_I2C_DATA_IN);
 597}
 598
 599/**
 600 *  igb_set_i2c_data - Sets the I2C data bit
 601 *  @data: pointer to hardware structure
 602 *  @state: I2C data value (0 or 1) to set
 603 *
 604 *  Sets the I2C data bit
 605 **/
 606static void igb_set_i2c_data(void *data, int state)
 607{
 608	struct igb_adapter *adapter = (struct igb_adapter *)data;
 609	struct e1000_hw *hw = &adapter->hw;
 610	s32 i2cctl = rd32(E1000_I2CPARAMS);
 611
 612	if (state)
 613		i2cctl |= E1000_I2C_DATA_OUT;
 614	else
 615		i2cctl &= ~E1000_I2C_DATA_OUT;
 616
 617	i2cctl &= ~E1000_I2C_DATA_OE_N;
 618	i2cctl |= E1000_I2C_CLK_OE_N;
 619	wr32(E1000_I2CPARAMS, i2cctl);
 620	wrfl();
 621
 622}
 623
 624/**
 625 *  igb_set_i2c_clk - Sets the I2C SCL clock
 626 *  @data: pointer to hardware structure
 627 *  @state: state to set clock
 628 *
 629 *  Sets the I2C clock line to state
 630 **/
 631static void igb_set_i2c_clk(void *data, int state)
 632{
 633	struct igb_adapter *adapter = (struct igb_adapter *)data;
 634	struct e1000_hw *hw = &adapter->hw;
 635	s32 i2cctl = rd32(E1000_I2CPARAMS);
 636
 637	if (state) {
 638		i2cctl |= E1000_I2C_CLK_OUT;
 639		i2cctl &= ~E1000_I2C_CLK_OE_N;
 640	} else {
 641		i2cctl &= ~E1000_I2C_CLK_OUT;
 642		i2cctl &= ~E1000_I2C_CLK_OE_N;
 643	}
 644	wr32(E1000_I2CPARAMS, i2cctl);
 645	wrfl();
 646}
 647
 648/**
 649 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 650 *  @data: pointer to hardware structure
 651 *
 652 *  Gets the I2C clock state
 653 **/
 654static int igb_get_i2c_clk(void *data)
 655{
 656	struct igb_adapter *adapter = (struct igb_adapter *)data;
 657	struct e1000_hw *hw = &adapter->hw;
 658	s32 i2cctl = rd32(E1000_I2CPARAMS);
 659
 660	return !!(i2cctl & E1000_I2C_CLK_IN);
 661}
 662
 663static const struct i2c_algo_bit_data igb_i2c_algo = {
 664	.setsda		= igb_set_i2c_data,
 665	.setscl		= igb_set_i2c_clk,
 666	.getsda		= igb_get_i2c_data,
 667	.getscl		= igb_get_i2c_clk,
 668	.udelay		= 5,
 669	.timeout	= 20,
 670};
 671
 672/**
 673 *  igb_get_hw_dev - return device
 674 *  @hw: pointer to hardware structure
 675 *
 676 *  used by hardware layer to print debugging information
 677 **/
 678struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 679{
 680	struct igb_adapter *adapter = hw->back;
 681	return adapter->netdev;
 682}
 683
 684/**
 685 *  igb_init_module - Driver Registration Routine
 686 *
 687 *  igb_init_module is the first routine called when the driver is
 688 *  loaded. All it does is register with the PCI subsystem.
 689 **/
 690static int __init igb_init_module(void)
 691{
 692	int ret;
 693
 694	pr_info("%s - version %s\n",
 695	       igb_driver_string, igb_driver_version);
 696	pr_info("%s\n", igb_copyright);
 697
 698#ifdef CONFIG_IGB_DCA
 699	dca_register_notify(&dca_notifier);
 700#endif
 701	ret = pci_register_driver(&igb_driver);
 702	return ret;
 703}
 704
 705module_init(igb_init_module);
 706
 707/**
 708 *  igb_exit_module - Driver Exit Cleanup Routine
 709 *
 710 *  igb_exit_module is called just before the driver is removed
 711 *  from memory.
 712 **/
 713static void __exit igb_exit_module(void)
 714{
 715#ifdef CONFIG_IGB_DCA
 716	dca_unregister_notify(&dca_notifier);
 717#endif
 718	pci_unregister_driver(&igb_driver);
 719}
 720
 721module_exit(igb_exit_module);
 722
 723#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 724/**
 725 *  igb_cache_ring_register - Descriptor ring to register mapping
 726 *  @adapter: board private structure to initialize
 727 *
 728 *  Once we know the feature-set enabled for the device, we'll cache
 729 *  the register offset the descriptor ring is assigned to.
 730 **/
 731static void igb_cache_ring_register(struct igb_adapter *adapter)
 732{
 733	int i = 0, j = 0;
 734	u32 rbase_offset = adapter->vfs_allocated_count;
 735
 736	switch (adapter->hw.mac.type) {
 737	case e1000_82576:
 738		/* The queues are allocated for virtualization such that VF 0
 739		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 740		 * In order to avoid collision we start at the first free queue
 741		 * and continue consuming queues in the same sequence
 742		 */
 743		if (adapter->vfs_allocated_count) {
 744			for (; i < adapter->rss_queues; i++)
 745				adapter->rx_ring[i]->reg_idx = rbase_offset +
 746							       Q_IDX_82576(i);
 747		}
 748		/* Fall through */
 749	case e1000_82575:
 750	case e1000_82580:
 751	case e1000_i350:
 752	case e1000_i354:
 753	case e1000_i210:
 754	case e1000_i211:
 755		/* Fall through */
 756	default:
 757		for (; i < adapter->num_rx_queues; i++)
 758			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 759		for (; j < adapter->num_tx_queues; j++)
 760			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 761		break;
 762	}
 763}
 764
 765u32 igb_rd32(struct e1000_hw *hw, u32 reg)
 766{
 767	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
 768	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
 769	u32 value = 0;
 770
 771	if (E1000_REMOVED(hw_addr))
 772		return ~value;
 773
 774	value = readl(&hw_addr[reg]);
 775
 776	/* reads should not return all F's */
 777	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
 778		struct net_device *netdev = igb->netdev;
 779		hw->hw_addr = NULL;
 780		netdev_err(netdev, "PCIe link lost\n");
 781	}
 782
 783	return value;
 784}
 785
 786/**
 787 *  igb_write_ivar - configure ivar for given MSI-X vector
 788 *  @hw: pointer to the HW structure
 789 *  @msix_vector: vector number we are allocating to a given ring
 790 *  @index: row index of IVAR register to write within IVAR table
 791 *  @offset: column offset of in IVAR, should be multiple of 8
 792 *
 793 *  This function is intended to handle the writing of the IVAR register
 794 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 795 *  each containing an cause allocation for an Rx and Tx ring, and a
 796 *  variable number of rows depending on the number of queues supported.
 797 **/
 798static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 799			   int index, int offset)
 800{
 801	u32 ivar = array_rd32(E1000_IVAR0, index);
 802
 803	/* clear any bits that are currently set */
 804	ivar &= ~((u32)0xFF << offset);
 805
 806	/* write vector and valid bit */
 807	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 808
 809	array_wr32(E1000_IVAR0, index, ivar);
 810}
 811
 812#define IGB_N0_QUEUE -1
 813static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 814{
 815	struct igb_adapter *adapter = q_vector->adapter;
 816	struct e1000_hw *hw = &adapter->hw;
 817	int rx_queue = IGB_N0_QUEUE;
 818	int tx_queue = IGB_N0_QUEUE;
 819	u32 msixbm = 0;
 820
 821	if (q_vector->rx.ring)
 822		rx_queue = q_vector->rx.ring->reg_idx;
 823	if (q_vector->tx.ring)
 824		tx_queue = q_vector->tx.ring->reg_idx;
 825
 826	switch (hw->mac.type) {
 827	case e1000_82575:
 828		/* The 82575 assigns vectors using a bitmask, which matches the
 829		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 830		 * or more queues to a vector, we write the appropriate bits
 831		 * into the MSIXBM register for that vector.
 832		 */
 833		if (rx_queue > IGB_N0_QUEUE)
 834			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 835		if (tx_queue > IGB_N0_QUEUE)
 836			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 837		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
 838			msixbm |= E1000_EIMS_OTHER;
 839		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 840		q_vector->eims_value = msixbm;
 841		break;
 842	case e1000_82576:
 843		/* 82576 uses a table that essentially consists of 2 columns
 844		 * with 8 rows.  The ordering is column-major so we use the
 845		 * lower 3 bits as the row index, and the 4th bit as the
 846		 * column offset.
 847		 */
 848		if (rx_queue > IGB_N0_QUEUE)
 849			igb_write_ivar(hw, msix_vector,
 850				       rx_queue & 0x7,
 851				       (rx_queue & 0x8) << 1);
 852		if (tx_queue > IGB_N0_QUEUE)
 853			igb_write_ivar(hw, msix_vector,
 854				       tx_queue & 0x7,
 855				       ((tx_queue & 0x8) << 1) + 8);
 856		q_vector->eims_value = BIT(msix_vector);
 857		break;
 858	case e1000_82580:
 859	case e1000_i350:
 860	case e1000_i354:
 861	case e1000_i210:
 862	case e1000_i211:
 863		/* On 82580 and newer adapters the scheme is similar to 82576
 864		 * however instead of ordering column-major we have things
 865		 * ordered row-major.  So we traverse the table by using
 866		 * bit 0 as the column offset, and the remaining bits as the
 867		 * row index.
 868		 */
 869		if (rx_queue > IGB_N0_QUEUE)
 870			igb_write_ivar(hw, msix_vector,
 871				       rx_queue >> 1,
 872				       (rx_queue & 0x1) << 4);
 873		if (tx_queue > IGB_N0_QUEUE)
 874			igb_write_ivar(hw, msix_vector,
 875				       tx_queue >> 1,
 876				       ((tx_queue & 0x1) << 4) + 8);
 877		q_vector->eims_value = BIT(msix_vector);
 878		break;
 879	default:
 880		BUG();
 881		break;
 882	}
 883
 884	/* add q_vector eims value to global eims_enable_mask */
 885	adapter->eims_enable_mask |= q_vector->eims_value;
 886
 887	/* configure q_vector to set itr on first interrupt */
 888	q_vector->set_itr = 1;
 889}
 890
 891/**
 892 *  igb_configure_msix - Configure MSI-X hardware
 893 *  @adapter: board private structure to initialize
 894 *
 895 *  igb_configure_msix sets up the hardware to properly
 896 *  generate MSI-X interrupts.
 897 **/
 898static void igb_configure_msix(struct igb_adapter *adapter)
 899{
 900	u32 tmp;
 901	int i, vector = 0;
 902	struct e1000_hw *hw = &adapter->hw;
 903
 904	adapter->eims_enable_mask = 0;
 905
 906	/* set vector for other causes, i.e. link changes */
 907	switch (hw->mac.type) {
 908	case e1000_82575:
 909		tmp = rd32(E1000_CTRL_EXT);
 910		/* enable MSI-X PBA support*/
 911		tmp |= E1000_CTRL_EXT_PBA_CLR;
 912
 913		/* Auto-Mask interrupts upon ICR read. */
 914		tmp |= E1000_CTRL_EXT_EIAME;
 915		tmp |= E1000_CTRL_EXT_IRCA;
 916
 917		wr32(E1000_CTRL_EXT, tmp);
 918
 919		/* enable msix_other interrupt */
 920		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 921		adapter->eims_other = E1000_EIMS_OTHER;
 922
 923		break;
 924
 925	case e1000_82576:
 926	case e1000_82580:
 927	case e1000_i350:
 928	case e1000_i354:
 929	case e1000_i210:
 930	case e1000_i211:
 931		/* Turn on MSI-X capability first, or our settings
 932		 * won't stick.  And it will take days to debug.
 933		 */
 934		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 935		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 936		     E1000_GPIE_NSICR);
 937
 938		/* enable msix_other interrupt */
 939		adapter->eims_other = BIT(vector);
 940		tmp = (vector++ | E1000_IVAR_VALID) << 8;
 941
 942		wr32(E1000_IVAR_MISC, tmp);
 943		break;
 944	default:
 945		/* do nothing, since nothing else supports MSI-X */
 946		break;
 947	} /* switch (hw->mac.type) */
 948
 949	adapter->eims_enable_mask |= adapter->eims_other;
 950
 951	for (i = 0; i < adapter->num_q_vectors; i++)
 952		igb_assign_vector(adapter->q_vector[i], vector++);
 953
 954	wrfl();
 955}
 956
 957/**
 958 *  igb_request_msix - Initialize MSI-X interrupts
 959 *  @adapter: board private structure to initialize
 960 *
 961 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 962 *  kernel.
 963 **/
 964static int igb_request_msix(struct igb_adapter *adapter)
 965{
 966	struct net_device *netdev = adapter->netdev;
 967	int i, err = 0, vector = 0, free_vector = 0;
 968
 969	err = request_irq(adapter->msix_entries[vector].vector,
 970			  igb_msix_other, 0, netdev->name, adapter);
 971	if (err)
 972		goto err_out;
 973
 974	for (i = 0; i < adapter->num_q_vectors; i++) {
 975		struct igb_q_vector *q_vector = adapter->q_vector[i];
 976
 977		vector++;
 978
 979		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
 980
 981		if (q_vector->rx.ring && q_vector->tx.ring)
 982			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 983				q_vector->rx.ring->queue_index);
 984		else if (q_vector->tx.ring)
 985			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 986				q_vector->tx.ring->queue_index);
 987		else if (q_vector->rx.ring)
 988			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 989				q_vector->rx.ring->queue_index);
 990		else
 991			sprintf(q_vector->name, "%s-unused", netdev->name);
 992
 993		err = request_irq(adapter->msix_entries[vector].vector,
 994				  igb_msix_ring, 0, q_vector->name,
 995				  q_vector);
 996		if (err)
 997			goto err_free;
 998	}
 999
1000	igb_configure_msix(adapter);
1001	return 0;
1002
1003err_free:
1004	/* free already assigned IRQs */
1005	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
1006
1007	vector--;
1008	for (i = 0; i < vector; i++) {
1009		free_irq(adapter->msix_entries[free_vector++].vector,
1010			 adapter->q_vector[i]);
1011	}
1012err_out:
1013	return err;
1014}
1015
1016/**
1017 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
1018 *  @adapter: board private structure to initialize
1019 *  @v_idx: Index of vector to be freed
1020 *
1021 *  This function frees the memory allocated to the q_vector.
1022 **/
1023static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1024{
1025	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1026
1027	adapter->q_vector[v_idx] = NULL;
1028
1029	/* igb_get_stats64() might access the rings on this vector,
1030	 * we must wait a grace period before freeing it.
1031	 */
1032	if (q_vector)
1033		kfree_rcu(q_vector, rcu);
1034}
1035
1036/**
1037 *  igb_reset_q_vector - Reset config for interrupt vector
1038 *  @adapter: board private structure to initialize
1039 *  @v_idx: Index of vector to be reset
1040 *
1041 *  If NAPI is enabled it will delete any references to the
1042 *  NAPI struct. This is preparation for igb_free_q_vector.
1043 **/
1044static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1045{
1046	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1047
1048	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1049	 * allocated. So, q_vector is NULL so we should stop here.
1050	 */
1051	if (!q_vector)
1052		return;
1053
1054	if (q_vector->tx.ring)
1055		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1056
1057	if (q_vector->rx.ring)
1058		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1059
1060	netif_napi_del(&q_vector->napi);
1061
1062}
1063
1064static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1065{
1066	int v_idx = adapter->num_q_vectors;
1067
1068	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1069		pci_disable_msix(adapter->pdev);
1070	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1071		pci_disable_msi(adapter->pdev);
1072
1073	while (v_idx--)
1074		igb_reset_q_vector(adapter, v_idx);
1075}
1076
1077/**
1078 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1079 *  @adapter: board private structure to initialize
1080 *
1081 *  This function frees the memory allocated to the q_vectors.  In addition if
1082 *  NAPI is enabled it will delete any references to the NAPI struct prior
1083 *  to freeing the q_vector.
1084 **/
1085static void igb_free_q_vectors(struct igb_adapter *adapter)
1086{
1087	int v_idx = adapter->num_q_vectors;
1088
1089	adapter->num_tx_queues = 0;
1090	adapter->num_rx_queues = 0;
1091	adapter->num_q_vectors = 0;
1092
1093	while (v_idx--) {
1094		igb_reset_q_vector(adapter, v_idx);
1095		igb_free_q_vector(adapter, v_idx);
1096	}
1097}
1098
1099/**
1100 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1101 *  @adapter: board private structure to initialize
1102 *
1103 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1104 *  MSI-X interrupts allocated.
1105 */
1106static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1107{
1108	igb_free_q_vectors(adapter);
1109	igb_reset_interrupt_capability(adapter);
1110}
1111
1112/**
1113 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1114 *  @adapter: board private structure to initialize
1115 *  @msix: boolean value of MSIX capability
1116 *
1117 *  Attempt to configure interrupts using the best available
1118 *  capabilities of the hardware and kernel.
1119 **/
1120static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1121{
1122	int err;
1123	int numvecs, i;
1124
1125	if (!msix)
1126		goto msi_only;
1127	adapter->flags |= IGB_FLAG_HAS_MSIX;
1128
1129	/* Number of supported queues. */
1130	adapter->num_rx_queues = adapter->rss_queues;
1131	if (adapter->vfs_allocated_count)
1132		adapter->num_tx_queues = 1;
1133	else
1134		adapter->num_tx_queues = adapter->rss_queues;
1135
1136	/* start with one vector for every Rx queue */
1137	numvecs = adapter->num_rx_queues;
1138
1139	/* if Tx handler is separate add 1 for every Tx queue */
1140	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1141		numvecs += adapter->num_tx_queues;
1142
1143	/* store the number of vectors reserved for queues */
1144	adapter->num_q_vectors = numvecs;
1145
1146	/* add 1 vector for link status interrupts */
1147	numvecs++;
1148	for (i = 0; i < numvecs; i++)
1149		adapter->msix_entries[i].entry = i;
1150
1151	err = pci_enable_msix_range(adapter->pdev,
1152				    adapter->msix_entries,
1153				    numvecs,
1154				    numvecs);
1155	if (err > 0)
1156		return;
1157
1158	igb_reset_interrupt_capability(adapter);
1159
1160	/* If we can't do MSI-X, try MSI */
1161msi_only:
1162	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1163#ifdef CONFIG_PCI_IOV
1164	/* disable SR-IOV for non MSI-X configurations */
1165	if (adapter->vf_data) {
1166		struct e1000_hw *hw = &adapter->hw;
1167		/* disable iov and allow time for transactions to clear */
1168		pci_disable_sriov(adapter->pdev);
1169		msleep(500);
1170
1171		kfree(adapter->vf_mac_list);
1172		adapter->vf_mac_list = NULL;
1173		kfree(adapter->vf_data);
1174		adapter->vf_data = NULL;
1175		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1176		wrfl();
1177		msleep(100);
1178		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1179	}
1180#endif
1181	adapter->vfs_allocated_count = 0;
1182	adapter->rss_queues = 1;
1183	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1184	adapter->num_rx_queues = 1;
1185	adapter->num_tx_queues = 1;
1186	adapter->num_q_vectors = 1;
1187	if (!pci_enable_msi(adapter->pdev))
1188		adapter->flags |= IGB_FLAG_HAS_MSI;
1189}
1190
1191static void igb_add_ring(struct igb_ring *ring,
1192			 struct igb_ring_container *head)
1193{
1194	head->ring = ring;
1195	head->count++;
1196}
1197
1198/**
1199 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1200 *  @adapter: board private structure to initialize
1201 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1202 *  @v_idx: index of vector in adapter struct
1203 *  @txr_count: total number of Tx rings to allocate
1204 *  @txr_idx: index of first Tx ring to allocate
1205 *  @rxr_count: total number of Rx rings to allocate
1206 *  @rxr_idx: index of first Rx ring to allocate
1207 *
1208 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1209 **/
1210static int igb_alloc_q_vector(struct igb_adapter *adapter,
1211			      int v_count, int v_idx,
1212			      int txr_count, int txr_idx,
1213			      int rxr_count, int rxr_idx)
1214{
1215	struct igb_q_vector *q_vector;
1216	struct igb_ring *ring;
1217	int ring_count, size;
1218
1219	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1220	if (txr_count > 1 || rxr_count > 1)
1221		return -ENOMEM;
1222
1223	ring_count = txr_count + rxr_count;
1224	size = sizeof(struct igb_q_vector) +
1225	       (sizeof(struct igb_ring) * ring_count);
1226
1227	/* allocate q_vector and rings */
1228	q_vector = adapter->q_vector[v_idx];
1229	if (!q_vector) {
1230		q_vector = kzalloc(size, GFP_KERNEL);
1231	} else if (size > ksize(q_vector)) {
1232		kfree_rcu(q_vector, rcu);
1233		q_vector = kzalloc(size, GFP_KERNEL);
1234	} else {
1235		memset(q_vector, 0, size);
1236	}
1237	if (!q_vector)
1238		return -ENOMEM;
1239
1240	/* initialize NAPI */
1241	netif_napi_add(adapter->netdev, &q_vector->napi,
1242		       igb_poll, 64);
1243
1244	/* tie q_vector and adapter together */
1245	adapter->q_vector[v_idx] = q_vector;
1246	q_vector->adapter = adapter;
1247
1248	/* initialize work limits */
1249	q_vector->tx.work_limit = adapter->tx_work_limit;
1250
1251	/* initialize ITR configuration */
1252	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1253	q_vector->itr_val = IGB_START_ITR;
1254
1255	/* initialize pointer to rings */
1256	ring = q_vector->ring;
1257
1258	/* intialize ITR */
1259	if (rxr_count) {
1260		/* rx or rx/tx vector */
1261		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1262			q_vector->itr_val = adapter->rx_itr_setting;
1263	} else {
1264		/* tx only vector */
1265		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1266			q_vector->itr_val = adapter->tx_itr_setting;
1267	}
1268
1269	if (txr_count) {
1270		/* assign generic ring traits */
1271		ring->dev = &adapter->pdev->dev;
1272		ring->netdev = adapter->netdev;
1273
1274		/* configure backlink on ring */
1275		ring->q_vector = q_vector;
1276
1277		/* update q_vector Tx values */
1278		igb_add_ring(ring, &q_vector->tx);
1279
1280		/* For 82575, context index must be unique per ring. */
1281		if (adapter->hw.mac.type == e1000_82575)
1282			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1283
1284		/* apply Tx specific ring traits */
1285		ring->count = adapter->tx_ring_count;
1286		ring->queue_index = txr_idx;
1287
1288		ring->cbs_enable = false;
1289		ring->idleslope = 0;
1290		ring->sendslope = 0;
1291		ring->hicredit = 0;
1292		ring->locredit = 0;
1293
1294		u64_stats_init(&ring->tx_syncp);
1295		u64_stats_init(&ring->tx_syncp2);
1296
1297		/* assign ring to adapter */
1298		adapter->tx_ring[txr_idx] = ring;
1299
1300		/* push pointer to next ring */
1301		ring++;
1302	}
1303
1304	if (rxr_count) {
1305		/* assign generic ring traits */
1306		ring->dev = &adapter->pdev->dev;
1307		ring->netdev = adapter->netdev;
1308
1309		/* configure backlink on ring */
1310		ring->q_vector = q_vector;
1311
1312		/* update q_vector Rx values */
1313		igb_add_ring(ring, &q_vector->rx);
1314
1315		/* set flag indicating ring supports SCTP checksum offload */
1316		if (adapter->hw.mac.type >= e1000_82576)
1317			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1318
1319		/* On i350, i354, i210, and i211, loopback VLAN packets
1320		 * have the tag byte-swapped.
1321		 */
1322		if (adapter->hw.mac.type >= e1000_i350)
1323			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1324
1325		/* apply Rx specific ring traits */
1326		ring->count = adapter->rx_ring_count;
1327		ring->queue_index = rxr_idx;
1328
1329		u64_stats_init(&ring->rx_syncp);
1330
1331		/* assign ring to adapter */
1332		adapter->rx_ring[rxr_idx] = ring;
1333	}
1334
1335	return 0;
1336}
1337
1338
1339/**
1340 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1341 *  @adapter: board private structure to initialize
1342 *
1343 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1344 *  return -ENOMEM.
1345 **/
1346static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1347{
1348	int q_vectors = adapter->num_q_vectors;
1349	int rxr_remaining = adapter->num_rx_queues;
1350	int txr_remaining = adapter->num_tx_queues;
1351	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1352	int err;
1353
1354	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1355		for (; rxr_remaining; v_idx++) {
1356			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1357						 0, 0, 1, rxr_idx);
1358
1359			if (err)
1360				goto err_out;
1361
1362			/* update counts and index */
1363			rxr_remaining--;
1364			rxr_idx++;
1365		}
1366	}
1367
1368	for (; v_idx < q_vectors; v_idx++) {
1369		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1370		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1371
1372		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1373					 tqpv, txr_idx, rqpv, rxr_idx);
1374
1375		if (err)
1376			goto err_out;
1377
1378		/* update counts and index */
1379		rxr_remaining -= rqpv;
1380		txr_remaining -= tqpv;
1381		rxr_idx++;
1382		txr_idx++;
1383	}
1384
1385	return 0;
1386
1387err_out:
1388	adapter->num_tx_queues = 0;
1389	adapter->num_rx_queues = 0;
1390	adapter->num_q_vectors = 0;
1391
1392	while (v_idx--)
1393		igb_free_q_vector(adapter, v_idx);
1394
1395	return -ENOMEM;
1396}
1397
1398/**
1399 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1400 *  @adapter: board private structure to initialize
1401 *  @msix: boolean value of MSIX capability
1402 *
1403 *  This function initializes the interrupts and allocates all of the queues.
1404 **/
1405static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1406{
1407	struct pci_dev *pdev = adapter->pdev;
1408	int err;
1409
1410	igb_set_interrupt_capability(adapter, msix);
1411
1412	err = igb_alloc_q_vectors(adapter);
1413	if (err) {
1414		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1415		goto err_alloc_q_vectors;
1416	}
1417
1418	igb_cache_ring_register(adapter);
1419
1420	return 0;
1421
1422err_alloc_q_vectors:
1423	igb_reset_interrupt_capability(adapter);
1424	return err;
1425}
1426
1427/**
1428 *  igb_request_irq - initialize interrupts
1429 *  @adapter: board private structure to initialize
1430 *
1431 *  Attempts to configure interrupts using the best available
1432 *  capabilities of the hardware and kernel.
1433 **/
1434static int igb_request_irq(struct igb_adapter *adapter)
1435{
1436	struct net_device *netdev = adapter->netdev;
1437	struct pci_dev *pdev = adapter->pdev;
1438	int err = 0;
1439
1440	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1441		err = igb_request_msix(adapter);
1442		if (!err)
1443			goto request_done;
1444		/* fall back to MSI */
1445		igb_free_all_tx_resources(adapter);
1446		igb_free_all_rx_resources(adapter);
1447
1448		igb_clear_interrupt_scheme(adapter);
1449		err = igb_init_interrupt_scheme(adapter, false);
1450		if (err)
1451			goto request_done;
1452
1453		igb_setup_all_tx_resources(adapter);
1454		igb_setup_all_rx_resources(adapter);
1455		igb_configure(adapter);
1456	}
1457
1458	igb_assign_vector(adapter->q_vector[0], 0);
1459
1460	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1461		err = request_irq(pdev->irq, igb_intr_msi, 0,
1462				  netdev->name, adapter);
1463		if (!err)
1464			goto request_done;
1465
1466		/* fall back to legacy interrupts */
1467		igb_reset_interrupt_capability(adapter);
1468		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1469	}
1470
1471	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1472			  netdev->name, adapter);
1473
1474	if (err)
1475		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1476			err);
1477
1478request_done:
1479	return err;
1480}
1481
1482static void igb_free_irq(struct igb_adapter *adapter)
1483{
1484	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485		int vector = 0, i;
1486
1487		free_irq(adapter->msix_entries[vector++].vector, adapter);
1488
1489		for (i = 0; i < adapter->num_q_vectors; i++)
1490			free_irq(adapter->msix_entries[vector++].vector,
1491				 adapter->q_vector[i]);
1492	} else {
1493		free_irq(adapter->pdev->irq, adapter);
1494	}
1495}
1496
1497/**
1498 *  igb_irq_disable - Mask off interrupt generation on the NIC
1499 *  @adapter: board private structure
1500 **/
1501static void igb_irq_disable(struct igb_adapter *adapter)
1502{
1503	struct e1000_hw *hw = &adapter->hw;
1504
1505	/* we need to be careful when disabling interrupts.  The VFs are also
1506	 * mapped into these registers and so clearing the bits can cause
1507	 * issues on the VF drivers so we only need to clear what we set
1508	 */
1509	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1510		u32 regval = rd32(E1000_EIAM);
1511
1512		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1513		wr32(E1000_EIMC, adapter->eims_enable_mask);
1514		regval = rd32(E1000_EIAC);
1515		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1516	}
1517
1518	wr32(E1000_IAM, 0);
1519	wr32(E1000_IMC, ~0);
1520	wrfl();
1521	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1522		int i;
1523
1524		for (i = 0; i < adapter->num_q_vectors; i++)
1525			synchronize_irq(adapter->msix_entries[i].vector);
1526	} else {
1527		synchronize_irq(adapter->pdev->irq);
1528	}
1529}
1530
1531/**
1532 *  igb_irq_enable - Enable default interrupt generation settings
1533 *  @adapter: board private structure
1534 **/
1535static void igb_irq_enable(struct igb_adapter *adapter)
1536{
1537	struct e1000_hw *hw = &adapter->hw;
1538
1539	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1540		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1541		u32 regval = rd32(E1000_EIAC);
1542
1543		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1544		regval = rd32(E1000_EIAM);
1545		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1546		wr32(E1000_EIMS, adapter->eims_enable_mask);
1547		if (adapter->vfs_allocated_count) {
1548			wr32(E1000_MBVFIMR, 0xFF);
1549			ims |= E1000_IMS_VMMB;
1550		}
1551		wr32(E1000_IMS, ims);
1552	} else {
1553		wr32(E1000_IMS, IMS_ENABLE_MASK |
1554				E1000_IMS_DRSTA);
1555		wr32(E1000_IAM, IMS_ENABLE_MASK |
1556				E1000_IMS_DRSTA);
1557	}
1558}
1559
1560static void igb_update_mng_vlan(struct igb_adapter *adapter)
1561{
1562	struct e1000_hw *hw = &adapter->hw;
1563	u16 pf_id = adapter->vfs_allocated_count;
1564	u16 vid = adapter->hw.mng_cookie.vlan_id;
1565	u16 old_vid = adapter->mng_vlan_id;
1566
1567	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1568		/* add VID to filter table */
1569		igb_vfta_set(hw, vid, pf_id, true, true);
1570		adapter->mng_vlan_id = vid;
1571	} else {
1572		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1573	}
1574
1575	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1576	    (vid != old_vid) &&
1577	    !test_bit(old_vid, adapter->active_vlans)) {
1578		/* remove VID from filter table */
1579		igb_vfta_set(hw, vid, pf_id, false, true);
1580	}
1581}
1582
1583/**
1584 *  igb_release_hw_control - release control of the h/w to f/w
1585 *  @adapter: address of board private structure
1586 *
1587 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1588 *  For ASF and Pass Through versions of f/w this means that the
1589 *  driver is no longer loaded.
1590 **/
1591static void igb_release_hw_control(struct igb_adapter *adapter)
1592{
1593	struct e1000_hw *hw = &adapter->hw;
1594	u32 ctrl_ext;
1595
1596	/* Let firmware take over control of h/w */
1597	ctrl_ext = rd32(E1000_CTRL_EXT);
1598	wr32(E1000_CTRL_EXT,
1599			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1600}
1601
1602/**
1603 *  igb_get_hw_control - get control of the h/w from f/w
1604 *  @adapter: address of board private structure
1605 *
1606 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1607 *  For ASF and Pass Through versions of f/w this means that
1608 *  the driver is loaded.
1609 **/
1610static void igb_get_hw_control(struct igb_adapter *adapter)
1611{
1612	struct e1000_hw *hw = &adapter->hw;
1613	u32 ctrl_ext;
1614
1615	/* Let firmware know the driver has taken over */
1616	ctrl_ext = rd32(E1000_CTRL_EXT);
1617	wr32(E1000_CTRL_EXT,
1618			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1619}
1620
1621static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1622{
1623	struct net_device *netdev = adapter->netdev;
1624	struct e1000_hw *hw = &adapter->hw;
1625
1626	WARN_ON(hw->mac.type != e1000_i210);
1627
1628	if (enable)
1629		adapter->flags |= IGB_FLAG_FQTSS;
1630	else
1631		adapter->flags &= ~IGB_FLAG_FQTSS;
1632
1633	if (netif_running(netdev))
1634		schedule_work(&adapter->reset_task);
1635}
1636
1637static bool is_fqtss_enabled(struct igb_adapter *adapter)
1638{
1639	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1640}
1641
1642static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1643				   enum tx_queue_prio prio)
1644{
1645	u32 val;
1646
1647	WARN_ON(hw->mac.type != e1000_i210);
1648	WARN_ON(queue < 0 || queue > 4);
1649
1650	val = rd32(E1000_I210_TXDCTL(queue));
1651
1652	if (prio == TX_QUEUE_PRIO_HIGH)
1653		val |= E1000_TXDCTL_PRIORITY;
1654	else
1655		val &= ~E1000_TXDCTL_PRIORITY;
1656
1657	wr32(E1000_I210_TXDCTL(queue), val);
1658}
1659
1660static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1661{
1662	u32 val;
1663
1664	WARN_ON(hw->mac.type != e1000_i210);
1665	WARN_ON(queue < 0 || queue > 1);
1666
1667	val = rd32(E1000_I210_TQAVCC(queue));
1668
1669	if (mode == QUEUE_MODE_STREAM_RESERVATION)
1670		val |= E1000_TQAVCC_QUEUEMODE;
1671	else
1672		val &= ~E1000_TQAVCC_QUEUEMODE;
1673
1674	wr32(E1000_I210_TQAVCC(queue), val);
1675}
1676
1677/**
1678 *  igb_configure_cbs - Configure Credit-Based Shaper (CBS)
1679 *  @adapter: pointer to adapter struct
1680 *  @queue: queue number
1681 *  @enable: true = enable CBS, false = disable CBS
1682 *  @idleslope: idleSlope in kbps
1683 *  @sendslope: sendSlope in kbps
1684 *  @hicredit: hiCredit in bytes
1685 *  @locredit: loCredit in bytes
1686 *
1687 *  Configure CBS for a given hardware queue. When disabling, idleslope,
1688 *  sendslope, hicredit, locredit arguments are ignored. Returns 0 if
1689 *  success. Negative otherwise.
1690 **/
1691static void igb_configure_cbs(struct igb_adapter *adapter, int queue,
1692			      bool enable, int idleslope, int sendslope,
1693			      int hicredit, int locredit)
1694{
1695	struct net_device *netdev = adapter->netdev;
1696	struct e1000_hw *hw = &adapter->hw;
1697	u32 tqavcc;
1698	u16 value;
1699
1700	WARN_ON(hw->mac.type != e1000_i210);
1701	WARN_ON(queue < 0 || queue > 1);
1702
1703	if (enable || queue == 0) {
1704		/* i210 does not allow the queue 0 to be in the Strict
1705		 * Priority mode while the Qav mode is enabled, so,
1706		 * instead of disabling strict priority mode, we give
1707		 * queue 0 the maximum of credits possible.
1708		 *
1709		 * See section 8.12.19 of the i210 datasheet, "Note:
1710		 * Queue0 QueueMode must be set to 1b when
1711		 * TransmitMode is set to Qav."
1712		 */
1713		if (queue == 0 && !enable) {
1714			/* max "linkspeed" idleslope in kbps */
1715			idleslope = 1000000;
1716			hicredit = ETH_FRAME_LEN;
1717		}
1718
1719		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1720		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1721
1722		/* According to i210 datasheet section 7.2.7.7, we should set
1723		 * the 'idleSlope' field from TQAVCC register following the
1724		 * equation:
1725		 *
1726		 * For 100 Mbps link speed:
1727		 *
1728		 *     value = BW * 0x7735 * 0.2                          (E1)
1729		 *
1730		 * For 1000Mbps link speed:
1731		 *
1732		 *     value = BW * 0x7735 * 2                            (E2)
1733		 *
1734		 * E1 and E2 can be merged into one equation as shown below.
1735		 * Note that 'link-speed' is in Mbps.
1736		 *
1737		 *     value = BW * 0x7735 * 2 * link-speed
1738		 *                           --------------               (E3)
1739		 *                                1000
1740		 *
1741		 * 'BW' is the percentage bandwidth out of full link speed
1742		 * which can be found with the following equation. Note that
1743		 * idleSlope here is the parameter from this function which
1744		 * is in kbps.
1745		 *
1746		 *     BW =     idleSlope
1747		 *          -----------------                             (E4)
1748		 *          link-speed * 1000
1749		 *
1750		 * That said, we can come up with a generic equation to
1751		 * calculate the value we should set it TQAVCC register by
1752		 * replacing 'BW' in E3 by E4. The resulting equation is:
1753		 *
1754		 * value =     idleSlope     * 0x7735 * 2 * link-speed
1755		 *         -----------------            --------------    (E5)
1756		 *         link-speed * 1000                 1000
1757		 *
1758		 * 'link-speed' is present in both sides of the fraction so
1759		 * it is canceled out. The final equation is the following:
1760		 *
1761		 *     value = idleSlope * 61034
1762		 *             -----------------                          (E6)
1763		 *                  1000000
1764		 *
1765		 * NOTE: For i210, given the above, we can see that idleslope
1766		 *       is represented in 16.38431 kbps units by the value at
1767		 *       the TQAVCC register (1Gbps / 61034), which reduces
1768		 *       the granularity for idleslope increments.
1769		 *       For instance, if you want to configure a 2576kbps
1770		 *       idleslope, the value to be written on the register
1771		 *       would have to be 157.23. If rounded down, you end
1772		 *       up with less bandwidth available than originally
1773		 *       required (~2572 kbps). If rounded up, you end up
1774		 *       with a higher bandwidth (~2589 kbps). Below the
1775		 *       approach we take is to always round up the
1776		 *       calculated value, so the resulting bandwidth might
1777		 *       be slightly higher for some configurations.
1778		 */
1779		value = DIV_ROUND_UP_ULL(idleslope * 61034ULL, 1000000);
1780
1781		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1782		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1783		tqavcc |= value;
1784		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1785
1786		wr32(E1000_I210_TQAVHC(queue), 0x80000000 + hicredit * 0x7735);
1787	} else {
1788		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1789		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1790
1791		/* Set idleSlope to zero. */
1792		tqavcc = rd32(E1000_I210_TQAVCC(queue));
1793		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1794		wr32(E1000_I210_TQAVCC(queue), tqavcc);
1795
1796		/* Set hiCredit to zero. */
1797		wr32(E1000_I210_TQAVHC(queue), 0);
1798	}
1799
1800	/* XXX: In i210 controller the sendSlope and loCredit parameters from
1801	 * CBS are not configurable by software so we don't do any 'controller
1802	 * configuration' in respect to these parameters.
1803	 */
1804
1805	netdev_dbg(netdev, "CBS %s: queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1806		   (enable) ? "enabled" : "disabled", queue,
1807		   idleslope, sendslope, hicredit, locredit);
1808}
1809
1810static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1811			       bool enable, int idleslope, int sendslope,
1812			       int hicredit, int locredit)
1813{
1814	struct igb_ring *ring;
1815
1816	if (queue < 0 || queue > adapter->num_tx_queues)
1817		return -EINVAL;
1818
1819	ring = adapter->tx_ring[queue];
1820
1821	ring->cbs_enable = enable;
1822	ring->idleslope = idleslope;
1823	ring->sendslope = sendslope;
1824	ring->hicredit = hicredit;
1825	ring->locredit = locredit;
1826
1827	return 0;
1828}
1829
1830static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1831{
1832	struct igb_ring *ring;
1833	int i;
1834
1835	for (i = 0; i < adapter->num_tx_queues; i++) {
1836		ring = adapter->tx_ring[i];
1837
1838		if (ring->cbs_enable)
1839			return true;
1840	}
1841
1842	return false;
1843}
1844
1845static void igb_setup_tx_mode(struct igb_adapter *adapter)
1846{
1847	struct net_device *netdev = adapter->netdev;
1848	struct e1000_hw *hw = &adapter->hw;
1849	u32 val;
1850
1851	/* Only i210 controller supports changing the transmission mode. */
1852	if (hw->mac.type != e1000_i210)
1853		return;
1854
1855	if (is_fqtss_enabled(adapter)) {
1856		int i, max_queue;
1857
1858		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
1859		 * set data fetch arbitration to 'round robin' and set data
1860		 * transfer arbitration to 'credit shaper algorithm.
1861		 */
1862		val = rd32(E1000_I210_TQAVCTRL);
1863		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_DATATRANARB;
1864		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1865		wr32(E1000_I210_TQAVCTRL, val);
1866
1867		/* Configure Tx and Rx packet buffers sizes as described in
1868		 * i210 datasheet section 7.2.7.7.
1869		 */
1870		val = rd32(E1000_TXPBS);
1871		val &= ~I210_TXPBSIZE_MASK;
1872		val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1873			I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1874		wr32(E1000_TXPBS, val);
1875
1876		val = rd32(E1000_RXPBS);
1877		val &= ~I210_RXPBSIZE_MASK;
1878		val |= I210_RXPBSIZE_PB_32KB;
1879		wr32(E1000_RXPBS, val);
1880
1881		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1882		 * register should not exceed the buffer size programmed in
1883		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1884		 * so according to the datasheet we should set MAX_TPKT_SIZE to
1885		 * 4kB / 64.
1886		 *
1887		 * However, when we do so, no frame from queue 2 and 3 are
1888		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1889		 * or _equal_ to the buffer size programmed in TXPBS. For this
1890		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1891		 */
1892		val = (4096 - 1) / 64;
1893		wr32(E1000_I210_DTXMXPKTSZ, val);
1894
1895		/* Since FQTSS mode is enabled, apply any CBS configuration
1896		 * previously set. If no previous CBS configuration has been
1897		 * done, then the initial configuration is applied, which means
1898		 * CBS is disabled.
1899		 */
1900		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1901			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1902
1903		for (i = 0; i < max_queue; i++) {
1904			struct igb_ring *ring = adapter->tx_ring[i];
1905
1906			igb_configure_cbs(adapter, i, ring->cbs_enable,
1907					  ring->idleslope, ring->sendslope,
1908					  ring->hicredit, ring->locredit);
1909		}
1910	} else {
1911		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1912		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1913		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1914
1915		val = rd32(E1000_I210_TQAVCTRL);
1916		/* According to Section 8.12.21, the other flags we've set when
1917		 * enabling FQTSS are not relevant when disabling FQTSS so we
1918		 * don't set they here.
1919		 */
1920		val &= ~E1000_TQAVCTRL_XMIT_MODE;
1921		wr32(E1000_I210_TQAVCTRL, val);
1922	}
1923
1924	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1925		   "enabled" : "disabled");
1926}
1927
1928/**
1929 *  igb_configure - configure the hardware for RX and TX
1930 *  @adapter: private board structure
1931 **/
1932static void igb_configure(struct igb_adapter *adapter)
1933{
1934	struct net_device *netdev = adapter->netdev;
1935	int i;
1936
1937	igb_get_hw_control(adapter);
1938	igb_set_rx_mode(netdev);
1939	igb_setup_tx_mode(adapter);
1940
1941	igb_restore_vlan(adapter);
1942
1943	igb_setup_tctl(adapter);
1944	igb_setup_mrqc(adapter);
1945	igb_setup_rctl(adapter);
1946
1947	igb_nfc_filter_restore(adapter);
1948	igb_configure_tx(adapter);
1949	igb_configure_rx(adapter);
1950
1951	igb_rx_fifo_flush_82575(&adapter->hw);
1952
1953	/* call igb_desc_unused which always leaves
1954	 * at least 1 descriptor unused to make sure
1955	 * next_to_use != next_to_clean
1956	 */
1957	for (i = 0; i < adapter->num_rx_queues; i++) {
1958		struct igb_ring *ring = adapter->rx_ring[i];
1959		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1960	}
1961}
1962
1963/**
1964 *  igb_power_up_link - Power up the phy/serdes link
1965 *  @adapter: address of board private structure
1966 **/
1967void igb_power_up_link(struct igb_adapter *adapter)
1968{
1969	igb_reset_phy(&adapter->hw);
1970
1971	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1972		igb_power_up_phy_copper(&adapter->hw);
1973	else
1974		igb_power_up_serdes_link_82575(&adapter->hw);
1975
1976	igb_setup_link(&adapter->hw);
1977}
1978
1979/**
1980 *  igb_power_down_link - Power down the phy/serdes link
1981 *  @adapter: address of board private structure
1982 */
1983static void igb_power_down_link(struct igb_adapter *adapter)
1984{
1985	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1986		igb_power_down_phy_copper_82575(&adapter->hw);
1987	else
1988		igb_shutdown_serdes_link_82575(&adapter->hw);
1989}
1990
1991/**
1992 * Detect and switch function for Media Auto Sense
1993 * @adapter: address of the board private structure
1994 **/
1995static void igb_check_swap_media(struct igb_adapter *adapter)
1996{
1997	struct e1000_hw *hw = &adapter->hw;
1998	u32 ctrl_ext, connsw;
1999	bool swap_now = false;
2000
2001	ctrl_ext = rd32(E1000_CTRL_EXT);
2002	connsw = rd32(E1000_CONNSW);
2003
2004	/* need to live swap if current media is copper and we have fiber/serdes
2005	 * to go to.
2006	 */
2007
2008	if ((hw->phy.media_type == e1000_media_type_copper) &&
2009	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2010		swap_now = true;
2011	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
2012		/* copper signal takes time to appear */
2013		if (adapter->copper_tries < 4) {
2014			adapter->copper_tries++;
2015			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2016			wr32(E1000_CONNSW, connsw);
2017			return;
2018		} else {
2019			adapter->copper_tries = 0;
2020			if ((connsw & E1000_CONNSW_PHYSD) &&
2021			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
2022				swap_now = true;
2023				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2024				wr32(E1000_CONNSW, connsw);
2025			}
2026		}
2027	}
2028
2029	if (!swap_now)
2030		return;
2031
2032	switch (hw->phy.media_type) {
2033	case e1000_media_type_copper:
2034		netdev_info(adapter->netdev,
2035			"MAS: changing media to fiber/serdes\n");
2036		ctrl_ext |=
2037			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2038		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2039		adapter->copper_tries = 0;
2040		break;
2041	case e1000_media_type_internal_serdes:
2042	case e1000_media_type_fiber:
2043		netdev_info(adapter->netdev,
2044			"MAS: changing media to copper\n");
2045		ctrl_ext &=
2046			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2047		adapter->flags |= IGB_FLAG_MEDIA_RESET;
2048		break;
2049	default:
2050		/* shouldn't get here during regular operation */
2051		netdev_err(adapter->netdev,
2052			"AMS: Invalid media type found, returning\n");
2053		break;
2054	}
2055	wr32(E1000_CTRL_EXT, ctrl_ext);
2056}
2057
2058/**
2059 *  igb_up - Open the interface and prepare it to handle traffic
2060 *  @adapter: board private structure
2061 **/
2062int igb_up(struct igb_adapter *adapter)
2063{
2064	struct e1000_hw *hw = &adapter->hw;
2065	int i;
2066
2067	/* hardware has been reset, we need to reload some things */
2068	igb_configure(adapter);
2069
2070	clear_bit(__IGB_DOWN, &adapter->state);
2071
2072	for (i = 0; i < adapter->num_q_vectors; i++)
2073		napi_enable(&(adapter->q_vector[i]->napi));
2074
2075	if (adapter->flags & IGB_FLAG_HAS_MSIX)
2076		igb_configure_msix(adapter);
2077	else
2078		igb_assign_vector(adapter->q_vector[0], 0);
2079
2080	/* Clear any pending interrupts. */
2081	rd32(E1000_ICR);
2082	igb_irq_enable(adapter);
2083
2084	/* notify VFs that reset has been completed */
2085	if (adapter->vfs_allocated_count) {
2086		u32 reg_data = rd32(E1000_CTRL_EXT);
2087
2088		reg_data |= E1000_CTRL_EXT_PFRSTD;
2089		wr32(E1000_CTRL_EXT, reg_data);
2090	}
2091
2092	netif_tx_start_all_queues(adapter->netdev);
2093
2094	/* start the watchdog. */
2095	hw->mac.get_link_status = 1;
2096	schedule_work(&adapter->watchdog_task);
2097
2098	if ((adapter->flags & IGB_FLAG_EEE) &&
2099	    (!hw->dev_spec._82575.eee_disable))
2100		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2101
2102	return 0;
2103}
2104
2105void igb_down(struct igb_adapter *adapter)
2106{
2107	struct net_device *netdev = adapter->netdev;
2108	struct e1000_hw *hw = &adapter->hw;
2109	u32 tctl, rctl;
2110	int i;
2111
2112	/* signal that we're down so the interrupt handler does not
2113	 * reschedule our watchdog timer
2114	 */
2115	set_bit(__IGB_DOWN, &adapter->state);
2116
2117	/* disable receives in the hardware */
2118	rctl = rd32(E1000_RCTL);
2119	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2120	/* flush and sleep below */
2121
2122	igb_nfc_filter_exit(adapter);
2123
2124	netif_carrier_off(netdev);
2125	netif_tx_stop_all_queues(netdev);
2126
2127	/* disable transmits in the hardware */
2128	tctl = rd32(E1000_TCTL);
2129	tctl &= ~E1000_TCTL_EN;
2130	wr32(E1000_TCTL, tctl);
2131	/* flush both disables and wait for them to finish */
2132	wrfl();
2133	usleep_range(10000, 11000);
2134
2135	igb_irq_disable(adapter);
2136
2137	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2138
2139	for (i = 0; i < adapter->num_q_vectors; i++) {
2140		if (adapter->q_vector[i]) {
2141			napi_synchronize(&adapter->q_vector[i]->napi);
2142			napi_disable(&adapter->q_vector[i]->napi);
2143		}
2144	}
2145
2146	del_timer_sync(&adapter->watchdog_timer);
2147	del_timer_sync(&adapter->phy_info_timer);
2148
2149	/* record the stats before reset*/
2150	spin_lock(&adapter->stats64_lock);
2151	igb_update_stats(adapter);
2152	spin_unlock(&adapter->stats64_lock);
2153
2154	adapter->link_speed = 0;
2155	adapter->link_duplex = 0;
2156
2157	if (!pci_channel_offline(adapter->pdev))
2158		igb_reset(adapter);
2159
2160	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2161	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2162
2163	igb_clean_all_tx_rings(adapter);
2164	igb_clean_all_rx_rings(adapter);
2165#ifdef CONFIG_IGB_DCA
2166
2167	/* since we reset the hardware DCA settings were cleared */
2168	igb_setup_dca(adapter);
2169#endif
2170}
2171
2172void igb_reinit_locked(struct igb_adapter *adapter)
2173{
2174	WARN_ON(in_interrupt());
2175	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2176		usleep_range(1000, 2000);
2177	igb_down(adapter);
2178	igb_up(adapter);
2179	clear_bit(__IGB_RESETTING, &adapter->state);
2180}
2181
2182/** igb_enable_mas - Media Autosense re-enable after swap
2183 *
2184 * @adapter: adapter struct
2185 **/
2186static void igb_enable_mas(struct igb_adapter *adapter)
2187{
2188	struct e1000_hw *hw = &adapter->hw;
2189	u32 connsw = rd32(E1000_CONNSW);
2190
2191	/* configure for SerDes media detect */
2192	if ((hw->phy.media_type == e1000_media_type_copper) &&
2193	    (!(connsw & E1000_CONNSW_SERDESD))) {
2194		connsw |= E1000_CONNSW_ENRGSRC;
2195		connsw |= E1000_CONNSW_AUTOSENSE_EN;
2196		wr32(E1000_CONNSW, connsw);
2197		wrfl();
2198	}
2199}
2200
2201void igb_reset(struct igb_adapter *adapter)
2202{
2203	struct pci_dev *pdev = adapter->pdev;
2204	struct e1000_hw *hw = &adapter->hw;
2205	struct e1000_mac_info *mac = &hw->mac;
2206	struct e1000_fc_info *fc = &hw->fc;
2207	u32 pba, hwm;
2208
2209	/* Repartition Pba for greater than 9k mtu
2210	 * To take effect CTRL.RST is required.
2211	 */
2212	switch (mac->type) {
2213	case e1000_i350:
2214	case e1000_i354:
2215	case e1000_82580:
2216		pba = rd32(E1000_RXPBS);
2217		pba = igb_rxpbs_adjust_82580(pba);
2218		break;
2219	case e1000_82576:
2220		pba = rd32(E1000_RXPBS);
2221		pba &= E1000_RXPBS_SIZE_MASK_82576;
2222		break;
2223	case e1000_82575:
2224	case e1000_i210:
2225	case e1000_i211:
2226	default:
2227		pba = E1000_PBA_34K;
2228		break;
2229	}
2230
2231	if (mac->type == e1000_82575) {
2232		u32 min_rx_space, min_tx_space, needed_tx_space;
2233
2234		/* write Rx PBA so that hardware can report correct Tx PBA */
2235		wr32(E1000_PBA, pba);
2236
2237		/* To maintain wire speed transmits, the Tx FIFO should be
2238		 * large enough to accommodate two full transmit packets,
2239		 * rounded up to the next 1KB and expressed in KB.  Likewise,
2240		 * the Rx FIFO should be large enough to accommodate at least
2241		 * one full receive packet and is similarly rounded up and
2242		 * expressed in KB.
2243		 */
2244		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2245
2246		/* The Tx FIFO also stores 16 bytes of information about the Tx
2247		 * but don't include Ethernet FCS because hardware appends it.
2248		 * We only need to round down to the nearest 512 byte block
2249		 * count since the value we care about is 2 frames, not 1.
2250		 */
2251		min_tx_space = adapter->max_frame_size;
2252		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2253		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2254
2255		/* upper 16 bits has Tx packet buffer allocation size in KB */
2256		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2257
2258		/* If current Tx allocation is less than the min Tx FIFO size,
2259		 * and the min Tx FIFO size is less than the current Rx FIFO
2260		 * allocation, take space away from current Rx allocation.
2261		 */
2262		if (needed_tx_space < pba) {
2263			pba -= needed_tx_space;
2264
2265			/* if short on Rx space, Rx wins and must trump Tx
2266			 * adjustment
2267			 */
2268			if (pba < min_rx_space)
2269				pba = min_rx_space;
2270		}
2271
2272		/* adjust PBA for jumbo frames */
2273		wr32(E1000_PBA, pba);
2274	}
2275
2276	/* flow control settings
2277	 * The high water mark must be low enough to fit one full frame
2278	 * after transmitting the pause frame.  As such we must have enough
2279	 * space to allow for us to complete our current transmit and then
2280	 * receive the frame that is in progress from the link partner.
2281	 * Set it to:
2282	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2283	 */
2284	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2285
2286	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
2287	fc->low_water = fc->high_water - 16;
2288	fc->pause_time = 0xFFFF;
2289	fc->send_xon = 1;
2290	fc->current_mode = fc->requested_mode;
2291
2292	/* disable receive for all VFs and wait one second */
2293	if (adapter->vfs_allocated_count) {
2294		int i;
2295
2296		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2297			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2298
2299		/* ping all the active vfs to let them know we are going down */
2300		igb_ping_all_vfs(adapter);
2301
2302		/* disable transmits and receives */
2303		wr32(E1000_VFRE, 0);
2304		wr32(E1000_VFTE, 0);
2305	}
2306
2307	/* Allow time for pending master requests to run */
2308	hw->mac.ops.reset_hw(hw);
2309	wr32(E1000_WUC, 0);
2310
2311	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2312		/* need to resetup here after media swap */
2313		adapter->ei.get_invariants(hw);
2314		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2315	}
2316	if ((mac->type == e1000_82575) &&
2317	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2318		igb_enable_mas(adapter);
2319	}
2320	if (hw->mac.ops.init_hw(hw))
2321		dev_err(&pdev->dev, "Hardware Error\n");
2322
2323	/* RAR registers were cleared during init_hw, clear mac table */
2324	igb_flush_mac_table(adapter);
2325	__dev_uc_unsync(adapter->netdev, NULL);
2326
2327	/* Recover default RAR entry */
2328	igb_set_default_mac_filter(adapter);
2329
2330	/* Flow control settings reset on hardware reset, so guarantee flow
2331	 * control is off when forcing speed.
2332	 */
2333	if (!hw->mac.autoneg)
2334		igb_force_mac_fc(hw);
2335
2336	igb_init_dmac(adapter, pba);
2337#ifdef CONFIG_IGB_HWMON
2338	/* Re-initialize the thermal sensor on i350 devices. */
2339	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2340		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2341			/* If present, re-initialize the external thermal sensor
2342			 * interface.
2343			 */
2344			if (adapter->ets)
2345				mac->ops.init_thermal_sensor_thresh(hw);
2346		}
2347	}
2348#endif
2349	/* Re-establish EEE setting */
2350	if (hw->phy.media_type == e1000_media_type_copper) {
2351		switch (mac->type) {
2352		case e1000_i350:
2353		case e1000_i210:
2354		case e1000_i211:
2355			igb_set_eee_i350(hw, true, true);
2356			break;
2357		case e1000_i354:
2358			igb_set_eee_i354(hw, true, true);
2359			break;
2360		default:
2361			break;
2362		}
2363	}
2364	if (!netif_running(adapter->netdev))
2365		igb_power_down_link(adapter);
2366
2367	igb_update_mng_vlan(adapter);
2368
2369	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2370	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2371
2372	/* Re-enable PTP, where applicable. */
2373	if (adapter->ptp_flags & IGB_PTP_ENABLED)
2374		igb_ptp_reset(adapter);
2375
2376	igb_get_phy_info(hw);
2377}
2378
2379static netdev_features_t igb_fix_features(struct net_device *netdev,
2380	netdev_features_t features)
2381{
2382	/* Since there is no support for separate Rx/Tx vlan accel
2383	 * enable/disable make sure Tx flag is always in same state as Rx.
2384	 */
2385	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2386		features |= NETIF_F_HW_VLAN_CTAG_TX;
2387	else
2388		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2389
2390	return features;
2391}
2392
2393static int igb_set_features(struct net_device *netdev,
2394	netdev_features_t features)
2395{
2396	netdev_features_t changed = netdev->features ^ features;
2397	struct igb_adapter *adapter = netdev_priv(netdev);
2398
2399	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2400		igb_vlan_mode(netdev, features);
2401
2402	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2403		return 0;
2404
2405	if (!(features & NETIF_F_NTUPLE)) {
2406		struct hlist_node *node2;
2407		struct igb_nfc_filter *rule;
2408
2409		spin_lock(&adapter->nfc_lock);
2410		hlist_for_each_entry_safe(rule, node2,
2411					  &adapter->nfc_filter_list, nfc_node) {
2412			igb_erase_filter(adapter, rule);
2413			hlist_del(&rule->nfc_node);
2414			kfree(rule);
2415		}
2416		spin_unlock(&adapter->nfc_lock);
2417		adapter->nfc_filter_count = 0;
2418	}
2419
2420	netdev->features = features;
2421
2422	if (netif_running(netdev))
2423		igb_reinit_locked(adapter);
2424	else
2425		igb_reset(adapter);
2426
2427	return 0;
2428}
2429
2430static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2431			   struct net_device *dev,
2432			   const unsigned char *addr, u16 vid,
2433			   u16 flags)
2434{
2435	/* guarantee we can provide a unique filter for the unicast address */
2436	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2437		struct igb_adapter *adapter = netdev_priv(dev);
2438		int vfn = adapter->vfs_allocated_count;
2439
2440		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2441			return -ENOMEM;
2442	}
2443
2444	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2445}
2446
2447#define IGB_MAX_MAC_HDR_LEN	127
2448#define IGB_MAX_NETWORK_HDR_LEN	511
2449
2450static netdev_features_t
2451igb_features_check(struct sk_buff *skb, struct net_device *dev,
2452		   netdev_features_t features)
2453{
2454	unsigned int network_hdr_len, mac_hdr_len;
2455
2456	/* Make certain the headers can be described by a context descriptor */
2457	mac_hdr_len = skb_network_header(skb) - skb->data;
2458	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2459		return features & ~(NETIF_F_HW_CSUM |
2460				    NETIF_F_SCTP_CRC |
2461				    NETIF_F_HW_VLAN_CTAG_TX |
2462				    NETIF_F_TSO |
2463				    NETIF_F_TSO6);
2464
2465	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2466	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2467		return features & ~(NETIF_F_HW_CSUM |
2468				    NETIF_F_SCTP_CRC |
2469				    NETIF_F_TSO |
2470				    NETIF_F_TSO6);
2471
2472	/* We can only support IPV4 TSO in tunnels if we can mangle the
2473	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2474	 */
2475	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2476		features &= ~NETIF_F_TSO;
2477
2478	return features;
2479}
2480
2481static int igb_offload_cbs(struct igb_adapter *adapter,
2482			   struct tc_cbs_qopt_offload *qopt)
2483{
2484	struct e1000_hw *hw = &adapter->hw;
2485	int err;
2486
2487	/* CBS offloading is only supported by i210 controller. */
2488	if (hw->mac.type != e1000_i210)
2489		return -EOPNOTSUPP;
2490
2491	/* CBS offloading is only supported by queue 0 and queue 1. */
2492	if (qopt->queue < 0 || qopt->queue > 1)
2493		return -EINVAL;
2494
2495	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2496				  qopt->idleslope, qopt->sendslope,
2497				  qopt->hicredit, qopt->locredit);
2498	if (err)
2499		return err;
2500
2501	if (is_fqtss_enabled(adapter)) {
2502		igb_configure_cbs(adapter, qopt->queue, qopt->enable,
2503				  qopt->idleslope, qopt->sendslope,
2504				  qopt->hicredit, qopt->locredit);
2505
2506		if (!is_any_cbs_enabled(adapter))
2507			enable_fqtss(adapter, false);
2508
2509	} else {
2510		enable_fqtss(adapter, true);
2511	}
2512
2513	return 0;
2514}
2515
2516static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2517			void *type_data)
2518{
2519	struct igb_adapter *adapter = netdev_priv(dev);
2520
2521	switch (type) {
2522	case TC_SETUP_QDISC_CBS:
2523		return igb_offload_cbs(adapter, type_data);
2524
2525	default:
2526		return -EOPNOTSUPP;
2527	}
2528}
2529
2530static const struct net_device_ops igb_netdev_ops = {
2531	.ndo_open		= igb_open,
2532	.ndo_stop		= igb_close,
2533	.ndo_start_xmit		= igb_xmit_frame,
2534	.ndo_get_stats64	= igb_get_stats64,
2535	.ndo_set_rx_mode	= igb_set_rx_mode,
2536	.ndo_set_mac_address	= igb_set_mac,
2537	.ndo_change_mtu		= igb_change_mtu,
2538	.ndo_do_ioctl		= igb_ioctl,
2539	.ndo_tx_timeout		= igb_tx_timeout,
2540	.ndo_validate_addr	= eth_validate_addr,
2541	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2542	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2543	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2544	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2545	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2546	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2547	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
2548	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2549#ifdef CONFIG_NET_POLL_CONTROLLER
2550	.ndo_poll_controller	= igb_netpoll,
2551#endif
2552	.ndo_fix_features	= igb_fix_features,
2553	.ndo_set_features	= igb_set_features,
2554	.ndo_fdb_add		= igb_ndo_fdb_add,
2555	.ndo_features_check	= igb_features_check,
2556	.ndo_setup_tc		= igb_setup_tc,
2557};
2558
2559/**
2560 * igb_set_fw_version - Configure version string for ethtool
2561 * @adapter: adapter struct
2562 **/
2563void igb_set_fw_version(struct igb_adapter *adapter)
2564{
2565	struct e1000_hw *hw = &adapter->hw;
2566	struct e1000_fw_version fw;
2567
2568	igb_get_fw_version(hw, &fw);
2569
2570	switch (hw->mac.type) {
2571	case e1000_i210:
2572	case e1000_i211:
2573		if (!(igb_get_flash_presence_i210(hw))) {
2574			snprintf(adapter->fw_version,
2575				 sizeof(adapter->fw_version),
2576				 "%2d.%2d-%d",
2577				 fw.invm_major, fw.invm_minor,
2578				 fw.invm_img_type);
2579			break;
2580		}
2581		/* fall through */
2582	default:
2583		/* if option is rom valid, display its version too */
2584		if (fw.or_valid) {
2585			snprintf(adapter->fw_version,
2586				 sizeof(adapter->fw_version),
2587				 "%d.%d, 0x%08x, %d.%d.%d",
2588				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2589				 fw.or_major, fw.or_build, fw.or_patch);
2590		/* no option rom */
2591		} else if (fw.etrack_id != 0X0000) {
2592			snprintf(adapter->fw_version,
2593			    sizeof(adapter->fw_version),
2594			    "%d.%d, 0x%08x",
2595			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2596		} else {
2597		snprintf(adapter->fw_version,
2598		    sizeof(adapter->fw_version),
2599		    "%d.%d.%d",
2600		    fw.eep_major, fw.eep_minor, fw.eep_build);
2601		}
2602		break;
2603	}
2604}
2605
2606/**
2607 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2608 *
2609 * @adapter: adapter struct
2610 **/
2611static void igb_init_mas(struct igb_adapter *adapter)
2612{
2613	struct e1000_hw *hw = &adapter->hw;
2614	u16 eeprom_data;
2615
2616	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2617	switch (hw->bus.func) {
2618	case E1000_FUNC_0:
2619		if (eeprom_data & IGB_MAS_ENABLE_0) {
2620			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2621			netdev_info(adapter->netdev,
2622				"MAS: Enabling Media Autosense for port %d\n",
2623				hw->bus.func);
2624		}
2625		break;
2626	case E1000_FUNC_1:
2627		if (eeprom_data & IGB_MAS_ENABLE_1) {
2628			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2629			netdev_info(adapter->netdev,
2630				"MAS: Enabling Media Autosense for port %d\n",
2631				hw->bus.func);
2632		}
2633		break;
2634	case E1000_FUNC_2:
2635		if (eeprom_data & IGB_MAS_ENABLE_2) {
2636			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2637			netdev_info(adapter->netdev,
2638				"MAS: Enabling Media Autosense for port %d\n",
2639				hw->bus.func);
2640		}
2641		break;
2642	case E1000_FUNC_3:
2643		if (eeprom_data & IGB_MAS_ENABLE_3) {
2644			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2645			netdev_info(adapter->netdev,
2646				"MAS: Enabling Media Autosense for port %d\n",
2647				hw->bus.func);
2648		}
2649		break;
2650	default:
2651		/* Shouldn't get here */
2652		netdev_err(adapter->netdev,
2653			"MAS: Invalid port configuration, returning\n");
2654		break;
2655	}
2656}
2657
2658/**
2659 *  igb_init_i2c - Init I2C interface
2660 *  @adapter: pointer to adapter structure
2661 **/
2662static s32 igb_init_i2c(struct igb_adapter *adapter)
2663{
2664	s32 status = 0;
2665
2666	/* I2C interface supported on i350 devices */
2667	if (adapter->hw.mac.type != e1000_i350)
2668		return 0;
2669
2670	/* Initialize the i2c bus which is controlled by the registers.
2671	 * This bus will use the i2c_algo_bit structue that implements
2672	 * the protocol through toggling of the 4 bits in the register.
2673	 */
2674	adapter->i2c_adap.owner = THIS_MODULE;
2675	adapter->i2c_algo = igb_i2c_algo;
2676	adapter->i2c_algo.data = adapter;
2677	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2678	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2679	strlcpy(adapter->i2c_adap.name, "igb BB",
2680		sizeof(adapter->i2c_adap.name));
2681	status = i2c_bit_add_bus(&adapter->i2c_adap);
2682	return status;
2683}
2684
2685/**
2686 *  igb_probe - Device Initialization Routine
2687 *  @pdev: PCI device information struct
2688 *  @ent: entry in igb_pci_tbl
2689 *
2690 *  Returns 0 on success, negative on failure
2691 *
2692 *  igb_probe initializes an adapter identified by a pci_dev structure.
2693 *  The OS initialization, configuring of the adapter private structure,
2694 *  and a hardware reset occur.
2695 **/
2696static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2697{
2698	struct net_device *netdev;
2699	struct igb_adapter *adapter;
2700	struct e1000_hw *hw;
2701	u16 eeprom_data = 0;
2702	s32 ret_val;
2703	static int global_quad_port_a; /* global quad port a indication */
2704	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2705	int err, pci_using_dac;
2706	u8 part_str[E1000_PBANUM_LENGTH];
2707
2708	/* Catch broken hardware that put the wrong VF device ID in
2709	 * the PCIe SR-IOV capability.
2710	 */
2711	if (pdev->is_virtfn) {
2712		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2713			pci_name(pdev), pdev->vendor, pdev->device);
2714		return -EINVAL;
2715	}
2716
2717	err = pci_enable_device_mem(pdev);
2718	if (err)
2719		return err;
2720
2721	pci_using_dac = 0;
2722	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2723	if (!err) {
2724		pci_using_dac = 1;
2725	} else {
2726		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2727		if (err) {
2728			dev_err(&pdev->dev,
2729				"No usable DMA configuration, aborting\n");
2730			goto err_dma;
2731		}
2732	}
2733
2734	err = pci_request_mem_regions(pdev, igb_driver_name);
2735	if (err)
2736		goto err_pci_reg;
2737
2738	pci_enable_pcie_error_reporting(pdev);
2739
2740	pci_set_master(pdev);
2741	pci_save_state(pdev);
2742
2743	err = -ENOMEM;
2744	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2745				   IGB_MAX_TX_QUEUES);
2746	if (!netdev)
2747		goto err_alloc_etherdev;
2748
2749	SET_NETDEV_DEV(netdev, &pdev->dev);
2750
2751	pci_set_drvdata(pdev, netdev);
2752	adapter = netdev_priv(netdev);
2753	adapter->netdev = netdev;
2754	adapter->pdev = pdev;
2755	hw = &adapter->hw;
2756	hw->back = adapter;
2757	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2758
2759	err = -EIO;
2760	adapter->io_addr = pci_iomap(pdev, 0, 0);
2761	if (!adapter->io_addr)
2762		goto err_ioremap;
2763	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2764	hw->hw_addr = adapter->io_addr;
2765
2766	netdev->netdev_ops = &igb_netdev_ops;
2767	igb_set_ethtool_ops(netdev);
2768	netdev->watchdog_timeo = 5 * HZ;
2769
2770	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2771
2772	netdev->mem_start = pci_resource_start(pdev, 0);
2773	netdev->mem_end = pci_resource_end(pdev, 0);
2774
2775	/* PCI config space info */
2776	hw->vendor_id = pdev->vendor;
2777	hw->device_id = pdev->device;
2778	hw->revision_id = pdev->revision;
2779	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2780	hw->subsystem_device_id = pdev->subsystem_device;
2781
2782	/* Copy the default MAC, PHY and NVM function pointers */
2783	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2784	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2785	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2786	/* Initialize skew-specific constants */
2787	err = ei->get_invariants(hw);
2788	if (err)
2789		goto err_sw_init;
2790
2791	/* setup the private structure */
2792	err = igb_sw_init(adapter);
2793	if (err)
2794		goto err_sw_init;
2795
2796	igb_get_bus_info_pcie(hw);
2797
2798	hw->phy.autoneg_wait_to_complete = false;
2799
2800	/* Copper options */
2801	if (hw->phy.media_type == e1000_media_type_copper) {
2802		hw->phy.mdix = AUTO_ALL_MODES;
2803		hw->phy.disable_polarity_correction = false;
2804		hw->phy.ms_type = e1000_ms_hw_default;
2805	}
2806
2807	if (igb_check_reset_block(hw))
2808		dev_info(&pdev->dev,
2809			"PHY reset is blocked due to SOL/IDER session.\n");
2810
2811	/* features is initialized to 0 in allocation, it might have bits
2812	 * set by igb_sw_init so we should use an or instead of an
2813	 * assignment.
2814	 */
2815	netdev->features |= NETIF_F_SG |
2816			    NETIF_F_TSO |
2817			    NETIF_F_TSO6 |
2818			    NETIF_F_RXHASH |
2819			    NETIF_F_RXCSUM |
2820			    NETIF_F_HW_CSUM;
2821
2822	if (hw->mac.type >= e1000_82576)
2823		netdev->features |= NETIF_F_SCTP_CRC;
2824
2825#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2826				  NETIF_F_GSO_GRE_CSUM | \
2827				  NETIF_F_GSO_IPXIP4 | \
2828				  NETIF_F_GSO_IPXIP6 | \
2829				  NETIF_F_GSO_UDP_TUNNEL | \
2830				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
2831
2832	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2833	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2834
2835	/* copy netdev features into list of user selectable features */
2836	netdev->hw_features |= netdev->features |
2837			       NETIF_F_HW_VLAN_CTAG_RX |
2838			       NETIF_F_HW_VLAN_CTAG_TX |
2839			       NETIF_F_RXALL;
2840
2841	if (hw->mac.type >= e1000_i350)
2842		netdev->hw_features |= NETIF_F_NTUPLE;
2843
2844	if (pci_using_dac)
2845		netdev->features |= NETIF_F_HIGHDMA;
2846
2847	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2848	netdev->mpls_features |= NETIF_F_HW_CSUM;
2849	netdev->hw_enc_features |= netdev->vlan_features;
2850
2851	/* set this bit last since it cannot be part of vlan_features */
2852	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2853			    NETIF_F_HW_VLAN_CTAG_RX |
2854			    NETIF_F_HW_VLAN_CTAG_TX;
2855
2856	netdev->priv_flags |= IFF_SUPP_NOFCS;
2857
2858	netdev->priv_flags |= IFF_UNICAST_FLT;
2859
2860	/* MTU range: 68 - 9216 */
2861	netdev->min_mtu = ETH_MIN_MTU;
2862	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2863
2864	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2865
2866	/* before reading the NVM, reset the controller to put the device in a
2867	 * known good starting state
2868	 */
2869	hw->mac.ops.reset_hw(hw);
2870
2871	/* make sure the NVM is good , i211/i210 parts can have special NVM
2872	 * that doesn't contain a checksum
2873	 */
2874	switch (hw->mac.type) {
2875	case e1000_i210:
2876	case e1000_i211:
2877		if (igb_get_flash_presence_i210(hw)) {
2878			if (hw->nvm.ops.validate(hw) < 0) {
2879				dev_err(&pdev->dev,
2880					"The NVM Checksum Is Not Valid\n");
2881				err = -EIO;
2882				goto err_eeprom;
2883			}
2884		}
2885		break;
2886	default:
2887		if (hw->nvm.ops.validate(hw) < 0) {
2888			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2889			err = -EIO;
2890			goto err_eeprom;
2891		}
2892		break;
2893	}
2894
2895	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2896		/* copy the MAC address out of the NVM */
2897		if (hw->mac.ops.read_mac_addr(hw))
2898			dev_err(&pdev->dev, "NVM Read Error\n");
2899	}
2900
2901	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2902
2903	if (!is_valid_ether_addr(netdev->dev_addr)) {
2904		dev_err(&pdev->dev, "Invalid MAC Address\n");
2905		err = -EIO;
2906		goto err_eeprom;
2907	}
2908
2909	igb_set_default_mac_filter(adapter);
2910
2911	/* get firmware version for ethtool -i */
2912	igb_set_fw_version(adapter);
2913
2914	/* configure RXPBSIZE and TXPBSIZE */
2915	if (hw->mac.type == e1000_i210) {
2916		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2917		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2918	}
2919
2920	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
2921	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
2922
2923	INIT_WORK(&adapter->reset_task, igb_reset_task);
2924	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2925
2926	/* Initialize link properties that are user-changeable */
2927	adapter->fc_autoneg = true;
2928	hw->mac.autoneg = true;
2929	hw->phy.autoneg_advertised = 0x2f;
2930
2931	hw->fc.requested_mode = e1000_fc_default;
2932	hw->fc.current_mode = e1000_fc_default;
2933
2934	igb_validate_mdi_setting(hw);
2935
2936	/* By default, support wake on port A */
2937	if (hw->bus.func == 0)
2938		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2939
2940	/* Check the NVM for wake support on non-port A ports */
2941	if (hw->mac.type >= e1000_82580)
2942		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2943				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2944				 &eeprom_data);
2945	else if (hw->bus.func == 1)
2946		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2947
2948	if (eeprom_data & IGB_EEPROM_APME)
2949		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2950
2951	/* now that we have the eeprom settings, apply the special cases where
2952	 * the eeprom may be wrong or the board simply won't support wake on
2953	 * lan on a particular port
2954	 */
2955	switch (pdev->device) {
2956	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2957		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2958		break;
2959	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2960	case E1000_DEV_ID_82576_FIBER:
2961	case E1000_DEV_ID_82576_SERDES:
2962		/* Wake events only supported on port A for dual fiber
2963		 * regardless of eeprom setting
2964		 */
2965		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2966			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2967		break;
2968	case E1000_DEV_ID_82576_QUAD_COPPER:
2969	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2970		/* if quad port adapter, disable WoL on all but port A */
2971		if (global_quad_port_a != 0)
2972			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2973		else
2974			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2975		/* Reset for multiple quad port adapters */
2976		if (++global_quad_port_a == 4)
2977			global_quad_port_a = 0;
2978		break;
2979	default:
2980		/* If the device can't wake, don't set software support */
2981		if (!device_can_wakeup(&adapter->pdev->dev))
2982			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2983	}
2984
2985	/* initialize the wol settings based on the eeprom settings */
2986	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2987		adapter->wol |= E1000_WUFC_MAG;
2988
2989	/* Some vendors want WoL disabled by default, but still supported */
2990	if ((hw->mac.type == e1000_i350) &&
2991	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2992		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2993		adapter->wol = 0;
2994	}
2995
2996	/* Some vendors want the ability to Use the EEPROM setting as
2997	 * enable/disable only, and not for capability
2998	 */
2999	if (((hw->mac.type == e1000_i350) ||
3000	     (hw->mac.type == e1000_i354)) &&
3001	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3002		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3003		adapter->wol = 0;
3004	}
3005	if (hw->mac.type == e1000_i350) {
3006		if (((pdev->subsystem_device == 0x5001) ||
3007		     (pdev->subsystem_device == 0x5002)) &&
3008				(hw->bus.func == 0)) {
3009			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3010			adapter->wol = 0;
3011		}
3012		if (pdev->subsystem_device == 0x1F52)
3013			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3014	}
3015
3016	device_set_wakeup_enable(&adapter->pdev->dev,
3017				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3018
3019	/* reset the hardware with the new settings */
3020	igb_reset(adapter);
3021
3022	/* Init the I2C interface */
3023	err = igb_init_i2c(adapter);
3024	if (err) {
3025		dev_err(&pdev->dev, "failed to init i2c interface\n");
3026		goto err_eeprom;
3027	}
3028
3029	/* let the f/w know that the h/w is now under the control of the
3030	 * driver.
3031	 */
3032	igb_get_hw_control(adapter);
3033
3034	strcpy(netdev->name, "eth%d");
3035	err = register_netdev(netdev);
3036	if (err)
3037		goto err_register;
3038
3039	/* carrier off reporting is important to ethtool even BEFORE open */
3040	netif_carrier_off(netdev);
3041
3042#ifdef CONFIG_IGB_DCA
3043	if (dca_add_requester(&pdev->dev) == 0) {
3044		adapter->flags |= IGB_FLAG_DCA_ENABLED;
3045		dev_info(&pdev->dev, "DCA enabled\n");
3046		igb_setup_dca(adapter);
3047	}
3048
3049#endif
3050#ifdef CONFIG_IGB_HWMON
3051	/* Initialize the thermal sensor on i350 devices. */
3052	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3053		u16 ets_word;
3054
3055		/* Read the NVM to determine if this i350 device supports an
3056		 * external thermal sensor.
3057		 */
3058		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3059		if (ets_word != 0x0000 && ets_word != 0xFFFF)
3060			adapter->ets = true;
3061		else
3062			adapter->ets = false;
3063		if (igb_sysfs_init(adapter))
3064			dev_err(&pdev->dev,
3065				"failed to allocate sysfs resources\n");
3066	} else {
3067		adapter->ets = false;
3068	}
3069#endif
3070	/* Check if Media Autosense is enabled */
3071	adapter->ei = *ei;
3072	if (hw->dev_spec._82575.mas_capable)
3073		igb_init_mas(adapter);
3074
3075	/* do hw tstamp init after resetting */
3076	igb_ptp_init(adapter);
3077
3078	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3079	/* print bus type/speed/width info, not applicable to i354 */
3080	if (hw->mac.type != e1000_i354) {
3081		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3082			 netdev->name,
3083			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3084			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3085			   "unknown"),
3086			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3087			  "Width x4" :
3088			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
3089			  "Width x2" :
3090			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
3091			  "Width x1" : "unknown"), netdev->dev_addr);
3092	}
3093
3094	if ((hw->mac.type >= e1000_i210 ||
3095	     igb_get_flash_presence_i210(hw))) {
3096		ret_val = igb_read_part_string(hw, part_str,
3097					       E1000_PBANUM_LENGTH);
3098	} else {
3099		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3100	}
3101
3102	if (ret_val)
3103		strcpy(part_str, "Unknown");
3104	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3105	dev_info(&pdev->dev,
3106		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3107		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3108		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3109		adapter->num_rx_queues, adapter->num_tx_queues);
3110	if (hw->phy.media_type == e1000_media_type_copper) {
3111		switch (hw->mac.type) {
3112		case e1000_i350:
3113		case e1000_i210:
3114		case e1000_i211:
3115			/* Enable EEE for internal copper PHY devices */
3116			err = igb_set_eee_i350(hw, true, true);
3117			if ((!err) &&
3118			    (!hw->dev_spec._82575.eee_disable)) {
3119				adapter->eee_advert =
3120					MDIO_EEE_100TX | MDIO_EEE_1000T;
3121				adapter->flags |= IGB_FLAG_EEE;
3122			}
3123			break;
3124		case e1000_i354:
3125			if ((rd32(E1000_CTRL_EXT) &
3126			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3127				err = igb_set_eee_i354(hw, true, true);
3128				if ((!err) &&
3129					(!hw->dev_spec._82575.eee_disable)) {
3130					adapter->eee_advert =
3131					   MDIO_EEE_100TX | MDIO_EEE_1000T;
3132					adapter->flags |= IGB_FLAG_EEE;
3133				}
3134			}
3135			break;
3136		default:
3137			break;
3138		}
3139	}
3140	pm_runtime_put_noidle(&pdev->dev);
3141	return 0;
3142
3143err_register:
3144	igb_release_hw_control(adapter);
3145	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3146err_eeprom:
3147	if (!igb_check_reset_block(hw))
3148		igb_reset_phy(hw);
3149
3150	if (hw->flash_address)
3151		iounmap(hw->flash_address);
3152err_sw_init:
3153	kfree(adapter->mac_table);
3154	kfree(adapter->shadow_vfta);
3155	igb_clear_interrupt_scheme(adapter);
3156#ifdef CONFIG_PCI_IOV
3157	igb_disable_sriov(pdev);
3158#endif
3159	pci_iounmap(pdev, adapter->io_addr);
3160err_ioremap:
3161	free_netdev(netdev);
3162err_alloc_etherdev:
3163	pci_release_mem_regions(pdev);
3164err_pci_reg:
3165err_dma:
3166	pci_disable_device(pdev);
3167	return err;
3168}
3169
3170#ifdef CONFIG_PCI_IOV
3171static int igb_disable_sriov(struct pci_dev *pdev)
3172{
3173	struct net_device *netdev = pci_get_drvdata(pdev);
3174	struct igb_adapter *adapter = netdev_priv(netdev);
3175	struct e1000_hw *hw = &adapter->hw;
3176
3177	/* reclaim resources allocated to VFs */
3178	if (adapter->vf_data) {
3179		/* disable iov and allow time for transactions to clear */
3180		if (pci_vfs_assigned(pdev)) {
3181			dev_warn(&pdev->dev,
3182				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3183			return -EPERM;
3184		} else {
3185			pci_disable_sriov(pdev);
3186			msleep(500);
3187		}
3188
3189		kfree(adapter->vf_mac_list);
3190		adapter->vf_mac_list = NULL;
3191		kfree(adapter->vf_data);
3192		adapter->vf_data = NULL;
3193		adapter->vfs_allocated_count = 0;
3194		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3195		wrfl();
3196		msleep(100);
3197		dev_info(&pdev->dev, "IOV Disabled\n");
3198
3199		/* Re-enable DMA Coalescing flag since IOV is turned off */
3200		adapter->flags |= IGB_FLAG_DMAC;
3201	}
3202
3203	return 0;
3204}
3205
3206static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3207{
3208	struct net_device *netdev = pci_get_drvdata(pdev);
3209	struct igb_adapter *adapter = netdev_priv(netdev);
3210	int old_vfs = pci_num_vf(pdev);
3211	struct vf_mac_filter *mac_list;
3212	int err = 0;
3213	int num_vf_mac_filters, i;
3214
3215	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3216		err = -EPERM;
3217		goto out;
3218	}
3219	if (!num_vfs)
3220		goto out;
3221
3222	if (old_vfs) {
3223		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3224			 old_vfs, max_vfs);
3225		adapter->vfs_allocated_count = old_vfs;
3226	} else
3227		adapter->vfs_allocated_count = num_vfs;
3228
3229	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3230				sizeof(struct vf_data_storage), GFP_KERNEL);
3231
3232	/* if allocation failed then we do not support SR-IOV */
3233	if (!adapter->vf_data) {
3234		adapter->vfs_allocated_count = 0;
3235		err = -ENOMEM;
3236		goto out;
3237	}
3238
3239	/* Due to the limited number of RAR entries calculate potential
3240	 * number of MAC filters available for the VFs. Reserve entries
3241	 * for PF default MAC, PF MAC filters and at least one RAR entry
3242	 * for each VF for VF MAC.
3243	 */
3244	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3245			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
3246			      adapter->vfs_allocated_count);
3247
3248	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3249				       sizeof(struct vf_mac_filter),
3250				       GFP_KERNEL);
3251
3252	mac_list = adapter->vf_mac_list;
3253	INIT_LIST_HEAD(&adapter->vf_macs.l);
3254
3255	if (adapter->vf_mac_list) {
3256		/* Initialize list of VF MAC filters */
3257		for (i = 0; i < num_vf_mac_filters; i++) {
3258			mac_list->vf = -1;
3259			mac_list->free = true;
3260			list_add(&mac_list->l, &adapter->vf_macs.l);
3261			mac_list++;
3262		}
3263	} else {
3264		/* If we could not allocate memory for the VF MAC filters
3265		 * we can continue without this feature but warn user.
3266		 */
3267		dev_err(&pdev->dev,
3268			"Unable to allocate memory for VF MAC filter list\n");
3269	}
3270
3271	/* only call pci_enable_sriov() if no VFs are allocated already */
3272	if (!old_vfs) {
3273		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3274		if (err)
3275			goto err_out;
3276	}
3277	dev_info(&pdev->dev, "%d VFs allocated\n",
3278		 adapter->vfs_allocated_count);
3279	for (i = 0; i < adapter->vfs_allocated_count; i++)
3280		igb_vf_configure(adapter, i);
3281
3282	/* DMA Coalescing is not supported in IOV mode. */
3283	adapter->flags &= ~IGB_FLAG_DMAC;
3284	goto out;
3285
3286err_out:
3287	kfree(adapter->vf_mac_list);
3288	adapter->vf_mac_list = NULL;
3289	kfree(adapter->vf_data);
3290	adapter->vf_data = NULL;
3291	adapter->vfs_allocated_count = 0;
3292out:
3293	return err;
3294}
3295
3296#endif
3297/**
3298 *  igb_remove_i2c - Cleanup  I2C interface
3299 *  @adapter: pointer to adapter structure
3300 **/
3301static void igb_remove_i2c(struct igb_adapter *adapter)
3302{
3303	/* free the adapter bus structure */
3304	i2c_del_adapter(&adapter->i2c_adap);
3305}
3306
3307/**
3308 *  igb_remove - Device Removal Routine
3309 *  @pdev: PCI device information struct
3310 *
3311 *  igb_remove is called by the PCI subsystem to alert the driver
3312 *  that it should release a PCI device.  The could be caused by a
3313 *  Hot-Plug event, or because the driver is going to be removed from
3314 *  memory.
3315 **/
3316static void igb_remove(struct pci_dev *pdev)
3317{
3318	struct net_device *netdev = pci_get_drvdata(pdev);
3319	struct igb_adapter *adapter = netdev_priv(netdev);
3320	struct e1000_hw *hw = &adapter->hw;
3321
3322	pm_runtime_get_noresume(&pdev->dev);
3323#ifdef CONFIG_IGB_HWMON
3324	igb_sysfs_exit(adapter);
3325#endif
3326	igb_remove_i2c(adapter);
3327	igb_ptp_stop(adapter);
3328	/* The watchdog timer may be rescheduled, so explicitly
3329	 * disable watchdog from being rescheduled.
3330	 */
3331	set_bit(__IGB_DOWN, &adapter->state);
3332	del_timer_sync(&adapter->watchdog_timer);
3333	del_timer_sync(&adapter->phy_info_timer);
3334
3335	cancel_work_sync(&adapter->reset_task);
3336	cancel_work_sync(&adapter->watchdog_task);
3337
3338#ifdef CONFIG_IGB_DCA
3339	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3340		dev_info(&pdev->dev, "DCA disabled\n");
3341		dca_remove_requester(&pdev->dev);
3342		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3343		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3344	}
3345#endif
3346
3347	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
3348	 * would have already happened in close and is redundant.
3349	 */
3350	igb_release_hw_control(adapter);
3351
3352#ifdef CONFIG_PCI_IOV
3353	igb_disable_sriov(pdev);
3354#endif
3355
3356	unregister_netdev(netdev);
3357
3358	igb_clear_interrupt_scheme(adapter);
3359
3360	pci_iounmap(pdev, adapter->io_addr);
3361	if (hw->flash_address)
3362		iounmap(hw->flash_address);
3363	pci_release_mem_regions(pdev);
3364
3365	kfree(adapter->mac_table);
3366	kfree(adapter->shadow_vfta);
3367	free_netdev(netdev);
3368
3369	pci_disable_pcie_error_reporting(pdev);
3370
3371	pci_disable_device(pdev);
3372}
3373
3374/**
3375 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3376 *  @adapter: board private structure to initialize
3377 *
3378 *  This function initializes the vf specific data storage and then attempts to
3379 *  allocate the VFs.  The reason for ordering it this way is because it is much
3380 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3381 *  the memory for the VFs.
3382 **/
3383static void igb_probe_vfs(struct igb_adapter *adapter)
3384{
3385#ifdef CONFIG_PCI_IOV
3386	struct pci_dev *pdev = adapter->pdev;
3387	struct e1000_hw *hw = &adapter->hw;
3388
3389	/* Virtualization features not supported on i210 family. */
3390	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3391		return;
3392
3393	/* Of the below we really only want the effect of getting
3394	 * IGB_FLAG_HAS_MSIX set (if available), without which
3395	 * igb_enable_sriov() has no effect.
3396	 */
3397	igb_set_interrupt_capability(adapter, true);
3398	igb_reset_interrupt_capability(adapter);
3399
3400	pci_sriov_set_totalvfs(pdev, 7);
3401	igb_enable_sriov(pdev, max_vfs);
3402
3403#endif /* CONFIG_PCI_IOV */
3404}
3405
3406unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3407{
3408	struct e1000_hw *hw = &adapter->hw;
3409	unsigned int max_rss_queues;
3410
3411	/* Determine the maximum number of RSS queues supported. */
3412	switch (hw->mac.type) {
3413	case e1000_i211:
3414		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3415		break;
3416	case e1000_82575:
3417	case e1000_i210:
3418		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3419		break;
3420	case e1000_i350:
3421		/* I350 cannot do RSS and SR-IOV at the same time */
3422		if (!!adapter->vfs_allocated_count) {
3423			max_rss_queues = 1;
3424			break;
3425		}
3426		/* fall through */
3427	case e1000_82576:
3428		if (!!adapter->vfs_allocated_count) {
3429			max_rss_queues = 2;
3430			break;
3431		}
3432		/* fall through */
3433	case e1000_82580:
3434	case e1000_i354:
3435	default:
3436		max_rss_queues = IGB_MAX_RX_QUEUES;
3437		break;
3438	}
3439
3440	return max_rss_queues;
3441}
3442
3443static void igb_init_queue_configuration(struct igb_adapter *adapter)
3444{
3445	u32 max_rss_queues;
3446
3447	max_rss_queues = igb_get_max_rss_queues(adapter);
3448	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3449
3450	igb_set_flag_queue_pairs(adapter, max_rss_queues);
3451}
3452
3453void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3454			      const u32 max_rss_queues)
3455{
3456	struct e1000_hw *hw = &adapter->hw;
3457
3458	/* Determine if we need to pair queues. */
3459	switch (hw->mac.type) {
3460	case e1000_82575:
3461	case e1000_i211:
3462		/* Device supports enough interrupts without queue pairing. */
3463		break;
3464	case e1000_82576:
3465	case e1000_82580:
3466	case e1000_i350:
3467	case e1000_i354:
3468	case e1000_i210:
3469	default:
3470		/* If rss_queues > half of max_rss_queues, pair the queues in
3471		 * order to conserve interrupts due to limited supply.
3472		 */
3473		if (adapter->rss_queues > (max_rss_queues / 2))
3474			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3475		else
3476			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3477		break;
3478	}
3479}
3480
3481/**
3482 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3483 *  @adapter: board private structure to initialize
3484 *
3485 *  igb_sw_init initializes the Adapter private data structure.
3486 *  Fields are initialized based on PCI device information and
3487 *  OS network device settings (MTU size).
3488 **/
3489static int igb_sw_init(struct igb_adapter *adapter)
3490{
3491	struct e1000_hw *hw = &adapter->hw;
3492	struct net_device *netdev = adapter->netdev;
3493	struct pci_dev *pdev = adapter->pdev;
3494
3495	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3496
3497	/* set default ring sizes */
3498	adapter->tx_ring_count = IGB_DEFAULT_TXD;
3499	adapter->rx_ring_count = IGB_DEFAULT_RXD;
3500
3501	/* set default ITR values */
3502	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3503	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3504
3505	/* set default work limits */
3506	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3507
3508	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3509				  VLAN_HLEN;
3510	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3511
3512	spin_lock_init(&adapter->nfc_lock);
3513	spin_lock_init(&adapter->stats64_lock);
3514#ifdef CONFIG_PCI_IOV
3515	switch (hw->mac.type) {
3516	case e1000_82576:
3517	case e1000_i350:
3518		if (max_vfs > 7) {
3519			dev_warn(&pdev->dev,
3520				 "Maximum of 7 VFs per PF, using max\n");
3521			max_vfs = adapter->vfs_allocated_count = 7;
3522		} else
3523			adapter->vfs_allocated_count = max_vfs;
3524		if (adapter->vfs_allocated_count)
3525			dev_warn(&pdev->dev,
3526				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3527		break;
3528	default:
3529		break;
3530	}
3531#endif /* CONFIG_PCI_IOV */
3532
3533	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
3534	adapter->flags |= IGB_FLAG_HAS_MSIX;
3535
3536	adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3537				     hw->mac.rar_entry_count, GFP_ATOMIC);
3538	if (!adapter->mac_table)
3539		return -ENOMEM;
3540
3541	igb_probe_vfs(adapter);
3542
3543	igb_init_queue_configuration(adapter);
3544
3545	/* Setup and initialize a copy of the hw vlan table array */
3546	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3547				       GFP_ATOMIC);
3548	if (!adapter->shadow_vfta)
3549		return -ENOMEM;
3550
3551	/* This call may decrease the number of queues */
3552	if (igb_init_interrupt_scheme(adapter, true)) {
3553		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3554		return -ENOMEM;
3555	}
3556
3557	/* Explicitly disable IRQ since the NIC can be in any state. */
3558	igb_irq_disable(adapter);
3559
3560	if (hw->mac.type >= e1000_i350)
3561		adapter->flags &= ~IGB_FLAG_DMAC;
3562
3563	set_bit(__IGB_DOWN, &adapter->state);
3564	return 0;
3565}
3566
3567/**
3568 *  igb_open - Called when a network interface is made active
3569 *  @netdev: network interface device structure
3570 *
3571 *  Returns 0 on success, negative value on failure
3572 *
3573 *  The open entry point is called when a network interface is made
3574 *  active by the system (IFF_UP).  At this point all resources needed
3575 *  for transmit and receive operations are allocated, the interrupt
3576 *  handler is registered with the OS, the watchdog timer is started,
3577 *  and the stack is notified that the interface is ready.
3578 **/
3579static int __igb_open(struct net_device *netdev, bool resuming)
3580{
3581	struct igb_adapter *adapter = netdev_priv(netdev);
3582	struct e1000_hw *hw = &adapter->hw;
3583	struct pci_dev *pdev = adapter->pdev;
3584	int err;
3585	int i;
3586
3587	/* disallow open during test */
3588	if (test_bit(__IGB_TESTING, &adapter->state)) {
3589		WARN_ON(resuming);
3590		return -EBUSY;
3591	}
3592
3593	if (!resuming)
3594		pm_runtime_get_sync(&pdev->dev);
3595
3596	netif_carrier_off(netdev);
3597
3598	/* allocate transmit descriptors */
3599	err = igb_setup_all_tx_resources(adapter);
3600	if (err)
3601		goto err_setup_tx;
3602
3603	/* allocate receive descriptors */
3604	err = igb_setup_all_rx_resources(adapter);
3605	if (err)
3606		goto err_setup_rx;
3607
3608	igb_power_up_link(adapter);
3609
3610	/* before we allocate an interrupt, we must be ready to handle it.
3611	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3612	 * as soon as we call pci_request_irq, so we have to setup our
3613	 * clean_rx handler before we do so.
3614	 */
3615	igb_configure(adapter);
3616
3617	err = igb_request_irq(adapter);
3618	if (err)
3619		goto err_req_irq;
3620
3621	/* Notify the stack of the actual queue counts. */
3622	err = netif_set_real_num_tx_queues(adapter->netdev,
3623					   adapter->num_tx_queues);
3624	if (err)
3625		goto err_set_queues;
3626
3627	err = netif_set_real_num_rx_queues(adapter->netdev,
3628					   adapter->num_rx_queues);
3629	if (err)
3630		goto err_set_queues;
3631
3632	/* From here on the code is the same as igb_up() */
3633	clear_bit(__IGB_DOWN, &adapter->state);
3634
3635	for (i = 0; i < adapter->num_q_vectors; i++)
3636		napi_enable(&(adapter->q_vector[i]->napi));
3637
3638	/* Clear any pending interrupts. */
3639	rd32(E1000_ICR);
3640
3641	igb_irq_enable(adapter);
3642
3643	/* notify VFs that reset has been completed */
3644	if (adapter->vfs_allocated_count) {
3645		u32 reg_data = rd32(E1000_CTRL_EXT);
3646
3647		reg_data |= E1000_CTRL_EXT_PFRSTD;
3648		wr32(E1000_CTRL_EXT, reg_data);
3649	}
3650
3651	netif_tx_start_all_queues(netdev);
3652
3653	if (!resuming)
3654		pm_runtime_put(&pdev->dev);
3655
3656	/* start the watchdog. */
3657	hw->mac.get_link_status = 1;
3658	schedule_work(&adapter->watchdog_task);
3659
3660	return 0;
3661
3662err_set_queues:
3663	igb_free_irq(adapter);
3664err_req_irq:
3665	igb_release_hw_control(adapter);
3666	igb_power_down_link(adapter);
3667	igb_free_all_rx_resources(adapter);
3668err_setup_rx:
3669	igb_free_all_tx_resources(adapter);
3670err_setup_tx:
3671	igb_reset(adapter);
3672	if (!resuming)
3673		pm_runtime_put(&pdev->dev);
3674
3675	return err;
3676}
3677
3678int igb_open(struct net_device *netdev)
3679{
3680	return __igb_open(netdev, false);
3681}
3682
3683/**
3684 *  igb_close - Disables a network interface
3685 *  @netdev: network interface device structure
3686 *
3687 *  Returns 0, this is not allowed to fail
3688 *
3689 *  The close entry point is called when an interface is de-activated
3690 *  by the OS.  The hardware is still under the driver's control, but
3691 *  needs to be disabled.  A global MAC reset is issued to stop the
3692 *  hardware, and all transmit and receive resources are freed.
3693 **/
3694static int __igb_close(struct net_device *netdev, bool suspending)
3695{
3696	struct igb_adapter *adapter = netdev_priv(netdev);
3697	struct pci_dev *pdev = adapter->pdev;
3698
3699	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3700
3701	if (!suspending)
3702		pm_runtime_get_sync(&pdev->dev);
3703
3704	igb_down(adapter);
3705	igb_free_irq(adapter);
3706
3707	igb_free_all_tx_resources(adapter);
3708	igb_free_all_rx_resources(adapter);
3709
3710	if (!suspending)
3711		pm_runtime_put_sync(&pdev->dev);
3712	return 0;
3713}
3714
3715int igb_close(struct net_device *netdev)
3716{
3717	if (netif_device_present(netdev) || netdev->dismantle)
3718		return __igb_close(netdev, false);
3719	return 0;
3720}
3721
3722/**
3723 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3724 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3725 *
3726 *  Return 0 on success, negative on failure
3727 **/
3728int igb_setup_tx_resources(struct igb_ring *tx_ring)
3729{
3730	struct device *dev = tx_ring->dev;
3731	int size;
3732
3733	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3734
3735	tx_ring->tx_buffer_info = vmalloc(size);
3736	if (!tx_ring->tx_buffer_info)
3737		goto err;
3738
3739	/* round up to nearest 4K */
3740	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3741	tx_ring->size = ALIGN(tx_ring->size, 4096);
3742
3743	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3744					   &tx_ring->dma, GFP_KERNEL);
3745	if (!tx_ring->desc)
3746		goto err;
3747
3748	tx_ring->next_to_use = 0;
3749	tx_ring->next_to_clean = 0;
3750
3751	return 0;
3752
3753err:
3754	vfree(tx_ring->tx_buffer_info);
3755	tx_ring->tx_buffer_info = NULL;
3756	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3757	return -ENOMEM;
3758}
3759
3760/**
3761 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3762 *				 (Descriptors) for all queues
3763 *  @adapter: board private structure
3764 *
3765 *  Return 0 on success, negative on failure
3766 **/
3767static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3768{
3769	struct pci_dev *pdev = adapter->pdev;
3770	int i, err = 0;
3771
3772	for (i = 0; i < adapter->num_tx_queues; i++) {
3773		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3774		if (err) {
3775			dev_err(&pdev->dev,
3776				"Allocation for Tx Queue %u failed\n", i);
3777			for (i--; i >= 0; i--)
3778				igb_free_tx_resources(adapter->tx_ring[i]);
3779			break;
3780		}
3781	}
3782
3783	return err;
3784}
3785
3786/**
3787 *  igb_setup_tctl - configure the transmit control registers
3788 *  @adapter: Board private structure
3789 **/
3790void igb_setup_tctl(struct igb_adapter *adapter)
3791{
3792	struct e1000_hw *hw = &adapter->hw;
3793	u32 tctl;
3794
3795	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3796	wr32(E1000_TXDCTL(0), 0);
3797
3798	/* Program the Transmit Control Register */
3799	tctl = rd32(E1000_TCTL);
3800	tctl &= ~E1000_TCTL_CT;
3801	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3802		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3803
3804	igb_config_collision_dist(hw);
3805
3806	/* Enable transmits */
3807	tctl |= E1000_TCTL_EN;
3808
3809	wr32(E1000_TCTL, tctl);
3810}
3811
3812/**
3813 *  igb_configure_tx_ring - Configure transmit ring after Reset
3814 *  @adapter: board private structure
3815 *  @ring: tx ring to configure
3816 *
3817 *  Configure a transmit ring after a reset.
3818 **/
3819void igb_configure_tx_ring(struct igb_adapter *adapter,
3820			   struct igb_ring *ring)
3821{
3822	struct e1000_hw *hw = &adapter->hw;
3823	u32 txdctl = 0;
3824	u64 tdba = ring->dma;
3825	int reg_idx = ring->reg_idx;
3826
3827	/* disable the queue */
3828	wr32(E1000_TXDCTL(reg_idx), 0);
3829	wrfl();
3830	mdelay(10);
3831
3832	wr32(E1000_TDLEN(reg_idx),
3833	     ring->count * sizeof(union e1000_adv_tx_desc));
3834	wr32(E1000_TDBAL(reg_idx),
3835	     tdba & 0x00000000ffffffffULL);
3836	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3837
3838	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
3839	wr32(E1000_TDH(reg_idx), 0);
3840	writel(0, ring->tail);
3841
3842	txdctl |= IGB_TX_PTHRESH;
3843	txdctl |= IGB_TX_HTHRESH << 8;
3844	txdctl |= IGB_TX_WTHRESH << 16;
3845
3846	/* reinitialize tx_buffer_info */
3847	memset(ring->tx_buffer_info, 0,
3848	       sizeof(struct igb_tx_buffer) * ring->count);
3849
3850	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3851	wr32(E1000_TXDCTL(reg_idx), txdctl);
3852}
3853
3854/**
3855 *  igb_configure_tx - Configure transmit Unit after Reset
3856 *  @adapter: board private structure
3857 *
3858 *  Configure the Tx unit of the MAC after a reset.
3859 **/
3860static void igb_configure_tx(struct igb_adapter *adapter)
3861{
3862	int i;
3863
3864	for (i = 0; i < adapter->num_tx_queues; i++)
3865		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3866}
3867
3868/**
3869 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3870 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3871 *
3872 *  Returns 0 on success, negative on failure
3873 **/
3874int igb_setup_rx_resources(struct igb_ring *rx_ring)
3875{
3876	struct device *dev = rx_ring->dev;
3877	int size;
3878
3879	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3880
3881	rx_ring->rx_buffer_info = vmalloc(size);
3882	if (!rx_ring->rx_buffer_info)
3883		goto err;
3884
3885	/* Round up to nearest 4K */
3886	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3887	rx_ring->size = ALIGN(rx_ring->size, 4096);
3888
3889	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3890					   &rx_ring->dma, GFP_KERNEL);
3891	if (!rx_ring->desc)
3892		goto err;
3893
3894	rx_ring->next_to_alloc = 0;
3895	rx_ring->next_to_clean = 0;
3896	rx_ring->next_to_use = 0;
3897
3898	return 0;
3899
3900err:
3901	vfree(rx_ring->rx_buffer_info);
3902	rx_ring->rx_buffer_info = NULL;
3903	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3904	return -ENOMEM;
3905}
3906
3907/**
3908 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3909 *				 (Descriptors) for all queues
3910 *  @adapter: board private structure
3911 *
3912 *  Return 0 on success, negative on failure
3913 **/
3914static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3915{
3916	struct pci_dev *pdev = adapter->pdev;
3917	int i, err = 0;
3918
3919	for (i = 0; i < adapter->num_rx_queues; i++) {
3920		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3921		if (err) {
3922			dev_err(&pdev->dev,
3923				"Allocation for Rx Queue %u failed\n", i);
3924			for (i--; i >= 0; i--)
3925				igb_free_rx_resources(adapter->rx_ring[i]);
3926			break;
3927		}
3928	}
3929
3930	return err;
3931}
3932
3933/**
3934 *  igb_setup_mrqc - configure the multiple receive queue control registers
3935 *  @adapter: Board private structure
3936 **/
3937static void igb_setup_mrqc(struct igb_adapter *adapter)
3938{
3939	struct e1000_hw *hw = &adapter->hw;
3940	u32 mrqc, rxcsum;
3941	u32 j, num_rx_queues;
3942	u32 rss_key[10];
3943
3944	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3945	for (j = 0; j < 10; j++)
3946		wr32(E1000_RSSRK(j), rss_key[j]);
3947
3948	num_rx_queues = adapter->rss_queues;
3949
3950	switch (hw->mac.type) {
3951	case e1000_82576:
3952		/* 82576 supports 2 RSS queues for SR-IOV */
3953		if (adapter->vfs_allocated_count)
3954			num_rx_queues = 2;
3955		break;
3956	default:
3957		break;
3958	}
3959
3960	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3961		for (j = 0; j < IGB_RETA_SIZE; j++)
3962			adapter->rss_indir_tbl[j] =
3963			(j * num_rx_queues) / IGB_RETA_SIZE;
3964		adapter->rss_indir_tbl_init = num_rx_queues;
3965	}
3966	igb_write_rss_indir_tbl(adapter);
3967
3968	/* Disable raw packet checksumming so that RSS hash is placed in
3969	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3970	 * offloads as they are enabled by default
3971	 */
3972	rxcsum = rd32(E1000_RXCSUM);
3973	rxcsum |= E1000_RXCSUM_PCSD;
3974
3975	if (adapter->hw.mac.type >= e1000_82576)
3976		/* Enable Receive Checksum Offload for SCTP */
3977		rxcsum |= E1000_RXCSUM_CRCOFL;
3978
3979	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3980	wr32(E1000_RXCSUM, rxcsum);
3981
3982	/* Generate RSS hash based on packet types, TCP/UDP
3983	 * port numbers and/or IPv4/v6 src and dst addresses
3984	 */
3985	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3986	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3987	       E1000_MRQC_RSS_FIELD_IPV6 |
3988	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3989	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3990
3991	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3992		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3993	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3994		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3995
3996	/* If VMDq is enabled then we set the appropriate mode for that, else
3997	 * we default to RSS so that an RSS hash is calculated per packet even
3998	 * if we are only using one queue
3999	 */
4000	if (adapter->vfs_allocated_count) {
4001		if (hw->mac.type > e1000_82575) {
4002			/* Set the default pool for the PF's first queue */
4003			u32 vtctl = rd32(E1000_VT_CTL);
4004
4005			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4006				   E1000_VT_CTL_DISABLE_DEF_POOL);
4007			vtctl |= adapter->vfs_allocated_count <<
4008				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4009			wr32(E1000_VT_CTL, vtctl);
4010		}
4011		if (adapter->rss_queues > 1)
4012			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4013		else
4014			mrqc |= E1000_MRQC_ENABLE_VMDQ;
4015	} else {
4016		if (hw->mac.type != e1000_i211)
4017			mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4018	}
4019	igb_vmm_control(adapter);
4020
4021	wr32(E1000_MRQC, mrqc);
4022}
4023
4024/**
4025 *  igb_setup_rctl - configure the receive control registers
4026 *  @adapter: Board private structure
4027 **/
4028void igb_setup_rctl(struct igb_adapter *adapter)
4029{
4030	struct e1000_hw *hw = &adapter->hw;
4031	u32 rctl;
4032
4033	rctl = rd32(E1000_RCTL);
4034
4035	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4036	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4037
4038	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4039		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4040
4041	/* enable stripping of CRC. It's unlikely this will break BMC
4042	 * redirection as it did with e1000. Newer features require
4043	 * that the HW strips the CRC.
4044	 */
4045	rctl |= E1000_RCTL_SECRC;
4046
4047	/* disable store bad packets and clear size bits. */
4048	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4049
4050	/* enable LPE to allow for reception of jumbo frames */
4051	rctl |= E1000_RCTL_LPE;
4052
4053	/* disable queue 0 to prevent tail write w/o re-config */
4054	wr32(E1000_RXDCTL(0), 0);
4055
4056	/* Attention!!!  For SR-IOV PF driver operations you must enable
4057	 * queue drop for all VF and PF queues to prevent head of line blocking
4058	 * if an un-trusted VF does not provide descriptors to hardware.
4059	 */
4060	if (adapter->vfs_allocated_count) {
4061		/* set all queue drop enable bits */
4062		wr32(E1000_QDE, ALL_QUEUES);
4063	}
4064
4065	/* This is useful for sniffing bad packets. */
4066	if (adapter->netdev->features & NETIF_F_RXALL) {
4067		/* UPE and MPE will be handled by normal PROMISC logic
4068		 * in e1000e_set_rx_mode
4069		 */
4070		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4071			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4072			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4073
4074		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4075			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4076		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4077		 * and that breaks VLANs.
4078		 */
4079	}
4080
4081	wr32(E1000_RCTL, rctl);
4082}
4083
4084static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4085				   int vfn)
4086{
4087	struct e1000_hw *hw = &adapter->hw;
4088	u32 vmolr;
4089
4090	if (size > MAX_JUMBO_FRAME_SIZE)
4091		size = MAX_JUMBO_FRAME_SIZE;
4092
4093	vmolr = rd32(E1000_VMOLR(vfn));
4094	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4095	vmolr |= size | E1000_VMOLR_LPE;
4096	wr32(E1000_VMOLR(vfn), vmolr);
4097
4098	return 0;
4099}
4100
4101static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4102					 int vfn, bool enable)
4103{
4104	struct e1000_hw *hw = &adapter->hw;
4105	u32 val, reg;
4106
4107	if (hw->mac.type < e1000_82576)
4108		return;
4109
4110	if (hw->mac.type == e1000_i350)
4111		reg = E1000_DVMOLR(vfn);
4112	else
4113		reg = E1000_VMOLR(vfn);
4114
4115	val = rd32(reg);
4116	if (enable)
4117		val |= E1000_VMOLR_STRVLAN;
4118	else
4119		val &= ~(E1000_VMOLR_STRVLAN);
4120	wr32(reg, val);
4121}
4122
4123static inline void igb_set_vmolr(struct igb_adapter *adapter,
4124				 int vfn, bool aupe)
4125{
4126	struct e1000_hw *hw = &adapter->hw;
4127	u32 vmolr;
4128
4129	/* This register exists only on 82576 and newer so if we are older then
4130	 * we should exit and do nothing
4131	 */
4132	if (hw->mac.type < e1000_82576)
4133		return;
4134
4135	vmolr = rd32(E1000_VMOLR(vfn));
4136	if (aupe)
4137		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4138	else
4139		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4140
4141	/* clear all bits that might not be set */
4142	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4143
4144	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4145		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4146	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
4147	 * multicast packets
4148	 */
4149	if (vfn <= adapter->vfs_allocated_count)
4150		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4151
4152	wr32(E1000_VMOLR(vfn), vmolr);
4153}
4154
4155/**
4156 *  igb_configure_rx_ring - Configure a receive ring after Reset
4157 *  @adapter: board private structure
4158 *  @ring: receive ring to be configured
4159 *
4160 *  Configure the Rx unit of the MAC after a reset.
4161 **/
4162void igb_configure_rx_ring(struct igb_adapter *adapter,
4163			   struct igb_ring *ring)
4164{
4165	struct e1000_hw *hw = &adapter->hw;
4166	union e1000_adv_rx_desc *rx_desc;
4167	u64 rdba = ring->dma;
4168	int reg_idx = ring->reg_idx;
4169	u32 srrctl = 0, rxdctl = 0;
4170
4171	/* disable the queue */
4172	wr32(E1000_RXDCTL(reg_idx), 0);
4173
4174	/* Set DMA base address registers */
4175	wr32(E1000_RDBAL(reg_idx),
4176	     rdba & 0x00000000ffffffffULL);
4177	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4178	wr32(E1000_RDLEN(reg_idx),
4179	     ring->count * sizeof(union e1000_adv_rx_desc));
4180
4181	/* initialize head and tail */
4182	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4183	wr32(E1000_RDH(reg_idx), 0);
4184	writel(0, ring->tail);
4185
4186	/* set descriptor configuration */
4187	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4188	if (ring_uses_large_buffer(ring))
4189		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4190	else
4191		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4192	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4193	if (hw->mac.type >= e1000_82580)
4194		srrctl |= E1000_SRRCTL_TIMESTAMP;
4195	/* Only set Drop Enable if we are supporting multiple queues */
4196	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4197		srrctl |= E1000_SRRCTL_DROP_EN;
4198
4199	wr32(E1000_SRRCTL(reg_idx), srrctl);
4200
4201	/* set filtering for VMDQ pools */
4202	igb_set_vmolr(adapter, reg_idx & 0x7, true);
4203
4204	rxdctl |= IGB_RX_PTHRESH;
4205	rxdctl |= IGB_RX_HTHRESH << 8;
4206	rxdctl |= IGB_RX_WTHRESH << 16;
4207
4208	/* initialize rx_buffer_info */
4209	memset(ring->rx_buffer_info, 0,
4210	       sizeof(struct igb_rx_buffer) * ring->count);
4211
4212	/* initialize Rx descriptor 0 */
4213	rx_desc = IGB_RX_DESC(ring, 0);
4214	rx_desc->wb.upper.length = 0;
4215
4216	/* enable receive descriptor fetching */
4217	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4218	wr32(E1000_RXDCTL(reg_idx), rxdctl);
4219}
4220
4221static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4222				  struct igb_ring *rx_ring)
4223{
4224	/* set build_skb and buffer size flags */
4225	clear_ring_build_skb_enabled(rx_ring);
4226	clear_ring_uses_large_buffer(rx_ring);
4227
4228	if (adapter->flags & IGB_FLAG_RX_LEGACY)
4229		return;
4230
4231	set_ring_build_skb_enabled(rx_ring);
4232
4233#if (PAGE_SIZE < 8192)
4234	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4235		return;
4236
4237	set_ring_uses_large_buffer(rx_ring);
4238#endif
4239}
4240
4241/**
4242 *  igb_configure_rx - Configure receive Unit after Reset
4243 *  @adapter: board private structure
4244 *
4245 *  Configure the Rx unit of the MAC after a reset.
4246 **/
4247static void igb_configure_rx(struct igb_adapter *adapter)
4248{
4249	int i;
4250
4251	/* set the correct pool for the PF default MAC address in entry 0 */
4252	igb_set_default_mac_filter(adapter);
4253
4254	/* Setup the HW Rx Head and Tail Descriptor Pointers and
4255	 * the Base and Length of the Rx Descriptor Ring
4256	 */
4257	for (i = 0; i < adapter->num_rx_queues; i++) {
4258		struct igb_ring *rx_ring = adapter->rx_ring[i];
4259
4260		igb_set_rx_buffer_len(adapter, rx_ring);
4261		igb_configure_rx_ring(adapter, rx_ring);
4262	}
4263}
4264
4265/**
4266 *  igb_free_tx_resources - Free Tx Resources per Queue
4267 *  @tx_ring: Tx descriptor ring for a specific queue
4268 *
4269 *  Free all transmit software resources
4270 **/
4271void igb_free_tx_resources(struct igb_ring *tx_ring)
4272{
4273	igb_clean_tx_ring(tx_ring);
4274
4275	vfree(tx_ring->tx_buffer_info);
4276	tx_ring->tx_buffer_info = NULL;
4277
4278	/* if not set, then don't free */
4279	if (!tx_ring->desc)
4280		return;
4281
4282	dma_free_coherent(tx_ring->dev, tx_ring->size,
4283			  tx_ring->desc, tx_ring->dma);
4284
4285	tx_ring->desc = NULL;
4286}
4287
4288/**
4289 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4290 *  @adapter: board private structure
4291 *
4292 *  Free all transmit software resources
4293 **/
4294static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4295{
4296	int i;
4297
4298	for (i = 0; i < adapter->num_tx_queues; i++)
4299		if (adapter->tx_ring[i])
4300			igb_free_tx_resources(adapter->tx_ring[i]);
4301}
4302
4303/**
4304 *  igb_clean_tx_ring - Free Tx Buffers
4305 *  @tx_ring: ring to be cleaned
4306 **/
4307static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4308{
4309	u16 i = tx_ring->next_to_clean;
4310	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4311
4312	while (i != tx_ring->next_to_use) {
4313		union e1000_adv_tx_desc *eop_desc, *tx_desc;
4314
4315		/* Free all the Tx ring sk_buffs */
4316		dev_kfree_skb_any(tx_buffer->skb);
4317
4318		/* unmap skb header data */
4319		dma_unmap_single(tx_ring->dev,
4320				 dma_unmap_addr(tx_buffer, dma),
4321				 dma_unmap_len(tx_buffer, len),
4322				 DMA_TO_DEVICE);
4323
4324		/* check for eop_desc to determine the end of the packet */
4325		eop_desc = tx_buffer->next_to_watch;
4326		tx_desc = IGB_TX_DESC(tx_ring, i);
4327
4328		/* unmap remaining buffers */
4329		while (tx_desc != eop_desc) {
4330			tx_buffer++;
4331			tx_desc++;
4332			i++;
4333			if (unlikely(i == tx_ring->count)) {
4334				i = 0;
4335				tx_buffer = tx_ring->tx_buffer_info;
4336				tx_desc = IGB_TX_DESC(tx_ring, 0);
4337			}
4338
4339			/* unmap any remaining paged data */
4340			if (dma_unmap_len(tx_buffer, len))
4341				dma_unmap_page(tx_ring->dev,
4342					       dma_unmap_addr(tx_buffer, dma),
4343					       dma_unmap_len(tx_buffer, len),
4344					       DMA_TO_DEVICE);
4345		}
4346
4347		/* move us one more past the eop_desc for start of next pkt */
4348		tx_buffer++;
4349		i++;
4350		if (unlikely(i == tx_ring->count)) {
4351			i = 0;
4352			tx_buffer = tx_ring->tx_buffer_info;
4353		}
4354	}
4355
4356	/* reset BQL for queue */
4357	netdev_tx_reset_queue(txring_txq(tx_ring));
4358
4359	/* reset next_to_use and next_to_clean */
4360	tx_ring->next_to_use = 0;
4361	tx_ring->next_to_clean = 0;
4362}
4363
4364/**
4365 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4366 *  @adapter: board private structure
4367 **/
4368static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4369{
4370	int i;
4371
4372	for (i = 0; i < adapter->num_tx_queues; i++)
4373		if (adapter->tx_ring[i])
4374			igb_clean_tx_ring(adapter->tx_ring[i]);
4375}
4376
4377/**
4378 *  igb_free_rx_resources - Free Rx Resources
4379 *  @rx_ring: ring to clean the resources from
4380 *
4381 *  Free all receive software resources
4382 **/
4383void igb_free_rx_resources(struct igb_ring *rx_ring)
4384{
4385	igb_clean_rx_ring(rx_ring);
4386
4387	vfree(rx_ring->rx_buffer_info);
4388	rx_ring->rx_buffer_info = NULL;
4389
4390	/* if not set, then don't free */
4391	if (!rx_ring->desc)
4392		return;
4393
4394	dma_free_coherent(rx_ring->dev, rx_ring->size,
4395			  rx_ring->desc, rx_ring->dma);
4396
4397	rx_ring->desc = NULL;
4398}
4399
4400/**
4401 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4402 *  @adapter: board private structure
4403 *
4404 *  Free all receive software resources
4405 **/
4406static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4407{
4408	int i;
4409
4410	for (i = 0; i < adapter->num_rx_queues; i++)
4411		if (adapter->rx_ring[i])
4412			igb_free_rx_resources(adapter->rx_ring[i]);
4413}
4414
4415/**
4416 *  igb_clean_rx_ring - Free Rx Buffers per Queue
4417 *  @rx_ring: ring to free buffers from
4418 **/
4419static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4420{
4421	u16 i = rx_ring->next_to_clean;
4422
4423	if (rx_ring->skb)
4424		dev_kfree_skb(rx_ring->skb);
4425	rx_ring->skb = NULL;
4426
4427	/* Free all the Rx ring sk_buffs */
4428	while (i != rx_ring->next_to_alloc) {
4429		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4430
4431		/* Invalidate cache lines that may have been written to by
4432		 * device so that we avoid corrupting memory.
4433		 */
4434		dma_sync_single_range_for_cpu(rx_ring->dev,
4435					      buffer_info->dma,
4436					      buffer_info->page_offset,
4437					      igb_rx_bufsz(rx_ring),
4438					      DMA_FROM_DEVICE);
4439
4440		/* free resources associated with mapping */
4441		dma_unmap_page_attrs(rx_ring->dev,
4442				     buffer_info->dma,
4443				     igb_rx_pg_size(rx_ring),
4444				     DMA_FROM_DEVICE,
4445				     IGB_RX_DMA_ATTR);
4446		__page_frag_cache_drain(buffer_info->page,
4447					buffer_info->pagecnt_bias);
4448
4449		i++;
4450		if (i == rx_ring->count)
4451			i = 0;
4452	}
4453
4454	rx_ring->next_to_alloc = 0;
4455	rx_ring->next_to_clean = 0;
4456	rx_ring->next_to_use = 0;
4457}
4458
4459/**
4460 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4461 *  @adapter: board private structure
4462 **/
4463static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4464{
4465	int i;
4466
4467	for (i = 0; i < adapter->num_rx_queues; i++)
4468		if (adapter->rx_ring[i])
4469			igb_clean_rx_ring(adapter->rx_ring[i]);
4470}
4471
4472/**
4473 *  igb_set_mac - Change the Ethernet Address of the NIC
4474 *  @netdev: network interface device structure
4475 *  @p: pointer to an address structure
4476 *
4477 *  Returns 0 on success, negative on failure
4478 **/
4479static int igb_set_mac(struct net_device *netdev, void *p)
4480{
4481	struct igb_adapter *adapter = netdev_priv(netdev);
4482	struct e1000_hw *hw = &adapter->hw;
4483	struct sockaddr *addr = p;
4484
4485	if (!is_valid_ether_addr(addr->sa_data))
4486		return -EADDRNOTAVAIL;
4487
4488	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4489	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4490
4491	/* set the correct pool for the new PF MAC address in entry 0 */
4492	igb_set_default_mac_filter(adapter);
4493
4494	return 0;
4495}
4496
4497/**
4498 *  igb_write_mc_addr_list - write multicast addresses to MTA
4499 *  @netdev: network interface device structure
4500 *
4501 *  Writes multicast address list to the MTA hash table.
4502 *  Returns: -ENOMEM on failure
4503 *           0 on no addresses written
4504 *           X on writing X addresses to MTA
4505 **/
4506static int igb_write_mc_addr_list(struct net_device *netdev)
4507{
4508	struct igb_adapter *adapter = netdev_priv(netdev);
4509	struct e1000_hw *hw = &adapter->hw;
4510	struct netdev_hw_addr *ha;
4511	u8  *mta_list;
4512	int i;
4513
4514	if (netdev_mc_empty(netdev)) {
4515		/* nothing to program, so clear mc list */
4516		igb_update_mc_addr_list(hw, NULL, 0);
4517		igb_restore_vf_multicasts(adapter);
4518		return 0;
4519	}
4520
4521	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4522	if (!mta_list)
4523		return -ENOMEM;
4524
4525	/* The shared function expects a packed array of only addresses. */
4526	i = 0;
4527	netdev_for_each_mc_addr(ha, netdev)
4528		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4529
4530	igb_update_mc_addr_list(hw, mta_list, i);
4531	kfree(mta_list);
4532
4533	return netdev_mc_count(netdev);
4534}
4535
4536static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4537{
4538	struct e1000_hw *hw = &adapter->hw;
4539	u32 i, pf_id;
4540
4541	switch (hw->mac.type) {
4542	case e1000_i210:
4543	case e1000_i211:
4544	case e1000_i350:
4545		/* VLAN filtering needed for VLAN prio filter */
4546		if (adapter->netdev->features & NETIF_F_NTUPLE)
4547			break;
4548		/* fall through */
4549	case e1000_82576:
4550	case e1000_82580:
4551	case e1000_i354:
4552		/* VLAN filtering needed for pool filtering */
4553		if (adapter->vfs_allocated_count)
4554			break;
4555		/* fall through */
4556	default:
4557		return 1;
4558	}
4559
4560	/* We are already in VLAN promisc, nothing to do */
4561	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4562		return 0;
4563
4564	if (!adapter->vfs_allocated_count)
4565		goto set_vfta;
4566
4567	/* Add PF to all active pools */
4568	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4569
4570	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4571		u32 vlvf = rd32(E1000_VLVF(i));
4572
4573		vlvf |= BIT(pf_id);
4574		wr32(E1000_VLVF(i), vlvf);
4575	}
4576
4577set_vfta:
4578	/* Set all bits in the VLAN filter table array */
4579	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4580		hw->mac.ops.write_vfta(hw, i, ~0U);
4581
4582	/* Set flag so we don't redo unnecessary work */
4583	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4584
4585	return 0;
4586}
4587
4588#define VFTA_BLOCK_SIZE 8
4589static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4590{
4591	struct e1000_hw *hw = &adapter->hw;
4592	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4593	u32 vid_start = vfta_offset * 32;
4594	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4595	u32 i, vid, word, bits, pf_id;
4596
4597	/* guarantee that we don't scrub out management VLAN */
4598	vid = adapter->mng_vlan_id;
4599	if (vid >= vid_start && vid < vid_end)
4600		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4601
4602	if (!adapter->vfs_allocated_count)
4603		goto set_vfta;
4604
4605	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4606
4607	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4608		u32 vlvf = rd32(E1000_VLVF(i));
4609
4610		/* pull VLAN ID from VLVF */
4611		vid = vlvf & VLAN_VID_MASK;
4612
4613		/* only concern ourselves with a certain range */
4614		if (vid < vid_start || vid >= vid_end)
4615			continue;
4616
4617		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4618			/* record VLAN ID in VFTA */
4619			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4620
4621			/* if PF is part of this then continue */
4622			if (test_bit(vid, adapter->active_vlans))
4623				continue;
4624		}
4625
4626		/* remove PF from the pool */
4627		bits = ~BIT(pf_id);
4628		bits &= rd32(E1000_VLVF(i));
4629		wr32(E1000_VLVF(i), bits);
4630	}
4631
4632set_vfta:
4633	/* extract values from active_vlans and write back to VFTA */
4634	for (i = VFTA_BLOCK_SIZE; i--;) {
4635		vid = (vfta_offset + i) * 32;
4636		word = vid / BITS_PER_LONG;
4637		bits = vid % BITS_PER_LONG;
4638
4639		vfta[i] |= adapter->active_vlans[word] >> bits;
4640
4641		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4642	}
4643}
4644
4645static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4646{
4647	u32 i;
4648
4649	/* We are not in VLAN promisc, nothing to do */
4650	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4651		return;
4652
4653	/* Set flag so we don't redo unnecessary work */
4654	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4655
4656	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4657		igb_scrub_vfta(adapter, i);
4658}
4659
4660/**
4661 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4662 *  @netdev: network interface device structure
4663 *
4664 *  The set_rx_mode entry point is called whenever the unicast or multicast
4665 *  address lists or the network interface flags are updated.  This routine is
4666 *  responsible for configuring the hardware for proper unicast, multicast,
4667 *  promiscuous mode, and all-multi behavior.
4668 **/
4669static void igb_set_rx_mode(struct net_device *netdev)
4670{
4671	struct igb_adapter *adapter = netdev_priv(netdev);
4672	struct e1000_hw *hw = &adapter->hw;
4673	unsigned int vfn = adapter->vfs_allocated_count;
4674	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4675	int count;
4676
4677	/* Check for Promiscuous and All Multicast modes */
4678	if (netdev->flags & IFF_PROMISC) {
4679		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4680		vmolr |= E1000_VMOLR_MPME;
4681
4682		/* enable use of UTA filter to force packets to default pool */
4683		if (hw->mac.type == e1000_82576)
4684			vmolr |= E1000_VMOLR_ROPE;
4685	} else {
4686		if (netdev->flags & IFF_ALLMULTI) {
4687			rctl |= E1000_RCTL_MPE;
4688			vmolr |= E1000_VMOLR_MPME;
4689		} else {
4690			/* Write addresses to the MTA, if the attempt fails
4691			 * then we should just turn on promiscuous mode so
4692			 * that we can at least receive multicast traffic
4693			 */
4694			count = igb_write_mc_addr_list(netdev);
4695			if (count < 0) {
4696				rctl |= E1000_RCTL_MPE;
4697				vmolr |= E1000_VMOLR_MPME;
4698			} else if (count) {
4699				vmolr |= E1000_VMOLR_ROMPE;
4700			}
4701		}
4702	}
4703
4704	/* Write addresses to available RAR registers, if there is not
4705	 * sufficient space to store all the addresses then enable
4706	 * unicast promiscuous mode
4707	 */
4708	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
4709		rctl |= E1000_RCTL_UPE;
4710		vmolr |= E1000_VMOLR_ROPE;
4711	}
4712
4713	/* enable VLAN filtering by default */
4714	rctl |= E1000_RCTL_VFE;
4715
4716	/* disable VLAN filtering for modes that require it */
4717	if ((netdev->flags & IFF_PROMISC) ||
4718	    (netdev->features & NETIF_F_RXALL)) {
4719		/* if we fail to set all rules then just clear VFE */
4720		if (igb_vlan_promisc_enable(adapter))
4721			rctl &= ~E1000_RCTL_VFE;
4722	} else {
4723		igb_vlan_promisc_disable(adapter);
4724	}
4725
4726	/* update state of unicast, multicast, and VLAN filtering modes */
4727	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4728				     E1000_RCTL_VFE);
4729	wr32(E1000_RCTL, rctl);
4730
4731#if (PAGE_SIZE < 8192)
4732	if (!adapter->vfs_allocated_count) {
4733		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4734			rlpml = IGB_MAX_FRAME_BUILD_SKB;
4735	}
4736#endif
4737	wr32(E1000_RLPML, rlpml);
4738
4739	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4740	 * the VMOLR to enable the appropriate modes.  Without this workaround
4741	 * we will have issues with VLAN tag stripping not being done for frames
4742	 * that are only arriving because we are the default pool
4743	 */
4744	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4745		return;
4746
4747	/* set UTA to appropriate mode */
4748	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4749
4750	vmolr |= rd32(E1000_VMOLR(vfn)) &
4751		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4752
4753	/* enable Rx jumbo frames, restrict as needed to support build_skb */
4754	vmolr &= ~E1000_VMOLR_RLPML_MASK;
4755#if (PAGE_SIZE < 8192)
4756	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4757		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
4758	else
4759#endif
4760		vmolr |= MAX_JUMBO_FRAME_SIZE;
4761	vmolr |= E1000_VMOLR_LPE;
4762
4763	wr32(E1000_VMOLR(vfn), vmolr);
4764
4765	igb_restore_vf_multicasts(adapter);
4766}
4767
4768static void igb_check_wvbr(struct igb_adapter *adapter)
4769{
4770	struct e1000_hw *hw = &adapter->hw;
4771	u32 wvbr = 0;
4772
4773	switch (hw->mac.type) {
4774	case e1000_82576:
4775	case e1000_i350:
4776		wvbr = rd32(E1000_WVBR);
4777		if (!wvbr)
4778			return;
4779		break;
4780	default:
4781		break;
4782	}
4783
4784	adapter->wvbr |= wvbr;
4785}
4786
4787#define IGB_STAGGERED_QUEUE_OFFSET 8
4788
4789static void igb_spoof_check(struct igb_adapter *adapter)
4790{
4791	int j;
4792
4793	if (!adapter->wvbr)
4794		return;
4795
4796	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4797		if (adapter->wvbr & BIT(j) ||
4798		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4799			dev_warn(&adapter->pdev->dev,
4800				"Spoof event(s) detected on VF %d\n", j);
4801			adapter->wvbr &=
4802				~(BIT(j) |
4803				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4804		}
4805	}
4806}
4807
4808/* Need to wait a few seconds after link up to get diagnostic information from
4809 * the phy
4810 */
4811static void igb_update_phy_info(struct timer_list *t)
4812{
4813	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4814	igb_get_phy_info(&adapter->hw);
4815}
4816
4817/**
4818 *  igb_has_link - check shared code for link and determine up/down
4819 *  @adapter: pointer to driver private info
4820 **/
4821bool igb_has_link(struct igb_adapter *adapter)
4822{
4823	struct e1000_hw *hw = &adapter->hw;
4824	bool link_active = false;
4825
4826	/* get_link_status is set on LSC (link status) interrupt or
4827	 * rx sequence error interrupt.  get_link_status will stay
4828	 * false until the e1000_check_for_link establishes link
4829	 * for copper adapters ONLY
4830	 */
4831	switch (hw->phy.media_type) {
4832	case e1000_media_type_copper:
4833		if (!hw->mac.get_link_status)
4834			return true;
4835	case e1000_media_type_internal_serdes:
4836		hw->mac.ops.check_for_link(hw);
4837		link_active = !hw->mac.get_link_status;
4838		break;
4839	default:
4840	case e1000_media_type_unknown:
4841		break;
4842	}
4843
4844	if (((hw->mac.type == e1000_i210) ||
4845	     (hw->mac.type == e1000_i211)) &&
4846	     (hw->phy.id == I210_I_PHY_ID)) {
4847		if (!netif_carrier_ok(adapter->netdev)) {
4848			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4849		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4850			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4851			adapter->link_check_timeout = jiffies;
4852		}
4853	}
4854
4855	return link_active;
4856}
4857
4858static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4859{
4860	bool ret = false;
4861	u32 ctrl_ext, thstat;
4862
4863	/* check for thermal sensor event on i350 copper only */
4864	if (hw->mac.type == e1000_i350) {
4865		thstat = rd32(E1000_THSTAT);
4866		ctrl_ext = rd32(E1000_CTRL_EXT);
4867
4868		if ((hw->phy.media_type == e1000_media_type_copper) &&
4869		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4870			ret = !!(thstat & event);
4871	}
4872
4873	return ret;
4874}
4875
4876/**
4877 *  igb_check_lvmmc - check for malformed packets received
4878 *  and indicated in LVMMC register
4879 *  @adapter: pointer to adapter
4880 **/
4881static void igb_check_lvmmc(struct igb_adapter *adapter)
4882{
4883	struct e1000_hw *hw = &adapter->hw;
4884	u32 lvmmc;
4885
4886	lvmmc = rd32(E1000_LVMMC);
4887	if (lvmmc) {
4888		if (unlikely(net_ratelimit())) {
4889			netdev_warn(adapter->netdev,
4890				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4891				    lvmmc);
4892		}
4893	}
4894}
4895
4896/**
4897 *  igb_watchdog - Timer Call-back
4898 *  @data: pointer to adapter cast into an unsigned long
4899 **/
4900static void igb_watchdog(struct timer_list *t)
4901{
4902	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4903	/* Do the rest outside of interrupt context */
4904	schedule_work(&adapter->watchdog_task);
4905}
4906
4907static void igb_watchdog_task(struct work_struct *work)
4908{
4909	struct igb_adapter *adapter = container_of(work,
4910						   struct igb_adapter,
4911						   watchdog_task);
4912	struct e1000_hw *hw = &adapter->hw;
4913	struct e1000_phy_info *phy = &hw->phy;
4914	struct net_device *netdev = adapter->netdev;
4915	u32 link;
4916	int i;
4917	u32 connsw;
4918	u16 phy_data, retry_count = 20;
4919
4920	link = igb_has_link(adapter);
4921
4922	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4923		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4924			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4925		else
4926			link = false;
4927	}
4928
4929	/* Force link down if we have fiber to swap to */
4930	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4931		if (hw->phy.media_type == e1000_media_type_copper) {
4932			connsw = rd32(E1000_CONNSW);
4933			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4934				link = 0;
4935		}
4936	}
4937	if (link) {
4938		/* Perform a reset if the media type changed. */
4939		if (hw->dev_spec._82575.media_changed) {
4940			hw->dev_spec._82575.media_changed = false;
4941			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4942			igb_reset(adapter);
4943		}
4944		/* Cancel scheduled suspend requests. */
4945		pm_runtime_resume(netdev->dev.parent);
4946
4947		if (!netif_carrier_ok(netdev)) {
4948			u32 ctrl;
4949
4950			hw->mac.ops.get_speed_and_duplex(hw,
4951							 &adapter->link_speed,
4952							 &adapter->link_duplex);
4953
4954			ctrl = rd32(E1000_CTRL);
4955			/* Links status message must follow this format */
4956			netdev_info(netdev,
4957			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4958			       netdev->name,
4959			       adapter->link_speed,
4960			       adapter->link_duplex == FULL_DUPLEX ?
4961			       "Full" : "Half",
4962			       (ctrl & E1000_CTRL_TFCE) &&
4963			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4964			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4965			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4966
4967			/* disable EEE if enabled */
4968			if ((adapter->flags & IGB_FLAG_EEE) &&
4969				(adapter->link_duplex == HALF_DUPLEX)) {
4970				dev_info(&adapter->pdev->dev,
4971				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4972				adapter->hw.dev_spec._82575.eee_disable = true;
4973				adapter->flags &= ~IGB_FLAG_EEE;
4974			}
4975
4976			/* check if SmartSpeed worked */
4977			igb_check_downshift(hw);
4978			if (phy->speed_downgraded)
4979				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4980
4981			/* check for thermal sensor event */
4982			if (igb_thermal_sensor_event(hw,
4983			    E1000_THSTAT_LINK_THROTTLE))
4984				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4985
4986			/* adjust timeout factor according to speed/duplex */
4987			adapter->tx_timeout_factor = 1;
4988			switch (adapter->link_speed) {
4989			case SPEED_10:
4990				adapter->tx_timeout_factor = 14;
4991				break;
4992			case SPEED_100:
4993				/* maybe add some timeout factor ? */
4994				break;
4995			}
4996
4997			if (adapter->link_speed != SPEED_1000)
4998				goto no_wait;
4999
5000			/* wait for Remote receiver status OK */
5001retry_read_status:
5002			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5003					      &phy_data)) {
5004				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5005				    retry_count) {
5006					msleep(100);
5007					retry_count--;
5008					goto retry_read_status;
5009				} else if (!retry_count) {
5010					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5011				}
5012			} else {
5013				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5014			}
5015no_wait:
5016			netif_carrier_on(netdev);
5017
5018			igb_ping_all_vfs(adapter);
5019			igb_check_vf_rate_limit(adapter);
5020
5021			/* link state has changed, schedule phy info update */
5022			if (!test_bit(__IGB_DOWN, &adapter->state))
5023				mod_timer(&adapter->phy_info_timer,
5024					  round_jiffies(jiffies + 2 * HZ));
5025		}
5026	} else {
5027		if (netif_carrier_ok(netdev)) {
5028			adapter->link_speed = 0;
5029			adapter->link_duplex = 0;
5030
5031			/* check for thermal sensor event */
5032			if (igb_thermal_sensor_event(hw,
5033			    E1000_THSTAT_PWR_DOWN)) {
5034				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5035			}
5036
5037			/* Links status message must follow this format */
5038			netdev_info(netdev, "igb: %s NIC Link is Down\n",
5039			       netdev->name);
5040			netif_carrier_off(netdev);
5041
5042			igb_ping_all_vfs(adapter);
5043
5044			/* link state has changed, schedule phy info update */
5045			if (!test_bit(__IGB_DOWN, &adapter->state))
5046				mod_timer(&adapter->phy_info_timer,
5047					  round_jiffies(jiffies + 2 * HZ));
5048
5049			/* link is down, time to check for alternate media */
5050			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5051				igb_check_swap_media(adapter);
5052				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5053					schedule_work(&adapter->reset_task);
5054					/* return immediately */
5055					return;
5056				}
5057			}
5058			pm_schedule_suspend(netdev->dev.parent,
5059					    MSEC_PER_SEC * 5);
5060
5061		/* also check for alternate media here */
5062		} else if (!netif_carrier_ok(netdev) &&
5063			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5064			igb_check_swap_media(adapter);
5065			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5066				schedule_work(&adapter->reset_task);
5067				/* return immediately */
5068				return;
5069			}
5070		}
5071	}
5072
5073	spin_lock(&adapter->stats64_lock);
5074	igb_update_stats(adapter);
5075	spin_unlock(&adapter->stats64_lock);
5076
5077	for (i = 0; i < adapter->num_tx_queues; i++) {
5078		struct igb_ring *tx_ring = adapter->tx_ring[i];
5079		if (!netif_carrier_ok(netdev)) {
5080			/* We've lost link, so the controller stops DMA,
5081			 * but we've got queued Tx work that's never going
5082			 * to get done, so reset controller to flush Tx.
5083			 * (Do the reset outside of interrupt context).
5084			 */
5085			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5086				adapter->tx_timeout_count++;
5087				schedule_work(&adapter->reset_task);
5088				/* return immediately since reset is imminent */
5089				return;
5090			}
5091		}
5092
5093		/* Force detection of hung controller every watchdog period */
5094		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5095	}
5096
5097	/* Cause software interrupt to ensure Rx ring is cleaned */
5098	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5099		u32 eics = 0;
5100
5101		for (i = 0; i < adapter->num_q_vectors; i++)
5102			eics |= adapter->q_vector[i]->eims_value;
5103		wr32(E1000_EICS, eics);
5104	} else {
5105		wr32(E1000_ICS, E1000_ICS_RXDMT0);
5106	}
5107
5108	igb_spoof_check(adapter);
5109	igb_ptp_rx_hang(adapter);
5110	igb_ptp_tx_hang(adapter);
5111
5112	/* Check LVMMC register on i350/i354 only */
5113	if ((adapter->hw.mac.type == e1000_i350) ||
5114	    (adapter->hw.mac.type == e1000_i354))
5115		igb_check_lvmmc(adapter);
5116
5117	/* Reset the timer */
5118	if (!test_bit(__IGB_DOWN, &adapter->state)) {
5119		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5120			mod_timer(&adapter->watchdog_timer,
5121				  round_jiffies(jiffies +  HZ));
5122		else
5123			mod_timer(&adapter->watchdog_timer,
5124				  round_jiffies(jiffies + 2 * HZ));
5125	}
5126}
5127
5128enum latency_range {
5129	lowest_latency = 0,
5130	low_latency = 1,
5131	bulk_latency = 2,
5132	latency_invalid = 255
5133};
5134
5135/**
5136 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5137 *  @q_vector: pointer to q_vector
5138 *
5139 *  Stores a new ITR value based on strictly on packet size.  This
5140 *  algorithm is less sophisticated than that used in igb_update_itr,
5141 *  due to the difficulty of synchronizing statistics across multiple
5142 *  receive rings.  The divisors and thresholds used by this function
5143 *  were determined based on theoretical maximum wire speed and testing
5144 *  data, in order to minimize response time while increasing bulk
5145 *  throughput.
5146 *  This functionality is controlled by ethtool's coalescing settings.
5147 *  NOTE:  This function is called only when operating in a multiqueue
5148 *         receive environment.
5149 **/
5150static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5151{
5152	int new_val = q_vector->itr_val;
5153	int avg_wire_size = 0;
5154	struct igb_adapter *adapter = q_vector->adapter;
5155	unsigned int packets;
5156
5157	/* For non-gigabit speeds, just fix the interrupt rate at 4000
5158	 * ints/sec - ITR timer value of 120 ticks.
5159	 */
5160	if (adapter->link_speed != SPEED_1000) {
5161		new_val = IGB_4K_ITR;
5162		goto set_itr_val;
5163	}
5164
5165	packets = q_vector->rx.total_packets;
5166	if (packets)
5167		avg_wire_size = q_vector->rx.total_bytes / packets;
5168
5169	packets = q_vector->tx.total_packets;
5170	if (packets)
5171		avg_wire_size = max_t(u32, avg_wire_size,
5172				      q_vector->tx.total_bytes / packets);
5173
5174	/* if avg_wire_size isn't set no work was done */
5175	if (!avg_wire_size)
5176		goto clear_counts;
5177
5178	/* Add 24 bytes to size to account for CRC, preamble, and gap */
5179	avg_wire_size += 24;
5180
5181	/* Don't starve jumbo frames */
5182	avg_wire_size = min(avg_wire_size, 3000);
5183
5184	/* Give a little boost to mid-size frames */
5185	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5186		new_val = avg_wire_size / 3;
5187	else
5188		new_val = avg_wire_size / 2;
5189
5190	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5191	if (new_val < IGB_20K_ITR &&
5192	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5193	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5194		new_val = IGB_20K_ITR;
5195
5196set_itr_val:
5197	if (new_val != q_vector->itr_val) {
5198		q_vector->itr_val = new_val;
5199		q_vector->set_itr = 1;
5200	}
5201clear_counts:
5202	q_vector->rx.total_bytes = 0;
5203	q_vector->rx.total_packets = 0;
5204	q_vector->tx.total_bytes = 0;
5205	q_vector->tx.total_packets = 0;
5206}
5207
5208/**
5209 *  igb_update_itr - update the dynamic ITR value based on statistics
5210 *  @q_vector: pointer to q_vector
5211 *  @ring_container: ring info to update the itr for
5212 *
5213 *  Stores a new ITR value based on packets and byte
5214 *  counts during the last interrupt.  The advantage of per interrupt
5215 *  computation is faster updates and more accurate ITR for the current
5216 *  traffic pattern.  Constants in this function were computed
5217 *  based on theoretical maximum wire speed and thresholds were set based
5218 *  on testing data as well as attempting to minimize response time
5219 *  while increasing bulk throughput.
5220 *  This functionality is controlled by ethtool's coalescing settings.
5221 *  NOTE:  These calculations are only valid when operating in a single-
5222 *         queue environment.
5223 **/
5224static void igb_update_itr(struct igb_q_vector *q_vector,
5225			   struct igb_ring_container *ring_container)
5226{
5227	unsigned int packets = ring_container->total_packets;
5228	unsigned int bytes = ring_container->total_bytes;
5229	u8 itrval = ring_container->itr;
5230
5231	/* no packets, exit with status unchanged */
5232	if (packets == 0)
5233		return;
5234
5235	switch (itrval) {
5236	case lowest_latency:
5237		/* handle TSO and jumbo frames */
5238		if (bytes/packets > 8000)
5239			itrval = bulk_latency;
5240		else if ((packets < 5) && (bytes > 512))
5241			itrval = low_latency;
5242		break;
5243	case low_latency:  /* 50 usec aka 20000 ints/s */
5244		if (bytes > 10000) {
5245			/* this if handles the TSO accounting */
5246			if (bytes/packets > 8000)
5247				itrval = bulk_latency;
5248			else if ((packets < 10) || ((bytes/packets) > 1200))
5249				itrval = bulk_latency;
5250			else if ((packets > 35))
5251				itrval = lowest_latency;
5252		} else if (bytes/packets > 2000) {
5253			itrval = bulk_latency;
5254		} else if (packets <= 2 && bytes < 512) {
5255			itrval = lowest_latency;
5256		}
5257		break;
5258	case bulk_latency: /* 250 usec aka 4000 ints/s */
5259		if (bytes > 25000) {
5260			if (packets > 35)
5261				itrval = low_latency;
5262		} else if (bytes < 1500) {
5263			itrval = low_latency;
5264		}
5265		break;
5266	}
5267
5268	/* clear work counters since we have the values we need */
5269	ring_container->total_bytes = 0;
5270	ring_container->total_packets = 0;
5271
5272	/* write updated itr to ring container */
5273	ring_container->itr = itrval;
5274}
5275
5276static void igb_set_itr(struct igb_q_vector *q_vector)
5277{
5278	struct igb_adapter *adapter = q_vector->adapter;
5279	u32 new_itr = q_vector->itr_val;
5280	u8 current_itr = 0;
5281
5282	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5283	if (adapter->link_speed != SPEED_1000) {
5284		current_itr = 0;
5285		new_itr = IGB_4K_ITR;
5286		goto set_itr_now;
5287	}
5288
5289	igb_update_itr(q_vector, &q_vector->tx);
5290	igb_update_itr(q_vector, &q_vector->rx);
5291
5292	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5293
5294	/* conservative mode (itr 3) eliminates the lowest_latency setting */
5295	if (current_itr == lowest_latency &&
5296	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5297	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5298		current_itr = low_latency;
5299
5300	switch (current_itr) {
5301	/* counts and packets in update_itr are dependent on these numbers */
5302	case lowest_latency:
5303		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5304		break;
5305	case low_latency:
5306		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5307		break;
5308	case bulk_latency:
5309		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5310		break;
5311	default:
5312		break;
5313	}
5314
5315set_itr_now:
5316	if (new_itr != q_vector->itr_val) {
5317		/* this attempts to bias the interrupt rate towards Bulk
5318		 * by adding intermediate steps when interrupt rate is
5319		 * increasing
5320		 */
5321		new_itr = new_itr > q_vector->itr_val ?
5322			  max((new_itr * q_vector->itr_val) /
5323			  (new_itr + (q_vector->itr_val >> 2)),
5324			  new_itr) : new_itr;
5325		/* Don't write the value here; it resets the adapter's
5326		 * internal timer, and causes us to delay far longer than
5327		 * we should between interrupts.  Instead, we write the ITR
5328		 * value at the beginning of the next interrupt so the timing
5329		 * ends up being correct.
5330		 */
5331		q_vector->itr_val = new_itr;
5332		q_vector->set_itr = 1;
5333	}
5334}
5335
5336static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
5337			    u32 type_tucmd, u32 mss_l4len_idx)
5338{
5339	struct e1000_adv_tx_context_desc *context_desc;
5340	u16 i = tx_ring->next_to_use;
5341
5342	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5343
5344	i++;
5345	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5346
5347	/* set bits to identify this as an advanced context descriptor */
5348	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5349
5350	/* For 82575, context index must be unique per ring. */
5351	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5352		mss_l4len_idx |= tx_ring->reg_idx << 4;
5353
5354	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
5355	context_desc->seqnum_seed	= 0;
5356	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
5357	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
5358}
5359
5360static int igb_tso(struct igb_ring *tx_ring,
5361		   struct igb_tx_buffer *first,
5362		   u8 *hdr_len)
5363{
5364	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5365	struct sk_buff *skb = first->skb;
5366	union {
5367		struct iphdr *v4;
5368		struct ipv6hdr *v6;
5369		unsigned char *hdr;
5370	} ip;
5371	union {
5372		struct tcphdr *tcp;
5373		unsigned char *hdr;
5374	} l4;
5375	u32 paylen, l4_offset;
5376	int err;
5377
5378	if (skb->ip_summed != CHECKSUM_PARTIAL)
5379		return 0;
5380
5381	if (!skb_is_gso(skb))
5382		return 0;
5383
5384	err = skb_cow_head(skb, 0);
5385	if (err < 0)
5386		return err;
5387
5388	ip.hdr = skb_network_header(skb);
5389	l4.hdr = skb_checksum_start(skb);
5390
5391	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5392	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5393
5394	/* initialize outer IP header fields */
5395	if (ip.v4->version == 4) {
5396		unsigned char *csum_start = skb_checksum_start(skb);
5397		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5398
5399		/* IP header will have to cancel out any data that
5400		 * is not a part of the outer IP header
5401		 */
5402		ip.v4->check = csum_fold(csum_partial(trans_start,
5403						      csum_start - trans_start,
5404						      0));
5405		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5406
5407		ip.v4->tot_len = 0;
5408		first->tx_flags |= IGB_TX_FLAGS_TSO |
5409				   IGB_TX_FLAGS_CSUM |
5410				   IGB_TX_FLAGS_IPV4;
5411	} else {
5412		ip.v6->payload_len = 0;
5413		first->tx_flags |= IGB_TX_FLAGS_TSO |
5414				   IGB_TX_FLAGS_CSUM;
5415	}
5416
5417	/* determine offset of inner transport header */
5418	l4_offset = l4.hdr - skb->data;
5419
5420	/* compute length of segmentation header */
5421	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
5422
5423	/* remove payload length from inner checksum */
5424	paylen = skb->len - l4_offset;
5425	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5426
5427	/* update gso size and bytecount with header size */
5428	first->gso_segs = skb_shinfo(skb)->gso_segs;
5429	first->bytecount += (first->gso_segs - 1) * *hdr_len;
5430
5431	/* MSS L4LEN IDX */
5432	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5433	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5434
5435	/* VLAN MACLEN IPLEN */
5436	vlan_macip_lens = l4.hdr - ip.hdr;
5437	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5438	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5439
5440	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5441
5442	return 1;
5443}
5444
5445static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5446{
5447	unsigned int offset = 0;
5448
5449	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5450
5451	return offset == skb_checksum_start_offset(skb);
5452}
5453
5454static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5455{
5456	struct sk_buff *skb = first->skb;
5457	u32 vlan_macip_lens = 0;
5458	u32 type_tucmd = 0;
5459
5460	if (skb->ip_summed != CHECKSUM_PARTIAL) {
5461csum_failed:
5462		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5463			return;
5464		goto no_csum;
5465	}
5466
5467	switch (skb->csum_offset) {
5468	case offsetof(struct tcphdr, check):
5469		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5470		/* fall through */
5471	case offsetof(struct udphdr, check):
5472		break;
5473	case offsetof(struct sctphdr, checksum):
5474		/* validate that this is actually an SCTP request */
5475		if (((first->protocol == htons(ETH_P_IP)) &&
5476		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5477		    ((first->protocol == htons(ETH_P_IPV6)) &&
5478		     igb_ipv6_csum_is_sctp(skb))) {
5479			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5480			break;
5481		}
5482	default:
5483		skb_checksum_help(skb);
5484		goto csum_failed;
5485	}
5486
5487	/* update TX checksum flag */
5488	first->tx_flags |= IGB_TX_FLAGS_CSUM;
5489	vlan_macip_lens = skb_checksum_start_offset(skb) -
5490			  skb_network_offset(skb);
5491no_csum:
5492	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5493	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5494
5495	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5496}
5497
5498#define IGB_SET_FLAG(_input, _flag, _result) \
5499	((_flag <= _result) ? \
5500	 ((u32)(_input & _flag) * (_result / _flag)) : \
5501	 ((u32)(_input & _flag) / (_flag / _result)))
5502
5503static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5504{
5505	/* set type for advanced descriptor with frame checksum insertion */
5506	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5507		       E1000_ADVTXD_DCMD_DEXT |
5508		       E1000_ADVTXD_DCMD_IFCS;
5509
5510	/* set HW vlan bit if vlan is present */
5511	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5512				 (E1000_ADVTXD_DCMD_VLE));
5513
5514	/* set segmentation bits for TSO */
5515	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5516				 (E1000_ADVTXD_DCMD_TSE));
5517
5518	/* set timestamp bit if present */
5519	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5520				 (E1000_ADVTXD_MAC_TSTAMP));
5521
5522	/* insert frame checksum */
5523	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5524
5525	return cmd_type;
5526}
5527
5528static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5529				 union e1000_adv_tx_desc *tx_desc,
5530				 u32 tx_flags, unsigned int paylen)
5531{
5532	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5533
5534	/* 82575 requires a unique index per ring */
5535	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5536		olinfo_status |= tx_ring->reg_idx << 4;
5537
5538	/* insert L4 checksum */
5539	olinfo_status |= IGB_SET_FLAG(tx_flags,
5540				      IGB_TX_FLAGS_CSUM,
5541				      (E1000_TXD_POPTS_TXSM << 8));
5542
5543	/* insert IPv4 checksum */
5544	olinfo_status |= IGB_SET_FLAG(tx_flags,
5545				      IGB_TX_FLAGS_IPV4,
5546				      (E1000_TXD_POPTS_IXSM << 8));
5547
5548	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5549}
5550
5551static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5552{
5553	struct net_device *netdev = tx_ring->netdev;
5554
5555	netif_stop_subqueue(netdev, tx_ring->queue_index);
5556
5557	/* Herbert's original patch had:
5558	 *  smp_mb__after_netif_stop_queue();
5559	 * but since that doesn't exist yet, just open code it.
5560	 */
5561	smp_mb();
5562
5563	/* We need to check again in a case another CPU has just
5564	 * made room available.
5565	 */
5566	if (igb_desc_unused(tx_ring) < size)
5567		return -EBUSY;
5568
5569	/* A reprieve! */
5570	netif_wake_subqueue(netdev, tx_ring->queue_index);
5571
5572	u64_stats_update_begin(&tx_ring->tx_syncp2);
5573	tx_ring->tx_stats.restart_queue2++;
5574	u64_stats_update_end(&tx_ring->tx_syncp2);
5575
5576	return 0;
5577}
5578
5579static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5580{
5581	if (igb_desc_unused(tx_ring) >= size)
5582		return 0;
5583	return __igb_maybe_stop_tx(tx_ring, size);
5584}
5585
5586static int igb_tx_map(struct igb_ring *tx_ring,
5587		      struct igb_tx_buffer *first,
5588		      const u8 hdr_len)
5589{
5590	struct sk_buff *skb = first->skb;
5591	struct igb_tx_buffer *tx_buffer;
5592	union e1000_adv_tx_desc *tx_desc;
5593	struct skb_frag_struct *frag;
5594	dma_addr_t dma;
5595	unsigned int data_len, size;
5596	u32 tx_flags = first->tx_flags;
5597	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5598	u16 i = tx_ring->next_to_use;
5599
5600	tx_desc = IGB_TX_DESC(tx_ring, i);
5601
5602	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5603
5604	size = skb_headlen(skb);
5605	data_len = skb->data_len;
5606
5607	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5608
5609	tx_buffer = first;
5610
5611	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5612		if (dma_mapping_error(tx_ring->dev, dma))
5613			goto dma_error;
5614
5615		/* record length, and DMA address */
5616		dma_unmap_len_set(tx_buffer, len, size);
5617		dma_unmap_addr_set(tx_buffer, dma, dma);
5618
5619		tx_desc->read.buffer_addr = cpu_to_le64(dma);
5620
5621		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5622			tx_desc->read.cmd_type_len =
5623				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5624
5625			i++;
5626			tx_desc++;
5627			if (i == tx_ring->count) {
5628				tx_desc = IGB_TX_DESC(tx_ring, 0);
5629				i = 0;
5630			}
5631			tx_desc->read.olinfo_status = 0;
5632
5633			dma += IGB_MAX_DATA_PER_TXD;
5634			size -= IGB_MAX_DATA_PER_TXD;
5635
5636			tx_desc->read.buffer_addr = cpu_to_le64(dma);
5637		}
5638
5639		if (likely(!data_len))
5640			break;
5641
5642		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5643
5644		i++;
5645		tx_desc++;
5646		if (i == tx_ring->count) {
5647			tx_desc = IGB_TX_DESC(tx_ring, 0);
5648			i = 0;
5649		}
5650		tx_desc->read.olinfo_status = 0;
5651
5652		size = skb_frag_size(frag);
5653		data_len -= size;
5654
5655		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5656				       size, DMA_TO_DEVICE);
5657
5658		tx_buffer = &tx_ring->tx_buffer_info[i];
5659	}
5660
5661	/* write last descriptor with RS and EOP bits */
5662	cmd_type |= size | IGB_TXD_DCMD;
5663	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5664
5665	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5666
5667	/* set the timestamp */
5668	first->time_stamp = jiffies;
5669
5670	/* Force memory writes to complete before letting h/w know there
5671	 * are new descriptors to fetch.  (Only applicable for weak-ordered
5672	 * memory model archs, such as IA-64).
5673	 *
5674	 * We also need this memory barrier to make certain all of the
5675	 * status bits have been updated before next_to_watch is written.
5676	 */
5677	wmb();
5678
5679	/* set next_to_watch value indicating a packet is present */
5680	first->next_to_watch = tx_desc;
5681
5682	i++;
5683	if (i == tx_ring->count)
5684		i = 0;
5685
5686	tx_ring->next_to_use = i;
5687
5688	/* Make sure there is space in the ring for the next send. */
5689	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5690
5691	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5692		writel(i, tx_ring->tail);
5693
5694		/* we need this if more than one processor can write to our tail
5695		 * at a time, it synchronizes IO on IA64/Altix systems
5696		 */
5697		mmiowb();
5698	}
5699	return 0;
5700
5701dma_error:
5702	dev_err(tx_ring->dev, "TX DMA map failed\n");
5703	tx_buffer = &tx_ring->tx_buffer_info[i];
5704
5705	/* clear dma mappings for failed tx_buffer_info map */
5706	while (tx_buffer != first) {
5707		if (dma_unmap_len(tx_buffer, len))
5708			dma_unmap_page(tx_ring->dev,
5709				       dma_unmap_addr(tx_buffer, dma),
5710				       dma_unmap_len(tx_buffer, len),
5711				       DMA_TO_DEVICE);
5712		dma_unmap_len_set(tx_buffer, len, 0);
5713
5714		if (i-- == 0)
5715			i += tx_ring->count;
5716		tx_buffer = &tx_ring->tx_buffer_info[i];
5717	}
5718
5719	if (dma_unmap_len(tx_buffer, len))
5720		dma_unmap_single(tx_ring->dev,
5721				 dma_unmap_addr(tx_buffer, dma),
5722				 dma_unmap_len(tx_buffer, len),
5723				 DMA_TO_DEVICE);
5724	dma_unmap_len_set(tx_buffer, len, 0);
5725
5726	dev_kfree_skb_any(tx_buffer->skb);
5727	tx_buffer->skb = NULL;
5728
5729	tx_ring->next_to_use = i;
5730
5731	return -1;
5732}
5733
5734netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5735				struct igb_ring *tx_ring)
5736{
5737	struct igb_tx_buffer *first;
5738	int tso;
5739	u32 tx_flags = 0;
5740	unsigned short f;
5741	u16 count = TXD_USE_COUNT(skb_headlen(skb));
5742	__be16 protocol = vlan_get_protocol(skb);
5743	u8 hdr_len = 0;
5744
5745	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5746	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5747	 *       + 2 desc gap to keep tail from touching head,
5748	 *       + 1 desc for context descriptor,
5749	 * otherwise try next time
5750	 */
5751	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5752		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5753
5754	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5755		/* this is a hard error */
5756		return NETDEV_TX_BUSY;
5757	}
5758
5759	/* record the location of the first descriptor for this packet */
5760	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5761	first->skb = skb;
5762	first->bytecount = skb->len;
5763	first->gso_segs = 1;
5764
5765	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5766		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5767
5768		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
5769		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5770					   &adapter->state)) {
5771			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5772			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5773
5774			adapter->ptp_tx_skb = skb_get(skb);
5775			adapter->ptp_tx_start = jiffies;
5776			if (adapter->hw.mac.type == e1000_82576)
5777				schedule_work(&adapter->ptp_tx_work);
5778		} else {
5779			adapter->tx_hwtstamp_skipped++;
5780		}
5781	}
5782
5783	skb_tx_timestamp(skb);
5784
5785	if (skb_vlan_tag_present(skb)) {
5786		tx_flags |= IGB_TX_FLAGS_VLAN;
5787		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5788	}
5789
5790	/* record initial flags and protocol */
5791	first->tx_flags = tx_flags;
5792	first->protocol = protocol;
5793
5794	tso = igb_tso(tx_ring, first, &hdr_len);
5795	if (tso < 0)
5796		goto out_drop;
5797	else if (!tso)
5798		igb_tx_csum(tx_ring, first);
5799
5800	if (igb_tx_map(tx_ring, first, hdr_len))
5801		goto cleanup_tx_tstamp;
5802
5803	return NETDEV_TX_OK;
5804
5805out_drop:
5806	dev_kfree_skb_any(first->skb);
5807	first->skb = NULL;
5808cleanup_tx_tstamp:
5809	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
5810		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5811
5812		dev_kfree_skb_any(adapter->ptp_tx_skb);
5813		adapter->ptp_tx_skb = NULL;
5814		if (adapter->hw.mac.type == e1000_82576)
5815			cancel_work_sync(&adapter->ptp_tx_work);
5816		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
5817	}
5818
5819	return NETDEV_TX_OK;
5820}
5821
5822static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5823						    struct sk_buff *skb)
5824{
5825	unsigned int r_idx = skb->queue_mapping;
5826
5827	if (r_idx >= adapter->num_tx_queues)
5828		r_idx = r_idx % adapter->num_tx_queues;
5829
5830	return adapter->tx_ring[r_idx];
5831}
5832
5833static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5834				  struct net_device *netdev)
5835{
5836	struct igb_adapter *adapter = netdev_priv(netdev);
5837
5838	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5839	 * in order to meet this minimum size requirement.
5840	 */
5841	if (skb_put_padto(skb, 17))
5842		return NETDEV_TX_OK;
5843
5844	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5845}
5846
5847/**
5848 *  igb_tx_timeout - Respond to a Tx Hang
5849 *  @netdev: network interface device structure
5850 **/
5851static void igb_tx_timeout(struct net_device *netdev)
5852{
5853	struct igb_adapter *adapter = netdev_priv(netdev);
5854	struct e1000_hw *hw = &adapter->hw;
5855
5856	/* Do the reset outside of interrupt context */
5857	adapter->tx_timeout_count++;
5858
5859	if (hw->mac.type >= e1000_82580)
5860		hw->dev_spec._82575.global_device_reset = true;
5861
5862	schedule_work(&adapter->reset_task);
5863	wr32(E1000_EICS,
5864	     (adapter->eims_enable_mask & ~adapter->eims_other));
5865}
5866
5867static void igb_reset_task(struct work_struct *work)
5868{
5869	struct igb_adapter *adapter;
5870	adapter = container_of(work, struct igb_adapter, reset_task);
5871
5872	igb_dump(adapter);
5873	netdev_err(adapter->netdev, "Reset adapter\n");
5874	igb_reinit_locked(adapter);
5875}
5876
5877/**
5878 *  igb_get_stats64 - Get System Network Statistics
5879 *  @netdev: network interface device structure
5880 *  @stats: rtnl_link_stats64 pointer
5881 **/
5882static void igb_get_stats64(struct net_device *netdev,
5883			    struct rtnl_link_stats64 *stats)
5884{
5885	struct igb_adapter *adapter = netdev_priv(netdev);
5886
5887	spin_lock(&adapter->stats64_lock);
5888	igb_update_stats(adapter);
5889	memcpy(stats, &adapter->stats64, sizeof(*stats));
5890	spin_unlock(&adapter->stats64_lock);
5891}
5892
5893/**
5894 *  igb_change_mtu - Change the Maximum Transfer Unit
5895 *  @netdev: network interface device structure
5896 *  @new_mtu: new value for maximum frame size
5897 *
5898 *  Returns 0 on success, negative on failure
5899 **/
5900static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5901{
5902	struct igb_adapter *adapter = netdev_priv(netdev);
5903	struct pci_dev *pdev = adapter->pdev;
5904	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5905
5906	/* adjust max frame to be at least the size of a standard frame */
5907	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5908		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5909
5910	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5911		usleep_range(1000, 2000);
5912
5913	/* igb_down has a dependency on max_frame_size */
5914	adapter->max_frame_size = max_frame;
5915
5916	if (netif_running(netdev))
5917		igb_down(adapter);
5918
5919	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5920		 netdev->mtu, new_mtu);
5921	netdev->mtu = new_mtu;
5922
5923	if (netif_running(netdev))
5924		igb_up(adapter);
5925	else
5926		igb_reset(adapter);
5927
5928	clear_bit(__IGB_RESETTING, &adapter->state);
5929
5930	return 0;
5931}
5932
5933/**
5934 *  igb_update_stats - Update the board statistics counters
5935 *  @adapter: board private structure
5936 **/
5937void igb_update_stats(struct igb_adapter *adapter)
5938{
5939	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5940	struct e1000_hw *hw = &adapter->hw;
5941	struct pci_dev *pdev = adapter->pdev;
5942	u32 reg, mpc;
5943	int i;
5944	u64 bytes, packets;
5945	unsigned int start;
5946	u64 _bytes, _packets;
5947
5948	/* Prevent stats update while adapter is being reset, or if the pci
5949	 * connection is down.
5950	 */
5951	if (adapter->link_speed == 0)
5952		return;
5953	if (pci_channel_offline(pdev))
5954		return;
5955
5956	bytes = 0;
5957	packets = 0;
5958
5959	rcu_read_lock();
5960	for (i = 0; i < adapter->num_rx_queues; i++) {
5961		struct igb_ring *ring = adapter->rx_ring[i];
5962		u32 rqdpc = rd32(E1000_RQDPC(i));
5963		if (hw->mac.type >= e1000_i210)
5964			wr32(E1000_RQDPC(i), 0);
5965
5966		if (rqdpc) {
5967			ring->rx_stats.drops += rqdpc;
5968			net_stats->rx_fifo_errors += rqdpc;
5969		}
5970
5971		do {
5972			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5973			_bytes = ring->rx_stats.bytes;
5974			_packets = ring->rx_stats.packets;
5975		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5976		bytes += _bytes;
5977		packets += _packets;
5978	}
5979
5980	net_stats->rx_bytes = bytes;
5981	net_stats->rx_packets = packets;
5982
5983	bytes = 0;
5984	packets = 0;
5985	for (i = 0; i < adapter->num_tx_queues; i++) {
5986		struct igb_ring *ring = adapter->tx_ring[i];
5987		do {
5988			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5989			_bytes = ring->tx_stats.bytes;
5990			_packets = ring->tx_stats.packets;
5991		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5992		bytes += _bytes;
5993		packets += _packets;
5994	}
5995	net_stats->tx_bytes = bytes;
5996	net_stats->tx_packets = packets;
5997	rcu_read_unlock();
5998
5999	/* read stats registers */
6000	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6001	adapter->stats.gprc += rd32(E1000_GPRC);
6002	adapter->stats.gorc += rd32(E1000_GORCL);
6003	rd32(E1000_GORCH); /* clear GORCL */
6004	adapter->stats.bprc += rd32(E1000_BPRC);
6005	adapter->stats.mprc += rd32(E1000_MPRC);
6006	adapter->stats.roc += rd32(E1000_ROC);
6007
6008	adapter->stats.prc64 += rd32(E1000_PRC64);
6009	adapter->stats.prc127 += rd32(E1000_PRC127);
6010	adapter->stats.prc255 += rd32(E1000_PRC255);
6011	adapter->stats.prc511 += rd32(E1000_PRC511);
6012	adapter->stats.prc1023 += rd32(E1000_PRC1023);
6013	adapter->stats.prc1522 += rd32(E1000_PRC1522);
6014	adapter->stats.symerrs += rd32(E1000_SYMERRS);
6015	adapter->stats.sec += rd32(E1000_SEC);
6016
6017	mpc = rd32(E1000_MPC);
6018	adapter->stats.mpc += mpc;
6019	net_stats->rx_fifo_errors += mpc;
6020	adapter->stats.scc += rd32(E1000_SCC);
6021	adapter->stats.ecol += rd32(E1000_ECOL);
6022	adapter->stats.mcc += rd32(E1000_MCC);
6023	adapter->stats.latecol += rd32(E1000_LATECOL);
6024	adapter->stats.dc += rd32(E1000_DC);
6025	adapter->stats.rlec += rd32(E1000_RLEC);
6026	adapter->stats.xonrxc += rd32(E1000_XONRXC);
6027	adapter->stats.xontxc += rd32(E1000_XONTXC);
6028	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6029	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6030	adapter->stats.fcruc += rd32(E1000_FCRUC);
6031	adapter->stats.gptc += rd32(E1000_GPTC);
6032	adapter->stats.gotc += rd32(E1000_GOTCL);
6033	rd32(E1000_GOTCH); /* clear GOTCL */
6034	adapter->stats.rnbc += rd32(E1000_RNBC);
6035	adapter->stats.ruc += rd32(E1000_RUC);
6036	adapter->stats.rfc += rd32(E1000_RFC);
6037	adapter->stats.rjc += rd32(E1000_RJC);
6038	adapter->stats.tor += rd32(E1000_TORH);
6039	adapter->stats.tot += rd32(E1000_TOTH);
6040	adapter->stats.tpr += rd32(E1000_TPR);
6041
6042	adapter->stats.ptc64 += rd32(E1000_PTC64);
6043	adapter->stats.ptc127 += rd32(E1000_PTC127);
6044	adapter->stats.ptc255 += rd32(E1000_PTC255);
6045	adapter->stats.ptc511 += rd32(E1000_PTC511);
6046	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6047	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6048
6049	adapter->stats.mptc += rd32(E1000_MPTC);
6050	adapter->stats.bptc += rd32(E1000_BPTC);
6051
6052	adapter->stats.tpt += rd32(E1000_TPT);
6053	adapter->stats.colc += rd32(E1000_COLC);
6054
6055	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6056	/* read internal phy specific stats */
6057	reg = rd32(E1000_CTRL_EXT);
6058	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6059		adapter->stats.rxerrc += rd32(E1000_RXERRC);
6060
6061		/* this stat has invalid values on i210/i211 */
6062		if ((hw->mac.type != e1000_i210) &&
6063		    (hw->mac.type != e1000_i211))
6064			adapter->stats.tncrs += rd32(E1000_TNCRS);
6065	}
6066
6067	adapter->stats.tsctc += rd32(E1000_TSCTC);
6068	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6069
6070	adapter->stats.iac += rd32(E1000_IAC);
6071	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6072	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6073	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6074	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6075	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6076	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6077	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6078	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6079
6080	/* Fill out the OS statistics structure */
6081	net_stats->multicast = adapter->stats.mprc;
6082	net_stats->collisions = adapter->stats.colc;
6083
6084	/* Rx Errors */
6085
6086	/* RLEC on some newer hardware can be incorrect so build
6087	 * our own version based on RUC and ROC
6088	 */
6089	net_stats->rx_errors = adapter->stats.rxerrc +
6090		adapter->stats.crcerrs + adapter->stats.algnerrc +
6091		adapter->stats.ruc + adapter->stats.roc +
6092		adapter->stats.cexterr;
6093	net_stats->rx_length_errors = adapter->stats.ruc +
6094				      adapter->stats.roc;
6095	net_stats->rx_crc_errors = adapter->stats.crcerrs;
6096	net_stats->rx_frame_errors = adapter->stats.algnerrc;
6097	net_stats->rx_missed_errors = adapter->stats.mpc;
6098
6099	/* Tx Errors */
6100	net_stats->tx_errors = adapter->stats.ecol +
6101			       adapter->stats.latecol;
6102	net_stats->tx_aborted_errors = adapter->stats.ecol;
6103	net_stats->tx_window_errors = adapter->stats.latecol;
6104	net_stats->tx_carrier_errors = adapter->stats.tncrs;
6105
6106	/* Tx Dropped needs to be maintained elsewhere */
6107
6108	/* Management Stats */
6109	adapter->stats.mgptc += rd32(E1000_MGTPTC);
6110	adapter->stats.mgprc += rd32(E1000_MGTPRC);
6111	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6112
6113	/* OS2BMC Stats */
6114	reg = rd32(E1000_MANC);
6115	if (reg & E1000_MANC_EN_BMC2OS) {
6116		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6117		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6118		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6119		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6120	}
6121}
6122
6123static void igb_tsync_interrupt(struct igb_adapter *adapter)
6124{
6125	struct e1000_hw *hw = &adapter->hw;
6126	struct ptp_clock_event event;
6127	struct timespec64 ts;
6128	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6129
6130	if (tsicr & TSINTR_SYS_WRAP) {
6131		event.type = PTP_CLOCK_PPS;
6132		if (adapter->ptp_caps.pps)
6133			ptp_clock_event(adapter->ptp_clock, &event);
6134		ack |= TSINTR_SYS_WRAP;
6135	}
6136
6137	if (tsicr & E1000_TSICR_TXTS) {
6138		/* retrieve hardware timestamp */
6139		schedule_work(&adapter->ptp_tx_work);
6140		ack |= E1000_TSICR_TXTS;
6141	}
6142
6143	if (tsicr & TSINTR_TT0) {
6144		spin_lock(&adapter->tmreg_lock);
6145		ts = timespec64_add(adapter->perout[0].start,
6146				    adapter->perout[0].period);
6147		/* u32 conversion of tv_sec is safe until y2106 */
6148		wr32(E1000_TRGTTIML0, ts.tv_nsec);
6149		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6150		tsauxc = rd32(E1000_TSAUXC);
6151		tsauxc |= TSAUXC_EN_TT0;
6152		wr32(E1000_TSAUXC, tsauxc);
6153		adapter->perout[0].start = ts;
6154		spin_unlock(&adapter->tmreg_lock);
6155		ack |= TSINTR_TT0;
6156	}
6157
6158	if (tsicr & TSINTR_TT1) {
6159		spin_lock(&adapter->tmreg_lock);
6160		ts = timespec64_add(adapter->perout[1].start,
6161				    adapter->perout[1].period);
6162		wr32(E1000_TRGTTIML1, ts.tv_nsec);
6163		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6164		tsauxc = rd32(E1000_TSAUXC);
6165		tsauxc |= TSAUXC_EN_TT1;
6166		wr32(E1000_TSAUXC, tsauxc);
6167		adapter->perout[1].start = ts;
6168		spin_unlock(&adapter->tmreg_lock);
6169		ack |= TSINTR_TT1;
6170	}
6171
6172	if (tsicr & TSINTR_AUTT0) {
6173		nsec = rd32(E1000_AUXSTMPL0);
6174		sec  = rd32(E1000_AUXSTMPH0);
6175		event.type = PTP_CLOCK_EXTTS;
6176		event.index = 0;
6177		event.timestamp = sec * 1000000000ULL + nsec;
6178		ptp_clock_event(adapter->ptp_clock, &event);
6179		ack |= TSINTR_AUTT0;
6180	}
6181
6182	if (tsicr & TSINTR_AUTT1) {
6183		nsec = rd32(E1000_AUXSTMPL1);
6184		sec  = rd32(E1000_AUXSTMPH1);
6185		event.type = PTP_CLOCK_EXTTS;
6186		event.index = 1;
6187		event.timestamp = sec * 1000000000ULL + nsec;
6188		ptp_clock_event(adapter->ptp_clock, &event);
6189		ack |= TSINTR_AUTT1;
6190	}
6191
6192	/* acknowledge the interrupts */
6193	wr32(E1000_TSICR, ack);
6194}
6195
6196static irqreturn_t igb_msix_other(int irq, void *data)
6197{
6198	struct igb_adapter *adapter = data;
6199	struct e1000_hw *hw = &adapter->hw;
6200	u32 icr = rd32(E1000_ICR);
6201	/* reading ICR causes bit 31 of EICR to be cleared */
6202
6203	if (icr & E1000_ICR_DRSTA)
6204		schedule_work(&adapter->reset_task);
6205
6206	if (icr & E1000_ICR_DOUTSYNC) {
6207		/* HW is reporting DMA is out of sync */
6208		adapter->stats.doosync++;
6209		/* The DMA Out of Sync is also indication of a spoof event
6210		 * in IOV mode. Check the Wrong VM Behavior register to
6211		 * see if it is really a spoof event.
6212		 */
6213		igb_check_wvbr(adapter);
6214	}
6215
6216	/* Check for a mailbox event */
6217	if (icr & E1000_ICR_VMMB)
6218		igb_msg_task(adapter);
6219
6220	if (icr & E1000_ICR_LSC) {
6221		hw->mac.get_link_status = 1;
6222		/* guard against interrupt when we're going down */
6223		if (!test_bit(__IGB_DOWN, &adapter->state))
6224			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6225	}
6226
6227	if (icr & E1000_ICR_TS)
6228		igb_tsync_interrupt(adapter);
6229
6230	wr32(E1000_EIMS, adapter->eims_other);
6231
6232	return IRQ_HANDLED;
6233}
6234
6235static void igb_write_itr(struct igb_q_vector *q_vector)
6236{
6237	struct igb_adapter *adapter = q_vector->adapter;
6238	u32 itr_val = q_vector->itr_val & 0x7FFC;
6239
6240	if (!q_vector->set_itr)
6241		return;
6242
6243	if (!itr_val)
6244		itr_val = 0x4;
6245
6246	if (adapter->hw.mac.type == e1000_82575)
6247		itr_val |= itr_val << 16;
6248	else
6249		itr_val |= E1000_EITR_CNT_IGNR;
6250
6251	writel(itr_val, q_vector->itr_register);
6252	q_vector->set_itr = 0;
6253}
6254
6255static irqreturn_t igb_msix_ring(int irq, void *data)
6256{
6257	struct igb_q_vector *q_vector = data;
6258
6259	/* Write the ITR value calculated from the previous interrupt. */
6260	igb_write_itr(q_vector);
6261
6262	napi_schedule(&q_vector->napi);
6263
6264	return IRQ_HANDLED;
6265}
6266
6267#ifdef CONFIG_IGB_DCA
6268static void igb_update_tx_dca(struct igb_adapter *adapter,
6269			      struct igb_ring *tx_ring,
6270			      int cpu)
6271{
6272	struct e1000_hw *hw = &adapter->hw;
6273	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6274
6275	if (hw->mac.type != e1000_82575)
6276		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6277
6278	/* We can enable relaxed ordering for reads, but not writes when
6279	 * DCA is enabled.  This is due to a known issue in some chipsets
6280	 * which will cause the DCA tag to be cleared.
6281	 */
6282	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6283		  E1000_DCA_TXCTRL_DATA_RRO_EN |
6284		  E1000_DCA_TXCTRL_DESC_DCA_EN;
6285
6286	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6287}
6288
6289static void igb_update_rx_dca(struct igb_adapter *adapter,
6290			      struct igb_ring *rx_ring,
6291			      int cpu)
6292{
6293	struct e1000_hw *hw = &adapter->hw;
6294	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6295
6296	if (hw->mac.type != e1000_82575)
6297		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6298
6299	/* We can enable relaxed ordering for reads, but not writes when
6300	 * DCA is enabled.  This is due to a known issue in some chipsets
6301	 * which will cause the DCA tag to be cleared.
6302	 */
6303	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6304		  E1000_DCA_RXCTRL_DESC_DCA_EN;
6305
6306	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6307}
6308
6309static void igb_update_dca(struct igb_q_vector *q_vector)
6310{
6311	struct igb_adapter *adapter = q_vector->adapter;
6312	int cpu = get_cpu();
6313
6314	if (q_vector->cpu == cpu)
6315		goto out_no_update;
6316
6317	if (q_vector->tx.ring)
6318		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6319
6320	if (q_vector->rx.ring)
6321		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6322
6323	q_vector->cpu = cpu;
6324out_no_update:
6325	put_cpu();
6326}
6327
6328static void igb_setup_dca(struct igb_adapter *adapter)
6329{
6330	struct e1000_hw *hw = &adapter->hw;
6331	int i;
6332
6333	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6334		return;
6335
6336	/* Always use CB2 mode, difference is masked in the CB driver. */
6337	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6338
6339	for (i = 0; i < adapter->num_q_vectors; i++) {
6340		adapter->q_vector[i]->cpu = -1;
6341		igb_update_dca(adapter->q_vector[i]);
6342	}
6343}
6344
6345static int __igb_notify_dca(struct device *dev, void *data)
6346{
6347	struct net_device *netdev = dev_get_drvdata(dev);
6348	struct igb_adapter *adapter = netdev_priv(netdev);
6349	struct pci_dev *pdev = adapter->pdev;
6350	struct e1000_hw *hw = &adapter->hw;
6351	unsigned long event = *(unsigned long *)data;
6352
6353	switch (event) {
6354	case DCA_PROVIDER_ADD:
6355		/* if already enabled, don't do it again */
6356		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6357			break;
6358		if (dca_add_requester(dev) == 0) {
6359			adapter->flags |= IGB_FLAG_DCA_ENABLED;
6360			dev_info(&pdev->dev, "DCA enabled\n");
6361			igb_setup_dca(adapter);
6362			break;
6363		}
6364		/* Fall Through since DCA is disabled. */
6365	case DCA_PROVIDER_REMOVE:
6366		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6367			/* without this a class_device is left
6368			 * hanging around in the sysfs model
6369			 */
6370			dca_remove_requester(dev);
6371			dev_info(&pdev->dev, "DCA disabled\n");
6372			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6373			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6374		}
6375		break;
6376	}
6377
6378	return 0;
6379}
6380
6381static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6382			  void *p)
6383{
6384	int ret_val;
6385
6386	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6387					 __igb_notify_dca);
6388
6389	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6390}
6391#endif /* CONFIG_IGB_DCA */
6392
6393#ifdef CONFIG_PCI_IOV
6394static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6395{
6396	unsigned char mac_addr[ETH_ALEN];
6397
6398	eth_zero_addr(mac_addr);
6399	igb_set_vf_mac(adapter, vf, mac_addr);
6400
6401	/* By default spoof check is enabled for all VFs */
6402	adapter->vf_data[vf].spoofchk_enabled = true;
6403
6404	/* By default VFs are not trusted */
6405	adapter->vf_data[vf].trusted = false;
6406
6407	return 0;
6408}
6409
6410#endif
6411static void igb_ping_all_vfs(struct igb_adapter *adapter)
6412{
6413	struct e1000_hw *hw = &adapter->hw;
6414	u32 ping;
6415	int i;
6416
6417	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6418		ping = E1000_PF_CONTROL_MSG;
6419		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6420			ping |= E1000_VT_MSGTYPE_CTS;
6421		igb_write_mbx(hw, &ping, 1, i);
6422	}
6423}
6424
6425static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6426{
6427	struct e1000_hw *hw = &adapter->hw;
6428	u32 vmolr = rd32(E1000_VMOLR(vf));
6429	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6430
6431	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6432			    IGB_VF_FLAG_MULTI_PROMISC);
6433	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6434
6435	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6436		vmolr |= E1000_VMOLR_MPME;
6437		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6438		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6439	} else {
6440		/* if we have hashes and we are clearing a multicast promisc
6441		 * flag we need to write the hashes to the MTA as this step
6442		 * was previously skipped
6443		 */
6444		if (vf_data->num_vf_mc_hashes > 30) {
6445			vmolr |= E1000_VMOLR_MPME;
6446		} else if (vf_data->num_vf_mc_hashes) {
6447			int j;
6448
6449			vmolr |= E1000_VMOLR_ROMPE;
6450			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6451				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6452		}
6453	}
6454
6455	wr32(E1000_VMOLR(vf), vmolr);
6456
6457	/* there are flags left unprocessed, likely not supported */
6458	if (*msgbuf & E1000_VT_MSGINFO_MASK)
6459		return -EINVAL;
6460
6461	return 0;
6462}
6463
6464static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6465				  u32 *msgbuf, u32 vf)
6466{
6467	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6468	u16 *hash_list = (u16 *)&msgbuf[1];
6469	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6470	int i;
6471
6472	/* salt away the number of multicast addresses assigned
6473	 * to this VF for later use to restore when the PF multi cast
6474	 * list changes
6475	 */
6476	vf_data->num_vf_mc_hashes = n;
6477
6478	/* only up to 30 hash values supported */
6479	if (n > 30)
6480		n = 30;
6481
6482	/* store the hashes for later use */
6483	for (i = 0; i < n; i++)
6484		vf_data->vf_mc_hashes[i] = hash_list[i];
6485
6486	/* Flush and reset the mta with the new values */
6487	igb_set_rx_mode(adapter->netdev);
6488
6489	return 0;
6490}
6491
6492static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6493{
6494	struct e1000_hw *hw = &adapter->hw;
6495	struct vf_data_storage *vf_data;
6496	int i, j;
6497
6498	for (i = 0; i < adapter->vfs_allocated_count; i++) {
6499		u32 vmolr = rd32(E1000_VMOLR(i));
6500
6501		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6502
6503		vf_data = &adapter->vf_data[i];
6504
6505		if ((vf_data->num_vf_mc_hashes > 30) ||
6506		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6507			vmolr |= E1000_VMOLR_MPME;
6508		} else if (vf_data->num_vf_mc_hashes) {
6509			vmolr |= E1000_VMOLR_ROMPE;
6510			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6511				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6512		}
6513		wr32(E1000_VMOLR(i), vmolr);
6514	}
6515}
6516
6517static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6518{
6519	struct e1000_hw *hw = &adapter->hw;
6520	u32 pool_mask, vlvf_mask, i;
6521
6522	/* create mask for VF and other pools */
6523	pool_mask = E1000_VLVF_POOLSEL_MASK;
6524	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6525
6526	/* drop PF from pool bits */
6527	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6528			     adapter->vfs_allocated_count);
6529
6530	/* Find the vlan filter for this id */
6531	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6532		u32 vlvf = rd32(E1000_VLVF(i));
6533		u32 vfta_mask, vid, vfta;
6534
6535		/* remove the vf from the pool */
6536		if (!(vlvf & vlvf_mask))
6537			continue;
6538
6539		/* clear out bit from VLVF */
6540		vlvf ^= vlvf_mask;
6541
6542		/* if other pools are present, just remove ourselves */
6543		if (vlvf & pool_mask)
6544			goto update_vlvfb;
6545
6546		/* if PF is present, leave VFTA */
6547		if (vlvf & E1000_VLVF_POOLSEL_MASK)
6548			goto update_vlvf;
6549
6550		vid = vlvf & E1000_VLVF_VLANID_MASK;
6551		vfta_mask = BIT(vid % 32);
6552
6553		/* clear bit from VFTA */
6554		vfta = adapter->shadow_vfta[vid / 32];
6555		if (vfta & vfta_mask)
6556			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6557update_vlvf:
6558		/* clear pool selection enable */
6559		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6560			vlvf &= E1000_VLVF_POOLSEL_MASK;
6561		else
6562			vlvf = 0;
6563update_vlvfb:
6564		/* clear pool bits */
6565		wr32(E1000_VLVF(i), vlvf);
6566	}
6567}
6568
6569static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6570{
6571	u32 vlvf;
6572	int idx;
6573
6574	/* short cut the special case */
6575	if (vlan == 0)
6576		return 0;
6577
6578	/* Search for the VLAN id in the VLVF entries */
6579	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6580		vlvf = rd32(E1000_VLVF(idx));
6581		if ((vlvf & VLAN_VID_MASK) == vlan)
6582			break;
6583	}
6584
6585	return idx;
6586}
6587
6588static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6589{
6590	struct e1000_hw *hw = &adapter->hw;
6591	u32 bits, pf_id;
6592	int idx;
6593
6594	idx = igb_find_vlvf_entry(hw, vid);
6595	if (!idx)
6596		return;
6597
6598	/* See if any other pools are set for this VLAN filter
6599	 * entry other than the PF.
6600	 */
6601	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6602	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6603	bits &= rd32(E1000_VLVF(idx));
6604
6605	/* Disable the filter so this falls into the default pool. */
6606	if (!bits) {
6607		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6608			wr32(E1000_VLVF(idx), BIT(pf_id));
6609		else
6610			wr32(E1000_VLVF(idx), 0);
6611	}
6612}
6613
6614static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6615			   bool add, u32 vf)
6616{
6617	int pf_id = adapter->vfs_allocated_count;
6618	struct e1000_hw *hw = &adapter->hw;
6619	int err;
6620
6621	/* If VLAN overlaps with one the PF is currently monitoring make
6622	 * sure that we are able to allocate a VLVF entry.  This may be
6623	 * redundant but it guarantees PF will maintain visibility to
6624	 * the VLAN.
6625	 */
6626	if (add && test_bit(vid, adapter->active_vlans)) {
6627		err = igb_vfta_set(hw, vid, pf_id, true, false);
6628		if (err)
6629			return err;
6630	}
6631
6632	err = igb_vfta_set(hw, vid, vf, add, false);
6633
6634	if (add && !err)
6635		return err;
6636
6637	/* If we failed to add the VF VLAN or we are removing the VF VLAN
6638	 * we may need to drop the PF pool bit in order to allow us to free
6639	 * up the VLVF resources.
6640	 */
6641	if (test_bit(vid, adapter->active_vlans) ||
6642	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6643		igb_update_pf_vlvf(adapter, vid);
6644
6645	return err;
6646}
6647
6648static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6649{
6650	struct e1000_hw *hw = &adapter->hw;
6651
6652	if (vid)
6653		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6654	else
6655		wr32(E1000_VMVIR(vf), 0);
6656}
6657
6658static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6659				u16 vlan, u8 qos)
6660{
6661	int err;
6662
6663	err = igb_set_vf_vlan(adapter, vlan, true, vf);
6664	if (err)
6665		return err;
6666
6667	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6668	igb_set_vmolr(adapter, vf, !vlan);
6669
6670	/* revoke access to previous VLAN */
6671	if (vlan != adapter->vf_data[vf].pf_vlan)
6672		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6673				false, vf);
6674
6675	adapter->vf_data[vf].pf_vlan = vlan;
6676	adapter->vf_data[vf].pf_qos = qos;
6677	igb_set_vf_vlan_strip(adapter, vf, true);
6678	dev_info(&adapter->pdev->dev,
6679		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6680	if (test_bit(__IGB_DOWN, &adapter->state)) {
6681		dev_warn(&adapter->pdev->dev,
6682			 "The VF VLAN has been set, but the PF device is not up.\n");
6683		dev_warn(&adapter->pdev->dev,
6684			 "Bring the PF device up before attempting to use the VF device.\n");
6685	}
6686
6687	return err;
6688}
6689
6690static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6691{
6692	/* Restore tagless access via VLAN 0 */
6693	igb_set_vf_vlan(adapter, 0, true, vf);
6694
6695	igb_set_vmvir(adapter, 0, vf);
6696	igb_set_vmolr(adapter, vf, true);
6697
6698	/* Remove any PF assigned VLAN */
6699	if (adapter->vf_data[vf].pf_vlan)
6700		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6701				false, vf);
6702
6703	adapter->vf_data[vf].pf_vlan = 0;
6704	adapter->vf_data[vf].pf_qos = 0;
6705	igb_set_vf_vlan_strip(adapter, vf, false);
6706
6707	return 0;
6708}
6709
6710static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6711			       u16 vlan, u8 qos, __be16 vlan_proto)
6712{
6713	struct igb_adapter *adapter = netdev_priv(netdev);
6714
6715	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6716		return -EINVAL;
6717
6718	if (vlan_proto != htons(ETH_P_8021Q))
6719		return -EPROTONOSUPPORT;
6720
6721	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6722			       igb_disable_port_vlan(adapter, vf);
6723}
6724
6725static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6726{
6727	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6728	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6729	int ret;
6730
6731	if (adapter->vf_data[vf].pf_vlan)
6732		return -1;
6733
6734	/* VLAN 0 is a special case, don't allow it to be removed */
6735	if (!vid && !add)
6736		return 0;
6737
6738	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6739	if (!ret)
6740		igb_set_vf_vlan_strip(adapter, vf, !!vid);
6741	return ret;
6742}
6743
6744static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6745{
6746	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6747
6748	/* clear flags - except flag that indicates PF has set the MAC */
6749	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6750	vf_data->last_nack = jiffies;
6751
6752	/* reset vlans for device */
6753	igb_clear_vf_vfta(adapter, vf);
6754	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6755	igb_set_vmvir(adapter, vf_data->pf_vlan |
6756			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6757	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6758	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6759
6760	/* reset multicast table array for vf */
6761	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6762
6763	/* Flush and reset the mta with the new values */
6764	igb_set_rx_mode(adapter->netdev);
6765}
6766
6767static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6768{
6769	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6770
6771	/* clear mac address as we were hotplug removed/added */
6772	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6773		eth_zero_addr(vf_mac);
6774
6775	/* process remaining reset events */
6776	igb_vf_reset(adapter, vf);
6777}
6778
6779static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6780{
6781	struct e1000_hw *hw = &adapter->hw;
6782	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6783	u32 reg, msgbuf[3];
6784	u8 *addr = (u8 *)(&msgbuf[1]);
6785
6786	/* process all the same items cleared in a function level reset */
6787	igb_vf_reset(adapter, vf);
6788
6789	/* set vf mac address */
6790	igb_set_vf_mac(adapter, vf, vf_mac);
6791
6792	/* enable transmit and receive for vf */
6793	reg = rd32(E1000_VFTE);
6794	wr32(E1000_VFTE, reg | BIT(vf));
6795	reg = rd32(E1000_VFRE);
6796	wr32(E1000_VFRE, reg | BIT(vf));
6797
6798	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6799
6800	/* reply to reset with ack and vf mac address */
6801	if (!is_zero_ether_addr(vf_mac)) {
6802		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6803		memcpy(addr, vf_mac, ETH_ALEN);
6804	} else {
6805		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6806	}
6807	igb_write_mbx(hw, msgbuf, 3, vf);
6808}
6809
6810static void igb_flush_mac_table(struct igb_adapter *adapter)
6811{
6812	struct e1000_hw *hw = &adapter->hw;
6813	int i;
6814
6815	for (i = 0; i < hw->mac.rar_entry_count; i++) {
6816		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6817		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6818		adapter->mac_table[i].queue = 0;
6819		igb_rar_set_index(adapter, i);
6820	}
6821}
6822
6823static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
6824{
6825	struct e1000_hw *hw = &adapter->hw;
6826	/* do not count rar entries reserved for VFs MAC addresses */
6827	int rar_entries = hw->mac.rar_entry_count -
6828			  adapter->vfs_allocated_count;
6829	int i, count = 0;
6830
6831	for (i = 0; i < rar_entries; i++) {
6832		/* do not count default entries */
6833		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
6834			continue;
6835
6836		/* do not count "in use" entries for different queues */
6837		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
6838		    (adapter->mac_table[i].queue != queue))
6839			continue;
6840
6841		count++;
6842	}
6843
6844	return count;
6845}
6846
6847/* Set default MAC address for the PF in the first RAR entry */
6848static void igb_set_default_mac_filter(struct igb_adapter *adapter)
6849{
6850	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
6851
6852	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
6853	mac_table->queue = adapter->vfs_allocated_count;
6854	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
6855
6856	igb_rar_set_index(adapter, 0);
6857}
6858
6859static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6860			      const u8 queue)
6861{
6862	struct e1000_hw *hw = &adapter->hw;
6863	int rar_entries = hw->mac.rar_entry_count -
6864			  adapter->vfs_allocated_count;
6865	int i;
6866
6867	if (is_zero_ether_addr(addr))
6868		return -EINVAL;
6869
6870	/* Search for the first empty entry in the MAC table.
6871	 * Do not touch entries at the end of the table reserved for the VF MAC
6872	 * addresses.
6873	 */
6874	for (i = 0; i < rar_entries; i++) {
6875		if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
6876			continue;
6877
6878		ether_addr_copy(adapter->mac_table[i].addr, addr);
6879		adapter->mac_table[i].queue = queue;
6880		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE;
6881
6882		igb_rar_set_index(adapter, i);
6883		return i;
6884	}
6885
6886	return -ENOSPC;
6887}
6888
6889static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6890			      const u8 queue)
6891{
6892	struct e1000_hw *hw = &adapter->hw;
6893	int rar_entries = hw->mac.rar_entry_count -
6894			  adapter->vfs_allocated_count;
6895	int i;
6896
6897	if (is_zero_ether_addr(addr))
6898		return -EINVAL;
6899
6900	/* Search for matching entry in the MAC table based on given address
6901	 * and queue. Do not touch entries at the end of the table reserved
6902	 * for the VF MAC addresses.
6903	 */
6904	for (i = 0; i < rar_entries; i++) {
6905		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
6906			continue;
6907		if (adapter->mac_table[i].queue != queue)
6908			continue;
6909		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
6910			continue;
6911
6912		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6913		memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6914		adapter->mac_table[i].queue = 0;
6915
6916		igb_rar_set_index(adapter, i);
6917		return 0;
6918	}
6919
6920	return -ENOENT;
6921}
6922
6923static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
6924{
6925	struct igb_adapter *adapter = netdev_priv(netdev);
6926	int ret;
6927
6928	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6929
6930	return min_t(int, ret, 0);
6931}
6932
6933static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
6934{
6935	struct igb_adapter *adapter = netdev_priv(netdev);
6936
6937	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6938
6939	return 0;
6940}
6941
6942static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
6943				 const u32 info, const u8 *addr)
6944{
6945	struct pci_dev *pdev = adapter->pdev;
6946	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6947	struct list_head *pos;
6948	struct vf_mac_filter *entry = NULL;
6949	int ret = 0;
6950
6951	switch (info) {
6952	case E1000_VF_MAC_FILTER_CLR:
6953		/* remove all unicast MAC filters related to the current VF */
6954		list_for_each(pos, &adapter->vf_macs.l) {
6955			entry = list_entry(pos, struct vf_mac_filter, l);
6956			if (entry->vf == vf) {
6957				entry->vf = -1;
6958				entry->free = true;
6959				igb_del_mac_filter(adapter, entry->vf_mac, vf);
6960			}
6961		}
6962		break;
6963	case E1000_VF_MAC_FILTER_ADD:
6964		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
6965		    !vf_data->trusted) {
6966			dev_warn(&pdev->dev,
6967				 "VF %d requested MAC filter but is administratively denied\n",
6968				 vf);
6969			return -EINVAL;
6970		}
6971		if (!is_valid_ether_addr(addr)) {
6972			dev_warn(&pdev->dev,
6973				 "VF %d attempted to set invalid MAC filter\n",
6974				 vf);
6975			return -EINVAL;
6976		}
6977
6978		/* try to find empty slot in the list */
6979		list_for_each(pos, &adapter->vf_macs.l) {
6980			entry = list_entry(pos, struct vf_mac_filter, l);
6981			if (entry->free)
6982				break;
6983		}
6984
6985		if (entry && entry->free) {
6986			entry->free = false;
6987			entry->vf = vf;
6988			ether_addr_copy(entry->vf_mac, addr);
6989
6990			ret = igb_add_mac_filter(adapter, addr, vf);
6991			ret = min_t(int, ret, 0);
6992		} else {
6993			ret = -ENOSPC;
6994		}
6995
6996		if (ret == -ENOSPC)
6997			dev_warn(&pdev->dev,
6998				 "VF %d has requested MAC filter but there is no space for it\n",
6999				 vf);
7000		break;
7001	default:
7002		ret = -EINVAL;
7003		break;
7004	}
7005
7006	return ret;
7007}
7008
7009static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7010{
7011	struct pci_dev *pdev = adapter->pdev;
7012	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7013	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7014
7015	/* The VF MAC Address is stored in a packed array of bytes
7016	 * starting at the second 32 bit word of the msg array
7017	 */
7018	unsigned char *addr = (unsigned char *)&msg[1];
7019	int ret = 0;
7020
7021	if (!info) {
7022		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7023		    !vf_data->trusted) {
7024			dev_warn(&pdev->dev,
7025				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7026				 vf);
7027			return -EINVAL;
7028		}
7029
7030		if (!is_valid_ether_addr(addr)) {
7031			dev_warn(&pdev->dev,
7032				 "VF %d attempted to set invalid MAC\n",
7033				 vf);
7034			return -EINVAL;
7035		}
7036
7037		ret = igb_set_vf_mac(adapter, vf, addr);
7038	} else {
7039		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7040	}
7041
7042	return ret;
7043}
7044
7045static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7046{
7047	struct e1000_hw *hw = &adapter->hw;
7048	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7049	u32 msg = E1000_VT_MSGTYPE_NACK;
7050
7051	/* if device isn't clear to send it shouldn't be reading either */
7052	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7053	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7054		igb_write_mbx(hw, &msg, 1, vf);
7055		vf_data->last_nack = jiffies;
7056	}
7057}
7058
7059static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7060{
7061	struct pci_dev *pdev = adapter->pdev;
7062	u32 msgbuf[E1000_VFMAILBOX_SIZE];
7063	struct e1000_hw *hw = &adapter->hw;
7064	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7065	s32 retval;
7066
7067	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7068
7069	if (retval) {
7070		/* if receive failed revoke VF CTS stats and restart init */
7071		dev_err(&pdev->dev, "Error receiving message from VF\n");
7072		vf_data->flags &= ~IGB_VF_FLAG_CTS;
7073		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7074			goto unlock;
7075		goto out;
7076	}
7077
7078	/* this is a message we already processed, do nothing */
7079	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7080		goto unlock;
7081
7082	/* until the vf completes a reset it should not be
7083	 * allowed to start any configuration.
7084	 */
7085	if (msgbuf[0] == E1000_VF_RESET) {
7086		/* unlocks mailbox */
7087		igb_vf_reset_msg(adapter, vf);
7088		return;
7089	}
7090
7091	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7092		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7093			goto unlock;
7094		retval = -1;
7095		goto out;
7096	}
7097
7098	switch ((msgbuf[0] & 0xFFFF)) {
7099	case E1000_VF_SET_MAC_ADDR:
7100		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7101		break;
7102	case E1000_VF_SET_PROMISC:
7103		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7104		break;
7105	case E1000_VF_SET_MULTICAST:
7106		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7107		break;
7108	case E1000_VF_SET_LPE:
7109		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7110		break;
7111	case E1000_VF_SET_VLAN:
7112		retval = -1;
7113		if (vf_data->pf_vlan)
7114			dev_warn(&pdev->dev,
7115				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7116				 vf);
7117		else
7118			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7119		break;
7120	default:
7121		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7122		retval = -1;
7123		break;
7124	}
7125
7126	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7127out:
7128	/* notify the VF of the results of what it sent us */
7129	if (retval)
7130		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7131	else
7132		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7133
7134	/* unlocks mailbox */
7135	igb_write_mbx(hw, msgbuf, 1, vf);
7136	return;
7137
7138unlock:
7139	igb_unlock_mbx(hw, vf);
7140}
7141
7142static void igb_msg_task(struct igb_adapter *adapter)
7143{
7144	struct e1000_hw *hw = &adapter->hw;
7145	u32 vf;
7146
7147	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7148		/* process any reset requests */
7149		if (!igb_check_for_rst(hw, vf))
7150			igb_vf_reset_event(adapter, vf);
7151
7152		/* process any messages pending */
7153		if (!igb_check_for_msg(hw, vf))
7154			igb_rcv_msg_from_vf(adapter, vf);
7155
7156		/* process any acks */
7157		if (!igb_check_for_ack(hw, vf))
7158			igb_rcv_ack_from_vf(adapter, vf);
7159	}
7160}
7161
7162/**
7163 *  igb_set_uta - Set unicast filter table address
7164 *  @adapter: board private structure
7165 *  @set: boolean indicating if we are setting or clearing bits
7166 *
7167 *  The unicast table address is a register array of 32-bit registers.
7168 *  The table is meant to be used in a way similar to how the MTA is used
7169 *  however due to certain limitations in the hardware it is necessary to
7170 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7171 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7172 **/
7173static void igb_set_uta(struct igb_adapter *adapter, bool set)
7174{
7175	struct e1000_hw *hw = &adapter->hw;
7176	u32 uta = set ? ~0 : 0;
7177	int i;
7178
7179	/* we only need to do this if VMDq is enabled */
7180	if (!adapter->vfs_allocated_count)
7181		return;
7182
7183	for (i = hw->mac.uta_reg_count; i--;)
7184		array_wr32(E1000_UTA, i, uta);
7185}
7186
7187/**
7188 *  igb_intr_msi - Interrupt Handler
7189 *  @irq: interrupt number
7190 *  @data: pointer to a network interface device structure
7191 **/
7192static irqreturn_t igb_intr_msi(int irq, void *data)
7193{
7194	struct igb_adapter *adapter = data;
7195	struct igb_q_vector *q_vector = adapter->q_vector[0];
7196	struct e1000_hw *hw = &adapter->hw;
7197	/* read ICR disables interrupts using IAM */
7198	u32 icr = rd32(E1000_ICR);
7199
7200	igb_write_itr(q_vector);
7201
7202	if (icr & E1000_ICR_DRSTA)
7203		schedule_work(&adapter->reset_task);
7204
7205	if (icr & E1000_ICR_DOUTSYNC) {
7206		/* HW is reporting DMA is out of sync */
7207		adapter->stats.doosync++;
7208	}
7209
7210	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7211		hw->mac.get_link_status = 1;
7212		if (!test_bit(__IGB_DOWN, &adapter->state))
7213			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7214	}
7215
7216	if (icr & E1000_ICR_TS)
7217		igb_tsync_interrupt(adapter);
7218
7219	napi_schedule(&q_vector->napi);
7220
7221	return IRQ_HANDLED;
7222}
7223
7224/**
7225 *  igb_intr - Legacy Interrupt Handler
7226 *  @irq: interrupt number
7227 *  @data: pointer to a network interface device structure
7228 **/
7229static irqreturn_t igb_intr(int irq, void *data)
7230{
7231	struct igb_adapter *adapter = data;
7232	struct igb_q_vector *q_vector = adapter->q_vector[0];
7233	struct e1000_hw *hw = &adapter->hw;
7234	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7235	 * need for the IMC write
7236	 */
7237	u32 icr = rd32(E1000_ICR);
7238
7239	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7240	 * not set, then the adapter didn't send an interrupt
7241	 */
7242	if (!(icr & E1000_ICR_INT_ASSERTED))
7243		return IRQ_NONE;
7244
7245	igb_write_itr(q_vector);
7246
7247	if (icr & E1000_ICR_DRSTA)
7248		schedule_work(&adapter->reset_task);
7249
7250	if (icr & E1000_ICR_DOUTSYNC) {
7251		/* HW is reporting DMA is out of sync */
7252		adapter->stats.doosync++;
7253	}
7254
7255	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7256		hw->mac.get_link_status = 1;
7257		/* guard against interrupt when we're going down */
7258		if (!test_bit(__IGB_DOWN, &adapter->state))
7259			mod_timer(&adapter->watchdog_timer, jiffies + 1);
7260	}
7261
7262	if (icr & E1000_ICR_TS)
7263		igb_tsync_interrupt(adapter);
7264
7265	napi_schedule(&q_vector->napi);
7266
7267	return IRQ_HANDLED;
7268}
7269
7270static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7271{
7272	struct igb_adapter *adapter = q_vector->adapter;
7273	struct e1000_hw *hw = &adapter->hw;
7274
7275	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7276	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7277		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7278			igb_set_itr(q_vector);
7279		else
7280			igb_update_ring_itr(q_vector);
7281	}
7282
7283	if (!test_bit(__IGB_DOWN, &adapter->state)) {
7284		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7285			wr32(E1000_EIMS, q_vector->eims_value);
7286		else
7287			igb_irq_enable(adapter);
7288	}
7289}
7290
7291/**
7292 *  igb_poll - NAPI Rx polling callback
7293 *  @napi: napi polling structure
7294 *  @budget: count of how many packets we should handle
7295 **/
7296static int igb_poll(struct napi_struct *napi, int budget)
7297{
7298	struct igb_q_vector *q_vector = container_of(napi,
7299						     struct igb_q_vector,
7300						     napi);
7301	bool clean_complete = true;
7302	int work_done = 0;
7303
7304#ifdef CONFIG_IGB_DCA
7305	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7306		igb_update_dca(q_vector);
7307#endif
7308	if (q_vector->tx.ring)
7309		clean_complete = igb_clean_tx_irq(q_vector, budget);
7310
7311	if (q_vector->rx.ring) {
7312		int cleaned = igb_clean_rx_irq(q_vector, budget);
7313
7314		work_done += cleaned;
7315		if (cleaned >= budget)
7316			clean_complete = false;
7317	}
7318
7319	/* If all work not completed, return budget and keep polling */
7320	if (!clean_complete)
7321		return budget;
7322
7323	/* If not enough Rx work done, exit the polling mode */
7324	napi_complete_done(napi, work_done);
7325	igb_ring_irq_enable(q_vector);
7326
7327	return 0;
7328}
7329
7330/**
7331 *  igb_clean_tx_irq - Reclaim resources after transmit completes
7332 *  @q_vector: pointer to q_vector containing needed info
7333 *  @napi_budget: Used to determine if we are in netpoll
7334 *
7335 *  returns true if ring is completely cleaned
7336 **/
7337static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7338{
7339	struct igb_adapter *adapter = q_vector->adapter;
7340	struct igb_ring *tx_ring = q_vector->tx.ring;
7341	struct igb_tx_buffer *tx_buffer;
7342	union e1000_adv_tx_desc *tx_desc;
7343	unsigned int total_bytes = 0, total_packets = 0;
7344	unsigned int budget = q_vector->tx.work_limit;
7345	unsigned int i = tx_ring->next_to_clean;
7346
7347	if (test_bit(__IGB_DOWN, &adapter->state))
7348		return true;
7349
7350	tx_buffer = &tx_ring->tx_buffer_info[i];
7351	tx_desc = IGB_TX_DESC(tx_ring, i);
7352	i -= tx_ring->count;
7353
7354	do {
7355		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7356
7357		/* if next_to_watch is not set then there is no work pending */
7358		if (!eop_desc)
7359			break;
7360
7361		/* prevent any other reads prior to eop_desc */
7362		smp_rmb();
7363
7364		/* if DD is not set pending work has not been completed */
7365		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7366			break;
7367
7368		/* clear next_to_watch to prevent false hangs */
7369		tx_buffer->next_to_watch = NULL;
7370
7371		/* update the statistics for this packet */
7372		total_bytes += tx_buffer->bytecount;
7373		total_packets += tx_buffer->gso_segs;
7374
7375		/* free the skb */
7376		napi_consume_skb(tx_buffer->skb, napi_budget);
7377
7378		/* unmap skb header data */
7379		dma_unmap_single(tx_ring->dev,
7380				 dma_unmap_addr(tx_buffer, dma),
7381				 dma_unmap_len(tx_buffer, len),
7382				 DMA_TO_DEVICE);
7383
7384		/* clear tx_buffer data */
7385		dma_unmap_len_set(tx_buffer, len, 0);
7386
7387		/* clear last DMA location and unmap remaining buffers */
7388		while (tx_desc != eop_desc) {
7389			tx_buffer++;
7390			tx_desc++;
7391			i++;
7392			if (unlikely(!i)) {
7393				i -= tx_ring->count;
7394				tx_buffer = tx_ring->tx_buffer_info;
7395				tx_desc = IGB_TX_DESC(tx_ring, 0);
7396			}
7397
7398			/* unmap any remaining paged data */
7399			if (dma_unmap_len(tx_buffer, len)) {
7400				dma_unmap_page(tx_ring->dev,
7401					       dma_unmap_addr(tx_buffer, dma),
7402					       dma_unmap_len(tx_buffer, len),
7403					       DMA_TO_DEVICE);
7404				dma_unmap_len_set(tx_buffer, len, 0);
7405			}
7406		}
7407
7408		/* move us one more past the eop_desc for start of next pkt */
7409		tx_buffer++;
7410		tx_desc++;
7411		i++;
7412		if (unlikely(!i)) {
7413			i -= tx_ring->count;
7414			tx_buffer = tx_ring->tx_buffer_info;
7415			tx_desc = IGB_TX_DESC(tx_ring, 0);
7416		}
7417
7418		/* issue prefetch for next Tx descriptor */
7419		prefetch(tx_desc);
7420
7421		/* update budget accounting */
7422		budget--;
7423	} while (likely(budget));
7424
7425	netdev_tx_completed_queue(txring_txq(tx_ring),
7426				  total_packets, total_bytes);
7427	i += tx_ring->count;
7428	tx_ring->next_to_clean = i;
7429	u64_stats_update_begin(&tx_ring->tx_syncp);
7430	tx_ring->tx_stats.bytes += total_bytes;
7431	tx_ring->tx_stats.packets += total_packets;
7432	u64_stats_update_end(&tx_ring->tx_syncp);
7433	q_vector->tx.total_bytes += total_bytes;
7434	q_vector->tx.total_packets += total_packets;
7435
7436	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7437		struct e1000_hw *hw = &adapter->hw;
7438
7439		/* Detect a transmit hang in hardware, this serializes the
7440		 * check with the clearing of time_stamp and movement of i
7441		 */
7442		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7443		if (tx_buffer->next_to_watch &&
7444		    time_after(jiffies, tx_buffer->time_stamp +
7445			       (adapter->tx_timeout_factor * HZ)) &&
7446		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7447
7448			/* detected Tx unit hang */
7449			dev_err(tx_ring->dev,
7450				"Detected Tx Unit Hang\n"
7451				"  Tx Queue             <%d>\n"
7452				"  TDH                  <%x>\n"
7453				"  TDT                  <%x>\n"
7454				"  next_to_use          <%x>\n"
7455				"  next_to_clean        <%x>\n"
7456				"buffer_info[next_to_clean]\n"
7457				"  time_stamp           <%lx>\n"
7458				"  next_to_watch        <%p>\n"
7459				"  jiffies              <%lx>\n"
7460				"  desc.status          <%x>\n",
7461				tx_ring->queue_index,
7462				rd32(E1000_TDH(tx_ring->reg_idx)),
7463				readl(tx_ring->tail),
7464				tx_ring->next_to_use,
7465				tx_ring->next_to_clean,
7466				tx_buffer->time_stamp,
7467				tx_buffer->next_to_watch,
7468				jiffies,
7469				tx_buffer->next_to_watch->wb.status);
7470			netif_stop_subqueue(tx_ring->netdev,
7471					    tx_ring->queue_index);
7472
7473			/* we are about to reset, no point in enabling stuff */
7474			return true;
7475		}
7476	}
7477
7478#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7479	if (unlikely(total_packets &&
7480	    netif_carrier_ok(tx_ring->netdev) &&
7481	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7482		/* Make sure that anybody stopping the queue after this
7483		 * sees the new next_to_clean.
7484		 */
7485		smp_mb();
7486		if (__netif_subqueue_stopped(tx_ring->netdev,
7487					     tx_ring->queue_index) &&
7488		    !(test_bit(__IGB_DOWN, &adapter->state))) {
7489			netif_wake_subqueue(tx_ring->netdev,
7490					    tx_ring->queue_index);
7491
7492			u64_stats_update_begin(&tx_ring->tx_syncp);
7493			tx_ring->tx_stats.restart_queue++;
7494			u64_stats_update_end(&tx_ring->tx_syncp);
7495		}
7496	}
7497
7498	return !!budget;
7499}
7500
7501/**
7502 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7503 *  @rx_ring: rx descriptor ring to store buffers on
7504 *  @old_buff: donor buffer to have page reused
7505 *
7506 *  Synchronizes page for reuse by the adapter
7507 **/
7508static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7509			      struct igb_rx_buffer *old_buff)
7510{
7511	struct igb_rx_buffer *new_buff;
7512	u16 nta = rx_ring->next_to_alloc;
7513
7514	new_buff = &rx_ring->rx_buffer_info[nta];
7515
7516	/* update, and store next to alloc */
7517	nta++;
7518	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7519
7520	/* Transfer page from old buffer to new buffer.
7521	 * Move each member individually to avoid possible store
7522	 * forwarding stalls.
7523	 */
7524	new_buff->dma		= old_buff->dma;
7525	new_buff->page		= old_buff->page;
7526	new_buff->page_offset	= old_buff->page_offset;
7527	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
7528}
7529
7530static inline bool igb_page_is_reserved(struct page *page)
7531{
7532	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7533}
7534
7535static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7536{
7537	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7538	struct page *page = rx_buffer->page;
7539
7540	/* avoid re-using remote pages */
7541	if (unlikely(igb_page_is_reserved(page)))
7542		return false;
7543
7544#if (PAGE_SIZE < 8192)
7545	/* if we are only owner of page we can reuse it */
7546	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7547		return false;
7548#else
7549#define IGB_LAST_OFFSET \
7550	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7551
7552	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7553		return false;
7554#endif
7555
7556	/* If we have drained the page fragment pool we need to update
7557	 * the pagecnt_bias and page count so that we fully restock the
7558	 * number of references the driver holds.
7559	 */
7560	if (unlikely(!pagecnt_bias)) {
7561		page_ref_add(page, USHRT_MAX);
7562		rx_buffer->pagecnt_bias = USHRT_MAX;
7563	}
7564
7565	return true;
7566}
7567
7568/**
7569 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7570 *  @rx_ring: rx descriptor ring to transact packets on
7571 *  @rx_buffer: buffer containing page to add
7572 *  @skb: sk_buff to place the data into
7573 *  @size: size of buffer to be added
7574 *
7575 *  This function will add the data contained in rx_buffer->page to the skb.
7576 **/
7577static void igb_add_rx_frag(struct igb_ring *rx_ring,
7578			    struct igb_rx_buffer *rx_buffer,
7579			    struct sk_buff *skb,
7580			    unsigned int size)
7581{
7582#if (PAGE_SIZE < 8192)
7583	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7584#else
7585	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7586				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7587				SKB_DATA_ALIGN(size);
7588#endif
7589	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7590			rx_buffer->page_offset, size, truesize);
7591#if (PAGE_SIZE < 8192)
7592	rx_buffer->page_offset ^= truesize;
7593#else
7594	rx_buffer->page_offset += truesize;
7595#endif
7596}
7597
7598static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
7599					 struct igb_rx_buffer *rx_buffer,
7600					 union e1000_adv_rx_desc *rx_desc,
7601					 unsigned int size)
7602{
7603	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7604#if (PAGE_SIZE < 8192)
7605	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7606#else
7607	unsigned int truesize = SKB_DATA_ALIGN(size);
7608#endif
7609	unsigned int headlen;
7610	struct sk_buff *skb;
7611
7612	/* prefetch first cache line of first page */
7613	prefetch(va);
7614#if L1_CACHE_BYTES < 128
7615	prefetch(va + L1_CACHE_BYTES);
7616#endif
7617
7618	/* allocate a skb to store the frags */
7619	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
7620	if (unlikely(!skb))
7621		return NULL;
7622
7623	if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
7624		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7625		va += IGB_TS_HDR_LEN;
7626		size -= IGB_TS_HDR_LEN;
7627	}
7628
7629	/* Determine available headroom for copy */
7630	headlen = size;
7631	if (headlen > IGB_RX_HDR_LEN)
7632		headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
7633
7634	/* align pull length to size of long to optimize memcpy performance */
7635	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
7636
7637	/* update all of the pointers */
7638	size -= headlen;
7639	if (size) {
7640		skb_add_rx_frag(skb, 0, rx_buffer->page,
7641				(va + headlen) - page_address(rx_buffer->page),
7642				size, truesize);
7643#if (PAGE_SIZE < 8192)
7644		rx_buffer->page_offset ^= truesize;
7645#else
7646		rx_buffer->page_offset += truesize;
7647#endif
7648	} else {
7649		rx_buffer->pagecnt_bias++;
7650	}
7651
7652	return skb;
7653}
7654
7655static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
7656				     struct igb_rx_buffer *rx_buffer,
7657				     union e1000_adv_rx_desc *rx_desc,
7658				     unsigned int size)
7659{
7660	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7661#if (PAGE_SIZE < 8192)
7662	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7663#else
7664	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
7665				SKB_DATA_ALIGN(IGB_SKB_PAD + size);
7666#endif
7667	struct sk_buff *skb;
7668
7669	/* prefetch first cache line of first page */
7670	prefetch(va);
7671#if L1_CACHE_BYTES < 128
7672	prefetch(va + L1_CACHE_BYTES);
7673#endif
7674
7675	/* build an skb around the page buffer */
7676	skb = build_skb(va - IGB_SKB_PAD, truesize);
7677	if (unlikely(!skb))
7678		return NULL;
7679
7680	/* update pointers within the skb to store the data */
7681	skb_reserve(skb, IGB_SKB_PAD);
7682	__skb_put(skb, size);
7683
7684	/* pull timestamp out of packet data */
7685	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7686		igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
7687		__skb_pull(skb, IGB_TS_HDR_LEN);
7688	}
7689
7690	/* update buffer offset */
7691#if (PAGE_SIZE < 8192)
7692	rx_buffer->page_offset ^= truesize;
7693#else
7694	rx_buffer->page_offset += truesize;
7695#endif
7696
7697	return skb;
7698}
7699
7700static inline void igb_rx_checksum(struct igb_ring *ring,
7701				   union e1000_adv_rx_desc *rx_desc,
7702				   struct sk_buff *skb)
7703{
7704	skb_checksum_none_assert(skb);
7705
7706	/* Ignore Checksum bit is set */
7707	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7708		return;
7709
7710	/* Rx checksum disabled via ethtool */
7711	if (!(ring->netdev->features & NETIF_F_RXCSUM))
7712		return;
7713
7714	/* TCP/UDP checksum error bit is set */
7715	if (igb_test_staterr(rx_desc,
7716			     E1000_RXDEXT_STATERR_TCPE |
7717			     E1000_RXDEXT_STATERR_IPE)) {
7718		/* work around errata with sctp packets where the TCPE aka
7719		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7720		 * packets, (aka let the stack check the crc32c)
7721		 */
7722		if (!((skb->len == 60) &&
7723		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7724			u64_stats_update_begin(&ring->rx_syncp);
7725			ring->rx_stats.csum_err++;
7726			u64_stats_update_end(&ring->rx_syncp);
7727		}
7728		/* let the stack verify checksum errors */
7729		return;
7730	}
7731	/* It must be a TCP or UDP packet with a valid checksum */
7732	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7733				      E1000_RXD_STAT_UDPCS))
7734		skb->ip_summed = CHECKSUM_UNNECESSARY;
7735
7736	dev_dbg(ring->dev, "cksum success: bits %08X\n",
7737		le32_to_cpu(rx_desc->wb.upper.status_error));
7738}
7739
7740static inline void igb_rx_hash(struct igb_ring *ring,
7741			       union e1000_adv_rx_desc *rx_desc,
7742			       struct sk_buff *skb)
7743{
7744	if (ring->netdev->features & NETIF_F_RXHASH)
7745		skb_set_hash(skb,
7746			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7747			     PKT_HASH_TYPE_L3);
7748}
7749
7750/**
7751 *  igb_is_non_eop - process handling of non-EOP buffers
7752 *  @rx_ring: Rx ring being processed
7753 *  @rx_desc: Rx descriptor for current buffer
7754 *  @skb: current socket buffer containing buffer in progress
7755 *
7756 *  This function updates next to clean.  If the buffer is an EOP buffer
7757 *  this function exits returning false, otherwise it will place the
7758 *  sk_buff in the next buffer to be chained and return true indicating
7759 *  that this is in fact a non-EOP buffer.
7760 **/
7761static bool igb_is_non_eop(struct igb_ring *rx_ring,
7762			   union e1000_adv_rx_desc *rx_desc)
7763{
7764	u32 ntc = rx_ring->next_to_clean + 1;
7765
7766	/* fetch, update, and store next to clean */
7767	ntc = (ntc < rx_ring->count) ? ntc : 0;
7768	rx_ring->next_to_clean = ntc;
7769
7770	prefetch(IGB_RX_DESC(rx_ring, ntc));
7771
7772	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7773		return false;
7774
7775	return true;
7776}
7777
7778/**
7779 *  igb_cleanup_headers - Correct corrupted or empty headers
7780 *  @rx_ring: rx descriptor ring packet is being transacted on
7781 *  @rx_desc: pointer to the EOP Rx descriptor
7782 *  @skb: pointer to current skb being fixed
7783 *
7784 *  Address the case where we are pulling data in on pages only
7785 *  and as such no data is present in the skb header.
7786 *
7787 *  In addition if skb is not at least 60 bytes we need to pad it so that
7788 *  it is large enough to qualify as a valid Ethernet frame.
7789 *
7790 *  Returns true if an error was encountered and skb was freed.
7791 **/
7792static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7793				union e1000_adv_rx_desc *rx_desc,
7794				struct sk_buff *skb)
7795{
7796	if (unlikely((igb_test_staterr(rx_desc,
7797				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7798		struct net_device *netdev = rx_ring->netdev;
7799		if (!(netdev->features & NETIF_F_RXALL)) {
7800			dev_kfree_skb_any(skb);
7801			return true;
7802		}
7803	}
7804
7805	/* if eth_skb_pad returns an error the skb was freed */
7806	if (eth_skb_pad(skb))
7807		return true;
7808
7809	return false;
7810}
7811
7812/**
7813 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
7814 *  @rx_ring: rx descriptor ring packet is being transacted on
7815 *  @rx_desc: pointer to the EOP Rx descriptor
7816 *  @skb: pointer to current skb being populated
7817 *
7818 *  This function checks the ring, descriptor, and packet information in
7819 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
7820 *  other fields within the skb.
7821 **/
7822static void igb_process_skb_fields(struct igb_ring *rx_ring,
7823				   union e1000_adv_rx_desc *rx_desc,
7824				   struct sk_buff *skb)
7825{
7826	struct net_device *dev = rx_ring->netdev;
7827
7828	igb_rx_hash(rx_ring, rx_desc, skb);
7829
7830	igb_rx_checksum(rx_ring, rx_desc, skb);
7831
7832	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7833	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7834		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7835
7836	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7837	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7838		u16 vid;
7839
7840		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7841		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7842			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7843		else
7844			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7845
7846		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7847	}
7848
7849	skb_record_rx_queue(skb, rx_ring->queue_index);
7850
7851	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7852}
7853
7854static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
7855					       const unsigned int size)
7856{
7857	struct igb_rx_buffer *rx_buffer;
7858
7859	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7860	prefetchw(rx_buffer->page);
7861
7862	/* we are reusing so sync this buffer for CPU use */
7863	dma_sync_single_range_for_cpu(rx_ring->dev,
7864				      rx_buffer->dma,
7865				      rx_buffer->page_offset,
7866				      size,
7867				      DMA_FROM_DEVICE);
7868
7869	rx_buffer->pagecnt_bias--;
7870
7871	return rx_buffer;
7872}
7873
7874static void igb_put_rx_buffer(struct igb_ring *rx_ring,
7875			      struct igb_rx_buffer *rx_buffer)
7876{
7877	if (igb_can_reuse_rx_page(rx_buffer)) {
7878		/* hand second half of page back to the ring */
7879		igb_reuse_rx_page(rx_ring, rx_buffer);
7880	} else {
7881		/* We are not reusing the buffer so unmap it and free
7882		 * any references we are holding to it
7883		 */
7884		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
7885				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
7886				     IGB_RX_DMA_ATTR);
7887		__page_frag_cache_drain(rx_buffer->page,
7888					rx_buffer->pagecnt_bias);
7889	}
7890
7891	/* clear contents of rx_buffer */
7892	rx_buffer->page = NULL;
7893}
7894
7895static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7896{
7897	struct igb_ring *rx_ring = q_vector->rx.ring;
7898	struct sk_buff *skb = rx_ring->skb;
7899	unsigned int total_bytes = 0, total_packets = 0;
7900	u16 cleaned_count = igb_desc_unused(rx_ring);
7901
7902	while (likely(total_packets < budget)) {
7903		union e1000_adv_rx_desc *rx_desc;
7904		struct igb_rx_buffer *rx_buffer;
7905		unsigned int size;
7906
7907		/* return some buffers to hardware, one at a time is too slow */
7908		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7909			igb_alloc_rx_buffers(rx_ring, cleaned_count);
7910			cleaned_count = 0;
7911		}
7912
7913		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7914		size = le16_to_cpu(rx_desc->wb.upper.length);
7915		if (!size)
7916			break;
7917
7918		/* This memory barrier is needed to keep us from reading
7919		 * any other fields out of the rx_desc until we know the
7920		 * descriptor has been written back
7921		 */
7922		dma_rmb();
7923
7924		rx_buffer = igb_get_rx_buffer(rx_ring, size);
7925
7926		/* retrieve a buffer from the ring */
7927		if (skb)
7928			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
7929		else if (ring_uses_build_skb(rx_ring))
7930			skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
7931		else
7932			skb = igb_construct_skb(rx_ring, rx_buffer,
7933						rx_desc, size);
7934
7935		/* exit if we failed to retrieve a buffer */
7936		if (!skb) {
7937			rx_ring->rx_stats.alloc_failed++;
7938			rx_buffer->pagecnt_bias++;
7939			break;
7940		}
7941
7942		igb_put_rx_buffer(rx_ring, rx_buffer);
7943		cleaned_count++;
7944
7945		/* fetch next buffer in frame if non-eop */
7946		if (igb_is_non_eop(rx_ring, rx_desc))
7947			continue;
7948
7949		/* verify the packet layout is correct */
7950		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7951			skb = NULL;
7952			continue;
7953		}
7954
7955		/* probably a little skewed due to removing CRC */
7956		total_bytes += skb->len;
7957
7958		/* populate checksum, timestamp, VLAN, and protocol */
7959		igb_process_skb_fields(rx_ring, rx_desc, skb);
7960
7961		napi_gro_receive(&q_vector->napi, skb);
7962
7963		/* reset skb pointer */
7964		skb = NULL;
7965
7966		/* update budget accounting */
7967		total_packets++;
7968	}
7969
7970	/* place incomplete frames back on ring for completion */
7971	rx_ring->skb = skb;
7972
7973	u64_stats_update_begin(&rx_ring->rx_syncp);
7974	rx_ring->rx_stats.packets += total_packets;
7975	rx_ring->rx_stats.bytes += total_bytes;
7976	u64_stats_update_end(&rx_ring->rx_syncp);
7977	q_vector->rx.total_packets += total_packets;
7978	q_vector->rx.total_bytes += total_bytes;
7979
7980	if (cleaned_count)
7981		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7982
7983	return total_packets;
7984}
7985
7986static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
7987{
7988	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
7989}
7990
7991static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7992				  struct igb_rx_buffer *bi)
7993{
7994	struct page *page = bi->page;
7995	dma_addr_t dma;
7996
7997	/* since we are recycling buffers we should seldom need to alloc */
7998	if (likely(page))
7999		return true;
8000
8001	/* alloc new page for storage */
8002	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8003	if (unlikely(!page)) {
8004		rx_ring->rx_stats.alloc_failed++;
8005		return false;
8006	}
8007
8008	/* map page for use */
8009	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8010				 igb_rx_pg_size(rx_ring),
8011				 DMA_FROM_DEVICE,
8012				 IGB_RX_DMA_ATTR);
8013
8014	/* if mapping failed free memory back to system since
8015	 * there isn't much point in holding memory we can't use
8016	 */
8017	if (dma_mapping_error(rx_ring->dev, dma)) {
8018		__free_pages(page, igb_rx_pg_order(rx_ring));
8019
8020		rx_ring->rx_stats.alloc_failed++;
8021		return false;
8022	}
8023
8024	bi->dma = dma;
8025	bi->page = page;
8026	bi->page_offset = igb_rx_offset(rx_ring);
8027	bi->pagecnt_bias = 1;
8028
8029	return true;
8030}
8031
8032/**
8033 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8034 *  @adapter: address of board private structure
8035 **/
8036void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8037{
8038	union e1000_adv_rx_desc *rx_desc;
8039	struct igb_rx_buffer *bi;
8040	u16 i = rx_ring->next_to_use;
8041	u16 bufsz;
8042
8043	/* nothing to do */
8044	if (!cleaned_count)
8045		return;
8046
8047	rx_desc = IGB_RX_DESC(rx_ring, i);
8048	bi = &rx_ring->rx_buffer_info[i];
8049	i -= rx_ring->count;
8050
8051	bufsz = igb_rx_bufsz(rx_ring);
8052
8053	do {
8054		if (!igb_alloc_mapped_page(rx_ring, bi))
8055			break;
8056
8057		/* sync the buffer for use by the device */
8058		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8059						 bi->page_offset, bufsz,
8060						 DMA_FROM_DEVICE);
8061
8062		/* Refresh the desc even if buffer_addrs didn't change
8063		 * because each write-back erases this info.
8064		 */
8065		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8066
8067		rx_desc++;
8068		bi++;
8069		i++;
8070		if (unlikely(!i)) {
8071			rx_desc = IGB_RX_DESC(rx_ring, 0);
8072			bi = rx_ring->rx_buffer_info;
8073			i -= rx_ring->count;
8074		}
8075
8076		/* clear the length for the next_to_use descriptor */
8077		rx_desc->wb.upper.length = 0;
8078
8079		cleaned_count--;
8080	} while (cleaned_count);
8081
8082	i += rx_ring->count;
8083
8084	if (rx_ring->next_to_use != i) {
8085		/* record the next descriptor to use */
8086		rx_ring->next_to_use = i;
8087
8088		/* update next to alloc since we have filled the ring */
8089		rx_ring->next_to_alloc = i;
8090
8091		/* Force memory writes to complete before letting h/w
8092		 * know there are new descriptors to fetch.  (Only
8093		 * applicable for weak-ordered memory model archs,
8094		 * such as IA-64).
8095		 */
8096		wmb();
8097		writel(i, rx_ring->tail);
8098	}
8099}
8100
8101/**
8102 * igb_mii_ioctl -
8103 * @netdev:
8104 * @ifreq:
8105 * @cmd:
8106 **/
8107static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8108{
8109	struct igb_adapter *adapter = netdev_priv(netdev);
8110	struct mii_ioctl_data *data = if_mii(ifr);
8111
8112	if (adapter->hw.phy.media_type != e1000_media_type_copper)
8113		return -EOPNOTSUPP;
8114
8115	switch (cmd) {
8116	case SIOCGMIIPHY:
8117		data->phy_id = adapter->hw.phy.addr;
8118		break;
8119	case SIOCGMIIREG:
8120		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8121				     &data->val_out))
8122			return -EIO;
8123		break;
8124	case SIOCSMIIREG:
8125	default:
8126		return -EOPNOTSUPP;
8127	}
8128	return 0;
8129}
8130
8131/**
8132 * igb_ioctl -
8133 * @netdev:
8134 * @ifreq:
8135 * @cmd:
8136 **/
8137static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8138{
8139	switch (cmd) {
8140	case SIOCGMIIPHY:
8141	case SIOCGMIIREG:
8142	case SIOCSMIIREG:
8143		return igb_mii_ioctl(netdev, ifr, cmd);
8144	case SIOCGHWTSTAMP:
8145		return igb_ptp_get_ts_config(netdev, ifr);
8146	case SIOCSHWTSTAMP:
8147		return igb_ptp_set_ts_config(netdev, ifr);
8148	default:
8149		return -EOPNOTSUPP;
8150	}
8151}
8152
8153void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8154{
8155	struct igb_adapter *adapter = hw->back;
8156
8157	pci_read_config_word(adapter->pdev, reg, value);
8158}
8159
8160void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8161{
8162	struct igb_adapter *adapter = hw->back;
8163
8164	pci_write_config_word(adapter->pdev, reg, *value);
8165}
8166
8167s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8168{
8169	struct igb_adapter *adapter = hw->back;
8170
8171	if (pcie_capability_read_word(adapter->pdev, reg, value))
8172		return -E1000_ERR_CONFIG;
8173
8174	return 0;
8175}
8176
8177s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8178{
8179	struct igb_adapter *adapter = hw->back;
8180
8181	if (pcie_capability_write_word(adapter->pdev, reg, *value))
8182		return -E1000_ERR_CONFIG;
8183
8184	return 0;
8185}
8186
8187static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8188{
8189	struct igb_adapter *adapter = netdev_priv(netdev);
8190	struct e1000_hw *hw = &adapter->hw;
8191	u32 ctrl, rctl;
8192	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8193
8194	if (enable) {
8195		/* enable VLAN tag insert/strip */
8196		ctrl = rd32(E1000_CTRL);
8197		ctrl |= E1000_CTRL_VME;
8198		wr32(E1000_CTRL, ctrl);
8199
8200		/* Disable CFI check */
8201		rctl = rd32(E1000_RCTL);
8202		rctl &= ~E1000_RCTL_CFIEN;
8203		wr32(E1000_RCTL, rctl);
8204	} else {
8205		/* disable VLAN tag insert/strip */
8206		ctrl = rd32(E1000_CTRL);
8207		ctrl &= ~E1000_CTRL_VME;
8208		wr32(E1000_CTRL, ctrl);
8209	}
8210
8211	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8212}
8213
8214static int igb_vlan_rx_add_vid(struct net_device *netdev,
8215			       __be16 proto, u16 vid)
8216{
8217	struct igb_adapter *adapter = netdev_priv(netdev);
8218	struct e1000_hw *hw = &adapter->hw;
8219	int pf_id = adapter->vfs_allocated_count;
8220
8221	/* add the filter since PF can receive vlans w/o entry in vlvf */
8222	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8223		igb_vfta_set(hw, vid, pf_id, true, !!vid);
8224
8225	set_bit(vid, adapter->active_vlans);
8226
8227	return 0;
8228}
8229
8230static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8231				__be16 proto, u16 vid)
8232{
8233	struct igb_adapter *adapter = netdev_priv(netdev);
8234	int pf_id = adapter->vfs_allocated_count;
8235	struct e1000_hw *hw = &adapter->hw;
8236
8237	/* remove VID from filter table */
8238	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8239		igb_vfta_set(hw, vid, pf_id, false, true);
8240
8241	clear_bit(vid, adapter->active_vlans);
8242
8243	return 0;
8244}
8245
8246static void igb_restore_vlan(struct igb_adapter *adapter)
8247{
8248	u16 vid = 1;
8249
8250	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8251	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8252
8253	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8254		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8255}
8256
8257int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8258{
8259	struct pci_dev *pdev = adapter->pdev;
8260	struct e1000_mac_info *mac = &adapter->hw.mac;
8261
8262	mac->autoneg = 0;
8263
8264	/* Make sure dplx is at most 1 bit and lsb of speed is not set
8265	 * for the switch() below to work
8266	 */
8267	if ((spd & 1) || (dplx & ~1))
8268		goto err_inval;
8269
8270	/* Fiber NIC's only allow 1000 gbps Full duplex
8271	 * and 100Mbps Full duplex for 100baseFx sfp
8272	 */
8273	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8274		switch (spd + dplx) {
8275		case SPEED_10 + DUPLEX_HALF:
8276		case SPEED_10 + DUPLEX_FULL:
8277		case SPEED_100 + DUPLEX_HALF:
8278			goto err_inval;
8279		default:
8280			break;
8281		}
8282	}
8283
8284	switch (spd + dplx) {
8285	case SPEED_10 + DUPLEX_HALF:
8286		mac->forced_speed_duplex = ADVERTISE_10_HALF;
8287		break;
8288	case SPEED_10 + DUPLEX_FULL:
8289		mac->forced_speed_duplex = ADVERTISE_10_FULL;
8290		break;
8291	case SPEED_100 + DUPLEX_HALF:
8292		mac->forced_speed_duplex = ADVERTISE_100_HALF;
8293		break;
8294	case SPEED_100 + DUPLEX_FULL:
8295		mac->forced_speed_duplex = ADVERTISE_100_FULL;
8296		break;
8297	case SPEED_1000 + DUPLEX_FULL:
8298		mac->autoneg = 1;
8299		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8300		break;
8301	case SPEED_1000 + DUPLEX_HALF: /* not supported */
8302	default:
8303		goto err_inval;
8304	}
8305
8306	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8307	adapter->hw.phy.mdix = AUTO_ALL_MODES;
8308
8309	return 0;
8310
8311err_inval:
8312	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8313	return -EINVAL;
8314}
8315
8316static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8317			  bool runtime)
8318{
8319	struct net_device *netdev = pci_get_drvdata(pdev);
8320	struct igb_adapter *adapter = netdev_priv(netdev);
8321	struct e1000_hw *hw = &adapter->hw;
8322	u32 ctrl, rctl, status;
8323	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8324#ifdef CONFIG_PM
8325	int retval = 0;
8326#endif
8327
8328	rtnl_lock();
8329	netif_device_detach(netdev);
8330
8331	if (netif_running(netdev))
8332		__igb_close(netdev, true);
8333
8334	igb_ptp_suspend(adapter);
8335
8336	igb_clear_interrupt_scheme(adapter);
8337	rtnl_unlock();
8338
8339#ifdef CONFIG_PM
8340	retval = pci_save_state(pdev);
8341	if (retval)
8342		return retval;
8343#endif
8344
8345	status = rd32(E1000_STATUS);
8346	if (status & E1000_STATUS_LU)
8347		wufc &= ~E1000_WUFC_LNKC;
8348
8349	if (wufc) {
8350		igb_setup_rctl(adapter);
8351		igb_set_rx_mode(netdev);
8352
8353		/* turn on all-multi mode if wake on multicast is enabled */
8354		if (wufc & E1000_WUFC_MC) {
8355			rctl = rd32(E1000_RCTL);
8356			rctl |= E1000_RCTL_MPE;
8357			wr32(E1000_RCTL, rctl);
8358		}
8359
8360		ctrl = rd32(E1000_CTRL);
8361		/* advertise wake from D3Cold */
8362		#define E1000_CTRL_ADVD3WUC 0x00100000
8363		/* phy power management enable */
8364		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8365		ctrl |= E1000_CTRL_ADVD3WUC;
8366		wr32(E1000_CTRL, ctrl);
8367
8368		/* Allow time for pending master requests to run */
8369		igb_disable_pcie_master(hw);
8370
8371		wr32(E1000_WUC, E1000_WUC_PME_EN);
8372		wr32(E1000_WUFC, wufc);
8373	} else {
8374		wr32(E1000_WUC, 0);
8375		wr32(E1000_WUFC, 0);
8376	}
8377
8378	*enable_wake = wufc || adapter->en_mng_pt;
8379	if (!*enable_wake)
8380		igb_power_down_link(adapter);
8381	else
8382		igb_power_up_link(adapter);
8383
8384	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
8385	 * would have already happened in close and is redundant.
8386	 */
8387	igb_release_hw_control(adapter);
8388
8389	pci_disable_device(pdev);
8390
8391	return 0;
8392}
8393
8394static void igb_deliver_wake_packet(struct net_device *netdev)
8395{
8396	struct igb_adapter *adapter = netdev_priv(netdev);
8397	struct e1000_hw *hw = &adapter->hw;
8398	struct sk_buff *skb;
8399	u32 wupl;
8400
8401	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8402
8403	/* WUPM stores only the first 128 bytes of the wake packet.
8404	 * Read the packet only if we have the whole thing.
8405	 */
8406	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8407		return;
8408
8409	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8410	if (!skb)
8411		return;
8412
8413	skb_put(skb, wupl);
8414
8415	/* Ensure reads are 32-bit aligned */
8416	wupl = roundup(wupl, 4);
8417
8418	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8419
8420	skb->protocol = eth_type_trans(skb, netdev);
8421	netif_rx(skb);
8422}
8423
8424static int __maybe_unused igb_suspend(struct device *dev)
8425{
8426	int retval;
8427	bool wake;
8428	struct pci_dev *pdev = to_pci_dev(dev);
8429
8430	retval = __igb_shutdown(pdev, &wake, 0);
8431	if (retval)
8432		return retval;
8433
8434	if (wake) {
8435		pci_prepare_to_sleep(pdev);
8436	} else {
8437		pci_wake_from_d3(pdev, false);
8438		pci_set_power_state(pdev, PCI_D3hot);
8439	}
8440
8441	return 0;
8442}
8443
8444static int __maybe_unused igb_resume(struct device *dev)
8445{
8446	struct pci_dev *pdev = to_pci_dev(dev);
8447	struct net_device *netdev = pci_get_drvdata(pdev);
8448	struct igb_adapter *adapter = netdev_priv(netdev);
8449	struct e1000_hw *hw = &adapter->hw;
8450	u32 err, val;
8451
8452	pci_set_power_state(pdev, PCI_D0);
8453	pci_restore_state(pdev);
8454	pci_save_state(pdev);
8455
8456	if (!pci_device_is_present(pdev))
8457		return -ENODEV;
8458	err = pci_enable_device_mem(pdev);
8459	if (err) {
8460		dev_err(&pdev->dev,
8461			"igb: Cannot enable PCI device from suspend\n");
8462		return err;
8463	}
8464	pci_set_master(pdev);
8465
8466	pci_enable_wake(pdev, PCI_D3hot, 0);
8467	pci_enable_wake(pdev, PCI_D3cold, 0);
8468
8469	if (igb_init_interrupt_scheme(adapter, true)) {
8470		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8471		return -ENOMEM;
8472	}
8473
8474	igb_reset(adapter);
8475
8476	/* let the f/w know that the h/w is now under the control of the
8477	 * driver.
8478	 */
8479	igb_get_hw_control(adapter);
8480
8481	val = rd32(E1000_WUS);
8482	if (val & WAKE_PKT_WUS)
8483		igb_deliver_wake_packet(netdev);
8484
8485	wr32(E1000_WUS, ~0);
8486
8487	rtnl_lock();
8488	if (!err && netif_running(netdev))
8489		err = __igb_open(netdev, true);
8490
8491	if (!err)
8492		netif_device_attach(netdev);
8493	rtnl_unlock();
8494
8495	return err;
8496}
8497
8498static int __maybe_unused igb_runtime_idle(struct device *dev)
8499{
8500	struct pci_dev *pdev = to_pci_dev(dev);
8501	struct net_device *netdev = pci_get_drvdata(pdev);
8502	struct igb_adapter *adapter = netdev_priv(netdev);
8503
8504	if (!igb_has_link(adapter))
8505		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8506
8507	return -EBUSY;
8508}
8509
8510static int __maybe_unused igb_runtime_suspend(struct device *dev)
8511{
8512	struct pci_dev *pdev = to_pci_dev(dev);
8513	int retval;
8514	bool wake;
8515
8516	retval = __igb_shutdown(pdev, &wake, 1);
8517	if (retval)
8518		return retval;
8519
8520	if (wake) {
8521		pci_prepare_to_sleep(pdev);
8522	} else {
8523		pci_wake_from_d3(pdev, false);
8524		pci_set_power_state(pdev, PCI_D3hot);
8525	}
8526
8527	return 0;
8528}
8529
8530static int __maybe_unused igb_runtime_resume(struct device *dev)
8531{
8532	return igb_resume(dev);
8533}
8534
8535static void igb_shutdown(struct pci_dev *pdev)
8536{
8537	bool wake;
8538
8539	__igb_shutdown(pdev, &wake, 0);
8540
8541	if (system_state == SYSTEM_POWER_OFF) {
8542		pci_wake_from_d3(pdev, wake);
8543		pci_set_power_state(pdev, PCI_D3hot);
8544	}
8545}
8546
8547#ifdef CONFIG_PCI_IOV
8548static int igb_sriov_reinit(struct pci_dev *dev)
8549{
8550	struct net_device *netdev = pci_get_drvdata(dev);
8551	struct igb_adapter *adapter = netdev_priv(netdev);
8552	struct pci_dev *pdev = adapter->pdev;
8553
8554	rtnl_lock();
8555
8556	if (netif_running(netdev))
8557		igb_close(netdev);
8558	else
8559		igb_reset(adapter);
8560
8561	igb_clear_interrupt_scheme(adapter);
8562
8563	igb_init_queue_configuration(adapter);
8564
8565	if (igb_init_interrupt_scheme(adapter, true)) {
8566		rtnl_unlock();
8567		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8568		return -ENOMEM;
8569	}
8570
8571	if (netif_running(netdev))
8572		igb_open(netdev);
8573
8574	rtnl_unlock();
8575
8576	return 0;
8577}
8578
8579static int igb_pci_disable_sriov(struct pci_dev *dev)
8580{
8581	int err = igb_disable_sriov(dev);
8582
8583	if (!err)
8584		err = igb_sriov_reinit(dev);
8585
8586	return err;
8587}
8588
8589static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8590{
8591	int err = igb_enable_sriov(dev, num_vfs);
8592
8593	if (err)
8594		goto out;
8595
8596	err = igb_sriov_reinit(dev);
8597	if (!err)
8598		return num_vfs;
8599
8600out:
8601	return err;
8602}
8603
8604#endif
8605static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8606{
8607#ifdef CONFIG_PCI_IOV
8608	if (num_vfs == 0)
8609		return igb_pci_disable_sriov(dev);
8610	else
8611		return igb_pci_enable_sriov(dev, num_vfs);
8612#endif
8613	return 0;
8614}
8615
8616#ifdef CONFIG_NET_POLL_CONTROLLER
8617/* Polling 'interrupt' - used by things like netconsole to send skbs
8618 * without having to re-enable interrupts. It's not called while
8619 * the interrupt routine is executing.
8620 */
8621static void igb_netpoll(struct net_device *netdev)
8622{
8623	struct igb_adapter *adapter = netdev_priv(netdev);
8624	struct e1000_hw *hw = &adapter->hw;
8625	struct igb_q_vector *q_vector;
8626	int i;
8627
8628	for (i = 0; i < adapter->num_q_vectors; i++) {
8629		q_vector = adapter->q_vector[i];
8630		if (adapter->flags & IGB_FLAG_HAS_MSIX)
8631			wr32(E1000_EIMC, q_vector->eims_value);
8632		else
8633			igb_irq_disable(adapter);
8634		napi_schedule(&q_vector->napi);
8635	}
8636}
8637#endif /* CONFIG_NET_POLL_CONTROLLER */
8638
8639/**
8640 *  igb_io_error_detected - called when PCI error is detected
8641 *  @pdev: Pointer to PCI device
8642 *  @state: The current pci connection state
8643 *
8644 *  This function is called after a PCI bus error affecting
8645 *  this device has been detected.
8646 **/
8647static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8648					      pci_channel_state_t state)
8649{
8650	struct net_device *netdev = pci_get_drvdata(pdev);
8651	struct igb_adapter *adapter = netdev_priv(netdev);
8652
8653	netif_device_detach(netdev);
8654
8655	if (state == pci_channel_io_perm_failure)
8656		return PCI_ERS_RESULT_DISCONNECT;
8657
8658	if (netif_running(netdev))
8659		igb_down(adapter);
8660	pci_disable_device(pdev);
8661
8662	/* Request a slot slot reset. */
8663	return PCI_ERS_RESULT_NEED_RESET;
8664}
8665
8666/**
8667 *  igb_io_slot_reset - called after the pci bus has been reset.
8668 *  @pdev: Pointer to PCI device
8669 *
8670 *  Restart the card from scratch, as if from a cold-boot. Implementation
8671 *  resembles the first-half of the igb_resume routine.
8672 **/
8673static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
8674{
8675	struct net_device *netdev = pci_get_drvdata(pdev);
8676	struct igb_adapter *adapter = netdev_priv(netdev);
8677	struct e1000_hw *hw = &adapter->hw;
8678	pci_ers_result_t result;
8679	int err;
8680
8681	if (pci_enable_device_mem(pdev)) {
8682		dev_err(&pdev->dev,
8683			"Cannot re-enable PCI device after reset.\n");
8684		result = PCI_ERS_RESULT_DISCONNECT;
8685	} else {
8686		pci_set_master(pdev);
8687		pci_restore_state(pdev);
8688		pci_save_state(pdev);
8689
8690		pci_enable_wake(pdev, PCI_D3hot, 0);
8691		pci_enable_wake(pdev, PCI_D3cold, 0);
8692
8693		/* In case of PCI error, adapter lose its HW address
8694		 * so we should re-assign it here.
8695		 */
8696		hw->hw_addr = adapter->io_addr;
8697
8698		igb_reset(adapter);
8699		wr32(E1000_WUS, ~0);
8700		result = PCI_ERS_RESULT_RECOVERED;
8701	}
8702
8703	err = pci_cleanup_aer_uncorrect_error_status(pdev);
8704	if (err) {
8705		dev_err(&pdev->dev,
8706			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8707			err);
8708		/* non-fatal, continue */
8709	}
8710
8711	return result;
8712}
8713
8714/**
8715 *  igb_io_resume - called when traffic can start flowing again.
8716 *  @pdev: Pointer to PCI device
8717 *
8718 *  This callback is called when the error recovery driver tells us that
8719 *  its OK to resume normal operation. Implementation resembles the
8720 *  second-half of the igb_resume routine.
8721 */
8722static void igb_io_resume(struct pci_dev *pdev)
8723{
8724	struct net_device *netdev = pci_get_drvdata(pdev);
8725	struct igb_adapter *adapter = netdev_priv(netdev);
8726
8727	if (netif_running(netdev)) {
8728		if (igb_up(adapter)) {
8729			dev_err(&pdev->dev, "igb_up failed after reset\n");
8730			return;
8731		}
8732	}
8733
8734	netif_device_attach(netdev);
8735
8736	/* let the f/w know that the h/w is now under the control of the
8737	 * driver.
8738	 */
8739	igb_get_hw_control(adapter);
8740}
8741
8742/**
8743 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
8744 *  @adapter: Pointer to adapter structure
8745 *  @index: Index of the RAR entry which need to be synced with MAC table
8746 **/
8747static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
8748{
8749	struct e1000_hw *hw = &adapter->hw;
8750	u32 rar_low, rar_high;
8751	u8 *addr = adapter->mac_table[index].addr;
8752
8753	/* HW expects these to be in network order when they are plugged
8754	 * into the registers which are little endian.  In order to guarantee
8755	 * that ordering we need to do an leXX_to_cpup here in order to be
8756	 * ready for the byteswap that occurs with writel
8757	 */
8758	rar_low = le32_to_cpup((__le32 *)(addr));
8759	rar_high = le16_to_cpup((__le16 *)(addr + 4));
8760
8761	/* Indicate to hardware the Address is Valid. */
8762	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
8763		if (is_valid_ether_addr(addr))
8764			rar_high |= E1000_RAH_AV;
8765
8766		if (hw->mac.type == e1000_82575)
8767			rar_high |= E1000_RAH_POOL_1 *
8768				    adapter->mac_table[index].queue;
8769		else
8770			rar_high |= E1000_RAH_POOL_1 <<
8771				    adapter->mac_table[index].queue;
8772	}
8773
8774	wr32(E1000_RAL(index), rar_low);
8775	wrfl();
8776	wr32(E1000_RAH(index), rar_high);
8777	wrfl();
8778}
8779
8780static int igb_set_vf_mac(struct igb_adapter *adapter,
8781			  int vf, unsigned char *mac_addr)
8782{
8783	struct e1000_hw *hw = &adapter->hw;
8784	/* VF MAC addresses start at end of receive addresses and moves
8785	 * towards the first, as a result a collision should not be possible
8786	 */
8787	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
8788	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
8789
8790	ether_addr_copy(vf_mac_addr, mac_addr);
8791	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
8792	adapter->mac_table[rar_entry].queue = vf;
8793	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
8794	igb_rar_set_index(adapter, rar_entry);
8795
8796	return 0;
8797}
8798
8799static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
8800{
8801	struct igb_adapter *adapter = netdev_priv(netdev);
8802
8803	if (vf >= adapter->vfs_allocated_count)
8804		return -EINVAL;
8805
8806	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
8807	 * flag and allows to overwrite the MAC via VF netdev.  This
8808	 * is necessary to allow libvirt a way to restore the original
8809	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
8810	 * down a VM.
8811	 */
8812	if (is_zero_ether_addr(mac)) {
8813		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
8814		dev_info(&adapter->pdev->dev,
8815			 "remove administratively set MAC on VF %d\n",
8816			 vf);
8817	} else if (is_valid_ether_addr(mac)) {
8818		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
8819		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
8820			 mac, vf);
8821		dev_info(&adapter->pdev->dev,
8822			 "Reload the VF driver to make this change effective.");
8823		/* Generate additional warning if PF is down */
8824		if (test_bit(__IGB_DOWN, &adapter->state)) {
8825			dev_warn(&adapter->pdev->dev,
8826				 "The VF MAC address has been set, but the PF device is not up.\n");
8827			dev_warn(&adapter->pdev->dev,
8828				 "Bring the PF device up before attempting to use the VF device.\n");
8829		}
8830	} else {
8831		return -EINVAL;
8832	}
8833	return igb_set_vf_mac(adapter, vf, mac);
8834}
8835
8836static int igb_link_mbps(int internal_link_speed)
8837{
8838	switch (internal_link_speed) {
8839	case SPEED_100:
8840		return 100;
8841	case SPEED_1000:
8842		return 1000;
8843	default:
8844		return 0;
8845	}
8846}
8847
8848static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8849				  int link_speed)
8850{
8851	int rf_dec, rf_int;
8852	u32 bcnrc_val;
8853
8854	if (tx_rate != 0) {
8855		/* Calculate the rate factor values to set */
8856		rf_int = link_speed / tx_rate;
8857		rf_dec = (link_speed - (rf_int * tx_rate));
8858		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8859			 tx_rate;
8860
8861		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8862		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8863			      E1000_RTTBCNRC_RF_INT_MASK);
8864		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8865	} else {
8866		bcnrc_val = 0;
8867	}
8868
8869	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8870	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8871	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8872	 */
8873	wr32(E1000_RTTBCNRM, 0x14);
8874	wr32(E1000_RTTBCNRC, bcnrc_val);
8875}
8876
8877static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8878{
8879	int actual_link_speed, i;
8880	bool reset_rate = false;
8881
8882	/* VF TX rate limit was not set or not supported */
8883	if ((adapter->vf_rate_link_speed == 0) ||
8884	    (adapter->hw.mac.type != e1000_82576))
8885		return;
8886
8887	actual_link_speed = igb_link_mbps(adapter->link_speed);
8888	if (actual_link_speed != adapter->vf_rate_link_speed) {
8889		reset_rate = true;
8890		adapter->vf_rate_link_speed = 0;
8891		dev_info(&adapter->pdev->dev,
8892			 "Link speed has been changed. VF Transmit rate is disabled\n");
8893	}
8894
8895	for (i = 0; i < adapter->vfs_allocated_count; i++) {
8896		if (reset_rate)
8897			adapter->vf_data[i].tx_rate = 0;
8898
8899		igb_set_vf_rate_limit(&adapter->hw, i,
8900				      adapter->vf_data[i].tx_rate,
8901				      actual_link_speed);
8902	}
8903}
8904
8905static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8906			     int min_tx_rate, int max_tx_rate)
8907{
8908	struct igb_adapter *adapter = netdev_priv(netdev);
8909	struct e1000_hw *hw = &adapter->hw;
8910	int actual_link_speed;
8911
8912	if (hw->mac.type != e1000_82576)
8913		return -EOPNOTSUPP;
8914
8915	if (min_tx_rate)
8916		return -EINVAL;
8917
8918	actual_link_speed = igb_link_mbps(adapter->link_speed);
8919	if ((vf >= adapter->vfs_allocated_count) ||
8920	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8921	    (max_tx_rate < 0) ||
8922	    (max_tx_rate > actual_link_speed))
8923		return -EINVAL;
8924
8925	adapter->vf_rate_link_speed = actual_link_speed;
8926	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8927	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8928
8929	return 0;
8930}
8931
8932static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8933				   bool setting)
8934{
8935	struct igb_adapter *adapter = netdev_priv(netdev);
8936	struct e1000_hw *hw = &adapter->hw;
8937	u32 reg_val, reg_offset;
8938
8939	if (!adapter->vfs_allocated_count)
8940		return -EOPNOTSUPP;
8941
8942	if (vf >= adapter->vfs_allocated_count)
8943		return -EINVAL;
8944
8945	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8946	reg_val = rd32(reg_offset);
8947	if (setting)
8948		reg_val |= (BIT(vf) |
8949			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8950	else
8951		reg_val &= ~(BIT(vf) |
8952			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8953	wr32(reg_offset, reg_val);
8954
8955	adapter->vf_data[vf].spoofchk_enabled = setting;
8956	return 0;
8957}
8958
8959static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
8960{
8961	struct igb_adapter *adapter = netdev_priv(netdev);
8962
8963	if (vf >= adapter->vfs_allocated_count)
8964		return -EINVAL;
8965	if (adapter->vf_data[vf].trusted == setting)
8966		return 0;
8967
8968	adapter->vf_data[vf].trusted = setting;
8969
8970	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
8971		 vf, setting ? "" : "not ");
8972	return 0;
8973}
8974
8975static int igb_ndo_get_vf_config(struct net_device *netdev,
8976				 int vf, struct ifla_vf_info *ivi)
8977{
8978	struct igb_adapter *adapter = netdev_priv(netdev);
8979	if (vf >= adapter->vfs_allocated_count)
8980		return -EINVAL;
8981	ivi->vf = vf;
8982	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8983	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8984	ivi->min_tx_rate = 0;
8985	ivi->vlan = adapter->vf_data[vf].pf_vlan;
8986	ivi->qos = adapter->vf_data[vf].pf_qos;
8987	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8988	ivi->trusted = adapter->vf_data[vf].trusted;
8989	return 0;
8990}
8991
8992static void igb_vmm_control(struct igb_adapter *adapter)
8993{
8994	struct e1000_hw *hw = &adapter->hw;
8995	u32 reg;
8996
8997	switch (hw->mac.type) {
8998	case e1000_82575:
8999	case e1000_i210:
9000	case e1000_i211:
9001	case e1000_i354:
9002	default:
9003		/* replication is not supported for 82575 */
9004		return;
9005	case e1000_82576:
9006		/* notify HW that the MAC is adding vlan tags */
9007		reg = rd32(E1000_DTXCTL);
9008		reg |= E1000_DTXCTL_VLAN_ADDED;
9009		wr32(E1000_DTXCTL, reg);
9010		/* Fall through */
9011	case e1000_82580:
9012		/* enable replication vlan tag stripping */
9013		reg = rd32(E1000_RPLOLR);
9014		reg |= E1000_RPLOLR_STRVLAN;
9015		wr32(E1000_RPLOLR, reg);
9016		/* Fall through */
9017	case e1000_i350:
9018		/* none of the above registers are supported by i350 */
9019		break;
9020	}
9021
9022	if (adapter->vfs_allocated_count) {
9023		igb_vmdq_set_loopback_pf(hw, true);
9024		igb_vmdq_set_replication_pf(hw, true);
9025		igb_vmdq_set_anti_spoofing_pf(hw, true,
9026					      adapter->vfs_allocated_count);
9027	} else {
9028		igb_vmdq_set_loopback_pf(hw, false);
9029		igb_vmdq_set_replication_pf(hw, false);
9030	}
9031}
9032
9033static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9034{
9035	struct e1000_hw *hw = &adapter->hw;
9036	u32 dmac_thr;
9037	u16 hwm;
9038
9039	if (hw->mac.type > e1000_82580) {
9040		if (adapter->flags & IGB_FLAG_DMAC) {
9041			u32 reg;
9042
9043			/* force threshold to 0. */
9044			wr32(E1000_DMCTXTH, 0);
9045
9046			/* DMA Coalescing high water mark needs to be greater
9047			 * than the Rx threshold. Set hwm to PBA - max frame
9048			 * size in 16B units, capping it at PBA - 6KB.
9049			 */
9050			hwm = 64 * (pba - 6);
9051			reg = rd32(E1000_FCRTC);
9052			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9053			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9054				& E1000_FCRTC_RTH_COAL_MASK);
9055			wr32(E1000_FCRTC, reg);
9056
9057			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9058			 * frame size, capping it at PBA - 10KB.
9059			 */
9060			dmac_thr = pba - 10;
9061			reg = rd32(E1000_DMACR);
9062			reg &= ~E1000_DMACR_DMACTHR_MASK;
9063			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9064				& E1000_DMACR_DMACTHR_MASK);
9065
9066			/* transition to L0x or L1 if available..*/
9067			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9068
9069			/* watchdog timer= +-1000 usec in 32usec intervals */
9070			reg |= (1000 >> 5);
9071
9072			/* Disable BMC-to-OS Watchdog Enable */
9073			if (hw->mac.type != e1000_i354)
9074				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9075
9076			wr32(E1000_DMACR, reg);
9077
9078			/* no lower threshold to disable
9079			 * coalescing(smart fifb)-UTRESH=0
9080			 */
9081			wr32(E1000_DMCRTRH, 0);
9082
9083			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9084
9085			wr32(E1000_DMCTLX, reg);
9086
9087			/* free space in tx packet buffer to wake from
9088			 * DMA coal
9089			 */
9090			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9091			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9092
9093			/* make low power state decision controlled
9094			 * by DMA coal
9095			 */
9096			reg = rd32(E1000_PCIEMISC);
9097			reg &= ~E1000_PCIEMISC_LX_DECISION;
9098			wr32(E1000_PCIEMISC, reg);
9099		} /* endif adapter->dmac is not disabled */
9100	} else if (hw->mac.type == e1000_82580) {
9101		u32 reg = rd32(E1000_PCIEMISC);
9102
9103		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9104		wr32(E1000_DMACR, 0);
9105	}
9106}
9107
9108/**
9109 *  igb_read_i2c_byte - Reads 8 bit word over I2C
9110 *  @hw: pointer to hardware structure
9111 *  @byte_offset: byte offset to read
9112 *  @dev_addr: device address
9113 *  @data: value read
9114 *
9115 *  Performs byte read operation over I2C interface at
9116 *  a specified device address.
9117 **/
9118s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9119		      u8 dev_addr, u8 *data)
9120{
9121	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9122	struct i2c_client *this_client = adapter->i2c_client;
9123	s32 status;
9124	u16 swfw_mask = 0;
9125
9126	if (!this_client)
9127		return E1000_ERR_I2C;
9128
9129	swfw_mask = E1000_SWFW_PHY0_SM;
9130
9131	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9132		return E1000_ERR_SWFW_SYNC;
9133
9134	status = i2c_smbus_read_byte_data(this_client, byte_offset);
9135	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9136
9137	if (status < 0)
9138		return E1000_ERR_I2C;
9139	else {
9140		*data = status;
9141		return 0;
9142	}
9143}
9144
9145/**
9146 *  igb_write_i2c_byte - Writes 8 bit word over I2C
9147 *  @hw: pointer to hardware structure
9148 *  @byte_offset: byte offset to write
9149 *  @dev_addr: device address
9150 *  @data: value to write
9151 *
9152 *  Performs byte write operation over I2C interface at
9153 *  a specified device address.
9154 **/
9155s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9156		       u8 dev_addr, u8 data)
9157{
9158	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9159	struct i2c_client *this_client = adapter->i2c_client;
9160	s32 status;
9161	u16 swfw_mask = E1000_SWFW_PHY0_SM;
9162
9163	if (!this_client)
9164		return E1000_ERR_I2C;
9165
9166	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9167		return E1000_ERR_SWFW_SYNC;
9168	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9169	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9170
9171	if (status)
9172		return E1000_ERR_I2C;
9173	else
9174		return 0;
9175
9176}
9177
9178int igb_reinit_queues(struct igb_adapter *adapter)
9179{
9180	struct net_device *netdev = adapter->netdev;
9181	struct pci_dev *pdev = adapter->pdev;
9182	int err = 0;
9183
9184	if (netif_running(netdev))
9185		igb_close(netdev);
9186
9187	igb_reset_interrupt_capability(adapter);
9188
9189	if (igb_init_interrupt_scheme(adapter, true)) {
9190		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9191		return -ENOMEM;
9192	}
9193
9194	if (netif_running(netdev))
9195		err = igb_open(netdev);
9196
9197	return err;
9198}
9199
9200static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9201{
9202	struct igb_nfc_filter *rule;
9203
9204	spin_lock(&adapter->nfc_lock);
9205
9206	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9207		igb_erase_filter(adapter, rule);
9208
9209	spin_unlock(&adapter->nfc_lock);
9210}
9211
9212static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9213{
9214	struct igb_nfc_filter *rule;
9215
9216	spin_lock(&adapter->nfc_lock);
9217
9218	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9219		igb_add_filter(adapter, rule);
9220
9221	spin_unlock(&adapter->nfc_lock);
9222}
9223/* igb_main.c */