Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/slab.h>
 
  30#include "drmP.h"
  31#include "drm.h"
  32#include "drm_crtc.h"
  33#include "drm_crtc_helper.h"
 
  34#include "intel_drv.h"
  35#include "i915_drm.h"
  36#include "i915_drv.h"
  37#include "drm_dp_helper.h"
  38
  39
  40#define DP_LINK_STATUS_SIZE	6
  41#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
  42
  43#define DP_LINK_CONFIGURATION_SIZE	9
  44
  45struct intel_dp {
  46	struct intel_encoder base;
  47	uint32_t output_reg;
  48	uint32_t DP;
  49	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
  50	bool has_audio;
  51	int force_audio;
  52	uint32_t color_range;
  53	int dpms_mode;
  54	uint8_t link_bw;
  55	uint8_t lane_count;
  56	uint8_t dpcd[8];
  57	struct i2c_adapter adapter;
  58	struct i2c_algo_dp_aux_data algo;
  59	bool is_pch_edp;
  60	uint8_t	train_set[4];
  61	uint8_t link_status[DP_LINK_STATUS_SIZE];
 
 
 
 
 
 
 
 
 
  62};
  63
  64/**
  65 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  66 * @intel_dp: DP struct
  67 *
  68 * If a CPU or PCH DP output is attached to an eDP panel, this function
  69 * will return true, and false otherwise.
  70 */
  71static bool is_edp(struct intel_dp *intel_dp)
  72{
  73	return intel_dp->base.type == INTEL_OUTPUT_EDP;
  74}
  75
  76/**
  77 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  78 * @intel_dp: DP struct
  79 *
  80 * Returns true if the given DP struct corresponds to a PCH DP port attached
  81 * to an eDP panel, false otherwise.  Helpful for determining whether we
  82 * may need FDI resources for a given DP output or not.
  83 */
  84static bool is_pch_edp(struct intel_dp *intel_dp)
  85{
  86	return intel_dp->is_pch_edp;
  87}
  88
 
 
 
 
 
 
 
 
 
 
 
  89static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
  90{
  91	return container_of(encoder, struct intel_dp, base.base);
  92}
  93
  94static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  95{
  96	return container_of(intel_attached_encoder(connector),
  97			    struct intel_dp, base);
  98}
  99
 100/**
 101 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
 102 * @encoder: DRM encoder
 103 *
 104 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
 105 * by intel_display.c.
 106 */
 107bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
 108{
 109	struct intel_dp *intel_dp;
 110
 111	if (!encoder)
 112		return false;
 113
 114	intel_dp = enc_to_intel_dp(encoder);
 115
 116	return is_pch_edp(intel_dp);
 117}
 118
 119static void intel_dp_start_link_train(struct intel_dp *intel_dp);
 120static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
 121static void intel_dp_link_down(struct intel_dp *intel_dp);
 122
 123void
 124intel_edp_link_config (struct intel_encoder *intel_encoder,
 125		       int *lane_num, int *link_bw)
 126{
 127	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
 128
 129	*lane_num = intel_dp->lane_count;
 130	if (intel_dp->link_bw == DP_LINK_BW_1_62)
 131		*link_bw = 162000;
 132	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
 133		*link_bw = 270000;
 134}
 135
 136static int
 137intel_dp_max_lane_count(struct intel_dp *intel_dp)
 138{
 139	int max_lane_count = 4;
 140
 141	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
 142		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 143		switch (max_lane_count) {
 144		case 1: case 2: case 4:
 145			break;
 146		default:
 147			max_lane_count = 4;
 148		}
 149	}
 150	return max_lane_count;
 151}
 152
 153static int
 154intel_dp_max_link_bw(struct intel_dp *intel_dp)
 155{
 156	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 157
 158	switch (max_link_bw) {
 159	case DP_LINK_BW_1_62:
 160	case DP_LINK_BW_2_7:
 161		break;
 162	default:
 163		max_link_bw = DP_LINK_BW_1_62;
 164		break;
 165	}
 166	return max_link_bw;
 167}
 168
 169static int
 170intel_dp_link_clock(uint8_t link_bw)
 171{
 172	if (link_bw == DP_LINK_BW_2_7)
 173		return 270000;
 174	else
 175		return 162000;
 176}
 177
 178/* I think this is a fiction */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 179static int
 180intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
 181{
 182	struct drm_crtc *crtc = intel_dp->base.base.crtc;
 183	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 184	int bpp = 24;
 185
 186	if (intel_crtc)
 187		bpp = intel_crtc->bpp;
 188
 189	return (pixel_clock * bpp + 7) / 8;
 190}
 191
 192static int
 193intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 194{
 195	return (max_link_clock * max_lanes * 8) / 10;
 196}
 197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 198static int
 199intel_dp_mode_valid(struct drm_connector *connector,
 200		    struct drm_display_mode *mode)
 201{
 202	struct intel_dp *intel_dp = intel_attached_dp(connector);
 203	struct drm_device *dev = connector->dev;
 204	struct drm_i915_private *dev_priv = dev->dev_private;
 205	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
 206	int max_lanes = intel_dp_max_lane_count(intel_dp);
 207
 208	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
 209		if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
 210			return MODE_PANEL;
 211
 212		if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
 213			return MODE_PANEL;
 214	}
 215
 216	/* only refuse the mode on non eDP since we have seen some weird eDP panels
 217	   which are outside spec tolerances but somehow work by magic */
 218	if (!is_edp(intel_dp) &&
 219	    (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
 220	     > intel_dp_max_data_rate(max_link_clock, max_lanes)))
 221		return MODE_CLOCK_HIGH;
 222
 223	if (mode->clock < 10000)
 224		return MODE_CLOCK_LOW;
 225
 
 
 
 226	return MODE_OK;
 227}
 228
 229static uint32_t
 230pack_aux(uint8_t *src, int src_bytes)
 231{
 232	int	i;
 233	uint32_t v = 0;
 234
 235	if (src_bytes > 4)
 236		src_bytes = 4;
 237	for (i = 0; i < src_bytes; i++)
 238		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 239	return v;
 240}
 241
 242static void
 243unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 244{
 245	int i;
 246	if (dst_bytes > 4)
 247		dst_bytes = 4;
 248	for (i = 0; i < dst_bytes; i++)
 249		dst[i] = src >> ((3-i) * 8);
 250}
 251
 252/* hrawclock is 1/4 the FSB frequency */
 253static int
 254intel_hrawclk(struct drm_device *dev)
 255{
 256	struct drm_i915_private *dev_priv = dev->dev_private;
 257	uint32_t clkcfg;
 258
 259	clkcfg = I915_READ(CLKCFG);
 260	switch (clkcfg & CLKCFG_FSB_MASK) {
 261	case CLKCFG_FSB_400:
 262		return 100;
 263	case CLKCFG_FSB_533:
 264		return 133;
 265	case CLKCFG_FSB_667:
 266		return 166;
 267	case CLKCFG_FSB_800:
 268		return 200;
 269	case CLKCFG_FSB_1067:
 270		return 266;
 271	case CLKCFG_FSB_1333:
 272		return 333;
 273	/* these two are just a guess; one of them might be right */
 274	case CLKCFG_FSB_1600:
 275	case CLKCFG_FSB_1600_ALT:
 276		return 400;
 277	default:
 278		return 133;
 279	}
 280}
 281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282static int
 283intel_dp_aux_ch(struct intel_dp *intel_dp,
 284		uint8_t *send, int send_bytes,
 285		uint8_t *recv, int recv_size)
 286{
 287	uint32_t output_reg = intel_dp->output_reg;
 288	struct drm_device *dev = intel_dp->base.base.dev;
 289	struct drm_i915_private *dev_priv = dev->dev_private;
 290	uint32_t ch_ctl = output_reg + 0x10;
 291	uint32_t ch_data = ch_ctl + 4;
 292	int i;
 293	int recv_bytes;
 294	uint32_t status;
 295	uint32_t aux_clock_divider;
 296	int try, precharge;
 297
 
 298	/* The clock divider is based off the hrawclk,
 299	 * and would like to run at 2MHz. So, take the
 300	 * hrawclk value and divide by 2 and use that
 301	 *
 302	 * Note that PCH attached eDP panels should use a 125MHz input
 303	 * clock divider.
 304	 */
 305	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
 306		if (IS_GEN6(dev))
 307			aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
 308		else
 309			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
 310	} else if (HAS_PCH_SPLIT(dev))
 311		aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
 312	else
 313		aux_clock_divider = intel_hrawclk(dev) / 2;
 314
 315	if (IS_GEN6(dev))
 316		precharge = 3;
 317	else
 318		precharge = 5;
 319
 320	/* Try to wait for any previous AUX channel activity */
 321	for (try = 0; try < 3; try++) {
 322		status = I915_READ(ch_ctl);
 323		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 324			break;
 325		msleep(1);
 326	}
 327
 328	if (try == 3) {
 329		WARN(1, "dp_aux_ch not started status 0x%08x\n",
 330		     I915_READ(ch_ctl));
 331		return -EBUSY;
 332	}
 333
 334	/* Must try at least 3 times according to DP spec */
 335	for (try = 0; try < 5; try++) {
 336		/* Load the send data into the aux channel data registers */
 337		for (i = 0; i < send_bytes; i += 4)
 338			I915_WRITE(ch_data + i,
 339				   pack_aux(send + i, send_bytes - i));
 340	
 341		/* Send the command and wait for it to complete */
 342		I915_WRITE(ch_ctl,
 343			   DP_AUX_CH_CTL_SEND_BUSY |
 344			   DP_AUX_CH_CTL_TIME_OUT_400us |
 345			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 346			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 347			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 348			   DP_AUX_CH_CTL_DONE |
 349			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 350			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 351		for (;;) {
 352			status = I915_READ(ch_ctl);
 353			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 354				break;
 355			udelay(100);
 356		}
 357	
 358		/* Clear done status and any errors */
 359		I915_WRITE(ch_ctl,
 360			   status |
 361			   DP_AUX_CH_CTL_DONE |
 362			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 363			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 
 
 
 
 364		if (status & DP_AUX_CH_CTL_DONE)
 365			break;
 366	}
 367
 368	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 369		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 370		return -EBUSY;
 371	}
 372
 373	/* Check for timeout or receive error.
 374	 * Timeouts occur when the sink is not connected
 375	 */
 376	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 377		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 378		return -EIO;
 379	}
 380
 381	/* Timeouts occur when the device isn't connected, so they're
 382	 * "normal" -- don't fill the kernel log with these */
 383	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 384		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 385		return -ETIMEDOUT;
 386	}
 387
 388	/* Unload any bytes sent back from the other side */
 389	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 390		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 391	if (recv_bytes > recv_size)
 392		recv_bytes = recv_size;
 393	
 394	for (i = 0; i < recv_bytes; i += 4)
 395		unpack_aux(I915_READ(ch_data + i),
 396			   recv + i, recv_bytes - i);
 397
 398	return recv_bytes;
 399}
 400
 401/* Write data to the aux channel in native mode */
 402static int
 403intel_dp_aux_native_write(struct intel_dp *intel_dp,
 404			  uint16_t address, uint8_t *send, int send_bytes)
 405{
 406	int ret;
 407	uint8_t	msg[20];
 408	int msg_bytes;
 409	uint8_t	ack;
 410
 
 411	if (send_bytes > 16)
 412		return -1;
 413	msg[0] = AUX_NATIVE_WRITE << 4;
 414	msg[1] = address >> 8;
 415	msg[2] = address & 0xff;
 416	msg[3] = send_bytes - 1;
 417	memcpy(&msg[4], send, send_bytes);
 418	msg_bytes = send_bytes + 4;
 419	for (;;) {
 420		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
 421		if (ret < 0)
 422			return ret;
 423		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
 424			break;
 425		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
 426			udelay(100);
 427		else
 428			return -EIO;
 429	}
 430	return send_bytes;
 431}
 432
 433/* Write a single byte to the aux channel in native mode */
 434static int
 435intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
 436			    uint16_t address, uint8_t byte)
 437{
 438	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
 439}
 440
 441/* read bytes from a native aux channel */
 442static int
 443intel_dp_aux_native_read(struct intel_dp *intel_dp,
 444			 uint16_t address, uint8_t *recv, int recv_bytes)
 445{
 446	uint8_t msg[4];
 447	int msg_bytes;
 448	uint8_t reply[20];
 449	int reply_bytes;
 450	uint8_t ack;
 451	int ret;
 452
 
 453	msg[0] = AUX_NATIVE_READ << 4;
 454	msg[1] = address >> 8;
 455	msg[2] = address & 0xff;
 456	msg[3] = recv_bytes - 1;
 457
 458	msg_bytes = 4;
 459	reply_bytes = recv_bytes + 1;
 460
 461	for (;;) {
 462		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
 463				      reply, reply_bytes);
 464		if (ret == 0)
 465			return -EPROTO;
 466		if (ret < 0)
 467			return ret;
 468		ack = reply[0];
 469		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
 470			memcpy(recv, reply + 1, ret - 1);
 471			return ret - 1;
 472		}
 473		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
 474			udelay(100);
 475		else
 476			return -EIO;
 477	}
 478}
 479
 480static int
 481intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 482		    uint8_t write_byte, uint8_t *read_byte)
 483{
 484	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 485	struct intel_dp *intel_dp = container_of(adapter,
 486						struct intel_dp,
 487						adapter);
 488	uint16_t address = algo_data->address;
 489	uint8_t msg[5];
 490	uint8_t reply[2];
 491	unsigned retry;
 492	int msg_bytes;
 493	int reply_bytes;
 494	int ret;
 495
 
 496	/* Set up the command byte */
 497	if (mode & MODE_I2C_READ)
 498		msg[0] = AUX_I2C_READ << 4;
 499	else
 500		msg[0] = AUX_I2C_WRITE << 4;
 501
 502	if (!(mode & MODE_I2C_STOP))
 503		msg[0] |= AUX_I2C_MOT << 4;
 504
 505	msg[1] = address >> 8;
 506	msg[2] = address;
 507
 508	switch (mode) {
 509	case MODE_I2C_WRITE:
 510		msg[3] = 0;
 511		msg[4] = write_byte;
 512		msg_bytes = 5;
 513		reply_bytes = 1;
 514		break;
 515	case MODE_I2C_READ:
 516		msg[3] = 0;
 517		msg_bytes = 4;
 518		reply_bytes = 2;
 519		break;
 520	default:
 521		msg_bytes = 3;
 522		reply_bytes = 1;
 523		break;
 524	}
 525
 526	for (retry = 0; retry < 5; retry++) {
 527		ret = intel_dp_aux_ch(intel_dp,
 528				      msg, msg_bytes,
 529				      reply, reply_bytes);
 530		if (ret < 0) {
 531			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 532			return ret;
 533		}
 534
 535		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
 536		case AUX_NATIVE_REPLY_ACK:
 537			/* I2C-over-AUX Reply field is only valid
 538			 * when paired with AUX ACK.
 539			 */
 540			break;
 541		case AUX_NATIVE_REPLY_NACK:
 542			DRM_DEBUG_KMS("aux_ch native nack\n");
 543			return -EREMOTEIO;
 544		case AUX_NATIVE_REPLY_DEFER:
 545			udelay(100);
 546			continue;
 547		default:
 548			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 549				  reply[0]);
 550			return -EREMOTEIO;
 551		}
 552
 553		switch (reply[0] & AUX_I2C_REPLY_MASK) {
 554		case AUX_I2C_REPLY_ACK:
 555			if (mode == MODE_I2C_READ) {
 556				*read_byte = reply[1];
 557			}
 558			return reply_bytes - 1;
 559		case AUX_I2C_REPLY_NACK:
 560			DRM_DEBUG_KMS("aux_i2c nack\n");
 561			return -EREMOTEIO;
 562		case AUX_I2C_REPLY_DEFER:
 563			DRM_DEBUG_KMS("aux_i2c defer\n");
 564			udelay(100);
 565			break;
 566		default:
 567			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 568			return -EREMOTEIO;
 569		}
 570	}
 571
 572	DRM_ERROR("too many retries, giving up\n");
 573	return -EREMOTEIO;
 574}
 575
 
 
 
 576static int
 577intel_dp_i2c_init(struct intel_dp *intel_dp,
 578		  struct intel_connector *intel_connector, const char *name)
 579{
 
 
 580	DRM_DEBUG_KMS("i2c_init %s\n", name);
 581	intel_dp->algo.running = false;
 582	intel_dp->algo.address = 0;
 583	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
 584
 585	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
 586	intel_dp->adapter.owner = THIS_MODULE;
 587	intel_dp->adapter.class = I2C_CLASS_DDC;
 588	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 589	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 590	intel_dp->adapter.algo_data = &intel_dp->algo;
 591	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
 592
 593	return i2c_dp_aux_add_bus(&intel_dp->adapter);
 
 
 
 594}
 595
 596static bool
 597intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
 598		    struct drm_display_mode *adjusted_mode)
 599{
 600	struct drm_device *dev = encoder->dev;
 601	struct drm_i915_private *dev_priv = dev->dev_private;
 602	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 603	int lane_count, clock;
 604	int max_lane_count = intel_dp_max_lane_count(intel_dp);
 605	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
 
 606	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 607
 608	if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
 609		intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
 610		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
 611					mode, adjusted_mode);
 612		/*
 613		 * the mode->clock is used to calculate the Data&Link M/N
 614		 * of the pipe. For the eDP the fixed clock should be used.
 615		 */
 616		mode->clock = dev_priv->panel_fixed_mode->clock;
 617	}
 618
 619	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 620		for (clock = 0; clock <= max_clock; clock++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 621			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
 622
 623			if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
 624					<= link_avail) {
 625				intel_dp->link_bw = bws[clock];
 626				intel_dp->lane_count = lane_count;
 627				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
 628				DRM_DEBUG_KMS("Display port link bw %02x lane "
 629						"count %d clock %d\n",
 630				       intel_dp->link_bw, intel_dp->lane_count,
 631				       adjusted_mode->clock);
 
 
 632				return true;
 633			}
 634		}
 635	}
 636
 637	if (is_edp(intel_dp)) {
 638		/* okay we failed just pick the highest */
 639		intel_dp->lane_count = max_lane_count;
 640		intel_dp->link_bw = bws[max_clock];
 641		adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
 642		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
 643			      "count %d clock %d\n",
 644			      intel_dp->link_bw, intel_dp->lane_count,
 645			      adjusted_mode->clock);
 646
 647		return true;
 648	}
 649
 650	return false;
 651}
 652
 653struct intel_dp_m_n {
 654	uint32_t	tu;
 655	uint32_t	gmch_m;
 656	uint32_t	gmch_n;
 657	uint32_t	link_m;
 658	uint32_t	link_n;
 659};
 660
 661static void
 662intel_reduce_ratio(uint32_t *num, uint32_t *den)
 663{
 664	while (*num > 0xffffff || *den > 0xffffff) {
 665		*num >>= 1;
 666		*den >>= 1;
 667	}
 668}
 669
 670static void
 671intel_dp_compute_m_n(int bpp,
 672		     int nlanes,
 673		     int pixel_clock,
 674		     int link_clock,
 675		     struct intel_dp_m_n *m_n)
 676{
 677	m_n->tu = 64;
 678	m_n->gmch_m = (pixel_clock * bpp) >> 3;
 679	m_n->gmch_n = link_clock * nlanes;
 680	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 681	m_n->link_m = pixel_clock;
 682	m_n->link_n = link_clock;
 683	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 684}
 685
 686void
 687intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 688		 struct drm_display_mode *adjusted_mode)
 689{
 690	struct drm_device *dev = crtc->dev;
 691	struct drm_mode_config *mode_config = &dev->mode_config;
 692	struct drm_encoder *encoder;
 693	struct drm_i915_private *dev_priv = dev->dev_private;
 694	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 695	int lane_count = 4;
 696	struct intel_dp_m_n m_n;
 697	int pipe = intel_crtc->pipe;
 698
 699	/*
 700	 * Find the lane count in the intel_encoder private
 701	 */
 702	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
 703		struct intel_dp *intel_dp;
 704
 705		if (encoder->crtc != crtc)
 706			continue;
 707
 708		intel_dp = enc_to_intel_dp(encoder);
 709		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
 
 
 710			lane_count = intel_dp->lane_count;
 711			break;
 712		} else if (is_edp(intel_dp)) {
 713			lane_count = dev_priv->edp.lanes;
 714			break;
 715		}
 716	}
 717
 718	/*
 719	 * Compute the GMCH and Link ratios. The '3' here is
 720	 * the number of bytes_per_pixel post-LUT, which we always
 721	 * set up for 8-bits of R/G/B, or 3 bytes total.
 722	 */
 723	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
 724			     mode->clock, adjusted_mode->clock, &m_n);
 725
 726	if (HAS_PCH_SPLIT(dev)) {
 727		I915_WRITE(TRANSDATA_M1(pipe),
 728			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
 729			   m_n.gmch_m);
 730		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
 731		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
 732		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
 733	} else {
 734		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
 735			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
 736			   m_n.gmch_m);
 737		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
 738		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
 739		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
 740	}
 741}
 742
 
 
 
 743static void
 744intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
 745		  struct drm_display_mode *adjusted_mode)
 746{
 747	struct drm_device *dev = encoder->dev;
 
 748	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 749	struct drm_crtc *crtc = intel_dp->base.base.crtc;
 750	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 751
 752	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
 753	intel_dp->DP |= intel_dp->color_range;
 
 
 
 
 
 754
 755	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 756		intel_dp->DP |= DP_SYNC_HS_HIGH;
 757	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 758		intel_dp->DP |= DP_SYNC_VS_HIGH;
 
 
 
 
 
 
 
 
 
 
 
 
 759
 760	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
 761		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 762	else
 763		intel_dp->DP |= DP_LINK_TRAIN_OFF;
 
 
 
 
 
 764
 765	switch (intel_dp->lane_count) {
 766	case 1:
 767		intel_dp->DP |= DP_PORT_WIDTH_1;
 768		break;
 769	case 2:
 770		intel_dp->DP |= DP_PORT_WIDTH_2;
 771		break;
 772	case 4:
 773		intel_dp->DP |= DP_PORT_WIDTH_4;
 774		break;
 775	}
 776	if (intel_dp->has_audio)
 
 
 777		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
 778
 
 779	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
 780	intel_dp->link_configuration[0] = intel_dp->link_bw;
 781	intel_dp->link_configuration[1] = intel_dp->lane_count;
 782	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
 783
 784	/*
 785	 * Check for DPCD version > 1.1 and enhanced framing support
 786	 */
 787	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
 788	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
 789		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
 790		intel_dp->DP |= DP_ENHANCED_FRAMING;
 791	}
 792
 793	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
 794	if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
 795		intel_dp->DP |= DP_PIPEB_SELECT;
 
 
 
 
 
 
 
 
 
 
 796
 797	if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
 798		/* don't miss out required setting for eDP */
 799		intel_dp->DP |= DP_PLL_ENABLE;
 800		if (adjusted_mode->clock < 200000)
 801			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
 802		else
 803			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 804	}
 805}
 806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 807static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
 808{
 809	struct drm_device *dev = intel_dp->base.base.dev;
 810	struct drm_i915_private *dev_priv = dev->dev_private;
 811	u32 pp;
 812
 813	/*
 814	 * If the panel wasn't on, make sure there's not a currently
 815	 * active PP sequence before enabling AUX VDD.
 816	 */
 817	if (!(I915_READ(PCH_PP_STATUS) & PP_ON))
 818		msleep(dev_priv->panel_t3);
 
 
 
 
 
 
 
 
 
 
 819
 820	pp = I915_READ(PCH_PP_CONTROL);
 821	pp |= EDP_FORCE_VDD;
 822	I915_WRITE(PCH_PP_CONTROL, pp);
 823	POSTING_READ(PCH_PP_CONTROL);
 
 
 
 
 
 
 
 
 
 
 824}
 825
 826static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp)
 827{
 828	struct drm_device *dev = intel_dp->base.base.dev;
 829	struct drm_i915_private *dev_priv = dev->dev_private;
 830	u32 pp;
 831
 832	pp = I915_READ(PCH_PP_CONTROL);
 833	pp &= ~EDP_FORCE_VDD;
 834	I915_WRITE(PCH_PP_CONTROL, pp);
 835	POSTING_READ(PCH_PP_CONTROL);
 
 836
 837	/* Make sure sequencer is idle before allowing subsequent activity */
 838	msleep(dev_priv->panel_t12);
 
 
 
 
 839}
 840
 841/* Returns true if the panel was already on when called */
 842static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843{
 844	struct drm_device *dev = intel_dp->base.base.dev;
 845	struct drm_i915_private *dev_priv = dev->dev_private;
 846	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
 847
 848	if (I915_READ(PCH_PP_STATUS) & PP_ON)
 849		return true;
 850
 851	pp = I915_READ(PCH_PP_CONTROL);
 852
 853	/* ILK workaround: disable reset around power sequence */
 854	pp &= ~PANEL_POWER_RESET;
 855	I915_WRITE(PCH_PP_CONTROL, pp);
 856	POSTING_READ(PCH_PP_CONTROL);
 857
 858	pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
 859	I915_WRITE(PCH_PP_CONTROL, pp);
 860	POSTING_READ(PCH_PP_CONTROL);
 
 
 
 
 
 
 861
 862	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
 863		     5000))
 864		DRM_ERROR("panel on wait timed out: 0x%08x\n",
 865			  I915_READ(PCH_PP_STATUS));
 866
 867	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
 868	I915_WRITE(PCH_PP_CONTROL, pp);
 869	POSTING_READ(PCH_PP_CONTROL);
 870
 871	return false;
 
 
 
 
 
 
 872}
 873
 874static void ironlake_edp_panel_off (struct drm_device *dev)
 875{
 
 876	struct drm_i915_private *dev_priv = dev->dev_private;
 877	u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
 878		PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
 
 
 879
 880	pp = I915_READ(PCH_PP_CONTROL);
 881
 882	/* ILK workaround: disable reset around power sequence */
 883	pp &= ~PANEL_POWER_RESET;
 884	I915_WRITE(PCH_PP_CONTROL, pp);
 885	POSTING_READ(PCH_PP_CONTROL);
 886
 887	pp &= ~POWER_TARGET_ON;
 
 
 
 888	I915_WRITE(PCH_PP_CONTROL, pp);
 889	POSTING_READ(PCH_PP_CONTROL);
 890
 891	if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
 892		DRM_ERROR("panel off wait timed out: 0x%08x\n",
 893			  I915_READ(PCH_PP_STATUS));
 894
 895	pp |= PANEL_POWER_RESET; /* restore panel reset bit */
 896	I915_WRITE(PCH_PP_CONTROL, pp);
 897	POSTING_READ(PCH_PP_CONTROL);
 898}
 899
 900static void ironlake_edp_backlight_on (struct drm_device *dev)
 901{
 
 902	struct drm_i915_private *dev_priv = dev->dev_private;
 903	u32 pp;
 904
 
 
 
 905	DRM_DEBUG_KMS("\n");
 906	/*
 907	 * If we enable the backlight right away following a panel power
 908	 * on, we may see slight flicker as the panel syncs with the eDP
 909	 * link.  So delay a bit to make sure the image is solid before
 910	 * allowing it to appear.
 911	 */
 912	msleep(300);
 913	pp = I915_READ(PCH_PP_CONTROL);
 914	pp |= EDP_BLC_ENABLE;
 915	I915_WRITE(PCH_PP_CONTROL, pp);
 
 916}
 917
 918static void ironlake_edp_backlight_off (struct drm_device *dev)
 919{
 
 920	struct drm_i915_private *dev_priv = dev->dev_private;
 921	u32 pp;
 922
 
 
 
 923	DRM_DEBUG_KMS("\n");
 924	pp = I915_READ(PCH_PP_CONTROL);
 925	pp &= ~EDP_BLC_ENABLE;
 926	I915_WRITE(PCH_PP_CONTROL, pp);
 
 
 927}
 928
 929static void ironlake_edp_pll_on(struct drm_encoder *encoder)
 930{
 931	struct drm_device *dev = encoder->dev;
 932	struct drm_i915_private *dev_priv = dev->dev_private;
 933	u32 dpa_ctl;
 934
 935	DRM_DEBUG_KMS("\n");
 936	dpa_ctl = I915_READ(DP_A);
 937	dpa_ctl |= DP_PLL_ENABLE;
 938	I915_WRITE(DP_A, dpa_ctl);
 939	POSTING_READ(DP_A);
 940	udelay(200);
 941}
 942
 943static void ironlake_edp_pll_off(struct drm_encoder *encoder)
 944{
 945	struct drm_device *dev = encoder->dev;
 946	struct drm_i915_private *dev_priv = dev->dev_private;
 947	u32 dpa_ctl;
 948
 949	dpa_ctl = I915_READ(DP_A);
 950	dpa_ctl &= ~DP_PLL_ENABLE;
 951	I915_WRITE(DP_A, dpa_ctl);
 952	POSTING_READ(DP_A);
 953	udelay(200);
 954}
 955
 956/* If the sink supports it, try to set the power state appropriately */
 957static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
 958{
 959	int ret, i;
 960
 961	/* Should have a valid DPCD by this point */
 962	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
 963		return;
 964
 965	if (mode != DRM_MODE_DPMS_ON) {
 966		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
 967						  DP_SET_POWER_D3);
 968		if (ret != 1)
 969			DRM_DEBUG_DRIVER("failed to write sink power state\n");
 970	} else {
 971		/*
 972		 * When turning on, we need to retry for 1ms to give the sink
 973		 * time to wake up.
 974		 */
 975		for (i = 0; i < 3; i++) {
 976			ret = intel_dp_aux_native_write_1(intel_dp,
 977							  DP_SET_POWER,
 978							  DP_SET_POWER_D0);
 979			if (ret == 1)
 980				break;
 981			msleep(1);
 982		}
 983	}
 984}
 985
 986static void intel_dp_prepare(struct drm_encoder *encoder)
 987{
 988	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 989	struct drm_device *dev = encoder->dev;
 990
 991	/* Wake up the sink first */
 992	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
 993
 994	if (is_edp(intel_dp)) {
 995		ironlake_edp_backlight_off(dev);
 996		ironlake_edp_panel_off(dev);
 997		if (!is_pch_edp(intel_dp))
 998			ironlake_edp_pll_on(encoder);
 999		else
1000			ironlake_edp_pll_off(encoder);
1001	}
1002	intel_dp_link_down(intel_dp);
1003}
1004
1005static void intel_dp_commit(struct drm_encoder *encoder)
1006{
1007	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1008	struct drm_device *dev = encoder->dev;
 
1009
1010	if (is_edp(intel_dp))
1011		ironlake_edp_panel_vdd_on(intel_dp);
1012
1013	intel_dp_start_link_train(intel_dp);
1014
1015	if (is_edp(intel_dp)) {
1016		ironlake_edp_panel_on(intel_dp);
1017		ironlake_edp_panel_vdd_off(intel_dp);
1018	}
1019
1020	intel_dp_complete_link_train(intel_dp);
1021
1022	if (is_edp(intel_dp))
1023		ironlake_edp_backlight_on(dev);
1024
1025	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
 
 
 
1026}
1027
1028static void
1029intel_dp_dpms(struct drm_encoder *encoder, int mode)
1030{
1031	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1032	struct drm_device *dev = encoder->dev;
1033	struct drm_i915_private *dev_priv = dev->dev_private;
1034	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1035
1036	if (mode != DRM_MODE_DPMS_ON) {
1037		if (is_edp(intel_dp))
1038			ironlake_edp_backlight_off(dev);
 
1039		intel_dp_sink_dpms(intel_dp, mode);
 
1040		intel_dp_link_down(intel_dp);
1041		if (is_edp(intel_dp))
1042			ironlake_edp_panel_off(dev);
1043		if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1044			ironlake_edp_pll_off(encoder);
1045	} else {
1046		if (is_edp(intel_dp))
1047			ironlake_edp_panel_vdd_on(intel_dp);
 
 
1048		intel_dp_sink_dpms(intel_dp, mode);
1049		if (!(dp_reg & DP_PORT_EN)) {
1050			intel_dp_start_link_train(intel_dp);
1051			if (is_edp(intel_dp)) {
1052				ironlake_edp_panel_on(intel_dp);
1053				ironlake_edp_panel_vdd_off(intel_dp);
1054			}
1055			intel_dp_complete_link_train(intel_dp);
1056		}
1057		if (is_edp(intel_dp))
1058			ironlake_edp_backlight_on(dev);
1059	}
1060	intel_dp->dpms_mode = mode;
1061}
1062
1063/*
1064 * Native read with retry for link status and receiver capability reads for
1065 * cases where the sink may still be asleep.
1066 */
1067static bool
1068intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1069			       uint8_t *recv, int recv_bytes)
1070{
1071	int ret, i;
1072
1073	/*
1074	 * Sinks are *supposed* to come up within 1ms from an off state,
1075	 * but we're also supposed to retry 3 times per the spec.
1076	 */
1077	for (i = 0; i < 3; i++) {
1078		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1079					       recv_bytes);
1080		if (ret == recv_bytes)
1081			return true;
1082		msleep(1);
1083	}
1084
1085	return false;
1086}
1087
1088/*
1089 * Fetch AUX CH registers 0x202 - 0x207 which contain
1090 * link status information
1091 */
1092static bool
1093intel_dp_get_link_status(struct intel_dp *intel_dp)
1094{
1095	return intel_dp_aux_native_read_retry(intel_dp,
1096					      DP_LANE0_1_STATUS,
1097					      intel_dp->link_status,
1098					      DP_LINK_STATUS_SIZE);
1099}
1100
1101static uint8_t
1102intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1103		     int r)
1104{
1105	return link_status[r - DP_LANE0_1_STATUS];
1106}
1107
1108static uint8_t
1109intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1110				 int lane)
1111{
1112	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1113	int	    s = ((lane & 1) ?
1114			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1115			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1116	uint8_t l = intel_dp_link_status(link_status, i);
1117
1118	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1119}
1120
1121static uint8_t
1122intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1123				      int lane)
1124{
1125	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1126	int	    s = ((lane & 1) ?
1127			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1128			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1129	uint8_t l = intel_dp_link_status(link_status, i);
1130
1131	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1132}
1133
1134
1135#if 0
1136static char	*voltage_names[] = {
1137	"0.4V", "0.6V", "0.8V", "1.2V"
1138};
1139static char	*pre_emph_names[] = {
1140	"0dB", "3.5dB", "6dB", "9.5dB"
1141};
1142static char	*link_train_names[] = {
1143	"pattern 1", "pattern 2", "idle", "off"
1144};
1145#endif
1146
1147/*
1148 * These are source-specific values; current Intel hardware supports
1149 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1150 */
1151#define I830_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_800
1152
1153static uint8_t
1154intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1155{
1156	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1157	case DP_TRAIN_VOLTAGE_SWING_400:
1158		return DP_TRAIN_PRE_EMPHASIS_6;
1159	case DP_TRAIN_VOLTAGE_SWING_600:
1160		return DP_TRAIN_PRE_EMPHASIS_6;
1161	case DP_TRAIN_VOLTAGE_SWING_800:
1162		return DP_TRAIN_PRE_EMPHASIS_3_5;
1163	case DP_TRAIN_VOLTAGE_SWING_1200:
1164	default:
1165		return DP_TRAIN_PRE_EMPHASIS_0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1166	}
1167}
1168
1169static void
1170intel_get_adjust_train(struct intel_dp *intel_dp)
1171{
1172	uint8_t v = 0;
1173	uint8_t p = 0;
1174	int lane;
 
 
 
1175
1176	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1177		uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1178		uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1179
1180		if (this_v > v)
1181			v = this_v;
1182		if (this_p > p)
1183			p = this_p;
1184	}
1185
1186	if (v >= I830_DP_VOLTAGE_MAX)
1187		v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1188
1189	if (p >= intel_dp_pre_emphasis_max(v))
1190		p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
 
 
1191
1192	for (lane = 0; lane < 4; lane++)
1193		intel_dp->train_set[lane] = v | p;
1194}
1195
1196static uint32_t
1197intel_dp_signal_levels(uint8_t train_set, int lane_count)
1198{
1199	uint32_t	signal_levels = 0;
1200
1201	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1202	case DP_TRAIN_VOLTAGE_SWING_400:
1203	default:
1204		signal_levels |= DP_VOLTAGE_0_4;
1205		break;
1206	case DP_TRAIN_VOLTAGE_SWING_600:
1207		signal_levels |= DP_VOLTAGE_0_6;
1208		break;
1209	case DP_TRAIN_VOLTAGE_SWING_800:
1210		signal_levels |= DP_VOLTAGE_0_8;
1211		break;
1212	case DP_TRAIN_VOLTAGE_SWING_1200:
1213		signal_levels |= DP_VOLTAGE_1_2;
1214		break;
1215	}
1216	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1217	case DP_TRAIN_PRE_EMPHASIS_0:
1218	default:
1219		signal_levels |= DP_PRE_EMPHASIS_0;
1220		break;
1221	case DP_TRAIN_PRE_EMPHASIS_3_5:
1222		signal_levels |= DP_PRE_EMPHASIS_3_5;
1223		break;
1224	case DP_TRAIN_PRE_EMPHASIS_6:
1225		signal_levels |= DP_PRE_EMPHASIS_6;
1226		break;
1227	case DP_TRAIN_PRE_EMPHASIS_9_5:
1228		signal_levels |= DP_PRE_EMPHASIS_9_5;
1229		break;
1230	}
1231	return signal_levels;
1232}
1233
1234/* Gen6's DP voltage swing and pre-emphasis control */
1235static uint32_t
1236intel_gen6_edp_signal_levels(uint8_t train_set)
1237{
1238	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1239					 DP_TRAIN_PRE_EMPHASIS_MASK);
1240	switch (signal_levels) {
1241	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1242	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1243		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1244	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1245		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1246	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1247	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1248		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1249	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1250	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1251		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1252	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1253	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1254		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1255	default:
1256		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1257			      "0x%x\n", signal_levels);
1258		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1259	}
1260}
1261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262static uint8_t
1263intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1264		      int lane)
1265{
1266	int i = DP_LANE0_1_STATUS + (lane >> 1);
1267	int s = (lane & 1) * 4;
1268	uint8_t l = intel_dp_link_status(link_status, i);
1269
1270	return (l >> s) & 0xf;
1271}
1272
1273/* Check for clock recovery is done on all channels */
1274static bool
1275intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1276{
1277	int lane;
1278	uint8_t lane_status;
1279
1280	for (lane = 0; lane < lane_count; lane++) {
1281		lane_status = intel_get_lane_status(link_status, lane);
1282		if ((lane_status & DP_LANE_CR_DONE) == 0)
1283			return false;
1284	}
1285	return true;
1286}
1287
1288/* Check to see if channel eq is done on all channels */
1289#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1290			 DP_LANE_CHANNEL_EQ_DONE|\
1291			 DP_LANE_SYMBOL_LOCKED)
1292static bool
1293intel_channel_eq_ok(struct intel_dp *intel_dp)
1294{
1295	uint8_t lane_align;
1296	uint8_t lane_status;
1297	int lane;
1298
1299	lane_align = intel_dp_link_status(intel_dp->link_status,
1300					  DP_LANE_ALIGN_STATUS_UPDATED);
1301	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1302		return false;
1303	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1304		lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1305		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1306			return false;
1307	}
1308	return true;
1309}
1310
1311static bool
1312intel_dp_set_link_train(struct intel_dp *intel_dp,
1313			uint32_t dp_reg_value,
1314			uint8_t dp_train_pat)
1315{
1316	struct drm_device *dev = intel_dp->base.base.dev;
1317	struct drm_i915_private *dev_priv = dev->dev_private;
1318	int ret;
1319
1320	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1321	POSTING_READ(intel_dp->output_reg);
1322
1323	intel_dp_aux_native_write_1(intel_dp,
1324				    DP_TRAINING_PATTERN_SET,
1325				    dp_train_pat);
1326
1327	ret = intel_dp_aux_native_write(intel_dp,
1328					DP_TRAINING_LANE0_SET,
1329					intel_dp->train_set, 4);
1330	if (ret != 4)
 
1331		return false;
1332
1333	return true;
1334}
1335
1336/* Enable corresponding port and start training pattern 1 */
1337static void
1338intel_dp_start_link_train(struct intel_dp *intel_dp)
1339{
1340	struct drm_device *dev = intel_dp->base.base.dev;
1341	struct drm_i915_private *dev_priv = dev->dev_private;
1342	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1343	int i;
1344	uint8_t voltage;
1345	bool clock_recovery = false;
1346	int tries;
1347	u32 reg;
1348	uint32_t DP = intel_dp->DP;
1349
1350	/*
1351	 * On CPT we have to enable the port in training pattern 1, which
1352	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
1353	 * the port and wait for it to become active.
1354	 */
1355	if (!HAS_PCH_CPT(dev)) {
1356		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1357		POSTING_READ(intel_dp->output_reg);
1358		intel_wait_for_vblank(dev, intel_crtc->pipe);
1359	}
1360
1361	/* Write the link configuration data */
1362	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1363				  intel_dp->link_configuration,
1364				  DP_LINK_CONFIGURATION_SIZE);
1365
1366	DP |= DP_PORT_EN;
1367	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
 
1368		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1369	else
1370		DP &= ~DP_LINK_TRAIN_MASK;
1371	memset(intel_dp->train_set, 0, 4);
1372	voltage = 0xff;
1373	tries = 0;
 
1374	clock_recovery = false;
1375	for (;;) {
1376		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
 
1377		uint32_t    signal_levels;
1378		if (IS_GEN6(dev) && is_edp(intel_dp)) {
 
 
 
 
 
1379			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1380			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1381		} else {
1382			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
 
1383			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1384		}
1385
1386		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1387			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1388		else
1389			reg = DP | DP_LINK_TRAIN_PAT_1;
1390
1391		if (!intel_dp_set_link_train(intel_dp, reg,
1392					     DP_TRAINING_PATTERN_1 |
1393					     DP_LINK_SCRAMBLING_DISABLE))
1394			break;
1395		/* Set training pattern 1 */
1396
1397		udelay(100);
1398		if (!intel_dp_get_link_status(intel_dp))
 
1399			break;
 
1400
1401		if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
 
1402			clock_recovery = true;
1403			break;
1404		}
1405
1406		/* Check to see if we've tried the max voltage */
1407		for (i = 0; i < intel_dp->lane_count; i++)
1408			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1409				break;
1410		if (i == intel_dp->lane_count)
1411			break;
 
 
 
 
 
 
 
 
1412
1413		/* Check to see if we've tried the same voltage 5 times */
1414		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1415			++tries;
1416			if (tries == 5)
 
1417				break;
 
1418		} else
1419			tries = 0;
1420		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1421
1422		/* Compute new intel_dp->train_set as requested by target */
1423		intel_get_adjust_train(intel_dp);
1424	}
1425
1426	intel_dp->DP = DP;
1427}
1428
1429static void
1430intel_dp_complete_link_train(struct intel_dp *intel_dp)
1431{
1432	struct drm_device *dev = intel_dp->base.base.dev;
1433	struct drm_i915_private *dev_priv = dev->dev_private;
1434	bool channel_eq = false;
1435	int tries, cr_tries;
1436	u32 reg;
1437	uint32_t DP = intel_dp->DP;
1438
1439	/* channel equalization */
1440	tries = 0;
1441	cr_tries = 0;
1442	channel_eq = false;
1443	for (;;) {
1444		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1445		uint32_t    signal_levels;
 
1446
1447		if (cr_tries > 5) {
1448			DRM_ERROR("failed to train DP, aborting\n");
1449			intel_dp_link_down(intel_dp);
1450			break;
1451		}
1452
1453		if (IS_GEN6(dev) && is_edp(intel_dp)) {
 
 
 
1454			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1455			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1456		} else {
1457			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1458			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1459		}
1460
1461		if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1462			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1463		else
1464			reg = DP | DP_LINK_TRAIN_PAT_2;
1465
1466		/* channel eq pattern */
1467		if (!intel_dp_set_link_train(intel_dp, reg,
1468					     DP_TRAINING_PATTERN_2 |
1469					     DP_LINK_SCRAMBLING_DISABLE))
1470			break;
1471
1472		udelay(400);
1473		if (!intel_dp_get_link_status(intel_dp))
1474			break;
1475
1476		/* Make sure clock is still ok */
1477		if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1478			intel_dp_start_link_train(intel_dp);
1479			cr_tries++;
1480			continue;
1481		}
1482
1483		if (intel_channel_eq_ok(intel_dp)) {
1484			channel_eq = true;
1485			break;
1486		}
1487
1488		/* Try 5 times, then try clock recovery if that fails */
1489		if (tries > 5) {
1490			intel_dp_link_down(intel_dp);
1491			intel_dp_start_link_train(intel_dp);
1492			tries = 0;
1493			cr_tries++;
1494			continue;
1495		}
1496
1497		/* Compute new intel_dp->train_set as requested by target */
1498		intel_get_adjust_train(intel_dp);
1499		++tries;
1500	}
1501
1502	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1503		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1504	else
1505		reg = DP | DP_LINK_TRAIN_OFF;
1506
1507	I915_WRITE(intel_dp->output_reg, reg);
1508	POSTING_READ(intel_dp->output_reg);
1509	intel_dp_aux_native_write_1(intel_dp,
1510				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1511}
1512
1513static void
1514intel_dp_link_down(struct intel_dp *intel_dp)
1515{
1516	struct drm_device *dev = intel_dp->base.base.dev;
1517	struct drm_i915_private *dev_priv = dev->dev_private;
1518	uint32_t DP = intel_dp->DP;
1519
1520	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1521		return;
1522
1523	DRM_DEBUG_KMS("\n");
1524
1525	if (is_edp(intel_dp)) {
1526		DP &= ~DP_PLL_ENABLE;
1527		I915_WRITE(intel_dp->output_reg, DP);
1528		POSTING_READ(intel_dp->output_reg);
1529		udelay(100);
1530	}
1531
1532	if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1533		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1534		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1535	} else {
1536		DP &= ~DP_LINK_TRAIN_MASK;
1537		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1538	}
1539	POSTING_READ(intel_dp->output_reg);
1540
1541	msleep(17);
1542
1543	if (is_edp(intel_dp))
1544		DP |= DP_LINK_TRAIN_OFF;
 
 
 
 
1545
1546	if (!HAS_PCH_CPT(dev) &&
1547	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1548		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1549
1550		/* Hardware workaround: leaving our transcoder select
1551		 * set to transcoder B while it's off will prevent the
1552		 * corresponding HDMI output on transcoder A.
1553		 *
1554		 * Combine this with another hardware workaround:
1555		 * transcoder select bit can only be cleared while the
1556		 * port is enabled.
1557		 */
1558		DP &= ~DP_PIPEB_SELECT;
1559		I915_WRITE(intel_dp->output_reg, DP);
1560
1561		/* Changes to enable or select take place the vblank
1562		 * after being written.
1563		 */
1564		if (crtc == NULL) {
1565			/* We can arrive here never having been attached
1566			 * to a CRTC, for instance, due to inheriting
1567			 * random state from the BIOS.
1568			 *
1569			 * If the pipe is not running, play safe and
1570			 * wait for the clocks to stabilise before
1571			 * continuing.
1572			 */
1573			POSTING_READ(intel_dp->output_reg);
1574			msleep(50);
1575		} else
1576			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1577	}
1578
 
1579	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1580	POSTING_READ(intel_dp->output_reg);
 
1581}
1582
1583static bool
1584intel_dp_get_dpcd(struct intel_dp *intel_dp)
1585{
1586	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1587					   sizeof (intel_dp->dpcd)) &&
1588	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1589		return true;
1590	}
1591
1592	return false;
1593}
1594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1595/*
1596 * According to DP spec
1597 * 5.1.2:
1598 *  1. Read DPCD
1599 *  2. Configure link according to Receiver Capabilities
1600 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1601 *  4. Check link status on receipt of hot-plug interrupt
1602 */
1603
1604static void
1605intel_dp_check_link_status(struct intel_dp *intel_dp)
1606{
 
 
 
1607	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1608		return;
1609
1610	if (!intel_dp->base.base.crtc)
1611		return;
1612
1613	/* Try to read receiver status if the link appears to be up */
1614	if (!intel_dp_get_link_status(intel_dp)) {
1615		intel_dp_link_down(intel_dp);
1616		return;
1617	}
1618
1619	/* Now read the DPCD to see if it's actually running */
1620	if (!intel_dp_get_dpcd(intel_dp)) {
1621		intel_dp_link_down(intel_dp);
1622		return;
1623	}
1624
1625	if (!intel_channel_eq_ok(intel_dp)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1627			      drm_get_encoder_name(&intel_dp->base.base));
1628		intel_dp_start_link_train(intel_dp);
1629		intel_dp_complete_link_train(intel_dp);
1630	}
1631}
1632
1633static enum drm_connector_status
1634intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1635{
1636	if (intel_dp_get_dpcd(intel_dp))
1637		return connector_status_connected;
1638	return connector_status_disconnected;
1639}
1640
1641static enum drm_connector_status
1642ironlake_dp_detect(struct intel_dp *intel_dp)
1643{
1644	enum drm_connector_status status;
1645
1646	/* Can't disconnect eDP, but you can close the lid... */
1647	if (is_edp(intel_dp)) {
1648		status = intel_panel_detect(intel_dp->base.base.dev);
1649		if (status == connector_status_unknown)
1650			status = connector_status_connected;
1651		return status;
1652	}
1653
1654	return intel_dp_detect_dpcd(intel_dp);
1655}
1656
1657static enum drm_connector_status
1658g4x_dp_detect(struct intel_dp *intel_dp)
1659{
1660	struct drm_device *dev = intel_dp->base.base.dev;
1661	struct drm_i915_private *dev_priv = dev->dev_private;
1662	uint32_t temp, bit;
1663
1664	switch (intel_dp->output_reg) {
1665	case DP_B:
1666		bit = DPB_HOTPLUG_INT_STATUS;
1667		break;
1668	case DP_C:
1669		bit = DPC_HOTPLUG_INT_STATUS;
1670		break;
1671	case DP_D:
1672		bit = DPD_HOTPLUG_INT_STATUS;
1673		break;
1674	default:
1675		return connector_status_unknown;
1676	}
1677
1678	temp = I915_READ(PORT_HOTPLUG_STAT);
1679
1680	if ((temp & bit) == 0)
1681		return connector_status_disconnected;
1682
1683	return intel_dp_detect_dpcd(intel_dp);
1684}
1685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1686/**
1687 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1688 *
1689 * \return true if DP port is connected.
1690 * \return false if DP port is disconnected.
1691 */
1692static enum drm_connector_status
1693intel_dp_detect(struct drm_connector *connector, bool force)
1694{
1695	struct intel_dp *intel_dp = intel_attached_dp(connector);
1696	struct drm_device *dev = intel_dp->base.base.dev;
1697	enum drm_connector_status status;
1698	struct edid *edid = NULL;
1699
1700	intel_dp->has_audio = false;
1701
1702	if (HAS_PCH_SPLIT(dev))
1703		status = ironlake_dp_detect(intel_dp);
1704	else
1705		status = g4x_dp_detect(intel_dp);
1706
1707	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1708		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1709		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1710		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
1711
1712	if (status != connector_status_connected)
1713		return status;
1714
1715	if (intel_dp->force_audio) {
1716		intel_dp->has_audio = intel_dp->force_audio > 0;
 
 
1717	} else {
1718		edid = drm_get_edid(connector, &intel_dp->adapter);
1719		if (edid) {
1720			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1721			connector->display_info.raw_edid = NULL;
1722			kfree(edid);
1723		}
1724	}
1725
1726	return connector_status_connected;
1727}
1728
1729static int intel_dp_get_modes(struct drm_connector *connector)
1730{
1731	struct intel_dp *intel_dp = intel_attached_dp(connector);
1732	struct drm_device *dev = intel_dp->base.base.dev;
1733	struct drm_i915_private *dev_priv = dev->dev_private;
1734	int ret;
1735
1736	/* We should parse the EDID data and find out if it has an audio sink
1737	 */
1738
1739	ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1740	if (ret) {
1741		if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1742			struct drm_display_mode *newmode;
1743			list_for_each_entry(newmode, &connector->probed_modes,
1744					    head) {
1745				if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1746					dev_priv->panel_fixed_mode =
1747						drm_mode_duplicate(dev, newmode);
1748					break;
1749				}
1750			}
1751		}
1752
1753		return ret;
1754	}
1755
1756	/* if eDP has no EDID, try to use fixed panel mode from VBT */
1757	if (is_edp(intel_dp)) {
1758		if (dev_priv->panel_fixed_mode != NULL) {
 
 
 
 
 
 
 
 
 
1759			struct drm_display_mode *mode;
1760			mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1761			drm_mode_probed_add(connector, mode);
1762			return 1;
1763		}
1764	}
1765	return 0;
1766}
1767
1768static bool
1769intel_dp_detect_audio(struct drm_connector *connector)
1770{
1771	struct intel_dp *intel_dp = intel_attached_dp(connector);
1772	struct edid *edid;
1773	bool has_audio = false;
1774
1775	edid = drm_get_edid(connector, &intel_dp->adapter);
1776	if (edid) {
1777		has_audio = drm_detect_monitor_audio(edid);
1778
1779		connector->display_info.raw_edid = NULL;
1780		kfree(edid);
1781	}
1782
1783	return has_audio;
1784}
1785
1786static int
1787intel_dp_set_property(struct drm_connector *connector,
1788		      struct drm_property *property,
1789		      uint64_t val)
1790{
1791	struct drm_i915_private *dev_priv = connector->dev->dev_private;
1792	struct intel_dp *intel_dp = intel_attached_dp(connector);
1793	int ret;
1794
1795	ret = drm_connector_property_set_value(connector, property, val);
1796	if (ret)
1797		return ret;
1798
1799	if (property == dev_priv->force_audio_property) {
1800		int i = val;
1801		bool has_audio;
1802
1803		if (i == intel_dp->force_audio)
1804			return 0;
1805
1806		intel_dp->force_audio = i;
1807
1808		if (i == 0)
1809			has_audio = intel_dp_detect_audio(connector);
1810		else
1811			has_audio = i > 0;
1812
1813		if (has_audio == intel_dp->has_audio)
1814			return 0;
1815
1816		intel_dp->has_audio = has_audio;
1817		goto done;
1818	}
1819
1820	if (property == dev_priv->broadcast_rgb_property) {
1821		if (val == !!intel_dp->color_range)
1822			return 0;
1823
1824		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1825		goto done;
1826	}
1827
1828	return -EINVAL;
1829
1830done:
1831	if (intel_dp->base.base.crtc) {
1832		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1833		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1834					 crtc->x, crtc->y,
1835					 crtc->fb);
1836	}
1837
1838	return 0;
1839}
1840
1841static void
1842intel_dp_destroy (struct drm_connector *connector)
1843{
1844	struct drm_device *dev = connector->dev;
1845
1846	if (intel_dpd_is_edp(dev))
1847		intel_panel_destroy_backlight(dev);
1848
1849	drm_sysfs_connector_remove(connector);
1850	drm_connector_cleanup(connector);
1851	kfree(connector);
1852}
1853
1854static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1855{
1856	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1857
1858	i2c_del_adapter(&intel_dp->adapter);
1859	drm_encoder_cleanup(encoder);
 
 
 
 
 
1860	kfree(intel_dp);
1861}
1862
1863static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1864	.dpms = intel_dp_dpms,
1865	.mode_fixup = intel_dp_mode_fixup,
1866	.prepare = intel_dp_prepare,
1867	.mode_set = intel_dp_mode_set,
1868	.commit = intel_dp_commit,
1869};
1870
1871static const struct drm_connector_funcs intel_dp_connector_funcs = {
1872	.dpms = drm_helper_connector_dpms,
1873	.detect = intel_dp_detect,
1874	.fill_modes = drm_helper_probe_single_connector_modes,
1875	.set_property = intel_dp_set_property,
1876	.destroy = intel_dp_destroy,
1877};
1878
1879static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1880	.get_modes = intel_dp_get_modes,
1881	.mode_valid = intel_dp_mode_valid,
1882	.best_encoder = intel_best_encoder,
1883};
1884
1885static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1886	.destroy = intel_dp_encoder_destroy,
1887};
1888
1889static void
1890intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1891{
1892	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1893
1894	intel_dp_check_link_status(intel_dp);
1895}
1896
1897/* Return which DP Port should be selected for Transcoder DP control */
1898int
1899intel_trans_dp_port_sel (struct drm_crtc *crtc)
1900{
1901	struct drm_device *dev = crtc->dev;
1902	struct drm_mode_config *mode_config = &dev->mode_config;
1903	struct drm_encoder *encoder;
1904
1905	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1906		struct intel_dp *intel_dp;
1907
1908		if (encoder->crtc != crtc)
1909			continue;
1910
1911		intel_dp = enc_to_intel_dp(encoder);
1912		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
 
1913			return intel_dp->output_reg;
1914	}
1915
1916	return -1;
1917}
1918
1919/* check the VBT to see whether the eDP is on DP-D port */
1920bool intel_dpd_is_edp(struct drm_device *dev)
1921{
1922	struct drm_i915_private *dev_priv = dev->dev_private;
1923	struct child_device_config *p_child;
1924	int i;
1925
1926	if (!dev_priv->child_dev_num)
1927		return false;
1928
1929	for (i = 0; i < dev_priv->child_dev_num; i++) {
1930		p_child = dev_priv->child_dev + i;
1931
1932		if (p_child->dvo_port == PORT_IDPD &&
1933		    p_child->device_type == DEVICE_TYPE_eDP)
1934			return true;
1935	}
1936	return false;
1937}
1938
1939static void
1940intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1941{
1942	intel_attach_force_audio_property(connector);
1943	intel_attach_broadcast_rgb_property(connector);
1944}
1945
1946void
1947intel_dp_init(struct drm_device *dev, int output_reg)
1948{
1949	struct drm_i915_private *dev_priv = dev->dev_private;
1950	struct drm_connector *connector;
1951	struct intel_dp *intel_dp;
1952	struct intel_encoder *intel_encoder;
1953	struct intel_connector *intel_connector;
1954	const char *name = NULL;
1955	int type;
1956
1957	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1958	if (!intel_dp)
1959		return;
1960
1961	intel_dp->output_reg = output_reg;
1962	intel_dp->dpms_mode = -1;
1963
1964	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1965	if (!intel_connector) {
1966		kfree(intel_dp);
1967		return;
1968	}
1969	intel_encoder = &intel_dp->base;
1970
1971	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1972		if (intel_dpd_is_edp(dev))
1973			intel_dp->is_pch_edp = true;
1974
1975	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1976		type = DRM_MODE_CONNECTOR_eDP;
1977		intel_encoder->type = INTEL_OUTPUT_EDP;
1978	} else {
1979		type = DRM_MODE_CONNECTOR_DisplayPort;
1980		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1981	}
1982
1983	connector = &intel_connector->base;
1984	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1985	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1986
1987	connector->polled = DRM_CONNECTOR_POLL_HPD;
1988
1989	if (output_reg == DP_B || output_reg == PCH_DP_B)
1990		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1991	else if (output_reg == DP_C || output_reg == PCH_DP_C)
1992		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1993	else if (output_reg == DP_D || output_reg == PCH_DP_D)
1994		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1995
1996	if (is_edp(intel_dp))
1997		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
 
 
 
 
 
1998
1999	intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
2000	connector->interlace_allowed = true;
2001	connector->doublescan_allowed = 0;
2002
2003	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2004			 DRM_MODE_ENCODER_TMDS);
2005	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2006
2007	intel_connector_attach_encoder(intel_connector, intel_encoder);
2008	drm_sysfs_connector_add(connector);
2009
2010	/* Set up the DDC bus. */
2011	switch (output_reg) {
2012		case DP_A:
2013			name = "DPDDC-A";
2014			break;
2015		case DP_B:
2016		case PCH_DP_B:
2017			dev_priv->hotplug_supported_mask |=
2018				HDMIB_HOTPLUG_INT_STATUS;
2019			name = "DPDDC-B";
2020			break;
2021		case DP_C:
2022		case PCH_DP_C:
2023			dev_priv->hotplug_supported_mask |=
2024				HDMIC_HOTPLUG_INT_STATUS;
2025			name = "DPDDC-C";
2026			break;
2027		case DP_D:
2028		case PCH_DP_D:
2029			dev_priv->hotplug_supported_mask |=
2030				HDMID_HOTPLUG_INT_STATUS;
2031			name = "DPDDC-D";
2032			break;
2033	}
2034
2035	intel_dp_i2c_init(intel_dp, intel_connector, name);
2036
2037	/* Cache some DPCD data in the eDP case */
2038	if (is_edp(intel_dp)) {
2039		bool ret;
2040		u32 pp_on, pp_div;
 
 
2041
2042		pp_on = I915_READ(PCH_PP_ON_DELAYS);
 
2043		pp_div = I915_READ(PCH_PP_DIVISOR);
2044
2045		/* Get T3 & T12 values (note: VESA not bspec terminology) */
2046		dev_priv->panel_t3 = (pp_on & 0x1fff0000) >> 16;
2047		dev_priv->panel_t3 /= 10; /* t3 in 100us units */
2048		dev_priv->panel_t12 = pp_div & 0xf;
2049		dev_priv->panel_t12 *= 100; /* t12 in 100ms units */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2050
2051		ironlake_edp_panel_vdd_on(intel_dp);
2052		ret = intel_dp_get_dpcd(intel_dp);
2053		ironlake_edp_panel_vdd_off(intel_dp);
 
2054		if (ret) {
2055			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2056				dev_priv->no_aux_handshake =
2057					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2058					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2059		} else {
2060			/* if this fails, presume the device is a ghost */
2061			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2062			intel_dp_encoder_destroy(&intel_dp->base.base);
2063			intel_dp_destroy(&intel_connector->base);
2064			return;
2065		}
 
 
 
 
 
 
 
 
 
 
 
 
2066	}
2067
2068	intel_encoder->hot_plug = intel_dp_hot_plug;
2069
2070	if (is_edp(intel_dp)) {
2071		/* initialize panel mode from VBT if available for eDP */
2072		if (dev_priv->lfp_lvds_vbt_mode) {
2073			dev_priv->panel_fixed_mode =
2074				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2075			if (dev_priv->panel_fixed_mode) {
2076				dev_priv->panel_fixed_mode->type |=
2077					DRM_MODE_TYPE_PREFERRED;
2078			}
2079		}
2080		dev_priv->int_edp_connector = connector;
2081		intel_panel_setup_backlight(dev);
2082	}
2083
2084	intel_dp_add_properties(intel_dp, connector);
2085
2086	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2087	 * 0xd.  Failure to do so will result in spurious interrupts being
2088	 * generated on the port when a cable is not attached.
2089	 */
2090	if (IS_G4X(dev) && !IS_GM45(dev)) {
2091		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2092		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2093	}
2094}
v3.5.6
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Keith Packard <keithp@keithp.com>
  25 *
  26 */
  27
  28#include <linux/i2c.h>
  29#include <linux/slab.h>
  30#include <linux/export.h>
  31#include "drmP.h"
  32#include "drm.h"
  33#include "drm_crtc.h"
  34#include "drm_crtc_helper.h"
  35#include "drm_edid.h"
  36#include "intel_drv.h"
  37#include "i915_drm.h"
  38#include "i915_drv.h"
  39#include "drm_dp_helper.h"
  40
  41#define DP_RECEIVER_CAP_SIZE	0xf
  42#define DP_LINK_STATUS_SIZE	6
  43#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
  44
  45#define DP_LINK_CONFIGURATION_SIZE	9
  46
  47struct intel_dp {
  48	struct intel_encoder base;
  49	uint32_t output_reg;
  50	uint32_t DP;
  51	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
  52	bool has_audio;
  53	enum hdmi_force_audio force_audio;
  54	uint32_t color_range;
  55	int dpms_mode;
  56	uint8_t link_bw;
  57	uint8_t lane_count;
  58	uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
  59	struct i2c_adapter adapter;
  60	struct i2c_algo_dp_aux_data algo;
  61	bool is_pch_edp;
  62	uint8_t	train_set[4];
  63	int panel_power_up_delay;
  64	int panel_power_down_delay;
  65	int panel_power_cycle_delay;
  66	int backlight_on_delay;
  67	int backlight_off_delay;
  68	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
  69	struct delayed_work panel_vdd_work;
  70	bool want_panel_vdd;
  71	struct edid *edid; /* cached EDID for eDP */
  72	int edid_mode_count;
  73};
  74
  75/**
  76 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  77 * @intel_dp: DP struct
  78 *
  79 * If a CPU or PCH DP output is attached to an eDP panel, this function
  80 * will return true, and false otherwise.
  81 */
  82static bool is_edp(struct intel_dp *intel_dp)
  83{
  84	return intel_dp->base.type == INTEL_OUTPUT_EDP;
  85}
  86
  87/**
  88 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
  89 * @intel_dp: DP struct
  90 *
  91 * Returns true if the given DP struct corresponds to a PCH DP port attached
  92 * to an eDP panel, false otherwise.  Helpful for determining whether we
  93 * may need FDI resources for a given DP output or not.
  94 */
  95static bool is_pch_edp(struct intel_dp *intel_dp)
  96{
  97	return intel_dp->is_pch_edp;
  98}
  99
 100/**
 101 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
 102 * @intel_dp: DP struct
 103 *
 104 * Returns true if the given DP struct corresponds to a CPU eDP port.
 105 */
 106static bool is_cpu_edp(struct intel_dp *intel_dp)
 107{
 108	return is_edp(intel_dp) && !is_pch_edp(intel_dp);
 109}
 110
 111static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
 112{
 113	return container_of(encoder, struct intel_dp, base.base);
 114}
 115
 116static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
 117{
 118	return container_of(intel_attached_encoder(connector),
 119			    struct intel_dp, base);
 120}
 121
 122/**
 123 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
 124 * @encoder: DRM encoder
 125 *
 126 * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
 127 * by intel_display.c.
 128 */
 129bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
 130{
 131	struct intel_dp *intel_dp;
 132
 133	if (!encoder)
 134		return false;
 135
 136	intel_dp = enc_to_intel_dp(encoder);
 137
 138	return is_pch_edp(intel_dp);
 139}
 140
 141static void intel_dp_start_link_train(struct intel_dp *intel_dp);
 142static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
 143static void intel_dp_link_down(struct intel_dp *intel_dp);
 144
 145void
 146intel_edp_link_config(struct intel_encoder *intel_encoder,
 147		       int *lane_num, int *link_bw)
 148{
 149	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
 150
 151	*lane_num = intel_dp->lane_count;
 152	if (intel_dp->link_bw == DP_LINK_BW_1_62)
 153		*link_bw = 162000;
 154	else if (intel_dp->link_bw == DP_LINK_BW_2_7)
 155		*link_bw = 270000;
 156}
 157
 158static int
 159intel_dp_max_lane_count(struct intel_dp *intel_dp)
 160{
 161	int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
 162	switch (max_lane_count) {
 163	case 1: case 2: case 4:
 164		break;
 165	default:
 166		max_lane_count = 4;
 
 
 
 
 167	}
 168	return max_lane_count;
 169}
 170
 171static int
 172intel_dp_max_link_bw(struct intel_dp *intel_dp)
 173{
 174	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
 175
 176	switch (max_link_bw) {
 177	case DP_LINK_BW_1_62:
 178	case DP_LINK_BW_2_7:
 179		break;
 180	default:
 181		max_link_bw = DP_LINK_BW_1_62;
 182		break;
 183	}
 184	return max_link_bw;
 185}
 186
 187static int
 188intel_dp_link_clock(uint8_t link_bw)
 189{
 190	if (link_bw == DP_LINK_BW_2_7)
 191		return 270000;
 192	else
 193		return 162000;
 194}
 195
 196/*
 197 * The units on the numbers in the next two are... bizarre.  Examples will
 198 * make it clearer; this one parallels an example in the eDP spec.
 199 *
 200 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
 201 *
 202 *     270000 * 1 * 8 / 10 == 216000
 203 *
 204 * The actual data capacity of that configuration is 2.16Gbit/s, so the
 205 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
 206 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
 207 * 119000.  At 18bpp that's 2142000 kilobits per second.
 208 *
 209 * Thus the strange-looking division by 10 in intel_dp_link_required, to
 210 * get the result in decakilobits instead of kilobits.
 211 */
 212
 213static int
 214intel_dp_link_required(int pixel_clock, int bpp)
 215{
 216	return (pixel_clock * bpp + 9) / 10;
 
 
 
 
 
 
 
 217}
 218
 219static int
 220intel_dp_max_data_rate(int max_link_clock, int max_lanes)
 221{
 222	return (max_link_clock * max_lanes * 8) / 10;
 223}
 224
 225static bool
 226intel_dp_adjust_dithering(struct intel_dp *intel_dp,
 227			  struct drm_display_mode *mode,
 228			  struct drm_display_mode *adjusted_mode)
 229{
 230	int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
 231	int max_lanes = intel_dp_max_lane_count(intel_dp);
 232	int max_rate, mode_rate;
 233
 234	mode_rate = intel_dp_link_required(mode->clock, 24);
 235	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
 236
 237	if (mode_rate > max_rate) {
 238		mode_rate = intel_dp_link_required(mode->clock, 18);
 239		if (mode_rate > max_rate)
 240			return false;
 241
 242		if (adjusted_mode)
 243			adjusted_mode->private_flags
 244				|= INTEL_MODE_DP_FORCE_6BPC;
 245
 246		return true;
 247	}
 248
 249	return true;
 250}
 251
 252static int
 253intel_dp_mode_valid(struct drm_connector *connector,
 254		    struct drm_display_mode *mode)
 255{
 256	struct intel_dp *intel_dp = intel_attached_dp(connector);
 
 
 
 
 257
 258	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
 259		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
 260			return MODE_PANEL;
 261
 262		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
 263			return MODE_PANEL;
 264	}
 265
 266	if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
 
 
 
 
 267		return MODE_CLOCK_HIGH;
 268
 269	if (mode->clock < 10000)
 270		return MODE_CLOCK_LOW;
 271
 272	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
 273		return MODE_H_ILLEGAL;
 274
 275	return MODE_OK;
 276}
 277
 278static uint32_t
 279pack_aux(uint8_t *src, int src_bytes)
 280{
 281	int	i;
 282	uint32_t v = 0;
 283
 284	if (src_bytes > 4)
 285		src_bytes = 4;
 286	for (i = 0; i < src_bytes; i++)
 287		v |= ((uint32_t) src[i]) << ((3-i) * 8);
 288	return v;
 289}
 290
 291static void
 292unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
 293{
 294	int i;
 295	if (dst_bytes > 4)
 296		dst_bytes = 4;
 297	for (i = 0; i < dst_bytes; i++)
 298		dst[i] = src >> ((3-i) * 8);
 299}
 300
 301/* hrawclock is 1/4 the FSB frequency */
 302static int
 303intel_hrawclk(struct drm_device *dev)
 304{
 305	struct drm_i915_private *dev_priv = dev->dev_private;
 306	uint32_t clkcfg;
 307
 308	clkcfg = I915_READ(CLKCFG);
 309	switch (clkcfg & CLKCFG_FSB_MASK) {
 310	case CLKCFG_FSB_400:
 311		return 100;
 312	case CLKCFG_FSB_533:
 313		return 133;
 314	case CLKCFG_FSB_667:
 315		return 166;
 316	case CLKCFG_FSB_800:
 317		return 200;
 318	case CLKCFG_FSB_1067:
 319		return 266;
 320	case CLKCFG_FSB_1333:
 321		return 333;
 322	/* these two are just a guess; one of them might be right */
 323	case CLKCFG_FSB_1600:
 324	case CLKCFG_FSB_1600_ALT:
 325		return 400;
 326	default:
 327		return 133;
 328	}
 329}
 330
 331static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
 332{
 333	struct drm_device *dev = intel_dp->base.base.dev;
 334	struct drm_i915_private *dev_priv = dev->dev_private;
 335
 336	return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
 337}
 338
 339static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
 340{
 341	struct drm_device *dev = intel_dp->base.base.dev;
 342	struct drm_i915_private *dev_priv = dev->dev_private;
 343
 344	return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
 345}
 346
 347static void
 348intel_dp_check_edp(struct intel_dp *intel_dp)
 349{
 350	struct drm_device *dev = intel_dp->base.base.dev;
 351	struct drm_i915_private *dev_priv = dev->dev_private;
 352
 353	if (!is_edp(intel_dp))
 354		return;
 355	if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
 356		WARN(1, "eDP powered off while attempting aux channel communication.\n");
 357		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
 358			      I915_READ(PCH_PP_STATUS),
 359			      I915_READ(PCH_PP_CONTROL));
 360	}
 361}
 362
 363static int
 364intel_dp_aux_ch(struct intel_dp *intel_dp,
 365		uint8_t *send, int send_bytes,
 366		uint8_t *recv, int recv_size)
 367{
 368	uint32_t output_reg = intel_dp->output_reg;
 369	struct drm_device *dev = intel_dp->base.base.dev;
 370	struct drm_i915_private *dev_priv = dev->dev_private;
 371	uint32_t ch_ctl = output_reg + 0x10;
 372	uint32_t ch_data = ch_ctl + 4;
 373	int i;
 374	int recv_bytes;
 375	uint32_t status;
 376	uint32_t aux_clock_divider;
 377	int try, precharge;
 378
 379	intel_dp_check_edp(intel_dp);
 380	/* The clock divider is based off the hrawclk,
 381	 * and would like to run at 2MHz. So, take the
 382	 * hrawclk value and divide by 2 and use that
 383	 *
 384	 * Note that PCH attached eDP panels should use a 125MHz input
 385	 * clock divider.
 386	 */
 387	if (is_cpu_edp(intel_dp)) {
 388		if (IS_GEN6(dev) || IS_GEN7(dev))
 389			aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
 390		else
 391			aux_clock_divider = 225; /* eDP input clock at 450Mhz */
 392	} else if (HAS_PCH_SPLIT(dev))
 393		aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
 394	else
 395		aux_clock_divider = intel_hrawclk(dev) / 2;
 396
 397	if (IS_GEN6(dev))
 398		precharge = 3;
 399	else
 400		precharge = 5;
 401
 402	/* Try to wait for any previous AUX channel activity */
 403	for (try = 0; try < 3; try++) {
 404		status = I915_READ(ch_ctl);
 405		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 406			break;
 407		msleep(1);
 408	}
 409
 410	if (try == 3) {
 411		WARN(1, "dp_aux_ch not started status 0x%08x\n",
 412		     I915_READ(ch_ctl));
 413		return -EBUSY;
 414	}
 415
 416	/* Must try at least 3 times according to DP spec */
 417	for (try = 0; try < 5; try++) {
 418		/* Load the send data into the aux channel data registers */
 419		for (i = 0; i < send_bytes; i += 4)
 420			I915_WRITE(ch_data + i,
 421				   pack_aux(send + i, send_bytes - i));
 422
 423		/* Send the command and wait for it to complete */
 424		I915_WRITE(ch_ctl,
 425			   DP_AUX_CH_CTL_SEND_BUSY |
 426			   DP_AUX_CH_CTL_TIME_OUT_400us |
 427			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
 428			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
 429			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
 430			   DP_AUX_CH_CTL_DONE |
 431			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 432			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 433		for (;;) {
 434			status = I915_READ(ch_ctl);
 435			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
 436				break;
 437			udelay(100);
 438		}
 439
 440		/* Clear done status and any errors */
 441		I915_WRITE(ch_ctl,
 442			   status |
 443			   DP_AUX_CH_CTL_DONE |
 444			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
 445			   DP_AUX_CH_CTL_RECEIVE_ERROR);
 446
 447		if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
 448			      DP_AUX_CH_CTL_RECEIVE_ERROR))
 449			continue;
 450		if (status & DP_AUX_CH_CTL_DONE)
 451			break;
 452	}
 453
 454	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
 455		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
 456		return -EBUSY;
 457	}
 458
 459	/* Check for timeout or receive error.
 460	 * Timeouts occur when the sink is not connected
 461	 */
 462	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
 463		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
 464		return -EIO;
 465	}
 466
 467	/* Timeouts occur when the device isn't connected, so they're
 468	 * "normal" -- don't fill the kernel log with these */
 469	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
 470		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
 471		return -ETIMEDOUT;
 472	}
 473
 474	/* Unload any bytes sent back from the other side */
 475	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
 476		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
 477	if (recv_bytes > recv_size)
 478		recv_bytes = recv_size;
 479
 480	for (i = 0; i < recv_bytes; i += 4)
 481		unpack_aux(I915_READ(ch_data + i),
 482			   recv + i, recv_bytes - i);
 483
 484	return recv_bytes;
 485}
 486
 487/* Write data to the aux channel in native mode */
 488static int
 489intel_dp_aux_native_write(struct intel_dp *intel_dp,
 490			  uint16_t address, uint8_t *send, int send_bytes)
 491{
 492	int ret;
 493	uint8_t	msg[20];
 494	int msg_bytes;
 495	uint8_t	ack;
 496
 497	intel_dp_check_edp(intel_dp);
 498	if (send_bytes > 16)
 499		return -1;
 500	msg[0] = AUX_NATIVE_WRITE << 4;
 501	msg[1] = address >> 8;
 502	msg[2] = address & 0xff;
 503	msg[3] = send_bytes - 1;
 504	memcpy(&msg[4], send, send_bytes);
 505	msg_bytes = send_bytes + 4;
 506	for (;;) {
 507		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
 508		if (ret < 0)
 509			return ret;
 510		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
 511			break;
 512		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
 513			udelay(100);
 514		else
 515			return -EIO;
 516	}
 517	return send_bytes;
 518}
 519
 520/* Write a single byte to the aux channel in native mode */
 521static int
 522intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
 523			    uint16_t address, uint8_t byte)
 524{
 525	return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
 526}
 527
 528/* read bytes from a native aux channel */
 529static int
 530intel_dp_aux_native_read(struct intel_dp *intel_dp,
 531			 uint16_t address, uint8_t *recv, int recv_bytes)
 532{
 533	uint8_t msg[4];
 534	int msg_bytes;
 535	uint8_t reply[20];
 536	int reply_bytes;
 537	uint8_t ack;
 538	int ret;
 539
 540	intel_dp_check_edp(intel_dp);
 541	msg[0] = AUX_NATIVE_READ << 4;
 542	msg[1] = address >> 8;
 543	msg[2] = address & 0xff;
 544	msg[3] = recv_bytes - 1;
 545
 546	msg_bytes = 4;
 547	reply_bytes = recv_bytes + 1;
 548
 549	for (;;) {
 550		ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
 551				      reply, reply_bytes);
 552		if (ret == 0)
 553			return -EPROTO;
 554		if (ret < 0)
 555			return ret;
 556		ack = reply[0];
 557		if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
 558			memcpy(recv, reply + 1, ret - 1);
 559			return ret - 1;
 560		}
 561		else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
 562			udelay(100);
 563		else
 564			return -EIO;
 565	}
 566}
 567
 568static int
 569intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
 570		    uint8_t write_byte, uint8_t *read_byte)
 571{
 572	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
 573	struct intel_dp *intel_dp = container_of(adapter,
 574						struct intel_dp,
 575						adapter);
 576	uint16_t address = algo_data->address;
 577	uint8_t msg[5];
 578	uint8_t reply[2];
 579	unsigned retry;
 580	int msg_bytes;
 581	int reply_bytes;
 582	int ret;
 583
 584	intel_dp_check_edp(intel_dp);
 585	/* Set up the command byte */
 586	if (mode & MODE_I2C_READ)
 587		msg[0] = AUX_I2C_READ << 4;
 588	else
 589		msg[0] = AUX_I2C_WRITE << 4;
 590
 591	if (!(mode & MODE_I2C_STOP))
 592		msg[0] |= AUX_I2C_MOT << 4;
 593
 594	msg[1] = address >> 8;
 595	msg[2] = address;
 596
 597	switch (mode) {
 598	case MODE_I2C_WRITE:
 599		msg[3] = 0;
 600		msg[4] = write_byte;
 601		msg_bytes = 5;
 602		reply_bytes = 1;
 603		break;
 604	case MODE_I2C_READ:
 605		msg[3] = 0;
 606		msg_bytes = 4;
 607		reply_bytes = 2;
 608		break;
 609	default:
 610		msg_bytes = 3;
 611		reply_bytes = 1;
 612		break;
 613	}
 614
 615	for (retry = 0; retry < 5; retry++) {
 616		ret = intel_dp_aux_ch(intel_dp,
 617				      msg, msg_bytes,
 618				      reply, reply_bytes);
 619		if (ret < 0) {
 620			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
 621			return ret;
 622		}
 623
 624		switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
 625		case AUX_NATIVE_REPLY_ACK:
 626			/* I2C-over-AUX Reply field is only valid
 627			 * when paired with AUX ACK.
 628			 */
 629			break;
 630		case AUX_NATIVE_REPLY_NACK:
 631			DRM_DEBUG_KMS("aux_ch native nack\n");
 632			return -EREMOTEIO;
 633		case AUX_NATIVE_REPLY_DEFER:
 634			udelay(100);
 635			continue;
 636		default:
 637			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
 638				  reply[0]);
 639			return -EREMOTEIO;
 640		}
 641
 642		switch (reply[0] & AUX_I2C_REPLY_MASK) {
 643		case AUX_I2C_REPLY_ACK:
 644			if (mode == MODE_I2C_READ) {
 645				*read_byte = reply[1];
 646			}
 647			return reply_bytes - 1;
 648		case AUX_I2C_REPLY_NACK:
 649			DRM_DEBUG_KMS("aux_i2c nack\n");
 650			return -EREMOTEIO;
 651		case AUX_I2C_REPLY_DEFER:
 652			DRM_DEBUG_KMS("aux_i2c defer\n");
 653			udelay(100);
 654			break;
 655		default:
 656			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
 657			return -EREMOTEIO;
 658		}
 659	}
 660
 661	DRM_ERROR("too many retries, giving up\n");
 662	return -EREMOTEIO;
 663}
 664
 665static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
 666static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
 667
 668static int
 669intel_dp_i2c_init(struct intel_dp *intel_dp,
 670		  struct intel_connector *intel_connector, const char *name)
 671{
 672	int	ret;
 673
 674	DRM_DEBUG_KMS("i2c_init %s\n", name);
 675	intel_dp->algo.running = false;
 676	intel_dp->algo.address = 0;
 677	intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
 678
 679	memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
 680	intel_dp->adapter.owner = THIS_MODULE;
 681	intel_dp->adapter.class = I2C_CLASS_DDC;
 682	strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
 683	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
 684	intel_dp->adapter.algo_data = &intel_dp->algo;
 685	intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
 686
 687	ironlake_edp_panel_vdd_on(intel_dp);
 688	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
 689	ironlake_edp_panel_vdd_off(intel_dp, false);
 690	return ret;
 691}
 692
 693static bool
 694intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
 695		    struct drm_display_mode *adjusted_mode)
 696{
 697	struct drm_device *dev = encoder->dev;
 
 698	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 699	int lane_count, clock;
 700	int max_lane_count = intel_dp_max_lane_count(intel_dp);
 701	int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
 702	int bpp, mode_rate;
 703	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
 704
 705	if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
 706		intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
 707		intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
 708					mode, adjusted_mode);
 709		/*
 710		 * the mode->clock is used to calculate the Data&Link M/N
 711		 * of the pipe. For the eDP the fixed clock should be used.
 712		 */
 713		mode->clock = intel_dp->panel_fixed_mode->clock;
 714	}
 715
 716	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
 717		return false;
 718
 719	DRM_DEBUG_KMS("DP link computation with max lane count %i "
 720		      "max bw %02x pixel clock %iKHz\n",
 721		      max_lane_count, bws[max_clock], mode->clock);
 722
 723	if (!intel_dp_adjust_dithering(intel_dp, mode, adjusted_mode))
 724		return false;
 725
 726	bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
 727	mode_rate = intel_dp_link_required(mode->clock, bpp);
 728
 729	for (clock = 0; clock <= max_clock; clock++) {
 730		for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
 731			int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
 732
 733			if (mode_rate <= link_avail) {
 
 734				intel_dp->link_bw = bws[clock];
 735				intel_dp->lane_count = lane_count;
 736				adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
 737				DRM_DEBUG_KMS("DP link bw %02x lane "
 738						"count %d clock %d bpp %d\n",
 739				       intel_dp->link_bw, intel_dp->lane_count,
 740				       adjusted_mode->clock, bpp);
 741				DRM_DEBUG_KMS("DP link bw required %i available %i\n",
 742					      mode_rate, link_avail);
 743				return true;
 744			}
 745		}
 746	}
 747
 
 
 
 
 
 
 
 
 
 
 
 
 
 748	return false;
 749}
 750
 751struct intel_dp_m_n {
 752	uint32_t	tu;
 753	uint32_t	gmch_m;
 754	uint32_t	gmch_n;
 755	uint32_t	link_m;
 756	uint32_t	link_n;
 757};
 758
 759static void
 760intel_reduce_ratio(uint32_t *num, uint32_t *den)
 761{
 762	while (*num > 0xffffff || *den > 0xffffff) {
 763		*num >>= 1;
 764		*den >>= 1;
 765	}
 766}
 767
 768static void
 769intel_dp_compute_m_n(int bpp,
 770		     int nlanes,
 771		     int pixel_clock,
 772		     int link_clock,
 773		     struct intel_dp_m_n *m_n)
 774{
 775	m_n->tu = 64;
 776	m_n->gmch_m = (pixel_clock * bpp) >> 3;
 777	m_n->gmch_n = link_clock * nlanes;
 778	intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
 779	m_n->link_m = pixel_clock;
 780	m_n->link_n = link_clock;
 781	intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
 782}
 783
 784void
 785intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
 786		 struct drm_display_mode *adjusted_mode)
 787{
 788	struct drm_device *dev = crtc->dev;
 789	struct drm_mode_config *mode_config = &dev->mode_config;
 790	struct drm_encoder *encoder;
 791	struct drm_i915_private *dev_priv = dev->dev_private;
 792	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 793	int lane_count = 4;
 794	struct intel_dp_m_n m_n;
 795	int pipe = intel_crtc->pipe;
 796
 797	/*
 798	 * Find the lane count in the intel_encoder private
 799	 */
 800	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
 801		struct intel_dp *intel_dp;
 802
 803		if (encoder->crtc != crtc)
 804			continue;
 805
 806		intel_dp = enc_to_intel_dp(encoder);
 807		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
 808		    intel_dp->base.type == INTEL_OUTPUT_EDP)
 809		{
 810			lane_count = intel_dp->lane_count;
 811			break;
 
 
 
 812		}
 813	}
 814
 815	/*
 816	 * Compute the GMCH and Link ratios. The '3' here is
 817	 * the number of bytes_per_pixel post-LUT, which we always
 818	 * set up for 8-bits of R/G/B, or 3 bytes total.
 819	 */
 820	intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
 821			     mode->clock, adjusted_mode->clock, &m_n);
 822
 823	if (HAS_PCH_SPLIT(dev)) {
 824		I915_WRITE(TRANSDATA_M1(pipe),
 825			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
 826			   m_n.gmch_m);
 827		I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
 828		I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
 829		I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
 830	} else {
 831		I915_WRITE(PIPE_GMCH_DATA_M(pipe),
 832			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
 833			   m_n.gmch_m);
 834		I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
 835		I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
 836		I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
 837	}
 838}
 839
 840static void ironlake_edp_pll_on(struct drm_encoder *encoder);
 841static void ironlake_edp_pll_off(struct drm_encoder *encoder);
 842
 843static void
 844intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
 845		  struct drm_display_mode *adjusted_mode)
 846{
 847	struct drm_device *dev = encoder->dev;
 848	struct drm_i915_private *dev_priv = dev->dev_private;
 849	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 850	struct drm_crtc *crtc = intel_dp->base.base.crtc;
 851	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 852
 853	/* Turn on the eDP PLL if needed */
 854	if (is_edp(intel_dp)) {
 855		if (!is_pch_edp(intel_dp))
 856			ironlake_edp_pll_on(encoder);
 857		else
 858			ironlake_edp_pll_off(encoder);
 859	}
 860
 861	/*
 862	 * There are four kinds of DP registers:
 863	 *
 864	 * 	IBX PCH
 865	 * 	SNB CPU
 866	 *	IVB CPU
 867	 * 	CPT PCH
 868	 *
 869	 * IBX PCH and CPU are the same for almost everything,
 870	 * except that the CPU DP PLL is configured in this
 871	 * register
 872	 *
 873	 * CPT PCH is quite different, having many bits moved
 874	 * to the TRANS_DP_CTL register instead. That
 875	 * configuration happens (oddly) in ironlake_pch_enable
 876	 */
 877
 878	/* Preserve the BIOS-computed detected bit. This is
 879	 * supposed to be read-only.
 880	 */
 881	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
 882	intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
 883
 884	/* Handle DP bits in common between all three register formats */
 885
 886	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
 887
 888	switch (intel_dp->lane_count) {
 889	case 1:
 890		intel_dp->DP |= DP_PORT_WIDTH_1;
 891		break;
 892	case 2:
 893		intel_dp->DP |= DP_PORT_WIDTH_2;
 894		break;
 895	case 4:
 896		intel_dp->DP |= DP_PORT_WIDTH_4;
 897		break;
 898	}
 899	if (intel_dp->has_audio) {
 900		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
 901				 pipe_name(intel_crtc->pipe));
 902		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
 903		intel_write_eld(encoder, adjusted_mode);
 904	}
 905	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
 906	intel_dp->link_configuration[0] = intel_dp->link_bw;
 907	intel_dp->link_configuration[1] = intel_dp->lane_count;
 908	intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
 
 909	/*
 910	 * Check for DPCD version > 1.1 and enhanced framing support
 911	 */
 912	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
 913	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
 914		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
 
 915	}
 916
 917	/* Split out the IBX/CPU vs CPT settings */
 918
 919	if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
 920		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 921			intel_dp->DP |= DP_SYNC_HS_HIGH;
 922		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 923			intel_dp->DP |= DP_SYNC_VS_HIGH;
 924		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 925
 926		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
 927			intel_dp->DP |= DP_ENHANCED_FRAMING;
 928
 929		intel_dp->DP |= intel_crtc->pipe << 29;
 930
 
 931		/* don't miss out required setting for eDP */
 932		intel_dp->DP |= DP_PLL_ENABLE;
 933		if (adjusted_mode->clock < 200000)
 934			intel_dp->DP |= DP_PLL_FREQ_160MHZ;
 935		else
 936			intel_dp->DP |= DP_PLL_FREQ_270MHZ;
 937	} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
 938		intel_dp->DP |= intel_dp->color_range;
 939
 940		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 941			intel_dp->DP |= DP_SYNC_HS_HIGH;
 942		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 943			intel_dp->DP |= DP_SYNC_VS_HIGH;
 944		intel_dp->DP |= DP_LINK_TRAIN_OFF;
 945
 946		if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
 947			intel_dp->DP |= DP_ENHANCED_FRAMING;
 948
 949		if (intel_crtc->pipe == 1)
 950			intel_dp->DP |= DP_PIPEB_SELECT;
 951
 952		if (is_cpu_edp(intel_dp)) {
 953			/* don't miss out required setting for eDP */
 954			intel_dp->DP |= DP_PLL_ENABLE;
 955			if (adjusted_mode->clock < 200000)
 956				intel_dp->DP |= DP_PLL_FREQ_160MHZ;
 957			else
 958				intel_dp->DP |= DP_PLL_FREQ_270MHZ;
 959		}
 960	} else {
 961		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
 962	}
 963}
 964
 965#define IDLE_ON_MASK		(PP_ON | 0 	  | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
 966#define IDLE_ON_VALUE   	(PP_ON | 0 	  | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
 967
 968#define IDLE_OFF_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
 969#define IDLE_OFF_VALUE		(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
 970
 971#define IDLE_CYCLE_MASK		(PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
 972#define IDLE_CYCLE_VALUE	(0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
 973
 974static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
 975				       u32 mask,
 976				       u32 value)
 977{
 978	struct drm_device *dev = intel_dp->base.base.dev;
 979	struct drm_i915_private *dev_priv = dev->dev_private;
 980
 981	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
 982		      mask, value,
 983		      I915_READ(PCH_PP_STATUS),
 984		      I915_READ(PCH_PP_CONTROL));
 985
 986	if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
 987		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
 988			  I915_READ(PCH_PP_STATUS),
 989			  I915_READ(PCH_PP_CONTROL));
 990	}
 991}
 992
 993static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
 994{
 995	DRM_DEBUG_KMS("Wait for panel power on\n");
 996	ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
 997}
 998
 999static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1000{
1001	DRM_DEBUG_KMS("Wait for panel power off time\n");
1002	ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1003}
1004
1005static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1006{
1007	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1008	ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1009}
1010
1011
1012/* Read the current pp_control value, unlocking the register if it
1013 * is locked
1014 */
1015
1016static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1017{
1018	u32	control = I915_READ(PCH_PP_CONTROL);
1019
1020	control &= ~PANEL_UNLOCK_MASK;
1021	control |= PANEL_UNLOCK_REGS;
1022	return control;
1023}
1024
1025static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1026{
1027	struct drm_device *dev = intel_dp->base.base.dev;
1028	struct drm_i915_private *dev_priv = dev->dev_private;
1029	u32 pp;
1030
1031	if (!is_edp(intel_dp))
1032		return;
1033	DRM_DEBUG_KMS("Turn eDP VDD on\n");
1034
1035	WARN(intel_dp->want_panel_vdd,
1036	     "eDP VDD already requested on\n");
1037
1038	intel_dp->want_panel_vdd = true;
1039
1040	if (ironlake_edp_have_panel_vdd(intel_dp)) {
1041		DRM_DEBUG_KMS("eDP VDD already on\n");
1042		return;
1043	}
1044
1045	if (!ironlake_edp_have_panel_power(intel_dp))
1046		ironlake_wait_panel_power_cycle(intel_dp);
1047
1048	pp = ironlake_get_pp_control(dev_priv);
1049	pp |= EDP_FORCE_VDD;
1050	I915_WRITE(PCH_PP_CONTROL, pp);
1051	POSTING_READ(PCH_PP_CONTROL);
1052	DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1053		      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1054
1055	/*
1056	 * If the panel wasn't on, delay before accessing aux channel
1057	 */
1058	if (!ironlake_edp_have_panel_power(intel_dp)) {
1059		DRM_DEBUG_KMS("eDP was not running\n");
1060		msleep(intel_dp->panel_power_up_delay);
1061	}
1062}
1063
1064static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1065{
1066	struct drm_device *dev = intel_dp->base.base.dev;
1067	struct drm_i915_private *dev_priv = dev->dev_private;
1068	u32 pp;
1069
1070	if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1071		pp = ironlake_get_pp_control(dev_priv);
1072		pp &= ~EDP_FORCE_VDD;
1073		I915_WRITE(PCH_PP_CONTROL, pp);
1074		POSTING_READ(PCH_PP_CONTROL);
1075
1076		/* Make sure sequencer is idle before allowing subsequent activity */
1077		DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1078			      I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1079
1080		msleep(intel_dp->panel_power_down_delay);
1081	}
1082}
1083
1084static void ironlake_panel_vdd_work(struct work_struct *__work)
1085{
1086	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1087						 struct intel_dp, panel_vdd_work);
1088	struct drm_device *dev = intel_dp->base.base.dev;
1089
1090	mutex_lock(&dev->mode_config.mutex);
1091	ironlake_panel_vdd_off_sync(intel_dp);
1092	mutex_unlock(&dev->mode_config.mutex);
1093}
1094
1095static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1096{
1097	if (!is_edp(intel_dp))
1098		return;
1099
1100	DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1101	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1102
1103	intel_dp->want_panel_vdd = false;
1104
1105	if (sync) {
1106		ironlake_panel_vdd_off_sync(intel_dp);
1107	} else {
1108		/*
1109		 * Queue the timer to fire a long
1110		 * time from now (relative to the power down delay)
1111		 * to keep the panel power up across a sequence of operations
1112		 */
1113		schedule_delayed_work(&intel_dp->panel_vdd_work,
1114				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1115	}
1116}
1117
1118static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1119{
1120	struct drm_device *dev = intel_dp->base.base.dev;
1121	struct drm_i915_private *dev_priv = dev->dev_private;
1122	u32 pp;
1123
1124	if (!is_edp(intel_dp))
1125		return;
1126
1127	DRM_DEBUG_KMS("Turn eDP power on\n");
1128
1129	if (ironlake_edp_have_panel_power(intel_dp)) {
1130		DRM_DEBUG_KMS("eDP power already on\n");
1131		return;
1132	}
1133
1134	ironlake_wait_panel_power_cycle(intel_dp);
1135
1136	pp = ironlake_get_pp_control(dev_priv);
1137	if (IS_GEN5(dev)) {
1138		/* ILK workaround: disable reset around power sequence */
1139		pp &= ~PANEL_POWER_RESET;
1140		I915_WRITE(PCH_PP_CONTROL, pp);
1141		POSTING_READ(PCH_PP_CONTROL);
1142	}
1143
1144	pp |= POWER_TARGET_ON;
1145	if (!IS_GEN5(dev))
1146		pp |= PANEL_POWER_RESET;
 
1147
 
1148	I915_WRITE(PCH_PP_CONTROL, pp);
1149	POSTING_READ(PCH_PP_CONTROL);
1150
1151	ironlake_wait_panel_on(intel_dp);
1152
1153	if (IS_GEN5(dev)) {
1154		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1155		I915_WRITE(PCH_PP_CONTROL, pp);
1156		POSTING_READ(PCH_PP_CONTROL);
1157	}
1158}
1159
1160static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1161{
1162	struct drm_device *dev = intel_dp->base.base.dev;
1163	struct drm_i915_private *dev_priv = dev->dev_private;
1164	u32 pp;
1165
1166	if (!is_edp(intel_dp))
1167		return;
1168
1169	DRM_DEBUG_KMS("Turn eDP power off\n");
1170
1171	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
 
 
 
1172
1173	pp = ironlake_get_pp_control(dev_priv);
1174	/* We need to switch off panel power _and_ force vdd, for otherwise some
1175	 * panels get very unhappy and cease to work. */
1176	pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1177	I915_WRITE(PCH_PP_CONTROL, pp);
1178	POSTING_READ(PCH_PP_CONTROL);
1179
1180	intel_dp->want_panel_vdd = false;
 
 
1181
1182	ironlake_wait_panel_off(intel_dp);
 
 
1183}
1184
1185static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1186{
1187	struct drm_device *dev = intel_dp->base.base.dev;
1188	struct drm_i915_private *dev_priv = dev->dev_private;
1189	u32 pp;
1190
1191	if (!is_edp(intel_dp))
1192		return;
1193
1194	DRM_DEBUG_KMS("\n");
1195	/*
1196	 * If we enable the backlight right away following a panel power
1197	 * on, we may see slight flicker as the panel syncs with the eDP
1198	 * link.  So delay a bit to make sure the image is solid before
1199	 * allowing it to appear.
1200	 */
1201	msleep(intel_dp->backlight_on_delay);
1202	pp = ironlake_get_pp_control(dev_priv);
1203	pp |= EDP_BLC_ENABLE;
1204	I915_WRITE(PCH_PP_CONTROL, pp);
1205	POSTING_READ(PCH_PP_CONTROL);
1206}
1207
1208static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1209{
1210	struct drm_device *dev = intel_dp->base.base.dev;
1211	struct drm_i915_private *dev_priv = dev->dev_private;
1212	u32 pp;
1213
1214	if (!is_edp(intel_dp))
1215		return;
1216
1217	DRM_DEBUG_KMS("\n");
1218	pp = ironlake_get_pp_control(dev_priv);
1219	pp &= ~EDP_BLC_ENABLE;
1220	I915_WRITE(PCH_PP_CONTROL, pp);
1221	POSTING_READ(PCH_PP_CONTROL);
1222	msleep(intel_dp->backlight_off_delay);
1223}
1224
1225static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1226{
1227	struct drm_device *dev = encoder->dev;
1228	struct drm_i915_private *dev_priv = dev->dev_private;
1229	u32 dpa_ctl;
1230
1231	DRM_DEBUG_KMS("\n");
1232	dpa_ctl = I915_READ(DP_A);
1233	dpa_ctl |= DP_PLL_ENABLE;
1234	I915_WRITE(DP_A, dpa_ctl);
1235	POSTING_READ(DP_A);
1236	udelay(200);
1237}
1238
1239static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1240{
1241	struct drm_device *dev = encoder->dev;
1242	struct drm_i915_private *dev_priv = dev->dev_private;
1243	u32 dpa_ctl;
1244
1245	dpa_ctl = I915_READ(DP_A);
1246	dpa_ctl &= ~DP_PLL_ENABLE;
1247	I915_WRITE(DP_A, dpa_ctl);
1248	POSTING_READ(DP_A);
1249	udelay(200);
1250}
1251
1252/* If the sink supports it, try to set the power state appropriately */
1253static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1254{
1255	int ret, i;
1256
1257	/* Should have a valid DPCD by this point */
1258	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1259		return;
1260
1261	if (mode != DRM_MODE_DPMS_ON) {
1262		ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1263						  DP_SET_POWER_D3);
1264		if (ret != 1)
1265			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1266	} else {
1267		/*
1268		 * When turning on, we need to retry for 1ms to give the sink
1269		 * time to wake up.
1270		 */
1271		for (i = 0; i < 3; i++) {
1272			ret = intel_dp_aux_native_write_1(intel_dp,
1273							  DP_SET_POWER,
1274							  DP_SET_POWER_D0);
1275			if (ret == 1)
1276				break;
1277			msleep(1);
1278		}
1279	}
1280}
1281
1282static void intel_dp_prepare(struct drm_encoder *encoder)
1283{
1284	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 
1285
 
 
1286
1287	/* Make sure the panel is off before trying to change the mode. But also
1288	 * ensure that we have vdd while we switch off the panel. */
1289	ironlake_edp_panel_vdd_on(intel_dp);
1290	ironlake_edp_backlight_off(intel_dp);
1291	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1292	ironlake_edp_panel_off(intel_dp);
 
 
1293	intel_dp_link_down(intel_dp);
1294}
1295
1296static void intel_dp_commit(struct drm_encoder *encoder)
1297{
1298	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1299	struct drm_device *dev = encoder->dev;
1300	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1301
1302	ironlake_edp_panel_vdd_on(intel_dp);
1303	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
 
1304	intel_dp_start_link_train(intel_dp);
1305	ironlake_edp_panel_on(intel_dp);
1306	ironlake_edp_panel_vdd_off(intel_dp, true);
 
 
 
 
1307	intel_dp_complete_link_train(intel_dp);
1308	ironlake_edp_backlight_on(intel_dp);
 
 
1309
1310	intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1311
1312	if (HAS_PCH_CPT(dev))
1313		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1314}
1315
1316static void
1317intel_dp_dpms(struct drm_encoder *encoder, int mode)
1318{
1319	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1320	struct drm_device *dev = encoder->dev;
1321	struct drm_i915_private *dev_priv = dev->dev_private;
1322	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1323
1324	if (mode != DRM_MODE_DPMS_ON) {
1325		/* Switching the panel off requires vdd. */
1326		ironlake_edp_panel_vdd_on(intel_dp);
1327		ironlake_edp_backlight_off(intel_dp);
1328		intel_dp_sink_dpms(intel_dp, mode);
1329		ironlake_edp_panel_off(intel_dp);
1330		intel_dp_link_down(intel_dp);
1331
1332		if (is_cpu_edp(intel_dp))
 
1333			ironlake_edp_pll_off(encoder);
1334	} else {
1335		if (is_cpu_edp(intel_dp))
1336			ironlake_edp_pll_on(encoder);
1337
1338		ironlake_edp_panel_vdd_on(intel_dp);
1339		intel_dp_sink_dpms(intel_dp, mode);
1340		if (!(dp_reg & DP_PORT_EN)) {
1341			intel_dp_start_link_train(intel_dp);
1342			ironlake_edp_panel_on(intel_dp);
1343			ironlake_edp_panel_vdd_off(intel_dp, true);
 
 
1344			intel_dp_complete_link_train(intel_dp);
1345		} else
1346			ironlake_edp_panel_vdd_off(intel_dp, false);
1347		ironlake_edp_backlight_on(intel_dp);
1348	}
1349	intel_dp->dpms_mode = mode;
1350}
1351
1352/*
1353 * Native read with retry for link status and receiver capability reads for
1354 * cases where the sink may still be asleep.
1355 */
1356static bool
1357intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1358			       uint8_t *recv, int recv_bytes)
1359{
1360	int ret, i;
1361
1362	/*
1363	 * Sinks are *supposed* to come up within 1ms from an off state,
1364	 * but we're also supposed to retry 3 times per the spec.
1365	 */
1366	for (i = 0; i < 3; i++) {
1367		ret = intel_dp_aux_native_read(intel_dp, address, recv,
1368					       recv_bytes);
1369		if (ret == recv_bytes)
1370			return true;
1371		msleep(1);
1372	}
1373
1374	return false;
1375}
1376
1377/*
1378 * Fetch AUX CH registers 0x202 - 0x207 which contain
1379 * link status information
1380 */
1381static bool
1382intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1383{
1384	return intel_dp_aux_native_read_retry(intel_dp,
1385					      DP_LANE0_1_STATUS,
1386					      link_status,
1387					      DP_LINK_STATUS_SIZE);
1388}
1389
1390static uint8_t
1391intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1392		     int r)
1393{
1394	return link_status[r - DP_LANE0_1_STATUS];
1395}
1396
1397static uint8_t
1398intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1399				 int lane)
1400{
 
1401	int	    s = ((lane & 1) ?
1402			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1403			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1404	uint8_t l = adjust_request[lane>>1];
1405
1406	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1407}
1408
1409static uint8_t
1410intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1411				      int lane)
1412{
 
1413	int	    s = ((lane & 1) ?
1414			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1415			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1416	uint8_t l = adjust_request[lane>>1];
1417
1418	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1419}
1420
1421
1422#if 0
1423static char	*voltage_names[] = {
1424	"0.4V", "0.6V", "0.8V", "1.2V"
1425};
1426static char	*pre_emph_names[] = {
1427	"0dB", "3.5dB", "6dB", "9.5dB"
1428};
1429static char	*link_train_names[] = {
1430	"pattern 1", "pattern 2", "idle", "off"
1431};
1432#endif
1433
1434/*
1435 * These are source-specific values; current Intel hardware supports
1436 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1437 */
 
1438
1439static uint8_t
1440intel_dp_voltage_max(struct intel_dp *intel_dp)
1441{
1442	struct drm_device *dev = intel_dp->base.base.dev;
1443
1444	if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1445		return DP_TRAIN_VOLTAGE_SWING_800;
1446	else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1447		return DP_TRAIN_VOLTAGE_SWING_1200;
1448	else
1449		return DP_TRAIN_VOLTAGE_SWING_800;
1450}
1451
1452static uint8_t
1453intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1454{
1455	struct drm_device *dev = intel_dp->base.base.dev;
1456
1457	if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1458		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1459		case DP_TRAIN_VOLTAGE_SWING_400:
1460			return DP_TRAIN_PRE_EMPHASIS_6;
1461		case DP_TRAIN_VOLTAGE_SWING_600:
1462		case DP_TRAIN_VOLTAGE_SWING_800:
1463			return DP_TRAIN_PRE_EMPHASIS_3_5;
1464		default:
1465			return DP_TRAIN_PRE_EMPHASIS_0;
1466		}
1467	} else {
1468		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1469		case DP_TRAIN_VOLTAGE_SWING_400:
1470			return DP_TRAIN_PRE_EMPHASIS_6;
1471		case DP_TRAIN_VOLTAGE_SWING_600:
1472			return DP_TRAIN_PRE_EMPHASIS_6;
1473		case DP_TRAIN_VOLTAGE_SWING_800:
1474			return DP_TRAIN_PRE_EMPHASIS_3_5;
1475		case DP_TRAIN_VOLTAGE_SWING_1200:
1476		default:
1477			return DP_TRAIN_PRE_EMPHASIS_0;
1478		}
1479	}
1480}
1481
1482static void
1483intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1484{
1485	uint8_t v = 0;
1486	uint8_t p = 0;
1487	int lane;
1488	uint8_t	*adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1489	uint8_t voltage_max;
1490	uint8_t preemph_max;
1491
1492	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1493		uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1494		uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1495
1496		if (this_v > v)
1497			v = this_v;
1498		if (this_p > p)
1499			p = this_p;
1500	}
1501
1502	voltage_max = intel_dp_voltage_max(intel_dp);
1503	if (v >= voltage_max)
1504		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1505
1506	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1507	if (p >= preemph_max)
1508		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1509
1510	for (lane = 0; lane < 4; lane++)
1511		intel_dp->train_set[lane] = v | p;
1512}
1513
1514static uint32_t
1515intel_dp_signal_levels(uint8_t train_set)
1516{
1517	uint32_t	signal_levels = 0;
1518
1519	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1520	case DP_TRAIN_VOLTAGE_SWING_400:
1521	default:
1522		signal_levels |= DP_VOLTAGE_0_4;
1523		break;
1524	case DP_TRAIN_VOLTAGE_SWING_600:
1525		signal_levels |= DP_VOLTAGE_0_6;
1526		break;
1527	case DP_TRAIN_VOLTAGE_SWING_800:
1528		signal_levels |= DP_VOLTAGE_0_8;
1529		break;
1530	case DP_TRAIN_VOLTAGE_SWING_1200:
1531		signal_levels |= DP_VOLTAGE_1_2;
1532		break;
1533	}
1534	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1535	case DP_TRAIN_PRE_EMPHASIS_0:
1536	default:
1537		signal_levels |= DP_PRE_EMPHASIS_0;
1538		break;
1539	case DP_TRAIN_PRE_EMPHASIS_3_5:
1540		signal_levels |= DP_PRE_EMPHASIS_3_5;
1541		break;
1542	case DP_TRAIN_PRE_EMPHASIS_6:
1543		signal_levels |= DP_PRE_EMPHASIS_6;
1544		break;
1545	case DP_TRAIN_PRE_EMPHASIS_9_5:
1546		signal_levels |= DP_PRE_EMPHASIS_9_5;
1547		break;
1548	}
1549	return signal_levels;
1550}
1551
1552/* Gen6's DP voltage swing and pre-emphasis control */
1553static uint32_t
1554intel_gen6_edp_signal_levels(uint8_t train_set)
1555{
1556	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1557					 DP_TRAIN_PRE_EMPHASIS_MASK);
1558	switch (signal_levels) {
1559	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1560	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1561		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1562	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1563		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1564	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1565	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1566		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1567	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1568	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1569		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1570	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1571	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1572		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1573	default:
1574		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1575			      "0x%x\n", signal_levels);
1576		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1577	}
1578}
1579
1580/* Gen7's DP voltage swing and pre-emphasis control */
1581static uint32_t
1582intel_gen7_edp_signal_levels(uint8_t train_set)
1583{
1584	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1585					 DP_TRAIN_PRE_EMPHASIS_MASK);
1586	switch (signal_levels) {
1587	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1588		return EDP_LINK_TRAIN_400MV_0DB_IVB;
1589	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1590		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1591	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1592		return EDP_LINK_TRAIN_400MV_6DB_IVB;
1593
1594	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1595		return EDP_LINK_TRAIN_600MV_0DB_IVB;
1596	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1597		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1598
1599	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1600		return EDP_LINK_TRAIN_800MV_0DB_IVB;
1601	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1602		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1603
1604	default:
1605		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1606			      "0x%x\n", signal_levels);
1607		return EDP_LINK_TRAIN_500MV_0DB_IVB;
1608	}
1609}
1610
1611static uint8_t
1612intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1613		      int lane)
1614{
 
1615	int s = (lane & 1) * 4;
1616	uint8_t l = link_status[lane>>1];
1617
1618	return (l >> s) & 0xf;
1619}
1620
1621/* Check for clock recovery is done on all channels */
1622static bool
1623intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1624{
1625	int lane;
1626	uint8_t lane_status;
1627
1628	for (lane = 0; lane < lane_count; lane++) {
1629		lane_status = intel_get_lane_status(link_status, lane);
1630		if ((lane_status & DP_LANE_CR_DONE) == 0)
1631			return false;
1632	}
1633	return true;
1634}
1635
1636/* Check to see if channel eq is done on all channels */
1637#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1638			 DP_LANE_CHANNEL_EQ_DONE|\
1639			 DP_LANE_SYMBOL_LOCKED)
1640static bool
1641intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1642{
1643	uint8_t lane_align;
1644	uint8_t lane_status;
1645	int lane;
1646
1647	lane_align = intel_dp_link_status(link_status,
1648					  DP_LANE_ALIGN_STATUS_UPDATED);
1649	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1650		return false;
1651	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1652		lane_status = intel_get_lane_status(link_status, lane);
1653		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1654			return false;
1655	}
1656	return true;
1657}
1658
1659static bool
1660intel_dp_set_link_train(struct intel_dp *intel_dp,
1661			uint32_t dp_reg_value,
1662			uint8_t dp_train_pat)
1663{
1664	struct drm_device *dev = intel_dp->base.base.dev;
1665	struct drm_i915_private *dev_priv = dev->dev_private;
1666	int ret;
1667
1668	I915_WRITE(intel_dp->output_reg, dp_reg_value);
1669	POSTING_READ(intel_dp->output_reg);
1670
1671	intel_dp_aux_native_write_1(intel_dp,
1672				    DP_TRAINING_PATTERN_SET,
1673				    dp_train_pat);
1674
1675	ret = intel_dp_aux_native_write(intel_dp,
1676					DP_TRAINING_LANE0_SET,
1677					intel_dp->train_set,
1678					intel_dp->lane_count);
1679	if (ret != intel_dp->lane_count)
1680		return false;
1681
1682	return true;
1683}
1684
1685/* Enable corresponding port and start training pattern 1 */
1686static void
1687intel_dp_start_link_train(struct intel_dp *intel_dp)
1688{
1689	struct drm_device *dev = intel_dp->base.base.dev;
1690	struct drm_i915_private *dev_priv = dev->dev_private;
1691	struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1692	int i;
1693	uint8_t voltage;
1694	bool clock_recovery = false;
1695	int voltage_tries, loop_tries;
1696	u32 reg;
1697	uint32_t DP = intel_dp->DP;
1698
1699	/*
1700	 * On CPT we have to enable the port in training pattern 1, which
1701	 * will happen below in intel_dp_set_link_train.  Otherwise, enable
1702	 * the port and wait for it to become active.
1703	 */
1704	if (!HAS_PCH_CPT(dev)) {
1705		I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1706		POSTING_READ(intel_dp->output_reg);
1707		intel_wait_for_vblank(dev, intel_crtc->pipe);
1708	}
1709
1710	/* Write the link configuration data */
1711	intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1712				  intel_dp->link_configuration,
1713				  DP_LINK_CONFIGURATION_SIZE);
1714
1715	DP |= DP_PORT_EN;
1716
1717	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1718		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1719	else
1720		DP &= ~DP_LINK_TRAIN_MASK;
1721	memset(intel_dp->train_set, 0, 4);
1722	voltage = 0xff;
1723	voltage_tries = 0;
1724	loop_tries = 0;
1725	clock_recovery = false;
1726	for (;;) {
1727		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1728		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1729		uint32_t    signal_levels;
1730
1731
1732		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1733			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1734			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1735		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1736			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1737			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1738		} else {
1739			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1740			DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1741			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1742		}
1743
1744		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1745			reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1746		else
1747			reg = DP | DP_LINK_TRAIN_PAT_1;
1748
1749		if (!intel_dp_set_link_train(intel_dp, reg,
1750					     DP_TRAINING_PATTERN_1 |
1751					     DP_LINK_SCRAMBLING_DISABLE))
1752			break;
1753		/* Set training pattern 1 */
1754
1755		udelay(100);
1756		if (!intel_dp_get_link_status(intel_dp, link_status)) {
1757			DRM_ERROR("failed to get link status\n");
1758			break;
1759		}
1760
1761		if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1762			DRM_DEBUG_KMS("clock recovery OK\n");
1763			clock_recovery = true;
1764			break;
1765		}
1766
1767		/* Check to see if we've tried the max voltage */
1768		for (i = 0; i < intel_dp->lane_count; i++)
1769			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1770				break;
1771		if (i == intel_dp->lane_count) {
1772			++loop_tries;
1773			if (loop_tries == 5) {
1774				DRM_DEBUG_KMS("too many full retries, give up\n");
1775				break;
1776			}
1777			memset(intel_dp->train_set, 0, 4);
1778			voltage_tries = 0;
1779			continue;
1780		}
1781
1782		/* Check to see if we've tried the same voltage 5 times */
1783		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1784			++voltage_tries;
1785			if (voltage_tries == 5) {
1786				DRM_DEBUG_KMS("too many voltage retries, give up\n");
1787				break;
1788			}
1789		} else
1790			voltage_tries = 0;
1791		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1792
1793		/* Compute new intel_dp->train_set as requested by target */
1794		intel_get_adjust_train(intel_dp, link_status);
1795	}
1796
1797	intel_dp->DP = DP;
1798}
1799
1800static void
1801intel_dp_complete_link_train(struct intel_dp *intel_dp)
1802{
1803	struct drm_device *dev = intel_dp->base.base.dev;
1804	struct drm_i915_private *dev_priv = dev->dev_private;
1805	bool channel_eq = false;
1806	int tries, cr_tries;
1807	u32 reg;
1808	uint32_t DP = intel_dp->DP;
1809
1810	/* channel equalization */
1811	tries = 0;
1812	cr_tries = 0;
1813	channel_eq = false;
1814	for (;;) {
1815		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1816		uint32_t    signal_levels;
1817		uint8_t	    link_status[DP_LINK_STATUS_SIZE];
1818
1819		if (cr_tries > 5) {
1820			DRM_ERROR("failed to train DP, aborting\n");
1821			intel_dp_link_down(intel_dp);
1822			break;
1823		}
1824
1825		if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1826			signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1827			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1828		} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1829			signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1830			DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1831		} else {
1832			signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1833			DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1834		}
1835
1836		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1837			reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1838		else
1839			reg = DP | DP_LINK_TRAIN_PAT_2;
1840
1841		/* channel eq pattern */
1842		if (!intel_dp_set_link_train(intel_dp, reg,
1843					     DP_TRAINING_PATTERN_2 |
1844					     DP_LINK_SCRAMBLING_DISABLE))
1845			break;
1846
1847		udelay(400);
1848		if (!intel_dp_get_link_status(intel_dp, link_status))
1849			break;
1850
1851		/* Make sure clock is still ok */
1852		if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1853			intel_dp_start_link_train(intel_dp);
1854			cr_tries++;
1855			continue;
1856		}
1857
1858		if (intel_channel_eq_ok(intel_dp, link_status)) {
1859			channel_eq = true;
1860			break;
1861		}
1862
1863		/* Try 5 times, then try clock recovery if that fails */
1864		if (tries > 5) {
1865			intel_dp_link_down(intel_dp);
1866			intel_dp_start_link_train(intel_dp);
1867			tries = 0;
1868			cr_tries++;
1869			continue;
1870		}
1871
1872		/* Compute new intel_dp->train_set as requested by target */
1873		intel_get_adjust_train(intel_dp, link_status);
1874		++tries;
1875	}
1876
1877	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1878		reg = DP | DP_LINK_TRAIN_OFF_CPT;
1879	else
1880		reg = DP | DP_LINK_TRAIN_OFF;
1881
1882	I915_WRITE(intel_dp->output_reg, reg);
1883	POSTING_READ(intel_dp->output_reg);
1884	intel_dp_aux_native_write_1(intel_dp,
1885				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1886}
1887
1888static void
1889intel_dp_link_down(struct intel_dp *intel_dp)
1890{
1891	struct drm_device *dev = intel_dp->base.base.dev;
1892	struct drm_i915_private *dev_priv = dev->dev_private;
1893	uint32_t DP = intel_dp->DP;
1894
1895	if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1896		return;
1897
1898	DRM_DEBUG_KMS("\n");
1899
1900	if (is_edp(intel_dp)) {
1901		DP &= ~DP_PLL_ENABLE;
1902		I915_WRITE(intel_dp->output_reg, DP);
1903		POSTING_READ(intel_dp->output_reg);
1904		udelay(100);
1905	}
1906
1907	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1908		DP &= ~DP_LINK_TRAIN_MASK_CPT;
1909		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1910	} else {
1911		DP &= ~DP_LINK_TRAIN_MASK;
1912		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1913	}
1914	POSTING_READ(intel_dp->output_reg);
1915
1916	msleep(17);
1917
1918	if (is_edp(intel_dp)) {
1919		if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1920			DP |= DP_LINK_TRAIN_OFF_CPT;
1921		else
1922			DP |= DP_LINK_TRAIN_OFF;
1923	}
1924
1925	if (!HAS_PCH_CPT(dev) &&
1926	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1927		struct drm_crtc *crtc = intel_dp->base.base.crtc;
1928
1929		/* Hardware workaround: leaving our transcoder select
1930		 * set to transcoder B while it's off will prevent the
1931		 * corresponding HDMI output on transcoder A.
1932		 *
1933		 * Combine this with another hardware workaround:
1934		 * transcoder select bit can only be cleared while the
1935		 * port is enabled.
1936		 */
1937		DP &= ~DP_PIPEB_SELECT;
1938		I915_WRITE(intel_dp->output_reg, DP);
1939
1940		/* Changes to enable or select take place the vblank
1941		 * after being written.
1942		 */
1943		if (crtc == NULL) {
1944			/* We can arrive here never having been attached
1945			 * to a CRTC, for instance, due to inheriting
1946			 * random state from the BIOS.
1947			 *
1948			 * If the pipe is not running, play safe and
1949			 * wait for the clocks to stabilise before
1950			 * continuing.
1951			 */
1952			POSTING_READ(intel_dp->output_reg);
1953			msleep(50);
1954		} else
1955			intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1956	}
1957
1958	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1959	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1960	POSTING_READ(intel_dp->output_reg);
1961	msleep(intel_dp->panel_power_down_delay);
1962}
1963
1964static bool
1965intel_dp_get_dpcd(struct intel_dp *intel_dp)
1966{
1967	if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1968					   sizeof(intel_dp->dpcd)) &&
1969	    (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1970		return true;
1971	}
1972
1973	return false;
1974}
1975
1976static void
1977intel_dp_probe_oui(struct intel_dp *intel_dp)
1978{
1979	u8 buf[3];
1980
1981	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1982		return;
1983
1984	ironlake_edp_panel_vdd_on(intel_dp);
1985
1986	if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1987		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1988			      buf[0], buf[1], buf[2]);
1989
1990	if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1991		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1992			      buf[0], buf[1], buf[2]);
1993
1994	ironlake_edp_panel_vdd_off(intel_dp, false);
1995}
1996
1997static bool
1998intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1999{
2000	int ret;
2001
2002	ret = intel_dp_aux_native_read_retry(intel_dp,
2003					     DP_DEVICE_SERVICE_IRQ_VECTOR,
2004					     sink_irq_vector, 1);
2005	if (!ret)
2006		return false;
2007
2008	return true;
2009}
2010
2011static void
2012intel_dp_handle_test_request(struct intel_dp *intel_dp)
2013{
2014	/* NAK by default */
2015	intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2016}
2017
2018/*
2019 * According to DP spec
2020 * 5.1.2:
2021 *  1. Read DPCD
2022 *  2. Configure link according to Receiver Capabilities
2023 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2024 *  4. Check link status on receipt of hot-plug interrupt
2025 */
2026
2027static void
2028intel_dp_check_link_status(struct intel_dp *intel_dp)
2029{
2030	u8 sink_irq_vector;
2031	u8 link_status[DP_LINK_STATUS_SIZE];
2032
2033	if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2034		return;
2035
2036	if (!intel_dp->base.base.crtc)
2037		return;
2038
2039	/* Try to read receiver status if the link appears to be up */
2040	if (!intel_dp_get_link_status(intel_dp, link_status)) {
2041		intel_dp_link_down(intel_dp);
2042		return;
2043	}
2044
2045	/* Now read the DPCD to see if it's actually running */
2046	if (!intel_dp_get_dpcd(intel_dp)) {
2047		intel_dp_link_down(intel_dp);
2048		return;
2049	}
2050
2051	/* Try to read the source of the interrupt */
2052	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2053	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2054		/* Clear interrupt source */
2055		intel_dp_aux_native_write_1(intel_dp,
2056					    DP_DEVICE_SERVICE_IRQ_VECTOR,
2057					    sink_irq_vector);
2058
2059		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2060			intel_dp_handle_test_request(intel_dp);
2061		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2062			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2063	}
2064
2065	if (!intel_channel_eq_ok(intel_dp, link_status)) {
2066		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2067			      drm_get_encoder_name(&intel_dp->base.base));
2068		intel_dp_start_link_train(intel_dp);
2069		intel_dp_complete_link_train(intel_dp);
2070	}
2071}
2072
2073static enum drm_connector_status
2074intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2075{
2076	if (intel_dp_get_dpcd(intel_dp))
2077		return connector_status_connected;
2078	return connector_status_disconnected;
2079}
2080
2081static enum drm_connector_status
2082ironlake_dp_detect(struct intel_dp *intel_dp)
2083{
2084	enum drm_connector_status status;
2085
2086	/* Can't disconnect eDP, but you can close the lid... */
2087	if (is_edp(intel_dp)) {
2088		status = intel_panel_detect(intel_dp->base.base.dev);
2089		if (status == connector_status_unknown)
2090			status = connector_status_connected;
2091		return status;
2092	}
2093
2094	return intel_dp_detect_dpcd(intel_dp);
2095}
2096
2097static enum drm_connector_status
2098g4x_dp_detect(struct intel_dp *intel_dp)
2099{
2100	struct drm_device *dev = intel_dp->base.base.dev;
2101	struct drm_i915_private *dev_priv = dev->dev_private;
2102	uint32_t temp, bit;
2103
2104	switch (intel_dp->output_reg) {
2105	case DP_B:
2106		bit = DPB_HOTPLUG_INT_STATUS;
2107		break;
2108	case DP_C:
2109		bit = DPC_HOTPLUG_INT_STATUS;
2110		break;
2111	case DP_D:
2112		bit = DPD_HOTPLUG_INT_STATUS;
2113		break;
2114	default:
2115		return connector_status_unknown;
2116	}
2117
2118	temp = I915_READ(PORT_HOTPLUG_STAT);
2119
2120	if ((temp & bit) == 0)
2121		return connector_status_disconnected;
2122
2123	return intel_dp_detect_dpcd(intel_dp);
2124}
2125
2126static struct edid *
2127intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2128{
2129	struct intel_dp *intel_dp = intel_attached_dp(connector);
2130	struct edid	*edid;
2131	int size;
2132
2133	if (is_edp(intel_dp)) {
2134		if (!intel_dp->edid)
2135			return NULL;
2136
2137		size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2138		edid = kmalloc(size, GFP_KERNEL);
2139		if (!edid)
2140			return NULL;
2141
2142		memcpy(edid, intel_dp->edid, size);
2143		return edid;
2144	}
2145
2146	edid = drm_get_edid(connector, adapter);
2147	return edid;
2148}
2149
2150static int
2151intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2152{
2153	struct intel_dp *intel_dp = intel_attached_dp(connector);
2154	int	ret;
2155
2156	if (is_edp(intel_dp)) {
2157		drm_mode_connector_update_edid_property(connector,
2158							intel_dp->edid);
2159		ret = drm_add_edid_modes(connector, intel_dp->edid);
2160		drm_edid_to_eld(connector,
2161				intel_dp->edid);
2162		connector->display_info.raw_edid = NULL;
2163		return intel_dp->edid_mode_count;
2164	}
2165
2166	ret = intel_ddc_get_modes(connector, adapter);
2167	return ret;
2168}
2169
2170
2171/**
2172 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2173 *
2174 * \return true if DP port is connected.
2175 * \return false if DP port is disconnected.
2176 */
2177static enum drm_connector_status
2178intel_dp_detect(struct drm_connector *connector, bool force)
2179{
2180	struct intel_dp *intel_dp = intel_attached_dp(connector);
2181	struct drm_device *dev = intel_dp->base.base.dev;
2182	enum drm_connector_status status;
2183	struct edid *edid = NULL;
2184
2185	intel_dp->has_audio = false;
2186
2187	if (HAS_PCH_SPLIT(dev))
2188		status = ironlake_dp_detect(intel_dp);
2189	else
2190		status = g4x_dp_detect(intel_dp);
2191
2192	DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2193		      intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2194		      intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2195		      intel_dp->dpcd[6], intel_dp->dpcd[7]);
2196
2197	if (status != connector_status_connected)
2198		return status;
2199
2200	intel_dp_probe_oui(intel_dp);
2201
2202	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2203		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2204	} else {
2205		edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2206		if (edid) {
2207			intel_dp->has_audio = drm_detect_monitor_audio(edid);
2208			connector->display_info.raw_edid = NULL;
2209			kfree(edid);
2210		}
2211	}
2212
2213	return connector_status_connected;
2214}
2215
2216static int intel_dp_get_modes(struct drm_connector *connector)
2217{
2218	struct intel_dp *intel_dp = intel_attached_dp(connector);
2219	struct drm_device *dev = intel_dp->base.base.dev;
2220	struct drm_i915_private *dev_priv = dev->dev_private;
2221	int ret;
2222
2223	/* We should parse the EDID data and find out if it has an audio sink
2224	 */
2225
2226	ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2227	if (ret) {
2228		if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2229			struct drm_display_mode *newmode;
2230			list_for_each_entry(newmode, &connector->probed_modes,
2231					    head) {
2232				if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2233					intel_dp->panel_fixed_mode =
2234						drm_mode_duplicate(dev, newmode);
2235					break;
2236				}
2237			}
2238		}
 
2239		return ret;
2240	}
2241
2242	/* if eDP has no EDID, try to use fixed panel mode from VBT */
2243	if (is_edp(intel_dp)) {
2244		/* initialize panel mode from VBT if available for eDP */
2245		if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2246			intel_dp->panel_fixed_mode =
2247				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2248			if (intel_dp->panel_fixed_mode) {
2249				intel_dp->panel_fixed_mode->type |=
2250					DRM_MODE_TYPE_PREFERRED;
2251			}
2252		}
2253		if (intel_dp->panel_fixed_mode) {
2254			struct drm_display_mode *mode;
2255			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2256			drm_mode_probed_add(connector, mode);
2257			return 1;
2258		}
2259	}
2260	return 0;
2261}
2262
2263static bool
2264intel_dp_detect_audio(struct drm_connector *connector)
2265{
2266	struct intel_dp *intel_dp = intel_attached_dp(connector);
2267	struct edid *edid;
2268	bool has_audio = false;
2269
2270	edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2271	if (edid) {
2272		has_audio = drm_detect_monitor_audio(edid);
2273
2274		connector->display_info.raw_edid = NULL;
2275		kfree(edid);
2276	}
2277
2278	return has_audio;
2279}
2280
2281static int
2282intel_dp_set_property(struct drm_connector *connector,
2283		      struct drm_property *property,
2284		      uint64_t val)
2285{
2286	struct drm_i915_private *dev_priv = connector->dev->dev_private;
2287	struct intel_dp *intel_dp = intel_attached_dp(connector);
2288	int ret;
2289
2290	ret = drm_connector_property_set_value(connector, property, val);
2291	if (ret)
2292		return ret;
2293
2294	if (property == dev_priv->force_audio_property) {
2295		int i = val;
2296		bool has_audio;
2297
2298		if (i == intel_dp->force_audio)
2299			return 0;
2300
2301		intel_dp->force_audio = i;
2302
2303		if (i == HDMI_AUDIO_AUTO)
2304			has_audio = intel_dp_detect_audio(connector);
2305		else
2306			has_audio = (i == HDMI_AUDIO_ON);
2307
2308		if (has_audio == intel_dp->has_audio)
2309			return 0;
2310
2311		intel_dp->has_audio = has_audio;
2312		goto done;
2313	}
2314
2315	if (property == dev_priv->broadcast_rgb_property) {
2316		if (val == !!intel_dp->color_range)
2317			return 0;
2318
2319		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2320		goto done;
2321	}
2322
2323	return -EINVAL;
2324
2325done:
2326	if (intel_dp->base.base.crtc) {
2327		struct drm_crtc *crtc = intel_dp->base.base.crtc;
2328		drm_crtc_helper_set_mode(crtc, &crtc->mode,
2329					 crtc->x, crtc->y,
2330					 crtc->fb);
2331	}
2332
2333	return 0;
2334}
2335
2336static void
2337intel_dp_destroy(struct drm_connector *connector)
2338{
2339	struct drm_device *dev = connector->dev;
2340
2341	if (intel_dpd_is_edp(dev))
2342		intel_panel_destroy_backlight(dev);
2343
2344	drm_sysfs_connector_remove(connector);
2345	drm_connector_cleanup(connector);
2346	kfree(connector);
2347}
2348
2349static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2350{
2351	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2352
2353	i2c_del_adapter(&intel_dp->adapter);
2354	drm_encoder_cleanup(encoder);
2355	if (is_edp(intel_dp)) {
2356		kfree(intel_dp->edid);
2357		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2358		ironlake_panel_vdd_off_sync(intel_dp);
2359	}
2360	kfree(intel_dp);
2361}
2362
2363static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2364	.dpms = intel_dp_dpms,
2365	.mode_fixup = intel_dp_mode_fixup,
2366	.prepare = intel_dp_prepare,
2367	.mode_set = intel_dp_mode_set,
2368	.commit = intel_dp_commit,
2369};
2370
2371static const struct drm_connector_funcs intel_dp_connector_funcs = {
2372	.dpms = drm_helper_connector_dpms,
2373	.detect = intel_dp_detect,
2374	.fill_modes = drm_helper_probe_single_connector_modes,
2375	.set_property = intel_dp_set_property,
2376	.destroy = intel_dp_destroy,
2377};
2378
2379static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2380	.get_modes = intel_dp_get_modes,
2381	.mode_valid = intel_dp_mode_valid,
2382	.best_encoder = intel_best_encoder,
2383};
2384
2385static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2386	.destroy = intel_dp_encoder_destroy,
2387};
2388
2389static void
2390intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2391{
2392	struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2393
2394	intel_dp_check_link_status(intel_dp);
2395}
2396
2397/* Return which DP Port should be selected for Transcoder DP control */
2398int
2399intel_trans_dp_port_sel(struct drm_crtc *crtc)
2400{
2401	struct drm_device *dev = crtc->dev;
2402	struct drm_mode_config *mode_config = &dev->mode_config;
2403	struct drm_encoder *encoder;
2404
2405	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2406		struct intel_dp *intel_dp;
2407
2408		if (encoder->crtc != crtc)
2409			continue;
2410
2411		intel_dp = enc_to_intel_dp(encoder);
2412		if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2413		    intel_dp->base.type == INTEL_OUTPUT_EDP)
2414			return intel_dp->output_reg;
2415	}
2416
2417	return -1;
2418}
2419
2420/* check the VBT to see whether the eDP is on DP-D port */
2421bool intel_dpd_is_edp(struct drm_device *dev)
2422{
2423	struct drm_i915_private *dev_priv = dev->dev_private;
2424	struct child_device_config *p_child;
2425	int i;
2426
2427	if (!dev_priv->child_dev_num)
2428		return false;
2429
2430	for (i = 0; i < dev_priv->child_dev_num; i++) {
2431		p_child = dev_priv->child_dev + i;
2432
2433		if (p_child->dvo_port == PORT_IDPD &&
2434		    p_child->device_type == DEVICE_TYPE_eDP)
2435			return true;
2436	}
2437	return false;
2438}
2439
2440static void
2441intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2442{
2443	intel_attach_force_audio_property(connector);
2444	intel_attach_broadcast_rgb_property(connector);
2445}
2446
2447void
2448intel_dp_init(struct drm_device *dev, int output_reg)
2449{
2450	struct drm_i915_private *dev_priv = dev->dev_private;
2451	struct drm_connector *connector;
2452	struct intel_dp *intel_dp;
2453	struct intel_encoder *intel_encoder;
2454	struct intel_connector *intel_connector;
2455	const char *name = NULL;
2456	int type;
2457
2458	intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2459	if (!intel_dp)
2460		return;
2461
2462	intel_dp->output_reg = output_reg;
2463	intel_dp->dpms_mode = -1;
2464
2465	intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2466	if (!intel_connector) {
2467		kfree(intel_dp);
2468		return;
2469	}
2470	intel_encoder = &intel_dp->base;
2471
2472	if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2473		if (intel_dpd_is_edp(dev))
2474			intel_dp->is_pch_edp = true;
2475
2476	if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2477		type = DRM_MODE_CONNECTOR_eDP;
2478		intel_encoder->type = INTEL_OUTPUT_EDP;
2479	} else {
2480		type = DRM_MODE_CONNECTOR_DisplayPort;
2481		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2482	}
2483
2484	connector = &intel_connector->base;
2485	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2486	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2487
2488	connector->polled = DRM_CONNECTOR_POLL_HPD;
2489
2490	if (output_reg == DP_B || output_reg == PCH_DP_B)
2491		intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2492	else if (output_reg == DP_C || output_reg == PCH_DP_C)
2493		intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2494	else if (output_reg == DP_D || output_reg == PCH_DP_D)
2495		intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2496
2497	if (is_edp(intel_dp)) {
2498		intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2499		INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2500				  ironlake_panel_vdd_work);
2501	}
2502
2503	intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2504
 
2505	connector->interlace_allowed = true;
2506	connector->doublescan_allowed = 0;
2507
2508	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2509			 DRM_MODE_ENCODER_TMDS);
2510	drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2511
2512	intel_connector_attach_encoder(intel_connector, intel_encoder);
2513	drm_sysfs_connector_add(connector);
2514
2515	/* Set up the DDC bus. */
2516	switch (output_reg) {
2517		case DP_A:
2518			name = "DPDDC-A";
2519			break;
2520		case DP_B:
2521		case PCH_DP_B:
2522			dev_priv->hotplug_supported_mask |=
2523				HDMIB_HOTPLUG_INT_STATUS;
2524			name = "DPDDC-B";
2525			break;
2526		case DP_C:
2527		case PCH_DP_C:
2528			dev_priv->hotplug_supported_mask |=
2529				HDMIC_HOTPLUG_INT_STATUS;
2530			name = "DPDDC-C";
2531			break;
2532		case DP_D:
2533		case PCH_DP_D:
2534			dev_priv->hotplug_supported_mask |=
2535				HDMID_HOTPLUG_INT_STATUS;
2536			name = "DPDDC-D";
2537			break;
2538	}
2539
2540	intel_dp_i2c_init(intel_dp, intel_connector, name);
2541
2542	/* Cache some DPCD data in the eDP case */
2543	if (is_edp(intel_dp)) {
2544		bool ret;
2545		struct edp_power_seq	cur, vbt;
2546		u32 pp_on, pp_off, pp_div;
2547		struct edid *edid;
2548
2549		pp_on = I915_READ(PCH_PP_ON_DELAYS);
2550		pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2551		pp_div = I915_READ(PCH_PP_DIVISOR);
2552
2553		if (!pp_on || !pp_off || !pp_div) {
2554			DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2555			intel_dp_encoder_destroy(&intel_dp->base.base);
2556			intel_dp_destroy(&intel_connector->base);
2557			return;
2558		}
2559
2560		/* Pull timing values out of registers */
2561		cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2562			PANEL_POWER_UP_DELAY_SHIFT;
2563
2564		cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2565			PANEL_LIGHT_ON_DELAY_SHIFT;
2566
2567		cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2568			PANEL_LIGHT_OFF_DELAY_SHIFT;
2569
2570		cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2571			PANEL_POWER_DOWN_DELAY_SHIFT;
2572
2573		cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2574			       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2575
2576		DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2577			      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2578
2579		vbt = dev_priv->edp.pps;
2580
2581		DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2582			      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2583
2584#define get_delay(field)	((max(cur.field, vbt.field) + 9) / 10)
2585
2586		intel_dp->panel_power_up_delay = get_delay(t1_t3);
2587		intel_dp->backlight_on_delay = get_delay(t8);
2588		intel_dp->backlight_off_delay = get_delay(t9);
2589		intel_dp->panel_power_down_delay = get_delay(t10);
2590		intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2591
2592		DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2593			      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2594			      intel_dp->panel_power_cycle_delay);
2595
2596		DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2597			      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2598
2599		ironlake_edp_panel_vdd_on(intel_dp);
2600		ret = intel_dp_get_dpcd(intel_dp);
2601		ironlake_edp_panel_vdd_off(intel_dp, false);
2602
2603		if (ret) {
2604			if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2605				dev_priv->no_aux_handshake =
2606					intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2607					DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2608		} else {
2609			/* if this fails, presume the device is a ghost */
2610			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2611			intel_dp_encoder_destroy(&intel_dp->base.base);
2612			intel_dp_destroy(&intel_connector->base);
2613			return;
2614		}
2615
2616		ironlake_edp_panel_vdd_on(intel_dp);
2617		edid = drm_get_edid(connector, &intel_dp->adapter);
2618		if (edid) {
2619			drm_mode_connector_update_edid_property(connector,
2620								edid);
2621			intel_dp->edid_mode_count =
2622				drm_add_edid_modes(connector, edid);
2623			drm_edid_to_eld(connector, edid);
2624			intel_dp->edid = edid;
2625		}
2626		ironlake_edp_panel_vdd_off(intel_dp, false);
2627	}
2628
2629	intel_encoder->hot_plug = intel_dp_hot_plug;
2630
2631	if (is_edp(intel_dp)) {
 
 
 
 
 
 
 
 
 
2632		dev_priv->int_edp_connector = connector;
2633		intel_panel_setup_backlight(dev);
2634	}
2635
2636	intel_dp_add_properties(intel_dp, connector);
2637
2638	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2639	 * 0xd.  Failure to do so will result in spurious interrupts being
2640	 * generated on the port when a cable is not attached.
2641	 */
2642	if (IS_G4X(dev) && !IS_GM45(dev)) {
2643		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2644		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2645	}
2646}