Loading...
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include "drmP.h"
31#include "drm.h"
32#include "drm_crtc.h"
33#include "drm_crtc_helper.h"
34#include "intel_drv.h"
35#include "i915_drm.h"
36#include "i915_drv.h"
37#include "drm_dp_helper.h"
38
39
40#define DP_LINK_STATUS_SIZE 6
41#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43#define DP_LINK_CONFIGURATION_SIZE 9
44
45struct intel_dp {
46 struct intel_encoder base;
47 uint32_t output_reg;
48 uint32_t DP;
49 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
50 bool has_audio;
51 int force_audio;
52 uint32_t color_range;
53 int dpms_mode;
54 uint8_t link_bw;
55 uint8_t lane_count;
56 uint8_t dpcd[8];
57 struct i2c_adapter adapter;
58 struct i2c_algo_dp_aux_data algo;
59 bool is_pch_edp;
60 uint8_t train_set[4];
61 uint8_t link_status[DP_LINK_STATUS_SIZE];
62};
63
64/**
65 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
66 * @intel_dp: DP struct
67 *
68 * If a CPU or PCH DP output is attached to an eDP panel, this function
69 * will return true, and false otherwise.
70 */
71static bool is_edp(struct intel_dp *intel_dp)
72{
73 return intel_dp->base.type == INTEL_OUTPUT_EDP;
74}
75
76/**
77 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
78 * @intel_dp: DP struct
79 *
80 * Returns true if the given DP struct corresponds to a PCH DP port attached
81 * to an eDP panel, false otherwise. Helpful for determining whether we
82 * may need FDI resources for a given DP output or not.
83 */
84static bool is_pch_edp(struct intel_dp *intel_dp)
85{
86 return intel_dp->is_pch_edp;
87}
88
89static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
90{
91 return container_of(encoder, struct intel_dp, base.base);
92}
93
94static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
95{
96 return container_of(intel_attached_encoder(connector),
97 struct intel_dp, base);
98}
99
100/**
101 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
102 * @encoder: DRM encoder
103 *
104 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
105 * by intel_display.c.
106 */
107bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
108{
109 struct intel_dp *intel_dp;
110
111 if (!encoder)
112 return false;
113
114 intel_dp = enc_to_intel_dp(encoder);
115
116 return is_pch_edp(intel_dp);
117}
118
119static void intel_dp_start_link_train(struct intel_dp *intel_dp);
120static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
121static void intel_dp_link_down(struct intel_dp *intel_dp);
122
123void
124intel_edp_link_config (struct intel_encoder *intel_encoder,
125 int *lane_num, int *link_bw)
126{
127 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
128
129 *lane_num = intel_dp->lane_count;
130 if (intel_dp->link_bw == DP_LINK_BW_1_62)
131 *link_bw = 162000;
132 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
133 *link_bw = 270000;
134}
135
136static int
137intel_dp_max_lane_count(struct intel_dp *intel_dp)
138{
139 int max_lane_count = 4;
140
141 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
142 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
143 switch (max_lane_count) {
144 case 1: case 2: case 4:
145 break;
146 default:
147 max_lane_count = 4;
148 }
149 }
150 return max_lane_count;
151}
152
153static int
154intel_dp_max_link_bw(struct intel_dp *intel_dp)
155{
156 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
157
158 switch (max_link_bw) {
159 case DP_LINK_BW_1_62:
160 case DP_LINK_BW_2_7:
161 break;
162 default:
163 max_link_bw = DP_LINK_BW_1_62;
164 break;
165 }
166 return max_link_bw;
167}
168
169static int
170intel_dp_link_clock(uint8_t link_bw)
171{
172 if (link_bw == DP_LINK_BW_2_7)
173 return 270000;
174 else
175 return 162000;
176}
177
178/* I think this is a fiction */
179static int
180intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
181{
182 struct drm_crtc *crtc = intel_dp->base.base.crtc;
183 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
184 int bpp = 24;
185
186 if (intel_crtc)
187 bpp = intel_crtc->bpp;
188
189 return (pixel_clock * bpp + 7) / 8;
190}
191
192static int
193intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194{
195 return (max_link_clock * max_lanes * 8) / 10;
196}
197
198static int
199intel_dp_mode_valid(struct drm_connector *connector,
200 struct drm_display_mode *mode)
201{
202 struct intel_dp *intel_dp = intel_attached_dp(connector);
203 struct drm_device *dev = connector->dev;
204 struct drm_i915_private *dev_priv = dev->dev_private;
205 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
206 int max_lanes = intel_dp_max_lane_count(intel_dp);
207
208 if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
209 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
210 return MODE_PANEL;
211
212 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
213 return MODE_PANEL;
214 }
215
216 /* only refuse the mode on non eDP since we have seen some weird eDP panels
217 which are outside spec tolerances but somehow work by magic */
218 if (!is_edp(intel_dp) &&
219 (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
220 > intel_dp_max_data_rate(max_link_clock, max_lanes)))
221 return MODE_CLOCK_HIGH;
222
223 if (mode->clock < 10000)
224 return MODE_CLOCK_LOW;
225
226 return MODE_OK;
227}
228
229static uint32_t
230pack_aux(uint8_t *src, int src_bytes)
231{
232 int i;
233 uint32_t v = 0;
234
235 if (src_bytes > 4)
236 src_bytes = 4;
237 for (i = 0; i < src_bytes; i++)
238 v |= ((uint32_t) src[i]) << ((3-i) * 8);
239 return v;
240}
241
242static void
243unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
244{
245 int i;
246 if (dst_bytes > 4)
247 dst_bytes = 4;
248 for (i = 0; i < dst_bytes; i++)
249 dst[i] = src >> ((3-i) * 8);
250}
251
252/* hrawclock is 1/4 the FSB frequency */
253static int
254intel_hrawclk(struct drm_device *dev)
255{
256 struct drm_i915_private *dev_priv = dev->dev_private;
257 uint32_t clkcfg;
258
259 clkcfg = I915_READ(CLKCFG);
260 switch (clkcfg & CLKCFG_FSB_MASK) {
261 case CLKCFG_FSB_400:
262 return 100;
263 case CLKCFG_FSB_533:
264 return 133;
265 case CLKCFG_FSB_667:
266 return 166;
267 case CLKCFG_FSB_800:
268 return 200;
269 case CLKCFG_FSB_1067:
270 return 266;
271 case CLKCFG_FSB_1333:
272 return 333;
273 /* these two are just a guess; one of them might be right */
274 case CLKCFG_FSB_1600:
275 case CLKCFG_FSB_1600_ALT:
276 return 400;
277 default:
278 return 133;
279 }
280}
281
282static int
283intel_dp_aux_ch(struct intel_dp *intel_dp,
284 uint8_t *send, int send_bytes,
285 uint8_t *recv, int recv_size)
286{
287 uint32_t output_reg = intel_dp->output_reg;
288 struct drm_device *dev = intel_dp->base.base.dev;
289 struct drm_i915_private *dev_priv = dev->dev_private;
290 uint32_t ch_ctl = output_reg + 0x10;
291 uint32_t ch_data = ch_ctl + 4;
292 int i;
293 int recv_bytes;
294 uint32_t status;
295 uint32_t aux_clock_divider;
296 int try, precharge;
297
298 /* The clock divider is based off the hrawclk,
299 * and would like to run at 2MHz. So, take the
300 * hrawclk value and divide by 2 and use that
301 *
302 * Note that PCH attached eDP panels should use a 125MHz input
303 * clock divider.
304 */
305 if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
306 if (IS_GEN6(dev))
307 aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
308 else
309 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
310 } else if (HAS_PCH_SPLIT(dev))
311 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
312 else
313 aux_clock_divider = intel_hrawclk(dev) / 2;
314
315 if (IS_GEN6(dev))
316 precharge = 3;
317 else
318 precharge = 5;
319
320 /* Try to wait for any previous AUX channel activity */
321 for (try = 0; try < 3; try++) {
322 status = I915_READ(ch_ctl);
323 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
324 break;
325 msleep(1);
326 }
327
328 if (try == 3) {
329 WARN(1, "dp_aux_ch not started status 0x%08x\n",
330 I915_READ(ch_ctl));
331 return -EBUSY;
332 }
333
334 /* Must try at least 3 times according to DP spec */
335 for (try = 0; try < 5; try++) {
336 /* Load the send data into the aux channel data registers */
337 for (i = 0; i < send_bytes; i += 4)
338 I915_WRITE(ch_data + i,
339 pack_aux(send + i, send_bytes - i));
340
341 /* Send the command and wait for it to complete */
342 I915_WRITE(ch_ctl,
343 DP_AUX_CH_CTL_SEND_BUSY |
344 DP_AUX_CH_CTL_TIME_OUT_400us |
345 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
346 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
347 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
348 DP_AUX_CH_CTL_DONE |
349 DP_AUX_CH_CTL_TIME_OUT_ERROR |
350 DP_AUX_CH_CTL_RECEIVE_ERROR);
351 for (;;) {
352 status = I915_READ(ch_ctl);
353 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
354 break;
355 udelay(100);
356 }
357
358 /* Clear done status and any errors */
359 I915_WRITE(ch_ctl,
360 status |
361 DP_AUX_CH_CTL_DONE |
362 DP_AUX_CH_CTL_TIME_OUT_ERROR |
363 DP_AUX_CH_CTL_RECEIVE_ERROR);
364 if (status & DP_AUX_CH_CTL_DONE)
365 break;
366 }
367
368 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
369 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
370 return -EBUSY;
371 }
372
373 /* Check for timeout or receive error.
374 * Timeouts occur when the sink is not connected
375 */
376 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
377 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
378 return -EIO;
379 }
380
381 /* Timeouts occur when the device isn't connected, so they're
382 * "normal" -- don't fill the kernel log with these */
383 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
384 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
385 return -ETIMEDOUT;
386 }
387
388 /* Unload any bytes sent back from the other side */
389 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
390 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
391 if (recv_bytes > recv_size)
392 recv_bytes = recv_size;
393
394 for (i = 0; i < recv_bytes; i += 4)
395 unpack_aux(I915_READ(ch_data + i),
396 recv + i, recv_bytes - i);
397
398 return recv_bytes;
399}
400
401/* Write data to the aux channel in native mode */
402static int
403intel_dp_aux_native_write(struct intel_dp *intel_dp,
404 uint16_t address, uint8_t *send, int send_bytes)
405{
406 int ret;
407 uint8_t msg[20];
408 int msg_bytes;
409 uint8_t ack;
410
411 if (send_bytes > 16)
412 return -1;
413 msg[0] = AUX_NATIVE_WRITE << 4;
414 msg[1] = address >> 8;
415 msg[2] = address & 0xff;
416 msg[3] = send_bytes - 1;
417 memcpy(&msg[4], send, send_bytes);
418 msg_bytes = send_bytes + 4;
419 for (;;) {
420 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
421 if (ret < 0)
422 return ret;
423 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
424 break;
425 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
426 udelay(100);
427 else
428 return -EIO;
429 }
430 return send_bytes;
431}
432
433/* Write a single byte to the aux channel in native mode */
434static int
435intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
436 uint16_t address, uint8_t byte)
437{
438 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
439}
440
441/* read bytes from a native aux channel */
442static int
443intel_dp_aux_native_read(struct intel_dp *intel_dp,
444 uint16_t address, uint8_t *recv, int recv_bytes)
445{
446 uint8_t msg[4];
447 int msg_bytes;
448 uint8_t reply[20];
449 int reply_bytes;
450 uint8_t ack;
451 int ret;
452
453 msg[0] = AUX_NATIVE_READ << 4;
454 msg[1] = address >> 8;
455 msg[2] = address & 0xff;
456 msg[3] = recv_bytes - 1;
457
458 msg_bytes = 4;
459 reply_bytes = recv_bytes + 1;
460
461 for (;;) {
462 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
463 reply, reply_bytes);
464 if (ret == 0)
465 return -EPROTO;
466 if (ret < 0)
467 return ret;
468 ack = reply[0];
469 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
470 memcpy(recv, reply + 1, ret - 1);
471 return ret - 1;
472 }
473 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
474 udelay(100);
475 else
476 return -EIO;
477 }
478}
479
480static int
481intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
482 uint8_t write_byte, uint8_t *read_byte)
483{
484 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
485 struct intel_dp *intel_dp = container_of(adapter,
486 struct intel_dp,
487 adapter);
488 uint16_t address = algo_data->address;
489 uint8_t msg[5];
490 uint8_t reply[2];
491 unsigned retry;
492 int msg_bytes;
493 int reply_bytes;
494 int ret;
495
496 /* Set up the command byte */
497 if (mode & MODE_I2C_READ)
498 msg[0] = AUX_I2C_READ << 4;
499 else
500 msg[0] = AUX_I2C_WRITE << 4;
501
502 if (!(mode & MODE_I2C_STOP))
503 msg[0] |= AUX_I2C_MOT << 4;
504
505 msg[1] = address >> 8;
506 msg[2] = address;
507
508 switch (mode) {
509 case MODE_I2C_WRITE:
510 msg[3] = 0;
511 msg[4] = write_byte;
512 msg_bytes = 5;
513 reply_bytes = 1;
514 break;
515 case MODE_I2C_READ:
516 msg[3] = 0;
517 msg_bytes = 4;
518 reply_bytes = 2;
519 break;
520 default:
521 msg_bytes = 3;
522 reply_bytes = 1;
523 break;
524 }
525
526 for (retry = 0; retry < 5; retry++) {
527 ret = intel_dp_aux_ch(intel_dp,
528 msg, msg_bytes,
529 reply, reply_bytes);
530 if (ret < 0) {
531 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
532 return ret;
533 }
534
535 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
536 case AUX_NATIVE_REPLY_ACK:
537 /* I2C-over-AUX Reply field is only valid
538 * when paired with AUX ACK.
539 */
540 break;
541 case AUX_NATIVE_REPLY_NACK:
542 DRM_DEBUG_KMS("aux_ch native nack\n");
543 return -EREMOTEIO;
544 case AUX_NATIVE_REPLY_DEFER:
545 udelay(100);
546 continue;
547 default:
548 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
549 reply[0]);
550 return -EREMOTEIO;
551 }
552
553 switch (reply[0] & AUX_I2C_REPLY_MASK) {
554 case AUX_I2C_REPLY_ACK:
555 if (mode == MODE_I2C_READ) {
556 *read_byte = reply[1];
557 }
558 return reply_bytes - 1;
559 case AUX_I2C_REPLY_NACK:
560 DRM_DEBUG_KMS("aux_i2c nack\n");
561 return -EREMOTEIO;
562 case AUX_I2C_REPLY_DEFER:
563 DRM_DEBUG_KMS("aux_i2c defer\n");
564 udelay(100);
565 break;
566 default:
567 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
568 return -EREMOTEIO;
569 }
570 }
571
572 DRM_ERROR("too many retries, giving up\n");
573 return -EREMOTEIO;
574}
575
576static int
577intel_dp_i2c_init(struct intel_dp *intel_dp,
578 struct intel_connector *intel_connector, const char *name)
579{
580 DRM_DEBUG_KMS("i2c_init %s\n", name);
581 intel_dp->algo.running = false;
582 intel_dp->algo.address = 0;
583 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
584
585 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
586 intel_dp->adapter.owner = THIS_MODULE;
587 intel_dp->adapter.class = I2C_CLASS_DDC;
588 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
589 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
590 intel_dp->adapter.algo_data = &intel_dp->algo;
591 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
592
593 return i2c_dp_aux_add_bus(&intel_dp->adapter);
594}
595
596static bool
597intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
598 struct drm_display_mode *adjusted_mode)
599{
600 struct drm_device *dev = encoder->dev;
601 struct drm_i915_private *dev_priv = dev->dev_private;
602 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
603 int lane_count, clock;
604 int max_lane_count = intel_dp_max_lane_count(intel_dp);
605 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
606 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
607
608 if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
609 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
610 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
611 mode, adjusted_mode);
612 /*
613 * the mode->clock is used to calculate the Data&Link M/N
614 * of the pipe. For the eDP the fixed clock should be used.
615 */
616 mode->clock = dev_priv->panel_fixed_mode->clock;
617 }
618
619 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
620 for (clock = 0; clock <= max_clock; clock++) {
621 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
622
623 if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
624 <= link_avail) {
625 intel_dp->link_bw = bws[clock];
626 intel_dp->lane_count = lane_count;
627 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
628 DRM_DEBUG_KMS("Display port link bw %02x lane "
629 "count %d clock %d\n",
630 intel_dp->link_bw, intel_dp->lane_count,
631 adjusted_mode->clock);
632 return true;
633 }
634 }
635 }
636
637 if (is_edp(intel_dp)) {
638 /* okay we failed just pick the highest */
639 intel_dp->lane_count = max_lane_count;
640 intel_dp->link_bw = bws[max_clock];
641 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
642 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
643 "count %d clock %d\n",
644 intel_dp->link_bw, intel_dp->lane_count,
645 adjusted_mode->clock);
646
647 return true;
648 }
649
650 return false;
651}
652
653struct intel_dp_m_n {
654 uint32_t tu;
655 uint32_t gmch_m;
656 uint32_t gmch_n;
657 uint32_t link_m;
658 uint32_t link_n;
659};
660
661static void
662intel_reduce_ratio(uint32_t *num, uint32_t *den)
663{
664 while (*num > 0xffffff || *den > 0xffffff) {
665 *num >>= 1;
666 *den >>= 1;
667 }
668}
669
670static void
671intel_dp_compute_m_n(int bpp,
672 int nlanes,
673 int pixel_clock,
674 int link_clock,
675 struct intel_dp_m_n *m_n)
676{
677 m_n->tu = 64;
678 m_n->gmch_m = (pixel_clock * bpp) >> 3;
679 m_n->gmch_n = link_clock * nlanes;
680 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
681 m_n->link_m = pixel_clock;
682 m_n->link_n = link_clock;
683 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
684}
685
686void
687intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
688 struct drm_display_mode *adjusted_mode)
689{
690 struct drm_device *dev = crtc->dev;
691 struct drm_mode_config *mode_config = &dev->mode_config;
692 struct drm_encoder *encoder;
693 struct drm_i915_private *dev_priv = dev->dev_private;
694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
695 int lane_count = 4;
696 struct intel_dp_m_n m_n;
697 int pipe = intel_crtc->pipe;
698
699 /*
700 * Find the lane count in the intel_encoder private
701 */
702 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
703 struct intel_dp *intel_dp;
704
705 if (encoder->crtc != crtc)
706 continue;
707
708 intel_dp = enc_to_intel_dp(encoder);
709 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
710 lane_count = intel_dp->lane_count;
711 break;
712 } else if (is_edp(intel_dp)) {
713 lane_count = dev_priv->edp.lanes;
714 break;
715 }
716 }
717
718 /*
719 * Compute the GMCH and Link ratios. The '3' here is
720 * the number of bytes_per_pixel post-LUT, which we always
721 * set up for 8-bits of R/G/B, or 3 bytes total.
722 */
723 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
724 mode->clock, adjusted_mode->clock, &m_n);
725
726 if (HAS_PCH_SPLIT(dev)) {
727 I915_WRITE(TRANSDATA_M1(pipe),
728 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
729 m_n.gmch_m);
730 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
731 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
732 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
733 } else {
734 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
735 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
736 m_n.gmch_m);
737 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
738 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
739 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
740 }
741}
742
743static void
744intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
745 struct drm_display_mode *adjusted_mode)
746{
747 struct drm_device *dev = encoder->dev;
748 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
749 struct drm_crtc *crtc = intel_dp->base.base.crtc;
750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
751
752 intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
753 intel_dp->DP |= intel_dp->color_range;
754
755 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
756 intel_dp->DP |= DP_SYNC_HS_HIGH;
757 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
758 intel_dp->DP |= DP_SYNC_VS_HIGH;
759
760 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
761 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
762 else
763 intel_dp->DP |= DP_LINK_TRAIN_OFF;
764
765 switch (intel_dp->lane_count) {
766 case 1:
767 intel_dp->DP |= DP_PORT_WIDTH_1;
768 break;
769 case 2:
770 intel_dp->DP |= DP_PORT_WIDTH_2;
771 break;
772 case 4:
773 intel_dp->DP |= DP_PORT_WIDTH_4;
774 break;
775 }
776 if (intel_dp->has_audio)
777 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
778
779 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
780 intel_dp->link_configuration[0] = intel_dp->link_bw;
781 intel_dp->link_configuration[1] = intel_dp->lane_count;
782 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
783
784 /*
785 * Check for DPCD version > 1.1 and enhanced framing support
786 */
787 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
788 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
789 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
790 intel_dp->DP |= DP_ENHANCED_FRAMING;
791 }
792
793 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
794 if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
795 intel_dp->DP |= DP_PIPEB_SELECT;
796
797 if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
798 /* don't miss out required setting for eDP */
799 intel_dp->DP |= DP_PLL_ENABLE;
800 if (adjusted_mode->clock < 200000)
801 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
802 else
803 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
804 }
805}
806
807static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
808{
809 struct drm_device *dev = intel_dp->base.base.dev;
810 struct drm_i915_private *dev_priv = dev->dev_private;
811 u32 pp;
812
813 /*
814 * If the panel wasn't on, make sure there's not a currently
815 * active PP sequence before enabling AUX VDD.
816 */
817 if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
818 msleep(dev_priv->panel_t3);
819
820 pp = I915_READ(PCH_PP_CONTROL);
821 pp |= EDP_FORCE_VDD;
822 I915_WRITE(PCH_PP_CONTROL, pp);
823 POSTING_READ(PCH_PP_CONTROL);
824}
825
826static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
827{
828 struct drm_device *dev = intel_dp->base.base.dev;
829 struct drm_i915_private *dev_priv = dev->dev_private;
830 u32 pp;
831
832 pp = I915_READ(PCH_PP_CONTROL);
833 pp &= ~EDP_FORCE_VDD;
834 I915_WRITE(PCH_PP_CONTROL, pp);
835 POSTING_READ(PCH_PP_CONTROL);
836
837 /* Make sure sequencer is idle before allowing subsequent activity */
838 msleep(dev_priv->panel_t12);
839}
840
841/* Returns true if the panel was already on when called */
842static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
843{
844 struct drm_device *dev = intel_dp->base.base.dev;
845 struct drm_i915_private *dev_priv = dev->dev_private;
846 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
847
848 if (I915_READ(PCH_PP_STATUS) & PP_ON)
849 return true;
850
851 pp = I915_READ(PCH_PP_CONTROL);
852
853 /* ILK workaround: disable reset around power sequence */
854 pp &= ~PANEL_POWER_RESET;
855 I915_WRITE(PCH_PP_CONTROL, pp);
856 POSTING_READ(PCH_PP_CONTROL);
857
858 pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
859 I915_WRITE(PCH_PP_CONTROL, pp);
860 POSTING_READ(PCH_PP_CONTROL);
861
862 if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
863 5000))
864 DRM_ERROR("panel on wait timed out: 0x%08x\n",
865 I915_READ(PCH_PP_STATUS));
866
867 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
868 I915_WRITE(PCH_PP_CONTROL, pp);
869 POSTING_READ(PCH_PP_CONTROL);
870
871 return false;
872}
873
874static void ironlake_edp_panel_off (struct drm_device *dev)
875{
876 struct drm_i915_private *dev_priv = dev->dev_private;
877 u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
878 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
879
880 pp = I915_READ(PCH_PP_CONTROL);
881
882 /* ILK workaround: disable reset around power sequence */
883 pp &= ~PANEL_POWER_RESET;
884 I915_WRITE(PCH_PP_CONTROL, pp);
885 POSTING_READ(PCH_PP_CONTROL);
886
887 pp &= ~POWER_TARGET_ON;
888 I915_WRITE(PCH_PP_CONTROL, pp);
889 POSTING_READ(PCH_PP_CONTROL);
890
891 if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
892 DRM_ERROR("panel off wait timed out: 0x%08x\n",
893 I915_READ(PCH_PP_STATUS));
894
895 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
896 I915_WRITE(PCH_PP_CONTROL, pp);
897 POSTING_READ(PCH_PP_CONTROL);
898}
899
900static void ironlake_edp_backlight_on (struct drm_device *dev)
901{
902 struct drm_i915_private *dev_priv = dev->dev_private;
903 u32 pp;
904
905 DRM_DEBUG_KMS("\n");
906 /*
907 * If we enable the backlight right away following a panel power
908 * on, we may see slight flicker as the panel syncs with the eDP
909 * link. So delay a bit to make sure the image is solid before
910 * allowing it to appear.
911 */
912 msleep(300);
913 pp = I915_READ(PCH_PP_CONTROL);
914 pp |= EDP_BLC_ENABLE;
915 I915_WRITE(PCH_PP_CONTROL, pp);
916}
917
918static void ironlake_edp_backlight_off (struct drm_device *dev)
919{
920 struct drm_i915_private *dev_priv = dev->dev_private;
921 u32 pp;
922
923 DRM_DEBUG_KMS("\n");
924 pp = I915_READ(PCH_PP_CONTROL);
925 pp &= ~EDP_BLC_ENABLE;
926 I915_WRITE(PCH_PP_CONTROL, pp);
927}
928
929static void ironlake_edp_pll_on(struct drm_encoder *encoder)
930{
931 struct drm_device *dev = encoder->dev;
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 dpa_ctl;
934
935 DRM_DEBUG_KMS("\n");
936 dpa_ctl = I915_READ(DP_A);
937 dpa_ctl |= DP_PLL_ENABLE;
938 I915_WRITE(DP_A, dpa_ctl);
939 POSTING_READ(DP_A);
940 udelay(200);
941}
942
943static void ironlake_edp_pll_off(struct drm_encoder *encoder)
944{
945 struct drm_device *dev = encoder->dev;
946 struct drm_i915_private *dev_priv = dev->dev_private;
947 u32 dpa_ctl;
948
949 dpa_ctl = I915_READ(DP_A);
950 dpa_ctl &= ~DP_PLL_ENABLE;
951 I915_WRITE(DP_A, dpa_ctl);
952 POSTING_READ(DP_A);
953 udelay(200);
954}
955
956/* If the sink supports it, try to set the power state appropriately */
957static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
958{
959 int ret, i;
960
961 /* Should have a valid DPCD by this point */
962 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
963 return;
964
965 if (mode != DRM_MODE_DPMS_ON) {
966 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
967 DP_SET_POWER_D3);
968 if (ret != 1)
969 DRM_DEBUG_DRIVER("failed to write sink power state\n");
970 } else {
971 /*
972 * When turning on, we need to retry for 1ms to give the sink
973 * time to wake up.
974 */
975 for (i = 0; i < 3; i++) {
976 ret = intel_dp_aux_native_write_1(intel_dp,
977 DP_SET_POWER,
978 DP_SET_POWER_D0);
979 if (ret == 1)
980 break;
981 msleep(1);
982 }
983 }
984}
985
986static void intel_dp_prepare(struct drm_encoder *encoder)
987{
988 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
989 struct drm_device *dev = encoder->dev;
990
991 /* Wake up the sink first */
992 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
993
994 if (is_edp(intel_dp)) {
995 ironlake_edp_backlight_off(dev);
996 ironlake_edp_panel_off(dev);
997 if (!is_pch_edp(intel_dp))
998 ironlake_edp_pll_on(encoder);
999 else
1000 ironlake_edp_pll_off(encoder);
1001 }
1002 intel_dp_link_down(intel_dp);
1003}
1004
1005static void intel_dp_commit(struct drm_encoder *encoder)
1006{
1007 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1008 struct drm_device *dev = encoder->dev;
1009
1010 if (is_edp(intel_dp))
1011 ironlake_edp_panel_vdd_on(intel_dp);
1012
1013 intel_dp_start_link_train(intel_dp);
1014
1015 if (is_edp(intel_dp)) {
1016 ironlake_edp_panel_on(intel_dp);
1017 ironlake_edp_panel_vdd_off(intel_dp);
1018 }
1019
1020 intel_dp_complete_link_train(intel_dp);
1021
1022 if (is_edp(intel_dp))
1023 ironlake_edp_backlight_on(dev);
1024
1025 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1026}
1027
1028static void
1029intel_dp_dpms(struct drm_encoder *encoder, int mode)
1030{
1031 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1032 struct drm_device *dev = encoder->dev;
1033 struct drm_i915_private *dev_priv = dev->dev_private;
1034 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1035
1036 if (mode != DRM_MODE_DPMS_ON) {
1037 if (is_edp(intel_dp))
1038 ironlake_edp_backlight_off(dev);
1039 intel_dp_sink_dpms(intel_dp, mode);
1040 intel_dp_link_down(intel_dp);
1041 if (is_edp(intel_dp))
1042 ironlake_edp_panel_off(dev);
1043 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1044 ironlake_edp_pll_off(encoder);
1045 } else {
1046 if (is_edp(intel_dp))
1047 ironlake_edp_panel_vdd_on(intel_dp);
1048 intel_dp_sink_dpms(intel_dp, mode);
1049 if (!(dp_reg & DP_PORT_EN)) {
1050 intel_dp_start_link_train(intel_dp);
1051 if (is_edp(intel_dp)) {
1052 ironlake_edp_panel_on(intel_dp);
1053 ironlake_edp_panel_vdd_off(intel_dp);
1054 }
1055 intel_dp_complete_link_train(intel_dp);
1056 }
1057 if (is_edp(intel_dp))
1058 ironlake_edp_backlight_on(dev);
1059 }
1060 intel_dp->dpms_mode = mode;
1061}
1062
1063/*
1064 * Native read with retry for link status and receiver capability reads for
1065 * cases where the sink may still be asleep.
1066 */
1067static bool
1068intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1069 uint8_t *recv, int recv_bytes)
1070{
1071 int ret, i;
1072
1073 /*
1074 * Sinks are *supposed* to come up within 1ms from an off state,
1075 * but we're also supposed to retry 3 times per the spec.
1076 */
1077 for (i = 0; i < 3; i++) {
1078 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1079 recv_bytes);
1080 if (ret == recv_bytes)
1081 return true;
1082 msleep(1);
1083 }
1084
1085 return false;
1086}
1087
1088/*
1089 * Fetch AUX CH registers 0x202 - 0x207 which contain
1090 * link status information
1091 */
1092static bool
1093intel_dp_get_link_status(struct intel_dp *intel_dp)
1094{
1095 return intel_dp_aux_native_read_retry(intel_dp,
1096 DP_LANE0_1_STATUS,
1097 intel_dp->link_status,
1098 DP_LINK_STATUS_SIZE);
1099}
1100
1101static uint8_t
1102intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1103 int r)
1104{
1105 return link_status[r - DP_LANE0_1_STATUS];
1106}
1107
1108static uint8_t
1109intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1110 int lane)
1111{
1112 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1113 int s = ((lane & 1) ?
1114 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1115 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1116 uint8_t l = intel_dp_link_status(link_status, i);
1117
1118 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1119}
1120
1121static uint8_t
1122intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1123 int lane)
1124{
1125 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1126 int s = ((lane & 1) ?
1127 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1128 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1129 uint8_t l = intel_dp_link_status(link_status, i);
1130
1131 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1132}
1133
1134
1135#if 0
1136static char *voltage_names[] = {
1137 "0.4V", "0.6V", "0.8V", "1.2V"
1138};
1139static char *pre_emph_names[] = {
1140 "0dB", "3.5dB", "6dB", "9.5dB"
1141};
1142static char *link_train_names[] = {
1143 "pattern 1", "pattern 2", "idle", "off"
1144};
1145#endif
1146
1147/*
1148 * These are source-specific values; current Intel hardware supports
1149 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1150 */
1151#define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
1152
1153static uint8_t
1154intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1155{
1156 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1157 case DP_TRAIN_VOLTAGE_SWING_400:
1158 return DP_TRAIN_PRE_EMPHASIS_6;
1159 case DP_TRAIN_VOLTAGE_SWING_600:
1160 return DP_TRAIN_PRE_EMPHASIS_6;
1161 case DP_TRAIN_VOLTAGE_SWING_800:
1162 return DP_TRAIN_PRE_EMPHASIS_3_5;
1163 case DP_TRAIN_VOLTAGE_SWING_1200:
1164 default:
1165 return DP_TRAIN_PRE_EMPHASIS_0;
1166 }
1167}
1168
1169static void
1170intel_get_adjust_train(struct intel_dp *intel_dp)
1171{
1172 uint8_t v = 0;
1173 uint8_t p = 0;
1174 int lane;
1175
1176 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1177 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1178 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1179
1180 if (this_v > v)
1181 v = this_v;
1182 if (this_p > p)
1183 p = this_p;
1184 }
1185
1186 if (v >= I830_DP_VOLTAGE_MAX)
1187 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1188
1189 if (p >= intel_dp_pre_emphasis_max(v))
1190 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1191
1192 for (lane = 0; lane < 4; lane++)
1193 intel_dp->train_set[lane] = v | p;
1194}
1195
1196static uint32_t
1197intel_dp_signal_levels(uint8_t train_set, int lane_count)
1198{
1199 uint32_t signal_levels = 0;
1200
1201 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1202 case DP_TRAIN_VOLTAGE_SWING_400:
1203 default:
1204 signal_levels |= DP_VOLTAGE_0_4;
1205 break;
1206 case DP_TRAIN_VOLTAGE_SWING_600:
1207 signal_levels |= DP_VOLTAGE_0_6;
1208 break;
1209 case DP_TRAIN_VOLTAGE_SWING_800:
1210 signal_levels |= DP_VOLTAGE_0_8;
1211 break;
1212 case DP_TRAIN_VOLTAGE_SWING_1200:
1213 signal_levels |= DP_VOLTAGE_1_2;
1214 break;
1215 }
1216 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1217 case DP_TRAIN_PRE_EMPHASIS_0:
1218 default:
1219 signal_levels |= DP_PRE_EMPHASIS_0;
1220 break;
1221 case DP_TRAIN_PRE_EMPHASIS_3_5:
1222 signal_levels |= DP_PRE_EMPHASIS_3_5;
1223 break;
1224 case DP_TRAIN_PRE_EMPHASIS_6:
1225 signal_levels |= DP_PRE_EMPHASIS_6;
1226 break;
1227 case DP_TRAIN_PRE_EMPHASIS_9_5:
1228 signal_levels |= DP_PRE_EMPHASIS_9_5;
1229 break;
1230 }
1231 return signal_levels;
1232}
1233
1234/* Gen6's DP voltage swing and pre-emphasis control */
1235static uint32_t
1236intel_gen6_edp_signal_levels(uint8_t train_set)
1237{
1238 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1239 DP_TRAIN_PRE_EMPHASIS_MASK);
1240 switch (signal_levels) {
1241 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1242 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1243 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1244 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1245 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1246 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1247 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1248 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1249 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1250 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1251 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1252 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1253 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1254 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1255 default:
1256 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1257 "0x%x\n", signal_levels);
1258 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1259 }
1260}
1261
1262static uint8_t
1263intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1264 int lane)
1265{
1266 int i = DP_LANE0_1_STATUS + (lane >> 1);
1267 int s = (lane & 1) * 4;
1268 uint8_t l = intel_dp_link_status(link_status, i);
1269
1270 return (l >> s) & 0xf;
1271}
1272
1273/* Check for clock recovery is done on all channels */
1274static bool
1275intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1276{
1277 int lane;
1278 uint8_t lane_status;
1279
1280 for (lane = 0; lane < lane_count; lane++) {
1281 lane_status = intel_get_lane_status(link_status, lane);
1282 if ((lane_status & DP_LANE_CR_DONE) == 0)
1283 return false;
1284 }
1285 return true;
1286}
1287
1288/* Check to see if channel eq is done on all channels */
1289#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1290 DP_LANE_CHANNEL_EQ_DONE|\
1291 DP_LANE_SYMBOL_LOCKED)
1292static bool
1293intel_channel_eq_ok(struct intel_dp *intel_dp)
1294{
1295 uint8_t lane_align;
1296 uint8_t lane_status;
1297 int lane;
1298
1299 lane_align = intel_dp_link_status(intel_dp->link_status,
1300 DP_LANE_ALIGN_STATUS_UPDATED);
1301 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1302 return false;
1303 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1304 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1305 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1306 return false;
1307 }
1308 return true;
1309}
1310
1311static bool
1312intel_dp_set_link_train(struct intel_dp *intel_dp,
1313 uint32_t dp_reg_value,
1314 uint8_t dp_train_pat)
1315{
1316 struct drm_device *dev = intel_dp->base.base.dev;
1317 struct drm_i915_private *dev_priv = dev->dev_private;
1318 int ret;
1319
1320 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1321 POSTING_READ(intel_dp->output_reg);
1322
1323 intel_dp_aux_native_write_1(intel_dp,
1324 DP_TRAINING_PATTERN_SET,
1325 dp_train_pat);
1326
1327 ret = intel_dp_aux_native_write(intel_dp,
1328 DP_TRAINING_LANE0_SET,
1329 intel_dp->train_set, 4);
1330 if (ret != 4)
1331 return false;
1332
1333 return true;
1334}
1335
1336/* Enable corresponding port and start training pattern 1 */
1337static void
1338intel_dp_start_link_train(struct intel_dp *intel_dp)
1339{
1340 struct drm_device *dev = intel_dp->base.base.dev;
1341 struct drm_i915_private *dev_priv = dev->dev_private;
1342 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1343 int i;
1344 uint8_t voltage;
1345 bool clock_recovery = false;
1346 int tries;
1347 u32 reg;
1348 uint32_t DP = intel_dp->DP;
1349
1350 /*
1351 * On CPT we have to enable the port in training pattern 1, which
1352 * will happen below in intel_dp_set_link_train. Otherwise, enable
1353 * the port and wait for it to become active.
1354 */
1355 if (!HAS_PCH_CPT(dev)) {
1356 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1357 POSTING_READ(intel_dp->output_reg);
1358 intel_wait_for_vblank(dev, intel_crtc->pipe);
1359 }
1360
1361 /* Write the link configuration data */
1362 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1363 intel_dp->link_configuration,
1364 DP_LINK_CONFIGURATION_SIZE);
1365
1366 DP |= DP_PORT_EN;
1367 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1368 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1369 else
1370 DP &= ~DP_LINK_TRAIN_MASK;
1371 memset(intel_dp->train_set, 0, 4);
1372 voltage = 0xff;
1373 tries = 0;
1374 clock_recovery = false;
1375 for (;;) {
1376 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1377 uint32_t signal_levels;
1378 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1379 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1380 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1381 } else {
1382 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1383 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1384 }
1385
1386 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1387 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1388 else
1389 reg = DP | DP_LINK_TRAIN_PAT_1;
1390
1391 if (!intel_dp_set_link_train(intel_dp, reg,
1392 DP_TRAINING_PATTERN_1 |
1393 DP_LINK_SCRAMBLING_DISABLE))
1394 break;
1395 /* Set training pattern 1 */
1396
1397 udelay(100);
1398 if (!intel_dp_get_link_status(intel_dp))
1399 break;
1400
1401 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1402 clock_recovery = true;
1403 break;
1404 }
1405
1406 /* Check to see if we've tried the max voltage */
1407 for (i = 0; i < intel_dp->lane_count; i++)
1408 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1409 break;
1410 if (i == intel_dp->lane_count)
1411 break;
1412
1413 /* Check to see if we've tried the same voltage 5 times */
1414 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1415 ++tries;
1416 if (tries == 5)
1417 break;
1418 } else
1419 tries = 0;
1420 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1421
1422 /* Compute new intel_dp->train_set as requested by target */
1423 intel_get_adjust_train(intel_dp);
1424 }
1425
1426 intel_dp->DP = DP;
1427}
1428
1429static void
1430intel_dp_complete_link_train(struct intel_dp *intel_dp)
1431{
1432 struct drm_device *dev = intel_dp->base.base.dev;
1433 struct drm_i915_private *dev_priv = dev->dev_private;
1434 bool channel_eq = false;
1435 int tries, cr_tries;
1436 u32 reg;
1437 uint32_t DP = intel_dp->DP;
1438
1439 /* channel equalization */
1440 tries = 0;
1441 cr_tries = 0;
1442 channel_eq = false;
1443 for (;;) {
1444 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1445 uint32_t signal_levels;
1446
1447 if (cr_tries > 5) {
1448 DRM_ERROR("failed to train DP, aborting\n");
1449 intel_dp_link_down(intel_dp);
1450 break;
1451 }
1452
1453 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1454 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1455 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1456 } else {
1457 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1458 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1459 }
1460
1461 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1462 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1463 else
1464 reg = DP | DP_LINK_TRAIN_PAT_2;
1465
1466 /* channel eq pattern */
1467 if (!intel_dp_set_link_train(intel_dp, reg,
1468 DP_TRAINING_PATTERN_2 |
1469 DP_LINK_SCRAMBLING_DISABLE))
1470 break;
1471
1472 udelay(400);
1473 if (!intel_dp_get_link_status(intel_dp))
1474 break;
1475
1476 /* Make sure clock is still ok */
1477 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1478 intel_dp_start_link_train(intel_dp);
1479 cr_tries++;
1480 continue;
1481 }
1482
1483 if (intel_channel_eq_ok(intel_dp)) {
1484 channel_eq = true;
1485 break;
1486 }
1487
1488 /* Try 5 times, then try clock recovery if that fails */
1489 if (tries > 5) {
1490 intel_dp_link_down(intel_dp);
1491 intel_dp_start_link_train(intel_dp);
1492 tries = 0;
1493 cr_tries++;
1494 continue;
1495 }
1496
1497 /* Compute new intel_dp->train_set as requested by target */
1498 intel_get_adjust_train(intel_dp);
1499 ++tries;
1500 }
1501
1502 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1503 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1504 else
1505 reg = DP | DP_LINK_TRAIN_OFF;
1506
1507 I915_WRITE(intel_dp->output_reg, reg);
1508 POSTING_READ(intel_dp->output_reg);
1509 intel_dp_aux_native_write_1(intel_dp,
1510 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1511}
1512
1513static void
1514intel_dp_link_down(struct intel_dp *intel_dp)
1515{
1516 struct drm_device *dev = intel_dp->base.base.dev;
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518 uint32_t DP = intel_dp->DP;
1519
1520 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1521 return;
1522
1523 DRM_DEBUG_KMS("\n");
1524
1525 if (is_edp(intel_dp)) {
1526 DP &= ~DP_PLL_ENABLE;
1527 I915_WRITE(intel_dp->output_reg, DP);
1528 POSTING_READ(intel_dp->output_reg);
1529 udelay(100);
1530 }
1531
1532 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1533 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1534 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1535 } else {
1536 DP &= ~DP_LINK_TRAIN_MASK;
1537 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1538 }
1539 POSTING_READ(intel_dp->output_reg);
1540
1541 msleep(17);
1542
1543 if (is_edp(intel_dp))
1544 DP |= DP_LINK_TRAIN_OFF;
1545
1546 if (!HAS_PCH_CPT(dev) &&
1547 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1548 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1549
1550 /* Hardware workaround: leaving our transcoder select
1551 * set to transcoder B while it's off will prevent the
1552 * corresponding HDMI output on transcoder A.
1553 *
1554 * Combine this with another hardware workaround:
1555 * transcoder select bit can only be cleared while the
1556 * port is enabled.
1557 */
1558 DP &= ~DP_PIPEB_SELECT;
1559 I915_WRITE(intel_dp->output_reg, DP);
1560
1561 /* Changes to enable or select take place the vblank
1562 * after being written.
1563 */
1564 if (crtc == NULL) {
1565 /* We can arrive here never having been attached
1566 * to a CRTC, for instance, due to inheriting
1567 * random state from the BIOS.
1568 *
1569 * If the pipe is not running, play safe and
1570 * wait for the clocks to stabilise before
1571 * continuing.
1572 */
1573 POSTING_READ(intel_dp->output_reg);
1574 msleep(50);
1575 } else
1576 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1577 }
1578
1579 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1580 POSTING_READ(intel_dp->output_reg);
1581}
1582
1583static bool
1584intel_dp_get_dpcd(struct intel_dp *intel_dp)
1585{
1586 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1587 sizeof (intel_dp->dpcd)) &&
1588 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1589 return true;
1590 }
1591
1592 return false;
1593}
1594
1595/*
1596 * According to DP spec
1597 * 5.1.2:
1598 * 1. Read DPCD
1599 * 2. Configure link according to Receiver Capabilities
1600 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1601 * 4. Check link status on receipt of hot-plug interrupt
1602 */
1603
1604static void
1605intel_dp_check_link_status(struct intel_dp *intel_dp)
1606{
1607 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1608 return;
1609
1610 if (!intel_dp->base.base.crtc)
1611 return;
1612
1613 /* Try to read receiver status if the link appears to be up */
1614 if (!intel_dp_get_link_status(intel_dp)) {
1615 intel_dp_link_down(intel_dp);
1616 return;
1617 }
1618
1619 /* Now read the DPCD to see if it's actually running */
1620 if (!intel_dp_get_dpcd(intel_dp)) {
1621 intel_dp_link_down(intel_dp);
1622 return;
1623 }
1624
1625 if (!intel_channel_eq_ok(intel_dp)) {
1626 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1627 drm_get_encoder_name(&intel_dp->base.base));
1628 intel_dp_start_link_train(intel_dp);
1629 intel_dp_complete_link_train(intel_dp);
1630 }
1631}
1632
1633static enum drm_connector_status
1634intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1635{
1636 if (intel_dp_get_dpcd(intel_dp))
1637 return connector_status_connected;
1638 return connector_status_disconnected;
1639}
1640
1641static enum drm_connector_status
1642ironlake_dp_detect(struct intel_dp *intel_dp)
1643{
1644 enum drm_connector_status status;
1645
1646 /* Can't disconnect eDP, but you can close the lid... */
1647 if (is_edp(intel_dp)) {
1648 status = intel_panel_detect(intel_dp->base.base.dev);
1649 if (status == connector_status_unknown)
1650 status = connector_status_connected;
1651 return status;
1652 }
1653
1654 return intel_dp_detect_dpcd(intel_dp);
1655}
1656
1657static enum drm_connector_status
1658g4x_dp_detect(struct intel_dp *intel_dp)
1659{
1660 struct drm_device *dev = intel_dp->base.base.dev;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 uint32_t temp, bit;
1663
1664 switch (intel_dp->output_reg) {
1665 case DP_B:
1666 bit = DPB_HOTPLUG_INT_STATUS;
1667 break;
1668 case DP_C:
1669 bit = DPC_HOTPLUG_INT_STATUS;
1670 break;
1671 case DP_D:
1672 bit = DPD_HOTPLUG_INT_STATUS;
1673 break;
1674 default:
1675 return connector_status_unknown;
1676 }
1677
1678 temp = I915_READ(PORT_HOTPLUG_STAT);
1679
1680 if ((temp & bit) == 0)
1681 return connector_status_disconnected;
1682
1683 return intel_dp_detect_dpcd(intel_dp);
1684}
1685
1686/**
1687 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1688 *
1689 * \return true if DP port is connected.
1690 * \return false if DP port is disconnected.
1691 */
1692static enum drm_connector_status
1693intel_dp_detect(struct drm_connector *connector, bool force)
1694{
1695 struct intel_dp *intel_dp = intel_attached_dp(connector);
1696 struct drm_device *dev = intel_dp->base.base.dev;
1697 enum drm_connector_status status;
1698 struct edid *edid = NULL;
1699
1700 intel_dp->has_audio = false;
1701
1702 if (HAS_PCH_SPLIT(dev))
1703 status = ironlake_dp_detect(intel_dp);
1704 else
1705 status = g4x_dp_detect(intel_dp);
1706
1707 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1708 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1709 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1710 intel_dp->dpcd[6], intel_dp->dpcd[7]);
1711
1712 if (status != connector_status_connected)
1713 return status;
1714
1715 if (intel_dp->force_audio) {
1716 intel_dp->has_audio = intel_dp->force_audio > 0;
1717 } else {
1718 edid = drm_get_edid(connector, &intel_dp->adapter);
1719 if (edid) {
1720 intel_dp->has_audio = drm_detect_monitor_audio(edid);
1721 connector->display_info.raw_edid = NULL;
1722 kfree(edid);
1723 }
1724 }
1725
1726 return connector_status_connected;
1727}
1728
1729static int intel_dp_get_modes(struct drm_connector *connector)
1730{
1731 struct intel_dp *intel_dp = intel_attached_dp(connector);
1732 struct drm_device *dev = intel_dp->base.base.dev;
1733 struct drm_i915_private *dev_priv = dev->dev_private;
1734 int ret;
1735
1736 /* We should parse the EDID data and find out if it has an audio sink
1737 */
1738
1739 ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1740 if (ret) {
1741 if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1742 struct drm_display_mode *newmode;
1743 list_for_each_entry(newmode, &connector->probed_modes,
1744 head) {
1745 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1746 dev_priv->panel_fixed_mode =
1747 drm_mode_duplicate(dev, newmode);
1748 break;
1749 }
1750 }
1751 }
1752
1753 return ret;
1754 }
1755
1756 /* if eDP has no EDID, try to use fixed panel mode from VBT */
1757 if (is_edp(intel_dp)) {
1758 if (dev_priv->panel_fixed_mode != NULL) {
1759 struct drm_display_mode *mode;
1760 mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1761 drm_mode_probed_add(connector, mode);
1762 return 1;
1763 }
1764 }
1765 return 0;
1766}
1767
1768static bool
1769intel_dp_detect_audio(struct drm_connector *connector)
1770{
1771 struct intel_dp *intel_dp = intel_attached_dp(connector);
1772 struct edid *edid;
1773 bool has_audio = false;
1774
1775 edid = drm_get_edid(connector, &intel_dp->adapter);
1776 if (edid) {
1777 has_audio = drm_detect_monitor_audio(edid);
1778
1779 connector->display_info.raw_edid = NULL;
1780 kfree(edid);
1781 }
1782
1783 return has_audio;
1784}
1785
1786static int
1787intel_dp_set_property(struct drm_connector *connector,
1788 struct drm_property *property,
1789 uint64_t val)
1790{
1791 struct drm_i915_private *dev_priv = connector->dev->dev_private;
1792 struct intel_dp *intel_dp = intel_attached_dp(connector);
1793 int ret;
1794
1795 ret = drm_connector_property_set_value(connector, property, val);
1796 if (ret)
1797 return ret;
1798
1799 if (property == dev_priv->force_audio_property) {
1800 int i = val;
1801 bool has_audio;
1802
1803 if (i == intel_dp->force_audio)
1804 return 0;
1805
1806 intel_dp->force_audio = i;
1807
1808 if (i == 0)
1809 has_audio = intel_dp_detect_audio(connector);
1810 else
1811 has_audio = i > 0;
1812
1813 if (has_audio == intel_dp->has_audio)
1814 return 0;
1815
1816 intel_dp->has_audio = has_audio;
1817 goto done;
1818 }
1819
1820 if (property == dev_priv->broadcast_rgb_property) {
1821 if (val == !!intel_dp->color_range)
1822 return 0;
1823
1824 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1825 goto done;
1826 }
1827
1828 return -EINVAL;
1829
1830done:
1831 if (intel_dp->base.base.crtc) {
1832 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1833 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1834 crtc->x, crtc->y,
1835 crtc->fb);
1836 }
1837
1838 return 0;
1839}
1840
1841static void
1842intel_dp_destroy (struct drm_connector *connector)
1843{
1844 struct drm_device *dev = connector->dev;
1845
1846 if (intel_dpd_is_edp(dev))
1847 intel_panel_destroy_backlight(dev);
1848
1849 drm_sysfs_connector_remove(connector);
1850 drm_connector_cleanup(connector);
1851 kfree(connector);
1852}
1853
1854static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1855{
1856 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1857
1858 i2c_del_adapter(&intel_dp->adapter);
1859 drm_encoder_cleanup(encoder);
1860 kfree(intel_dp);
1861}
1862
1863static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1864 .dpms = intel_dp_dpms,
1865 .mode_fixup = intel_dp_mode_fixup,
1866 .prepare = intel_dp_prepare,
1867 .mode_set = intel_dp_mode_set,
1868 .commit = intel_dp_commit,
1869};
1870
1871static const struct drm_connector_funcs intel_dp_connector_funcs = {
1872 .dpms = drm_helper_connector_dpms,
1873 .detect = intel_dp_detect,
1874 .fill_modes = drm_helper_probe_single_connector_modes,
1875 .set_property = intel_dp_set_property,
1876 .destroy = intel_dp_destroy,
1877};
1878
1879static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1880 .get_modes = intel_dp_get_modes,
1881 .mode_valid = intel_dp_mode_valid,
1882 .best_encoder = intel_best_encoder,
1883};
1884
1885static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1886 .destroy = intel_dp_encoder_destroy,
1887};
1888
1889static void
1890intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1891{
1892 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1893
1894 intel_dp_check_link_status(intel_dp);
1895}
1896
1897/* Return which DP Port should be selected for Transcoder DP control */
1898int
1899intel_trans_dp_port_sel (struct drm_crtc *crtc)
1900{
1901 struct drm_device *dev = crtc->dev;
1902 struct drm_mode_config *mode_config = &dev->mode_config;
1903 struct drm_encoder *encoder;
1904
1905 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1906 struct intel_dp *intel_dp;
1907
1908 if (encoder->crtc != crtc)
1909 continue;
1910
1911 intel_dp = enc_to_intel_dp(encoder);
1912 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1913 return intel_dp->output_reg;
1914 }
1915
1916 return -1;
1917}
1918
1919/* check the VBT to see whether the eDP is on DP-D port */
1920bool intel_dpd_is_edp(struct drm_device *dev)
1921{
1922 struct drm_i915_private *dev_priv = dev->dev_private;
1923 struct child_device_config *p_child;
1924 int i;
1925
1926 if (!dev_priv->child_dev_num)
1927 return false;
1928
1929 for (i = 0; i < dev_priv->child_dev_num; i++) {
1930 p_child = dev_priv->child_dev + i;
1931
1932 if (p_child->dvo_port == PORT_IDPD &&
1933 p_child->device_type == DEVICE_TYPE_eDP)
1934 return true;
1935 }
1936 return false;
1937}
1938
1939static void
1940intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1941{
1942 intel_attach_force_audio_property(connector);
1943 intel_attach_broadcast_rgb_property(connector);
1944}
1945
1946void
1947intel_dp_init(struct drm_device *dev, int output_reg)
1948{
1949 struct drm_i915_private *dev_priv = dev->dev_private;
1950 struct drm_connector *connector;
1951 struct intel_dp *intel_dp;
1952 struct intel_encoder *intel_encoder;
1953 struct intel_connector *intel_connector;
1954 const char *name = NULL;
1955 int type;
1956
1957 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1958 if (!intel_dp)
1959 return;
1960
1961 intel_dp->output_reg = output_reg;
1962 intel_dp->dpms_mode = -1;
1963
1964 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1965 if (!intel_connector) {
1966 kfree(intel_dp);
1967 return;
1968 }
1969 intel_encoder = &intel_dp->base;
1970
1971 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1972 if (intel_dpd_is_edp(dev))
1973 intel_dp->is_pch_edp = true;
1974
1975 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1976 type = DRM_MODE_CONNECTOR_eDP;
1977 intel_encoder->type = INTEL_OUTPUT_EDP;
1978 } else {
1979 type = DRM_MODE_CONNECTOR_DisplayPort;
1980 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1981 }
1982
1983 connector = &intel_connector->base;
1984 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1985 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1986
1987 connector->polled = DRM_CONNECTOR_POLL_HPD;
1988
1989 if (output_reg == DP_B || output_reg == PCH_DP_B)
1990 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1991 else if (output_reg == DP_C || output_reg == PCH_DP_C)
1992 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1993 else if (output_reg == DP_D || output_reg == PCH_DP_D)
1994 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1995
1996 if (is_edp(intel_dp))
1997 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1998
1999 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2000 connector->interlace_allowed = true;
2001 connector->doublescan_allowed = 0;
2002
2003 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2004 DRM_MODE_ENCODER_TMDS);
2005 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2006
2007 intel_connector_attach_encoder(intel_connector, intel_encoder);
2008 drm_sysfs_connector_add(connector);
2009
2010 /* Set up the DDC bus. */
2011 switch (output_reg) {
2012 case DP_A:
2013 name = "DPDDC-A";
2014 break;
2015 case DP_B:
2016 case PCH_DP_B:
2017 dev_priv->hotplug_supported_mask |=
2018 HDMIB_HOTPLUG_INT_STATUS;
2019 name = "DPDDC-B";
2020 break;
2021 case DP_C:
2022 case PCH_DP_C:
2023 dev_priv->hotplug_supported_mask |=
2024 HDMIC_HOTPLUG_INT_STATUS;
2025 name = "DPDDC-C";
2026 break;
2027 case DP_D:
2028 case PCH_DP_D:
2029 dev_priv->hotplug_supported_mask |=
2030 HDMID_HOTPLUG_INT_STATUS;
2031 name = "DPDDC-D";
2032 break;
2033 }
2034
2035 intel_dp_i2c_init(intel_dp, intel_connector, name);
2036
2037 /* Cache some DPCD data in the eDP case */
2038 if (is_edp(intel_dp)) {
2039 bool ret;
2040 u32 pp_on, pp_div;
2041
2042 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2043 pp_div = I915_READ(PCH_PP_DIVISOR);
2044
2045 /* Get T3 & T12 values (note: VESA not bspec terminology) */
2046 dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
2047 dev_priv->panel_t3 /= 10; /* t3 in 100us units */
2048 dev_priv->panel_t12 = pp_div & 0xf;
2049 dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
2050
2051 ironlake_edp_panel_vdd_on(intel_dp);
2052 ret = intel_dp_get_dpcd(intel_dp);
2053 ironlake_edp_panel_vdd_off(intel_dp);
2054 if (ret) {
2055 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2056 dev_priv->no_aux_handshake =
2057 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2058 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2059 } else {
2060 /* if this fails, presume the device is a ghost */
2061 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2062 intel_dp_encoder_destroy(&intel_dp->base.base);
2063 intel_dp_destroy(&intel_connector->base);
2064 return;
2065 }
2066 }
2067
2068 intel_encoder->hot_plug = intel_dp_hot_plug;
2069
2070 if (is_edp(intel_dp)) {
2071 /* initialize panel mode from VBT if available for eDP */
2072 if (dev_priv->lfp_lvds_vbt_mode) {
2073 dev_priv->panel_fixed_mode =
2074 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2075 if (dev_priv->panel_fixed_mode) {
2076 dev_priv->panel_fixed_mode->type |=
2077 DRM_MODE_TYPE_PREFERRED;
2078 }
2079 }
2080 dev_priv->int_edp_connector = connector;
2081 intel_panel_setup_backlight(dev);
2082 }
2083
2084 intel_dp_add_properties(intel_dp, connector);
2085
2086 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2087 * 0xd. Failure to do so will result in spurious interrupts being
2088 * generated on the port when a cable is not attached.
2089 */
2090 if (IS_G4X(dev) && !IS_GM45(dev)) {
2091 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2092 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2093 }
2094}
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41struct dp_link_dpll {
42 int link_bw;
43 struct dpll dpll;
44};
45
46static const struct dp_link_dpll gen4_dpll[] = {
47 { DP_LINK_BW_1_62,
48 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49 { DP_LINK_BW_2_7,
50 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51};
52
53static const struct dp_link_dpll pch_dpll[] = {
54 { DP_LINK_BW_1_62,
55 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56 { DP_LINK_BW_2_7,
57 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58};
59
60static const struct dp_link_dpll vlv_dpll[] = {
61 { DP_LINK_BW_1_62,
62 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 { DP_LINK_BW_2_7,
64 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65};
66
67/**
68 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69 * @intel_dp: DP struct
70 *
71 * If a CPU or PCH DP output is attached to an eDP panel, this function
72 * will return true, and false otherwise.
73 */
74static bool is_edp(struct intel_dp *intel_dp)
75{
76 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79}
80
81static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82{
83 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85 return intel_dig_port->base.base.dev;
86}
87
88static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89{
90 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91}
92
93static void intel_dp_link_down(struct intel_dp *intel_dp);
94static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
95static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
96
97static int
98intel_dp_max_link_bw(struct intel_dp *intel_dp)
99{
100 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
101 struct drm_device *dev = intel_dp->attached_connector->base.dev;
102
103 switch (max_link_bw) {
104 case DP_LINK_BW_1_62:
105 case DP_LINK_BW_2_7:
106 break;
107 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
108 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
109 INTEL_INFO(dev)->gen >= 8) &&
110 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
111 max_link_bw = DP_LINK_BW_5_4;
112 else
113 max_link_bw = DP_LINK_BW_2_7;
114 break;
115 default:
116 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
117 max_link_bw);
118 max_link_bw = DP_LINK_BW_1_62;
119 break;
120 }
121 return max_link_bw;
122}
123
124static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
125{
126 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
127 struct drm_device *dev = intel_dig_port->base.base.dev;
128 u8 source_max, sink_max;
129
130 source_max = 4;
131 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
132 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
133 source_max = 2;
134
135 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
136
137 return min(source_max, sink_max);
138}
139
140/*
141 * The units on the numbers in the next two are... bizarre. Examples will
142 * make it clearer; this one parallels an example in the eDP spec.
143 *
144 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
145 *
146 * 270000 * 1 * 8 / 10 == 216000
147 *
148 * The actual data capacity of that configuration is 2.16Gbit/s, so the
149 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
150 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
151 * 119000. At 18bpp that's 2142000 kilobits per second.
152 *
153 * Thus the strange-looking division by 10 in intel_dp_link_required, to
154 * get the result in decakilobits instead of kilobits.
155 */
156
157static int
158intel_dp_link_required(int pixel_clock, int bpp)
159{
160 return (pixel_clock * bpp + 9) / 10;
161}
162
163static int
164intel_dp_max_data_rate(int max_link_clock, int max_lanes)
165{
166 return (max_link_clock * max_lanes * 8) / 10;
167}
168
169static enum drm_mode_status
170intel_dp_mode_valid(struct drm_connector *connector,
171 struct drm_display_mode *mode)
172{
173 struct intel_dp *intel_dp = intel_attached_dp(connector);
174 struct intel_connector *intel_connector = to_intel_connector(connector);
175 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
176 int target_clock = mode->clock;
177 int max_rate, mode_rate, max_lanes, max_link_clock;
178
179 if (is_edp(intel_dp) && fixed_mode) {
180 if (mode->hdisplay > fixed_mode->hdisplay)
181 return MODE_PANEL;
182
183 if (mode->vdisplay > fixed_mode->vdisplay)
184 return MODE_PANEL;
185
186 target_clock = fixed_mode->clock;
187 }
188
189 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
190 max_lanes = intel_dp_max_lane_count(intel_dp);
191
192 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
193 mode_rate = intel_dp_link_required(target_clock, 18);
194
195 if (mode_rate > max_rate)
196 return MODE_CLOCK_HIGH;
197
198 if (mode->clock < 10000)
199 return MODE_CLOCK_LOW;
200
201 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
202 return MODE_H_ILLEGAL;
203
204 return MODE_OK;
205}
206
207static uint32_t
208pack_aux(uint8_t *src, int src_bytes)
209{
210 int i;
211 uint32_t v = 0;
212
213 if (src_bytes > 4)
214 src_bytes = 4;
215 for (i = 0; i < src_bytes; i++)
216 v |= ((uint32_t) src[i]) << ((3-i) * 8);
217 return v;
218}
219
220static void
221unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
222{
223 int i;
224 if (dst_bytes > 4)
225 dst_bytes = 4;
226 for (i = 0; i < dst_bytes; i++)
227 dst[i] = src >> ((3-i) * 8);
228}
229
230/* hrawclock is 1/4 the FSB frequency */
231static int
232intel_hrawclk(struct drm_device *dev)
233{
234 struct drm_i915_private *dev_priv = dev->dev_private;
235 uint32_t clkcfg;
236
237 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
238 if (IS_VALLEYVIEW(dev))
239 return 200;
240
241 clkcfg = I915_READ(CLKCFG);
242 switch (clkcfg & CLKCFG_FSB_MASK) {
243 case CLKCFG_FSB_400:
244 return 100;
245 case CLKCFG_FSB_533:
246 return 133;
247 case CLKCFG_FSB_667:
248 return 166;
249 case CLKCFG_FSB_800:
250 return 200;
251 case CLKCFG_FSB_1067:
252 return 266;
253 case CLKCFG_FSB_1333:
254 return 333;
255 /* these two are just a guess; one of them might be right */
256 case CLKCFG_FSB_1600:
257 case CLKCFG_FSB_1600_ALT:
258 return 400;
259 default:
260 return 133;
261 }
262}
263
264static void
265intel_dp_init_panel_power_sequencer(struct drm_device *dev,
266 struct intel_dp *intel_dp,
267 struct edp_power_seq *out);
268static void
269intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
270 struct intel_dp *intel_dp,
271 struct edp_power_seq *out);
272
273static enum pipe
274vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
275{
276 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
277 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
278 struct drm_device *dev = intel_dig_port->base.base.dev;
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 enum port port = intel_dig_port->port;
281 enum pipe pipe;
282
283 /* modeset should have pipe */
284 if (crtc)
285 return to_intel_crtc(crtc)->pipe;
286
287 /* init time, try to find a pipe with this port selected */
288 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
289 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
290 PANEL_PORT_SELECT_MASK;
291 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
292 return pipe;
293 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
294 return pipe;
295 }
296
297 /* shrug */
298 return PIPE_A;
299}
300
301static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
302{
303 struct drm_device *dev = intel_dp_to_dev(intel_dp);
304
305 if (HAS_PCH_SPLIT(dev))
306 return PCH_PP_CONTROL;
307 else
308 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
309}
310
311static u32 _pp_stat_reg(struct intel_dp *intel_dp)
312{
313 struct drm_device *dev = intel_dp_to_dev(intel_dp);
314
315 if (HAS_PCH_SPLIT(dev))
316 return PCH_PP_STATUS;
317 else
318 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
319}
320
321static bool edp_have_panel_power(struct intel_dp *intel_dp)
322{
323 struct drm_device *dev = intel_dp_to_dev(intel_dp);
324 struct drm_i915_private *dev_priv = dev->dev_private;
325
326 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
327}
328
329static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
330{
331 struct drm_device *dev = intel_dp_to_dev(intel_dp);
332 struct drm_i915_private *dev_priv = dev->dev_private;
333
334 return !dev_priv->pm.suspended &&
335 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
336}
337
338static void
339intel_dp_check_edp(struct intel_dp *intel_dp)
340{
341 struct drm_device *dev = intel_dp_to_dev(intel_dp);
342 struct drm_i915_private *dev_priv = dev->dev_private;
343
344 if (!is_edp(intel_dp))
345 return;
346
347 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
348 WARN(1, "eDP powered off while attempting aux channel communication.\n");
349 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
350 I915_READ(_pp_stat_reg(intel_dp)),
351 I915_READ(_pp_ctrl_reg(intel_dp)));
352 }
353}
354
355static uint32_t
356intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
357{
358 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
359 struct drm_device *dev = intel_dig_port->base.base.dev;
360 struct drm_i915_private *dev_priv = dev->dev_private;
361 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
362 uint32_t status;
363 bool done;
364
365#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
366 if (has_aux_irq)
367 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
368 msecs_to_jiffies_timeout(10));
369 else
370 done = wait_for_atomic(C, 10) == 0;
371 if (!done)
372 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
373 has_aux_irq);
374#undef C
375
376 return status;
377}
378
379static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
380{
381 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
382 struct drm_device *dev = intel_dig_port->base.base.dev;
383
384 /*
385 * The clock divider is based off the hrawclk, and would like to run at
386 * 2MHz. So, take the hrawclk value and divide by 2 and use that
387 */
388 return index ? 0 : intel_hrawclk(dev) / 2;
389}
390
391static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
392{
393 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
394 struct drm_device *dev = intel_dig_port->base.base.dev;
395
396 if (index)
397 return 0;
398
399 if (intel_dig_port->port == PORT_A) {
400 if (IS_GEN6(dev) || IS_GEN7(dev))
401 return 200; /* SNB & IVB eDP input clock at 400Mhz */
402 else
403 return 225; /* eDP input clock at 450Mhz */
404 } else {
405 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
406 }
407}
408
409static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
410{
411 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
412 struct drm_device *dev = intel_dig_port->base.base.dev;
413 struct drm_i915_private *dev_priv = dev->dev_private;
414
415 if (intel_dig_port->port == PORT_A) {
416 if (index)
417 return 0;
418 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
419 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
420 /* Workaround for non-ULT HSW */
421 switch (index) {
422 case 0: return 63;
423 case 1: return 72;
424 default: return 0;
425 }
426 } else {
427 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
428 }
429}
430
431static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
432{
433 return index ? 0 : 100;
434}
435
436static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
437 bool has_aux_irq,
438 int send_bytes,
439 uint32_t aux_clock_divider)
440{
441 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
442 struct drm_device *dev = intel_dig_port->base.base.dev;
443 uint32_t precharge, timeout;
444
445 if (IS_GEN6(dev))
446 precharge = 3;
447 else
448 precharge = 5;
449
450 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
451 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
452 else
453 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
454
455 return DP_AUX_CH_CTL_SEND_BUSY |
456 DP_AUX_CH_CTL_DONE |
457 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
458 DP_AUX_CH_CTL_TIME_OUT_ERROR |
459 timeout |
460 DP_AUX_CH_CTL_RECEIVE_ERROR |
461 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
462 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
463 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
464}
465
466static int
467intel_dp_aux_ch(struct intel_dp *intel_dp,
468 uint8_t *send, int send_bytes,
469 uint8_t *recv, int recv_size)
470{
471 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
472 struct drm_device *dev = intel_dig_port->base.base.dev;
473 struct drm_i915_private *dev_priv = dev->dev_private;
474 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
475 uint32_t ch_data = ch_ctl + 4;
476 uint32_t aux_clock_divider;
477 int i, ret, recv_bytes;
478 uint32_t status;
479 int try, clock = 0;
480 bool has_aux_irq = HAS_AUX_IRQ(dev);
481 bool vdd;
482
483 vdd = _edp_panel_vdd_on(intel_dp);
484
485 /* dp aux is extremely sensitive to irq latency, hence request the
486 * lowest possible wakeup latency and so prevent the cpu from going into
487 * deep sleep states.
488 */
489 pm_qos_update_request(&dev_priv->pm_qos, 0);
490
491 intel_dp_check_edp(intel_dp);
492
493 intel_aux_display_runtime_get(dev_priv);
494
495 /* Try to wait for any previous AUX channel activity */
496 for (try = 0; try < 3; try++) {
497 status = I915_READ_NOTRACE(ch_ctl);
498 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
499 break;
500 msleep(1);
501 }
502
503 if (try == 3) {
504 WARN(1, "dp_aux_ch not started status 0x%08x\n",
505 I915_READ(ch_ctl));
506 ret = -EBUSY;
507 goto out;
508 }
509
510 /* Only 5 data registers! */
511 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
512 ret = -E2BIG;
513 goto out;
514 }
515
516 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
517 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
518 has_aux_irq,
519 send_bytes,
520 aux_clock_divider);
521
522 /* Must try at least 3 times according to DP spec */
523 for (try = 0; try < 5; try++) {
524 /* Load the send data into the aux channel data registers */
525 for (i = 0; i < send_bytes; i += 4)
526 I915_WRITE(ch_data + i,
527 pack_aux(send + i, send_bytes - i));
528
529 /* Send the command and wait for it to complete */
530 I915_WRITE(ch_ctl, send_ctl);
531
532 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
533
534 /* Clear done status and any errors */
535 I915_WRITE(ch_ctl,
536 status |
537 DP_AUX_CH_CTL_DONE |
538 DP_AUX_CH_CTL_TIME_OUT_ERROR |
539 DP_AUX_CH_CTL_RECEIVE_ERROR);
540
541 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
542 DP_AUX_CH_CTL_RECEIVE_ERROR))
543 continue;
544 if (status & DP_AUX_CH_CTL_DONE)
545 break;
546 }
547 if (status & DP_AUX_CH_CTL_DONE)
548 break;
549 }
550
551 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
552 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
553 ret = -EBUSY;
554 goto out;
555 }
556
557 /* Check for timeout or receive error.
558 * Timeouts occur when the sink is not connected
559 */
560 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
561 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
562 ret = -EIO;
563 goto out;
564 }
565
566 /* Timeouts occur when the device isn't connected, so they're
567 * "normal" -- don't fill the kernel log with these */
568 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
569 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
570 ret = -ETIMEDOUT;
571 goto out;
572 }
573
574 /* Unload any bytes sent back from the other side */
575 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
576 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
577 if (recv_bytes > recv_size)
578 recv_bytes = recv_size;
579
580 for (i = 0; i < recv_bytes; i += 4)
581 unpack_aux(I915_READ(ch_data + i),
582 recv + i, recv_bytes - i);
583
584 ret = recv_bytes;
585out:
586 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
587 intel_aux_display_runtime_put(dev_priv);
588
589 if (vdd)
590 edp_panel_vdd_off(intel_dp, false);
591
592 return ret;
593}
594
595#define BARE_ADDRESS_SIZE 3
596#define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
597static ssize_t
598intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
599{
600 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
601 uint8_t txbuf[20], rxbuf[20];
602 size_t txsize, rxsize;
603 int ret;
604
605 txbuf[0] = msg->request << 4;
606 txbuf[1] = msg->address >> 8;
607 txbuf[2] = msg->address & 0xff;
608 txbuf[3] = msg->size - 1;
609
610 switch (msg->request & ~DP_AUX_I2C_MOT) {
611 case DP_AUX_NATIVE_WRITE:
612 case DP_AUX_I2C_WRITE:
613 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
614 rxsize = 1;
615
616 if (WARN_ON(txsize > 20))
617 return -E2BIG;
618
619 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
620
621 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
622 if (ret > 0) {
623 msg->reply = rxbuf[0] >> 4;
624
625 /* Return payload size. */
626 ret = msg->size;
627 }
628 break;
629
630 case DP_AUX_NATIVE_READ:
631 case DP_AUX_I2C_READ:
632 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
633 rxsize = msg->size + 1;
634
635 if (WARN_ON(rxsize > 20))
636 return -E2BIG;
637
638 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
639 if (ret > 0) {
640 msg->reply = rxbuf[0] >> 4;
641 /*
642 * Assume happy day, and copy the data. The caller is
643 * expected to check msg->reply before touching it.
644 *
645 * Return payload size.
646 */
647 ret--;
648 memcpy(msg->buffer, rxbuf + 1, ret);
649 }
650 break;
651
652 default:
653 ret = -EINVAL;
654 break;
655 }
656
657 return ret;
658}
659
660static void
661intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
662{
663 struct drm_device *dev = intel_dp_to_dev(intel_dp);
664 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
665 enum port port = intel_dig_port->port;
666 const char *name = NULL;
667 int ret;
668
669 switch (port) {
670 case PORT_A:
671 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
672 name = "DPDDC-A";
673 break;
674 case PORT_B:
675 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
676 name = "DPDDC-B";
677 break;
678 case PORT_C:
679 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
680 name = "DPDDC-C";
681 break;
682 case PORT_D:
683 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
684 name = "DPDDC-D";
685 break;
686 default:
687 BUG();
688 }
689
690 if (!HAS_DDI(dev))
691 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
692
693 intel_dp->aux.name = name;
694 intel_dp->aux.dev = dev->dev;
695 intel_dp->aux.transfer = intel_dp_aux_transfer;
696
697 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
698 connector->base.kdev->kobj.name);
699
700 ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
701 if (ret < 0) {
702 DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
703 name, ret);
704 return;
705 }
706
707 ret = sysfs_create_link(&connector->base.kdev->kobj,
708 &intel_dp->aux.ddc.dev.kobj,
709 intel_dp->aux.ddc.dev.kobj.name);
710 if (ret < 0) {
711 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
712 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
713 }
714}
715
716static void
717intel_dp_connector_unregister(struct intel_connector *intel_connector)
718{
719 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
720
721 sysfs_remove_link(&intel_connector->base.kdev->kobj,
722 intel_dp->aux.ddc.dev.kobj.name);
723 intel_connector_unregister(intel_connector);
724}
725
726static void
727intel_dp_set_clock(struct intel_encoder *encoder,
728 struct intel_crtc_config *pipe_config, int link_bw)
729{
730 struct drm_device *dev = encoder->base.dev;
731 const struct dp_link_dpll *divisor = NULL;
732 int i, count = 0;
733
734 if (IS_G4X(dev)) {
735 divisor = gen4_dpll;
736 count = ARRAY_SIZE(gen4_dpll);
737 } else if (IS_HASWELL(dev)) {
738 /* Haswell has special-purpose DP DDI clocks. */
739 } else if (HAS_PCH_SPLIT(dev)) {
740 divisor = pch_dpll;
741 count = ARRAY_SIZE(pch_dpll);
742 } else if (IS_VALLEYVIEW(dev)) {
743 divisor = vlv_dpll;
744 count = ARRAY_SIZE(vlv_dpll);
745 }
746
747 if (divisor && count) {
748 for (i = 0; i < count; i++) {
749 if (link_bw == divisor[i].link_bw) {
750 pipe_config->dpll = divisor[i].dpll;
751 pipe_config->clock_set = true;
752 break;
753 }
754 }
755 }
756}
757
758bool
759intel_dp_compute_config(struct intel_encoder *encoder,
760 struct intel_crtc_config *pipe_config)
761{
762 struct drm_device *dev = encoder->base.dev;
763 struct drm_i915_private *dev_priv = dev->dev_private;
764 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
765 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
766 enum port port = dp_to_dig_port(intel_dp)->port;
767 struct intel_crtc *intel_crtc = encoder->new_crtc;
768 struct intel_connector *intel_connector = intel_dp->attached_connector;
769 int lane_count, clock;
770 int min_lane_count = 1;
771 int max_lane_count = intel_dp_max_lane_count(intel_dp);
772 /* Conveniently, the link BW constants become indices with a shift...*/
773 int min_clock = 0;
774 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
775 int bpp, mode_rate;
776 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
777 int link_avail, link_clock;
778
779 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
780 pipe_config->has_pch_encoder = true;
781
782 pipe_config->has_dp_encoder = true;
783
784 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
785 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
786 adjusted_mode);
787 if (!HAS_PCH_SPLIT(dev))
788 intel_gmch_panel_fitting(intel_crtc, pipe_config,
789 intel_connector->panel.fitting_mode);
790 else
791 intel_pch_panel_fitting(intel_crtc, pipe_config,
792 intel_connector->panel.fitting_mode);
793 }
794
795 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
796 return false;
797
798 DRM_DEBUG_KMS("DP link computation with max lane count %i "
799 "max bw %02x pixel clock %iKHz\n",
800 max_lane_count, bws[max_clock],
801 adjusted_mode->crtc_clock);
802
803 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
804 * bpc in between. */
805 bpp = pipe_config->pipe_bpp;
806 if (is_edp(intel_dp)) {
807 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
808 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
809 dev_priv->vbt.edp_bpp);
810 bpp = dev_priv->vbt.edp_bpp;
811 }
812
813 if (IS_BROADWELL(dev)) {
814 /* Yes, it's an ugly hack. */
815 min_lane_count = max_lane_count;
816 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
817 min_lane_count);
818 } else if (dev_priv->vbt.edp_lanes) {
819 min_lane_count = min(dev_priv->vbt.edp_lanes,
820 max_lane_count);
821 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
822 min_lane_count);
823 }
824
825 if (dev_priv->vbt.edp_rate) {
826 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
827 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
828 bws[min_clock]);
829 }
830 }
831
832 for (; bpp >= 6*3; bpp -= 2*3) {
833 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
834 bpp);
835
836 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
837 for (clock = min_clock; clock <= max_clock; clock++) {
838 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
839 link_avail = intel_dp_max_data_rate(link_clock,
840 lane_count);
841
842 if (mode_rate <= link_avail) {
843 goto found;
844 }
845 }
846 }
847 }
848
849 return false;
850
851found:
852 if (intel_dp->color_range_auto) {
853 /*
854 * See:
855 * CEA-861-E - 5.1 Default Encoding Parameters
856 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
857 */
858 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
859 intel_dp->color_range = DP_COLOR_RANGE_16_235;
860 else
861 intel_dp->color_range = 0;
862 }
863
864 if (intel_dp->color_range)
865 pipe_config->limited_color_range = true;
866
867 intel_dp->link_bw = bws[clock];
868 intel_dp->lane_count = lane_count;
869 pipe_config->pipe_bpp = bpp;
870 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
871
872 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
873 intel_dp->link_bw, intel_dp->lane_count,
874 pipe_config->port_clock, bpp);
875 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
876 mode_rate, link_avail);
877
878 intel_link_compute_m_n(bpp, lane_count,
879 adjusted_mode->crtc_clock,
880 pipe_config->port_clock,
881 &pipe_config->dp_m_n);
882
883 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
884
885 return true;
886}
887
888static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
889{
890 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
891 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
892 struct drm_device *dev = crtc->base.dev;
893 struct drm_i915_private *dev_priv = dev->dev_private;
894 u32 dpa_ctl;
895
896 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
897 dpa_ctl = I915_READ(DP_A);
898 dpa_ctl &= ~DP_PLL_FREQ_MASK;
899
900 if (crtc->config.port_clock == 162000) {
901 /* For a long time we've carried around a ILK-DevA w/a for the
902 * 160MHz clock. If we're really unlucky, it's still required.
903 */
904 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
905 dpa_ctl |= DP_PLL_FREQ_160MHZ;
906 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
907 } else {
908 dpa_ctl |= DP_PLL_FREQ_270MHZ;
909 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
910 }
911
912 I915_WRITE(DP_A, dpa_ctl);
913
914 POSTING_READ(DP_A);
915 udelay(500);
916}
917
918static void intel_dp_mode_set(struct intel_encoder *encoder)
919{
920 struct drm_device *dev = encoder->base.dev;
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
923 enum port port = dp_to_dig_port(intel_dp)->port;
924 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
925 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
926
927 /*
928 * There are four kinds of DP registers:
929 *
930 * IBX PCH
931 * SNB CPU
932 * IVB CPU
933 * CPT PCH
934 *
935 * IBX PCH and CPU are the same for almost everything,
936 * except that the CPU DP PLL is configured in this
937 * register
938 *
939 * CPT PCH is quite different, having many bits moved
940 * to the TRANS_DP_CTL register instead. That
941 * configuration happens (oddly) in ironlake_pch_enable
942 */
943
944 /* Preserve the BIOS-computed detected bit. This is
945 * supposed to be read-only.
946 */
947 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
948
949 /* Handle DP bits in common between all three register formats */
950 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
951 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
952
953 if (intel_dp->has_audio) {
954 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
955 pipe_name(crtc->pipe));
956 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
957 intel_write_eld(&encoder->base, adjusted_mode);
958 }
959
960 /* Split out the IBX/CPU vs CPT settings */
961
962 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
963 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
964 intel_dp->DP |= DP_SYNC_HS_HIGH;
965 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
966 intel_dp->DP |= DP_SYNC_VS_HIGH;
967 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
968
969 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
970 intel_dp->DP |= DP_ENHANCED_FRAMING;
971
972 intel_dp->DP |= crtc->pipe << 29;
973 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
974 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
975 intel_dp->DP |= intel_dp->color_range;
976
977 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
978 intel_dp->DP |= DP_SYNC_HS_HIGH;
979 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
980 intel_dp->DP |= DP_SYNC_VS_HIGH;
981 intel_dp->DP |= DP_LINK_TRAIN_OFF;
982
983 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
984 intel_dp->DP |= DP_ENHANCED_FRAMING;
985
986 if (crtc->pipe == 1)
987 intel_dp->DP |= DP_PIPEB_SELECT;
988 } else {
989 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
990 }
991
992 if (port == PORT_A && !IS_VALLEYVIEW(dev))
993 ironlake_set_pll_cpu_edp(intel_dp);
994}
995
996#define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
997#define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
998
999#define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1000#define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1001
1002#define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1003#define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1004
1005static void wait_panel_status(struct intel_dp *intel_dp,
1006 u32 mask,
1007 u32 value)
1008{
1009 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 pp_stat_reg, pp_ctrl_reg;
1012
1013 pp_stat_reg = _pp_stat_reg(intel_dp);
1014 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1015
1016 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1017 mask, value,
1018 I915_READ(pp_stat_reg),
1019 I915_READ(pp_ctrl_reg));
1020
1021 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1022 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1023 I915_READ(pp_stat_reg),
1024 I915_READ(pp_ctrl_reg));
1025 }
1026
1027 DRM_DEBUG_KMS("Wait complete\n");
1028}
1029
1030static void wait_panel_on(struct intel_dp *intel_dp)
1031{
1032 DRM_DEBUG_KMS("Wait for panel power on\n");
1033 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1034}
1035
1036static void wait_panel_off(struct intel_dp *intel_dp)
1037{
1038 DRM_DEBUG_KMS("Wait for panel power off time\n");
1039 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1040}
1041
1042static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1043{
1044 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1045
1046 /* When we disable the VDD override bit last we have to do the manual
1047 * wait. */
1048 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1049 intel_dp->panel_power_cycle_delay);
1050
1051 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1052}
1053
1054static void wait_backlight_on(struct intel_dp *intel_dp)
1055{
1056 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1057 intel_dp->backlight_on_delay);
1058}
1059
1060static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1061{
1062 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1063 intel_dp->backlight_off_delay);
1064}
1065
1066/* Read the current pp_control value, unlocking the register if it
1067 * is locked
1068 */
1069
1070static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1071{
1072 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1073 struct drm_i915_private *dev_priv = dev->dev_private;
1074 u32 control;
1075
1076 control = I915_READ(_pp_ctrl_reg(intel_dp));
1077 control &= ~PANEL_UNLOCK_MASK;
1078 control |= PANEL_UNLOCK_REGS;
1079 return control;
1080}
1081
1082static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1083{
1084 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086 u32 pp;
1087 u32 pp_stat_reg, pp_ctrl_reg;
1088 bool need_to_disable = !intel_dp->want_panel_vdd;
1089
1090 if (!is_edp(intel_dp))
1091 return false;
1092
1093 intel_dp->want_panel_vdd = true;
1094
1095 if (edp_have_panel_vdd(intel_dp))
1096 return need_to_disable;
1097
1098 intel_runtime_pm_get(dev_priv);
1099
1100 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1101
1102 if (!edp_have_panel_power(intel_dp))
1103 wait_panel_power_cycle(intel_dp);
1104
1105 pp = ironlake_get_pp_control(intel_dp);
1106 pp |= EDP_FORCE_VDD;
1107
1108 pp_stat_reg = _pp_stat_reg(intel_dp);
1109 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1110
1111 I915_WRITE(pp_ctrl_reg, pp);
1112 POSTING_READ(pp_ctrl_reg);
1113 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1114 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1115 /*
1116 * If the panel wasn't on, delay before accessing aux channel
1117 */
1118 if (!edp_have_panel_power(intel_dp)) {
1119 DRM_DEBUG_KMS("eDP was not running\n");
1120 msleep(intel_dp->panel_power_up_delay);
1121 }
1122
1123 return need_to_disable;
1124}
1125
1126void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1127{
1128 if (is_edp(intel_dp)) {
1129 bool vdd = _edp_panel_vdd_on(intel_dp);
1130
1131 WARN(!vdd, "eDP VDD already requested on\n");
1132 }
1133}
1134
1135static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1136{
1137 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 u32 pp;
1140 u32 pp_stat_reg, pp_ctrl_reg;
1141
1142 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1143
1144 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1145 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1146
1147 pp = ironlake_get_pp_control(intel_dp);
1148 pp &= ~EDP_FORCE_VDD;
1149
1150 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1151 pp_stat_reg = _pp_stat_reg(intel_dp);
1152
1153 I915_WRITE(pp_ctrl_reg, pp);
1154 POSTING_READ(pp_ctrl_reg);
1155
1156 /* Make sure sequencer is idle before allowing subsequent activity */
1157 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1158 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1159
1160 if ((pp & POWER_TARGET_ON) == 0)
1161 intel_dp->last_power_cycle = jiffies;
1162
1163 intel_runtime_pm_put(dev_priv);
1164 }
1165}
1166
1167static void edp_panel_vdd_work(struct work_struct *__work)
1168{
1169 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1170 struct intel_dp, panel_vdd_work);
1171 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1172
1173 mutex_lock(&dev->mode_config.mutex);
1174 edp_panel_vdd_off_sync(intel_dp);
1175 mutex_unlock(&dev->mode_config.mutex);
1176}
1177
1178static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1179{
1180 if (!is_edp(intel_dp))
1181 return;
1182
1183 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1184
1185 intel_dp->want_panel_vdd = false;
1186
1187 if (sync) {
1188 edp_panel_vdd_off_sync(intel_dp);
1189 } else {
1190 /*
1191 * Queue the timer to fire a long
1192 * time from now (relative to the power down delay)
1193 * to keep the panel power up across a sequence of operations
1194 */
1195 schedule_delayed_work(&intel_dp->panel_vdd_work,
1196 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1197 }
1198}
1199
1200void intel_edp_panel_on(struct intel_dp *intel_dp)
1201{
1202 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1203 struct drm_i915_private *dev_priv = dev->dev_private;
1204 u32 pp;
1205 u32 pp_ctrl_reg;
1206
1207 if (!is_edp(intel_dp))
1208 return;
1209
1210 DRM_DEBUG_KMS("Turn eDP power on\n");
1211
1212 if (edp_have_panel_power(intel_dp)) {
1213 DRM_DEBUG_KMS("eDP power already on\n");
1214 return;
1215 }
1216
1217 wait_panel_power_cycle(intel_dp);
1218
1219 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1220 pp = ironlake_get_pp_control(intel_dp);
1221 if (IS_GEN5(dev)) {
1222 /* ILK workaround: disable reset around power sequence */
1223 pp &= ~PANEL_POWER_RESET;
1224 I915_WRITE(pp_ctrl_reg, pp);
1225 POSTING_READ(pp_ctrl_reg);
1226 }
1227
1228 pp |= POWER_TARGET_ON;
1229 if (!IS_GEN5(dev))
1230 pp |= PANEL_POWER_RESET;
1231
1232 I915_WRITE(pp_ctrl_reg, pp);
1233 POSTING_READ(pp_ctrl_reg);
1234
1235 wait_panel_on(intel_dp);
1236 intel_dp->last_power_on = jiffies;
1237
1238 if (IS_GEN5(dev)) {
1239 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1240 I915_WRITE(pp_ctrl_reg, pp);
1241 POSTING_READ(pp_ctrl_reg);
1242 }
1243}
1244
1245void intel_edp_panel_off(struct intel_dp *intel_dp)
1246{
1247 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 u32 pp;
1250 u32 pp_ctrl_reg;
1251
1252 if (!is_edp(intel_dp))
1253 return;
1254
1255 DRM_DEBUG_KMS("Turn eDP power off\n");
1256
1257 edp_wait_backlight_off(intel_dp);
1258
1259 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1260
1261 pp = ironlake_get_pp_control(intel_dp);
1262 /* We need to switch off panel power _and_ force vdd, for otherwise some
1263 * panels get very unhappy and cease to work. */
1264 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1265 EDP_BLC_ENABLE);
1266
1267 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1268
1269 intel_dp->want_panel_vdd = false;
1270
1271 I915_WRITE(pp_ctrl_reg, pp);
1272 POSTING_READ(pp_ctrl_reg);
1273
1274 intel_dp->last_power_cycle = jiffies;
1275 wait_panel_off(intel_dp);
1276
1277 /* We got a reference when we enabled the VDD. */
1278 intel_runtime_pm_put(dev_priv);
1279}
1280
1281void intel_edp_backlight_on(struct intel_dp *intel_dp)
1282{
1283 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1284 struct drm_device *dev = intel_dig_port->base.base.dev;
1285 struct drm_i915_private *dev_priv = dev->dev_private;
1286 u32 pp;
1287 u32 pp_ctrl_reg;
1288
1289 if (!is_edp(intel_dp))
1290 return;
1291
1292 DRM_DEBUG_KMS("\n");
1293 /*
1294 * If we enable the backlight right away following a panel power
1295 * on, we may see slight flicker as the panel syncs with the eDP
1296 * link. So delay a bit to make sure the image is solid before
1297 * allowing it to appear.
1298 */
1299 wait_backlight_on(intel_dp);
1300 pp = ironlake_get_pp_control(intel_dp);
1301 pp |= EDP_BLC_ENABLE;
1302
1303 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1304
1305 I915_WRITE(pp_ctrl_reg, pp);
1306 POSTING_READ(pp_ctrl_reg);
1307
1308 intel_panel_enable_backlight(intel_dp->attached_connector);
1309}
1310
1311void intel_edp_backlight_off(struct intel_dp *intel_dp)
1312{
1313 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1314 struct drm_i915_private *dev_priv = dev->dev_private;
1315 u32 pp;
1316 u32 pp_ctrl_reg;
1317
1318 if (!is_edp(intel_dp))
1319 return;
1320
1321 intel_panel_disable_backlight(intel_dp->attached_connector);
1322
1323 DRM_DEBUG_KMS("\n");
1324 pp = ironlake_get_pp_control(intel_dp);
1325 pp &= ~EDP_BLC_ENABLE;
1326
1327 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1328
1329 I915_WRITE(pp_ctrl_reg, pp);
1330 POSTING_READ(pp_ctrl_reg);
1331 intel_dp->last_backlight_off = jiffies;
1332}
1333
1334static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1335{
1336 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1337 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1338 struct drm_device *dev = crtc->dev;
1339 struct drm_i915_private *dev_priv = dev->dev_private;
1340 u32 dpa_ctl;
1341
1342 assert_pipe_disabled(dev_priv,
1343 to_intel_crtc(crtc)->pipe);
1344
1345 DRM_DEBUG_KMS("\n");
1346 dpa_ctl = I915_READ(DP_A);
1347 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1348 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1349
1350 /* We don't adjust intel_dp->DP while tearing down the link, to
1351 * facilitate link retraining (e.g. after hotplug). Hence clear all
1352 * enable bits here to ensure that we don't enable too much. */
1353 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1354 intel_dp->DP |= DP_PLL_ENABLE;
1355 I915_WRITE(DP_A, intel_dp->DP);
1356 POSTING_READ(DP_A);
1357 udelay(200);
1358}
1359
1360static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1361{
1362 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1363 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1364 struct drm_device *dev = crtc->dev;
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366 u32 dpa_ctl;
1367
1368 assert_pipe_disabled(dev_priv,
1369 to_intel_crtc(crtc)->pipe);
1370
1371 dpa_ctl = I915_READ(DP_A);
1372 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1373 "dp pll off, should be on\n");
1374 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1375
1376 /* We can't rely on the value tracked for the DP register in
1377 * intel_dp->DP because link_down must not change that (otherwise link
1378 * re-training will fail. */
1379 dpa_ctl &= ~DP_PLL_ENABLE;
1380 I915_WRITE(DP_A, dpa_ctl);
1381 POSTING_READ(DP_A);
1382 udelay(200);
1383}
1384
1385/* If the sink supports it, try to set the power state appropriately */
1386void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1387{
1388 int ret, i;
1389
1390 /* Should have a valid DPCD by this point */
1391 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1392 return;
1393
1394 if (mode != DRM_MODE_DPMS_ON) {
1395 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1396 DP_SET_POWER_D3);
1397 if (ret != 1)
1398 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1399 } else {
1400 /*
1401 * When turning on, we need to retry for 1ms to give the sink
1402 * time to wake up.
1403 */
1404 for (i = 0; i < 3; i++) {
1405 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1406 DP_SET_POWER_D0);
1407 if (ret == 1)
1408 break;
1409 msleep(1);
1410 }
1411 }
1412}
1413
1414static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1415 enum pipe *pipe)
1416{
1417 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1418 enum port port = dp_to_dig_port(intel_dp)->port;
1419 struct drm_device *dev = encoder->base.dev;
1420 struct drm_i915_private *dev_priv = dev->dev_private;
1421 enum intel_display_power_domain power_domain;
1422 u32 tmp;
1423
1424 power_domain = intel_display_port_power_domain(encoder);
1425 if (!intel_display_power_enabled(dev_priv, power_domain))
1426 return false;
1427
1428 tmp = I915_READ(intel_dp->output_reg);
1429
1430 if (!(tmp & DP_PORT_EN))
1431 return false;
1432
1433 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1434 *pipe = PORT_TO_PIPE_CPT(tmp);
1435 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1436 *pipe = PORT_TO_PIPE(tmp);
1437 } else {
1438 u32 trans_sel;
1439 u32 trans_dp;
1440 int i;
1441
1442 switch (intel_dp->output_reg) {
1443 case PCH_DP_B:
1444 trans_sel = TRANS_DP_PORT_SEL_B;
1445 break;
1446 case PCH_DP_C:
1447 trans_sel = TRANS_DP_PORT_SEL_C;
1448 break;
1449 case PCH_DP_D:
1450 trans_sel = TRANS_DP_PORT_SEL_D;
1451 break;
1452 default:
1453 return true;
1454 }
1455
1456 for_each_pipe(i) {
1457 trans_dp = I915_READ(TRANS_DP_CTL(i));
1458 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1459 *pipe = i;
1460 return true;
1461 }
1462 }
1463
1464 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1465 intel_dp->output_reg);
1466 }
1467
1468 return true;
1469}
1470
1471static void intel_dp_get_config(struct intel_encoder *encoder,
1472 struct intel_crtc_config *pipe_config)
1473{
1474 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1475 u32 tmp, flags = 0;
1476 struct drm_device *dev = encoder->base.dev;
1477 struct drm_i915_private *dev_priv = dev->dev_private;
1478 enum port port = dp_to_dig_port(intel_dp)->port;
1479 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1480 int dotclock;
1481
1482 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1483 tmp = I915_READ(intel_dp->output_reg);
1484 if (tmp & DP_SYNC_HS_HIGH)
1485 flags |= DRM_MODE_FLAG_PHSYNC;
1486 else
1487 flags |= DRM_MODE_FLAG_NHSYNC;
1488
1489 if (tmp & DP_SYNC_VS_HIGH)
1490 flags |= DRM_MODE_FLAG_PVSYNC;
1491 else
1492 flags |= DRM_MODE_FLAG_NVSYNC;
1493 } else {
1494 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1495 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1496 flags |= DRM_MODE_FLAG_PHSYNC;
1497 else
1498 flags |= DRM_MODE_FLAG_NHSYNC;
1499
1500 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1501 flags |= DRM_MODE_FLAG_PVSYNC;
1502 else
1503 flags |= DRM_MODE_FLAG_NVSYNC;
1504 }
1505
1506 pipe_config->adjusted_mode.flags |= flags;
1507
1508 pipe_config->has_dp_encoder = true;
1509
1510 intel_dp_get_m_n(crtc, pipe_config);
1511
1512 if (port == PORT_A) {
1513 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1514 pipe_config->port_clock = 162000;
1515 else
1516 pipe_config->port_clock = 270000;
1517 }
1518
1519 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1520 &pipe_config->dp_m_n);
1521
1522 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1523 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1524
1525 pipe_config->adjusted_mode.crtc_clock = dotclock;
1526
1527 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1528 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1529 /*
1530 * This is a big fat ugly hack.
1531 *
1532 * Some machines in UEFI boot mode provide us a VBT that has 18
1533 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1534 * unknown we fail to light up. Yet the same BIOS boots up with
1535 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1536 * max, not what it tells us to use.
1537 *
1538 * Note: This will still be broken if the eDP panel is not lit
1539 * up by the BIOS, and thus we can't get the mode at module
1540 * load.
1541 */
1542 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1543 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1544 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1545 }
1546}
1547
1548static bool is_edp_psr(struct drm_device *dev)
1549{
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551
1552 return dev_priv->psr.sink_support;
1553}
1554
1555static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1556{
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558
1559 if (!HAS_PSR(dev))
1560 return false;
1561
1562 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1563}
1564
1565static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1566 struct edp_vsc_psr *vsc_psr)
1567{
1568 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1569 struct drm_device *dev = dig_port->base.base.dev;
1570 struct drm_i915_private *dev_priv = dev->dev_private;
1571 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1572 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1573 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1574 uint32_t *data = (uint32_t *) vsc_psr;
1575 unsigned int i;
1576
1577 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1578 the video DIP being updated before program video DIP data buffer
1579 registers for DIP being updated. */
1580 I915_WRITE(ctl_reg, 0);
1581 POSTING_READ(ctl_reg);
1582
1583 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1584 if (i < sizeof(struct edp_vsc_psr))
1585 I915_WRITE(data_reg + i, *data++);
1586 else
1587 I915_WRITE(data_reg + i, 0);
1588 }
1589
1590 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1591 POSTING_READ(ctl_reg);
1592}
1593
1594static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1595{
1596 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1597 struct drm_i915_private *dev_priv = dev->dev_private;
1598 struct edp_vsc_psr psr_vsc;
1599
1600 if (intel_dp->psr_setup_done)
1601 return;
1602
1603 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1604 memset(&psr_vsc, 0, sizeof(psr_vsc));
1605 psr_vsc.sdp_header.HB0 = 0;
1606 psr_vsc.sdp_header.HB1 = 0x7;
1607 psr_vsc.sdp_header.HB2 = 0x2;
1608 psr_vsc.sdp_header.HB3 = 0x8;
1609 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1610
1611 /* Avoid continuous PSR exit by masking memup and hpd */
1612 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1613 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1614
1615 intel_dp->psr_setup_done = true;
1616}
1617
1618static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1619{
1620 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622 uint32_t aux_clock_divider;
1623 int precharge = 0x3;
1624 int msg_size = 5; /* Header(4) + Message(1) */
1625
1626 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1627
1628 /* Enable PSR in sink */
1629 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1630 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1631 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1632 else
1633 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1634 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1635
1636 /* Setup AUX registers */
1637 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1638 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1639 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1640 DP_AUX_CH_CTL_TIME_OUT_400us |
1641 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1642 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1643 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1644}
1645
1646static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1647{
1648 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 uint32_t max_sleep_time = 0x1f;
1651 uint32_t idle_frames = 1;
1652 uint32_t val = 0x0;
1653 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1654
1655 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1656 val |= EDP_PSR_LINK_STANDBY;
1657 val |= EDP_PSR_TP2_TP3_TIME_0us;
1658 val |= EDP_PSR_TP1_TIME_0us;
1659 val |= EDP_PSR_SKIP_AUX_EXIT;
1660 } else
1661 val |= EDP_PSR_LINK_DISABLE;
1662
1663 I915_WRITE(EDP_PSR_CTL(dev), val |
1664 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1665 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1666 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1667 EDP_PSR_ENABLE);
1668}
1669
1670static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1671{
1672 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1673 struct drm_device *dev = dig_port->base.base.dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 struct drm_crtc *crtc = dig_port->base.base.crtc;
1676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1677 struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1678 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1679
1680 dev_priv->psr.source_ok = false;
1681
1682 if (!HAS_PSR(dev)) {
1683 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1684 return false;
1685 }
1686
1687 if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1688 (dig_port->port != PORT_A)) {
1689 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1690 return false;
1691 }
1692
1693 if (!i915.enable_psr) {
1694 DRM_DEBUG_KMS("PSR disable by flag\n");
1695 return false;
1696 }
1697
1698 crtc = dig_port->base.base.crtc;
1699 if (crtc == NULL) {
1700 DRM_DEBUG_KMS("crtc not active for PSR\n");
1701 return false;
1702 }
1703
1704 intel_crtc = to_intel_crtc(crtc);
1705 if (!intel_crtc_active(crtc)) {
1706 DRM_DEBUG_KMS("crtc not active for PSR\n");
1707 return false;
1708 }
1709
1710 obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1711 if (obj->tiling_mode != I915_TILING_X ||
1712 obj->fence_reg == I915_FENCE_REG_NONE) {
1713 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1714 return false;
1715 }
1716
1717 if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1718 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1719 return false;
1720 }
1721
1722 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1723 S3D_ENABLE) {
1724 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1725 return false;
1726 }
1727
1728 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1729 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1730 return false;
1731 }
1732
1733 dev_priv->psr.source_ok = true;
1734 return true;
1735}
1736
1737static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1738{
1739 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1740
1741 if (!intel_edp_psr_match_conditions(intel_dp) ||
1742 intel_edp_is_psr_enabled(dev))
1743 return;
1744
1745 /* Setup PSR once */
1746 intel_edp_psr_setup(intel_dp);
1747
1748 /* Enable PSR on the panel */
1749 intel_edp_psr_enable_sink(intel_dp);
1750
1751 /* Enable PSR on the host */
1752 intel_edp_psr_enable_source(intel_dp);
1753}
1754
1755void intel_edp_psr_enable(struct intel_dp *intel_dp)
1756{
1757 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1758
1759 if (intel_edp_psr_match_conditions(intel_dp) &&
1760 !intel_edp_is_psr_enabled(dev))
1761 intel_edp_psr_do_enable(intel_dp);
1762}
1763
1764void intel_edp_psr_disable(struct intel_dp *intel_dp)
1765{
1766 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1767 struct drm_i915_private *dev_priv = dev->dev_private;
1768
1769 if (!intel_edp_is_psr_enabled(dev))
1770 return;
1771
1772 I915_WRITE(EDP_PSR_CTL(dev),
1773 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1774
1775 /* Wait till PSR is idle */
1776 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1777 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1778 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1779}
1780
1781void intel_edp_psr_update(struct drm_device *dev)
1782{
1783 struct intel_encoder *encoder;
1784 struct intel_dp *intel_dp = NULL;
1785
1786 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1787 if (encoder->type == INTEL_OUTPUT_EDP) {
1788 intel_dp = enc_to_intel_dp(&encoder->base);
1789
1790 if (!is_edp_psr(dev))
1791 return;
1792
1793 if (!intel_edp_psr_match_conditions(intel_dp))
1794 intel_edp_psr_disable(intel_dp);
1795 else
1796 if (!intel_edp_is_psr_enabled(dev))
1797 intel_edp_psr_do_enable(intel_dp);
1798 }
1799}
1800
1801static void intel_disable_dp(struct intel_encoder *encoder)
1802{
1803 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1804 enum port port = dp_to_dig_port(intel_dp)->port;
1805 struct drm_device *dev = encoder->base.dev;
1806
1807 /* Make sure the panel is off before trying to change the mode. But also
1808 * ensure that we have vdd while we switch off the panel. */
1809 intel_edp_panel_vdd_on(intel_dp);
1810 intel_edp_backlight_off(intel_dp);
1811 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1812 intel_edp_panel_off(intel_dp);
1813
1814 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1815 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1816 intel_dp_link_down(intel_dp);
1817}
1818
1819static void intel_post_disable_dp(struct intel_encoder *encoder)
1820{
1821 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1822 enum port port = dp_to_dig_port(intel_dp)->port;
1823 struct drm_device *dev = encoder->base.dev;
1824
1825 if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1826 intel_dp_link_down(intel_dp);
1827 if (!IS_VALLEYVIEW(dev))
1828 ironlake_edp_pll_off(intel_dp);
1829 }
1830}
1831
1832static void intel_enable_dp(struct intel_encoder *encoder)
1833{
1834 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1835 struct drm_device *dev = encoder->base.dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
1837 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1838
1839 if (WARN_ON(dp_reg & DP_PORT_EN))
1840 return;
1841
1842 intel_edp_panel_vdd_on(intel_dp);
1843 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1844 intel_dp_start_link_train(intel_dp);
1845 intel_edp_panel_on(intel_dp);
1846 edp_panel_vdd_off(intel_dp, true);
1847 intel_dp_complete_link_train(intel_dp);
1848 intel_dp_stop_link_train(intel_dp);
1849}
1850
1851static void g4x_enable_dp(struct intel_encoder *encoder)
1852{
1853 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1854
1855 intel_enable_dp(encoder);
1856 intel_edp_backlight_on(intel_dp);
1857}
1858
1859static void vlv_enable_dp(struct intel_encoder *encoder)
1860{
1861 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1862
1863 intel_edp_backlight_on(intel_dp);
1864}
1865
1866static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1867{
1868 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1869 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1870
1871 if (dport->port == PORT_A)
1872 ironlake_edp_pll_on(intel_dp);
1873}
1874
1875static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1876{
1877 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1878 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1879 struct drm_device *dev = encoder->base.dev;
1880 struct drm_i915_private *dev_priv = dev->dev_private;
1881 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1882 enum dpio_channel port = vlv_dport_to_channel(dport);
1883 int pipe = intel_crtc->pipe;
1884 struct edp_power_seq power_seq;
1885 u32 val;
1886
1887 mutex_lock(&dev_priv->dpio_lock);
1888
1889 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1890 val = 0;
1891 if (pipe)
1892 val |= (1<<21);
1893 else
1894 val &= ~(1<<21);
1895 val |= 0x001000c4;
1896 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1897 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1898 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1899
1900 mutex_unlock(&dev_priv->dpio_lock);
1901
1902 if (is_edp(intel_dp)) {
1903 /* init power sequencer on this pipe and port */
1904 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1905 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1906 &power_seq);
1907 }
1908
1909 intel_enable_dp(encoder);
1910
1911 vlv_wait_port_ready(dev_priv, dport);
1912}
1913
1914static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1915{
1916 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1917 struct drm_device *dev = encoder->base.dev;
1918 struct drm_i915_private *dev_priv = dev->dev_private;
1919 struct intel_crtc *intel_crtc =
1920 to_intel_crtc(encoder->base.crtc);
1921 enum dpio_channel port = vlv_dport_to_channel(dport);
1922 int pipe = intel_crtc->pipe;
1923
1924 /* Program Tx lane resets to default */
1925 mutex_lock(&dev_priv->dpio_lock);
1926 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1927 DPIO_PCS_TX_LANE2_RESET |
1928 DPIO_PCS_TX_LANE1_RESET);
1929 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1930 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1931 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1932 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1933 DPIO_PCS_CLK_SOFT_RESET);
1934
1935 /* Fix up inter-pair skew failure */
1936 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1937 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1938 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1939 mutex_unlock(&dev_priv->dpio_lock);
1940}
1941
1942/*
1943 * Native read with retry for link status and receiver capability reads for
1944 * cases where the sink may still be asleep.
1945 *
1946 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
1947 * supposed to retry 3 times per the spec.
1948 */
1949static ssize_t
1950intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
1951 void *buffer, size_t size)
1952{
1953 ssize_t ret;
1954 int i;
1955
1956 for (i = 0; i < 3; i++) {
1957 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
1958 if (ret == size)
1959 return ret;
1960 msleep(1);
1961 }
1962
1963 return ret;
1964}
1965
1966/*
1967 * Fetch AUX CH registers 0x202 - 0x207 which contain
1968 * link status information
1969 */
1970static bool
1971intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1972{
1973 return intel_dp_dpcd_read_wake(&intel_dp->aux,
1974 DP_LANE0_1_STATUS,
1975 link_status,
1976 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
1977}
1978
1979/*
1980 * These are source-specific values; current Intel hardware supports
1981 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1982 */
1983
1984static uint8_t
1985intel_dp_voltage_max(struct intel_dp *intel_dp)
1986{
1987 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1988 enum port port = dp_to_dig_port(intel_dp)->port;
1989
1990 if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1991 return DP_TRAIN_VOLTAGE_SWING_1200;
1992 else if (IS_GEN7(dev) && port == PORT_A)
1993 return DP_TRAIN_VOLTAGE_SWING_800;
1994 else if (HAS_PCH_CPT(dev) && port != PORT_A)
1995 return DP_TRAIN_VOLTAGE_SWING_1200;
1996 else
1997 return DP_TRAIN_VOLTAGE_SWING_800;
1998}
1999
2000static uint8_t
2001intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2002{
2003 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2004 enum port port = dp_to_dig_port(intel_dp)->port;
2005
2006 if (IS_BROADWELL(dev)) {
2007 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2008 case DP_TRAIN_VOLTAGE_SWING_400:
2009 case DP_TRAIN_VOLTAGE_SWING_600:
2010 return DP_TRAIN_PRE_EMPHASIS_6;
2011 case DP_TRAIN_VOLTAGE_SWING_800:
2012 return DP_TRAIN_PRE_EMPHASIS_3_5;
2013 case DP_TRAIN_VOLTAGE_SWING_1200:
2014 default:
2015 return DP_TRAIN_PRE_EMPHASIS_0;
2016 }
2017 } else if (IS_HASWELL(dev)) {
2018 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2019 case DP_TRAIN_VOLTAGE_SWING_400:
2020 return DP_TRAIN_PRE_EMPHASIS_9_5;
2021 case DP_TRAIN_VOLTAGE_SWING_600:
2022 return DP_TRAIN_PRE_EMPHASIS_6;
2023 case DP_TRAIN_VOLTAGE_SWING_800:
2024 return DP_TRAIN_PRE_EMPHASIS_3_5;
2025 case DP_TRAIN_VOLTAGE_SWING_1200:
2026 default:
2027 return DP_TRAIN_PRE_EMPHASIS_0;
2028 }
2029 } else if (IS_VALLEYVIEW(dev)) {
2030 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2031 case DP_TRAIN_VOLTAGE_SWING_400:
2032 return DP_TRAIN_PRE_EMPHASIS_9_5;
2033 case DP_TRAIN_VOLTAGE_SWING_600:
2034 return DP_TRAIN_PRE_EMPHASIS_6;
2035 case DP_TRAIN_VOLTAGE_SWING_800:
2036 return DP_TRAIN_PRE_EMPHASIS_3_5;
2037 case DP_TRAIN_VOLTAGE_SWING_1200:
2038 default:
2039 return DP_TRAIN_PRE_EMPHASIS_0;
2040 }
2041 } else if (IS_GEN7(dev) && port == PORT_A) {
2042 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2043 case DP_TRAIN_VOLTAGE_SWING_400:
2044 return DP_TRAIN_PRE_EMPHASIS_6;
2045 case DP_TRAIN_VOLTAGE_SWING_600:
2046 case DP_TRAIN_VOLTAGE_SWING_800:
2047 return DP_TRAIN_PRE_EMPHASIS_3_5;
2048 default:
2049 return DP_TRAIN_PRE_EMPHASIS_0;
2050 }
2051 } else {
2052 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2053 case DP_TRAIN_VOLTAGE_SWING_400:
2054 return DP_TRAIN_PRE_EMPHASIS_6;
2055 case DP_TRAIN_VOLTAGE_SWING_600:
2056 return DP_TRAIN_PRE_EMPHASIS_6;
2057 case DP_TRAIN_VOLTAGE_SWING_800:
2058 return DP_TRAIN_PRE_EMPHASIS_3_5;
2059 case DP_TRAIN_VOLTAGE_SWING_1200:
2060 default:
2061 return DP_TRAIN_PRE_EMPHASIS_0;
2062 }
2063 }
2064}
2065
2066static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2067{
2068 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2069 struct drm_i915_private *dev_priv = dev->dev_private;
2070 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2071 struct intel_crtc *intel_crtc =
2072 to_intel_crtc(dport->base.base.crtc);
2073 unsigned long demph_reg_value, preemph_reg_value,
2074 uniqtranscale_reg_value;
2075 uint8_t train_set = intel_dp->train_set[0];
2076 enum dpio_channel port = vlv_dport_to_channel(dport);
2077 int pipe = intel_crtc->pipe;
2078
2079 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2080 case DP_TRAIN_PRE_EMPHASIS_0:
2081 preemph_reg_value = 0x0004000;
2082 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2083 case DP_TRAIN_VOLTAGE_SWING_400:
2084 demph_reg_value = 0x2B405555;
2085 uniqtranscale_reg_value = 0x552AB83A;
2086 break;
2087 case DP_TRAIN_VOLTAGE_SWING_600:
2088 demph_reg_value = 0x2B404040;
2089 uniqtranscale_reg_value = 0x5548B83A;
2090 break;
2091 case DP_TRAIN_VOLTAGE_SWING_800:
2092 demph_reg_value = 0x2B245555;
2093 uniqtranscale_reg_value = 0x5560B83A;
2094 break;
2095 case DP_TRAIN_VOLTAGE_SWING_1200:
2096 demph_reg_value = 0x2B405555;
2097 uniqtranscale_reg_value = 0x5598DA3A;
2098 break;
2099 default:
2100 return 0;
2101 }
2102 break;
2103 case DP_TRAIN_PRE_EMPHASIS_3_5:
2104 preemph_reg_value = 0x0002000;
2105 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2106 case DP_TRAIN_VOLTAGE_SWING_400:
2107 demph_reg_value = 0x2B404040;
2108 uniqtranscale_reg_value = 0x5552B83A;
2109 break;
2110 case DP_TRAIN_VOLTAGE_SWING_600:
2111 demph_reg_value = 0x2B404848;
2112 uniqtranscale_reg_value = 0x5580B83A;
2113 break;
2114 case DP_TRAIN_VOLTAGE_SWING_800:
2115 demph_reg_value = 0x2B404040;
2116 uniqtranscale_reg_value = 0x55ADDA3A;
2117 break;
2118 default:
2119 return 0;
2120 }
2121 break;
2122 case DP_TRAIN_PRE_EMPHASIS_6:
2123 preemph_reg_value = 0x0000000;
2124 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2125 case DP_TRAIN_VOLTAGE_SWING_400:
2126 demph_reg_value = 0x2B305555;
2127 uniqtranscale_reg_value = 0x5570B83A;
2128 break;
2129 case DP_TRAIN_VOLTAGE_SWING_600:
2130 demph_reg_value = 0x2B2B4040;
2131 uniqtranscale_reg_value = 0x55ADDA3A;
2132 break;
2133 default:
2134 return 0;
2135 }
2136 break;
2137 case DP_TRAIN_PRE_EMPHASIS_9_5:
2138 preemph_reg_value = 0x0006000;
2139 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2140 case DP_TRAIN_VOLTAGE_SWING_400:
2141 demph_reg_value = 0x1B405555;
2142 uniqtranscale_reg_value = 0x55ADDA3A;
2143 break;
2144 default:
2145 return 0;
2146 }
2147 break;
2148 default:
2149 return 0;
2150 }
2151
2152 mutex_lock(&dev_priv->dpio_lock);
2153 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2154 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2155 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2156 uniqtranscale_reg_value);
2157 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2158 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2159 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2160 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2161 mutex_unlock(&dev_priv->dpio_lock);
2162
2163 return 0;
2164}
2165
2166static void
2167intel_get_adjust_train(struct intel_dp *intel_dp,
2168 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2169{
2170 uint8_t v = 0;
2171 uint8_t p = 0;
2172 int lane;
2173 uint8_t voltage_max;
2174 uint8_t preemph_max;
2175
2176 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2177 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2178 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2179
2180 if (this_v > v)
2181 v = this_v;
2182 if (this_p > p)
2183 p = this_p;
2184 }
2185
2186 voltage_max = intel_dp_voltage_max(intel_dp);
2187 if (v >= voltage_max)
2188 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2189
2190 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2191 if (p >= preemph_max)
2192 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2193
2194 for (lane = 0; lane < 4; lane++)
2195 intel_dp->train_set[lane] = v | p;
2196}
2197
2198static uint32_t
2199intel_gen4_signal_levels(uint8_t train_set)
2200{
2201 uint32_t signal_levels = 0;
2202
2203 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2204 case DP_TRAIN_VOLTAGE_SWING_400:
2205 default:
2206 signal_levels |= DP_VOLTAGE_0_4;
2207 break;
2208 case DP_TRAIN_VOLTAGE_SWING_600:
2209 signal_levels |= DP_VOLTAGE_0_6;
2210 break;
2211 case DP_TRAIN_VOLTAGE_SWING_800:
2212 signal_levels |= DP_VOLTAGE_0_8;
2213 break;
2214 case DP_TRAIN_VOLTAGE_SWING_1200:
2215 signal_levels |= DP_VOLTAGE_1_2;
2216 break;
2217 }
2218 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2219 case DP_TRAIN_PRE_EMPHASIS_0:
2220 default:
2221 signal_levels |= DP_PRE_EMPHASIS_0;
2222 break;
2223 case DP_TRAIN_PRE_EMPHASIS_3_5:
2224 signal_levels |= DP_PRE_EMPHASIS_3_5;
2225 break;
2226 case DP_TRAIN_PRE_EMPHASIS_6:
2227 signal_levels |= DP_PRE_EMPHASIS_6;
2228 break;
2229 case DP_TRAIN_PRE_EMPHASIS_9_5:
2230 signal_levels |= DP_PRE_EMPHASIS_9_5;
2231 break;
2232 }
2233 return signal_levels;
2234}
2235
2236/* Gen6's DP voltage swing and pre-emphasis control */
2237static uint32_t
2238intel_gen6_edp_signal_levels(uint8_t train_set)
2239{
2240 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2241 DP_TRAIN_PRE_EMPHASIS_MASK);
2242 switch (signal_levels) {
2243 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2244 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2245 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2246 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2247 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2248 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2249 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2250 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2251 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2252 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2253 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2254 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2255 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2256 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2257 default:
2258 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2259 "0x%x\n", signal_levels);
2260 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2261 }
2262}
2263
2264/* Gen7's DP voltage swing and pre-emphasis control */
2265static uint32_t
2266intel_gen7_edp_signal_levels(uint8_t train_set)
2267{
2268 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2269 DP_TRAIN_PRE_EMPHASIS_MASK);
2270 switch (signal_levels) {
2271 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2272 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2273 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2274 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2275 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2276 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2277
2278 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2279 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2280 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2281 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2282
2283 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2284 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2285 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2286 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2287
2288 default:
2289 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2290 "0x%x\n", signal_levels);
2291 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2292 }
2293}
2294
2295/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2296static uint32_t
2297intel_hsw_signal_levels(uint8_t train_set)
2298{
2299 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2300 DP_TRAIN_PRE_EMPHASIS_MASK);
2301 switch (signal_levels) {
2302 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2303 return DDI_BUF_EMP_400MV_0DB_HSW;
2304 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2305 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2306 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2307 return DDI_BUF_EMP_400MV_6DB_HSW;
2308 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2309 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2310
2311 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2312 return DDI_BUF_EMP_600MV_0DB_HSW;
2313 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2314 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2315 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2316 return DDI_BUF_EMP_600MV_6DB_HSW;
2317
2318 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2319 return DDI_BUF_EMP_800MV_0DB_HSW;
2320 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2321 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2322 default:
2323 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2324 "0x%x\n", signal_levels);
2325 return DDI_BUF_EMP_400MV_0DB_HSW;
2326 }
2327}
2328
2329static uint32_t
2330intel_bdw_signal_levels(uint8_t train_set)
2331{
2332 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2333 DP_TRAIN_PRE_EMPHASIS_MASK);
2334 switch (signal_levels) {
2335 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2336 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2337 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2338 return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */
2339 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2340 return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */
2341
2342 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2343 return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */
2344 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2345 return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */
2346 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2347 return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */
2348
2349 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2350 return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */
2351 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2352 return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */
2353
2354 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2355 return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */
2356
2357 default:
2358 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2359 "0x%x\n", signal_levels);
2360 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2361 }
2362}
2363
2364/* Properly updates "DP" with the correct signal levels. */
2365static void
2366intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2367{
2368 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2369 enum port port = intel_dig_port->port;
2370 struct drm_device *dev = intel_dig_port->base.base.dev;
2371 uint32_t signal_levels, mask;
2372 uint8_t train_set = intel_dp->train_set[0];
2373
2374 if (IS_BROADWELL(dev)) {
2375 signal_levels = intel_bdw_signal_levels(train_set);
2376 mask = DDI_BUF_EMP_MASK;
2377 } else if (IS_HASWELL(dev)) {
2378 signal_levels = intel_hsw_signal_levels(train_set);
2379 mask = DDI_BUF_EMP_MASK;
2380 } else if (IS_VALLEYVIEW(dev)) {
2381 signal_levels = intel_vlv_signal_levels(intel_dp);
2382 mask = 0;
2383 } else if (IS_GEN7(dev) && port == PORT_A) {
2384 signal_levels = intel_gen7_edp_signal_levels(train_set);
2385 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2386 } else if (IS_GEN6(dev) && port == PORT_A) {
2387 signal_levels = intel_gen6_edp_signal_levels(train_set);
2388 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2389 } else {
2390 signal_levels = intel_gen4_signal_levels(train_set);
2391 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2392 }
2393
2394 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2395
2396 *DP = (*DP & ~mask) | signal_levels;
2397}
2398
2399static bool
2400intel_dp_set_link_train(struct intel_dp *intel_dp,
2401 uint32_t *DP,
2402 uint8_t dp_train_pat)
2403{
2404 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2405 struct drm_device *dev = intel_dig_port->base.base.dev;
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 enum port port = intel_dig_port->port;
2408 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2409 int ret, len;
2410
2411 if (HAS_DDI(dev)) {
2412 uint32_t temp = I915_READ(DP_TP_CTL(port));
2413
2414 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2415 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2416 else
2417 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2418
2419 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2420 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2421 case DP_TRAINING_PATTERN_DISABLE:
2422 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2423
2424 break;
2425 case DP_TRAINING_PATTERN_1:
2426 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2427 break;
2428 case DP_TRAINING_PATTERN_2:
2429 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2430 break;
2431 case DP_TRAINING_PATTERN_3:
2432 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2433 break;
2434 }
2435 I915_WRITE(DP_TP_CTL(port), temp);
2436
2437 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2438 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2439
2440 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2441 case DP_TRAINING_PATTERN_DISABLE:
2442 *DP |= DP_LINK_TRAIN_OFF_CPT;
2443 break;
2444 case DP_TRAINING_PATTERN_1:
2445 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2446 break;
2447 case DP_TRAINING_PATTERN_2:
2448 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2449 break;
2450 case DP_TRAINING_PATTERN_3:
2451 DRM_ERROR("DP training pattern 3 not supported\n");
2452 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2453 break;
2454 }
2455
2456 } else {
2457 *DP &= ~DP_LINK_TRAIN_MASK;
2458
2459 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2460 case DP_TRAINING_PATTERN_DISABLE:
2461 *DP |= DP_LINK_TRAIN_OFF;
2462 break;
2463 case DP_TRAINING_PATTERN_1:
2464 *DP |= DP_LINK_TRAIN_PAT_1;
2465 break;
2466 case DP_TRAINING_PATTERN_2:
2467 *DP |= DP_LINK_TRAIN_PAT_2;
2468 break;
2469 case DP_TRAINING_PATTERN_3:
2470 DRM_ERROR("DP training pattern 3 not supported\n");
2471 *DP |= DP_LINK_TRAIN_PAT_2;
2472 break;
2473 }
2474 }
2475
2476 I915_WRITE(intel_dp->output_reg, *DP);
2477 POSTING_READ(intel_dp->output_reg);
2478
2479 buf[0] = dp_train_pat;
2480 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2481 DP_TRAINING_PATTERN_DISABLE) {
2482 /* don't write DP_TRAINING_LANEx_SET on disable */
2483 len = 1;
2484 } else {
2485 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2486 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2487 len = intel_dp->lane_count + 1;
2488 }
2489
2490 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2491 buf, len);
2492
2493 return ret == len;
2494}
2495
2496static bool
2497intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2498 uint8_t dp_train_pat)
2499{
2500 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2501 intel_dp_set_signal_levels(intel_dp, DP);
2502 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2503}
2504
2505static bool
2506intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2507 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2508{
2509 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2510 struct drm_device *dev = intel_dig_port->base.base.dev;
2511 struct drm_i915_private *dev_priv = dev->dev_private;
2512 int ret;
2513
2514 intel_get_adjust_train(intel_dp, link_status);
2515 intel_dp_set_signal_levels(intel_dp, DP);
2516
2517 I915_WRITE(intel_dp->output_reg, *DP);
2518 POSTING_READ(intel_dp->output_reg);
2519
2520 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2521 intel_dp->train_set, intel_dp->lane_count);
2522
2523 return ret == intel_dp->lane_count;
2524}
2525
2526static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2527{
2528 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2529 struct drm_device *dev = intel_dig_port->base.base.dev;
2530 struct drm_i915_private *dev_priv = dev->dev_private;
2531 enum port port = intel_dig_port->port;
2532 uint32_t val;
2533
2534 if (!HAS_DDI(dev))
2535 return;
2536
2537 val = I915_READ(DP_TP_CTL(port));
2538 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2539 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2540 I915_WRITE(DP_TP_CTL(port), val);
2541
2542 /*
2543 * On PORT_A we can have only eDP in SST mode. There the only reason
2544 * we need to set idle transmission mode is to work around a HW issue
2545 * where we enable the pipe while not in idle link-training mode.
2546 * In this case there is requirement to wait for a minimum number of
2547 * idle patterns to be sent.
2548 */
2549 if (port == PORT_A)
2550 return;
2551
2552 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2553 1))
2554 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2555}
2556
2557/* Enable corresponding port and start training pattern 1 */
2558void
2559intel_dp_start_link_train(struct intel_dp *intel_dp)
2560{
2561 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2562 struct drm_device *dev = encoder->dev;
2563 int i;
2564 uint8_t voltage;
2565 int voltage_tries, loop_tries;
2566 uint32_t DP = intel_dp->DP;
2567 uint8_t link_config[2];
2568
2569 if (HAS_DDI(dev))
2570 intel_ddi_prepare_link_retrain(encoder);
2571
2572 /* Write the link configuration data */
2573 link_config[0] = intel_dp->link_bw;
2574 link_config[1] = intel_dp->lane_count;
2575 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2576 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2577 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2578
2579 link_config[0] = 0;
2580 link_config[1] = DP_SET_ANSI_8B10B;
2581 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2582
2583 DP |= DP_PORT_EN;
2584
2585 /* clock recovery */
2586 if (!intel_dp_reset_link_train(intel_dp, &DP,
2587 DP_TRAINING_PATTERN_1 |
2588 DP_LINK_SCRAMBLING_DISABLE)) {
2589 DRM_ERROR("failed to enable link training\n");
2590 return;
2591 }
2592
2593 voltage = 0xff;
2594 voltage_tries = 0;
2595 loop_tries = 0;
2596 for (;;) {
2597 uint8_t link_status[DP_LINK_STATUS_SIZE];
2598
2599 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2600 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2601 DRM_ERROR("failed to get link status\n");
2602 break;
2603 }
2604
2605 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2606 DRM_DEBUG_KMS("clock recovery OK\n");
2607 break;
2608 }
2609
2610 /* Check to see if we've tried the max voltage */
2611 for (i = 0; i < intel_dp->lane_count; i++)
2612 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2613 break;
2614 if (i == intel_dp->lane_count) {
2615 ++loop_tries;
2616 if (loop_tries == 5) {
2617 DRM_ERROR("too many full retries, give up\n");
2618 break;
2619 }
2620 intel_dp_reset_link_train(intel_dp, &DP,
2621 DP_TRAINING_PATTERN_1 |
2622 DP_LINK_SCRAMBLING_DISABLE);
2623 voltage_tries = 0;
2624 continue;
2625 }
2626
2627 /* Check to see if we've tried the same voltage 5 times */
2628 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2629 ++voltage_tries;
2630 if (voltage_tries == 5) {
2631 DRM_ERROR("too many voltage retries, give up\n");
2632 break;
2633 }
2634 } else
2635 voltage_tries = 0;
2636 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2637
2638 /* Update training set as requested by target */
2639 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2640 DRM_ERROR("failed to update link training\n");
2641 break;
2642 }
2643 }
2644
2645 intel_dp->DP = DP;
2646}
2647
2648void
2649intel_dp_complete_link_train(struct intel_dp *intel_dp)
2650{
2651 bool channel_eq = false;
2652 int tries, cr_tries;
2653 uint32_t DP = intel_dp->DP;
2654 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2655
2656 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2657 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2658 training_pattern = DP_TRAINING_PATTERN_3;
2659
2660 /* channel equalization */
2661 if (!intel_dp_set_link_train(intel_dp, &DP,
2662 training_pattern |
2663 DP_LINK_SCRAMBLING_DISABLE)) {
2664 DRM_ERROR("failed to start channel equalization\n");
2665 return;
2666 }
2667
2668 tries = 0;
2669 cr_tries = 0;
2670 channel_eq = false;
2671 for (;;) {
2672 uint8_t link_status[DP_LINK_STATUS_SIZE];
2673
2674 if (cr_tries > 5) {
2675 DRM_ERROR("failed to train DP, aborting\n");
2676 break;
2677 }
2678
2679 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2680 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2681 DRM_ERROR("failed to get link status\n");
2682 break;
2683 }
2684
2685 /* Make sure clock is still ok */
2686 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2687 intel_dp_start_link_train(intel_dp);
2688 intel_dp_set_link_train(intel_dp, &DP,
2689 training_pattern |
2690 DP_LINK_SCRAMBLING_DISABLE);
2691 cr_tries++;
2692 continue;
2693 }
2694
2695 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2696 channel_eq = true;
2697 break;
2698 }
2699
2700 /* Try 5 times, then try clock recovery if that fails */
2701 if (tries > 5) {
2702 intel_dp_link_down(intel_dp);
2703 intel_dp_start_link_train(intel_dp);
2704 intel_dp_set_link_train(intel_dp, &DP,
2705 training_pattern |
2706 DP_LINK_SCRAMBLING_DISABLE);
2707 tries = 0;
2708 cr_tries++;
2709 continue;
2710 }
2711
2712 /* Update training set as requested by target */
2713 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2714 DRM_ERROR("failed to update link training\n");
2715 break;
2716 }
2717 ++tries;
2718 }
2719
2720 intel_dp_set_idle_link_train(intel_dp);
2721
2722 intel_dp->DP = DP;
2723
2724 if (channel_eq)
2725 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2726
2727}
2728
2729void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2730{
2731 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2732 DP_TRAINING_PATTERN_DISABLE);
2733}
2734
2735static void
2736intel_dp_link_down(struct intel_dp *intel_dp)
2737{
2738 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2739 enum port port = intel_dig_port->port;
2740 struct drm_device *dev = intel_dig_port->base.base.dev;
2741 struct drm_i915_private *dev_priv = dev->dev_private;
2742 struct intel_crtc *intel_crtc =
2743 to_intel_crtc(intel_dig_port->base.base.crtc);
2744 uint32_t DP = intel_dp->DP;
2745
2746 /*
2747 * DDI code has a strict mode set sequence and we should try to respect
2748 * it, otherwise we might hang the machine in many different ways. So we
2749 * really should be disabling the port only on a complete crtc_disable
2750 * sequence. This function is just called under two conditions on DDI
2751 * code:
2752 * - Link train failed while doing crtc_enable, and on this case we
2753 * really should respect the mode set sequence and wait for a
2754 * crtc_disable.
2755 * - Someone turned the monitor off and intel_dp_check_link_status
2756 * called us. We don't need to disable the whole port on this case, so
2757 * when someone turns the monitor on again,
2758 * intel_ddi_prepare_link_retrain will take care of redoing the link
2759 * train.
2760 */
2761 if (HAS_DDI(dev))
2762 return;
2763
2764 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2765 return;
2766
2767 DRM_DEBUG_KMS("\n");
2768
2769 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2770 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2771 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2772 } else {
2773 DP &= ~DP_LINK_TRAIN_MASK;
2774 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2775 }
2776 POSTING_READ(intel_dp->output_reg);
2777
2778 /* We don't really know why we're doing this */
2779 intel_wait_for_vblank(dev, intel_crtc->pipe);
2780
2781 if (HAS_PCH_IBX(dev) &&
2782 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2783 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2784
2785 /* Hardware workaround: leaving our transcoder select
2786 * set to transcoder B while it's off will prevent the
2787 * corresponding HDMI output on transcoder A.
2788 *
2789 * Combine this with another hardware workaround:
2790 * transcoder select bit can only be cleared while the
2791 * port is enabled.
2792 */
2793 DP &= ~DP_PIPEB_SELECT;
2794 I915_WRITE(intel_dp->output_reg, DP);
2795
2796 /* Changes to enable or select take place the vblank
2797 * after being written.
2798 */
2799 if (WARN_ON(crtc == NULL)) {
2800 /* We should never try to disable a port without a crtc
2801 * attached. For paranoia keep the code around for a
2802 * bit. */
2803 POSTING_READ(intel_dp->output_reg);
2804 msleep(50);
2805 } else
2806 intel_wait_for_vblank(dev, intel_crtc->pipe);
2807 }
2808
2809 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2810 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2811 POSTING_READ(intel_dp->output_reg);
2812 msleep(intel_dp->panel_power_down_delay);
2813}
2814
2815static bool
2816intel_dp_get_dpcd(struct intel_dp *intel_dp)
2817{
2818 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2819 struct drm_device *dev = dig_port->base.base.dev;
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821
2822 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2823
2824 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
2825 sizeof(intel_dp->dpcd)) < 0)
2826 return false; /* aux transfer failed */
2827
2828 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2829 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2830 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2831
2832 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2833 return false; /* DPCD not present */
2834
2835 /* Check if the panel supports PSR */
2836 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2837 if (is_edp(intel_dp)) {
2838 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
2839 intel_dp->psr_dpcd,
2840 sizeof(intel_dp->psr_dpcd));
2841 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2842 dev_priv->psr.sink_support = true;
2843 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2844 }
2845 }
2846
2847 /* Training Pattern 3 support */
2848 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2849 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2850 intel_dp->use_tps3 = true;
2851 DRM_DEBUG_KMS("Displayport TPS3 supported");
2852 } else
2853 intel_dp->use_tps3 = false;
2854
2855 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2856 DP_DWN_STRM_PORT_PRESENT))
2857 return true; /* native DP sink */
2858
2859 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2860 return true; /* no per-port downstream info */
2861
2862 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
2863 intel_dp->downstream_ports,
2864 DP_MAX_DOWNSTREAM_PORTS) < 0)
2865 return false; /* downstream port status fetch failed */
2866
2867 return true;
2868}
2869
2870static void
2871intel_dp_probe_oui(struct intel_dp *intel_dp)
2872{
2873 u8 buf[3];
2874
2875 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2876 return;
2877
2878 intel_edp_panel_vdd_on(intel_dp);
2879
2880 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
2881 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2882 buf[0], buf[1], buf[2]);
2883
2884 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
2885 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2886 buf[0], buf[1], buf[2]);
2887
2888 edp_panel_vdd_off(intel_dp, false);
2889}
2890
2891int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
2892{
2893 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2894 struct drm_device *dev = intel_dig_port->base.base.dev;
2895 struct intel_crtc *intel_crtc =
2896 to_intel_crtc(intel_dig_port->base.base.crtc);
2897 u8 buf[1];
2898
2899 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
2900 return -EAGAIN;
2901
2902 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2903 return -ENOTTY;
2904
2905 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
2906 DP_TEST_SINK_START) < 0)
2907 return -EAGAIN;
2908
2909 /* Wait 2 vblanks to be sure we will have the correct CRC value */
2910 intel_wait_for_vblank(dev, intel_crtc->pipe);
2911 intel_wait_for_vblank(dev, intel_crtc->pipe);
2912
2913 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
2914 return -EAGAIN;
2915
2916 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
2917 return 0;
2918}
2919
2920static bool
2921intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2922{
2923 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2924 DP_DEVICE_SERVICE_IRQ_VECTOR,
2925 sink_irq_vector, 1) == 1;
2926}
2927
2928static void
2929intel_dp_handle_test_request(struct intel_dp *intel_dp)
2930{
2931 /* NAK by default */
2932 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
2933}
2934
2935/*
2936 * According to DP spec
2937 * 5.1.2:
2938 * 1. Read DPCD
2939 * 2. Configure link according to Receiver Capabilities
2940 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2941 * 4. Check link status on receipt of hot-plug interrupt
2942 */
2943
2944void
2945intel_dp_check_link_status(struct intel_dp *intel_dp)
2946{
2947 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2948 u8 sink_irq_vector;
2949 u8 link_status[DP_LINK_STATUS_SIZE];
2950
2951 if (!intel_encoder->connectors_active)
2952 return;
2953
2954 if (WARN_ON(!intel_encoder->base.crtc))
2955 return;
2956
2957 /* Try to read receiver status if the link appears to be up */
2958 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2959 return;
2960 }
2961
2962 /* Now read the DPCD to see if it's actually running */
2963 if (!intel_dp_get_dpcd(intel_dp)) {
2964 return;
2965 }
2966
2967 /* Try to read the source of the interrupt */
2968 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2969 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2970 /* Clear interrupt source */
2971 drm_dp_dpcd_writeb(&intel_dp->aux,
2972 DP_DEVICE_SERVICE_IRQ_VECTOR,
2973 sink_irq_vector);
2974
2975 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2976 intel_dp_handle_test_request(intel_dp);
2977 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2978 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2979 }
2980
2981 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2982 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2983 drm_get_encoder_name(&intel_encoder->base));
2984 intel_dp_start_link_train(intel_dp);
2985 intel_dp_complete_link_train(intel_dp);
2986 intel_dp_stop_link_train(intel_dp);
2987 }
2988}
2989
2990/* XXX this is probably wrong for multiple downstream ports */
2991static enum drm_connector_status
2992intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2993{
2994 uint8_t *dpcd = intel_dp->dpcd;
2995 uint8_t type;
2996
2997 if (!intel_dp_get_dpcd(intel_dp))
2998 return connector_status_disconnected;
2999
3000 /* if there's no downstream port, we're done */
3001 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3002 return connector_status_connected;
3003
3004 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3005 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3006 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3007 uint8_t reg;
3008
3009 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3010 ®, 1) < 0)
3011 return connector_status_unknown;
3012
3013 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3014 : connector_status_disconnected;
3015 }
3016
3017 /* If no HPD, poke DDC gently */
3018 if (drm_probe_ddc(&intel_dp->aux.ddc))
3019 return connector_status_connected;
3020
3021 /* Well we tried, say unknown for unreliable port types */
3022 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3023 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3024 if (type == DP_DS_PORT_TYPE_VGA ||
3025 type == DP_DS_PORT_TYPE_NON_EDID)
3026 return connector_status_unknown;
3027 } else {
3028 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3029 DP_DWN_STRM_PORT_TYPE_MASK;
3030 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3031 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3032 return connector_status_unknown;
3033 }
3034
3035 /* Anything else is out of spec, warn and ignore */
3036 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3037 return connector_status_disconnected;
3038}
3039
3040static enum drm_connector_status
3041ironlake_dp_detect(struct intel_dp *intel_dp)
3042{
3043 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3044 struct drm_i915_private *dev_priv = dev->dev_private;
3045 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3046 enum drm_connector_status status;
3047
3048 /* Can't disconnect eDP, but you can close the lid... */
3049 if (is_edp(intel_dp)) {
3050 status = intel_panel_detect(dev);
3051 if (status == connector_status_unknown)
3052 status = connector_status_connected;
3053 return status;
3054 }
3055
3056 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3057 return connector_status_disconnected;
3058
3059 return intel_dp_detect_dpcd(intel_dp);
3060}
3061
3062static enum drm_connector_status
3063g4x_dp_detect(struct intel_dp *intel_dp)
3064{
3065 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3066 struct drm_i915_private *dev_priv = dev->dev_private;
3067 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3068 uint32_t bit;
3069
3070 /* Can't disconnect eDP, but you can close the lid... */
3071 if (is_edp(intel_dp)) {
3072 enum drm_connector_status status;
3073
3074 status = intel_panel_detect(dev);
3075 if (status == connector_status_unknown)
3076 status = connector_status_connected;
3077 return status;
3078 }
3079
3080 if (IS_VALLEYVIEW(dev)) {
3081 switch (intel_dig_port->port) {
3082 case PORT_B:
3083 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3084 break;
3085 case PORT_C:
3086 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3087 break;
3088 case PORT_D:
3089 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3090 break;
3091 default:
3092 return connector_status_unknown;
3093 }
3094 } else {
3095 switch (intel_dig_port->port) {
3096 case PORT_B:
3097 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3098 break;
3099 case PORT_C:
3100 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3101 break;
3102 case PORT_D:
3103 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3104 break;
3105 default:
3106 return connector_status_unknown;
3107 }
3108 }
3109
3110 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3111 return connector_status_disconnected;
3112
3113 return intel_dp_detect_dpcd(intel_dp);
3114}
3115
3116static struct edid *
3117intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3118{
3119 struct intel_connector *intel_connector = to_intel_connector(connector);
3120
3121 /* use cached edid if we have one */
3122 if (intel_connector->edid) {
3123 /* invalid edid */
3124 if (IS_ERR(intel_connector->edid))
3125 return NULL;
3126
3127 return drm_edid_duplicate(intel_connector->edid);
3128 }
3129
3130 return drm_get_edid(connector, adapter);
3131}
3132
3133static int
3134intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3135{
3136 struct intel_connector *intel_connector = to_intel_connector(connector);
3137
3138 /* use cached edid if we have one */
3139 if (intel_connector->edid) {
3140 /* invalid edid */
3141 if (IS_ERR(intel_connector->edid))
3142 return 0;
3143
3144 return intel_connector_update_modes(connector,
3145 intel_connector->edid);
3146 }
3147
3148 return intel_ddc_get_modes(connector, adapter);
3149}
3150
3151static enum drm_connector_status
3152intel_dp_detect(struct drm_connector *connector, bool force)
3153{
3154 struct intel_dp *intel_dp = intel_attached_dp(connector);
3155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3156 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3157 struct drm_device *dev = connector->dev;
3158 struct drm_i915_private *dev_priv = dev->dev_private;
3159 enum drm_connector_status status;
3160 enum intel_display_power_domain power_domain;
3161 struct edid *edid = NULL;
3162
3163 intel_runtime_pm_get(dev_priv);
3164
3165 power_domain = intel_display_port_power_domain(intel_encoder);
3166 intel_display_power_get(dev_priv, power_domain);
3167
3168 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3169 connector->base.id, drm_get_connector_name(connector));
3170
3171 intel_dp->has_audio = false;
3172
3173 if (HAS_PCH_SPLIT(dev))
3174 status = ironlake_dp_detect(intel_dp);
3175 else
3176 status = g4x_dp_detect(intel_dp);
3177
3178 if (status != connector_status_connected)
3179 goto out;
3180
3181 intel_dp_probe_oui(intel_dp);
3182
3183 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3184 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3185 } else {
3186 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3187 if (edid) {
3188 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3189 kfree(edid);
3190 }
3191 }
3192
3193 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3194 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3195 status = connector_status_connected;
3196
3197out:
3198 intel_display_power_put(dev_priv, power_domain);
3199
3200 intel_runtime_pm_put(dev_priv);
3201
3202 return status;
3203}
3204
3205static int intel_dp_get_modes(struct drm_connector *connector)
3206{
3207 struct intel_dp *intel_dp = intel_attached_dp(connector);
3208 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3209 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3210 struct intel_connector *intel_connector = to_intel_connector(connector);
3211 struct drm_device *dev = connector->dev;
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 enum intel_display_power_domain power_domain;
3214 int ret;
3215
3216 /* We should parse the EDID data and find out if it has an audio sink
3217 */
3218
3219 power_domain = intel_display_port_power_domain(intel_encoder);
3220 intel_display_power_get(dev_priv, power_domain);
3221
3222 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3223 intel_display_power_put(dev_priv, power_domain);
3224 if (ret)
3225 return ret;
3226
3227 /* if eDP has no EDID, fall back to fixed mode */
3228 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3229 struct drm_display_mode *mode;
3230 mode = drm_mode_duplicate(dev,
3231 intel_connector->panel.fixed_mode);
3232 if (mode) {
3233 drm_mode_probed_add(connector, mode);
3234 return 1;
3235 }
3236 }
3237 return 0;
3238}
3239
3240static bool
3241intel_dp_detect_audio(struct drm_connector *connector)
3242{
3243 struct intel_dp *intel_dp = intel_attached_dp(connector);
3244 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3245 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3246 struct drm_device *dev = connector->dev;
3247 struct drm_i915_private *dev_priv = dev->dev_private;
3248 enum intel_display_power_domain power_domain;
3249 struct edid *edid;
3250 bool has_audio = false;
3251
3252 power_domain = intel_display_port_power_domain(intel_encoder);
3253 intel_display_power_get(dev_priv, power_domain);
3254
3255 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3256 if (edid) {
3257 has_audio = drm_detect_monitor_audio(edid);
3258 kfree(edid);
3259 }
3260
3261 intel_display_power_put(dev_priv, power_domain);
3262
3263 return has_audio;
3264}
3265
3266static int
3267intel_dp_set_property(struct drm_connector *connector,
3268 struct drm_property *property,
3269 uint64_t val)
3270{
3271 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3272 struct intel_connector *intel_connector = to_intel_connector(connector);
3273 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3274 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3275 int ret;
3276
3277 ret = drm_object_property_set_value(&connector->base, property, val);
3278 if (ret)
3279 return ret;
3280
3281 if (property == dev_priv->force_audio_property) {
3282 int i = val;
3283 bool has_audio;
3284
3285 if (i == intel_dp->force_audio)
3286 return 0;
3287
3288 intel_dp->force_audio = i;
3289
3290 if (i == HDMI_AUDIO_AUTO)
3291 has_audio = intel_dp_detect_audio(connector);
3292 else
3293 has_audio = (i == HDMI_AUDIO_ON);
3294
3295 if (has_audio == intel_dp->has_audio)
3296 return 0;
3297
3298 intel_dp->has_audio = has_audio;
3299 goto done;
3300 }
3301
3302 if (property == dev_priv->broadcast_rgb_property) {
3303 bool old_auto = intel_dp->color_range_auto;
3304 uint32_t old_range = intel_dp->color_range;
3305
3306 switch (val) {
3307 case INTEL_BROADCAST_RGB_AUTO:
3308 intel_dp->color_range_auto = true;
3309 break;
3310 case INTEL_BROADCAST_RGB_FULL:
3311 intel_dp->color_range_auto = false;
3312 intel_dp->color_range = 0;
3313 break;
3314 case INTEL_BROADCAST_RGB_LIMITED:
3315 intel_dp->color_range_auto = false;
3316 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3317 break;
3318 default:
3319 return -EINVAL;
3320 }
3321
3322 if (old_auto == intel_dp->color_range_auto &&
3323 old_range == intel_dp->color_range)
3324 return 0;
3325
3326 goto done;
3327 }
3328
3329 if (is_edp(intel_dp) &&
3330 property == connector->dev->mode_config.scaling_mode_property) {
3331 if (val == DRM_MODE_SCALE_NONE) {
3332 DRM_DEBUG_KMS("no scaling not supported\n");
3333 return -EINVAL;
3334 }
3335
3336 if (intel_connector->panel.fitting_mode == val) {
3337 /* the eDP scaling property is not changed */
3338 return 0;
3339 }
3340 intel_connector->panel.fitting_mode = val;
3341
3342 goto done;
3343 }
3344
3345 return -EINVAL;
3346
3347done:
3348 if (intel_encoder->base.crtc)
3349 intel_crtc_restore_mode(intel_encoder->base.crtc);
3350
3351 return 0;
3352}
3353
3354static void
3355intel_dp_connector_destroy(struct drm_connector *connector)
3356{
3357 struct intel_connector *intel_connector = to_intel_connector(connector);
3358
3359 if (!IS_ERR_OR_NULL(intel_connector->edid))
3360 kfree(intel_connector->edid);
3361
3362 /* Can't call is_edp() since the encoder may have been destroyed
3363 * already. */
3364 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3365 intel_panel_fini(&intel_connector->panel);
3366
3367 drm_connector_cleanup(connector);
3368 kfree(connector);
3369}
3370
3371void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3372{
3373 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3374 struct intel_dp *intel_dp = &intel_dig_port->dp;
3375 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3376
3377 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3378 drm_encoder_cleanup(encoder);
3379 if (is_edp(intel_dp)) {
3380 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3381 mutex_lock(&dev->mode_config.mutex);
3382 edp_panel_vdd_off_sync(intel_dp);
3383 mutex_unlock(&dev->mode_config.mutex);
3384 }
3385 kfree(intel_dig_port);
3386}
3387
3388static const struct drm_connector_funcs intel_dp_connector_funcs = {
3389 .dpms = intel_connector_dpms,
3390 .detect = intel_dp_detect,
3391 .fill_modes = drm_helper_probe_single_connector_modes,
3392 .set_property = intel_dp_set_property,
3393 .destroy = intel_dp_connector_destroy,
3394};
3395
3396static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3397 .get_modes = intel_dp_get_modes,
3398 .mode_valid = intel_dp_mode_valid,
3399 .best_encoder = intel_best_encoder,
3400};
3401
3402static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3403 .destroy = intel_dp_encoder_destroy,
3404};
3405
3406static void
3407intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3408{
3409 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3410
3411 intel_dp_check_link_status(intel_dp);
3412}
3413
3414/* Return which DP Port should be selected for Transcoder DP control */
3415int
3416intel_trans_dp_port_sel(struct drm_crtc *crtc)
3417{
3418 struct drm_device *dev = crtc->dev;
3419 struct intel_encoder *intel_encoder;
3420 struct intel_dp *intel_dp;
3421
3422 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3423 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3424
3425 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3426 intel_encoder->type == INTEL_OUTPUT_EDP)
3427 return intel_dp->output_reg;
3428 }
3429
3430 return -1;
3431}
3432
3433/* check the VBT to see whether the eDP is on DP-D port */
3434bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3435{
3436 struct drm_i915_private *dev_priv = dev->dev_private;
3437 union child_device_config *p_child;
3438 int i;
3439 static const short port_mapping[] = {
3440 [PORT_B] = PORT_IDPB,
3441 [PORT_C] = PORT_IDPC,
3442 [PORT_D] = PORT_IDPD,
3443 };
3444
3445 if (port == PORT_A)
3446 return true;
3447
3448 if (!dev_priv->vbt.child_dev_num)
3449 return false;
3450
3451 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3452 p_child = dev_priv->vbt.child_dev + i;
3453
3454 if (p_child->common.dvo_port == port_mapping[port] &&
3455 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3456 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3457 return true;
3458 }
3459 return false;
3460}
3461
3462static void
3463intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3464{
3465 struct intel_connector *intel_connector = to_intel_connector(connector);
3466
3467 intel_attach_force_audio_property(connector);
3468 intel_attach_broadcast_rgb_property(connector);
3469 intel_dp->color_range_auto = true;
3470
3471 if (is_edp(intel_dp)) {
3472 drm_mode_create_scaling_mode_property(connector->dev);
3473 drm_object_attach_property(
3474 &connector->base,
3475 connector->dev->mode_config.scaling_mode_property,
3476 DRM_MODE_SCALE_ASPECT);
3477 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3478 }
3479}
3480
3481static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3482{
3483 intel_dp->last_power_cycle = jiffies;
3484 intel_dp->last_power_on = jiffies;
3485 intel_dp->last_backlight_off = jiffies;
3486}
3487
3488static void
3489intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3490 struct intel_dp *intel_dp,
3491 struct edp_power_seq *out)
3492{
3493 struct drm_i915_private *dev_priv = dev->dev_private;
3494 struct edp_power_seq cur, vbt, spec, final;
3495 u32 pp_on, pp_off, pp_div, pp;
3496 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3497
3498 if (HAS_PCH_SPLIT(dev)) {
3499 pp_ctrl_reg = PCH_PP_CONTROL;
3500 pp_on_reg = PCH_PP_ON_DELAYS;
3501 pp_off_reg = PCH_PP_OFF_DELAYS;
3502 pp_div_reg = PCH_PP_DIVISOR;
3503 } else {
3504 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3505
3506 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3507 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3508 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3509 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3510 }
3511
3512 /* Workaround: Need to write PP_CONTROL with the unlock key as
3513 * the very first thing. */
3514 pp = ironlake_get_pp_control(intel_dp);
3515 I915_WRITE(pp_ctrl_reg, pp);
3516
3517 pp_on = I915_READ(pp_on_reg);
3518 pp_off = I915_READ(pp_off_reg);
3519 pp_div = I915_READ(pp_div_reg);
3520
3521 /* Pull timing values out of registers */
3522 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3523 PANEL_POWER_UP_DELAY_SHIFT;
3524
3525 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3526 PANEL_LIGHT_ON_DELAY_SHIFT;
3527
3528 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3529 PANEL_LIGHT_OFF_DELAY_SHIFT;
3530
3531 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3532 PANEL_POWER_DOWN_DELAY_SHIFT;
3533
3534 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3535 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3536
3537 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3538 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3539
3540 vbt = dev_priv->vbt.edp_pps;
3541
3542 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3543 * our hw here, which are all in 100usec. */
3544 spec.t1_t3 = 210 * 10;
3545 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3546 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3547 spec.t10 = 500 * 10;
3548 /* This one is special and actually in units of 100ms, but zero
3549 * based in the hw (so we need to add 100 ms). But the sw vbt
3550 * table multiplies it with 1000 to make it in units of 100usec,
3551 * too. */
3552 spec.t11_t12 = (510 + 100) * 10;
3553
3554 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3555 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3556
3557 /* Use the max of the register settings and vbt. If both are
3558 * unset, fall back to the spec limits. */
3559#define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
3560 spec.field : \
3561 max(cur.field, vbt.field))
3562 assign_final(t1_t3);
3563 assign_final(t8);
3564 assign_final(t9);
3565 assign_final(t10);
3566 assign_final(t11_t12);
3567#undef assign_final
3568
3569#define get_delay(field) (DIV_ROUND_UP(final.field, 10))
3570 intel_dp->panel_power_up_delay = get_delay(t1_t3);
3571 intel_dp->backlight_on_delay = get_delay(t8);
3572 intel_dp->backlight_off_delay = get_delay(t9);
3573 intel_dp->panel_power_down_delay = get_delay(t10);
3574 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3575#undef get_delay
3576
3577 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3578 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3579 intel_dp->panel_power_cycle_delay);
3580
3581 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3582 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3583
3584 if (out)
3585 *out = final;
3586}
3587
3588static void
3589intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3590 struct intel_dp *intel_dp,
3591 struct edp_power_seq *seq)
3592{
3593 struct drm_i915_private *dev_priv = dev->dev_private;
3594 u32 pp_on, pp_off, pp_div, port_sel = 0;
3595 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3596 int pp_on_reg, pp_off_reg, pp_div_reg;
3597
3598 if (HAS_PCH_SPLIT(dev)) {
3599 pp_on_reg = PCH_PP_ON_DELAYS;
3600 pp_off_reg = PCH_PP_OFF_DELAYS;
3601 pp_div_reg = PCH_PP_DIVISOR;
3602 } else {
3603 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3604
3605 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3606 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3607 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3608 }
3609
3610 /*
3611 * And finally store the new values in the power sequencer. The
3612 * backlight delays are set to 1 because we do manual waits on them. For
3613 * T8, even BSpec recommends doing it. For T9, if we don't do this,
3614 * we'll end up waiting for the backlight off delay twice: once when we
3615 * do the manual sleep, and once when we disable the panel and wait for
3616 * the PP_STATUS bit to become zero.
3617 */
3618 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3619 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3620 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3621 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3622 /* Compute the divisor for the pp clock, simply match the Bspec
3623 * formula. */
3624 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3625 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3626 << PANEL_POWER_CYCLE_DELAY_SHIFT);
3627
3628 /* Haswell doesn't have any port selection bits for the panel
3629 * power sequencer any more. */
3630 if (IS_VALLEYVIEW(dev)) {
3631 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3632 port_sel = PANEL_PORT_SELECT_DPB_VLV;
3633 else
3634 port_sel = PANEL_PORT_SELECT_DPC_VLV;
3635 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3636 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3637 port_sel = PANEL_PORT_SELECT_DPA;
3638 else
3639 port_sel = PANEL_PORT_SELECT_DPD;
3640 }
3641
3642 pp_on |= port_sel;
3643
3644 I915_WRITE(pp_on_reg, pp_on);
3645 I915_WRITE(pp_off_reg, pp_off);
3646 I915_WRITE(pp_div_reg, pp_div);
3647
3648 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3649 I915_READ(pp_on_reg),
3650 I915_READ(pp_off_reg),
3651 I915_READ(pp_div_reg));
3652}
3653
3654static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3655 struct intel_connector *intel_connector,
3656 struct edp_power_seq *power_seq)
3657{
3658 struct drm_connector *connector = &intel_connector->base;
3659 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3660 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3661 struct drm_device *dev = intel_encoder->base.dev;
3662 struct drm_i915_private *dev_priv = dev->dev_private;
3663 struct drm_display_mode *fixed_mode = NULL;
3664 bool has_dpcd;
3665 struct drm_display_mode *scan;
3666 struct edid *edid;
3667
3668 if (!is_edp(intel_dp))
3669 return true;
3670
3671 /* The VDD bit needs a power domain reference, so if the bit is already
3672 * enabled when we boot, grab this reference. */
3673 if (edp_have_panel_vdd(intel_dp)) {
3674 enum intel_display_power_domain power_domain;
3675 power_domain = intel_display_port_power_domain(intel_encoder);
3676 intel_display_power_get(dev_priv, power_domain);
3677 }
3678
3679 /* Cache DPCD and EDID for edp. */
3680 intel_edp_panel_vdd_on(intel_dp);
3681 has_dpcd = intel_dp_get_dpcd(intel_dp);
3682 edp_panel_vdd_off(intel_dp, false);
3683
3684 if (has_dpcd) {
3685 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3686 dev_priv->no_aux_handshake =
3687 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3688 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3689 } else {
3690 /* if this fails, presume the device is a ghost */
3691 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3692 return false;
3693 }
3694
3695 /* We now know it's not a ghost, init power sequence regs. */
3696 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3697
3698 mutex_lock(&dev->mode_config.mutex);
3699 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
3700 if (edid) {
3701 if (drm_add_edid_modes(connector, edid)) {
3702 drm_mode_connector_update_edid_property(connector,
3703 edid);
3704 drm_edid_to_eld(connector, edid);
3705 } else {
3706 kfree(edid);
3707 edid = ERR_PTR(-EINVAL);
3708 }
3709 } else {
3710 edid = ERR_PTR(-ENOENT);
3711 }
3712 intel_connector->edid = edid;
3713
3714 /* prefer fixed mode from EDID if available */
3715 list_for_each_entry(scan, &connector->probed_modes, head) {
3716 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3717 fixed_mode = drm_mode_duplicate(dev, scan);
3718 break;
3719 }
3720 }
3721
3722 /* fallback to VBT if available for eDP */
3723 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3724 fixed_mode = drm_mode_duplicate(dev,
3725 dev_priv->vbt.lfp_lvds_vbt_mode);
3726 if (fixed_mode)
3727 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3728 }
3729 mutex_unlock(&dev->mode_config.mutex);
3730
3731 intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3732 intel_panel_setup_backlight(connector);
3733
3734 return true;
3735}
3736
3737bool
3738intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3739 struct intel_connector *intel_connector)
3740{
3741 struct drm_connector *connector = &intel_connector->base;
3742 struct intel_dp *intel_dp = &intel_dig_port->dp;
3743 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3744 struct drm_device *dev = intel_encoder->base.dev;
3745 struct drm_i915_private *dev_priv = dev->dev_private;
3746 enum port port = intel_dig_port->port;
3747 struct edp_power_seq power_seq = { 0 };
3748 int type;
3749
3750 /* intel_dp vfuncs */
3751 if (IS_VALLEYVIEW(dev))
3752 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3753 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3754 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3755 else if (HAS_PCH_SPLIT(dev))
3756 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3757 else
3758 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3759
3760 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
3761
3762 /* Preserve the current hw state. */
3763 intel_dp->DP = I915_READ(intel_dp->output_reg);
3764 intel_dp->attached_connector = intel_connector;
3765
3766 if (intel_dp_is_edp(dev, port))
3767 type = DRM_MODE_CONNECTOR_eDP;
3768 else
3769 type = DRM_MODE_CONNECTOR_DisplayPort;
3770
3771 /*
3772 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3773 * for DP the encoder type can be set by the caller to
3774 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3775 */
3776 if (type == DRM_MODE_CONNECTOR_eDP)
3777 intel_encoder->type = INTEL_OUTPUT_EDP;
3778
3779 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3780 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3781 port_name(port));
3782
3783 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3784 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3785
3786 connector->interlace_allowed = true;
3787 connector->doublescan_allowed = 0;
3788
3789 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3790 edp_panel_vdd_work);
3791
3792 intel_connector_attach_encoder(intel_connector, intel_encoder);
3793 drm_sysfs_connector_add(connector);
3794
3795 if (HAS_DDI(dev))
3796 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3797 else
3798 intel_connector->get_hw_state = intel_connector_get_hw_state;
3799 intel_connector->unregister = intel_dp_connector_unregister;
3800
3801 /* Set up the hotplug pin. */
3802 switch (port) {
3803 case PORT_A:
3804 intel_encoder->hpd_pin = HPD_PORT_A;
3805 break;
3806 case PORT_B:
3807 intel_encoder->hpd_pin = HPD_PORT_B;
3808 break;
3809 case PORT_C:
3810 intel_encoder->hpd_pin = HPD_PORT_C;
3811 break;
3812 case PORT_D:
3813 intel_encoder->hpd_pin = HPD_PORT_D;
3814 break;
3815 default:
3816 BUG();
3817 }
3818
3819 if (is_edp(intel_dp)) {
3820 intel_dp_init_panel_power_timestamps(intel_dp);
3821 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3822 }
3823
3824 intel_dp_aux_init(intel_dp, intel_connector);
3825
3826 intel_dp->psr_setup_done = false;
3827
3828 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3829 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3830 if (is_edp(intel_dp)) {
3831 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3832 mutex_lock(&dev->mode_config.mutex);
3833 edp_panel_vdd_off_sync(intel_dp);
3834 mutex_unlock(&dev->mode_config.mutex);
3835 }
3836 drm_sysfs_connector_remove(connector);
3837 drm_connector_cleanup(connector);
3838 return false;
3839 }
3840
3841 intel_dp_add_properties(intel_dp, connector);
3842
3843 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3844 * 0xd. Failure to do so will result in spurious interrupts being
3845 * generated on the port when a cable is not attached.
3846 */
3847 if (IS_G4X(dev) && !IS_GM45(dev)) {
3848 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3849 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3850 }
3851
3852 return true;
3853}
3854
3855void
3856intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3857{
3858 struct intel_digital_port *intel_dig_port;
3859 struct intel_encoder *intel_encoder;
3860 struct drm_encoder *encoder;
3861 struct intel_connector *intel_connector;
3862
3863 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3864 if (!intel_dig_port)
3865 return;
3866
3867 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3868 if (!intel_connector) {
3869 kfree(intel_dig_port);
3870 return;
3871 }
3872
3873 intel_encoder = &intel_dig_port->base;
3874 encoder = &intel_encoder->base;
3875
3876 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3877 DRM_MODE_ENCODER_TMDS);
3878
3879 intel_encoder->compute_config = intel_dp_compute_config;
3880 intel_encoder->mode_set = intel_dp_mode_set;
3881 intel_encoder->disable = intel_disable_dp;
3882 intel_encoder->post_disable = intel_post_disable_dp;
3883 intel_encoder->get_hw_state = intel_dp_get_hw_state;
3884 intel_encoder->get_config = intel_dp_get_config;
3885 if (IS_VALLEYVIEW(dev)) {
3886 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3887 intel_encoder->pre_enable = vlv_pre_enable_dp;
3888 intel_encoder->enable = vlv_enable_dp;
3889 } else {
3890 intel_encoder->pre_enable = g4x_pre_enable_dp;
3891 intel_encoder->enable = g4x_enable_dp;
3892 }
3893
3894 intel_dig_port->port = port;
3895 intel_dig_port->dp.output_reg = output_reg;
3896
3897 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3898 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3899 intel_encoder->cloneable = 0;
3900 intel_encoder->hot_plug = intel_dp_hot_plug;
3901
3902 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3903 drm_encoder_cleanup(encoder);
3904 kfree(intel_dig_port);
3905 kfree(intel_connector);
3906 }
3907}