Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/slab.h>
  30#include "drmP.h"
  31#include "drm.h"
  32#include "drm_crtc.h"
  33#include "drm_crtc_helper.h"
  34#include "intel_drv.h"
  35#include "i915_drm.h"
  36#include "i915_drv.h"
  37#include "drm_dp_helper.h"
  38
  39
  40#define DP_LINK_STATUS_SIZE	6
  41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
  42
  43#define DP_LINK_CONFIGURATION_SIZE	9
  44
  45struct intel_dp {
  46	struct intel_encoder base;
  47	uint32_t output_reg;
  48	uint32_t DP;
  49	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
  50	bool has_audio;
  51	int force_audio;
  52	uint32_t color_range;
  53	int dpms_mode;
  54	uint8_t link_bw;
  55	uint8_t lane_count;
  56	uint8_t dpcd[8];
  57	struct i2c_adapter adapter;
  58	struct i2c_algo_dp_aux_data algo;
  59	bool is_pch_edp;
  60	uint8_t	train_set[4];
  61	uint8_t link_status[DP_LINK_STATUS_SIZE];
  62};
  63
  64/**
  65 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  66 * @intel_dp: DP struct
  67 *
  68 * If a CPU or PCH DP output is attached to an eDP panel, this function
  69 * will return true, and false otherwise.
  70 */
  71static bool is_edp(struct intel_dp *intel_dp)
  72{
  73	return intel_dp->base.type == INTEL_OUTPUT_EDP;
  74}
  75
  76/**
  77 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  78 * @intel_dp: DP struct
  79 *
  80 * Returns true if the given DP struct corresponds to a PCH DP port attached
  81 * to an eDP panel, false otherwise.  Helpful for determining whether we
  82 * may need FDI resources for a given DP output or not.
  83 */
  84static bool is_pch_edp(struct intel_dp *intel_dp)
  85{
  86	return intel_dp->is_pch_edp;
  87}
  88
  89static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  90{
  91	return container_of(encoder, struct intel_dp, base.base);
  92}
  93
  94static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  95{
  96	return container_of(intel_attached_encoder(connector),
  97			    struct intel_dp, base);
  98}
  99
 100/**
 101 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
 102 * @encoder: DRM encoder
 103 *
 104 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
 105 * by intel_display.c.
 106 */
 107bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
 108{
 109	struct intel_dp *intel_dp;
 110
 111	if (!encoder)
 112		return false;
 113
 114	intel_dp = enc_to_intel_dp(encoder);
 115
 116	return is_pch_edp(intel_dp);
 117}
 118
 119static void intel_dp_start_link_train(struct intel_dp *intel_dp);
 120static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
 121static void intel_dp_link_down(struct intel_dp *intel_dp);
 122
 123void
 124intel_edp_link_config (struct intel_encoder *intel_encoder,
 125		       int *lane_num, int *link_bw)
 126{
 127	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
 128
 129	*lane_num = intel_dp->lane_count;
 130	if (intel_dp->link_bw == DP_LINK_BW_1_62)
 131		*link_bw = 162000;
 132	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
 133		*link_bw = 270000;
 134}
 135
 136static int
 137intel_dp_max_lane_count(struct intel_dp *intel_dp)
 138{
 139	int max_lane_count = 4;
 140
 141	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
 142		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 143		switch (max_lane_count) {
 144		case 1: case 2: case 4:
 145			break;
 146		default:
 147			max_lane_count = 4;
 148		}
 149	}
 150	return max_lane_count;
 151}
 152
 153static int
 154intel_dp_max_link_bw(struct intel_dp *intel_dp)
 155{
 156	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 157
 158	switch (max_link_bw) {
 159	case DP_LINK_BW_1_62:
 160	case DP_LINK_BW_2_7:
 161		break;
 162	default:
 163		max_link_bw = DP_LINK_BW_1_62;
 164		break;
 165	}
 166	return max_link_bw;
 167}
 168
 169static int
 170intel_dp_link_clock(uint8_t link_bw)
 171{
 172	if (link_bw == DP_LINK_BW_2_7)
 173		return 270000;
 174	else
 175		return 162000;
 176}
 177
 178/* I think this is a fiction */
 179static int
 180intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
 181{
 182	struct drm_crtc *crtc = intel_dp->base.base.crtc;
 183	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 184	int bpp = 24;
 185
 186	if (intel_crtc)
 187		bpp = intel_crtc->bpp;
 188
 189	return (pixel_clock * bpp + 7) / 8;
 190}
 191
 192static int
 193intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 194{
 195	return (max_link_clock * max_lanes * 8) / 10;
 196}
 197
 198static int
 199intel_dp_mode_valid(struct drm_connector *connector,
 200		    struct drm_display_mode *mode)
 201{
 202	struct intel_dp *intel_dp = intel_attached_dp(connector);
 203	struct drm_device *dev = connector->dev;
 204	struct drm_i915_private *dev_priv = dev->dev_private;
 205	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
 206	int max_lanes = intel_dp_max_lane_count(intel_dp);
 207
 208	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
 209		if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
 210			return MODE_PANEL;
 211
 212		if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
 213			return MODE_PANEL;
 214	}
 215
 216	/* only refuse the mode on non eDP since we have seen some weird eDP panels
 217	   which are outside spec tolerances but somehow work by magic */
 218	if (!is_edp(intel_dp) &&
 219	    (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
 220	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
 221		return MODE_CLOCK_HIGH;
 222
 223	if (mode->clock < 10000)
 224		return MODE_CLOCK_LOW;
 225
 226	return MODE_OK;
 227}
 228
 229static uint32_t
 230pack_aux(uint8_t *src, int src_bytes)
 231{
 232	int	i;
 233	uint32_t v = 0;
 234
 235	if (src_bytes > 4)
 236		src_bytes = 4;
 237	for (i = 0; i < src_bytes; i++)
 238		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 239	return v;
 240}
 241
 242static void
 243unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 244{
 245	int i;
 246	if (dst_bytes > 4)
 247		dst_bytes = 4;
 248	for (i = 0; i < dst_bytes; i++)
 249		dst[i] = src >> ((3-i) * 8);
 250}
 251
 252/* hrawclock is 1/4 the FSB frequency */
 253static int
 254intel_hrawclk(struct drm_device *dev)
 255{
 256	struct drm_i915_private *dev_priv = dev->dev_private;
 257	uint32_t clkcfg;
 258
 259	clkcfg = I915_READ(CLKCFG);
 260	switch (clkcfg & CLKCFG_FSB_MASK) {
 261	case CLKCFG_FSB_400:
 262		return 100;
 263	case CLKCFG_FSB_533:
 264		return 133;
 265	case CLKCFG_FSB_667:
 266		return 166;
 267	case CLKCFG_FSB_800:
 268		return 200;
 269	case CLKCFG_FSB_1067:
 270		return 266;
 271	case CLKCFG_FSB_1333:
 272		return 333;
 273	/* these two are just a guess; one of them might be right */
 274	case CLKCFG_FSB_1600:
 275	case CLKCFG_FSB_1600_ALT:
 276		return 400;
 277	default:
 278		return 133;
 279	}
 280}
 281
 282static int
 283intel_dp_aux_ch(struct intel_dp *intel_dp,
 284		uint8_t *send, int send_bytes,
 285		uint8_t *recv, int recv_size)
 286{
 287	uint32_t output_reg = intel_dp->output_reg;
 288	struct drm_device *dev = intel_dp->base.base.dev;
 289	struct drm_i915_private *dev_priv = dev->dev_private;
 290	uint32_t ch_ctl = output_reg + 0x10;
 291	uint32_t ch_data = ch_ctl + 4;
 292	int i;
 293	int recv_bytes;
 294	uint32_t status;
 295	uint32_t aux_clock_divider;
 296	int try, precharge;
 297
 298	/* The clock divider is based off the hrawclk,
 299	 * and would like to run at 2MHz. So, take the
 300	 * hrawclk value and divide by 2 and use that
 301	 *
 302	 * Note that PCH attached eDP panels should use a 125MHz input
 303	 * clock divider.
 304	 */
 305	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
 306		if (IS_GEN6(dev))
 307			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
 308		else
 309			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
 310	} else if (HAS_PCH_SPLIT(dev))
 311		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
 312	else
 313		aux_clock_divider = intel_hrawclk(dev) / 2;
 314
 315	if (IS_GEN6(dev))
 316		precharge = 3;
 317	else
 318		precharge = 5;
 319
 320	/* Try to wait for any previous AUX channel activity */
 321	for (try = 0; try < 3; try++) {
 322		status = I915_READ(ch_ctl);
 323		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 324			break;
 325		msleep(1);
 326	}
 327
 328	if (try == 3) {
 329		WARN(1, "dp_aux_ch not started status 0x%08x\n",
 330		     I915_READ(ch_ctl));
 331		return -EBUSY;
 332	}
 333
 334	/* Must try at least 3 times according to DP spec */
 335	for (try = 0; try < 5; try++) {
 336		/* Load the send data into the aux channel data registers */
 337		for (i = 0; i < send_bytes; i += 4)
 338			I915_WRITE(ch_data + i,
 339				   pack_aux(send + i, send_bytes - i));
 340	
 341		/* Send the command and wait for it to complete */
 342		I915_WRITE(ch_ctl,
 343			   DP_AUX_CH_CTL_SEND_BUSY |
 344			   DP_AUX_CH_CTL_TIME_OUT_400us |
 345			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 346			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 347			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 348			   DP_AUX_CH_CTL_DONE |
 349			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 350			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 351		for (;;) {
 352			status = I915_READ(ch_ctl);
 353			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 354				break;
 355			udelay(100);
 356		}
 357	
 358		/* Clear done status and any errors */
 359		I915_WRITE(ch_ctl,
 360			   status |
 361			   DP_AUX_CH_CTL_DONE |
 362			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 363			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 364		if (status & DP_AUX_CH_CTL_DONE)
 365			break;
 366	}
 367
 368	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 369		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 370		return -EBUSY;
 371	}
 372
 373	/* Check for timeout or receive error.
 374	 * Timeouts occur when the sink is not connected
 375	 */
 376	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 377		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 378		return -EIO;
 379	}
 380
 381	/* Timeouts occur when the device isn't connected, so they're
 382	 * "normal" -- don't fill the kernel log with these */
 383	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 384		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 385		return -ETIMEDOUT;
 386	}
 387
 388	/* Unload any bytes sent back from the other side */
 389	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 390		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 391	if (recv_bytes > recv_size)
 392		recv_bytes = recv_size;
 393	
 394	for (i = 0; i < recv_bytes; i += 4)
 395		unpack_aux(I915_READ(ch_data + i),
 396			   recv + i, recv_bytes - i);
 397
 398	return recv_bytes;
 399}
 400
 401/* Write data to the aux channel in native mode */
 402static int
 403intel_dp_aux_native_write(struct intel_dp *intel_dp,
 404			  uint16_t address, uint8_t *send, int send_bytes)
 405{
 406	int ret;
 407	uint8_t	msg[20];
 408	int msg_bytes;
 409	uint8_t	ack;
 410
 411	if (send_bytes > 16)
 412		return -1;
 413	msg[0] = AUX_NATIVE_WRITE << 4;
 414	msg[1] = address >> 8;
 415	msg[2] = address & 0xff;
 416	msg[3] = send_bytes - 1;
 417	memcpy(&msg[4], send, send_bytes);
 418	msg_bytes = send_bytes + 4;
 419	for (;;) {
 420		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
 421		if (ret < 0)
 422			return ret;
 423		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
 424			break;
 425		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
 426			udelay(100);
 427		else
 428			return -EIO;
 429	}
 430	return send_bytes;
 431}
 432
 433/* Write a single byte to the aux channel in native mode */
 434static int
 435intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
 436			    uint16_t address, uint8_t byte)
 437{
 438	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
 439}
 440
 441/* read bytes from a native aux channel */
 442static int
 443intel_dp_aux_native_read(struct intel_dp *intel_dp,
 444			 uint16_t address, uint8_t *recv, int recv_bytes)
 445{
 446	uint8_t msg[4];
 447	int msg_bytes;
 448	uint8_t reply[20];
 449	int reply_bytes;
 450	uint8_t ack;
 451	int ret;
 452
 453	msg[0] = AUX_NATIVE_READ << 4;
 454	msg[1] = address >> 8;
 455	msg[2] = address & 0xff;
 456	msg[3] = recv_bytes - 1;
 457
 458	msg_bytes = 4;
 459	reply_bytes = recv_bytes + 1;
 460
 461	for (;;) {
 462		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
 463				      reply, reply_bytes);
 464		if (ret == 0)
 465			return -EPROTO;
 466		if (ret < 0)
 467			return ret;
 468		ack = reply[0];
 469		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
 470			memcpy(recv, reply + 1, ret - 1);
 471			return ret - 1;
 472		}
 473		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
 474			udelay(100);
 475		else
 476			return -EIO;
 477	}
 478}
 479
 480static int
 481intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 482		    uint8_t write_byte, uint8_t *read_byte)
 483{
 484	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 485	struct intel_dp *intel_dp = container_of(adapter,
 486						struct intel_dp,
 487						adapter);
 488	uint16_t address = algo_data->address;
 489	uint8_t msg[5];
 490	uint8_t reply[2];
 491	unsigned retry;
 492	int msg_bytes;
 493	int reply_bytes;
 494	int ret;
 495
 496	/* Set up the command byte */
 497	if (mode & MODE_I2C_READ)
 498		msg[0] = AUX_I2C_READ << 4;
 499	else
 500		msg[0] = AUX_I2C_WRITE << 4;
 501
 502	if (!(mode & MODE_I2C_STOP))
 503		msg[0] |= AUX_I2C_MOT << 4;
 504
 505	msg[1] = address >> 8;
 506	msg[2] = address;
 507
 508	switch (mode) {
 509	case MODE_I2C_WRITE:
 510		msg[3] = 0;
 511		msg[4] = write_byte;
 512		msg_bytes = 5;
 513		reply_bytes = 1;
 514		break;
 515	case MODE_I2C_READ:
 516		msg[3] = 0;
 517		msg_bytes = 4;
 518		reply_bytes = 2;
 519		break;
 520	default:
 521		msg_bytes = 3;
 522		reply_bytes = 1;
 523		break;
 524	}
 525
 526	for (retry = 0; retry < 5; retry++) {
 527		ret = intel_dp_aux_ch(intel_dp,
 528				      msg, msg_bytes,
 529				      reply, reply_bytes);
 530		if (ret < 0) {
 531			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 532			return ret;
 533		}
 534
 535		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
 536		case AUX_NATIVE_REPLY_ACK:
 537			/* I2C-over-AUX Reply field is only valid
 538			 * when paired with AUX ACK.
 539			 */
 540			break;
 541		case AUX_NATIVE_REPLY_NACK:
 542			DRM_DEBUG_KMS("aux_ch native nack\n");
 543			return -EREMOTEIO;
 544		case AUX_NATIVE_REPLY_DEFER:
 545			udelay(100);
 546			continue;
 547		default:
 548			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 549				  reply[0]);
 550			return -EREMOTEIO;
 551		}
 552
 553		switch (reply[0] & AUX_I2C_REPLY_MASK) {
 554		case AUX_I2C_REPLY_ACK:
 555			if (mode == MODE_I2C_READ) {
 556				*read_byte = reply[1];
 557			}
 558			return reply_bytes - 1;
 559		case AUX_I2C_REPLY_NACK:
 560			DRM_DEBUG_KMS("aux_i2c nack\n");
 561			return -EREMOTEIO;
 562		case AUX_I2C_REPLY_DEFER:
 563			DRM_DEBUG_KMS("aux_i2c defer\n");
 564			udelay(100);
 565			break;
 566		default:
 567			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 568			return -EREMOTEIO;
 569		}
 570	}
 571
 572	DRM_ERROR("too many retries, giving up\n");
 573	return -EREMOTEIO;
 574}
 575
 576static int
 577intel_dp_i2c_init(struct intel_dp *intel_dp,
 578		  struct intel_connector *intel_connector, const char *name)
 579{
 580	DRM_DEBUG_KMS("i2c_init %s\n", name);
 581	intel_dp->algo.running = false;
 582	intel_dp->algo.address = 0;
 583	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
 584
 585	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
 586	intel_dp->adapter.owner = THIS_MODULE;
 587	intel_dp->adapter.class = I2C_CLASS_DDC;
 588	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 589	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 590	intel_dp->adapter.algo_data = &intel_dp->algo;
 591	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
 592
 593	return i2c_dp_aux_add_bus(&intel_dp->adapter);
 594}
 595
 596static bool
 597intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
 598		    struct drm_display_mode *adjusted_mode)
 599{
 600	struct drm_device *dev = encoder->dev;
 601	struct drm_i915_private *dev_priv = dev->dev_private;
 602	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 603	int lane_count, clock;
 604	int max_lane_count = intel_dp_max_lane_count(intel_dp);
 605	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
 606	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 607
 608	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
 609		intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
 610		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
 611					mode, adjusted_mode);
 612		/*
 613		 * the mode->clock is used to calculate the Data&Link M/N
 614		 * of the pipe. For the eDP the fixed clock should be used.
 615		 */
 616		mode->clock = dev_priv->panel_fixed_mode->clock;
 617	}
 618
 619	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 620		for (clock = 0; clock <= max_clock; clock++) {
 621			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
 622
 623			if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
 624					<= link_avail) {
 625				intel_dp->link_bw = bws[clock];
 626				intel_dp->lane_count = lane_count;
 627				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
 628				DRM_DEBUG_KMS("Display port link bw %02x lane "
 629						"count %d clock %d\n",
 630				       intel_dp->link_bw, intel_dp->lane_count,
 631				       adjusted_mode->clock);
 632				return true;
 633			}
 634		}
 635	}
 636
 637	if (is_edp(intel_dp)) {
 638		/* okay we failed just pick the highest */
 639		intel_dp->lane_count = max_lane_count;
 640		intel_dp->link_bw = bws[max_clock];
 641		adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
 642		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
 643			      "count %d clock %d\n",
 644			      intel_dp->link_bw, intel_dp->lane_count,
 645			      adjusted_mode->clock);
 646
 647		return true;
 648	}
 649
 650	return false;
 651}
 652
 653struct intel_dp_m_n {
 654	uint32_t	tu;
 655	uint32_t	gmch_m;
 656	uint32_t	gmch_n;
 657	uint32_t	link_m;
 658	uint32_t	link_n;
 659};
 660
 661static void
 662intel_reduce_ratio(uint32_t *num, uint32_t *den)
 663{
 664	while (*num > 0xffffff || *den > 0xffffff) {
 665		*num >>= 1;
 666		*den >>= 1;
 667	}
 668}
 669
 670static void
 671intel_dp_compute_m_n(int bpp,
 672		     int nlanes,
 673		     int pixel_clock,
 674		     int link_clock,
 675		     struct intel_dp_m_n *m_n)
 676{
 677	m_n->tu = 64;
 678	m_n->gmch_m = (pixel_clock * bpp) >> 3;
 679	m_n->gmch_n = link_clock * nlanes;
 680	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 681	m_n->link_m = pixel_clock;
 682	m_n->link_n = link_clock;
 683	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 684}
 685
 686void
 687intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 688		 struct drm_display_mode *adjusted_mode)
 689{
 690	struct drm_device *dev = crtc->dev;
 691	struct drm_mode_config *mode_config = &dev->mode_config;
 692	struct drm_encoder *encoder;
 693	struct drm_i915_private *dev_priv = dev->dev_private;
 694	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 695	int lane_count = 4;
 696	struct intel_dp_m_n m_n;
 697	int pipe = intel_crtc->pipe;
 698
 699	/*
 700	 * Find the lane count in the intel_encoder private
 701	 */
 702	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
 703		struct intel_dp *intel_dp;
 704
 705		if (encoder->crtc != crtc)
 706			continue;
 707
 708		intel_dp = enc_to_intel_dp(encoder);
 709		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
 710			lane_count = intel_dp->lane_count;
 711			break;
 712		} else if (is_edp(intel_dp)) {
 713			lane_count = dev_priv->edp.lanes;
 714			break;
 715		}
 716	}
 717
 718	/*
 719	 * Compute the GMCH and Link ratios. The '3' here is
 720	 * the number of bytes_per_pixel post-LUT, which we always
 721	 * set up for 8-bits of R/G/B, or 3 bytes total.
 722	 */
 723	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
 724			     mode->clock, adjusted_mode->clock, &m_n);
 725
 726	if (HAS_PCH_SPLIT(dev)) {
 727		I915_WRITE(TRANSDATA_M1(pipe),
 728			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
 729			   m_n.gmch_m);
 730		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
 731		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
 732		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
 733	} else {
 734		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
 735			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
 736			   m_n.gmch_m);
 737		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
 738		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
 739		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
 740	}
 741}
 742
 743static void
 744intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
 745		  struct drm_display_mode *adjusted_mode)
 746{
 747	struct drm_device *dev = encoder->dev;
 748	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 749	struct drm_crtc *crtc = intel_dp->base.base.crtc;
 750	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 751
 752	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
 753	intel_dp->DP |= intel_dp->color_range;
 754
 755	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 756		intel_dp->DP |= DP_SYNC_HS_HIGH;
 757	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 758		intel_dp->DP |= DP_SYNC_VS_HIGH;
 759
 760	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
 761		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 762	else
 763		intel_dp->DP |= DP_LINK_TRAIN_OFF;
 764
 765	switch (intel_dp->lane_count) {
 766	case 1:
 767		intel_dp->DP |= DP_PORT_WIDTH_1;
 768		break;
 769	case 2:
 770		intel_dp->DP |= DP_PORT_WIDTH_2;
 771		break;
 772	case 4:
 773		intel_dp->DP |= DP_PORT_WIDTH_4;
 774		break;
 775	}
 776	if (intel_dp->has_audio)
 777		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
 778
 779	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
 780	intel_dp->link_configuration[0] = intel_dp->link_bw;
 781	intel_dp->link_configuration[1] = intel_dp->lane_count;
 782	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
 783
 784	/*
 785	 * Check for DPCD version > 1.1 and enhanced framing support
 786	 */
 787	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
 788	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
 789		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
 790		intel_dp->DP |= DP_ENHANCED_FRAMING;
 791	}
 792
 793	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
 794	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
 795		intel_dp->DP |= DP_PIPEB_SELECT;
 796
 797	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
 798		/* don't miss out required setting for eDP */
 799		intel_dp->DP |= DP_PLL_ENABLE;
 800		if (adjusted_mode->clock < 200000)
 801			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
 802		else
 803			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
 804	}
 805}
 806
 807static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
 808{
 809	struct drm_device *dev = intel_dp->base.base.dev;
 810	struct drm_i915_private *dev_priv = dev->dev_private;
 811	u32 pp;
 812
 813	/*
 814	 * If the panel wasn't on, make sure there's not a currently
 815	 * active PP sequence before enabling AUX VDD.
 816	 */
 817	if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
 818		msleep(dev_priv->panel_t3);
 819
 820	pp = I915_READ(PCH_PP_CONTROL);
 821	pp |= EDP_FORCE_VDD;
 822	I915_WRITE(PCH_PP_CONTROL, pp);
 823	POSTING_READ(PCH_PP_CONTROL);
 824}
 825
 826static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
 827{
 828	struct drm_device *dev = intel_dp->base.base.dev;
 829	struct drm_i915_private *dev_priv = dev->dev_private;
 830	u32 pp;
 831
 832	pp = I915_READ(PCH_PP_CONTROL);
 833	pp &= ~EDP_FORCE_VDD;
 834	I915_WRITE(PCH_PP_CONTROL, pp);
 835	POSTING_READ(PCH_PP_CONTROL);
 836
 837	/* Make sure sequencer is idle before allowing subsequent activity */
 838	msleep(dev_priv->panel_t12);
 839}
 840
 841/* Returns true if the panel was already on when called */
 842static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
 843{
 844	struct drm_device *dev = intel_dp->base.base.dev;
 845	struct drm_i915_private *dev_priv = dev->dev_private;
 846	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
 847
 848	if (I915_READ(PCH_PP_STATUS) & PP_ON)
 849		return true;
 850
 851	pp = I915_READ(PCH_PP_CONTROL);
 852
 853	/* ILK workaround: disable reset around power sequence */
 854	pp &= ~PANEL_POWER_RESET;
 855	I915_WRITE(PCH_PP_CONTROL, pp);
 856	POSTING_READ(PCH_PP_CONTROL);
 857
 858	pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
 859	I915_WRITE(PCH_PP_CONTROL, pp);
 860	POSTING_READ(PCH_PP_CONTROL);
 861
 862	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
 863		     5000))
 864		DRM_ERROR("panel on wait timed out: 0x%08x\n",
 865			  I915_READ(PCH_PP_STATUS));
 866
 867	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
 868	I915_WRITE(PCH_PP_CONTROL, pp);
 869	POSTING_READ(PCH_PP_CONTROL);
 870
 871	return false;
 872}
 873
 874static void ironlake_edp_panel_off (struct drm_device *dev)
 875{
 876	struct drm_i915_private *dev_priv = dev->dev_private;
 877	u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
 878		PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
 879
 880	pp = I915_READ(PCH_PP_CONTROL);
 881
 882	/* ILK workaround: disable reset around power sequence */
 883	pp &= ~PANEL_POWER_RESET;
 884	I915_WRITE(PCH_PP_CONTROL, pp);
 885	POSTING_READ(PCH_PP_CONTROL);
 886
 887	pp &= ~POWER_TARGET_ON;
 888	I915_WRITE(PCH_PP_CONTROL, pp);
 889	POSTING_READ(PCH_PP_CONTROL);
 890
 891	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
 892		DRM_ERROR("panel off wait timed out: 0x%08x\n",
 893			  I915_READ(PCH_PP_STATUS));
 894
 895	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
 896	I915_WRITE(PCH_PP_CONTROL, pp);
 897	POSTING_READ(PCH_PP_CONTROL);
 898}
 899
 900static void ironlake_edp_backlight_on (struct drm_device *dev)
 901{
 902	struct drm_i915_private *dev_priv = dev->dev_private;
 903	u32 pp;
 904
 905	DRM_DEBUG_KMS("\n");
 906	/*
 907	 * If we enable the backlight right away following a panel power
 908	 * on, we may see slight flicker as the panel syncs with the eDP
 909	 * link.  So delay a bit to make sure the image is solid before
 910	 * allowing it to appear.
 911	 */
 912	msleep(300);
 913	pp = I915_READ(PCH_PP_CONTROL);
 914	pp |= EDP_BLC_ENABLE;
 915	I915_WRITE(PCH_PP_CONTROL, pp);
 916}
 917
 918static void ironlake_edp_backlight_off (struct drm_device *dev)
 919{
 920	struct drm_i915_private *dev_priv = dev->dev_private;
 921	u32 pp;
 922
 923	DRM_DEBUG_KMS("\n");
 924	pp = I915_READ(PCH_PP_CONTROL);
 925	pp &= ~EDP_BLC_ENABLE;
 926	I915_WRITE(PCH_PP_CONTROL, pp);
 927}
 928
 929static void ironlake_edp_pll_on(struct drm_encoder *encoder)
 930{
 931	struct drm_device *dev = encoder->dev;
 932	struct drm_i915_private *dev_priv = dev->dev_private;
 933	u32 dpa_ctl;
 934
 935	DRM_DEBUG_KMS("\n");
 936	dpa_ctl = I915_READ(DP_A);
 937	dpa_ctl |= DP_PLL_ENABLE;
 938	I915_WRITE(DP_A, dpa_ctl);
 939	POSTING_READ(DP_A);
 940	udelay(200);
 941}
 942
 943static void ironlake_edp_pll_off(struct drm_encoder *encoder)
 944{
 945	struct drm_device *dev = encoder->dev;
 946	struct drm_i915_private *dev_priv = dev->dev_private;
 947	u32 dpa_ctl;
 948
 949	dpa_ctl = I915_READ(DP_A);
 950	dpa_ctl &= ~DP_PLL_ENABLE;
 951	I915_WRITE(DP_A, dpa_ctl);
 952	POSTING_READ(DP_A);
 953	udelay(200);
 954}
 955
 956/* If the sink supports it, try to set the power state appropriately */
 957static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
 958{
 959	int ret, i;
 960
 961	/* Should have a valid DPCD by this point */
 962	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
 963		return;
 964
 965	if (mode != DRM_MODE_DPMS_ON) {
 966		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
 967						  DP_SET_POWER_D3);
 968		if (ret != 1)
 969			DRM_DEBUG_DRIVER("failed to write sink power state\n");
 970	} else {
 971		/*
 972		 * When turning on, we need to retry for 1ms to give the sink
 973		 * time to wake up.
 974		 */
 975		for (i = 0; i < 3; i++) {
 976			ret = intel_dp_aux_native_write_1(intel_dp,
 977							  DP_SET_POWER,
 978							  DP_SET_POWER_D0);
 979			if (ret == 1)
 980				break;
 981			msleep(1);
 982		}
 983	}
 984}
 985
 986static void intel_dp_prepare(struct drm_encoder *encoder)
 987{
 988	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 989	struct drm_device *dev = encoder->dev;
 990
 991	/* Wake up the sink first */
 992	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
 993
 994	if (is_edp(intel_dp)) {
 995		ironlake_edp_backlight_off(dev);
 996		ironlake_edp_panel_off(dev);
 997		if (!is_pch_edp(intel_dp))
 998			ironlake_edp_pll_on(encoder);
 999		else
1000			ironlake_edp_pll_off(encoder);
1001	}
1002	intel_dp_link_down(intel_dp);
1003}
1004
1005static void intel_dp_commit(struct drm_encoder *encoder)
1006{
1007	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1008	struct drm_device *dev = encoder->dev;
1009
1010	if (is_edp(intel_dp))
1011		ironlake_edp_panel_vdd_on(intel_dp);
1012
1013	intel_dp_start_link_train(intel_dp);
1014
1015	if (is_edp(intel_dp)) {
1016		ironlake_edp_panel_on(intel_dp);
1017		ironlake_edp_panel_vdd_off(intel_dp);
1018	}
1019
1020	intel_dp_complete_link_train(intel_dp);
1021
1022	if (is_edp(intel_dp))
1023		ironlake_edp_backlight_on(dev);
1024
1025	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1026}
1027
1028static void
1029intel_dp_dpms(struct drm_encoder *encoder, int mode)
1030{
1031	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1032	struct drm_device *dev = encoder->dev;
1033	struct drm_i915_private *dev_priv = dev->dev_private;
1034	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1035
1036	if (mode != DRM_MODE_DPMS_ON) {
1037		if (is_edp(intel_dp))
1038			ironlake_edp_backlight_off(dev);
1039		intel_dp_sink_dpms(intel_dp, mode);
1040		intel_dp_link_down(intel_dp);
1041		if (is_edp(intel_dp))
1042			ironlake_edp_panel_off(dev);
1043		if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1044			ironlake_edp_pll_off(encoder);
1045	} else {
1046		if (is_edp(intel_dp))
1047			ironlake_edp_panel_vdd_on(intel_dp);
1048		intel_dp_sink_dpms(intel_dp, mode);
1049		if (!(dp_reg & DP_PORT_EN)) {
1050			intel_dp_start_link_train(intel_dp);
1051			if (is_edp(intel_dp)) {
1052				ironlake_edp_panel_on(intel_dp);
1053				ironlake_edp_panel_vdd_off(intel_dp);
1054			}
1055			intel_dp_complete_link_train(intel_dp);
1056		}
1057		if (is_edp(intel_dp))
1058			ironlake_edp_backlight_on(dev);
1059	}
1060	intel_dp->dpms_mode = mode;
1061}
1062
1063/*
1064 * Native read with retry for link status and receiver capability reads for
1065 * cases where the sink may still be asleep.
1066 */
1067static bool
1068intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1069			       uint8_t *recv, int recv_bytes)
1070{
1071	int ret, i;
1072
1073	/*
1074	 * Sinks are *supposed* to come up within 1ms from an off state,
1075	 * but we're also supposed to retry 3 times per the spec.
1076	 */
1077	for (i = 0; i < 3; i++) {
1078		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1079					       recv_bytes);
1080		if (ret == recv_bytes)
1081			return true;
1082		msleep(1);
1083	}
1084
1085	return false;
1086}
1087
1088/*
1089 * Fetch AUX CH registers 0x202 - 0x207 which contain
1090 * link status information
1091 */
1092static bool
1093intel_dp_get_link_status(struct intel_dp *intel_dp)
1094{
1095	return intel_dp_aux_native_read_retry(intel_dp,
1096					      DP_LANE0_1_STATUS,
1097					      intel_dp->link_status,
1098					      DP_LINK_STATUS_SIZE);
1099}
1100
1101static uint8_t
1102intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1103		     int r)
1104{
1105	return link_status[r - DP_LANE0_1_STATUS];
1106}
1107
1108static uint8_t
1109intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1110				 int lane)
1111{
1112	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1113	int	    s = ((lane & 1) ?
1114			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1115			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1116	uint8_t l = intel_dp_link_status(link_status, i);
1117
1118	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1119}
1120
1121static uint8_t
1122intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1123				      int lane)
1124{
1125	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1126	int	    s = ((lane & 1) ?
1127			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1128			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1129	uint8_t l = intel_dp_link_status(link_status, i);
1130
1131	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1132}
1133
1134
1135#if 0
1136static char	*voltage_names[] = {
1137	"0.4V", "0.6V", "0.8V", "1.2V"
1138};
1139static char	*pre_emph_names[] = {
1140	"0dB", "3.5dB", "6dB", "9.5dB"
1141};
1142static char	*link_train_names[] = {
1143	"pattern 1", "pattern 2", "idle", "off"
1144};
1145#endif
1146
1147/*
1148 * These are source-specific values; current Intel hardware supports
1149 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1150 */
1151#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800
1152
1153static uint8_t
1154intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1155{
1156	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1157	case DP_TRAIN_VOLTAGE_SWING_400:
1158		return DP_TRAIN_PRE_EMPHASIS_6;
1159	case DP_TRAIN_VOLTAGE_SWING_600:
1160		return DP_TRAIN_PRE_EMPHASIS_6;
1161	case DP_TRAIN_VOLTAGE_SWING_800:
1162		return DP_TRAIN_PRE_EMPHASIS_3_5;
1163	case DP_TRAIN_VOLTAGE_SWING_1200:
1164	default:
1165		return DP_TRAIN_PRE_EMPHASIS_0;
1166	}
1167}
1168
1169static void
1170intel_get_adjust_train(struct intel_dp *intel_dp)
1171{
1172	uint8_t v = 0;
1173	uint8_t p = 0;
1174	int lane;
1175
1176	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1177		uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1178		uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1179
1180		if (this_v > v)
1181			v = this_v;
1182		if (this_p > p)
1183			p = this_p;
1184	}
1185
1186	if (v >= I830_DP_VOLTAGE_MAX)
1187		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1188
1189	if (p >= intel_dp_pre_emphasis_max(v))
1190		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1191
1192	for (lane = 0; lane < 4; lane++)
1193		intel_dp->train_set[lane] = v | p;
1194}
1195
1196static uint32_t
1197intel_dp_signal_levels(uint8_t train_set, int lane_count)
1198{
1199	uint32_t	signal_levels = 0;
1200
1201	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1202	case DP_TRAIN_VOLTAGE_SWING_400:
1203	default:
1204		signal_levels |= DP_VOLTAGE_0_4;
1205		break;
1206	case DP_TRAIN_VOLTAGE_SWING_600:
1207		signal_levels |= DP_VOLTAGE_0_6;
1208		break;
1209	case DP_TRAIN_VOLTAGE_SWING_800:
1210		signal_levels |= DP_VOLTAGE_0_8;
1211		break;
1212	case DP_TRAIN_VOLTAGE_SWING_1200:
1213		signal_levels |= DP_VOLTAGE_1_2;
1214		break;
1215	}
1216	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1217	case DP_TRAIN_PRE_EMPHASIS_0:
1218	default:
1219		signal_levels |= DP_PRE_EMPHASIS_0;
1220		break;
1221	case DP_TRAIN_PRE_EMPHASIS_3_5:
1222		signal_levels |= DP_PRE_EMPHASIS_3_5;
1223		break;
1224	case DP_TRAIN_PRE_EMPHASIS_6:
1225		signal_levels |= DP_PRE_EMPHASIS_6;
1226		break;
1227	case DP_TRAIN_PRE_EMPHASIS_9_5:
1228		signal_levels |= DP_PRE_EMPHASIS_9_5;
1229		break;
1230	}
1231	return signal_levels;
1232}
1233
1234/* Gen6's DP voltage swing and pre-emphasis control */
1235static uint32_t
1236intel_gen6_edp_signal_levels(uint8_t train_set)
1237{
1238	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1239					 DP_TRAIN_PRE_EMPHASIS_MASK);
1240	switch (signal_levels) {
1241	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1242	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1243		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1244	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1245		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1246	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1247	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1248		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1249	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1250	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1251		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1252	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1253	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1254		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1255	default:
1256		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1257			      "0x%x\n", signal_levels);
1258		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1259	}
1260}
1261
1262static uint8_t
1263intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1264		      int lane)
1265{
1266	int i = DP_LANE0_1_STATUS + (lane >> 1);
1267	int s = (lane & 1) * 4;
1268	uint8_t l = intel_dp_link_status(link_status, i);
1269
1270	return (l >> s) & 0xf;
1271}
1272
1273/* Check for clock recovery is done on all channels */
1274static bool
1275intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1276{
1277	int lane;
1278	uint8_t lane_status;
1279
1280	for (lane = 0; lane < lane_count; lane++) {
1281		lane_status = intel_get_lane_status(link_status, lane);
1282		if ((lane_status & DP_LANE_CR_DONE) == 0)
1283			return false;
1284	}
1285	return true;
1286}
1287
1288/* Check to see if channel eq is done on all channels */
1289#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1290			 DP_LANE_CHANNEL_EQ_DONE|\
1291			 DP_LANE_SYMBOL_LOCKED)
1292static bool
1293intel_channel_eq_ok(struct intel_dp *intel_dp)
1294{
1295	uint8_t lane_align;
1296	uint8_t lane_status;
1297	int lane;
1298
1299	lane_align = intel_dp_link_status(intel_dp->link_status,
1300					  DP_LANE_ALIGN_STATUS_UPDATED);
1301	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1302		return false;
1303	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1304		lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1305		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1306			return false;
1307	}
1308	return true;
1309}
1310
1311static bool
1312intel_dp_set_link_train(struct intel_dp *intel_dp,
1313			uint32_t dp_reg_value,
1314			uint8_t dp_train_pat)
1315{
1316	struct drm_device *dev = intel_dp->base.base.dev;
1317	struct drm_i915_private *dev_priv = dev->dev_private;
1318	int ret;
1319
1320	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1321	POSTING_READ(intel_dp->output_reg);
1322
1323	intel_dp_aux_native_write_1(intel_dp,
1324				    DP_TRAINING_PATTERN_SET,
1325				    dp_train_pat);
1326
1327	ret = intel_dp_aux_native_write(intel_dp,
1328					DP_TRAINING_LANE0_SET,
1329					intel_dp->train_set, 4);
1330	if (ret != 4)
1331		return false;
1332
1333	return true;
1334}
1335
1336/* Enable corresponding port and start training pattern 1 */
1337static void
1338intel_dp_start_link_train(struct intel_dp *intel_dp)
1339{
1340	struct drm_device *dev = intel_dp->base.base.dev;
1341	struct drm_i915_private *dev_priv = dev->dev_private;
1342	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1343	int i;
1344	uint8_t voltage;
1345	bool clock_recovery = false;
1346	int tries;
1347	u32 reg;
1348	uint32_t DP = intel_dp->DP;
1349
1350	/*
1351	 * On CPT we have to enable the port in training pattern 1, which
1352	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
1353	 * the port and wait for it to become active.
1354	 */
1355	if (!HAS_PCH_CPT(dev)) {
1356		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1357		POSTING_READ(intel_dp->output_reg);
1358		intel_wait_for_vblank(dev, intel_crtc->pipe);
1359	}
1360
1361	/* Write the link configuration data */
1362	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1363				  intel_dp->link_configuration,
1364				  DP_LINK_CONFIGURATION_SIZE);
1365
1366	DP |= DP_PORT_EN;
1367	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1368		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1369	else
1370		DP &= ~DP_LINK_TRAIN_MASK;
1371	memset(intel_dp->train_set, 0, 4);
1372	voltage = 0xff;
1373	tries = 0;
1374	clock_recovery = false;
1375	for (;;) {
1376		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1377		uint32_t    signal_levels;
1378		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1379			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1380			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1381		} else {
1382			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1383			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1384		}
1385
1386		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1387			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1388		else
1389			reg = DP | DP_LINK_TRAIN_PAT_1;
1390
1391		if (!intel_dp_set_link_train(intel_dp, reg,
1392					     DP_TRAINING_PATTERN_1 |
1393					     DP_LINK_SCRAMBLING_DISABLE))
1394			break;
1395		/* Set training pattern 1 */
1396
1397		udelay(100);
1398		if (!intel_dp_get_link_status(intel_dp))
1399			break;
1400
1401		if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1402			clock_recovery = true;
1403			break;
1404		}
1405
1406		/* Check to see if we've tried the max voltage */
1407		for (i = 0; i < intel_dp->lane_count; i++)
1408			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1409				break;
1410		if (i == intel_dp->lane_count)
1411			break;
1412
1413		/* Check to see if we've tried the same voltage 5 times */
1414		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1415			++tries;
1416			if (tries == 5)
1417				break;
1418		} else
1419			tries = 0;
1420		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1421
1422		/* Compute new intel_dp->train_set as requested by target */
1423		intel_get_adjust_train(intel_dp);
1424	}
1425
1426	intel_dp->DP = DP;
1427}
1428
1429static void
1430intel_dp_complete_link_train(struct intel_dp *intel_dp)
1431{
1432	struct drm_device *dev = intel_dp->base.base.dev;
1433	struct drm_i915_private *dev_priv = dev->dev_private;
1434	bool channel_eq = false;
1435	int tries, cr_tries;
1436	u32 reg;
1437	uint32_t DP = intel_dp->DP;
1438
1439	/* channel equalization */
1440	tries = 0;
1441	cr_tries = 0;
1442	channel_eq = false;
1443	for (;;) {
1444		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1445		uint32_t    signal_levels;
1446
1447		if (cr_tries > 5) {
1448			DRM_ERROR("failed to train DP, aborting\n");
1449			intel_dp_link_down(intel_dp);
1450			break;
1451		}
1452
1453		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1454			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1455			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1456		} else {
1457			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1458			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1459		}
1460
1461		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1462			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1463		else
1464			reg = DP | DP_LINK_TRAIN_PAT_2;
1465
1466		/* channel eq pattern */
1467		if (!intel_dp_set_link_train(intel_dp, reg,
1468					     DP_TRAINING_PATTERN_2 |
1469					     DP_LINK_SCRAMBLING_DISABLE))
1470			break;
1471
1472		udelay(400);
1473		if (!intel_dp_get_link_status(intel_dp))
1474			break;
1475
1476		/* Make sure clock is still ok */
1477		if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1478			intel_dp_start_link_train(intel_dp);
1479			cr_tries++;
1480			continue;
1481		}
1482
1483		if (intel_channel_eq_ok(intel_dp)) {
1484			channel_eq = true;
1485			break;
1486		}
1487
1488		/* Try 5 times, then try clock recovery if that fails */
1489		if (tries > 5) {
1490			intel_dp_link_down(intel_dp);
1491			intel_dp_start_link_train(intel_dp);
1492			tries = 0;
1493			cr_tries++;
1494			continue;
1495		}
1496
1497		/* Compute new intel_dp->train_set as requested by target */
1498		intel_get_adjust_train(intel_dp);
1499		++tries;
1500	}
1501
1502	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1503		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1504	else
1505		reg = DP | DP_LINK_TRAIN_OFF;
1506
1507	I915_WRITE(intel_dp->output_reg, reg);
1508	POSTING_READ(intel_dp->output_reg);
1509	intel_dp_aux_native_write_1(intel_dp,
1510				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1511}
1512
1513static void
1514intel_dp_link_down(struct intel_dp *intel_dp)
1515{
1516	struct drm_device *dev = intel_dp->base.base.dev;
1517	struct drm_i915_private *dev_priv = dev->dev_private;
1518	uint32_t DP = intel_dp->DP;
1519
1520	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1521		return;
1522
1523	DRM_DEBUG_KMS("\n");
1524
1525	if (is_edp(intel_dp)) {
1526		DP &= ~DP_PLL_ENABLE;
1527		I915_WRITE(intel_dp->output_reg, DP);
1528		POSTING_READ(intel_dp->output_reg);
1529		udelay(100);
1530	}
1531
1532	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1533		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1534		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1535	} else {
1536		DP &= ~DP_LINK_TRAIN_MASK;
1537		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1538	}
1539	POSTING_READ(intel_dp->output_reg);
1540
1541	msleep(17);
1542
1543	if (is_edp(intel_dp))
1544		DP |= DP_LINK_TRAIN_OFF;
1545
1546	if (!HAS_PCH_CPT(dev) &&
1547	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1548		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1549
1550		/* Hardware workaround: leaving our transcoder select
1551		 * set to transcoder B while it's off will prevent the
1552		 * corresponding HDMI output on transcoder A.
1553		 *
1554		 * Combine this with another hardware workaround:
1555		 * transcoder select bit can only be cleared while the
1556		 * port is enabled.
1557		 */
1558		DP &= ~DP_PIPEB_SELECT;
1559		I915_WRITE(intel_dp->output_reg, DP);
1560
1561		/* Changes to enable or select take place the vblank
1562		 * after being written.
1563		 */
1564		if (crtc == NULL) {
1565			/* We can arrive here never having been attached
1566			 * to a CRTC, for instance, due to inheriting
1567			 * random state from the BIOS.
1568			 *
1569			 * If the pipe is not running, play safe and
1570			 * wait for the clocks to stabilise before
1571			 * continuing.
1572			 */
1573			POSTING_READ(intel_dp->output_reg);
1574			msleep(50);
1575		} else
1576			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1577	}
1578
1579	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1580	POSTING_READ(intel_dp->output_reg);
1581}
1582
1583static bool
1584intel_dp_get_dpcd(struct intel_dp *intel_dp)
1585{
1586	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1587					   sizeof (intel_dp->dpcd)) &&
1588	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1589		return true;
1590	}
1591
1592	return false;
1593}
1594
1595/*
1596 * According to DP spec
1597 * 5.1.2:
1598 *  1. Read DPCD
1599 *  2. Configure link according to Receiver Capabilities
1600 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1601 *  4. Check link status on receipt of hot-plug interrupt
1602 */
1603
1604static void
1605intel_dp_check_link_status(struct intel_dp *intel_dp)
1606{
1607	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1608		return;
1609
1610	if (!intel_dp->base.base.crtc)
1611		return;
1612
1613	/* Try to read receiver status if the link appears to be up */
1614	if (!intel_dp_get_link_status(intel_dp)) {
1615		intel_dp_link_down(intel_dp);
1616		return;
1617	}
1618
1619	/* Now read the DPCD to see if it's actually running */
1620	if (!intel_dp_get_dpcd(intel_dp)) {
1621		intel_dp_link_down(intel_dp);
1622		return;
1623	}
1624
1625	if (!intel_channel_eq_ok(intel_dp)) {
1626		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1627			      drm_get_encoder_name(&intel_dp->base.base));
1628		intel_dp_start_link_train(intel_dp);
1629		intel_dp_complete_link_train(intel_dp);
1630	}
1631}
1632
1633static enum drm_connector_status
1634intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1635{
1636	if (intel_dp_get_dpcd(intel_dp))
1637		return connector_status_connected;
1638	return connector_status_disconnected;
1639}
1640
1641static enum drm_connector_status
1642ironlake_dp_detect(struct intel_dp *intel_dp)
1643{
1644	enum drm_connector_status status;
1645
1646	/* Can't disconnect eDP, but you can close the lid... */
1647	if (is_edp(intel_dp)) {
1648		status = intel_panel_detect(intel_dp->base.base.dev);
1649		if (status == connector_status_unknown)
1650			status = connector_status_connected;
1651		return status;
1652	}
1653
1654	return intel_dp_detect_dpcd(intel_dp);
1655}
1656
1657static enum drm_connector_status
1658g4x_dp_detect(struct intel_dp *intel_dp)
1659{
1660	struct drm_device *dev = intel_dp->base.base.dev;
1661	struct drm_i915_private *dev_priv = dev->dev_private;
1662	uint32_t temp, bit;
1663
1664	switch (intel_dp->output_reg) {
1665	case DP_B:
1666		bit = DPB_HOTPLUG_INT_STATUS;
1667		break;
1668	case DP_C:
1669		bit = DPC_HOTPLUG_INT_STATUS;
1670		break;
1671	case DP_D:
1672		bit = DPD_HOTPLUG_INT_STATUS;
1673		break;
1674	default:
1675		return connector_status_unknown;
1676	}
1677
1678	temp = I915_READ(PORT_HOTPLUG_STAT);
1679
1680	if ((temp & bit) == 0)
1681		return connector_status_disconnected;
1682
1683	return intel_dp_detect_dpcd(intel_dp);
1684}
1685
1686/**
1687 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1688 *
1689 * \return true if DP port is connected.
1690 * \return false if DP port is disconnected.
1691 */
1692static enum drm_connector_status
1693intel_dp_detect(struct drm_connector *connector, bool force)
1694{
1695	struct intel_dp *intel_dp = intel_attached_dp(connector);
1696	struct drm_device *dev = intel_dp->base.base.dev;
1697	enum drm_connector_status status;
1698	struct edid *edid = NULL;
1699
1700	intel_dp->has_audio = false;
1701
1702	if (HAS_PCH_SPLIT(dev))
1703		status = ironlake_dp_detect(intel_dp);
1704	else
1705		status = g4x_dp_detect(intel_dp);
1706
1707	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1708		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1709		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1710		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
1711
1712	if (status != connector_status_connected)
1713		return status;
1714
1715	if (intel_dp->force_audio) {
1716		intel_dp->has_audio = intel_dp->force_audio > 0;
1717	} else {
1718		edid = drm_get_edid(connector, &intel_dp->adapter);
1719		if (edid) {
1720			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1721			connector->display_info.raw_edid = NULL;
1722			kfree(edid);
1723		}
1724	}
1725
1726	return connector_status_connected;
1727}
1728
1729static int intel_dp_get_modes(struct drm_connector *connector)
1730{
1731	struct intel_dp *intel_dp = intel_attached_dp(connector);
1732	struct drm_device *dev = intel_dp->base.base.dev;
1733	struct drm_i915_private *dev_priv = dev->dev_private;
1734	int ret;
1735
1736	/* We should parse the EDID data and find out if it has an audio sink
1737	 */
1738
1739	ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1740	if (ret) {
1741		if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1742			struct drm_display_mode *newmode;
1743			list_for_each_entry(newmode, &connector->probed_modes,
1744					    head) {
1745				if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1746					dev_priv->panel_fixed_mode =
1747						drm_mode_duplicate(dev, newmode);
1748					break;
1749				}
1750			}
1751		}
1752
1753		return ret;
1754	}
1755
1756	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1757	if (is_edp(intel_dp)) {
1758		if (dev_priv->panel_fixed_mode != NULL) {
1759			struct drm_display_mode *mode;
1760			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1761			drm_mode_probed_add(connector, mode);
1762			return 1;
1763		}
1764	}
1765	return 0;
1766}
1767
1768static bool
1769intel_dp_detect_audio(struct drm_connector *connector)
1770{
1771	struct intel_dp *intel_dp = intel_attached_dp(connector);
1772	struct edid *edid;
1773	bool has_audio = false;
1774
1775	edid = drm_get_edid(connector, &intel_dp->adapter);
1776	if (edid) {
1777		has_audio = drm_detect_monitor_audio(edid);
1778
1779		connector->display_info.raw_edid = NULL;
1780		kfree(edid);
1781	}
1782
1783	return has_audio;
1784}
1785
1786static int
1787intel_dp_set_property(struct drm_connector *connector,
1788		      struct drm_property *property,
1789		      uint64_t val)
1790{
1791	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1792	struct intel_dp *intel_dp = intel_attached_dp(connector);
1793	int ret;
1794
1795	ret = drm_connector_property_set_value(connector, property, val);
1796	if (ret)
1797		return ret;
1798
1799	if (property == dev_priv->force_audio_property) {
1800		int i = val;
1801		bool has_audio;
1802
1803		if (i == intel_dp->force_audio)
1804			return 0;
1805
1806		intel_dp->force_audio = i;
1807
1808		if (i == 0)
1809			has_audio = intel_dp_detect_audio(connector);
1810		else
1811			has_audio = i > 0;
1812
1813		if (has_audio == intel_dp->has_audio)
1814			return 0;
1815
1816		intel_dp->has_audio = has_audio;
1817		goto done;
1818	}
1819
1820	if (property == dev_priv->broadcast_rgb_property) {
1821		if (val == !!intel_dp->color_range)
1822			return 0;
1823
1824		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1825		goto done;
1826	}
1827
1828	return -EINVAL;
1829
1830done:
1831	if (intel_dp->base.base.crtc) {
1832		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1833		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1834					 crtc->x, crtc->y,
1835					 crtc->fb);
1836	}
1837
1838	return 0;
1839}
1840
1841static void
1842intel_dp_destroy (struct drm_connector *connector)
1843{
1844	struct drm_device *dev = connector->dev;
1845
1846	if (intel_dpd_is_edp(dev))
1847		intel_panel_destroy_backlight(dev);
1848
1849	drm_sysfs_connector_remove(connector);
1850	drm_connector_cleanup(connector);
1851	kfree(connector);
1852}
1853
1854static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1855{
1856	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1857
1858	i2c_del_adapter(&intel_dp->adapter);
1859	drm_encoder_cleanup(encoder);
1860	kfree(intel_dp);
1861}
1862
1863static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1864	.dpms = intel_dp_dpms,
1865	.mode_fixup = intel_dp_mode_fixup,
1866	.prepare = intel_dp_prepare,
1867	.mode_set = intel_dp_mode_set,
1868	.commit = intel_dp_commit,
1869};
1870
1871static const struct drm_connector_funcs intel_dp_connector_funcs = {
1872	.dpms = drm_helper_connector_dpms,
1873	.detect = intel_dp_detect,
1874	.fill_modes = drm_helper_probe_single_connector_modes,
1875	.set_property = intel_dp_set_property,
1876	.destroy = intel_dp_destroy,
1877};
1878
1879static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1880	.get_modes = intel_dp_get_modes,
1881	.mode_valid = intel_dp_mode_valid,
1882	.best_encoder = intel_best_encoder,
1883};
1884
1885static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1886	.destroy = intel_dp_encoder_destroy,
1887};
1888
1889static void
1890intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1891{
1892	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1893
1894	intel_dp_check_link_status(intel_dp);
1895}
1896
1897/* Return which DP Port should be selected for Transcoder DP control */
1898int
1899intel_trans_dp_port_sel (struct drm_crtc *crtc)
1900{
1901	struct drm_device *dev = crtc->dev;
1902	struct drm_mode_config *mode_config = &dev->mode_config;
1903	struct drm_encoder *encoder;
1904
1905	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1906		struct intel_dp *intel_dp;
1907
1908		if (encoder->crtc != crtc)
1909			continue;
1910
1911		intel_dp = enc_to_intel_dp(encoder);
1912		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1913			return intel_dp->output_reg;
1914	}
1915
1916	return -1;
1917}
1918
1919/* check the VBT to see whether the eDP is on DP-D port */
1920bool intel_dpd_is_edp(struct drm_device *dev)
1921{
1922	struct drm_i915_private *dev_priv = dev->dev_private;
1923	struct child_device_config *p_child;
1924	int i;
1925
1926	if (!dev_priv->child_dev_num)
1927		return false;
1928
1929	for (i = 0; i < dev_priv->child_dev_num; i++) {
1930		p_child = dev_priv->child_dev + i;
1931
1932		if (p_child->dvo_port == PORT_IDPD &&
1933		    p_child->device_type == DEVICE_TYPE_eDP)
1934			return true;
1935	}
1936	return false;
1937}
1938
1939static void
1940intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1941{
1942	intel_attach_force_audio_property(connector);
1943	intel_attach_broadcast_rgb_property(connector);
1944}
1945
1946void
1947intel_dp_init(struct drm_device *dev, int output_reg)
1948{
1949	struct drm_i915_private *dev_priv = dev->dev_private;
1950	struct drm_connector *connector;
1951	struct intel_dp *intel_dp;
1952	struct intel_encoder *intel_encoder;
1953	struct intel_connector *intel_connector;
1954	const char *name = NULL;
1955	int type;
1956
1957	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1958	if (!intel_dp)
1959		return;
1960
1961	intel_dp->output_reg = output_reg;
1962	intel_dp->dpms_mode = -1;
1963
1964	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1965	if (!intel_connector) {
1966		kfree(intel_dp);
1967		return;
1968	}
1969	intel_encoder = &intel_dp->base;
1970
1971	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1972		if (intel_dpd_is_edp(dev))
1973			intel_dp->is_pch_edp = true;
1974
1975	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1976		type = DRM_MODE_CONNECTOR_eDP;
1977		intel_encoder->type = INTEL_OUTPUT_EDP;
1978	} else {
1979		type = DRM_MODE_CONNECTOR_DisplayPort;
1980		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1981	}
1982
1983	connector = &intel_connector->base;
1984	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1985	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1986
1987	connector->polled = DRM_CONNECTOR_POLL_HPD;
1988
1989	if (output_reg == DP_B || output_reg == PCH_DP_B)
1990		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1991	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1992		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1993	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1994		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1995
1996	if (is_edp(intel_dp))
1997		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1998
1999	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2000	connector->interlace_allowed = true;
2001	connector->doublescan_allowed = 0;
2002
2003	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2004			 DRM_MODE_ENCODER_TMDS);
2005	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2006
2007	intel_connector_attach_encoder(intel_connector, intel_encoder);
2008	drm_sysfs_connector_add(connector);
2009
2010	/* Set up the DDC bus. */
2011	switch (output_reg) {
2012		case DP_A:
2013			name = "DPDDC-A";
2014			break;
2015		case DP_B:
2016		case PCH_DP_B:
2017			dev_priv->hotplug_supported_mask |=
2018				HDMIB_HOTPLUG_INT_STATUS;
2019			name = "DPDDC-B";
2020			break;
2021		case DP_C:
2022		case PCH_DP_C:
2023			dev_priv->hotplug_supported_mask |=
2024				HDMIC_HOTPLUG_INT_STATUS;
2025			name = "DPDDC-C";
2026			break;
2027		case DP_D:
2028		case PCH_DP_D:
2029			dev_priv->hotplug_supported_mask |=
2030				HDMID_HOTPLUG_INT_STATUS;
2031			name = "DPDDC-D";
2032			break;
2033	}
2034
2035	intel_dp_i2c_init(intel_dp, intel_connector, name);
2036
2037	/* Cache some DPCD data in the eDP case */
2038	if (is_edp(intel_dp)) {
2039		bool ret;
2040		u32 pp_on, pp_div;
2041
2042		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2043		pp_div = I915_READ(PCH_PP_DIVISOR);
2044
2045		/* Get T3 & T12 values (note: VESA not bspec terminology) */
2046		dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
2047		dev_priv->panel_t3 /= 10; /* t3 in 100us units */
2048		dev_priv->panel_t12 = pp_div & 0xf;
2049		dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
2050
2051		ironlake_edp_panel_vdd_on(intel_dp);
2052		ret = intel_dp_get_dpcd(intel_dp);
2053		ironlake_edp_panel_vdd_off(intel_dp);
2054		if (ret) {
2055			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2056				dev_priv->no_aux_handshake =
2057					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2058					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2059		} else {
2060			/* if this fails, presume the device is a ghost */
2061			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2062			intel_dp_encoder_destroy(&intel_dp->base.base);
2063			intel_dp_destroy(&intel_connector->base);
2064			return;
2065		}
2066	}
2067
2068	intel_encoder->hot_plug = intel_dp_hot_plug;
2069
2070	if (is_edp(intel_dp)) {
2071		/* initialize panel mode from VBT if available for eDP */
2072		if (dev_priv->lfp_lvds_vbt_mode) {
2073			dev_priv->panel_fixed_mode =
2074				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2075			if (dev_priv->panel_fixed_mode) {
2076				dev_priv->panel_fixed_mode->type |=
2077					DRM_MODE_TYPE_PREFERRED;
2078			}
2079		}
2080		dev_priv->int_edp_connector = connector;
2081		intel_panel_setup_backlight(dev);
2082	}
2083
2084	intel_dp_add_properties(intel_dp, connector);
2085
2086	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2087	 * 0xd.  Failure to do so will result in spurious interrupts being
2088	 * generated on the port when a cable is not attached.
2089	 */
2090	if (IS_G4X(dev) && !IS_GM45(dev)) {
2091		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2092		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2093	}
2094}