Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/slab.h>
  30#include "drmP.h"
  31#include "drm.h"
  32#include "drm_crtc.h"
  33#include "drm_crtc_helper.h"
 
  34#include "intel_drv.h"
  35#include "i915_drm.h"
  36#include "i915_drv.h"
  37#include "drm_dp_helper.h"
  38
  39
  40#define DP_LINK_STATUS_SIZE	6
  41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
  42
  43#define DP_LINK_CONFIGURATION_SIZE	9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44
  45struct intel_dp {
  46	struct intel_encoder base;
  47	uint32_t output_reg;
  48	uint32_t DP;
  49	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
  50	bool has_audio;
  51	int force_audio;
  52	uint32_t color_range;
  53	int dpms_mode;
  54	uint8_t link_bw;
  55	uint8_t lane_count;
  56	uint8_t dpcd[8];
  57	struct i2c_adapter adapter;
  58	struct i2c_algo_dp_aux_data algo;
  59	bool is_pch_edp;
  60	uint8_t	train_set[4];
  61	uint8_t link_status[DP_LINK_STATUS_SIZE];
  62};
  63
  64/**
  65 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  66 * @intel_dp: DP struct
  67 *
  68 * If a CPU or PCH DP output is attached to an eDP panel, this function
  69 * will return true, and false otherwise.
  70 */
  71static bool is_edp(struct intel_dp *intel_dp)
  72{
  73	return intel_dp->base.type == INTEL_OUTPUT_EDP;
  74}
  75
  76/**
  77 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  78 * @intel_dp: DP struct
  79 *
  80 * Returns true if the given DP struct corresponds to a PCH DP port attached
  81 * to an eDP panel, false otherwise.  Helpful for determining whether we
  82 * may need FDI resources for a given DP output or not.
  83 */
  84static bool is_pch_edp(struct intel_dp *intel_dp)
  85{
  86	return intel_dp->is_pch_edp;
  87}
  88
  89static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  90{
  91	return container_of(encoder, struct intel_dp, base.base);
  92}
  93
  94static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  95{
  96	return container_of(intel_attached_encoder(connector),
  97			    struct intel_dp, base);
  98}
  99
 100/**
 101 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
 102 * @encoder: DRM encoder
 103 *
 104 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
 105 * by intel_display.c.
 106 */
 107bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
 108{
 109	struct intel_dp *intel_dp;
 110
 111	if (!encoder)
 112		return false;
 113
 114	intel_dp = enc_to_intel_dp(encoder);
 115
 116	return is_pch_edp(intel_dp);
 117}
 118
 119static void intel_dp_start_link_train(struct intel_dp *intel_dp);
 120static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
 121static void intel_dp_link_down(struct intel_dp *intel_dp);
 122
 123void
 124intel_edp_link_config (struct intel_encoder *intel_encoder,
 125		       int *lane_num, int *link_bw)
 126{
 127	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
 128
 129	*lane_num = intel_dp->lane_count;
 130	if (intel_dp->link_bw == DP_LINK_BW_1_62)
 131		*link_bw = 162000;
 132	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
 133		*link_bw = 270000;
 134}
 135
 136static int
 137intel_dp_max_lane_count(struct intel_dp *intel_dp)
 138{
 139	int max_lane_count = 4;
 140
 141	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
 142		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 143		switch (max_lane_count) {
 144		case 1: case 2: case 4:
 145			break;
 146		default:
 147			max_lane_count = 4;
 148		}
 149	}
 150	return max_lane_count;
 151}
 152
 153static int
 154intel_dp_max_link_bw(struct intel_dp *intel_dp)
 155{
 156	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 
 157
 158	switch (max_link_bw) {
 159	case DP_LINK_BW_1_62:
 160	case DP_LINK_BW_2_7:
 161		break;
 
 
 
 
 
 
 
 
 162	default:
 
 
 163		max_link_bw = DP_LINK_BW_1_62;
 164		break;
 165	}
 166	return max_link_bw;
 167}
 168
 169static int
 170intel_dp_link_clock(uint8_t link_bw)
 171{
 172	if (link_bw == DP_LINK_BW_2_7)
 173		return 270000;
 174	else
 175		return 162000;
 
 
 
 
 
 
 
 
 176}
 177
 178/* I think this is a fiction */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179static int
 180intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
 181{
 182	struct drm_crtc *crtc = intel_dp->base.base.crtc;
 183	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 184	int bpp = 24;
 185
 186	if (intel_crtc)
 187		bpp = intel_crtc->bpp;
 188
 189	return (pixel_clock * bpp + 7) / 8;
 190}
 191
 192static int
 193intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 194{
 195	return (max_link_clock * max_lanes * 8) / 10;
 196}
 197
 198static int
 199intel_dp_mode_valid(struct drm_connector *connector,
 200		    struct drm_display_mode *mode)
 201{
 202	struct intel_dp *intel_dp = intel_attached_dp(connector);
 203	struct drm_device *dev = connector->dev;
 204	struct drm_i915_private *dev_priv = dev->dev_private;
 205	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
 206	int max_lanes = intel_dp_max_lane_count(intel_dp);
 207
 208	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
 209		if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
 210			return MODE_PANEL;
 211
 212		if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
 213			return MODE_PANEL;
 
 
 214	}
 215
 216	/* only refuse the mode on non eDP since we have seen some weird eDP panels
 217	   which are outside spec tolerances but somehow work by magic */
 218	if (!is_edp(intel_dp) &&
 219	    (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
 220	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
 
 
 221		return MODE_CLOCK_HIGH;
 222
 223	if (mode->clock < 10000)
 224		return MODE_CLOCK_LOW;
 225
 
 
 
 226	return MODE_OK;
 227}
 228
 229static uint32_t
 230pack_aux(uint8_t *src, int src_bytes)
 231{
 232	int	i;
 233	uint32_t v = 0;
 234
 235	if (src_bytes > 4)
 236		src_bytes = 4;
 237	for (i = 0; i < src_bytes; i++)
 238		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 239	return v;
 240}
 241
 242static void
 243unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 244{
 245	int i;
 246	if (dst_bytes > 4)
 247		dst_bytes = 4;
 248	for (i = 0; i < dst_bytes; i++)
 249		dst[i] = src >> ((3-i) * 8);
 250}
 251
 252/* hrawclock is 1/4 the FSB frequency */
 253static int
 254intel_hrawclk(struct drm_device *dev)
 255{
 256	struct drm_i915_private *dev_priv = dev->dev_private;
 257	uint32_t clkcfg;
 258
 
 
 
 
 259	clkcfg = I915_READ(CLKCFG);
 260	switch (clkcfg & CLKCFG_FSB_MASK) {
 261	case CLKCFG_FSB_400:
 262		return 100;
 263	case CLKCFG_FSB_533:
 264		return 133;
 265	case CLKCFG_FSB_667:
 266		return 166;
 267	case CLKCFG_FSB_800:
 268		return 200;
 269	case CLKCFG_FSB_1067:
 270		return 266;
 271	case CLKCFG_FSB_1333:
 272		return 333;
 273	/* these two are just a guess; one of them might be right */
 274	case CLKCFG_FSB_1600:
 275	case CLKCFG_FSB_1600_ALT:
 276		return 400;
 277	default:
 278		return 133;
 279	}
 280}
 281
 282static int
 283intel_dp_aux_ch(struct intel_dp *intel_dp,
 284		uint8_t *send, int send_bytes,
 285		uint8_t *recv, int recv_size)
 
 
 
 
 
 
 
 286{
 287	uint32_t output_reg = intel_dp->output_reg;
 288	struct drm_device *dev = intel_dp->base.base.dev;
 
 289	struct drm_i915_private *dev_priv = dev->dev_private;
 290	uint32_t ch_ctl = output_reg + 0x10;
 291	uint32_t ch_data = ch_ctl + 4;
 292	int i;
 293	int recv_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294	uint32_t status;
 295	uint32_t aux_clock_divider;
 296	int try, precharge;
 297
 298	/* The clock divider is based off the hrawclk,
 299	 * and would like to run at 2MHz. So, take the
 300	 * hrawclk value and divide by 2 and use that
 301	 *
 302	 * Note that PCH attached eDP panels should use a 125MHz input
 303	 * clock divider.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304	 */
 305	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
 306		if (IS_GEN6(dev))
 307			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
 
 
 
 
 
 
 
 
 
 
 
 308		else
 309			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
 310	} else if (HAS_PCH_SPLIT(dev))
 311		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
 312	else
 313		aux_clock_divider = intel_hrawclk(dev) / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314
 315	if (IS_GEN6(dev))
 316		precharge = 3;
 317	else
 318		precharge = 5;
 319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 320	/* Try to wait for any previous AUX channel activity */
 321	for (try = 0; try < 3; try++) {
 322		status = I915_READ(ch_ctl);
 323		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 324			break;
 325		msleep(1);
 326	}
 327
 328	if (try == 3) {
 329		WARN(1, "dp_aux_ch not started status 0x%08x\n",
 330		     I915_READ(ch_ctl));
 331		return -EBUSY;
 
 332	}
 333
 334	/* Must try at least 3 times according to DP spec */
 335	for (try = 0; try < 5; try++) {
 336		/* Load the send data into the aux channel data registers */
 337		for (i = 0; i < send_bytes; i += 4)
 338			I915_WRITE(ch_data + i,
 339				   pack_aux(send + i, send_bytes - i));
 340	
 341		/* Send the command and wait for it to complete */
 342		I915_WRITE(ch_ctl,
 343			   DP_AUX_CH_CTL_SEND_BUSY |
 344			   DP_AUX_CH_CTL_TIME_OUT_400us |
 345			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 346			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 347			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 348			   DP_AUX_CH_CTL_DONE |
 349			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 350			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 351		for (;;) {
 352			status = I915_READ(ch_ctl);
 353			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354				break;
 355			udelay(100);
 356		}
 357	
 358		/* Clear done status and any errors */
 359		I915_WRITE(ch_ctl,
 360			   status |
 361			   DP_AUX_CH_CTL_DONE |
 362			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 363			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 364		if (status & DP_AUX_CH_CTL_DONE)
 365			break;
 366	}
 367
 368	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 369		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 370		return -EBUSY;
 
 371	}
 372
 373	/* Check for timeout or receive error.
 374	 * Timeouts occur when the sink is not connected
 375	 */
 376	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 377		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 378		return -EIO;
 
 379	}
 380
 381	/* Timeouts occur when the device isn't connected, so they're
 382	 * "normal" -- don't fill the kernel log with these */
 383	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 384		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 385		return -ETIMEDOUT;
 
 386	}
 387
 388	/* Unload any bytes sent back from the other side */
 389	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 390		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 391	if (recv_bytes > recv_size)
 392		recv_bytes = recv_size;
 393	
 394	for (i = 0; i < recv_bytes; i += 4)
 395		unpack_aux(I915_READ(ch_data + i),
 396			   recv + i, recv_bytes - i);
 397
 398	return recv_bytes;
 399}
 
 
 400
 401/* Write data to the aux channel in native mode */
 402static int
 403intel_dp_aux_native_write(struct intel_dp *intel_dp,
 404			  uint16_t address, uint8_t *send, int send_bytes)
 405{
 406	int ret;
 407	uint8_t	msg[20];
 408	int msg_bytes;
 409	uint8_t	ack;
 410
 411	if (send_bytes > 16)
 412		return -1;
 413	msg[0] = AUX_NATIVE_WRITE << 4;
 414	msg[1] = address >> 8;
 415	msg[2] = address & 0xff;
 416	msg[3] = send_bytes - 1;
 417	memcpy(&msg[4], send, send_bytes);
 418	msg_bytes = send_bytes + 4;
 419	for (;;) {
 420		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
 421		if (ret < 0)
 422			return ret;
 423		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
 424			break;
 425		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
 426			udelay(100);
 427		else
 428			return -EIO;
 429	}
 430	return send_bytes;
 431}
 432
 433/* Write a single byte to the aux channel in native mode */
 434static int
 435intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
 436			    uint16_t address, uint8_t byte)
 437{
 438	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
 439}
 440
 441/* read bytes from a native aux channel */
 442static int
 443intel_dp_aux_native_read(struct intel_dp *intel_dp,
 444			 uint16_t address, uint8_t *recv, int recv_bytes)
 445{
 446	uint8_t msg[4];
 447	int msg_bytes;
 448	uint8_t reply[20];
 449	int reply_bytes;
 450	uint8_t ack;
 451	int ret;
 452
 453	msg[0] = AUX_NATIVE_READ << 4;
 454	msg[1] = address >> 8;
 455	msg[2] = address & 0xff;
 456	msg[3] = recv_bytes - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457
 458	msg_bytes = 4;
 459	reply_bytes = recv_bytes + 1;
 
 
 460
 461	for (;;) {
 462		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
 463				      reply, reply_bytes);
 464		if (ret == 0)
 465			return -EPROTO;
 466		if (ret < 0)
 467			return ret;
 468		ack = reply[0];
 469		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
 470			memcpy(recv, reply + 1, ret - 1);
 471			return ret - 1;
 
 
 
 
 
 
 
 
 472		}
 473		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
 474			udelay(100);
 475		else
 476			return -EIO;
 
 477	}
 
 
 478}
 479
 480static int
 481intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 482		    uint8_t write_byte, uint8_t *read_byte)
 483{
 484	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 485	struct intel_dp *intel_dp = container_of(adapter,
 486						struct intel_dp,
 487						adapter);
 488	uint16_t address = algo_data->address;
 489	uint8_t msg[5];
 490	uint8_t reply[2];
 491	unsigned retry;
 492	int msg_bytes;
 493	int reply_bytes;
 494	int ret;
 495
 496	/* Set up the command byte */
 497	if (mode & MODE_I2C_READ)
 498		msg[0] = AUX_I2C_READ << 4;
 499	else
 500		msg[0] = AUX_I2C_WRITE << 4;
 501
 502	if (!(mode & MODE_I2C_STOP))
 503		msg[0] |= AUX_I2C_MOT << 4;
 504
 505	msg[1] = address >> 8;
 506	msg[2] = address;
 507
 508	switch (mode) {
 509	case MODE_I2C_WRITE:
 510		msg[3] = 0;
 511		msg[4] = write_byte;
 512		msg_bytes = 5;
 513		reply_bytes = 1;
 514		break;
 515	case MODE_I2C_READ:
 516		msg[3] = 0;
 517		msg_bytes = 4;
 518		reply_bytes = 2;
 519		break;
 520	default:
 521		msg_bytes = 3;
 522		reply_bytes = 1;
 
 
 
 
 523		break;
 
 
 
 
 
 
 524	}
 525
 526	for (retry = 0; retry < 5; retry++) {
 527		ret = intel_dp_aux_ch(intel_dp,
 528				      msg, msg_bytes,
 529				      reply, reply_bytes);
 530		if (ret < 0) {
 531			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 532			return ret;
 533		}
 534
 535		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
 536		case AUX_NATIVE_REPLY_ACK:
 537			/* I2C-over-AUX Reply field is only valid
 538			 * when paired with AUX ACK.
 539			 */
 540			break;
 541		case AUX_NATIVE_REPLY_NACK:
 542			DRM_DEBUG_KMS("aux_ch native nack\n");
 543			return -EREMOTEIO;
 544		case AUX_NATIVE_REPLY_DEFER:
 545			udelay(100);
 546			continue;
 547		default:
 548			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 549				  reply[0]);
 550			return -EREMOTEIO;
 551		}
 552
 553		switch (reply[0] & AUX_I2C_REPLY_MASK) {
 554		case AUX_I2C_REPLY_ACK:
 555			if (mode == MODE_I2C_READ) {
 556				*read_byte = reply[1];
 557			}
 558			return reply_bytes - 1;
 559		case AUX_I2C_REPLY_NACK:
 560			DRM_DEBUG_KMS("aux_i2c nack\n");
 561			return -EREMOTEIO;
 562		case AUX_I2C_REPLY_DEFER:
 563			DRM_DEBUG_KMS("aux_i2c defer\n");
 564			udelay(100);
 565			break;
 566		default:
 567			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 568			return -EREMOTEIO;
 569		}
 570	}
 571
 572	DRM_ERROR("too many retries, giving up\n");
 573	return -EREMOTEIO;
 
 
 
 
 
 574}
 575
 576static int
 577intel_dp_i2c_init(struct intel_dp *intel_dp,
 578		  struct intel_connector *intel_connector, const char *name)
 579{
 580	DRM_DEBUG_KMS("i2c_init %s\n", name);
 581	intel_dp->algo.running = false;
 582	intel_dp->algo.address = 0;
 583	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
 584
 585	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
 586	intel_dp->adapter.owner = THIS_MODULE;
 587	intel_dp->adapter.class = I2C_CLASS_DDC;
 588	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 589	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 590	intel_dp->adapter.algo_data = &intel_dp->algo;
 591	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
 592
 593	return i2c_dp_aux_add_bus(&intel_dp->adapter);
 
 
 594}
 595
 596static bool
 597intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
 598		    struct drm_display_mode *adjusted_mode)
 599{
 600	struct drm_device *dev = encoder->dev;
 601	struct drm_i915_private *dev_priv = dev->dev_private;
 602	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603	int lane_count, clock;
 
 604	int max_lane_count = intel_dp_max_lane_count(intel_dp);
 605	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
 606	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607
 608	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
 609		intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
 610		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
 611					mode, adjusted_mode);
 612		/*
 613		 * the mode->clock is used to calculate the Data&Link M/N
 614		 * of the pipe. For the eDP the fixed clock should be used.
 615		 */
 616		mode->clock = dev_priv->panel_fixed_mode->clock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617	}
 618
 619	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 620		for (clock = 0; clock <= max_clock; clock++) {
 621			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
 622
 623			if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
 624					<= link_avail) {
 625				intel_dp->link_bw = bws[clock];
 626				intel_dp->lane_count = lane_count;
 627				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
 628				DRM_DEBUG_KMS("Display port link bw %02x lane "
 629						"count %d clock %d\n",
 630				       intel_dp->link_bw, intel_dp->lane_count,
 631				       adjusted_mode->clock);
 632				return true;
 633			}
 634		}
 635	}
 636
 637	if (is_edp(intel_dp)) {
 638		/* okay we failed just pick the highest */
 639		intel_dp->lane_count = max_lane_count;
 640		intel_dp->link_bw = bws[max_clock];
 641		adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
 642		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
 643			      "count %d clock %d\n",
 644			      intel_dp->link_bw, intel_dp->lane_count,
 645			      adjusted_mode->clock);
 646
 647		return true;
 
 
 
 
 
 
 
 
 
 
 648	}
 649
 650	return false;
 651}
 652
 653struct intel_dp_m_n {
 654	uint32_t	tu;
 655	uint32_t	gmch_m;
 656	uint32_t	gmch_n;
 657	uint32_t	link_m;
 658	uint32_t	link_n;
 659};
 660
 661static void
 662intel_reduce_ratio(uint32_t *num, uint32_t *den)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663{
 664	while (*num > 0xffffff || *den > 0xffffff) {
 665		*num >>= 1;
 666		*den >>= 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667	}
 668}
 669
 670static void
 671intel_dp_compute_m_n(int bpp,
 672		     int nlanes,
 673		     int pixel_clock,
 674		     int link_clock,
 675		     struct intel_dp_m_n *m_n)
 676{
 677	m_n->tu = 64;
 678	m_n->gmch_m = (pixel_clock * bpp) >> 3;
 679	m_n->gmch_n = link_clock * nlanes;
 680	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 681	m_n->link_m = pixel_clock;
 682	m_n->link_n = link_clock;
 683	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 684}
 685
 686void
 687intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 688		 struct drm_display_mode *adjusted_mode)
 689{
 690	struct drm_device *dev = crtc->dev;
 691	struct drm_mode_config *mode_config = &dev->mode_config;
 692	struct drm_encoder *encoder;
 693	struct drm_i915_private *dev_priv = dev->dev_private;
 694	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 695	int lane_count = 4;
 696	struct intel_dp_m_n m_n;
 697	int pipe = intel_crtc->pipe;
 698
 699	/*
 700	 * Find the lane count in the intel_encoder private
 
 
 
 
 
 
 
 
 
 
 
 
 
 701	 */
 702	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
 703		struct intel_dp *intel_dp;
 704
 705		if (encoder->crtc != crtc)
 706			continue;
 
 
 707
 708		intel_dp = enc_to_intel_dp(encoder);
 709		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
 710			lane_count = intel_dp->lane_count;
 711			break;
 712		} else if (is_edp(intel_dp)) {
 713			lane_count = dev_priv->edp.lanes;
 714			break;
 715		}
 
 716	}
 717
 718	/*
 719	 * Compute the GMCH and Link ratios. The '3' here is
 720	 * the number of bytes_per_pixel post-LUT, which we always
 721	 * set up for 8-bits of R/G/B, or 3 bytes total.
 722	 */
 723	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
 724			     mode->clock, adjusted_mode->clock, &m_n);
 725
 726	if (HAS_PCH_SPLIT(dev)) {
 727		I915_WRITE(TRANSDATA_M1(pipe),
 728			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
 729			   m_n.gmch_m);
 730		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
 731		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
 732		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733	} else {
 734		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
 735			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
 736			   m_n.gmch_m);
 737		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
 738		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
 739		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
 740	}
 
 
 
 741}
 742
 743static void
 744intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
 745		  struct drm_display_mode *adjusted_mode)
 746{
 747	struct drm_device *dev = encoder->dev;
 748	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 749	struct drm_crtc *crtc = intel_dp->base.base.crtc;
 750	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 751
 752	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
 753	intel_dp->DP |= intel_dp->color_range;
 754
 755	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 756		intel_dp->DP |= DP_SYNC_HS_HIGH;
 757	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 758		intel_dp->DP |= DP_SYNC_VS_HIGH;
 759
 760	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
 761		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 762	else
 763		intel_dp->DP |= DP_LINK_TRAIN_OFF;
 
 
 
 764
 765	switch (intel_dp->lane_count) {
 766	case 1:
 767		intel_dp->DP |= DP_PORT_WIDTH_1;
 768		break;
 769	case 2:
 770		intel_dp->DP |= DP_PORT_WIDTH_2;
 771		break;
 772	case 4:
 773		intel_dp->DP |= DP_PORT_WIDTH_4;
 774		break;
 775	}
 776	if (intel_dp->has_audio)
 777		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
 778
 779	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
 780	intel_dp->link_configuration[0] = intel_dp->link_bw;
 781	intel_dp->link_configuration[1] = intel_dp->lane_count;
 782	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
 783
 784	/*
 785	 * Check for DPCD version > 1.1 and enhanced framing support
 786	 */
 787	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
 788	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
 789		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
 790		intel_dp->DP |= DP_ENHANCED_FRAMING;
 791	}
 792
 793	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
 794	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
 795		intel_dp->DP |= DP_PIPEB_SELECT;
 796
 797	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
 798		/* don't miss out required setting for eDP */
 799		intel_dp->DP |= DP_PLL_ENABLE;
 800		if (adjusted_mode->clock < 200000)
 801			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
 802		else
 803			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
 804	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805}
 806
 807static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
 
 
 
 
 
 
 
 
 
 
 808{
 809	struct drm_device *dev = intel_dp->base.base.dev;
 
 
 
 
 
 
 
 
 
 
 
 
 810	struct drm_i915_private *dev_priv = dev->dev_private;
 811	u32 pp;
 
 
 
 
 
 
 
 
 
 
 812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813	/*
 814	 * If the panel wasn't on, make sure there's not a currently
 815	 * active PP sequence before enabling AUX VDD.
 816	 */
 817	if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
 818		msleep(dev_priv->panel_t3);
 
 
 819
 820	pp = I915_READ(PCH_PP_CONTROL);
 821	pp |= EDP_FORCE_VDD;
 822	I915_WRITE(PCH_PP_CONTROL, pp);
 823	POSTING_READ(PCH_PP_CONTROL);
 824}
 825
 826static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
 827{
 828	struct drm_device *dev = intel_dp->base.base.dev;
 
 
 
 
 
 
 
 
 
 829	struct drm_i915_private *dev_priv = dev->dev_private;
 830	u32 pp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831
 832	pp = I915_READ(PCH_PP_CONTROL);
 833	pp &= ~EDP_FORCE_VDD;
 834	I915_WRITE(PCH_PP_CONTROL, pp);
 835	POSTING_READ(PCH_PP_CONTROL);
 836
 837	/* Make sure sequencer is idle before allowing subsequent activity */
 838	msleep(dev_priv->panel_t12);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839}
 840
 841/* Returns true if the panel was already on when called */
 842static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
 843{
 844	struct drm_device *dev = intel_dp->base.base.dev;
 845	struct drm_i915_private *dev_priv = dev->dev_private;
 846	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
 
 847
 848	if (I915_READ(PCH_PP_STATUS) & PP_ON)
 849		return true;
 850
 851	pp = I915_READ(PCH_PP_CONTROL);
 852
 853	/* ILK workaround: disable reset around power sequence */
 854	pp &= ~PANEL_POWER_RESET;
 855	I915_WRITE(PCH_PP_CONTROL, pp);
 856	POSTING_READ(PCH_PP_CONTROL);
 857
 858	pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
 859	I915_WRITE(PCH_PP_CONTROL, pp);
 860	POSTING_READ(PCH_PP_CONTROL);
 861
 862	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
 863		     5000))
 864		DRM_ERROR("panel on wait timed out: 0x%08x\n",
 865			  I915_READ(PCH_PP_STATUS));
 866
 867	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
 868	I915_WRITE(PCH_PP_CONTROL, pp);
 869	POSTING_READ(PCH_PP_CONTROL);
 870
 871	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872}
 873
 874static void ironlake_edp_panel_off (struct drm_device *dev)
 875{
 
 876	struct drm_i915_private *dev_priv = dev->dev_private;
 877	u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
 878		PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879
 880	pp = I915_READ(PCH_PP_CONTROL);
 881
 882	/* ILK workaround: disable reset around power sequence */
 883	pp &= ~PANEL_POWER_RESET;
 884	I915_WRITE(PCH_PP_CONTROL, pp);
 885	POSTING_READ(PCH_PP_CONTROL);
 886
 887	pp &= ~POWER_TARGET_ON;
 888	I915_WRITE(PCH_PP_CONTROL, pp);
 889	POSTING_READ(PCH_PP_CONTROL);
 890
 891	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
 892		DRM_ERROR("panel off wait timed out: 0x%08x\n",
 893			  I915_READ(PCH_PP_STATUS));
 894
 895	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
 896	I915_WRITE(PCH_PP_CONTROL, pp);
 897	POSTING_READ(PCH_PP_CONTROL);
 898}
 899
 900static void ironlake_edp_backlight_on (struct drm_device *dev)
 901{
 
 
 902	struct drm_i915_private *dev_priv = dev->dev_private;
 903	u32 pp;
 
 
 
 
 904
 905	DRM_DEBUG_KMS("\n");
 906	/*
 907	 * If we enable the backlight right away following a panel power
 908	 * on, we may see slight flicker as the panel syncs with the eDP
 909	 * link.  So delay a bit to make sure the image is solid before
 910	 * allowing it to appear.
 911	 */
 912	msleep(300);
 913	pp = I915_READ(PCH_PP_CONTROL);
 914	pp |= EDP_BLC_ENABLE;
 915	I915_WRITE(PCH_PP_CONTROL, pp);
 
 
 
 
 
 
 916}
 917
 918static void ironlake_edp_backlight_off (struct drm_device *dev)
 919{
 
 920	struct drm_i915_private *dev_priv = dev->dev_private;
 921	u32 pp;
 
 
 
 
 
 
 922
 923	DRM_DEBUG_KMS("\n");
 924	pp = I915_READ(PCH_PP_CONTROL);
 925	pp &= ~EDP_BLC_ENABLE;
 926	I915_WRITE(PCH_PP_CONTROL, pp);
 
 
 
 
 
 927}
 928
 929static void ironlake_edp_pll_on(struct drm_encoder *encoder)
 930{
 931	struct drm_device *dev = encoder->dev;
 
 
 932	struct drm_i915_private *dev_priv = dev->dev_private;
 933	u32 dpa_ctl;
 934
 
 
 
 935	DRM_DEBUG_KMS("\n");
 936	dpa_ctl = I915_READ(DP_A);
 937	dpa_ctl |= DP_PLL_ENABLE;
 938	I915_WRITE(DP_A, dpa_ctl);
 
 
 
 
 
 
 
 939	POSTING_READ(DP_A);
 940	udelay(200);
 941}
 942
 943static void ironlake_edp_pll_off(struct drm_encoder *encoder)
 944{
 945	struct drm_device *dev = encoder->dev;
 
 
 946	struct drm_i915_private *dev_priv = dev->dev_private;
 947	u32 dpa_ctl;
 948
 
 
 
 949	dpa_ctl = I915_READ(DP_A);
 
 
 
 
 
 
 
 950	dpa_ctl &= ~DP_PLL_ENABLE;
 951	I915_WRITE(DP_A, dpa_ctl);
 952	POSTING_READ(DP_A);
 953	udelay(200);
 954}
 955
 956/* If the sink supports it, try to set the power state appropriately */
 957static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
 958{
 959	int ret, i;
 960
 961	/* Should have a valid DPCD by this point */
 962	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
 963		return;
 964
 965	if (mode != DRM_MODE_DPMS_ON) {
 966		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
 967						  DP_SET_POWER_D3);
 968		if (ret != 1)
 969			DRM_DEBUG_DRIVER("failed to write sink power state\n");
 970	} else {
 971		/*
 972		 * When turning on, we need to retry for 1ms to give the sink
 973		 * time to wake up.
 974		 */
 975		for (i = 0; i < 3; i++) {
 976			ret = intel_dp_aux_native_write_1(intel_dp,
 977							  DP_SET_POWER,
 978							  DP_SET_POWER_D0);
 979			if (ret == 1)
 980				break;
 981			msleep(1);
 982		}
 983	}
 984}
 985
 986static void intel_dp_prepare(struct drm_encoder *encoder)
 
 987{
 988	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 989	struct drm_device *dev = encoder->dev;
 
 
 
 
 990
 991	/* Wake up the sink first */
 992	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
 
 993
 994	if (is_edp(intel_dp)) {
 995		ironlake_edp_backlight_off(dev);
 996		ironlake_edp_panel_off(dev);
 997		if (!is_pch_edp(intel_dp))
 998			ironlake_edp_pll_on(encoder);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999		else
1000			ironlake_edp_pll_off(encoder);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001	}
1002	intel_dp_link_down(intel_dp);
1003}
1004
1005static void intel_dp_commit(struct drm_encoder *encoder)
1006{
1007	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1008	struct drm_device *dev = encoder->dev;
1009
1010	if (is_edp(intel_dp))
1011		ironlake_edp_panel_vdd_on(intel_dp);
1012
1013	intel_dp_start_link_train(intel_dp);
 
 
1014
1015	if (is_edp(intel_dp)) {
1016		ironlake_edp_panel_on(intel_dp);
1017		ironlake_edp_panel_vdd_off(intel_dp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018	}
1019
1020	intel_dp_complete_link_train(intel_dp);
 
 
1021
1022	if (is_edp(intel_dp))
1023		ironlake_edp_backlight_on(dev);
 
 
 
 
 
 
1024
1025	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
 
 
 
 
 
 
 
 
 
 
 
 
1026}
1027
1028static void
1029intel_dp_dpms(struct drm_encoder *encoder, int mode)
1030{
1031	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1032	struct drm_device *dev = encoder->dev;
1033	struct drm_i915_private *dev_priv = dev->dev_private;
1034	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
 
 
1035
1036	if (mode != DRM_MODE_DPMS_ON) {
1037		if (is_edp(intel_dp))
1038			ironlake_edp_backlight_off(dev);
1039		intel_dp_sink_dpms(intel_dp, mode);
1040		intel_dp_link_down(intel_dp);
1041		if (is_edp(intel_dp))
1042			ironlake_edp_panel_off(dev);
1043		if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1044			ironlake_edp_pll_off(encoder);
1045	} else {
1046		if (is_edp(intel_dp))
1047			ironlake_edp_panel_vdd_on(intel_dp);
1048		intel_dp_sink_dpms(intel_dp, mode);
1049		if (!(dp_reg & DP_PORT_EN)) {
1050			intel_dp_start_link_train(intel_dp);
1051			if (is_edp(intel_dp)) {
1052				ironlake_edp_panel_on(intel_dp);
1053				ironlake_edp_panel_vdd_off(intel_dp);
1054			}
1055			intel_dp_complete_link_train(intel_dp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056		}
1057		if (is_edp(intel_dp))
1058			ironlake_edp_backlight_on(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059	}
1060	intel_dp->dpms_mode = mode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061}
1062
1063/*
1064 * Native read with retry for link status and receiver capability reads for
1065 * cases where the sink may still be asleep.
 
 
 
1066 */
1067static bool
1068intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1069			       uint8_t *recv, int recv_bytes)
1070{
1071	int ret, i;
 
1072
1073	/*
1074	 * Sinks are *supposed* to come up within 1ms from an off state,
1075	 * but we're also supposed to retry 3 times per the spec.
1076	 */
1077	for (i = 0; i < 3; i++) {
1078		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1079					       recv_bytes);
1080		if (ret == recv_bytes)
1081			return true;
1082		msleep(1);
1083	}
1084
1085	return false;
1086}
1087
1088/*
1089 * Fetch AUX CH registers 0x202 - 0x207 which contain
1090 * link status information
1091 */
1092static bool
1093intel_dp_get_link_status(struct intel_dp *intel_dp)
1094{
1095	return intel_dp_aux_native_read_retry(intel_dp,
1096					      DP_LANE0_1_STATUS,
1097					      intel_dp->link_status,
1098					      DP_LINK_STATUS_SIZE);
1099}
1100
1101static uint8_t
1102intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1103		     int r)
1104{
1105	return link_status[r - DP_LANE0_1_STATUS];
1106}
1107
1108static uint8_t
1109intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1110				 int lane)
1111{
1112	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1113	int	    s = ((lane & 1) ?
1114			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1115			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1116	uint8_t l = intel_dp_link_status(link_status, i);
1117
1118	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
 
 
 
 
 
 
 
1119}
1120
1121static uint8_t
1122intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1123				      int lane)
1124{
1125	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1126	int	    s = ((lane & 1) ?
1127			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1128			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1129	uint8_t l = intel_dp_link_status(link_status, i);
1130
1131	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132}
1133
1134
1135#if 0
1136static char	*voltage_names[] = {
1137	"0.4V", "0.6V", "0.8V", "1.2V"
1138};
1139static char	*pre_emph_names[] = {
1140	"0dB", "3.5dB", "6dB", "9.5dB"
1141};
1142static char	*link_train_names[] = {
1143	"pattern 1", "pattern 2", "idle", "off"
1144};
1145#endif
1146
1147/*
1148 * These are source-specific values; current Intel hardware supports
1149 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1150 */
1151#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800
1152
1153static uint8_t
1154intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1155{
1156	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1157	case DP_TRAIN_VOLTAGE_SWING_400:
1158		return DP_TRAIN_PRE_EMPHASIS_6;
1159	case DP_TRAIN_VOLTAGE_SWING_600:
1160		return DP_TRAIN_PRE_EMPHASIS_6;
1161	case DP_TRAIN_VOLTAGE_SWING_800:
1162		return DP_TRAIN_PRE_EMPHASIS_3_5;
1163	case DP_TRAIN_VOLTAGE_SWING_1200:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164	default:
1165		return DP_TRAIN_PRE_EMPHASIS_0;
1166	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1167}
1168
1169static void
1170intel_get_adjust_train(struct intel_dp *intel_dp)
 
1171{
1172	uint8_t v = 0;
1173	uint8_t p = 0;
1174	int lane;
 
 
1175
1176	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1177		uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1178		uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1179
1180		if (this_v > v)
1181			v = this_v;
1182		if (this_p > p)
1183			p = this_p;
1184	}
1185
1186	if (v >= I830_DP_VOLTAGE_MAX)
1187		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1188
1189	if (p >= intel_dp_pre_emphasis_max(v))
1190		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
 
 
1191
1192	for (lane = 0; lane < 4; lane++)
1193		intel_dp->train_set[lane] = v | p;
1194}
1195
1196static uint32_t
1197intel_dp_signal_levels(uint8_t train_set, int lane_count)
1198{
1199	uint32_t	signal_levels = 0;
1200
1201	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1202	case DP_TRAIN_VOLTAGE_SWING_400:
1203	default:
1204		signal_levels |= DP_VOLTAGE_0_4;
1205		break;
1206	case DP_TRAIN_VOLTAGE_SWING_600:
1207		signal_levels |= DP_VOLTAGE_0_6;
1208		break;
1209	case DP_TRAIN_VOLTAGE_SWING_800:
1210		signal_levels |= DP_VOLTAGE_0_8;
1211		break;
1212	case DP_TRAIN_VOLTAGE_SWING_1200:
1213		signal_levels |= DP_VOLTAGE_1_2;
1214		break;
1215	}
1216	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1217	case DP_TRAIN_PRE_EMPHASIS_0:
1218	default:
1219		signal_levels |= DP_PRE_EMPHASIS_0;
1220		break;
1221	case DP_TRAIN_PRE_EMPHASIS_3_5:
1222		signal_levels |= DP_PRE_EMPHASIS_3_5;
1223		break;
1224	case DP_TRAIN_PRE_EMPHASIS_6:
1225		signal_levels |= DP_PRE_EMPHASIS_6;
1226		break;
1227	case DP_TRAIN_PRE_EMPHASIS_9_5:
1228		signal_levels |= DP_PRE_EMPHASIS_9_5;
1229		break;
1230	}
1231	return signal_levels;
1232}
1233
1234/* Gen6's DP voltage swing and pre-emphasis control */
1235static uint32_t
1236intel_gen6_edp_signal_levels(uint8_t train_set)
1237{
1238	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1239					 DP_TRAIN_PRE_EMPHASIS_MASK);
1240	switch (signal_levels) {
1241	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1242	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1243		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1244	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1245		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1246	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1247	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1248		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1249	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1250	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1251		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1252	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1253	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1254		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1255	default:
1256		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1257			      "0x%x\n", signal_levels);
1258		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1259	}
1260}
1261
1262static uint8_t
1263intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1264		      int lane)
1265{
1266	int i = DP_LANE0_1_STATUS + (lane >> 1);
1267	int s = (lane & 1) * 4;
1268	uint8_t l = intel_dp_link_status(link_status, i);
 
 
 
 
 
 
 
 
 
 
 
1269
1270	return (l >> s) & 0xf;
 
 
 
 
 
 
 
 
 
1271}
1272
1273/* Check for clock recovery is done on all channels */
1274static bool
1275intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1276{
1277	int lane;
1278	uint8_t lane_status;
 
 
 
 
 
 
 
 
 
1279
1280	for (lane = 0; lane < lane_count; lane++) {
1281		lane_status = intel_get_lane_status(link_status, lane);
1282		if ((lane_status & DP_LANE_CR_DONE) == 0)
1283			return false;
 
 
 
 
 
 
 
 
 
 
 
1284	}
1285	return true;
1286}
1287
1288/* Check to see if channel eq is done on all channels */
1289#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1290			 DP_LANE_CHANNEL_EQ_DONE|\
1291			 DP_LANE_SYMBOL_LOCKED)
1292static bool
1293intel_channel_eq_ok(struct intel_dp *intel_dp)
1294{
1295	uint8_t lane_align;
1296	uint8_t lane_status;
1297	int lane;
 
 
 
 
 
 
1298
1299	lane_align = intel_dp_link_status(intel_dp->link_status,
1300					  DP_LANE_ALIGN_STATUS_UPDATED);
1301	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1302		return false;
1303	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1304		lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1305		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1306			return false;
 
 
 
 
 
 
 
 
 
 
 
1307	}
1308	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309}
1310
1311static bool
1312intel_dp_set_link_train(struct intel_dp *intel_dp,
1313			uint32_t dp_reg_value,
1314			uint8_t dp_train_pat)
1315{
1316	struct drm_device *dev = intel_dp->base.base.dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317	struct drm_i915_private *dev_priv = dev->dev_private;
1318	int ret;
1319
1320	I915_WRITE(intel_dp->output_reg, dp_reg_value);
 
 
 
1321	POSTING_READ(intel_dp->output_reg);
1322
1323	intel_dp_aux_native_write_1(intel_dp,
1324				    DP_TRAINING_PATTERN_SET,
1325				    dp_train_pat);
1326
1327	ret = intel_dp_aux_native_write(intel_dp,
1328					DP_TRAINING_LANE0_SET,
1329					intel_dp->train_set, 4);
1330	if (ret != 4)
1331		return false;
1332
1333	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334}
1335
1336/* Enable corresponding port and start training pattern 1 */
1337static void
1338intel_dp_start_link_train(struct intel_dp *intel_dp)
1339{
1340	struct drm_device *dev = intel_dp->base.base.dev;
1341	struct drm_i915_private *dev_priv = dev->dev_private;
1342	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1343	int i;
1344	uint8_t voltage;
1345	bool clock_recovery = false;
1346	int tries;
1347	u32 reg;
1348	uint32_t DP = intel_dp->DP;
 
1349
1350	/*
1351	 * On CPT we have to enable the port in training pattern 1, which
1352	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
1353	 * the port and wait for it to become active.
1354	 */
1355	if (!HAS_PCH_CPT(dev)) {
1356		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1357		POSTING_READ(intel_dp->output_reg);
1358		intel_wait_for_vblank(dev, intel_crtc->pipe);
1359	}
1360
1361	/* Write the link configuration data */
1362	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1363				  intel_dp->link_configuration,
1364				  DP_LINK_CONFIGURATION_SIZE);
 
 
 
 
 
 
1365
1366	DP |= DP_PORT_EN;
1367	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1368		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1369	else
1370		DP &= ~DP_LINK_TRAIN_MASK;
1371	memset(intel_dp->train_set, 0, 4);
1372	voltage = 0xff;
1373	tries = 0;
1374	clock_recovery = false;
1375	for (;;) {
1376		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1377		uint32_t    signal_levels;
1378		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1379			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1380			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1381		} else {
1382			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1383			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1384		}
1385
1386		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1387			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1388		else
1389			reg = DP | DP_LINK_TRAIN_PAT_1;
 
 
 
1390
1391		if (!intel_dp_set_link_train(intel_dp, reg,
1392					     DP_TRAINING_PATTERN_1 |
1393					     DP_LINK_SCRAMBLING_DISABLE))
1394			break;
1395		/* Set training pattern 1 */
1396
1397		udelay(100);
1398		if (!intel_dp_get_link_status(intel_dp))
 
1399			break;
 
1400
1401		if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1402			clock_recovery = true;
1403			break;
1404		}
1405
1406		/* Check to see if we've tried the max voltage */
1407		for (i = 0; i < intel_dp->lane_count; i++)
1408			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1409				break;
1410		if (i == intel_dp->lane_count)
1411			break;
 
 
 
 
 
 
 
 
 
 
1412
1413		/* Check to see if we've tried the same voltage 5 times */
1414		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1415			++tries;
1416			if (tries == 5)
 
1417				break;
 
1418		} else
1419			tries = 0;
1420		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1421
1422		/* Compute new intel_dp->train_set as requested by target */
1423		intel_get_adjust_train(intel_dp);
 
 
 
1424	}
1425
1426	intel_dp->DP = DP;
1427}
1428
1429static void
1430intel_dp_complete_link_train(struct intel_dp *intel_dp)
1431{
1432	struct drm_device *dev = intel_dp->base.base.dev;
1433	struct drm_i915_private *dev_priv = dev->dev_private;
1434	bool channel_eq = false;
1435	int tries, cr_tries;
1436	u32 reg;
1437	uint32_t DP = intel_dp->DP;
 
 
 
 
 
1438
1439	/* channel equalization */
 
 
 
 
 
 
 
1440	tries = 0;
1441	cr_tries = 0;
1442	channel_eq = false;
1443	for (;;) {
1444		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1445		uint32_t    signal_levels;
1446
1447		if (cr_tries > 5) {
1448			DRM_ERROR("failed to train DP, aborting\n");
1449			intel_dp_link_down(intel_dp);
1450			break;
1451		}
1452
1453		if (IS_GEN6(dev) && is_edp(intel_dp)) {
1454			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1455			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1456		} else {
1457			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1458			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1459		}
1460
1461		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1462			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1463		else
1464			reg = DP | DP_LINK_TRAIN_PAT_2;
1465
1466		/* channel eq pattern */
1467		if (!intel_dp_set_link_train(intel_dp, reg,
1468					     DP_TRAINING_PATTERN_2 |
1469					     DP_LINK_SCRAMBLING_DISABLE))
1470			break;
1471
1472		udelay(400);
1473		if (!intel_dp_get_link_status(intel_dp))
1474			break;
 
1475
1476		/* Make sure clock is still ok */
1477		if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1478			intel_dp_start_link_train(intel_dp);
 
 
 
1479			cr_tries++;
1480			continue;
1481		}
1482
1483		if (intel_channel_eq_ok(intel_dp)) {
1484			channel_eq = true;
1485			break;
1486		}
1487
1488		/* Try 5 times, then try clock recovery if that fails */
1489		if (tries > 5) {
1490			intel_dp_link_down(intel_dp);
1491			intel_dp_start_link_train(intel_dp);
 
 
 
1492			tries = 0;
1493			cr_tries++;
1494			continue;
1495		}
1496
1497		/* Compute new intel_dp->train_set as requested by target */
1498		intel_get_adjust_train(intel_dp);
 
 
 
1499		++tries;
1500	}
1501
1502	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1503		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1504	else
1505		reg = DP | DP_LINK_TRAIN_OFF;
 
 
1506
1507	I915_WRITE(intel_dp->output_reg, reg);
1508	POSTING_READ(intel_dp->output_reg);
1509	intel_dp_aux_native_write_1(intel_dp,
1510				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
 
 
1511}
1512
1513static void
1514intel_dp_link_down(struct intel_dp *intel_dp)
1515{
1516	struct drm_device *dev = intel_dp->base.base.dev;
 
 
1517	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
1518	uint32_t DP = intel_dp->DP;
1519
1520	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521		return;
1522
1523	DRM_DEBUG_KMS("\n");
 
1524
1525	if (is_edp(intel_dp)) {
1526		DP &= ~DP_PLL_ENABLE;
1527		I915_WRITE(intel_dp->output_reg, DP);
1528		POSTING_READ(intel_dp->output_reg);
1529		udelay(100);
1530	}
1531
1532	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1533		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1534		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1535	} else {
1536		DP &= ~DP_LINK_TRAIN_MASK;
1537		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1538	}
1539	POSTING_READ(intel_dp->output_reg);
1540
1541	msleep(17);
 
1542
1543	if (is_edp(intel_dp))
1544		DP |= DP_LINK_TRAIN_OFF;
1545
1546	if (!HAS_PCH_CPT(dev) &&
1547	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1548		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1549
1550		/* Hardware workaround: leaving our transcoder select
1551		 * set to transcoder B while it's off will prevent the
1552		 * corresponding HDMI output on transcoder A.
1553		 *
1554		 * Combine this with another hardware workaround:
1555		 * transcoder select bit can only be cleared while the
1556		 * port is enabled.
1557		 */
1558		DP &= ~DP_PIPEB_SELECT;
1559		I915_WRITE(intel_dp->output_reg, DP);
1560
1561		/* Changes to enable or select take place the vblank
1562		 * after being written.
1563		 */
1564		if (crtc == NULL) {
1565			/* We can arrive here never having been attached
1566			 * to a CRTC, for instance, due to inheriting
1567			 * random state from the BIOS.
1568			 *
1569			 * If the pipe is not running, play safe and
1570			 * wait for the clocks to stabilise before
1571			 * continuing.
1572			 */
1573			POSTING_READ(intel_dp->output_reg);
1574			msleep(50);
1575		} else
1576			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1577	}
1578
 
1579	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1580	POSTING_READ(intel_dp->output_reg);
 
1581}
1582
1583static bool
1584intel_dp_get_dpcd(struct intel_dp *intel_dp)
1585{
1586	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1587					   sizeof (intel_dp->dpcd)) &&
1588	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1589		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590	}
1591
1592	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593}
1594
1595/*
1596 * According to DP spec
1597 * 5.1.2:
1598 *  1. Read DPCD
1599 *  2. Configure link according to Receiver Capabilities
1600 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1601 *  4. Check link status on receipt of hot-plug interrupt
1602 */
1603
1604static void
1605intel_dp_check_link_status(struct intel_dp *intel_dp)
1606{
1607	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
 
 
 
 
1608		return;
1609
1610	if (!intel_dp->base.base.crtc)
1611		return;
1612
1613	/* Try to read receiver status if the link appears to be up */
1614	if (!intel_dp_get_link_status(intel_dp)) {
1615		intel_dp_link_down(intel_dp);
1616		return;
1617	}
1618
1619	/* Now read the DPCD to see if it's actually running */
1620	if (!intel_dp_get_dpcd(intel_dp)) {
1621		intel_dp_link_down(intel_dp);
1622		return;
1623	}
1624
1625	if (!intel_channel_eq_ok(intel_dp)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1627			      drm_get_encoder_name(&intel_dp->base.base));
1628		intel_dp_start_link_train(intel_dp);
1629		intel_dp_complete_link_train(intel_dp);
 
1630	}
1631}
1632
 
1633static enum drm_connector_status
1634intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1635{
1636	if (intel_dp_get_dpcd(intel_dp))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1637		return connector_status_connected;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638	return connector_status_disconnected;
1639}
1640
1641static enum drm_connector_status
1642ironlake_dp_detect(struct intel_dp *intel_dp)
1643{
 
 
 
1644	enum drm_connector_status status;
1645
1646	/* Can't disconnect eDP, but you can close the lid... */
1647	if (is_edp(intel_dp)) {
1648		status = intel_panel_detect(intel_dp->base.base.dev);
1649		if (status == connector_status_unknown)
1650			status = connector_status_connected;
1651		return status;
1652	}
1653
 
 
 
1654	return intel_dp_detect_dpcd(intel_dp);
1655}
1656
1657static enum drm_connector_status
1658g4x_dp_detect(struct intel_dp *intel_dp)
1659{
1660	struct drm_device *dev = intel_dp->base.base.dev;
1661	struct drm_i915_private *dev_priv = dev->dev_private;
1662	uint32_t temp, bit;
 
1663
1664	switch (intel_dp->output_reg) {
1665	case DP_B:
1666		bit = DPB_HOTPLUG_INT_STATUS;
1667		break;
1668	case DP_C:
1669		bit = DPC_HOTPLUG_INT_STATUS;
1670		break;
1671	case DP_D:
1672		bit = DPD_HOTPLUG_INT_STATUS;
1673		break;
1674	default:
1675		return connector_status_unknown;
1676	}
1677
1678	temp = I915_READ(PORT_HOTPLUG_STAT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1679
1680	if ((temp & bit) == 0)
1681		return connector_status_disconnected;
1682
1683	return intel_dp_detect_dpcd(intel_dp);
1684}
1685
1686/**
1687 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1688 *
1689 * \return true if DP port is connected.
1690 * \return false if DP port is disconnected.
1691 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692static enum drm_connector_status
1693intel_dp_detect(struct drm_connector *connector, bool force)
1694{
1695	struct intel_dp *intel_dp = intel_attached_dp(connector);
1696	struct drm_device *dev = intel_dp->base.base.dev;
 
 
 
1697	enum drm_connector_status status;
 
1698	struct edid *edid = NULL;
1699
 
 
 
 
 
 
 
 
1700	intel_dp->has_audio = false;
1701
1702	if (HAS_PCH_SPLIT(dev))
1703		status = ironlake_dp_detect(intel_dp);
1704	else
1705		status = g4x_dp_detect(intel_dp);
1706
1707	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1708		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1709		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1710		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
1711
1712	if (status != connector_status_connected)
1713		return status;
 
 
1714
1715	if (intel_dp->force_audio) {
1716		intel_dp->has_audio = intel_dp->force_audio > 0;
1717	} else {
1718		edid = drm_get_edid(connector, &intel_dp->adapter);
1719		if (edid) {
1720			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1721			connector->display_info.raw_edid = NULL;
1722			kfree(edid);
1723		}
1724	}
1725
1726	return connector_status_connected;
 
 
 
 
 
 
 
 
 
1727}
1728
1729static int intel_dp_get_modes(struct drm_connector *connector)
1730{
1731	struct intel_dp *intel_dp = intel_attached_dp(connector);
1732	struct drm_device *dev = intel_dp->base.base.dev;
 
 
 
1733	struct drm_i915_private *dev_priv = dev->dev_private;
 
1734	int ret;
1735
1736	/* We should parse the EDID data and find out if it has an audio sink
1737	 */
1738
1739	ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1740	if (ret) {
1741		if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1742			struct drm_display_mode *newmode;
1743			list_for_each_entry(newmode, &connector->probed_modes,
1744					    head) {
1745				if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1746					dev_priv->panel_fixed_mode =
1747						drm_mode_duplicate(dev, newmode);
1748					break;
1749				}
1750			}
1751		}
1752
 
 
 
1753		return ret;
1754	}
1755
1756	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1757	if (is_edp(intel_dp)) {
1758		if (dev_priv->panel_fixed_mode != NULL) {
1759			struct drm_display_mode *mode;
1760			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
 
1761			drm_mode_probed_add(connector, mode);
1762			return 1;
1763		}
1764	}
1765	return 0;
1766}
1767
1768static bool
1769intel_dp_detect_audio(struct drm_connector *connector)
1770{
1771	struct intel_dp *intel_dp = intel_attached_dp(connector);
 
 
 
 
 
1772	struct edid *edid;
1773	bool has_audio = false;
1774
1775	edid = drm_get_edid(connector, &intel_dp->adapter);
 
 
 
1776	if (edid) {
1777		has_audio = drm_detect_monitor_audio(edid);
1778
1779		connector->display_info.raw_edid = NULL;
1780		kfree(edid);
1781	}
1782
 
 
1783	return has_audio;
1784}
1785
1786static int
1787intel_dp_set_property(struct drm_connector *connector,
1788		      struct drm_property *property,
1789		      uint64_t val)
1790{
1791	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1792	struct intel_dp *intel_dp = intel_attached_dp(connector);
 
 
1793	int ret;
1794
1795	ret = drm_connector_property_set_value(connector, property, val);
1796	if (ret)
1797		return ret;
1798
1799	if (property == dev_priv->force_audio_property) {
1800		int i = val;
1801		bool has_audio;
1802
1803		if (i == intel_dp->force_audio)
1804			return 0;
1805
1806		intel_dp->force_audio = i;
1807
1808		if (i == 0)
1809			has_audio = intel_dp_detect_audio(connector);
1810		else
1811			has_audio = i > 0;
1812
1813		if (has_audio == intel_dp->has_audio)
1814			return 0;
1815
1816		intel_dp->has_audio = has_audio;
1817		goto done;
1818	}
1819
1820	if (property == dev_priv->broadcast_rgb_property) {
1821		if (val == !!intel_dp->color_range)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822			return 0;
 
 
1823
1824		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1825		goto done;
1826	}
1827
1828	return -EINVAL;
1829
1830done:
1831	if (intel_dp->base.base.crtc) {
1832		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1833		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1834					 crtc->x, crtc->y,
1835					 crtc->fb);
1836	}
1837
1838	return 0;
1839}
1840
1841static void
1842intel_dp_destroy (struct drm_connector *connector)
1843{
1844	struct drm_device *dev = connector->dev;
 
 
 
1845
1846	if (intel_dpd_is_edp(dev))
1847		intel_panel_destroy_backlight(dev);
 
 
1848
1849	drm_sysfs_connector_remove(connector);
1850	drm_connector_cleanup(connector);
1851	kfree(connector);
1852}
1853
1854static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1855{
1856	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 
 
1857
1858	i2c_del_adapter(&intel_dp->adapter);
1859	drm_encoder_cleanup(encoder);
1860	kfree(intel_dp);
 
 
 
 
 
 
1861}
1862
1863static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1864	.dpms = intel_dp_dpms,
1865	.mode_fixup = intel_dp_mode_fixup,
1866	.prepare = intel_dp_prepare,
1867	.mode_set = intel_dp_mode_set,
1868	.commit = intel_dp_commit,
1869};
1870
1871static const struct drm_connector_funcs intel_dp_connector_funcs = {
1872	.dpms = drm_helper_connector_dpms,
1873	.detect = intel_dp_detect,
1874	.fill_modes = drm_helper_probe_single_connector_modes,
1875	.set_property = intel_dp_set_property,
1876	.destroy = intel_dp_destroy,
1877};
1878
1879static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1880	.get_modes = intel_dp_get_modes,
1881	.mode_valid = intel_dp_mode_valid,
1882	.best_encoder = intel_best_encoder,
1883};
1884
1885static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1886	.destroy = intel_dp_encoder_destroy,
1887};
1888
1889static void
1890intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1891{
1892	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1893
1894	intel_dp_check_link_status(intel_dp);
1895}
1896
1897/* Return which DP Port should be selected for Transcoder DP control */
1898int
1899intel_trans_dp_port_sel (struct drm_crtc *crtc)
1900{
1901	struct drm_device *dev = crtc->dev;
1902	struct drm_mode_config *mode_config = &dev->mode_config;
1903	struct drm_encoder *encoder;
1904
1905	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1906		struct intel_dp *intel_dp;
1907
1908		if (encoder->crtc != crtc)
1909			continue;
1910
1911		intel_dp = enc_to_intel_dp(encoder);
1912		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1913			return intel_dp->output_reg;
1914	}
1915
1916	return -1;
1917}
1918
1919/* check the VBT to see whether the eDP is on DP-D port */
1920bool intel_dpd_is_edp(struct drm_device *dev)
1921{
1922	struct drm_i915_private *dev_priv = dev->dev_private;
1923	struct child_device_config *p_child;
1924	int i;
 
 
 
 
 
1925
1926	if (!dev_priv->child_dev_num)
 
 
 
1927		return false;
1928
1929	for (i = 0; i < dev_priv->child_dev_num; i++) {
1930		p_child = dev_priv->child_dev + i;
1931
1932		if (p_child->dvo_port == PORT_IDPD &&
1933		    p_child->device_type == DEVICE_TYPE_eDP)
 
1934			return true;
1935	}
1936	return false;
1937}
1938
1939static void
1940intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1941{
 
 
1942	intel_attach_force_audio_property(connector);
1943	intel_attach_broadcast_rgb_property(connector);
 
 
 
 
 
 
 
 
 
 
1944}
1945
1946void
1947intel_dp_init(struct drm_device *dev, int output_reg)
 
 
 
 
 
 
 
 
 
1948{
1949	struct drm_i915_private *dev_priv = dev->dev_private;
1950	struct drm_connector *connector;
1951	struct intel_dp *intel_dp;
1952	struct intel_encoder *intel_encoder;
1953	struct intel_connector *intel_connector;
1954	const char *name = NULL;
1955	int type;
1956
1957	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1958	if (!intel_dp)
1959		return;
 
 
 
 
1960
1961	intel_dp->output_reg = output_reg;
1962	intel_dp->dpms_mode = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963
1964	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1965	if (!intel_connector) {
1966		kfree(intel_dp);
1967		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968	}
1969	intel_encoder = &intel_dp->base;
1970
1971	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1972		if (intel_dpd_is_edp(dev))
1973			intel_dp->is_pch_edp = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974
1975	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1976		type = DRM_MODE_CONNECTOR_eDP;
1977		intel_encoder->type = INTEL_OUTPUT_EDP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1978	} else {
1979		type = DRM_MODE_CONNECTOR_DisplayPort;
1980		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
 
1981	}
1982
1983	connector = &intel_connector->base;
1984	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1985	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1986
1987	connector->polled = DRM_CONNECTOR_POLL_HPD;
 
 
 
 
 
 
 
 
 
 
 
1988
1989	if (output_reg == DP_B || output_reg == PCH_DP_B)
1990		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1991	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1992		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1993	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1994		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
 
 
 
1995
1996	if (is_edp(intel_dp))
1997		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1998
1999	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2000	connector->interlace_allowed = true;
2001	connector->doublescan_allowed = 0;
2002
2003	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2004			 DRM_MODE_ENCODER_TMDS);
2005	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2006
2007	intel_connector_attach_encoder(intel_connector, intel_encoder);
2008	drm_sysfs_connector_add(connector);
2009
2010	/* Set up the DDC bus. */
2011	switch (output_reg) {
2012		case DP_A:
2013			name = "DPDDC-A";
2014			break;
2015		case DP_B:
2016		case PCH_DP_B:
2017			dev_priv->hotplug_supported_mask |=
2018				HDMIB_HOTPLUG_INT_STATUS;
2019			name = "DPDDC-B";
2020			break;
2021		case DP_C:
2022		case PCH_DP_C:
2023			dev_priv->hotplug_supported_mask |=
2024				HDMIC_HOTPLUG_INT_STATUS;
2025			name = "DPDDC-C";
2026			break;
2027		case DP_D:
2028		case PCH_DP_D:
2029			dev_priv->hotplug_supported_mask |=
2030				HDMID_HOTPLUG_INT_STATUS;
2031			name = "DPDDC-D";
2032			break;
2033	}
2034
2035	intel_dp_i2c_init(intel_dp, intel_connector, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2036
2037	/* Cache some DPCD data in the eDP case */
2038	if (is_edp(intel_dp)) {
2039		bool ret;
2040		u32 pp_on, pp_div;
2041
2042		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2043		pp_div = I915_READ(PCH_PP_DIVISOR);
2044
2045		/* Get T3 & T12 values (note: VESA not bspec terminology) */
2046		dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
2047		dev_priv->panel_t3 /= 10; /* t3 in 100us units */
2048		dev_priv->panel_t12 = pp_div & 0xf;
2049		dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
2050
2051		ironlake_edp_panel_vdd_on(intel_dp);
2052		ret = intel_dp_get_dpcd(intel_dp);
2053		ironlake_edp_panel_vdd_off(intel_dp);
2054		if (ret) {
2055			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2056				dev_priv->no_aux_handshake =
2057					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2058					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2059		} else {
2060			/* if this fails, presume the device is a ghost */
2061			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2062			intel_dp_encoder_destroy(&intel_dp->base.base);
2063			intel_dp_destroy(&intel_connector->base);
2064			return;
2065		}
2066	}
2067
2068	intel_encoder->hot_plug = intel_dp_hot_plug;
2069
2070	if (is_edp(intel_dp)) {
2071		/* initialize panel mode from VBT if available for eDP */
2072		if (dev_priv->lfp_lvds_vbt_mode) {
2073			dev_priv->panel_fixed_mode =
2074				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2075			if (dev_priv->panel_fixed_mode) {
2076				dev_priv->panel_fixed_mode->type |=
2077					DRM_MODE_TYPE_PREFERRED;
2078			}
2079		}
2080		dev_priv->int_edp_connector = connector;
2081		intel_panel_setup_backlight(dev);
 
2082	}
2083
2084	intel_dp_add_properties(intel_dp, connector);
2085
2086	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2087	 * 0xd.  Failure to do so will result in spurious interrupts being
2088	 * generated on the port when a cable is not attached.
2089	 */
2090	if (IS_G4X(dev) && !IS_GM45(dev)) {
2091		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2092		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2093	}
2094}
v3.15
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/slab.h>
  30#include <linux/export.h>
  31#include <drm/drmP.h>
  32#include <drm/drm_crtc.h>
  33#include <drm/drm_crtc_helper.h>
  34#include <drm/drm_edid.h>
  35#include "intel_drv.h"
  36#include <drm/i915_drm.h>
  37#include "i915_drv.h"
 
  38
 
 
  39#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
  40
  41struct dp_link_dpll {
  42	int link_bw;
  43	struct dpll dpll;
  44};
  45
  46static const struct dp_link_dpll gen4_dpll[] = {
  47	{ DP_LINK_BW_1_62,
  48		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  49	{ DP_LINK_BW_2_7,
  50		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
  51};
  52
  53static const struct dp_link_dpll pch_dpll[] = {
  54	{ DP_LINK_BW_1_62,
  55		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
  56	{ DP_LINK_BW_2_7,
  57		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
  58};
  59
  60static const struct dp_link_dpll vlv_dpll[] = {
  61	{ DP_LINK_BW_1_62,
  62		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
  63	{ DP_LINK_BW_2_7,
  64		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
 
 
 
 
 
 
 
 
 
 
 
 
  65};
  66
  67/**
  68 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  69 * @intel_dp: DP struct
  70 *
  71 * If a CPU or PCH DP output is attached to an eDP panel, this function
  72 * will return true, and false otherwise.
  73 */
  74static bool is_edp(struct intel_dp *intel_dp)
  75{
  76	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 
  77
  78	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
 
 
 
 
 
 
 
 
 
 
  79}
  80
  81static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  82{
  83	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 
  84
  85	return intel_dig_port->base.base.dev;
 
 
 
  86}
  87
  88static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
 
 
 
 
 
 
 
  89{
  90	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
 
 
 
 
 
 
 
  91}
  92
 
 
  93static void intel_dp_link_down(struct intel_dp *intel_dp);
  94static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
  95static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96
  97static int
  98intel_dp_max_link_bw(struct intel_dp *intel_dp)
  99{
 100	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 101	struct drm_device *dev = intel_dp->attached_connector->base.dev;
 102
 103	switch (max_link_bw) {
 104	case DP_LINK_BW_1_62:
 105	case DP_LINK_BW_2_7:
 106		break;
 107	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
 108		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
 109		     INTEL_INFO(dev)->gen >= 8) &&
 110		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
 111			max_link_bw = DP_LINK_BW_5_4;
 112		else
 113			max_link_bw = DP_LINK_BW_2_7;
 114		break;
 115	default:
 116		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
 117		     max_link_bw);
 118		max_link_bw = DP_LINK_BW_1_62;
 119		break;
 120	}
 121	return max_link_bw;
 122}
 123
 124static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
 
 125{
 126	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 127	struct drm_device *dev = intel_dig_port->base.base.dev;
 128	u8 source_max, sink_max;
 129
 130	source_max = 4;
 131	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
 132	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
 133		source_max = 2;
 134
 135	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
 136
 137	return min(source_max, sink_max);
 138}
 139
 140/*
 141 * The units on the numbers in the next two are... bizarre.  Examples will
 142 * make it clearer; this one parallels an example in the eDP spec.
 143 *
 144 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
 145 *
 146 *     270000 * 1 * 8 / 10 == 216000
 147 *
 148 * The actual data capacity of that configuration is 2.16Gbit/s, so the
 149 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
 150 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
 151 * 119000.  At 18bpp that's 2142000 kilobits per second.
 152 *
 153 * Thus the strange-looking division by 10 in intel_dp_link_required, to
 154 * get the result in decakilobits instead of kilobits.
 155 */
 156
 157static int
 158intel_dp_link_required(int pixel_clock, int bpp)
 159{
 160	return (pixel_clock * bpp + 9) / 10;
 
 
 
 
 
 
 
 161}
 162
 163static int
 164intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 165{
 166	return (max_link_clock * max_lanes * 8) / 10;
 167}
 168
 169static enum drm_mode_status
 170intel_dp_mode_valid(struct drm_connector *connector,
 171		    struct drm_display_mode *mode)
 172{
 173	struct intel_dp *intel_dp = intel_attached_dp(connector);
 174	struct intel_connector *intel_connector = to_intel_connector(connector);
 175	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
 176	int target_clock = mode->clock;
 177	int max_rate, mode_rate, max_lanes, max_link_clock;
 178
 179	if (is_edp(intel_dp) && fixed_mode) {
 180		if (mode->hdisplay > fixed_mode->hdisplay)
 181			return MODE_PANEL;
 182
 183		if (mode->vdisplay > fixed_mode->vdisplay)
 184			return MODE_PANEL;
 185
 186		target_clock = fixed_mode->clock;
 187	}
 188
 189	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
 190	max_lanes = intel_dp_max_lane_count(intel_dp);
 191
 192	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
 193	mode_rate = intel_dp_link_required(target_clock, 18);
 194
 195	if (mode_rate > max_rate)
 196		return MODE_CLOCK_HIGH;
 197
 198	if (mode->clock < 10000)
 199		return MODE_CLOCK_LOW;
 200
 201	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
 202		return MODE_H_ILLEGAL;
 203
 204	return MODE_OK;
 205}
 206
 207static uint32_t
 208pack_aux(uint8_t *src, int src_bytes)
 209{
 210	int	i;
 211	uint32_t v = 0;
 212
 213	if (src_bytes > 4)
 214		src_bytes = 4;
 215	for (i = 0; i < src_bytes; i++)
 216		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 217	return v;
 218}
 219
 220static void
 221unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 222{
 223	int i;
 224	if (dst_bytes > 4)
 225		dst_bytes = 4;
 226	for (i = 0; i < dst_bytes; i++)
 227		dst[i] = src >> ((3-i) * 8);
 228}
 229
 230/* hrawclock is 1/4 the FSB frequency */
 231static int
 232intel_hrawclk(struct drm_device *dev)
 233{
 234	struct drm_i915_private *dev_priv = dev->dev_private;
 235	uint32_t clkcfg;
 236
 237	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
 238	if (IS_VALLEYVIEW(dev))
 239		return 200;
 240
 241	clkcfg = I915_READ(CLKCFG);
 242	switch (clkcfg & CLKCFG_FSB_MASK) {
 243	case CLKCFG_FSB_400:
 244		return 100;
 245	case CLKCFG_FSB_533:
 246		return 133;
 247	case CLKCFG_FSB_667:
 248		return 166;
 249	case CLKCFG_FSB_800:
 250		return 200;
 251	case CLKCFG_FSB_1067:
 252		return 266;
 253	case CLKCFG_FSB_1333:
 254		return 333;
 255	/* these two are just a guess; one of them might be right */
 256	case CLKCFG_FSB_1600:
 257	case CLKCFG_FSB_1600_ALT:
 258		return 400;
 259	default:
 260		return 133;
 261	}
 262}
 263
 264static void
 265intel_dp_init_panel_power_sequencer(struct drm_device *dev,
 266				    struct intel_dp *intel_dp,
 267				    struct edp_power_seq *out);
 268static void
 269intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
 270					      struct intel_dp *intel_dp,
 271					      struct edp_power_seq *out);
 272
 273static enum pipe
 274vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
 275{
 276	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 277	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
 278	struct drm_device *dev = intel_dig_port->base.base.dev;
 279	struct drm_i915_private *dev_priv = dev->dev_private;
 280	enum port port = intel_dig_port->port;
 281	enum pipe pipe;
 282
 283	/* modeset should have pipe */
 284	if (crtc)
 285		return to_intel_crtc(crtc)->pipe;
 286
 287	/* init time, try to find a pipe with this port selected */
 288	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
 289		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
 290			PANEL_PORT_SELECT_MASK;
 291		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
 292			return pipe;
 293		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
 294			return pipe;
 295	}
 296
 297	/* shrug */
 298	return PIPE_A;
 299}
 300
 301static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
 302{
 303	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 304
 305	if (HAS_PCH_SPLIT(dev))
 306		return PCH_PP_CONTROL;
 307	else
 308		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
 309}
 310
 311static u32 _pp_stat_reg(struct intel_dp *intel_dp)
 312{
 313	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 314
 315	if (HAS_PCH_SPLIT(dev))
 316		return PCH_PP_STATUS;
 317	else
 318		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
 319}
 320
 321static bool edp_have_panel_power(struct intel_dp *intel_dp)
 322{
 323	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 324	struct drm_i915_private *dev_priv = dev->dev_private;
 325
 326	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
 327}
 328
 329static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
 330{
 331	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 332	struct drm_i915_private *dev_priv = dev->dev_private;
 333
 334	return !dev_priv->pm.suspended &&
 335	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
 336}
 337
 338static void
 339intel_dp_check_edp(struct intel_dp *intel_dp)
 340{
 341	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 342	struct drm_i915_private *dev_priv = dev->dev_private;
 343
 344	if (!is_edp(intel_dp))
 345		return;
 346
 347	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
 348		WARN(1, "eDP powered off while attempting aux channel communication.\n");
 349		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
 350			      I915_READ(_pp_stat_reg(intel_dp)),
 351			      I915_READ(_pp_ctrl_reg(intel_dp)));
 352	}
 353}
 354
 355static uint32_t
 356intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
 357{
 358	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 359	struct drm_device *dev = intel_dig_port->base.base.dev;
 360	struct drm_i915_private *dev_priv = dev->dev_private;
 361	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
 362	uint32_t status;
 363	bool done;
 
 364
 365#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 366	if (has_aux_irq)
 367		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
 368					  msecs_to_jiffies_timeout(10));
 369	else
 370		done = wait_for_atomic(C, 10) == 0;
 371	if (!done)
 372		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
 373			  has_aux_irq);
 374#undef C
 375
 376	return status;
 377}
 378
 379static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
 380{
 381	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 382	struct drm_device *dev = intel_dig_port->base.base.dev;
 383
 384	/*
 385	 * The clock divider is based off the hrawclk, and would like to run at
 386	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
 387	 */
 388	return index ? 0 : intel_hrawclk(dev) / 2;
 389}
 390
 391static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
 392{
 393	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 394	struct drm_device *dev = intel_dig_port->base.base.dev;
 395
 396	if (index)
 397		return 0;
 398
 399	if (intel_dig_port->port == PORT_A) {
 400		if (IS_GEN6(dev) || IS_GEN7(dev))
 401			return 200; /* SNB & IVB eDP input clock at 400Mhz */
 402		else
 403			return 225; /* eDP input clock at 450Mhz */
 404	} else {
 405		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
 406	}
 407}
 408
 409static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
 410{
 411	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 412	struct drm_device *dev = intel_dig_port->base.base.dev;
 413	struct drm_i915_private *dev_priv = dev->dev_private;
 414
 415	if (intel_dig_port->port == PORT_A) {
 416		if (index)
 417			return 0;
 418		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
 419	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
 420		/* Workaround for non-ULT HSW */
 421		switch (index) {
 422		case 0: return 63;
 423		case 1: return 72;
 424		default: return 0;
 425		}
 426	} else  {
 427		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
 428	}
 429}
 430
 431static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
 432{
 433	return index ? 0 : 100;
 434}
 435
 436static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
 437				      bool has_aux_irq,
 438				      int send_bytes,
 439				      uint32_t aux_clock_divider)
 440{
 441	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 442	struct drm_device *dev = intel_dig_port->base.base.dev;
 443	uint32_t precharge, timeout;
 444
 445	if (IS_GEN6(dev))
 446		precharge = 3;
 447	else
 448		precharge = 5;
 449
 450	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
 451		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
 452	else
 453		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
 454
 455	return DP_AUX_CH_CTL_SEND_BUSY |
 456	       DP_AUX_CH_CTL_DONE |
 457	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
 458	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
 459	       timeout |
 460	       DP_AUX_CH_CTL_RECEIVE_ERROR |
 461	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 462	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 463	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
 464}
 465
 466static int
 467intel_dp_aux_ch(struct intel_dp *intel_dp,
 468		uint8_t *send, int send_bytes,
 469		uint8_t *recv, int recv_size)
 470{
 471	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 472	struct drm_device *dev = intel_dig_port->base.base.dev;
 473	struct drm_i915_private *dev_priv = dev->dev_private;
 474	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
 475	uint32_t ch_data = ch_ctl + 4;
 476	uint32_t aux_clock_divider;
 477	int i, ret, recv_bytes;
 478	uint32_t status;
 479	int try, clock = 0;
 480	bool has_aux_irq = HAS_AUX_IRQ(dev);
 481	bool vdd;
 482
 483	vdd = _edp_panel_vdd_on(intel_dp);
 484
 485	/* dp aux is extremely sensitive to irq latency, hence request the
 486	 * lowest possible wakeup latency and so prevent the cpu from going into
 487	 * deep sleep states.
 488	 */
 489	pm_qos_update_request(&dev_priv->pm_qos, 0);
 490
 491	intel_dp_check_edp(intel_dp);
 492
 493	intel_aux_display_runtime_get(dev_priv);
 494
 495	/* Try to wait for any previous AUX channel activity */
 496	for (try = 0; try < 3; try++) {
 497		status = I915_READ_NOTRACE(ch_ctl);
 498		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 499			break;
 500		msleep(1);
 501	}
 502
 503	if (try == 3) {
 504		WARN(1, "dp_aux_ch not started status 0x%08x\n",
 505		     I915_READ(ch_ctl));
 506		ret = -EBUSY;
 507		goto out;
 508	}
 509
 510	/* Only 5 data registers! */
 511	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
 512		ret = -E2BIG;
 513		goto out;
 514	}
 515
 516	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
 517		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
 518							  has_aux_irq,
 519							  send_bytes,
 520							  aux_clock_divider);
 521
 522		/* Must try at least 3 times according to DP spec */
 523		for (try = 0; try < 5; try++) {
 524			/* Load the send data into the aux channel data registers */
 525			for (i = 0; i < send_bytes; i += 4)
 526				I915_WRITE(ch_data + i,
 527					   pack_aux(send + i, send_bytes - i));
 528
 529			/* Send the command and wait for it to complete */
 530			I915_WRITE(ch_ctl, send_ctl);
 531
 532			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
 533
 534			/* Clear done status and any errors */
 535			I915_WRITE(ch_ctl,
 536				   status |
 537				   DP_AUX_CH_CTL_DONE |
 538				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 539				   DP_AUX_CH_CTL_RECEIVE_ERROR);
 540
 541			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
 542				      DP_AUX_CH_CTL_RECEIVE_ERROR))
 543				continue;
 544			if (status & DP_AUX_CH_CTL_DONE)
 545				break;
 
 546		}
 
 
 
 
 
 
 
 547		if (status & DP_AUX_CH_CTL_DONE)
 548			break;
 549	}
 550
 551	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 552		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 553		ret = -EBUSY;
 554		goto out;
 555	}
 556
 557	/* Check for timeout or receive error.
 558	 * Timeouts occur when the sink is not connected
 559	 */
 560	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 561		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 562		ret = -EIO;
 563		goto out;
 564	}
 565
 566	/* Timeouts occur when the device isn't connected, so they're
 567	 * "normal" -- don't fill the kernel log with these */
 568	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 569		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 570		ret = -ETIMEDOUT;
 571		goto out;
 572	}
 573
 574	/* Unload any bytes sent back from the other side */
 575	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 576		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 577	if (recv_bytes > recv_size)
 578		recv_bytes = recv_size;
 579
 580	for (i = 0; i < recv_bytes; i += 4)
 581		unpack_aux(I915_READ(ch_data + i),
 582			   recv + i, recv_bytes - i);
 583
 584	ret = recv_bytes;
 585out:
 586	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
 587	intel_aux_display_runtime_put(dev_priv);
 588
 589	if (vdd)
 590		edp_panel_vdd_off(intel_dp, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591
 592	return ret;
 
 
 
 
 
 593}
 594
 595#define BARE_ADDRESS_SIZE	3
 596#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
 597static ssize_t
 598intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
 599{
 600	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
 601	uint8_t txbuf[20], rxbuf[20];
 602	size_t txsize, rxsize;
 
 
 603	int ret;
 604
 605	txbuf[0] = msg->request << 4;
 606	txbuf[1] = msg->address >> 8;
 607	txbuf[2] = msg->address & 0xff;
 608	txbuf[3] = msg->size - 1;
 609
 610	switch (msg->request & ~DP_AUX_I2C_MOT) {
 611	case DP_AUX_NATIVE_WRITE:
 612	case DP_AUX_I2C_WRITE:
 613		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
 614		rxsize = 1;
 615
 616		if (WARN_ON(txsize > 20))
 617			return -E2BIG;
 618
 619		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
 620
 621		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
 622		if (ret > 0) {
 623			msg->reply = rxbuf[0] >> 4;
 624
 625			/* Return payload size. */
 626			ret = msg->size;
 627		}
 628		break;
 629
 630	case DP_AUX_NATIVE_READ:
 631	case DP_AUX_I2C_READ:
 632		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
 633		rxsize = msg->size + 1;
 634
 635		if (WARN_ON(rxsize > 20))
 636			return -E2BIG;
 637
 638		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
 639		if (ret > 0) {
 640			msg->reply = rxbuf[0] >> 4;
 641			/*
 642			 * Assume happy day, and copy the data. The caller is
 643			 * expected to check msg->reply before touching it.
 644			 *
 645			 * Return payload size.
 646			 */
 647			ret--;
 648			memcpy(msg->buffer, rxbuf + 1, ret);
 649		}
 650		break;
 651
 652	default:
 653		ret = -EINVAL;
 654		break;
 655	}
 656
 657	return ret;
 658}
 659
 660static void
 661intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
 
 662{
 663	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 664	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
 665	enum port port = intel_dig_port->port;
 666	const char *name = NULL;
 
 
 
 
 
 
 667	int ret;
 668
 669	switch (port) {
 670	case PORT_A:
 671		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
 672		name = "DPDDC-A";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673		break;
 674	case PORT_B:
 675		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
 676		name = "DPDDC-B";
 677		break;
 678	case PORT_C:
 679		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
 680		name = "DPDDC-C";
 681		break;
 682	case PORT_D:
 683		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
 684		name = "DPDDC-D";
 685		break;
 686	default:
 687		BUG();
 688	}
 689
 690	if (!HAS_DDI(dev))
 691		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
 
 
 
 
 
 
 692
 693	intel_dp->aux.name = name;
 694	intel_dp->aux.dev = dev->dev;
 695	intel_dp->aux.transfer = intel_dp_aux_transfer;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696
 697	DRM_DEBUG_KMS("registering %s bus for %s\n", name,
 698		      connector->base.kdev->kobj.name);
 699
 700	ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
 701	if (ret < 0) {
 702		DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
 703			  name, ret);
 704		return;
 
 
 
 
 
 
 
 
 
 705	}
 706
 707	ret = sysfs_create_link(&connector->base.kdev->kobj,
 708				&intel_dp->aux.ddc.dev.kobj,
 709				intel_dp->aux.ddc.dev.kobj.name);
 710	if (ret < 0) {
 711		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
 712		drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
 713	}
 714}
 715
 716static void
 717intel_dp_connector_unregister(struct intel_connector *intel_connector)
 
 718{
 719	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
 
 
 
 
 
 
 
 
 
 
 
 720
 721	sysfs_remove_link(&intel_connector->base.kdev->kobj,
 722			  intel_dp->aux.ddc.dev.kobj.name);
 723	intel_connector_unregister(intel_connector);
 724}
 725
 726static void
 727intel_dp_set_clock(struct intel_encoder *encoder,
 728		   struct intel_crtc_config *pipe_config, int link_bw)
 729{
 730	struct drm_device *dev = encoder->base.dev;
 731	const struct dp_link_dpll *divisor = NULL;
 732	int i, count = 0;
 733
 734	if (IS_G4X(dev)) {
 735		divisor = gen4_dpll;
 736		count = ARRAY_SIZE(gen4_dpll);
 737	} else if (IS_HASWELL(dev)) {
 738		/* Haswell has special-purpose DP DDI clocks. */
 739	} else if (HAS_PCH_SPLIT(dev)) {
 740		divisor = pch_dpll;
 741		count = ARRAY_SIZE(pch_dpll);
 742	} else if (IS_VALLEYVIEW(dev)) {
 743		divisor = vlv_dpll;
 744		count = ARRAY_SIZE(vlv_dpll);
 745	}
 746
 747	if (divisor && count) {
 748		for (i = 0; i < count; i++) {
 749			if (link_bw == divisor[i].link_bw) {
 750				pipe_config->dpll = divisor[i].dpll;
 751				pipe_config->clock_set = true;
 752				break;
 753			}
 754		}
 755	}
 756}
 757
 758bool
 759intel_dp_compute_config(struct intel_encoder *encoder,
 760			struct intel_crtc_config *pipe_config)
 761{
 762	struct drm_device *dev = encoder->base.dev;
 763	struct drm_i915_private *dev_priv = dev->dev_private;
 764	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
 765	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
 766	enum port port = dp_to_dig_port(intel_dp)->port;
 767	struct intel_crtc *intel_crtc = encoder->new_crtc;
 768	struct intel_connector *intel_connector = intel_dp->attached_connector;
 769	int lane_count, clock;
 770	int min_lane_count = 1;
 771	int max_lane_count = intel_dp_max_lane_count(intel_dp);
 772	/* Conveniently, the link BW constants become indices with a shift...*/
 773	int min_clock = 0;
 774	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
 775	int bpp, mode_rate;
 776	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
 777	int link_avail, link_clock;
 778
 779	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
 780		pipe_config->has_pch_encoder = true;
 781
 782	pipe_config->has_dp_encoder = true;
 783
 784	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
 785		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
 786				       adjusted_mode);
 787		if (!HAS_PCH_SPLIT(dev))
 788			intel_gmch_panel_fitting(intel_crtc, pipe_config,
 789						 intel_connector->panel.fitting_mode);
 790		else
 791			intel_pch_panel_fitting(intel_crtc, pipe_config,
 792						intel_connector->panel.fitting_mode);
 793	}
 794
 795	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
 796		return false;
 797
 798	DRM_DEBUG_KMS("DP link computation with max lane count %i "
 799		      "max bw %02x pixel clock %iKHz\n",
 800		      max_lane_count, bws[max_clock],
 801		      adjusted_mode->crtc_clock);
 802
 803	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
 804	 * bpc in between. */
 805	bpp = pipe_config->pipe_bpp;
 806	if (is_edp(intel_dp)) {
 807		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
 808			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
 809				      dev_priv->vbt.edp_bpp);
 810			bpp = dev_priv->vbt.edp_bpp;
 811		}
 812
 813		if (IS_BROADWELL(dev)) {
 814			/* Yes, it's an ugly hack. */
 815			min_lane_count = max_lane_count;
 816			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
 817				      min_lane_count);
 818		} else if (dev_priv->vbt.edp_lanes) {
 819			min_lane_count = min(dev_priv->vbt.edp_lanes,
 820					     max_lane_count);
 821			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
 822				      min_lane_count);
 823		}
 824
 825		if (dev_priv->vbt.edp_rate) {
 826			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
 827			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
 828				      bws[min_clock]);
 829		}
 830	}
 831
 832	for (; bpp >= 6*3; bpp -= 2*3) {
 833		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
 834						   bpp);
 835
 836		for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
 837			for (clock = min_clock; clock <= max_clock; clock++) {
 838				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
 839				link_avail = intel_dp_max_data_rate(link_clock,
 840								    lane_count);
 841
 842				if (mode_rate <= link_avail) {
 843					goto found;
 844				}
 
 845			}
 846		}
 847	}
 848
 849	return false;
 
 
 
 
 
 
 
 
 850
 851found:
 852	if (intel_dp->color_range_auto) {
 853		/*
 854		 * See:
 855		 * CEA-861-E - 5.1 Default Encoding Parameters
 856		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
 857		 */
 858		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
 859			intel_dp->color_range = DP_COLOR_RANGE_16_235;
 860		else
 861			intel_dp->color_range = 0;
 862	}
 863
 864	if (intel_dp->color_range)
 865		pipe_config->limited_color_range = true;
 866
 867	intel_dp->link_bw = bws[clock];
 868	intel_dp->lane_count = lane_count;
 869	pipe_config->pipe_bpp = bpp;
 870	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
 
 
 
 871
 872	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
 873		      intel_dp->link_bw, intel_dp->lane_count,
 874		      pipe_config->port_clock, bpp);
 875	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
 876		      mode_rate, link_avail);
 877
 878	intel_link_compute_m_n(bpp, lane_count,
 879			       adjusted_mode->crtc_clock,
 880			       pipe_config->port_clock,
 881			       &pipe_config->dp_m_n);
 882
 883	intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
 884
 885	return true;
 886}
 887
 888static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
 889{
 890	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 891	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
 892	struct drm_device *dev = crtc->base.dev;
 893	struct drm_i915_private *dev_priv = dev->dev_private;
 894	u32 dpa_ctl;
 895
 896	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
 897	dpa_ctl = I915_READ(DP_A);
 898	dpa_ctl &= ~DP_PLL_FREQ_MASK;
 899
 900	if (crtc->config.port_clock == 162000) {
 901		/* For a long time we've carried around a ILK-DevA w/a for the
 902		 * 160MHz clock. If we're really unlucky, it's still required.
 903		 */
 904		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
 905		dpa_ctl |= DP_PLL_FREQ_160MHZ;
 906		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
 907	} else {
 908		dpa_ctl |= DP_PLL_FREQ_270MHZ;
 909		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
 910	}
 
 911
 912	I915_WRITE(DP_A, dpa_ctl);
 913
 914	POSTING_READ(DP_A);
 915	udelay(500);
 
 
 
 
 
 
 
 
 
 
 916}
 917
 918static void intel_dp_mode_set(struct intel_encoder *encoder)
 
 
 919{
 920	struct drm_device *dev = encoder->base.dev;
 
 
 921	struct drm_i915_private *dev_priv = dev->dev_private;
 922	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
 923	enum port port = dp_to_dig_port(intel_dp)->port;
 924	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
 925	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
 926
 927	/*
 928	 * There are four kinds of DP registers:
 929	 *
 930	 * 	IBX PCH
 931	 * 	SNB CPU
 932	 *	IVB CPU
 933	 * 	CPT PCH
 934	 *
 935	 * IBX PCH and CPU are the same for almost everything,
 936	 * except that the CPU DP PLL is configured in this
 937	 * register
 938	 *
 939	 * CPT PCH is quite different, having many bits moved
 940	 * to the TRANS_DP_CTL register instead. That
 941	 * configuration happens (oddly) in ironlake_pch_enable
 942	 */
 
 
 943
 944	/* Preserve the BIOS-computed detected bit. This is
 945	 * supposed to be read-only.
 946	 */
 947	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
 948
 949	/* Handle DP bits in common between all three register formats */
 950	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
 951	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
 952
 953	if (intel_dp->has_audio) {
 954		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
 955				 pipe_name(crtc->pipe));
 956		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
 957		intel_write_eld(&encoder->base, adjusted_mode);
 958	}
 959
 960	/* Split out the IBX/CPU vs CPT settings */
 
 
 
 
 
 
 961
 962	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
 963		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 964			intel_dp->DP |= DP_SYNC_HS_HIGH;
 965		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 966			intel_dp->DP |= DP_SYNC_VS_HIGH;
 967		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 968
 969		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
 970			intel_dp->DP |= DP_ENHANCED_FRAMING;
 971
 972		intel_dp->DP |= crtc->pipe << 29;
 973	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
 974		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
 975			intel_dp->DP |= intel_dp->color_range;
 976
 977		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 978			intel_dp->DP |= DP_SYNC_HS_HIGH;
 979		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 980			intel_dp->DP |= DP_SYNC_VS_HIGH;
 981		intel_dp->DP |= DP_LINK_TRAIN_OFF;
 982
 983		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
 984			intel_dp->DP |= DP_ENHANCED_FRAMING;
 985
 986		if (crtc->pipe == 1)
 987			intel_dp->DP |= DP_PIPEB_SELECT;
 988	} else {
 989		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 
 
 
 
 
 990	}
 991
 992	if (port == PORT_A && !IS_VALLEYVIEW(dev))
 993		ironlake_set_pll_cpu_edp(intel_dp);
 994}
 995
 996#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
 997#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
 
 
 
 
 
 
 998
 999#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1000#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1001
1002#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1003#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
 
 
1004
1005static void wait_panel_status(struct intel_dp *intel_dp,
1006				       u32 mask,
1007				       u32 value)
1008{
1009	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1010	struct drm_i915_private *dev_priv = dev->dev_private;
1011	u32 pp_stat_reg, pp_ctrl_reg;
1012
1013	pp_stat_reg = _pp_stat_reg(intel_dp);
1014	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
 
 
 
 
 
 
 
 
 
 
 
1015
1016	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1017			mask, value,
1018			I915_READ(pp_stat_reg),
1019			I915_READ(pp_ctrl_reg));
1020
1021	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1022		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1023				I915_READ(pp_stat_reg),
1024				I915_READ(pp_ctrl_reg));
 
 
 
1025	}
1026
1027	DRM_DEBUG_KMS("Wait complete\n");
1028}
1029
1030static void wait_panel_on(struct intel_dp *intel_dp)
1031{
1032	DRM_DEBUG_KMS("Wait for panel power on\n");
1033	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1034}
1035
1036static void wait_panel_off(struct intel_dp *intel_dp)
1037{
1038	DRM_DEBUG_KMS("Wait for panel power off time\n");
1039	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1040}
1041
1042static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1043{
1044	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1045
1046	/* When we disable the VDD override bit last we have to do the manual
1047	 * wait. */
1048	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1049				       intel_dp->panel_power_cycle_delay);
1050
1051	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1052}
1053
1054static void wait_backlight_on(struct intel_dp *intel_dp)
1055{
1056	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1057				       intel_dp->backlight_on_delay);
1058}
1059
1060static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1061{
1062	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1063				       intel_dp->backlight_off_delay);
1064}
1065
1066/* Read the current pp_control value, unlocking the register if it
1067 * is locked
1068 */
1069
1070static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1071{
1072	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1073	struct drm_i915_private *dev_priv = dev->dev_private;
1074	u32 control;
1075
1076	control = I915_READ(_pp_ctrl_reg(intel_dp));
1077	control &= ~PANEL_UNLOCK_MASK;
1078	control |= PANEL_UNLOCK_REGS;
1079	return control;
1080}
1081
1082static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1083{
1084	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1085	struct drm_i915_private *dev_priv = dev->dev_private;
1086	u32 pp;
1087	u32 pp_stat_reg, pp_ctrl_reg;
1088	bool need_to_disable = !intel_dp->want_panel_vdd;
1089
1090	if (!is_edp(intel_dp))
1091		return false;
1092
1093	intel_dp->want_panel_vdd = true;
1094
1095	if (edp_have_panel_vdd(intel_dp))
1096		return need_to_disable;
1097
1098	intel_runtime_pm_get(dev_priv);
1099
1100	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1101
1102	if (!edp_have_panel_power(intel_dp))
1103		wait_panel_power_cycle(intel_dp);
1104
1105	pp = ironlake_get_pp_control(intel_dp);
1106	pp |= EDP_FORCE_VDD;
1107
1108	pp_stat_reg = _pp_stat_reg(intel_dp);
1109	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1110
1111	I915_WRITE(pp_ctrl_reg, pp);
1112	POSTING_READ(pp_ctrl_reg);
1113	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1114			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1115	/*
1116	 * If the panel wasn't on, delay before accessing aux channel
 
1117	 */
1118	if (!edp_have_panel_power(intel_dp)) {
1119		DRM_DEBUG_KMS("eDP was not running\n");
1120		msleep(intel_dp->panel_power_up_delay);
1121	}
1122
1123	return need_to_disable;
 
 
 
1124}
1125
1126void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1127{
1128	if (is_edp(intel_dp)) {
1129		bool vdd = _edp_panel_vdd_on(intel_dp);
1130
1131		WARN(!vdd, "eDP VDD already requested on\n");
1132	}
1133}
1134
1135static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1136{
1137	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1138	struct drm_i915_private *dev_priv = dev->dev_private;
1139	u32 pp;
1140	u32 pp_stat_reg, pp_ctrl_reg;
1141
1142	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1143
1144	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1145		DRM_DEBUG_KMS("Turning eDP VDD off\n");
1146
1147		pp = ironlake_get_pp_control(intel_dp);
1148		pp &= ~EDP_FORCE_VDD;
1149
1150		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1151		pp_stat_reg = _pp_stat_reg(intel_dp);
1152
1153		I915_WRITE(pp_ctrl_reg, pp);
1154		POSTING_READ(pp_ctrl_reg);
1155
1156		/* Make sure sequencer is idle before allowing subsequent activity */
1157		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1158		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
 
1159
1160		if ((pp & POWER_TARGET_ON) == 0)
1161			intel_dp->last_power_cycle = jiffies;
1162
1163		intel_runtime_pm_put(dev_priv);
1164	}
1165}
1166
1167static void edp_panel_vdd_work(struct work_struct *__work)
1168{
1169	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1170						 struct intel_dp, panel_vdd_work);
1171	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1172
1173	mutex_lock(&dev->mode_config.mutex);
1174	edp_panel_vdd_off_sync(intel_dp);
1175	mutex_unlock(&dev->mode_config.mutex);
1176}
1177
1178static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1179{
1180	if (!is_edp(intel_dp))
1181		return;
1182
1183	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1184
1185	intel_dp->want_panel_vdd = false;
1186
1187	if (sync) {
1188		edp_panel_vdd_off_sync(intel_dp);
1189	} else {
1190		/*
1191		 * Queue the timer to fire a long
1192		 * time from now (relative to the power down delay)
1193		 * to keep the panel power up across a sequence of operations
1194		 */
1195		schedule_delayed_work(&intel_dp->panel_vdd_work,
1196				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1197	}
1198}
1199
1200void intel_edp_panel_on(struct intel_dp *intel_dp)
 
1201{
1202	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1203	struct drm_i915_private *dev_priv = dev->dev_private;
1204	u32 pp;
1205	u32 pp_ctrl_reg;
1206
1207	if (!is_edp(intel_dp))
1208		return;
1209
1210	DRM_DEBUG_KMS("Turn eDP power on\n");
1211
1212	if (edp_have_panel_power(intel_dp)) {
1213		DRM_DEBUG_KMS("eDP power already on\n");
1214		return;
1215	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1216
1217	wait_panel_power_cycle(intel_dp);
1218
1219	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1220	pp = ironlake_get_pp_control(intel_dp);
1221	if (IS_GEN5(dev)) {
1222		/* ILK workaround: disable reset around power sequence */
1223		pp &= ~PANEL_POWER_RESET;
1224		I915_WRITE(pp_ctrl_reg, pp);
1225		POSTING_READ(pp_ctrl_reg);
1226	}
1227
1228	pp |= POWER_TARGET_ON;
1229	if (!IS_GEN5(dev))
1230		pp |= PANEL_POWER_RESET;
1231
1232	I915_WRITE(pp_ctrl_reg, pp);
1233	POSTING_READ(pp_ctrl_reg);
1234
1235	wait_panel_on(intel_dp);
1236	intel_dp->last_power_on = jiffies;
1237
1238	if (IS_GEN5(dev)) {
1239		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1240		I915_WRITE(pp_ctrl_reg, pp);
1241		POSTING_READ(pp_ctrl_reg);
1242	}
1243}
1244
1245void intel_edp_panel_off(struct intel_dp *intel_dp)
1246{
1247	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1248	struct drm_i915_private *dev_priv = dev->dev_private;
1249	u32 pp;
1250	u32 pp_ctrl_reg;
1251
1252	if (!is_edp(intel_dp))
1253		return;
1254
1255	DRM_DEBUG_KMS("Turn eDP power off\n");
1256
1257	edp_wait_backlight_off(intel_dp);
1258
1259	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1260
1261	pp = ironlake_get_pp_control(intel_dp);
1262	/* We need to switch off panel power _and_ force vdd, for otherwise some
1263	 * panels get very unhappy and cease to work. */
1264	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1265		EDP_BLC_ENABLE);
1266
1267	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1268
1269	intel_dp->want_panel_vdd = false;
 
 
 
1270
1271	I915_WRITE(pp_ctrl_reg, pp);
1272	POSTING_READ(pp_ctrl_reg);
 
1273
1274	intel_dp->last_power_cycle = jiffies;
1275	wait_panel_off(intel_dp);
 
1276
1277	/* We got a reference when we enabled the VDD. */
1278	intel_runtime_pm_put(dev_priv);
 
1279}
1280
1281void intel_edp_backlight_on(struct intel_dp *intel_dp)
1282{
1283	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1284	struct drm_device *dev = intel_dig_port->base.base.dev;
1285	struct drm_i915_private *dev_priv = dev->dev_private;
1286	u32 pp;
1287	u32 pp_ctrl_reg;
1288
1289	if (!is_edp(intel_dp))
1290		return;
1291
1292	DRM_DEBUG_KMS("\n");
1293	/*
1294	 * If we enable the backlight right away following a panel power
1295	 * on, we may see slight flicker as the panel syncs with the eDP
1296	 * link.  So delay a bit to make sure the image is solid before
1297	 * allowing it to appear.
1298	 */
1299	wait_backlight_on(intel_dp);
1300	pp = ironlake_get_pp_control(intel_dp);
1301	pp |= EDP_BLC_ENABLE;
1302
1303	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1304
1305	I915_WRITE(pp_ctrl_reg, pp);
1306	POSTING_READ(pp_ctrl_reg);
1307
1308	intel_panel_enable_backlight(intel_dp->attached_connector);
1309}
1310
1311void intel_edp_backlight_off(struct intel_dp *intel_dp)
1312{
1313	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1314	struct drm_i915_private *dev_priv = dev->dev_private;
1315	u32 pp;
1316	u32 pp_ctrl_reg;
1317
1318	if (!is_edp(intel_dp))
1319		return;
1320
1321	intel_panel_disable_backlight(intel_dp->attached_connector);
1322
1323	DRM_DEBUG_KMS("\n");
1324	pp = ironlake_get_pp_control(intel_dp);
1325	pp &= ~EDP_BLC_ENABLE;
1326
1327	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1328
1329	I915_WRITE(pp_ctrl_reg, pp);
1330	POSTING_READ(pp_ctrl_reg);
1331	intel_dp->last_backlight_off = jiffies;
1332}
1333
1334static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1335{
1336	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1337	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1338	struct drm_device *dev = crtc->dev;
1339	struct drm_i915_private *dev_priv = dev->dev_private;
1340	u32 dpa_ctl;
1341
1342	assert_pipe_disabled(dev_priv,
1343			     to_intel_crtc(crtc)->pipe);
1344
1345	DRM_DEBUG_KMS("\n");
1346	dpa_ctl = I915_READ(DP_A);
1347	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1348	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1349
1350	/* We don't adjust intel_dp->DP while tearing down the link, to
1351	 * facilitate link retraining (e.g. after hotplug). Hence clear all
1352	 * enable bits here to ensure that we don't enable too much. */
1353	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1354	intel_dp->DP |= DP_PLL_ENABLE;
1355	I915_WRITE(DP_A, intel_dp->DP);
1356	POSTING_READ(DP_A);
1357	udelay(200);
1358}
1359
1360static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1361{
1362	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1363	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1364	struct drm_device *dev = crtc->dev;
1365	struct drm_i915_private *dev_priv = dev->dev_private;
1366	u32 dpa_ctl;
1367
1368	assert_pipe_disabled(dev_priv,
1369			     to_intel_crtc(crtc)->pipe);
1370
1371	dpa_ctl = I915_READ(DP_A);
1372	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1373	     "dp pll off, should be on\n");
1374	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1375
1376	/* We can't rely on the value tracked for the DP register in
1377	 * intel_dp->DP because link_down must not change that (otherwise link
1378	 * re-training will fail. */
1379	dpa_ctl &= ~DP_PLL_ENABLE;
1380	I915_WRITE(DP_A, dpa_ctl);
1381	POSTING_READ(DP_A);
1382	udelay(200);
1383}
1384
1385/* If the sink supports it, try to set the power state appropriately */
1386void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1387{
1388	int ret, i;
1389
1390	/* Should have a valid DPCD by this point */
1391	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1392		return;
1393
1394	if (mode != DRM_MODE_DPMS_ON) {
1395		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1396					 DP_SET_POWER_D3);
1397		if (ret != 1)
1398			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1399	} else {
1400		/*
1401		 * When turning on, we need to retry for 1ms to give the sink
1402		 * time to wake up.
1403		 */
1404		for (i = 0; i < 3; i++) {
1405			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1406						 DP_SET_POWER_D0);
 
1407			if (ret == 1)
1408				break;
1409			msleep(1);
1410		}
1411	}
1412}
1413
1414static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1415				  enum pipe *pipe)
1416{
1417	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1418	enum port port = dp_to_dig_port(intel_dp)->port;
1419	struct drm_device *dev = encoder->base.dev;
1420	struct drm_i915_private *dev_priv = dev->dev_private;
1421	enum intel_display_power_domain power_domain;
1422	u32 tmp;
1423
1424	power_domain = intel_display_port_power_domain(encoder);
1425	if (!intel_display_power_enabled(dev_priv, power_domain))
1426		return false;
1427
1428	tmp = I915_READ(intel_dp->output_reg);
1429
1430	if (!(tmp & DP_PORT_EN))
1431		return false;
1432
1433	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1434		*pipe = PORT_TO_PIPE_CPT(tmp);
1435	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1436		*pipe = PORT_TO_PIPE(tmp);
1437	} else {
1438		u32 trans_sel;
1439		u32 trans_dp;
1440		int i;
1441
1442		switch (intel_dp->output_reg) {
1443		case PCH_DP_B:
1444			trans_sel = TRANS_DP_PORT_SEL_B;
1445			break;
1446		case PCH_DP_C:
1447			trans_sel = TRANS_DP_PORT_SEL_C;
1448			break;
1449		case PCH_DP_D:
1450			trans_sel = TRANS_DP_PORT_SEL_D;
1451			break;
1452		default:
1453			return true;
1454		}
1455
1456		for_each_pipe(i) {
1457			trans_dp = I915_READ(TRANS_DP_CTL(i));
1458			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1459				*pipe = i;
1460				return true;
1461			}
1462		}
1463
1464		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1465			      intel_dp->output_reg);
1466	}
1467
1468	return true;
1469}
1470
1471static void intel_dp_get_config(struct intel_encoder *encoder,
1472				struct intel_crtc_config *pipe_config)
1473{
1474	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1475	u32 tmp, flags = 0;
1476	struct drm_device *dev = encoder->base.dev;
1477	struct drm_i915_private *dev_priv = dev->dev_private;
1478	enum port port = dp_to_dig_port(intel_dp)->port;
1479	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1480	int dotclock;
1481
1482	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1483		tmp = I915_READ(intel_dp->output_reg);
1484		if (tmp & DP_SYNC_HS_HIGH)
1485			flags |= DRM_MODE_FLAG_PHSYNC;
1486		else
1487			flags |= DRM_MODE_FLAG_NHSYNC;
1488
1489		if (tmp & DP_SYNC_VS_HIGH)
1490			flags |= DRM_MODE_FLAG_PVSYNC;
1491		else
1492			flags |= DRM_MODE_FLAG_NVSYNC;
1493	} else {
1494		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1495		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1496			flags |= DRM_MODE_FLAG_PHSYNC;
1497		else
1498			flags |= DRM_MODE_FLAG_NHSYNC;
1499
1500		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1501			flags |= DRM_MODE_FLAG_PVSYNC;
1502		else
1503			flags |= DRM_MODE_FLAG_NVSYNC;
1504	}
1505
1506	pipe_config->adjusted_mode.flags |= flags;
1507
1508	pipe_config->has_dp_encoder = true;
1509
1510	intel_dp_get_m_n(crtc, pipe_config);
1511
1512	if (port == PORT_A) {
1513		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1514			pipe_config->port_clock = 162000;
1515		else
1516			pipe_config->port_clock = 270000;
1517	}
1518
1519	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1520					    &pipe_config->dp_m_n);
1521
1522	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1523		ironlake_check_encoder_dotclock(pipe_config, dotclock);
1524
1525	pipe_config->adjusted_mode.crtc_clock = dotclock;
1526
1527	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1528	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1529		/*
1530		 * This is a big fat ugly hack.
1531		 *
1532		 * Some machines in UEFI boot mode provide us a VBT that has 18
1533		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1534		 * unknown we fail to light up. Yet the same BIOS boots up with
1535		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1536		 * max, not what it tells us to use.
1537		 *
1538		 * Note: This will still be broken if the eDP panel is not lit
1539		 * up by the BIOS, and thus we can't get the mode at module
1540		 * load.
1541		 */
1542		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1543			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1544		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1545	}
 
1546}
1547
1548static bool is_edp_psr(struct drm_device *dev)
1549{
1550	struct drm_i915_private *dev_priv = dev->dev_private;
 
1551
1552	return dev_priv->psr.sink_support;
1553}
1554
1555static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1556{
1557	struct drm_i915_private *dev_priv = dev->dev_private;
1558
1559	if (!HAS_PSR(dev))
1560		return false;
1561
1562	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1563}
1564
1565static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1566				    struct edp_vsc_psr *vsc_psr)
1567{
1568	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1569	struct drm_device *dev = dig_port->base.base.dev;
1570	struct drm_i915_private *dev_priv = dev->dev_private;
1571	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1572	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1573	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1574	uint32_t *data = (uint32_t *) vsc_psr;
1575	unsigned int i;
1576
1577	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
1578	   the video DIP being updated before program video DIP data buffer
1579	   registers for DIP being updated. */
1580	I915_WRITE(ctl_reg, 0);
1581	POSTING_READ(ctl_reg);
1582
1583	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1584		if (i < sizeof(struct edp_vsc_psr))
1585			I915_WRITE(data_reg + i, *data++);
1586		else
1587			I915_WRITE(data_reg + i, 0);
1588	}
1589
1590	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1591	POSTING_READ(ctl_reg);
1592}
1593
1594static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1595{
1596	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1597	struct drm_i915_private *dev_priv = dev->dev_private;
1598	struct edp_vsc_psr psr_vsc;
1599
1600	if (intel_dp->psr_setup_done)
1601		return;
1602
1603	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1604	memset(&psr_vsc, 0, sizeof(psr_vsc));
1605	psr_vsc.sdp_header.HB0 = 0;
1606	psr_vsc.sdp_header.HB1 = 0x7;
1607	psr_vsc.sdp_header.HB2 = 0x2;
1608	psr_vsc.sdp_header.HB3 = 0x8;
1609	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1610
1611	/* Avoid continuous PSR exit by masking memup and hpd */
1612	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1613		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1614
1615	intel_dp->psr_setup_done = true;
1616}
1617
1618static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
 
1619{
1620	struct drm_device *dev = intel_dp_to_dev(intel_dp);
 
1621	struct drm_i915_private *dev_priv = dev->dev_private;
1622	uint32_t aux_clock_divider;
1623	int precharge = 0x3;
1624	int msg_size = 5;       /* Header(4) + Message(1) */
1625
1626	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1627
1628	/* Enable PSR in sink */
1629	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1630		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1631				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1632	else
1633		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1634				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1635
1636	/* Setup AUX registers */
1637	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1638	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1639	I915_WRITE(EDP_PSR_AUX_CTL(dev),
1640		   DP_AUX_CH_CTL_TIME_OUT_400us |
1641		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1642		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1643		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1644}
1645
1646static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1647{
1648	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1649	struct drm_i915_private *dev_priv = dev->dev_private;
1650	uint32_t max_sleep_time = 0x1f;
1651	uint32_t idle_frames = 1;
1652	uint32_t val = 0x0;
1653	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1654
1655	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1656		val |= EDP_PSR_LINK_STANDBY;
1657		val |= EDP_PSR_TP2_TP3_TIME_0us;
1658		val |= EDP_PSR_TP1_TIME_0us;
1659		val |= EDP_PSR_SKIP_AUX_EXIT;
1660	} else
1661		val |= EDP_PSR_LINK_DISABLE;
1662
1663	I915_WRITE(EDP_PSR_CTL(dev), val |
1664		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1665		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1666		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1667		   EDP_PSR_ENABLE);
1668}
1669
1670static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1671{
1672	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1673	struct drm_device *dev = dig_port->base.base.dev;
1674	struct drm_i915_private *dev_priv = dev->dev_private;
1675	struct drm_crtc *crtc = dig_port->base.base.crtc;
1676	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1677	struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1678	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1679
1680	dev_priv->psr.source_ok = false;
1681
1682	if (!HAS_PSR(dev)) {
1683		DRM_DEBUG_KMS("PSR not supported on this platform\n");
1684		return false;
1685	}
1686
1687	if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1688	    (dig_port->port != PORT_A)) {
1689		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1690		return false;
1691	}
1692
1693	if (!i915.enable_psr) {
1694		DRM_DEBUG_KMS("PSR disable by flag\n");
1695		return false;
1696	}
1697
1698	crtc = dig_port->base.base.crtc;
1699	if (crtc == NULL) {
1700		DRM_DEBUG_KMS("crtc not active for PSR\n");
1701		return false;
1702	}
1703
1704	intel_crtc = to_intel_crtc(crtc);
1705	if (!intel_crtc_active(crtc)) {
1706		DRM_DEBUG_KMS("crtc not active for PSR\n");
1707		return false;
1708	}
1709
1710	obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1711	if (obj->tiling_mode != I915_TILING_X ||
1712	    obj->fence_reg == I915_FENCE_REG_NONE) {
1713		DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1714		return false;
1715	}
1716
1717	if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1718		DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1719		return false;
1720	}
1721
1722	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1723	    S3D_ENABLE) {
1724		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1725		return false;
1726	}
1727
1728	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1729		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1730		return false;
1731	}
1732
1733	dev_priv->psr.source_ok = true;
1734	return true;
1735}
1736
1737static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1738{
1739	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1740
1741	if (!intel_edp_psr_match_conditions(intel_dp) ||
1742	    intel_edp_is_psr_enabled(dev))
1743		return;
1744
1745	/* Setup PSR once */
1746	intel_edp_psr_setup(intel_dp);
1747
1748	/* Enable PSR on the panel */
1749	intel_edp_psr_enable_sink(intel_dp);
1750
1751	/* Enable PSR on the host */
1752	intel_edp_psr_enable_source(intel_dp);
1753}
1754
1755void intel_edp_psr_enable(struct intel_dp *intel_dp)
1756{
1757	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1758
1759	if (intel_edp_psr_match_conditions(intel_dp) &&
1760	    !intel_edp_is_psr_enabled(dev))
1761		intel_edp_psr_do_enable(intel_dp);
1762}
1763
1764void intel_edp_psr_disable(struct intel_dp *intel_dp)
1765{
1766	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1767	struct drm_i915_private *dev_priv = dev->dev_private;
1768
1769	if (!intel_edp_is_psr_enabled(dev))
1770		return;
1771
1772	I915_WRITE(EDP_PSR_CTL(dev),
1773		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1774
1775	/* Wait till PSR is idle */
1776	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1777		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1778		DRM_ERROR("Timed out waiting for PSR Idle State\n");
1779}
1780
1781void intel_edp_psr_update(struct drm_device *dev)
1782{
1783	struct intel_encoder *encoder;
1784	struct intel_dp *intel_dp = NULL;
1785
1786	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1787		if (encoder->type == INTEL_OUTPUT_EDP) {
1788			intel_dp = enc_to_intel_dp(&encoder->base);
1789
1790			if (!is_edp_psr(dev))
1791				return;
1792
1793			if (!intel_edp_psr_match_conditions(intel_dp))
1794				intel_edp_psr_disable(intel_dp);
1795			else
1796				if (!intel_edp_is_psr_enabled(dev))
1797					intel_edp_psr_do_enable(intel_dp);
1798		}
1799}
1800
1801static void intel_disable_dp(struct intel_encoder *encoder)
1802{
1803	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1804	enum port port = dp_to_dig_port(intel_dp)->port;
1805	struct drm_device *dev = encoder->base.dev;
1806
1807	/* Make sure the panel is off before trying to change the mode. But also
1808	 * ensure that we have vdd while we switch off the panel. */
1809	intel_edp_panel_vdd_on(intel_dp);
1810	intel_edp_backlight_off(intel_dp);
1811	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1812	intel_edp_panel_off(intel_dp);
1813
1814	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1815	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1816		intel_dp_link_down(intel_dp);
1817}
1818
1819static void intel_post_disable_dp(struct intel_encoder *encoder)
1820{
1821	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1822	enum port port = dp_to_dig_port(intel_dp)->port;
1823	struct drm_device *dev = encoder->base.dev;
1824
1825	if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1826		intel_dp_link_down(intel_dp);
1827		if (!IS_VALLEYVIEW(dev))
1828			ironlake_edp_pll_off(intel_dp);
1829	}
1830}
1831
1832static void intel_enable_dp(struct intel_encoder *encoder)
1833{
1834	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1835	struct drm_device *dev = encoder->base.dev;
1836	struct drm_i915_private *dev_priv = dev->dev_private;
1837	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1838
1839	if (WARN_ON(dp_reg & DP_PORT_EN))
1840		return;
1841
1842	intel_edp_panel_vdd_on(intel_dp);
1843	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1844	intel_dp_start_link_train(intel_dp);
1845	intel_edp_panel_on(intel_dp);
1846	edp_panel_vdd_off(intel_dp, true);
1847	intel_dp_complete_link_train(intel_dp);
1848	intel_dp_stop_link_train(intel_dp);
1849}
1850
1851static void g4x_enable_dp(struct intel_encoder *encoder)
1852{
1853	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1854
1855	intel_enable_dp(encoder);
1856	intel_edp_backlight_on(intel_dp);
1857}
1858
1859static void vlv_enable_dp(struct intel_encoder *encoder)
1860{
1861	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1862
1863	intel_edp_backlight_on(intel_dp);
1864}
1865
1866static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1867{
1868	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1869	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1870
1871	if (dport->port == PORT_A)
1872		ironlake_edp_pll_on(intel_dp);
1873}
1874
1875static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1876{
1877	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1878	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1879	struct drm_device *dev = encoder->base.dev;
1880	struct drm_i915_private *dev_priv = dev->dev_private;
1881	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1882	enum dpio_channel port = vlv_dport_to_channel(dport);
1883	int pipe = intel_crtc->pipe;
1884	struct edp_power_seq power_seq;
1885	u32 val;
1886
1887	mutex_lock(&dev_priv->dpio_lock);
1888
1889	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1890	val = 0;
1891	if (pipe)
1892		val |= (1<<21);
1893	else
1894		val &= ~(1<<21);
1895	val |= 0x001000c4;
1896	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1897	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1898	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1899
1900	mutex_unlock(&dev_priv->dpio_lock);
1901
1902	if (is_edp(intel_dp)) {
1903		/* init power sequencer on this pipe and port */
1904		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1905		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1906							      &power_seq);
1907	}
1908
1909	intel_enable_dp(encoder);
1910
1911	vlv_wait_port_ready(dev_priv, dport);
1912}
1913
1914static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1915{
1916	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1917	struct drm_device *dev = encoder->base.dev;
1918	struct drm_i915_private *dev_priv = dev->dev_private;
1919	struct intel_crtc *intel_crtc =
1920		to_intel_crtc(encoder->base.crtc);
1921	enum dpio_channel port = vlv_dport_to_channel(dport);
1922	int pipe = intel_crtc->pipe;
1923
1924	/* Program Tx lane resets to default */
1925	mutex_lock(&dev_priv->dpio_lock);
1926	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1927			 DPIO_PCS_TX_LANE2_RESET |
1928			 DPIO_PCS_TX_LANE1_RESET);
1929	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1930			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1931			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1932			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1933				 DPIO_PCS_CLK_SOFT_RESET);
1934
1935	/* Fix up inter-pair skew failure */
1936	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1937	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1938	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1939	mutex_unlock(&dev_priv->dpio_lock);
1940}
1941
1942/*
1943 * Native read with retry for link status and receiver capability reads for
1944 * cases where the sink may still be asleep.
1945 *
1946 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
1947 * supposed to retry 3 times per the spec.
1948 */
1949static ssize_t
1950intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
1951			void *buffer, size_t size)
1952{
1953	ssize_t ret;
1954	int i;
1955
 
 
 
 
1956	for (i = 0; i < 3; i++) {
1957		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
1958		if (ret == size)
1959			return ret;
 
1960		msleep(1);
1961	}
1962
1963	return ret;
1964}
1965
1966/*
1967 * Fetch AUX CH registers 0x202 - 0x207 which contain
1968 * link status information
1969 */
1970static bool
1971intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1972{
1973	return intel_dp_dpcd_read_wake(&intel_dp->aux,
1974				       DP_LANE0_1_STATUS,
1975				       link_status,
1976				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
1977}
1978
1979/*
1980 * These are source-specific values; current Intel hardware supports
1981 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1982 */
 
 
1983
1984static uint8_t
1985intel_dp_voltage_max(struct intel_dp *intel_dp)
 
1986{
1987	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1988	enum port port = dp_to_dig_port(intel_dp)->port;
 
 
 
1989
1990	if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1991		return DP_TRAIN_VOLTAGE_SWING_1200;
1992	else if (IS_GEN7(dev) && port == PORT_A)
1993		return DP_TRAIN_VOLTAGE_SWING_800;
1994	else if (HAS_PCH_CPT(dev) && port != PORT_A)
1995		return DP_TRAIN_VOLTAGE_SWING_1200;
1996	else
1997		return DP_TRAIN_VOLTAGE_SWING_800;
1998}
1999
2000static uint8_t
2001intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
 
2002{
2003	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2004	enum port port = dp_to_dig_port(intel_dp)->port;
 
 
 
2005
2006	if (IS_BROADWELL(dev)) {
2007		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2008		case DP_TRAIN_VOLTAGE_SWING_400:
2009		case DP_TRAIN_VOLTAGE_SWING_600:
2010			return DP_TRAIN_PRE_EMPHASIS_6;
2011		case DP_TRAIN_VOLTAGE_SWING_800:
2012			return DP_TRAIN_PRE_EMPHASIS_3_5;
2013		case DP_TRAIN_VOLTAGE_SWING_1200:
2014		default:
2015			return DP_TRAIN_PRE_EMPHASIS_0;
2016		}
2017	} else if (IS_HASWELL(dev)) {
2018		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2019		case DP_TRAIN_VOLTAGE_SWING_400:
2020			return DP_TRAIN_PRE_EMPHASIS_9_5;
2021		case DP_TRAIN_VOLTAGE_SWING_600:
2022			return DP_TRAIN_PRE_EMPHASIS_6;
2023		case DP_TRAIN_VOLTAGE_SWING_800:
2024			return DP_TRAIN_PRE_EMPHASIS_3_5;
2025		case DP_TRAIN_VOLTAGE_SWING_1200:
2026		default:
2027			return DP_TRAIN_PRE_EMPHASIS_0;
2028		}
2029	} else if (IS_VALLEYVIEW(dev)) {
2030		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2031		case DP_TRAIN_VOLTAGE_SWING_400:
2032			return DP_TRAIN_PRE_EMPHASIS_9_5;
2033		case DP_TRAIN_VOLTAGE_SWING_600:
2034			return DP_TRAIN_PRE_EMPHASIS_6;
2035		case DP_TRAIN_VOLTAGE_SWING_800:
2036			return DP_TRAIN_PRE_EMPHASIS_3_5;
2037		case DP_TRAIN_VOLTAGE_SWING_1200:
2038		default:
2039			return DP_TRAIN_PRE_EMPHASIS_0;
2040		}
2041	} else if (IS_GEN7(dev) && port == PORT_A) {
2042		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2043		case DP_TRAIN_VOLTAGE_SWING_400:
2044			return DP_TRAIN_PRE_EMPHASIS_6;
2045		case DP_TRAIN_VOLTAGE_SWING_600:
2046		case DP_TRAIN_VOLTAGE_SWING_800:
2047			return DP_TRAIN_PRE_EMPHASIS_3_5;
2048		default:
2049			return DP_TRAIN_PRE_EMPHASIS_0;
2050		}
2051	} else {
2052		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2053		case DP_TRAIN_VOLTAGE_SWING_400:
2054			return DP_TRAIN_PRE_EMPHASIS_6;
2055		case DP_TRAIN_VOLTAGE_SWING_600:
2056			return DP_TRAIN_PRE_EMPHASIS_6;
2057		case DP_TRAIN_VOLTAGE_SWING_800:
2058			return DP_TRAIN_PRE_EMPHASIS_3_5;
2059		case DP_TRAIN_VOLTAGE_SWING_1200:
2060		default:
2061			return DP_TRAIN_PRE_EMPHASIS_0;
2062		}
2063	}
2064}
2065
2066static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2067{
2068	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2069	struct drm_i915_private *dev_priv = dev->dev_private;
2070	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2071	struct intel_crtc *intel_crtc =
2072		to_intel_crtc(dport->base.base.crtc);
2073	unsigned long demph_reg_value, preemph_reg_value,
2074		uniqtranscale_reg_value;
2075	uint8_t train_set = intel_dp->train_set[0];
2076	enum dpio_channel port = vlv_dport_to_channel(dport);
2077	int pipe = intel_crtc->pipe;
2078
2079	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2080	case DP_TRAIN_PRE_EMPHASIS_0:
2081		preemph_reg_value = 0x0004000;
2082		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2083		case DP_TRAIN_VOLTAGE_SWING_400:
2084			demph_reg_value = 0x2B405555;
2085			uniqtranscale_reg_value = 0x552AB83A;
2086			break;
2087		case DP_TRAIN_VOLTAGE_SWING_600:
2088			demph_reg_value = 0x2B404040;
2089			uniqtranscale_reg_value = 0x5548B83A;
2090			break;
2091		case DP_TRAIN_VOLTAGE_SWING_800:
2092			demph_reg_value = 0x2B245555;
2093			uniqtranscale_reg_value = 0x5560B83A;
2094			break;
2095		case DP_TRAIN_VOLTAGE_SWING_1200:
2096			demph_reg_value = 0x2B405555;
2097			uniqtranscale_reg_value = 0x5598DA3A;
2098			break;
2099		default:
2100			return 0;
2101		}
2102		break;
2103	case DP_TRAIN_PRE_EMPHASIS_3_5:
2104		preemph_reg_value = 0x0002000;
2105		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2106		case DP_TRAIN_VOLTAGE_SWING_400:
2107			demph_reg_value = 0x2B404040;
2108			uniqtranscale_reg_value = 0x5552B83A;
2109			break;
2110		case DP_TRAIN_VOLTAGE_SWING_600:
2111			demph_reg_value = 0x2B404848;
2112			uniqtranscale_reg_value = 0x5580B83A;
2113			break;
2114		case DP_TRAIN_VOLTAGE_SWING_800:
2115			demph_reg_value = 0x2B404040;
2116			uniqtranscale_reg_value = 0x55ADDA3A;
2117			break;
2118		default:
2119			return 0;
2120		}
2121		break;
2122	case DP_TRAIN_PRE_EMPHASIS_6:
2123		preemph_reg_value = 0x0000000;
2124		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2125		case DP_TRAIN_VOLTAGE_SWING_400:
2126			demph_reg_value = 0x2B305555;
2127			uniqtranscale_reg_value = 0x5570B83A;
2128			break;
2129		case DP_TRAIN_VOLTAGE_SWING_600:
2130			demph_reg_value = 0x2B2B4040;
2131			uniqtranscale_reg_value = 0x55ADDA3A;
2132			break;
2133		default:
2134			return 0;
2135		}
2136		break;
2137	case DP_TRAIN_PRE_EMPHASIS_9_5:
2138		preemph_reg_value = 0x0006000;
2139		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2140		case DP_TRAIN_VOLTAGE_SWING_400:
2141			demph_reg_value = 0x1B405555;
2142			uniqtranscale_reg_value = 0x55ADDA3A;
2143			break;
2144		default:
2145			return 0;
2146		}
2147		break;
2148	default:
2149		return 0;
2150	}
2151
2152	mutex_lock(&dev_priv->dpio_lock);
2153	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2154	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2155	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2156			 uniqtranscale_reg_value);
2157	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2158	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2159	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2160	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2161	mutex_unlock(&dev_priv->dpio_lock);
2162
2163	return 0;
2164}
2165
2166static void
2167intel_get_adjust_train(struct intel_dp *intel_dp,
2168		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2169{
2170	uint8_t v = 0;
2171	uint8_t p = 0;
2172	int lane;
2173	uint8_t voltage_max;
2174	uint8_t preemph_max;
2175
2176	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2177		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2178		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2179
2180		if (this_v > v)
2181			v = this_v;
2182		if (this_p > p)
2183			p = this_p;
2184	}
2185
2186	voltage_max = intel_dp_voltage_max(intel_dp);
2187	if (v >= voltage_max)
2188		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2189
2190	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2191	if (p >= preemph_max)
2192		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2193
2194	for (lane = 0; lane < 4; lane++)
2195		intel_dp->train_set[lane] = v | p;
2196}
2197
2198static uint32_t
2199intel_gen4_signal_levels(uint8_t train_set)
2200{
2201	uint32_t	signal_levels = 0;
2202
2203	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2204	case DP_TRAIN_VOLTAGE_SWING_400:
2205	default:
2206		signal_levels |= DP_VOLTAGE_0_4;
2207		break;
2208	case DP_TRAIN_VOLTAGE_SWING_600:
2209		signal_levels |= DP_VOLTAGE_0_6;
2210		break;
2211	case DP_TRAIN_VOLTAGE_SWING_800:
2212		signal_levels |= DP_VOLTAGE_0_8;
2213		break;
2214	case DP_TRAIN_VOLTAGE_SWING_1200:
2215		signal_levels |= DP_VOLTAGE_1_2;
2216		break;
2217	}
2218	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2219	case DP_TRAIN_PRE_EMPHASIS_0:
2220	default:
2221		signal_levels |= DP_PRE_EMPHASIS_0;
2222		break;
2223	case DP_TRAIN_PRE_EMPHASIS_3_5:
2224		signal_levels |= DP_PRE_EMPHASIS_3_5;
2225		break;
2226	case DP_TRAIN_PRE_EMPHASIS_6:
2227		signal_levels |= DP_PRE_EMPHASIS_6;
2228		break;
2229	case DP_TRAIN_PRE_EMPHASIS_9_5:
2230		signal_levels |= DP_PRE_EMPHASIS_9_5;
2231		break;
2232	}
2233	return signal_levels;
2234}
2235
2236/* Gen6's DP voltage swing and pre-emphasis control */
2237static uint32_t
2238intel_gen6_edp_signal_levels(uint8_t train_set)
2239{
2240	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2241					 DP_TRAIN_PRE_EMPHASIS_MASK);
2242	switch (signal_levels) {
2243	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2244	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2245		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2246	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2247		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2248	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2249	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2250		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2251	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2252	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2253		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2254	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2255	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2256		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2257	default:
2258		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2259			      "0x%x\n", signal_levels);
2260		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2261	}
2262}
2263
2264/* Gen7's DP voltage swing and pre-emphasis control */
2265static uint32_t
2266intel_gen7_edp_signal_levels(uint8_t train_set)
2267{
2268	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2269					 DP_TRAIN_PRE_EMPHASIS_MASK);
2270	switch (signal_levels) {
2271	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2272		return EDP_LINK_TRAIN_400MV_0DB_IVB;
2273	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2274		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2275	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2276		return EDP_LINK_TRAIN_400MV_6DB_IVB;
2277
2278	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2279		return EDP_LINK_TRAIN_600MV_0DB_IVB;
2280	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2281		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2282
2283	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2284		return EDP_LINK_TRAIN_800MV_0DB_IVB;
2285	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2286		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2287
2288	default:
2289		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2290			      "0x%x\n", signal_levels);
2291		return EDP_LINK_TRAIN_500MV_0DB_IVB;
2292	}
2293}
2294
2295/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2296static uint32_t
2297intel_hsw_signal_levels(uint8_t train_set)
2298{
2299	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2300					 DP_TRAIN_PRE_EMPHASIS_MASK);
2301	switch (signal_levels) {
2302	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2303		return DDI_BUF_EMP_400MV_0DB_HSW;
2304	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2305		return DDI_BUF_EMP_400MV_3_5DB_HSW;
2306	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2307		return DDI_BUF_EMP_400MV_6DB_HSW;
2308	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2309		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2310
2311	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2312		return DDI_BUF_EMP_600MV_0DB_HSW;
2313	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2314		return DDI_BUF_EMP_600MV_3_5DB_HSW;
2315	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2316		return DDI_BUF_EMP_600MV_6DB_HSW;
2317
2318	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2319		return DDI_BUF_EMP_800MV_0DB_HSW;
2320	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2321		return DDI_BUF_EMP_800MV_3_5DB_HSW;
2322	default:
2323		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2324			      "0x%x\n", signal_levels);
2325		return DDI_BUF_EMP_400MV_0DB_HSW;
2326	}
 
2327}
2328
2329static uint32_t
2330intel_bdw_signal_levels(uint8_t train_set)
 
 
 
 
2331{
2332	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2333					 DP_TRAIN_PRE_EMPHASIS_MASK);
2334	switch (signal_levels) {
2335	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2336		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2337	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2338		return DDI_BUF_EMP_400MV_3_5DB_BDW;	/* Sel1 */
2339	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2340		return DDI_BUF_EMP_400MV_6DB_BDW;	/* Sel2 */
2341
2342	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2343		return DDI_BUF_EMP_600MV_0DB_BDW;	/* Sel3 */
2344	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2345		return DDI_BUF_EMP_600MV_3_5DB_BDW;	/* Sel4 */
2346	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2347		return DDI_BUF_EMP_600MV_6DB_BDW;	/* Sel5 */
2348
2349	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2350		return DDI_BUF_EMP_800MV_0DB_BDW;	/* Sel6 */
2351	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2352		return DDI_BUF_EMP_800MV_3_5DB_BDW;	/* Sel7 */
2353
2354	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2355		return DDI_BUF_EMP_1200MV_0DB_BDW;	/* Sel8 */
2356
2357	default:
2358		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2359			      "0x%x\n", signal_levels);
2360		return DDI_BUF_EMP_400MV_0DB_BDW;	/* Sel0 */
2361	}
2362}
2363
2364/* Properly updates "DP" with the correct signal levels. */
2365static void
2366intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2367{
2368	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2369	enum port port = intel_dig_port->port;
2370	struct drm_device *dev = intel_dig_port->base.base.dev;
2371	uint32_t signal_levels, mask;
2372	uint8_t train_set = intel_dp->train_set[0];
2373
2374	if (IS_BROADWELL(dev)) {
2375		signal_levels = intel_bdw_signal_levels(train_set);
2376		mask = DDI_BUF_EMP_MASK;
2377	} else if (IS_HASWELL(dev)) {
2378		signal_levels = intel_hsw_signal_levels(train_set);
2379		mask = DDI_BUF_EMP_MASK;
2380	} else if (IS_VALLEYVIEW(dev)) {
2381		signal_levels = intel_vlv_signal_levels(intel_dp);
2382		mask = 0;
2383	} else if (IS_GEN7(dev) && port == PORT_A) {
2384		signal_levels = intel_gen7_edp_signal_levels(train_set);
2385		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2386	} else if (IS_GEN6(dev) && port == PORT_A) {
2387		signal_levels = intel_gen6_edp_signal_levels(train_set);
2388		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2389	} else {
2390		signal_levels = intel_gen4_signal_levels(train_set);
2391		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2392	}
2393
2394	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2395
2396	*DP = (*DP & ~mask) | signal_levels;
2397}
2398
2399static bool
2400intel_dp_set_link_train(struct intel_dp *intel_dp,
2401			uint32_t *DP,
2402			uint8_t dp_train_pat)
2403{
2404	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2405	struct drm_device *dev = intel_dig_port->base.base.dev;
2406	struct drm_i915_private *dev_priv = dev->dev_private;
2407	enum port port = intel_dig_port->port;
2408	uint8_t buf[sizeof(intel_dp->train_set) + 1];
2409	int ret, len;
2410
2411	if (HAS_DDI(dev)) {
2412		uint32_t temp = I915_READ(DP_TP_CTL(port));
2413
2414		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2415			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2416		else
2417			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2418
2419		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2420		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2421		case DP_TRAINING_PATTERN_DISABLE:
2422			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2423
2424			break;
2425		case DP_TRAINING_PATTERN_1:
2426			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2427			break;
2428		case DP_TRAINING_PATTERN_2:
2429			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2430			break;
2431		case DP_TRAINING_PATTERN_3:
2432			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2433			break;
2434		}
2435		I915_WRITE(DP_TP_CTL(port), temp);
2436
2437	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2438		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2439
2440		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2441		case DP_TRAINING_PATTERN_DISABLE:
2442			*DP |= DP_LINK_TRAIN_OFF_CPT;
2443			break;
2444		case DP_TRAINING_PATTERN_1:
2445			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2446			break;
2447		case DP_TRAINING_PATTERN_2:
2448			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2449			break;
2450		case DP_TRAINING_PATTERN_3:
2451			DRM_ERROR("DP training pattern 3 not supported\n");
2452			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2453			break;
2454		}
2455
2456	} else {
2457		*DP &= ~DP_LINK_TRAIN_MASK;
2458
2459		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2460		case DP_TRAINING_PATTERN_DISABLE:
2461			*DP |= DP_LINK_TRAIN_OFF;
2462			break;
2463		case DP_TRAINING_PATTERN_1:
2464			*DP |= DP_LINK_TRAIN_PAT_1;
2465			break;
2466		case DP_TRAINING_PATTERN_2:
2467			*DP |= DP_LINK_TRAIN_PAT_2;
2468			break;
2469		case DP_TRAINING_PATTERN_3:
2470			DRM_ERROR("DP training pattern 3 not supported\n");
2471			*DP |= DP_LINK_TRAIN_PAT_2;
2472			break;
2473		}
2474	}
2475
2476	I915_WRITE(intel_dp->output_reg, *DP);
2477	POSTING_READ(intel_dp->output_reg);
2478
2479	buf[0] = dp_train_pat;
2480	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2481	    DP_TRAINING_PATTERN_DISABLE) {
2482		/* don't write DP_TRAINING_LANEx_SET on disable */
2483		len = 1;
2484	} else {
2485		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2486		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2487		len = intel_dp->lane_count + 1;
2488	}
2489
2490	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2491				buf, len);
2492
2493	return ret == len;
2494}
2495
2496static bool
2497intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2498			uint8_t dp_train_pat)
2499{
2500	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2501	intel_dp_set_signal_levels(intel_dp, DP);
2502	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2503}
2504
2505static bool
2506intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2507			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2508{
2509	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2510	struct drm_device *dev = intel_dig_port->base.base.dev;
2511	struct drm_i915_private *dev_priv = dev->dev_private;
2512	int ret;
2513
2514	intel_get_adjust_train(intel_dp, link_status);
2515	intel_dp_set_signal_levels(intel_dp, DP);
2516
2517	I915_WRITE(intel_dp->output_reg, *DP);
2518	POSTING_READ(intel_dp->output_reg);
2519
2520	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2521				intel_dp->train_set, intel_dp->lane_count);
 
 
 
 
 
 
 
2522
2523	return ret == intel_dp->lane_count;
2524}
2525
2526static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2527{
2528	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2529	struct drm_device *dev = intel_dig_port->base.base.dev;
2530	struct drm_i915_private *dev_priv = dev->dev_private;
2531	enum port port = intel_dig_port->port;
2532	uint32_t val;
2533
2534	if (!HAS_DDI(dev))
2535		return;
2536
2537	val = I915_READ(DP_TP_CTL(port));
2538	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2539	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2540	I915_WRITE(DP_TP_CTL(port), val);
2541
2542	/*
2543	 * On PORT_A we can have only eDP in SST mode. There the only reason
2544	 * we need to set idle transmission mode is to work around a HW issue
2545	 * where we enable the pipe while not in idle link-training mode.
2546	 * In this case there is requirement to wait for a minimum number of
2547	 * idle patterns to be sent.
2548	 */
2549	if (port == PORT_A)
2550		return;
2551
2552	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2553		     1))
2554		DRM_ERROR("Timed out waiting for DP idle patterns\n");
2555}
2556
2557/* Enable corresponding port and start training pattern 1 */
2558void
2559intel_dp_start_link_train(struct intel_dp *intel_dp)
2560{
2561	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2562	struct drm_device *dev = encoder->dev;
 
2563	int i;
2564	uint8_t voltage;
2565	int voltage_tries, loop_tries;
 
 
2566	uint32_t DP = intel_dp->DP;
2567	uint8_t link_config[2];
2568
2569	if (HAS_DDI(dev))
2570		intel_ddi_prepare_link_retrain(encoder);
 
 
 
 
 
 
 
 
2571
2572	/* Write the link configuration data */
2573	link_config[0] = intel_dp->link_bw;
2574	link_config[1] = intel_dp->lane_count;
2575	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2576		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2577	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2578
2579	link_config[0] = 0;
2580	link_config[1] = DP_SET_ANSI_8B10B;
2581	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2582
2583	DP |= DP_PORT_EN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2584
2585	/* clock recovery */
2586	if (!intel_dp_reset_link_train(intel_dp, &DP,
2587				       DP_TRAINING_PATTERN_1 |
2588				       DP_LINK_SCRAMBLING_DISABLE)) {
2589		DRM_ERROR("failed to enable link training\n");
2590		return;
2591	}
2592
2593	voltage = 0xff;
2594	voltage_tries = 0;
2595	loop_tries = 0;
2596	for (;;) {
2597		uint8_t link_status[DP_LINK_STATUS_SIZE];
2598
2599		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2600		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2601			DRM_ERROR("failed to get link status\n");
2602			break;
2603		}
2604
2605		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2606			DRM_DEBUG_KMS("clock recovery OK\n");
2607			break;
2608		}
2609
2610		/* Check to see if we've tried the max voltage */
2611		for (i = 0; i < intel_dp->lane_count; i++)
2612			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2613				break;
2614		if (i == intel_dp->lane_count) {
2615			++loop_tries;
2616			if (loop_tries == 5) {
2617				DRM_ERROR("too many full retries, give up\n");
2618				break;
2619			}
2620			intel_dp_reset_link_train(intel_dp, &DP,
2621						  DP_TRAINING_PATTERN_1 |
2622						  DP_LINK_SCRAMBLING_DISABLE);
2623			voltage_tries = 0;
2624			continue;
2625		}
2626
2627		/* Check to see if we've tried the same voltage 5 times */
2628		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2629			++voltage_tries;
2630			if (voltage_tries == 5) {
2631				DRM_ERROR("too many voltage retries, give up\n");
2632				break;
2633			}
2634		} else
2635			voltage_tries = 0;
2636		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2637
2638		/* Update training set as requested by target */
2639		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2640			DRM_ERROR("failed to update link training\n");
2641			break;
2642		}
2643	}
2644
2645	intel_dp->DP = DP;
2646}
2647
2648void
2649intel_dp_complete_link_train(struct intel_dp *intel_dp)
2650{
 
 
2651	bool channel_eq = false;
2652	int tries, cr_tries;
 
2653	uint32_t DP = intel_dp->DP;
2654	uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2655
2656	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2657	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2658		training_pattern = DP_TRAINING_PATTERN_3;
2659
2660	/* channel equalization */
2661	if (!intel_dp_set_link_train(intel_dp, &DP,
2662				     training_pattern |
2663				     DP_LINK_SCRAMBLING_DISABLE)) {
2664		DRM_ERROR("failed to start channel equalization\n");
2665		return;
2666	}
2667
2668	tries = 0;
2669	cr_tries = 0;
2670	channel_eq = false;
2671	for (;;) {
2672		uint8_t link_status[DP_LINK_STATUS_SIZE];
 
2673
2674		if (cr_tries > 5) {
2675			DRM_ERROR("failed to train DP, aborting\n");
 
2676			break;
2677		}
2678
2679		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2680		if (!intel_dp_get_link_status(intel_dp, link_status)) {
2681			DRM_ERROR("failed to get link status\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2682			break;
2683		}
2684
2685		/* Make sure clock is still ok */
2686		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2687			intel_dp_start_link_train(intel_dp);
2688			intel_dp_set_link_train(intel_dp, &DP,
2689						training_pattern |
2690						DP_LINK_SCRAMBLING_DISABLE);
2691			cr_tries++;
2692			continue;
2693		}
2694
2695		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2696			channel_eq = true;
2697			break;
2698		}
2699
2700		/* Try 5 times, then try clock recovery if that fails */
2701		if (tries > 5) {
2702			intel_dp_link_down(intel_dp);
2703			intel_dp_start_link_train(intel_dp);
2704			intel_dp_set_link_train(intel_dp, &DP,
2705						training_pattern |
2706						DP_LINK_SCRAMBLING_DISABLE);
2707			tries = 0;
2708			cr_tries++;
2709			continue;
2710		}
2711
2712		/* Update training set as requested by target */
2713		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2714			DRM_ERROR("failed to update link training\n");
2715			break;
2716		}
2717		++tries;
2718	}
2719
2720	intel_dp_set_idle_link_train(intel_dp);
2721
2722	intel_dp->DP = DP;
2723
2724	if (channel_eq)
2725		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2726
2727}
2728
2729void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2730{
2731	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2732				DP_TRAINING_PATTERN_DISABLE);
2733}
2734
2735static void
2736intel_dp_link_down(struct intel_dp *intel_dp)
2737{
2738	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2739	enum port port = intel_dig_port->port;
2740	struct drm_device *dev = intel_dig_port->base.base.dev;
2741	struct drm_i915_private *dev_priv = dev->dev_private;
2742	struct intel_crtc *intel_crtc =
2743		to_intel_crtc(intel_dig_port->base.base.crtc);
2744	uint32_t DP = intel_dp->DP;
2745
2746	/*
2747	 * DDI code has a strict mode set sequence and we should try to respect
2748	 * it, otherwise we might hang the machine in many different ways. So we
2749	 * really should be disabling the port only on a complete crtc_disable
2750	 * sequence. This function is just called under two conditions on DDI
2751	 * code:
2752	 * - Link train failed while doing crtc_enable, and on this case we
2753	 *   really should respect the mode set sequence and wait for a
2754	 *   crtc_disable.
2755	 * - Someone turned the monitor off and intel_dp_check_link_status
2756	 *   called us. We don't need to disable the whole port on this case, so
2757	 *   when someone turns the monitor on again,
2758	 *   intel_ddi_prepare_link_retrain will take care of redoing the link
2759	 *   train.
2760	 */
2761	if (HAS_DDI(dev))
2762		return;
2763
2764	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2765		return;
2766
2767	DRM_DEBUG_KMS("\n");
 
 
 
 
 
2768
2769	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2770		DP &= ~DP_LINK_TRAIN_MASK_CPT;
2771		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2772	} else {
2773		DP &= ~DP_LINK_TRAIN_MASK;
2774		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2775	}
2776	POSTING_READ(intel_dp->output_reg);
2777
2778	/* We don't really know why we're doing this */
2779	intel_wait_for_vblank(dev, intel_crtc->pipe);
2780
2781	if (HAS_PCH_IBX(dev) &&
 
 
 
2782	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2783		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2784
2785		/* Hardware workaround: leaving our transcoder select
2786		 * set to transcoder B while it's off will prevent the
2787		 * corresponding HDMI output on transcoder A.
2788		 *
2789		 * Combine this with another hardware workaround:
2790		 * transcoder select bit can only be cleared while the
2791		 * port is enabled.
2792		 */
2793		DP &= ~DP_PIPEB_SELECT;
2794		I915_WRITE(intel_dp->output_reg, DP);
2795
2796		/* Changes to enable or select take place the vblank
2797		 * after being written.
2798		 */
2799		if (WARN_ON(crtc == NULL)) {
2800			/* We should never try to disable a port without a crtc
2801			 * attached. For paranoia keep the code around for a
2802			 * bit. */
 
 
 
 
 
2803			POSTING_READ(intel_dp->output_reg);
2804			msleep(50);
2805		} else
2806			intel_wait_for_vblank(dev, intel_crtc->pipe);
2807	}
2808
2809	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2810	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2811	POSTING_READ(intel_dp->output_reg);
2812	msleep(intel_dp->panel_power_down_delay);
2813}
2814
2815static bool
2816intel_dp_get_dpcd(struct intel_dp *intel_dp)
2817{
2818	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2819	struct drm_device *dev = dig_port->base.base.dev;
2820	struct drm_i915_private *dev_priv = dev->dev_private;
2821
2822	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2823
2824	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
2825				    sizeof(intel_dp->dpcd)) < 0)
2826		return false; /* aux transfer failed */
2827
2828	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2829			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2830	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2831
2832	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2833		return false; /* DPCD not present */
2834
2835	/* Check if the panel supports PSR */
2836	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2837	if (is_edp(intel_dp)) {
2838		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
2839					intel_dp->psr_dpcd,
2840					sizeof(intel_dp->psr_dpcd));
2841		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2842			dev_priv->psr.sink_support = true;
2843			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2844		}
2845	}
2846
2847	/* Training Pattern 3 support */
2848	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2849	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2850		intel_dp->use_tps3 = true;
2851		DRM_DEBUG_KMS("Displayport TPS3 supported");
2852	} else
2853		intel_dp->use_tps3 = false;
2854
2855	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2856	      DP_DWN_STRM_PORT_PRESENT))
2857		return true; /* native DP sink */
2858
2859	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2860		return true; /* no per-port downstream info */
2861
2862	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
2863				    intel_dp->downstream_ports,
2864				    DP_MAX_DOWNSTREAM_PORTS) < 0)
2865		return false; /* downstream port status fetch failed */
2866
2867	return true;
2868}
2869
2870static void
2871intel_dp_probe_oui(struct intel_dp *intel_dp)
2872{
2873	u8 buf[3];
2874
2875	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2876		return;
2877
2878	intel_edp_panel_vdd_on(intel_dp);
2879
2880	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
2881		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2882			      buf[0], buf[1], buf[2]);
2883
2884	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
2885		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2886			      buf[0], buf[1], buf[2]);
2887
2888	edp_panel_vdd_off(intel_dp, false);
2889}
2890
2891int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
2892{
2893	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2894	struct drm_device *dev = intel_dig_port->base.base.dev;
2895	struct intel_crtc *intel_crtc =
2896		to_intel_crtc(intel_dig_port->base.base.crtc);
2897	u8 buf[1];
2898
2899	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
2900		return -EAGAIN;
2901
2902	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2903		return -ENOTTY;
2904
2905	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
2906			       DP_TEST_SINK_START) < 0)
2907		return -EAGAIN;
2908
2909	/* Wait 2 vblanks to be sure we will have the correct CRC value */
2910	intel_wait_for_vblank(dev, intel_crtc->pipe);
2911	intel_wait_for_vblank(dev, intel_crtc->pipe);
2912
2913	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
2914		return -EAGAIN;
2915
2916	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
2917	return 0;
2918}
2919
2920static bool
2921intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2922{
2923	return intel_dp_dpcd_read_wake(&intel_dp->aux,
2924				       DP_DEVICE_SERVICE_IRQ_VECTOR,
2925				       sink_irq_vector, 1) == 1;
2926}
2927
2928static void
2929intel_dp_handle_test_request(struct intel_dp *intel_dp)
2930{
2931	/* NAK by default */
2932	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
2933}
2934
2935/*
2936 * According to DP spec
2937 * 5.1.2:
2938 *  1. Read DPCD
2939 *  2. Configure link according to Receiver Capabilities
2940 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2941 *  4. Check link status on receipt of hot-plug interrupt
2942 */
2943
2944void
2945intel_dp_check_link_status(struct intel_dp *intel_dp)
2946{
2947	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2948	u8 sink_irq_vector;
2949	u8 link_status[DP_LINK_STATUS_SIZE];
2950
2951	if (!intel_encoder->connectors_active)
2952		return;
2953
2954	if (WARN_ON(!intel_encoder->base.crtc))
2955		return;
2956
2957	/* Try to read receiver status if the link appears to be up */
2958	if (!intel_dp_get_link_status(intel_dp, link_status)) {
 
2959		return;
2960	}
2961
2962	/* Now read the DPCD to see if it's actually running */
2963	if (!intel_dp_get_dpcd(intel_dp)) {
 
2964		return;
2965	}
2966
2967	/* Try to read the source of the interrupt */
2968	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2969	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2970		/* Clear interrupt source */
2971		drm_dp_dpcd_writeb(&intel_dp->aux,
2972				   DP_DEVICE_SERVICE_IRQ_VECTOR,
2973				   sink_irq_vector);
2974
2975		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2976			intel_dp_handle_test_request(intel_dp);
2977		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2978			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2979	}
2980
2981	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2982		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2983			      drm_get_encoder_name(&intel_encoder->base));
2984		intel_dp_start_link_train(intel_dp);
2985		intel_dp_complete_link_train(intel_dp);
2986		intel_dp_stop_link_train(intel_dp);
2987	}
2988}
2989
2990/* XXX this is probably wrong for multiple downstream ports */
2991static enum drm_connector_status
2992intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2993{
2994	uint8_t *dpcd = intel_dp->dpcd;
2995	uint8_t type;
2996
2997	if (!intel_dp_get_dpcd(intel_dp))
2998		return connector_status_disconnected;
2999
3000	/* if there's no downstream port, we're done */
3001	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3002		return connector_status_connected;
3003
3004	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3005	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3006	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3007		uint8_t reg;
3008
3009		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3010					    &reg, 1) < 0)
3011			return connector_status_unknown;
3012
3013		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3014					      : connector_status_disconnected;
3015	}
3016
3017	/* If no HPD, poke DDC gently */
3018	if (drm_probe_ddc(&intel_dp->aux.ddc))
3019		return connector_status_connected;
3020
3021	/* Well we tried, say unknown for unreliable port types */
3022	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3023		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3024		if (type == DP_DS_PORT_TYPE_VGA ||
3025		    type == DP_DS_PORT_TYPE_NON_EDID)
3026			return connector_status_unknown;
3027	} else {
3028		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3029			DP_DWN_STRM_PORT_TYPE_MASK;
3030		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3031		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
3032			return connector_status_unknown;
3033	}
3034
3035	/* Anything else is out of spec, warn and ignore */
3036	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3037	return connector_status_disconnected;
3038}
3039
3040static enum drm_connector_status
3041ironlake_dp_detect(struct intel_dp *intel_dp)
3042{
3043	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3044	struct drm_i915_private *dev_priv = dev->dev_private;
3045	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3046	enum drm_connector_status status;
3047
3048	/* Can't disconnect eDP, but you can close the lid... */
3049	if (is_edp(intel_dp)) {
3050		status = intel_panel_detect(dev);
3051		if (status == connector_status_unknown)
3052			status = connector_status_connected;
3053		return status;
3054	}
3055
3056	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3057		return connector_status_disconnected;
3058
3059	return intel_dp_detect_dpcd(intel_dp);
3060}
3061
3062static enum drm_connector_status
3063g4x_dp_detect(struct intel_dp *intel_dp)
3064{
3065	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3066	struct drm_i915_private *dev_priv = dev->dev_private;
3067	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3068	uint32_t bit;
3069
3070	/* Can't disconnect eDP, but you can close the lid... */
3071	if (is_edp(intel_dp)) {
3072		enum drm_connector_status status;
3073
3074		status = intel_panel_detect(dev);
3075		if (status == connector_status_unknown)
3076			status = connector_status_connected;
3077		return status;
 
 
 
 
3078	}
3079
3080	if (IS_VALLEYVIEW(dev)) {
3081		switch (intel_dig_port->port) {
3082		case PORT_B:
3083			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3084			break;
3085		case PORT_C:
3086			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3087			break;
3088		case PORT_D:
3089			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3090			break;
3091		default:
3092			return connector_status_unknown;
3093		}
3094	} else {
3095		switch (intel_dig_port->port) {
3096		case PORT_B:
3097			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3098			break;
3099		case PORT_C:
3100			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3101			break;
3102		case PORT_D:
3103			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3104			break;
3105		default:
3106			return connector_status_unknown;
3107		}
3108	}
3109
3110	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3111		return connector_status_disconnected;
3112
3113	return intel_dp_detect_dpcd(intel_dp);
3114}
3115
3116static struct edid *
3117intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3118{
3119	struct intel_connector *intel_connector = to_intel_connector(connector);
3120
3121	/* use cached edid if we have one */
3122	if (intel_connector->edid) {
3123		/* invalid edid */
3124		if (IS_ERR(intel_connector->edid))
3125			return NULL;
3126
3127		return drm_edid_duplicate(intel_connector->edid);
3128	}
3129
3130	return drm_get_edid(connector, adapter);
3131}
3132
3133static int
3134intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3135{
3136	struct intel_connector *intel_connector = to_intel_connector(connector);
3137
3138	/* use cached edid if we have one */
3139	if (intel_connector->edid) {
3140		/* invalid edid */
3141		if (IS_ERR(intel_connector->edid))
3142			return 0;
3143
3144		return intel_connector_update_modes(connector,
3145						    intel_connector->edid);
3146	}
3147
3148	return intel_ddc_get_modes(connector, adapter);
3149}
3150
3151static enum drm_connector_status
3152intel_dp_detect(struct drm_connector *connector, bool force)
3153{
3154	struct intel_dp *intel_dp = intel_attached_dp(connector);
3155	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3156	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3157	struct drm_device *dev = connector->dev;
3158	struct drm_i915_private *dev_priv = dev->dev_private;
3159	enum drm_connector_status status;
3160	enum intel_display_power_domain power_domain;
3161	struct edid *edid = NULL;
3162
3163	intel_runtime_pm_get(dev_priv);
3164
3165	power_domain = intel_display_port_power_domain(intel_encoder);
3166	intel_display_power_get(dev_priv, power_domain);
3167
3168	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3169		      connector->base.id, drm_get_connector_name(connector));
3170
3171	intel_dp->has_audio = false;
3172
3173	if (HAS_PCH_SPLIT(dev))
3174		status = ironlake_dp_detect(intel_dp);
3175	else
3176		status = g4x_dp_detect(intel_dp);
3177
 
 
 
 
 
3178	if (status != connector_status_connected)
3179		goto out;
3180
3181	intel_dp_probe_oui(intel_dp);
3182
3183	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3184		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3185	} else {
3186		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3187		if (edid) {
3188			intel_dp->has_audio = drm_detect_monitor_audio(edid);
 
3189			kfree(edid);
3190		}
3191	}
3192
3193	if (intel_encoder->type != INTEL_OUTPUT_EDP)
3194		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3195	status = connector_status_connected;
3196
3197out:
3198	intel_display_power_put(dev_priv, power_domain);
3199
3200	intel_runtime_pm_put(dev_priv);
3201
3202	return status;
3203}
3204
3205static int intel_dp_get_modes(struct drm_connector *connector)
3206{
3207	struct intel_dp *intel_dp = intel_attached_dp(connector);
3208	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3209	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3210	struct intel_connector *intel_connector = to_intel_connector(connector);
3211	struct drm_device *dev = connector->dev;
3212	struct drm_i915_private *dev_priv = dev->dev_private;
3213	enum intel_display_power_domain power_domain;
3214	int ret;
3215
3216	/* We should parse the EDID data and find out if it has an audio sink
3217	 */
3218
3219	power_domain = intel_display_port_power_domain(intel_encoder);
3220	intel_display_power_get(dev_priv, power_domain);
 
 
 
 
 
 
 
 
 
 
 
3221
3222	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3223	intel_display_power_put(dev_priv, power_domain);
3224	if (ret)
3225		return ret;
 
3226
3227	/* if eDP has no EDID, fall back to fixed mode */
3228	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3229		struct drm_display_mode *mode;
3230		mode = drm_mode_duplicate(dev,
3231					  intel_connector->panel.fixed_mode);
3232		if (mode) {
3233			drm_mode_probed_add(connector, mode);
3234			return 1;
3235		}
3236	}
3237	return 0;
3238}
3239
3240static bool
3241intel_dp_detect_audio(struct drm_connector *connector)
3242{
3243	struct intel_dp *intel_dp = intel_attached_dp(connector);
3244	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3245	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3246	struct drm_device *dev = connector->dev;
3247	struct drm_i915_private *dev_priv = dev->dev_private;
3248	enum intel_display_power_domain power_domain;
3249	struct edid *edid;
3250	bool has_audio = false;
3251
3252	power_domain = intel_display_port_power_domain(intel_encoder);
3253	intel_display_power_get(dev_priv, power_domain);
3254
3255	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3256	if (edid) {
3257		has_audio = drm_detect_monitor_audio(edid);
 
 
3258		kfree(edid);
3259	}
3260
3261	intel_display_power_put(dev_priv, power_domain);
3262
3263	return has_audio;
3264}
3265
3266static int
3267intel_dp_set_property(struct drm_connector *connector,
3268		      struct drm_property *property,
3269		      uint64_t val)
3270{
3271	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3272	struct intel_connector *intel_connector = to_intel_connector(connector);
3273	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3274	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3275	int ret;
3276
3277	ret = drm_object_property_set_value(&connector->base, property, val);
3278	if (ret)
3279		return ret;
3280
3281	if (property == dev_priv->force_audio_property) {
3282		int i = val;
3283		bool has_audio;
3284
3285		if (i == intel_dp->force_audio)
3286			return 0;
3287
3288		intel_dp->force_audio = i;
3289
3290		if (i == HDMI_AUDIO_AUTO)
3291			has_audio = intel_dp_detect_audio(connector);
3292		else
3293			has_audio = (i == HDMI_AUDIO_ON);
3294
3295		if (has_audio == intel_dp->has_audio)
3296			return 0;
3297
3298		intel_dp->has_audio = has_audio;
3299		goto done;
3300	}
3301
3302	if (property == dev_priv->broadcast_rgb_property) {
3303		bool old_auto = intel_dp->color_range_auto;
3304		uint32_t old_range = intel_dp->color_range;
3305
3306		switch (val) {
3307		case INTEL_BROADCAST_RGB_AUTO:
3308			intel_dp->color_range_auto = true;
3309			break;
3310		case INTEL_BROADCAST_RGB_FULL:
3311			intel_dp->color_range_auto = false;
3312			intel_dp->color_range = 0;
3313			break;
3314		case INTEL_BROADCAST_RGB_LIMITED:
3315			intel_dp->color_range_auto = false;
3316			intel_dp->color_range = DP_COLOR_RANGE_16_235;
3317			break;
3318		default:
3319			return -EINVAL;
3320		}
3321
3322		if (old_auto == intel_dp->color_range_auto &&
3323		    old_range == intel_dp->color_range)
3324			return 0;
3325
3326		goto done;
3327	}
3328
3329	if (is_edp(intel_dp) &&
3330	    property == connector->dev->mode_config.scaling_mode_property) {
3331		if (val == DRM_MODE_SCALE_NONE) {
3332			DRM_DEBUG_KMS("no scaling not supported\n");
3333			return -EINVAL;
3334		}
3335
3336		if (intel_connector->panel.fitting_mode == val) {
3337			/* the eDP scaling property is not changed */
3338			return 0;
3339		}
3340		intel_connector->panel.fitting_mode = val;
3341
 
3342		goto done;
3343	}
3344
3345	return -EINVAL;
3346
3347done:
3348	if (intel_encoder->base.crtc)
3349		intel_crtc_restore_mode(intel_encoder->base.crtc);
 
 
 
 
3350
3351	return 0;
3352}
3353
3354static void
3355intel_dp_connector_destroy(struct drm_connector *connector)
3356{
3357	struct intel_connector *intel_connector = to_intel_connector(connector);
3358
3359	if (!IS_ERR_OR_NULL(intel_connector->edid))
3360		kfree(intel_connector->edid);
3361
3362	/* Can't call is_edp() since the encoder may have been destroyed
3363	 * already. */
3364	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3365		intel_panel_fini(&intel_connector->panel);
3366
 
3367	drm_connector_cleanup(connector);
3368	kfree(connector);
3369}
3370
3371void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3372{
3373	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3374	struct intel_dp *intel_dp = &intel_dig_port->dp;
3375	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3376
3377	drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3378	drm_encoder_cleanup(encoder);
3379	if (is_edp(intel_dp)) {
3380		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3381		mutex_lock(&dev->mode_config.mutex);
3382		edp_panel_vdd_off_sync(intel_dp);
3383		mutex_unlock(&dev->mode_config.mutex);
3384	}
3385	kfree(intel_dig_port);
3386}
3387
 
 
 
 
 
 
 
 
3388static const struct drm_connector_funcs intel_dp_connector_funcs = {
3389	.dpms = intel_connector_dpms,
3390	.detect = intel_dp_detect,
3391	.fill_modes = drm_helper_probe_single_connector_modes,
3392	.set_property = intel_dp_set_property,
3393	.destroy = intel_dp_connector_destroy,
3394};
3395
3396static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3397	.get_modes = intel_dp_get_modes,
3398	.mode_valid = intel_dp_mode_valid,
3399	.best_encoder = intel_best_encoder,
3400};
3401
3402static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3403	.destroy = intel_dp_encoder_destroy,
3404};
3405
3406static void
3407intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3408{
3409	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3410
3411	intel_dp_check_link_status(intel_dp);
3412}
3413
3414/* Return which DP Port should be selected for Transcoder DP control */
3415int
3416intel_trans_dp_port_sel(struct drm_crtc *crtc)
3417{
3418	struct drm_device *dev = crtc->dev;
3419	struct intel_encoder *intel_encoder;
3420	struct intel_dp *intel_dp;
3421
3422	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3423		intel_dp = enc_to_intel_dp(&intel_encoder->base);
3424
3425		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3426		    intel_encoder->type == INTEL_OUTPUT_EDP)
 
 
 
3427			return intel_dp->output_reg;
3428	}
3429
3430	return -1;
3431}
3432
3433/* check the VBT to see whether the eDP is on DP-D port */
3434bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3435{
3436	struct drm_i915_private *dev_priv = dev->dev_private;
3437	union child_device_config *p_child;
3438	int i;
3439	static const short port_mapping[] = {
3440		[PORT_B] = PORT_IDPB,
3441		[PORT_C] = PORT_IDPC,
3442		[PORT_D] = PORT_IDPD,
3443	};
3444
3445	if (port == PORT_A)
3446		return true;
3447
3448	if (!dev_priv->vbt.child_dev_num)
3449		return false;
3450
3451	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3452		p_child = dev_priv->vbt.child_dev + i;
3453
3454		if (p_child->common.dvo_port == port_mapping[port] &&
3455		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3456		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3457			return true;
3458	}
3459	return false;
3460}
3461
3462static void
3463intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3464{
3465	struct intel_connector *intel_connector = to_intel_connector(connector);
3466
3467	intel_attach_force_audio_property(connector);
3468	intel_attach_broadcast_rgb_property(connector);
3469	intel_dp->color_range_auto = true;
3470
3471	if (is_edp(intel_dp)) {
3472		drm_mode_create_scaling_mode_property(connector->dev);
3473		drm_object_attach_property(
3474			&connector->base,
3475			connector->dev->mode_config.scaling_mode_property,
3476			DRM_MODE_SCALE_ASPECT);
3477		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3478	}
3479}
3480
3481static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3482{
3483	intel_dp->last_power_cycle = jiffies;
3484	intel_dp->last_power_on = jiffies;
3485	intel_dp->last_backlight_off = jiffies;
3486}
3487
3488static void
3489intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3490				    struct intel_dp *intel_dp,
3491				    struct edp_power_seq *out)
3492{
3493	struct drm_i915_private *dev_priv = dev->dev_private;
3494	struct edp_power_seq cur, vbt, spec, final;
3495	u32 pp_on, pp_off, pp_div, pp;
3496	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
 
 
 
3497
3498	if (HAS_PCH_SPLIT(dev)) {
3499		pp_ctrl_reg = PCH_PP_CONTROL;
3500		pp_on_reg = PCH_PP_ON_DELAYS;
3501		pp_off_reg = PCH_PP_OFF_DELAYS;
3502		pp_div_reg = PCH_PP_DIVISOR;
3503	} else {
3504		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3505
3506		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3507		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3508		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3509		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3510	}
3511
3512	/* Workaround: Need to write PP_CONTROL with the unlock key as
3513	 * the very first thing. */
3514	pp = ironlake_get_pp_control(intel_dp);
3515	I915_WRITE(pp_ctrl_reg, pp);
3516
3517	pp_on = I915_READ(pp_on_reg);
3518	pp_off = I915_READ(pp_off_reg);
3519	pp_div = I915_READ(pp_div_reg);
3520
3521	/* Pull timing values out of registers */
3522	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3523		PANEL_POWER_UP_DELAY_SHIFT;
3524
3525	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3526		PANEL_LIGHT_ON_DELAY_SHIFT;
3527
3528	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3529		PANEL_LIGHT_OFF_DELAY_SHIFT;
3530
3531	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3532		PANEL_POWER_DOWN_DELAY_SHIFT;
3533
3534	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3535		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3536
3537	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3538		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3539
3540	vbt = dev_priv->vbt.edp_pps;
3541
3542	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3543	 * our hw here, which are all in 100usec. */
3544	spec.t1_t3 = 210 * 10;
3545	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3546	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3547	spec.t10 = 500 * 10;
3548	/* This one is special and actually in units of 100ms, but zero
3549	 * based in the hw (so we need to add 100 ms). But the sw vbt
3550	 * table multiplies it with 1000 to make it in units of 100usec,
3551	 * too. */
3552	spec.t11_t12 = (510 + 100) * 10;
3553
3554	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3555		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3556
3557	/* Use the max of the register settings and vbt. If both are
3558	 * unset, fall back to the spec limits. */
3559#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
3560				       spec.field : \
3561				       max(cur.field, vbt.field))
3562	assign_final(t1_t3);
3563	assign_final(t8);
3564	assign_final(t9);
3565	assign_final(t10);
3566	assign_final(t11_t12);
3567#undef assign_final
3568
3569#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
3570	intel_dp->panel_power_up_delay = get_delay(t1_t3);
3571	intel_dp->backlight_on_delay = get_delay(t8);
3572	intel_dp->backlight_off_delay = get_delay(t9);
3573	intel_dp->panel_power_down_delay = get_delay(t10);
3574	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3575#undef get_delay
3576
3577	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3578		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3579		      intel_dp->panel_power_cycle_delay);
3580
3581	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3582		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3583
3584	if (out)
3585		*out = final;
3586}
3587
3588static void
3589intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3590					      struct intel_dp *intel_dp,
3591					      struct edp_power_seq *seq)
3592{
3593	struct drm_i915_private *dev_priv = dev->dev_private;
3594	u32 pp_on, pp_off, pp_div, port_sel = 0;
3595	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3596	int pp_on_reg, pp_off_reg, pp_div_reg;
3597
3598	if (HAS_PCH_SPLIT(dev)) {
3599		pp_on_reg = PCH_PP_ON_DELAYS;
3600		pp_off_reg = PCH_PP_OFF_DELAYS;
3601		pp_div_reg = PCH_PP_DIVISOR;
3602	} else {
3603		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3604
3605		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3606		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3607		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3608	}
 
3609
3610	/*
3611	 * And finally store the new values in the power sequencer. The
3612	 * backlight delays are set to 1 because we do manual waits on them. For
3613	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
3614	 * we'll end up waiting for the backlight off delay twice: once when we
3615	 * do the manual sleep, and once when we disable the panel and wait for
3616	 * the PP_STATUS bit to become zero.
3617	 */
3618	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3619		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3620	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3621		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3622	/* Compute the divisor for the pp clock, simply match the Bspec
3623	 * formula. */
3624	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3625	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3626			<< PANEL_POWER_CYCLE_DELAY_SHIFT);
3627
3628	/* Haswell doesn't have any port selection bits for the panel
3629	 * power sequencer any more. */
3630	if (IS_VALLEYVIEW(dev)) {
3631		if (dp_to_dig_port(intel_dp)->port == PORT_B)
3632			port_sel = PANEL_PORT_SELECT_DPB_VLV;
3633		else
3634			port_sel = PANEL_PORT_SELECT_DPC_VLV;
3635	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3636		if (dp_to_dig_port(intel_dp)->port == PORT_A)
3637			port_sel = PANEL_PORT_SELECT_DPA;
3638		else
3639			port_sel = PANEL_PORT_SELECT_DPD;
3640	}
3641
3642	pp_on |= port_sel;
3643
3644	I915_WRITE(pp_on_reg, pp_on);
3645	I915_WRITE(pp_off_reg, pp_off);
3646	I915_WRITE(pp_div_reg, pp_div);
3647
3648	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3649		      I915_READ(pp_on_reg),
3650		      I915_READ(pp_off_reg),
3651		      I915_READ(pp_div_reg));
3652}
3653
3654static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3655				     struct intel_connector *intel_connector,
3656				     struct edp_power_seq *power_seq)
3657{
3658	struct drm_connector *connector = &intel_connector->base;
3659	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3660	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3661	struct drm_device *dev = intel_encoder->base.dev;
3662	struct drm_i915_private *dev_priv = dev->dev_private;
3663	struct drm_display_mode *fixed_mode = NULL;
3664	bool has_dpcd;
3665	struct drm_display_mode *scan;
3666	struct edid *edid;
3667
3668	if (!is_edp(intel_dp))
3669		return true;
3670
3671	/* The VDD bit needs a power domain reference, so if the bit is already
3672	 * enabled when we boot, grab this reference. */
3673	if (edp_have_panel_vdd(intel_dp)) {
3674		enum intel_display_power_domain power_domain;
3675		power_domain = intel_display_port_power_domain(intel_encoder);
3676		intel_display_power_get(dev_priv, power_domain);
3677	}
3678
3679	/* Cache DPCD and EDID for edp. */
3680	intel_edp_panel_vdd_on(intel_dp);
3681	has_dpcd = intel_dp_get_dpcd(intel_dp);
3682	edp_panel_vdd_off(intel_dp, false);
3683
3684	if (has_dpcd) {
3685		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3686			dev_priv->no_aux_handshake =
3687				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3688				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3689	} else {
3690		/* if this fails, presume the device is a ghost */
3691		DRM_INFO("failed to retrieve link info, disabling eDP\n");
3692		return false;
3693	}
3694
3695	/* We now know it's not a ghost, init power sequence regs. */
3696	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3697
3698	mutex_lock(&dev->mode_config.mutex);
3699	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
3700	if (edid) {
3701		if (drm_add_edid_modes(connector, edid)) {
3702			drm_mode_connector_update_edid_property(connector,
3703								edid);
3704			drm_edid_to_eld(connector, edid);
3705		} else {
3706			kfree(edid);
3707			edid = ERR_PTR(-EINVAL);
3708		}
3709	} else {
3710		edid = ERR_PTR(-ENOENT);
3711	}
3712	intel_connector->edid = edid;
3713
3714	/* prefer fixed mode from EDID if available */
3715	list_for_each_entry(scan, &connector->probed_modes, head) {
3716		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3717			fixed_mode = drm_mode_duplicate(dev, scan);
3718			break;
3719		}
3720	}
3721
3722	/* fallback to VBT if available for eDP */
3723	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3724		fixed_mode = drm_mode_duplicate(dev,
3725					dev_priv->vbt.lfp_lvds_vbt_mode);
3726		if (fixed_mode)
3727			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3728	}
3729	mutex_unlock(&dev->mode_config.mutex);
3730
3731	intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3732	intel_panel_setup_backlight(connector);
3733
3734	return true;
3735}
3736
3737bool
3738intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3739			struct intel_connector *intel_connector)
3740{
3741	struct drm_connector *connector = &intel_connector->base;
3742	struct intel_dp *intel_dp = &intel_dig_port->dp;
3743	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3744	struct drm_device *dev = intel_encoder->base.dev;
3745	struct drm_i915_private *dev_priv = dev->dev_private;
3746	enum port port = intel_dig_port->port;
3747	struct edp_power_seq power_seq = { 0 };
3748	int type;
3749
3750	/* intel_dp vfuncs */
3751	if (IS_VALLEYVIEW(dev))
3752		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3753	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3754		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3755	else if (HAS_PCH_SPLIT(dev))
3756		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3757	else
3758		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3759
3760	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
3761
3762	/* Preserve the current hw state. */
3763	intel_dp->DP = I915_READ(intel_dp->output_reg);
3764	intel_dp->attached_connector = intel_connector;
3765
3766	if (intel_dp_is_edp(dev, port))
3767		type = DRM_MODE_CONNECTOR_eDP;
3768	else
3769		type = DRM_MODE_CONNECTOR_DisplayPort;
3770
3771	/*
3772	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3773	 * for DP the encoder type can be set by the caller to
3774	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3775	 */
3776	if (type == DRM_MODE_CONNECTOR_eDP)
3777		intel_encoder->type = INTEL_OUTPUT_EDP;
3778
3779	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3780			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3781			port_name(port));
3782
3783	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3784	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3785
 
3786	connector->interlace_allowed = true;
3787	connector->doublescan_allowed = 0;
3788
3789	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3790			  edp_panel_vdd_work);
 
3791
3792	intel_connector_attach_encoder(intel_connector, intel_encoder);
3793	drm_sysfs_connector_add(connector);
3794
3795	if (HAS_DDI(dev))
3796		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3797	else
3798		intel_connector->get_hw_state = intel_connector_get_hw_state;
3799	intel_connector->unregister = intel_dp_connector_unregister;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3800
3801	/* Set up the hotplug pin. */
3802	switch (port) {
3803	case PORT_A:
3804		intel_encoder->hpd_pin = HPD_PORT_A;
3805		break;
3806	case PORT_B:
3807		intel_encoder->hpd_pin = HPD_PORT_B;
3808		break;
3809	case PORT_C:
3810		intel_encoder->hpd_pin = HPD_PORT_C;
3811		break;
3812	case PORT_D:
3813		intel_encoder->hpd_pin = HPD_PORT_D;
3814		break;
3815	default:
3816		BUG();
3817	}
3818
 
3819	if (is_edp(intel_dp)) {
3820		intel_dp_init_panel_power_timestamps(intel_dp);
3821		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3822	}
3823
3824	intel_dp_aux_init(intel_dp, intel_connector);
3825
3826	intel_dp->psr_setup_done = false;
3827
3828	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3829		drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3830		if (is_edp(intel_dp)) {
3831			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3832			mutex_lock(&dev->mode_config.mutex);
3833			edp_panel_vdd_off_sync(intel_dp);
3834			mutex_unlock(&dev->mode_config.mutex);
3835		}
3836		drm_sysfs_connector_remove(connector);
3837		drm_connector_cleanup(connector);
3838		return false;
3839	}
3840
3841	intel_dp_add_properties(intel_dp, connector);
3842
3843	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3844	 * 0xd.  Failure to do so will result in spurious interrupts being
3845	 * generated on the port when a cable is not attached.
3846	 */
3847	if (IS_G4X(dev) && !IS_GM45(dev)) {
3848		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3849		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3850	}
3851
3852	return true;
3853}
3854
3855void
3856intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3857{
3858	struct intel_digital_port *intel_dig_port;
3859	struct intel_encoder *intel_encoder;
3860	struct drm_encoder *encoder;
3861	struct intel_connector *intel_connector;
3862
3863	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3864	if (!intel_dig_port)
3865		return;
3866
3867	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3868	if (!intel_connector) {
3869		kfree(intel_dig_port);
3870		return;
3871	}
3872
3873	intel_encoder = &intel_dig_port->base;
3874	encoder = &intel_encoder->base;
3875
3876	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3877			 DRM_MODE_ENCODER_TMDS);
3878
3879	intel_encoder->compute_config = intel_dp_compute_config;
3880	intel_encoder->mode_set = intel_dp_mode_set;
3881	intel_encoder->disable = intel_disable_dp;
3882	intel_encoder->post_disable = intel_post_disable_dp;
3883	intel_encoder->get_hw_state = intel_dp_get_hw_state;
3884	intel_encoder->get_config = intel_dp_get_config;
3885	if (IS_VALLEYVIEW(dev)) {
3886		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3887		intel_encoder->pre_enable = vlv_pre_enable_dp;
3888		intel_encoder->enable = vlv_enable_dp;
3889	} else {
3890		intel_encoder->pre_enable = g4x_pre_enable_dp;
3891		intel_encoder->enable = g4x_enable_dp;
3892	}
3893
3894	intel_dig_port->port = port;
3895	intel_dig_port->dp.output_reg = output_reg;
3896
3897	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3898	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3899	intel_encoder->cloneable = 0;
3900	intel_encoder->hot_plug = intel_dp_hot_plug;
3901
3902	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3903		drm_encoder_cleanup(encoder);
3904		kfree(intel_dig_port);
3905		kfree(intel_connector);
3906	}
3907}