Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * x86 instruction analysis
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
 19 */
 20
 
 21#include <linux/string.h>
 
 
 
 22#include <asm/inat.h>
 23#include <asm/insn.h>
 24
 25#define get_next(t, insn)	\
 26	({t r; r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
 
 
 
 
 27
 28#define peek_next(t, insn)	\
 29	({t r; r = *(t*)insn->next_byte; r; })
 
 
 
 30
 31#define peek_nbyte_next(t, insn, n)	\
 32	({t r; r = *(t*)((insn)->next_byte + n); r; })
 
 
 33
 34/**
 35 * insn_init() - initialize struct insn
 36 * @insn:	&struct insn to be initialized
 37 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 38 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 39 */
 40void insn_init(struct insn *insn, const void *kaddr, int x86_64)
 41{
 
 
 
 
 
 
 
 42	memset(insn, 0, sizeof(*insn));
 43	insn->kaddr = kaddr;
 
 44	insn->next_byte = kaddr;
 45	insn->x86_64 = x86_64 ? 1 : 0;
 46	insn->opnd_bytes = 4;
 47	if (x86_64)
 48		insn->addr_bytes = 8;
 49	else
 50		insn->addr_bytes = 4;
 51}
 52
 53/**
 54 * insn_get_prefixes - scan x86 instruction prefix bytes
 55 * @insn:	&struct insn containing instruction
 56 *
 57 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
 58 * to point to the (first) opcode.  No effect if @insn->prefixes.got
 59 * is already set.
 60 */
 61void insn_get_prefixes(struct insn *insn)
 62{
 63	struct insn_field *prefixes = &insn->prefixes;
 64	insn_attr_t attr;
 65	insn_byte_t b, lb;
 66	int i, nb;
 67
 68	if (prefixes->got)
 69		return;
 70
 71	nb = 0;
 72	lb = 0;
 73	b = peek_next(insn_byte_t, insn);
 74	attr = inat_get_opcode_attribute(b);
 75	while (inat_is_legacy_prefix(attr)) {
 76		/* Skip if same prefix */
 77		for (i = 0; i < nb; i++)
 78			if (prefixes->bytes[i] == b)
 79				goto found;
 80		if (nb == 4)
 81			/* Invalid instruction */
 82			break;
 83		prefixes->bytes[nb++] = b;
 84		if (inat_is_address_size_prefix(attr)) {
 85			/* address size switches 2/4 or 4/8 */
 86			if (insn->x86_64)
 87				insn->addr_bytes ^= 12;
 88			else
 89				insn->addr_bytes ^= 6;
 90		} else if (inat_is_operand_size_prefix(attr)) {
 91			/* oprand size switches 2/4 */
 92			insn->opnd_bytes ^= 6;
 93		}
 94found:
 95		prefixes->nbytes++;
 96		insn->next_byte++;
 97		lb = b;
 98		b = peek_next(insn_byte_t, insn);
 99		attr = inat_get_opcode_attribute(b);
100	}
101	/* Set the last prefix */
102	if (lb && lb != insn->prefixes.bytes[3]) {
103		if (unlikely(insn->prefixes.bytes[3])) {
104			/* Swap the last prefix */
105			b = insn->prefixes.bytes[3];
106			for (i = 0; i < nb; i++)
107				if (prefixes->bytes[i] == lb)
108					prefixes->bytes[i] = b;
109		}
110		insn->prefixes.bytes[3] = lb;
111	}
112
113	/* Decode REX prefix */
114	if (insn->x86_64) {
115		b = peek_next(insn_byte_t, insn);
116		attr = inat_get_opcode_attribute(b);
117		if (inat_is_rex_prefix(attr)) {
118			insn->rex_prefix.value = b;
119			insn->rex_prefix.nbytes = 1;
120			insn->next_byte++;
121			if (X86_REX_W(b))
122				/* REX.W overrides opnd_size */
123				insn->opnd_bytes = 8;
124		}
125	}
126	insn->rex_prefix.got = 1;
127
128	/* Decode VEX prefix */
129	b = peek_next(insn_byte_t, insn);
130	attr = inat_get_opcode_attribute(b);
131	if (inat_is_vex_prefix(attr)) {
132		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
133		if (!insn->x86_64) {
134			/*
135			 * In 32-bits mode, if the [7:6] bits (mod bits of
136			 * ModRM) on the second byte are not 11b, it is
137			 * LDS or LES.
138			 */
139			if (X86_MODRM_MOD(b2) != 3)
140				goto vex_end;
141		}
142		insn->vex_prefix.bytes[0] = b;
143		insn->vex_prefix.bytes[1] = b2;
144		if (inat_is_vex3_prefix(attr)) {
 
 
 
 
 
 
 
 
 
 
145			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
146			insn->vex_prefix.bytes[2] = b2;
147			insn->vex_prefix.nbytes = 3;
148			insn->next_byte += 3;
149			if (insn->x86_64 && X86_VEX_W(b2))
150				/* VEX.W overrides opnd_size */
151				insn->opnd_bytes = 8;
152		} else {
 
 
 
 
 
 
153			insn->vex_prefix.nbytes = 2;
154			insn->next_byte += 2;
155		}
156	}
157vex_end:
158	insn->vex_prefix.got = 1;
159
160	prefixes->got = 1;
 
 
161	return;
162}
163
164/**
165 * insn_get_opcode - collect opcode(s)
166 * @insn:	&struct insn containing instruction
167 *
168 * Populates @insn->opcode, updates @insn->next_byte to point past the
169 * opcode byte(s), and set @insn->attr (except for groups).
170 * If necessary, first collects any preceding (prefix) bytes.
171 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
172 * is already 1.
173 */
174void insn_get_opcode(struct insn *insn)
175{
176	struct insn_field *opcode = &insn->opcode;
177	insn_byte_t op, pfx;
 
178	if (opcode->got)
179		return;
180	if (!insn->prefixes.got)
181		insn_get_prefixes(insn);
182
183	/* Get first opcode */
184	op = get_next(insn_byte_t, insn);
185	opcode->bytes[0] = op;
186	opcode->nbytes = 1;
187
188	/* Check if there is VEX prefix or not */
189	if (insn_is_avx(insn)) {
190		insn_byte_t m, p;
191		m = insn_vex_m_bits(insn);
192		p = insn_vex_p_bits(insn);
193		insn->attr = inat_get_avx_attribute(op, m, p);
194		if (!inat_accept_vex(insn->attr))
 
 
195			insn->attr = 0;	/* This instruction is bad */
196		goto end;	/* VEX has only 1 byte for opcode */
197	}
198
199	insn->attr = inat_get_opcode_attribute(op);
200	while (inat_is_escape(insn->attr)) {
201		/* Get escaped opcode */
202		op = get_next(insn_byte_t, insn);
203		opcode->bytes[opcode->nbytes++] = op;
204		pfx = insn_last_prefix(insn);
205		insn->attr = inat_get_escape_attribute(op, pfx, insn->attr);
206	}
207	if (inat_must_vex(insn->attr))
208		insn->attr = 0;	/* This instruction is bad */
209end:
210	opcode->got = 1;
 
 
 
211}
212
213/**
214 * insn_get_modrm - collect ModRM byte, if any
215 * @insn:	&struct insn containing instruction
216 *
217 * Populates @insn->modrm and updates @insn->next_byte to point past the
218 * ModRM byte, if any.  If necessary, first collects the preceding bytes
219 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
220 */
221void insn_get_modrm(struct insn *insn)
222{
223	struct insn_field *modrm = &insn->modrm;
224	insn_byte_t pfx, mod;
225	if (modrm->got)
226		return;
227	if (!insn->opcode.got)
228		insn_get_opcode(insn);
229
230	if (inat_has_modrm(insn->attr)) {
231		mod = get_next(insn_byte_t, insn);
232		modrm->value = mod;
233		modrm->nbytes = 1;
234		if (inat_is_group(insn->attr)) {
235			pfx = insn_last_prefix(insn);
236			insn->attr = inat_get_group_attribute(mod, pfx,
237							      insn->attr);
 
 
238		}
239	}
240
241	if (insn->x86_64 && inat_is_force64(insn->attr))
242		insn->opnd_bytes = 8;
243	modrm->got = 1;
 
 
 
244}
245
246
247/**
248 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
249 * @insn:	&struct insn containing instruction
250 *
251 * If necessary, first collects the instruction up to and including the
252 * ModRM byte.  No effect if @insn->x86_64 is 0.
253 */
254int insn_rip_relative(struct insn *insn)
255{
256	struct insn_field *modrm = &insn->modrm;
257
258	if (!insn->x86_64)
259		return 0;
260	if (!modrm->got)
261		insn_get_modrm(insn);
262	/*
263	 * For rip-relative instructions, the mod field (top 2 bits)
264	 * is zero and the r/m field (bottom 3 bits) is 0x5.
265	 */
266	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
267}
268
269/**
270 * insn_get_sib() - Get the SIB byte of instruction
271 * @insn:	&struct insn containing instruction
272 *
273 * If necessary, first collects the instruction up to and including the
274 * ModRM byte.
275 */
276void insn_get_sib(struct insn *insn)
277{
278	insn_byte_t modrm;
279
280	if (insn->sib.got)
281		return;
282	if (!insn->modrm.got)
283		insn_get_modrm(insn);
284	if (insn->modrm.nbytes) {
285		modrm = (insn_byte_t)insn->modrm.value;
286		if (insn->addr_bytes != 2 &&
287		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
288			insn->sib.value = get_next(insn_byte_t, insn);
289			insn->sib.nbytes = 1;
290		}
291	}
292	insn->sib.got = 1;
 
 
 
293}
294
295
296/**
297 * insn_get_displacement() - Get the displacement of instruction
298 * @insn:	&struct insn containing instruction
299 *
300 * If necessary, first collects the instruction up to and including the
301 * SIB byte.
302 * Displacement value is sign-expanded.
303 */
304void insn_get_displacement(struct insn *insn)
305{
306	insn_byte_t mod, rm, base;
307
308	if (insn->displacement.got)
309		return;
310	if (!insn->sib.got)
311		insn_get_sib(insn);
312	if (insn->modrm.nbytes) {
313		/*
314		 * Interpreting the modrm byte:
315		 * mod = 00 - no displacement fields (exceptions below)
316		 * mod = 01 - 1-byte displacement field
317		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
318		 * 	address size = 2 (0x67 prefix in 32-bit mode)
319		 * mod = 11 - no memory operand
320		 *
321		 * If address size = 2...
322		 * mod = 00, r/m = 110 - displacement field is 2 bytes
323		 *
324		 * If address size != 2...
325		 * mod != 11, r/m = 100 - SIB byte exists
326		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
327		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
328		 * 	field is 4 bytes
329		 */
330		mod = X86_MODRM_MOD(insn->modrm.value);
331		rm = X86_MODRM_RM(insn->modrm.value);
332		base = X86_SIB_BASE(insn->sib.value);
333		if (mod == 3)
334			goto out;
335		if (mod == 1) {
336			insn->displacement.value = get_next(char, insn);
337			insn->displacement.nbytes = 1;
338		} else if (insn->addr_bytes == 2) {
339			if ((mod == 0 && rm == 6) || mod == 2) {
340				insn->displacement.value =
341					 get_next(short, insn);
342				insn->displacement.nbytes = 2;
343			}
344		} else {
345			if ((mod == 0 && rm == 5) || mod == 2 ||
346			    (mod == 0 && base == 5)) {
347				insn->displacement.value = get_next(int, insn);
348				insn->displacement.nbytes = 4;
349			}
350		}
351	}
352out:
353	insn->displacement.got = 1;
 
 
 
354}
355
356/* Decode moffset16/32/64 */
357static void __get_moffset(struct insn *insn)
358{
359	switch (insn->addr_bytes) {
360	case 2:
361		insn->moffset1.value = get_next(short, insn);
362		insn->moffset1.nbytes = 2;
363		break;
364	case 4:
365		insn->moffset1.value = get_next(int, insn);
366		insn->moffset1.nbytes = 4;
367		break;
368	case 8:
369		insn->moffset1.value = get_next(int, insn);
370		insn->moffset1.nbytes = 4;
371		insn->moffset2.value = get_next(int, insn);
372		insn->moffset2.nbytes = 4;
373		break;
 
 
374	}
375	insn->moffset1.got = insn->moffset2.got = 1;
 
 
 
 
 
376}
377
378/* Decode imm v32(Iz) */
379static void __get_immv32(struct insn *insn)
380{
381	switch (insn->opnd_bytes) {
382	case 2:
383		insn->immediate.value = get_next(short, insn);
384		insn->immediate.nbytes = 2;
385		break;
386	case 4:
387	case 8:
388		insn->immediate.value = get_next(int, insn);
389		insn->immediate.nbytes = 4;
390		break;
 
 
391	}
 
 
 
 
 
392}
393
394/* Decode imm v64(Iv/Ov) */
395static void __get_immv(struct insn *insn)
396{
397	switch (insn->opnd_bytes) {
398	case 2:
399		insn->immediate1.value = get_next(short, insn);
400		insn->immediate1.nbytes = 2;
401		break;
402	case 4:
403		insn->immediate1.value = get_next(int, insn);
404		insn->immediate1.nbytes = 4;
405		break;
406	case 8:
407		insn->immediate1.value = get_next(int, insn);
408		insn->immediate1.nbytes = 4;
409		insn->immediate2.value = get_next(int, insn);
410		insn->immediate2.nbytes = 4;
411		break;
 
 
412	}
413	insn->immediate1.got = insn->immediate2.got = 1;
 
 
 
 
414}
415
416/* Decode ptr16:16/32(Ap) */
417static void __get_immptr(struct insn *insn)
418{
419	switch (insn->opnd_bytes) {
420	case 2:
421		insn->immediate1.value = get_next(short, insn);
422		insn->immediate1.nbytes = 2;
423		break;
424	case 4:
425		insn->immediate1.value = get_next(int, insn);
426		insn->immediate1.nbytes = 4;
427		break;
428	case 8:
429		/* ptr16:64 is not exist (no segment) */
430		return;
 
 
431	}
432	insn->immediate2.value = get_next(unsigned short, insn);
433	insn->immediate2.nbytes = 2;
434	insn->immediate1.got = insn->immediate2.got = 1;
 
 
 
 
435}
436
437/**
438 * insn_get_immediate() - Get the immediates of instruction
439 * @insn:	&struct insn containing instruction
440 *
441 * If necessary, first collects the instruction up to and including the
442 * displacement bytes.
443 * Basically, most of immediates are sign-expanded. Unsigned-value can be
444 * get by bit masking with ((1 << (nbytes * 8)) - 1)
445 */
446void insn_get_immediate(struct insn *insn)
447{
448	if (insn->immediate.got)
449		return;
450	if (!insn->displacement.got)
451		insn_get_displacement(insn);
452
453	if (inat_has_moffset(insn->attr)) {
454		__get_moffset(insn);
 
455		goto done;
456	}
457
458	if (!inat_has_immediate(insn->attr))
459		/* no immediates */
460		goto done;
461
462	switch (inat_immediate_size(insn->attr)) {
463	case INAT_IMM_BYTE:
464		insn->immediate.value = get_next(char, insn);
465		insn->immediate.nbytes = 1;
466		break;
467	case INAT_IMM_WORD:
468		insn->immediate.value = get_next(short, insn);
469		insn->immediate.nbytes = 2;
470		break;
471	case INAT_IMM_DWORD:
472		insn->immediate.value = get_next(int, insn);
473		insn->immediate.nbytes = 4;
474		break;
475	case INAT_IMM_QWORD:
476		insn->immediate1.value = get_next(int, insn);
477		insn->immediate1.nbytes = 4;
478		insn->immediate2.value = get_next(int, insn);
479		insn->immediate2.nbytes = 4;
480		break;
481	case INAT_IMM_PTR:
482		__get_immptr(insn);
 
483		break;
484	case INAT_IMM_VWORD32:
485		__get_immv32(insn);
 
486		break;
487	case INAT_IMM_VWORD:
488		__get_immv(insn);
 
489		break;
490	default:
491		break;
 
492	}
493	if (inat_has_second_immediate(insn->attr)) {
494		insn->immediate2.value = get_next(char, insn);
495		insn->immediate2.nbytes = 1;
496	}
497done:
498	insn->immediate.got = 1;
 
 
 
499}
500
501/**
502 * insn_get_length() - Get the length of instruction
503 * @insn:	&struct insn containing instruction
504 *
505 * If necessary, first collects the instruction up to and including the
506 * immediates bytes.
507 */
508void insn_get_length(struct insn *insn)
509{
510	if (insn->length)
511		return;
512	if (!insn->immediate.got)
513		insn_get_immediate(insn);
514	insn->length = (unsigned char)((unsigned long)insn->next_byte
515				     - (unsigned long)insn->kaddr);
516}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * x86 instruction analysis
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright (C) IBM Corporation, 2002, 2004, 2009
  6 */
  7
  8#ifdef __KERNEL__
  9#include <linux/string.h>
 10#else
 11#include <string.h>
 12#endif
 13#include <asm/inat.h>
 14#include <asm/insn.h>
 15
 16/* Verify next sizeof(t) bytes can be on the same instruction */
 17#define validate_next(t, insn, n)	\
 18	((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
 19
 20#define __get_next(t, insn)	\
 21	({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
 22
 23#define __peek_nbyte_next(t, insn, n)	\
 24	({ t r = *(t*)((insn)->next_byte + n); r; })
 25
 26#define get_next(t, insn)	\
 27	({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
 28
 29#define peek_nbyte_next(t, insn, n)	\
 30	({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
 31
 32#define peek_next(t, insn)	peek_nbyte_next(t, insn, 0)
 33
 34/**
 35 * insn_init() - initialize struct insn
 36 * @insn:	&struct insn to be initialized
 37 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 38 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 39 */
 40void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
 41{
 42	/*
 43	 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
 44	 * even if the input buffer is long enough to hold them.
 45	 */
 46	if (buf_len > MAX_INSN_SIZE)
 47		buf_len = MAX_INSN_SIZE;
 48
 49	memset(insn, 0, sizeof(*insn));
 50	insn->kaddr = kaddr;
 51	insn->end_kaddr = kaddr + buf_len;
 52	insn->next_byte = kaddr;
 53	insn->x86_64 = x86_64 ? 1 : 0;
 54	insn->opnd_bytes = 4;
 55	if (x86_64)
 56		insn->addr_bytes = 8;
 57	else
 58		insn->addr_bytes = 4;
 59}
 60
 61/**
 62 * insn_get_prefixes - scan x86 instruction prefix bytes
 63 * @insn:	&struct insn containing instruction
 64 *
 65 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
 66 * to point to the (first) opcode.  No effect if @insn->prefixes.got
 67 * is already set.
 68 */
 69void insn_get_prefixes(struct insn *insn)
 70{
 71	struct insn_field *prefixes = &insn->prefixes;
 72	insn_attr_t attr;
 73	insn_byte_t b, lb;
 74	int i, nb;
 75
 76	if (prefixes->got)
 77		return;
 78
 79	nb = 0;
 80	lb = 0;
 81	b = peek_next(insn_byte_t, insn);
 82	attr = inat_get_opcode_attribute(b);
 83	while (inat_is_legacy_prefix(attr)) {
 84		/* Skip if same prefix */
 85		for (i = 0; i < nb; i++)
 86			if (prefixes->bytes[i] == b)
 87				goto found;
 88		if (nb == 4)
 89			/* Invalid instruction */
 90			break;
 91		prefixes->bytes[nb++] = b;
 92		if (inat_is_address_size_prefix(attr)) {
 93			/* address size switches 2/4 or 4/8 */
 94			if (insn->x86_64)
 95				insn->addr_bytes ^= 12;
 96			else
 97				insn->addr_bytes ^= 6;
 98		} else if (inat_is_operand_size_prefix(attr)) {
 99			/* oprand size switches 2/4 */
100			insn->opnd_bytes ^= 6;
101		}
102found:
103		prefixes->nbytes++;
104		insn->next_byte++;
105		lb = b;
106		b = peek_next(insn_byte_t, insn);
107		attr = inat_get_opcode_attribute(b);
108	}
109	/* Set the last prefix */
110	if (lb && lb != insn->prefixes.bytes[3]) {
111		if (unlikely(insn->prefixes.bytes[3])) {
112			/* Swap the last prefix */
113			b = insn->prefixes.bytes[3];
114			for (i = 0; i < nb; i++)
115				if (prefixes->bytes[i] == lb)
116					prefixes->bytes[i] = b;
117		}
118		insn->prefixes.bytes[3] = lb;
119	}
120
121	/* Decode REX prefix */
122	if (insn->x86_64) {
123		b = peek_next(insn_byte_t, insn);
124		attr = inat_get_opcode_attribute(b);
125		if (inat_is_rex_prefix(attr)) {
126			insn->rex_prefix.value = b;
127			insn->rex_prefix.nbytes = 1;
128			insn->next_byte++;
129			if (X86_REX_W(b))
130				/* REX.W overrides opnd_size */
131				insn->opnd_bytes = 8;
132		}
133	}
134	insn->rex_prefix.got = 1;
135
136	/* Decode VEX prefix */
137	b = peek_next(insn_byte_t, insn);
138	attr = inat_get_opcode_attribute(b);
139	if (inat_is_vex_prefix(attr)) {
140		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
141		if (!insn->x86_64) {
142			/*
143			 * In 32-bits mode, if the [7:6] bits (mod bits of
144			 * ModRM) on the second byte are not 11b, it is
145			 * LDS or LES or BOUND.
146			 */
147			if (X86_MODRM_MOD(b2) != 3)
148				goto vex_end;
149		}
150		insn->vex_prefix.bytes[0] = b;
151		insn->vex_prefix.bytes[1] = b2;
152		if (inat_is_evex_prefix(attr)) {
153			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
154			insn->vex_prefix.bytes[2] = b2;
155			b2 = peek_nbyte_next(insn_byte_t, insn, 3);
156			insn->vex_prefix.bytes[3] = b2;
157			insn->vex_prefix.nbytes = 4;
158			insn->next_byte += 4;
159			if (insn->x86_64 && X86_VEX_W(b2))
160				/* VEX.W overrides opnd_size */
161				insn->opnd_bytes = 8;
162		} else if (inat_is_vex3_prefix(attr)) {
163			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
164			insn->vex_prefix.bytes[2] = b2;
165			insn->vex_prefix.nbytes = 3;
166			insn->next_byte += 3;
167			if (insn->x86_64 && X86_VEX_W(b2))
168				/* VEX.W overrides opnd_size */
169				insn->opnd_bytes = 8;
170		} else {
171			/*
172			 * For VEX2, fake VEX3-like byte#2.
173			 * Makes it easier to decode vex.W, vex.vvvv,
174			 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
175			 */
176			insn->vex_prefix.bytes[2] = b2 & 0x7f;
177			insn->vex_prefix.nbytes = 2;
178			insn->next_byte += 2;
179		}
180	}
181vex_end:
182	insn->vex_prefix.got = 1;
183
184	prefixes->got = 1;
185
186err_out:
187	return;
188}
189
190/**
191 * insn_get_opcode - collect opcode(s)
192 * @insn:	&struct insn containing instruction
193 *
194 * Populates @insn->opcode, updates @insn->next_byte to point past the
195 * opcode byte(s), and set @insn->attr (except for groups).
196 * If necessary, first collects any preceding (prefix) bytes.
197 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
198 * is already 1.
199 */
200void insn_get_opcode(struct insn *insn)
201{
202	struct insn_field *opcode = &insn->opcode;
203	insn_byte_t op;
204	int pfx_id;
205	if (opcode->got)
206		return;
207	if (!insn->prefixes.got)
208		insn_get_prefixes(insn);
209
210	/* Get first opcode */
211	op = get_next(insn_byte_t, insn);
212	opcode->bytes[0] = op;
213	opcode->nbytes = 1;
214
215	/* Check if there is VEX prefix or not */
216	if (insn_is_avx(insn)) {
217		insn_byte_t m, p;
218		m = insn_vex_m_bits(insn);
219		p = insn_vex_p_bits(insn);
220		insn->attr = inat_get_avx_attribute(op, m, p);
221		if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
222		    (!inat_accept_vex(insn->attr) &&
223		     !inat_is_group(insn->attr)))
224			insn->attr = 0;	/* This instruction is bad */
225		goto end;	/* VEX has only 1 byte for opcode */
226	}
227
228	insn->attr = inat_get_opcode_attribute(op);
229	while (inat_is_escape(insn->attr)) {
230		/* Get escaped opcode */
231		op = get_next(insn_byte_t, insn);
232		opcode->bytes[opcode->nbytes++] = op;
233		pfx_id = insn_last_prefix_id(insn);
234		insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
235	}
236	if (inat_must_vex(insn->attr))
237		insn->attr = 0;	/* This instruction is bad */
238end:
239	opcode->got = 1;
240
241err_out:
242	return;
243}
244
245/**
246 * insn_get_modrm - collect ModRM byte, if any
247 * @insn:	&struct insn containing instruction
248 *
249 * Populates @insn->modrm and updates @insn->next_byte to point past the
250 * ModRM byte, if any.  If necessary, first collects the preceding bytes
251 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
252 */
253void insn_get_modrm(struct insn *insn)
254{
255	struct insn_field *modrm = &insn->modrm;
256	insn_byte_t pfx_id, mod;
257	if (modrm->got)
258		return;
259	if (!insn->opcode.got)
260		insn_get_opcode(insn);
261
262	if (inat_has_modrm(insn->attr)) {
263		mod = get_next(insn_byte_t, insn);
264		modrm->value = mod;
265		modrm->nbytes = 1;
266		if (inat_is_group(insn->attr)) {
267			pfx_id = insn_last_prefix_id(insn);
268			insn->attr = inat_get_group_attribute(mod, pfx_id,
269							      insn->attr);
270			if (insn_is_avx(insn) && !inat_accept_vex(insn->attr))
271				insn->attr = 0;	/* This is bad */
272		}
273	}
274
275	if (insn->x86_64 && inat_is_force64(insn->attr))
276		insn->opnd_bytes = 8;
277	modrm->got = 1;
278
279err_out:
280	return;
281}
282
283
284/**
285 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
286 * @insn:	&struct insn containing instruction
287 *
288 * If necessary, first collects the instruction up to and including the
289 * ModRM byte.  No effect if @insn->x86_64 is 0.
290 */
291int insn_rip_relative(struct insn *insn)
292{
293	struct insn_field *modrm = &insn->modrm;
294
295	if (!insn->x86_64)
296		return 0;
297	if (!modrm->got)
298		insn_get_modrm(insn);
299	/*
300	 * For rip-relative instructions, the mod field (top 2 bits)
301	 * is zero and the r/m field (bottom 3 bits) is 0x5.
302	 */
303	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
304}
305
306/**
307 * insn_get_sib() - Get the SIB byte of instruction
308 * @insn:	&struct insn containing instruction
309 *
310 * If necessary, first collects the instruction up to and including the
311 * ModRM byte.
312 */
313void insn_get_sib(struct insn *insn)
314{
315	insn_byte_t modrm;
316
317	if (insn->sib.got)
318		return;
319	if (!insn->modrm.got)
320		insn_get_modrm(insn);
321	if (insn->modrm.nbytes) {
322		modrm = (insn_byte_t)insn->modrm.value;
323		if (insn->addr_bytes != 2 &&
324		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
325			insn->sib.value = get_next(insn_byte_t, insn);
326			insn->sib.nbytes = 1;
327		}
328	}
329	insn->sib.got = 1;
330
331err_out:
332	return;
333}
334
335
336/**
337 * insn_get_displacement() - Get the displacement of instruction
338 * @insn:	&struct insn containing instruction
339 *
340 * If necessary, first collects the instruction up to and including the
341 * SIB byte.
342 * Displacement value is sign-expanded.
343 */
344void insn_get_displacement(struct insn *insn)
345{
346	insn_byte_t mod, rm, base;
347
348	if (insn->displacement.got)
349		return;
350	if (!insn->sib.got)
351		insn_get_sib(insn);
352	if (insn->modrm.nbytes) {
353		/*
354		 * Interpreting the modrm byte:
355		 * mod = 00 - no displacement fields (exceptions below)
356		 * mod = 01 - 1-byte displacement field
357		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
358		 * 	address size = 2 (0x67 prefix in 32-bit mode)
359		 * mod = 11 - no memory operand
360		 *
361		 * If address size = 2...
362		 * mod = 00, r/m = 110 - displacement field is 2 bytes
363		 *
364		 * If address size != 2...
365		 * mod != 11, r/m = 100 - SIB byte exists
366		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
367		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
368		 * 	field is 4 bytes
369		 */
370		mod = X86_MODRM_MOD(insn->modrm.value);
371		rm = X86_MODRM_RM(insn->modrm.value);
372		base = X86_SIB_BASE(insn->sib.value);
373		if (mod == 3)
374			goto out;
375		if (mod == 1) {
376			insn->displacement.value = get_next(signed char, insn);
377			insn->displacement.nbytes = 1;
378		} else if (insn->addr_bytes == 2) {
379			if ((mod == 0 && rm == 6) || mod == 2) {
380				insn->displacement.value =
381					 get_next(short, insn);
382				insn->displacement.nbytes = 2;
383			}
384		} else {
385			if ((mod == 0 && rm == 5) || mod == 2 ||
386			    (mod == 0 && base == 5)) {
387				insn->displacement.value = get_next(int, insn);
388				insn->displacement.nbytes = 4;
389			}
390		}
391	}
392out:
393	insn->displacement.got = 1;
394
395err_out:
396	return;
397}
398
399/* Decode moffset16/32/64. Return 0 if failed */
400static int __get_moffset(struct insn *insn)
401{
402	switch (insn->addr_bytes) {
403	case 2:
404		insn->moffset1.value = get_next(short, insn);
405		insn->moffset1.nbytes = 2;
406		break;
407	case 4:
408		insn->moffset1.value = get_next(int, insn);
409		insn->moffset1.nbytes = 4;
410		break;
411	case 8:
412		insn->moffset1.value = get_next(int, insn);
413		insn->moffset1.nbytes = 4;
414		insn->moffset2.value = get_next(int, insn);
415		insn->moffset2.nbytes = 4;
416		break;
417	default:	/* opnd_bytes must be modified manually */
418		goto err_out;
419	}
420	insn->moffset1.got = insn->moffset2.got = 1;
421
422	return 1;
423
424err_out:
425	return 0;
426}
427
428/* Decode imm v32(Iz). Return 0 if failed */
429static int __get_immv32(struct insn *insn)
430{
431	switch (insn->opnd_bytes) {
432	case 2:
433		insn->immediate.value = get_next(short, insn);
434		insn->immediate.nbytes = 2;
435		break;
436	case 4:
437	case 8:
438		insn->immediate.value = get_next(int, insn);
439		insn->immediate.nbytes = 4;
440		break;
441	default:	/* opnd_bytes must be modified manually */
442		goto err_out;
443	}
444
445	return 1;
446
447err_out:
448	return 0;
449}
450
451/* Decode imm v64(Iv/Ov), Return 0 if failed */
452static int __get_immv(struct insn *insn)
453{
454	switch (insn->opnd_bytes) {
455	case 2:
456		insn->immediate1.value = get_next(short, insn);
457		insn->immediate1.nbytes = 2;
458		break;
459	case 4:
460		insn->immediate1.value = get_next(int, insn);
461		insn->immediate1.nbytes = 4;
462		break;
463	case 8:
464		insn->immediate1.value = get_next(int, insn);
465		insn->immediate1.nbytes = 4;
466		insn->immediate2.value = get_next(int, insn);
467		insn->immediate2.nbytes = 4;
468		break;
469	default:	/* opnd_bytes must be modified manually */
470		goto err_out;
471	}
472	insn->immediate1.got = insn->immediate2.got = 1;
473
474	return 1;
475err_out:
476	return 0;
477}
478
479/* Decode ptr16:16/32(Ap) */
480static int __get_immptr(struct insn *insn)
481{
482	switch (insn->opnd_bytes) {
483	case 2:
484		insn->immediate1.value = get_next(short, insn);
485		insn->immediate1.nbytes = 2;
486		break;
487	case 4:
488		insn->immediate1.value = get_next(int, insn);
489		insn->immediate1.nbytes = 4;
490		break;
491	case 8:
492		/* ptr16:64 is not exist (no segment) */
493		return 0;
494	default:	/* opnd_bytes must be modified manually */
495		goto err_out;
496	}
497	insn->immediate2.value = get_next(unsigned short, insn);
498	insn->immediate2.nbytes = 2;
499	insn->immediate1.got = insn->immediate2.got = 1;
500
501	return 1;
502err_out:
503	return 0;
504}
505
506/**
507 * insn_get_immediate() - Get the immediates of instruction
508 * @insn:	&struct insn containing instruction
509 *
510 * If necessary, first collects the instruction up to and including the
511 * displacement bytes.
512 * Basically, most of immediates are sign-expanded. Unsigned-value can be
513 * get by bit masking with ((1 << (nbytes * 8)) - 1)
514 */
515void insn_get_immediate(struct insn *insn)
516{
517	if (insn->immediate.got)
518		return;
519	if (!insn->displacement.got)
520		insn_get_displacement(insn);
521
522	if (inat_has_moffset(insn->attr)) {
523		if (!__get_moffset(insn))
524			goto err_out;
525		goto done;
526	}
527
528	if (!inat_has_immediate(insn->attr))
529		/* no immediates */
530		goto done;
531
532	switch (inat_immediate_size(insn->attr)) {
533	case INAT_IMM_BYTE:
534		insn->immediate.value = get_next(signed char, insn);
535		insn->immediate.nbytes = 1;
536		break;
537	case INAT_IMM_WORD:
538		insn->immediate.value = get_next(short, insn);
539		insn->immediate.nbytes = 2;
540		break;
541	case INAT_IMM_DWORD:
542		insn->immediate.value = get_next(int, insn);
543		insn->immediate.nbytes = 4;
544		break;
545	case INAT_IMM_QWORD:
546		insn->immediate1.value = get_next(int, insn);
547		insn->immediate1.nbytes = 4;
548		insn->immediate2.value = get_next(int, insn);
549		insn->immediate2.nbytes = 4;
550		break;
551	case INAT_IMM_PTR:
552		if (!__get_immptr(insn))
553			goto err_out;
554		break;
555	case INAT_IMM_VWORD32:
556		if (!__get_immv32(insn))
557			goto err_out;
558		break;
559	case INAT_IMM_VWORD:
560		if (!__get_immv(insn))
561			goto err_out;
562		break;
563	default:
564		/* Here, insn must have an immediate, but failed */
565		goto err_out;
566	}
567	if (inat_has_second_immediate(insn->attr)) {
568		insn->immediate2.value = get_next(signed char, insn);
569		insn->immediate2.nbytes = 1;
570	}
571done:
572	insn->immediate.got = 1;
573
574err_out:
575	return;
576}
577
578/**
579 * insn_get_length() - Get the length of instruction
580 * @insn:	&struct insn containing instruction
581 *
582 * If necessary, first collects the instruction up to and including the
583 * immediates bytes.
584 */
585void insn_get_length(struct insn *insn)
586{
587	if (insn->length)
588		return;
589	if (!insn->immediate.got)
590		insn_get_immediate(insn);
591	insn->length = (unsigned char)((unsigned long)insn->next_byte
592				     - (unsigned long)insn->kaddr);
593}