Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * x86 instruction analysis
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
 19 */
 20
 
 21#include <linux/string.h>
 
 
 
 22#include <asm/inat.h>
 23#include <asm/insn.h>
 24
 25#define get_next(t, insn)	\
 26	({t r; r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
 
 
 
 
 27
 28#define peek_next(t, insn)	\
 29	({t r; r = *(t*)insn->next_byte; r; })
 
 
 
 30
 31#define peek_nbyte_next(t, insn, n)	\
 32	({t r; r = *(t*)((insn)->next_byte + n); r; })
 
 
 33
 34/**
 35 * insn_init() - initialize struct insn
 36 * @insn:	&struct insn to be initialized
 37 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 38 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 39 */
 40void insn_init(struct insn *insn, const void *kaddr, int x86_64)
 41{
 
 
 
 
 
 
 
 42	memset(insn, 0, sizeof(*insn));
 43	insn->kaddr = kaddr;
 
 44	insn->next_byte = kaddr;
 45	insn->x86_64 = x86_64 ? 1 : 0;
 46	insn->opnd_bytes = 4;
 47	if (x86_64)
 48		insn->addr_bytes = 8;
 49	else
 50		insn->addr_bytes = 4;
 51}
 52
 53/**
 54 * insn_get_prefixes - scan x86 instruction prefix bytes
 55 * @insn:	&struct insn containing instruction
 56 *
 57 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
 58 * to point to the (first) opcode.  No effect if @insn->prefixes.got
 59 * is already set.
 60 */
 61void insn_get_prefixes(struct insn *insn)
 62{
 63	struct insn_field *prefixes = &insn->prefixes;
 64	insn_attr_t attr;
 65	insn_byte_t b, lb;
 66	int i, nb;
 67
 68	if (prefixes->got)
 69		return;
 70
 71	nb = 0;
 72	lb = 0;
 73	b = peek_next(insn_byte_t, insn);
 74	attr = inat_get_opcode_attribute(b);
 75	while (inat_is_legacy_prefix(attr)) {
 76		/* Skip if same prefix */
 77		for (i = 0; i < nb; i++)
 78			if (prefixes->bytes[i] == b)
 79				goto found;
 80		if (nb == 4)
 81			/* Invalid instruction */
 82			break;
 83		prefixes->bytes[nb++] = b;
 84		if (inat_is_address_size_prefix(attr)) {
 85			/* address size switches 2/4 or 4/8 */
 86			if (insn->x86_64)
 87				insn->addr_bytes ^= 12;
 88			else
 89				insn->addr_bytes ^= 6;
 90		} else if (inat_is_operand_size_prefix(attr)) {
 91			/* oprand size switches 2/4 */
 92			insn->opnd_bytes ^= 6;
 93		}
 94found:
 95		prefixes->nbytes++;
 96		insn->next_byte++;
 97		lb = b;
 98		b = peek_next(insn_byte_t, insn);
 99		attr = inat_get_opcode_attribute(b);
100	}
101	/* Set the last prefix */
102	if (lb && lb != insn->prefixes.bytes[3]) {
103		if (unlikely(insn->prefixes.bytes[3])) {
104			/* Swap the last prefix */
105			b = insn->prefixes.bytes[3];
106			for (i = 0; i < nb; i++)
107				if (prefixes->bytes[i] == lb)
108					prefixes->bytes[i] = b;
109		}
110		insn->prefixes.bytes[3] = lb;
111	}
112
113	/* Decode REX prefix */
114	if (insn->x86_64) {
115		b = peek_next(insn_byte_t, insn);
116		attr = inat_get_opcode_attribute(b);
117		if (inat_is_rex_prefix(attr)) {
118			insn->rex_prefix.value = b;
119			insn->rex_prefix.nbytes = 1;
120			insn->next_byte++;
121			if (X86_REX_W(b))
122				/* REX.W overrides opnd_size */
123				insn->opnd_bytes = 8;
124		}
125	}
126	insn->rex_prefix.got = 1;
127
128	/* Decode VEX prefix */
129	b = peek_next(insn_byte_t, insn);
130	attr = inat_get_opcode_attribute(b);
131	if (inat_is_vex_prefix(attr)) {
132		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
133		if (!insn->x86_64) {
134			/*
135			 * In 32-bits mode, if the [7:6] bits (mod bits of
136			 * ModRM) on the second byte are not 11b, it is
137			 * LDS or LES.
138			 */
139			if (X86_MODRM_MOD(b2) != 3)
140				goto vex_end;
141		}
142		insn->vex_prefix.bytes[0] = b;
143		insn->vex_prefix.bytes[1] = b2;
144		if (inat_is_vex3_prefix(attr)) {
145			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
146			insn->vex_prefix.bytes[2] = b2;
147			insn->vex_prefix.nbytes = 3;
148			insn->next_byte += 3;
149			if (insn->x86_64 && X86_VEX_W(b2))
150				/* VEX.W overrides opnd_size */
151				insn->opnd_bytes = 8;
152		} else {
 
 
 
 
 
 
153			insn->vex_prefix.nbytes = 2;
154			insn->next_byte += 2;
155		}
156	}
157vex_end:
158	insn->vex_prefix.got = 1;
159
160	prefixes->got = 1;
 
 
161	return;
162}
163
164/**
165 * insn_get_opcode - collect opcode(s)
166 * @insn:	&struct insn containing instruction
167 *
168 * Populates @insn->opcode, updates @insn->next_byte to point past the
169 * opcode byte(s), and set @insn->attr (except for groups).
170 * If necessary, first collects any preceding (prefix) bytes.
171 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
172 * is already 1.
173 */
174void insn_get_opcode(struct insn *insn)
175{
176	struct insn_field *opcode = &insn->opcode;
177	insn_byte_t op, pfx;
 
178	if (opcode->got)
179		return;
180	if (!insn->prefixes.got)
181		insn_get_prefixes(insn);
182
183	/* Get first opcode */
184	op = get_next(insn_byte_t, insn);
185	opcode->bytes[0] = op;
186	opcode->nbytes = 1;
187
188	/* Check if there is VEX prefix or not */
189	if (insn_is_avx(insn)) {
190		insn_byte_t m, p;
191		m = insn_vex_m_bits(insn);
192		p = insn_vex_p_bits(insn);
193		insn->attr = inat_get_avx_attribute(op, m, p);
194		if (!inat_accept_vex(insn->attr))
195			insn->attr = 0;	/* This instruction is bad */
196		goto end;	/* VEX has only 1 byte for opcode */
197	}
198
199	insn->attr = inat_get_opcode_attribute(op);
200	while (inat_is_escape(insn->attr)) {
201		/* Get escaped opcode */
202		op = get_next(insn_byte_t, insn);
203		opcode->bytes[opcode->nbytes++] = op;
204		pfx = insn_last_prefix(insn);
205		insn->attr = inat_get_escape_attribute(op, pfx, insn->attr);
206	}
207	if (inat_must_vex(insn->attr))
208		insn->attr = 0;	/* This instruction is bad */
209end:
210	opcode->got = 1;
 
 
 
211}
212
213/**
214 * insn_get_modrm - collect ModRM byte, if any
215 * @insn:	&struct insn containing instruction
216 *
217 * Populates @insn->modrm and updates @insn->next_byte to point past the
218 * ModRM byte, if any.  If necessary, first collects the preceding bytes
219 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
220 */
221void insn_get_modrm(struct insn *insn)
222{
223	struct insn_field *modrm = &insn->modrm;
224	insn_byte_t pfx, mod;
225	if (modrm->got)
226		return;
227	if (!insn->opcode.got)
228		insn_get_opcode(insn);
229
230	if (inat_has_modrm(insn->attr)) {
231		mod = get_next(insn_byte_t, insn);
232		modrm->value = mod;
233		modrm->nbytes = 1;
234		if (inat_is_group(insn->attr)) {
235			pfx = insn_last_prefix(insn);
236			insn->attr = inat_get_group_attribute(mod, pfx,
237							      insn->attr);
 
 
238		}
239	}
240
241	if (insn->x86_64 && inat_is_force64(insn->attr))
242		insn->opnd_bytes = 8;
243	modrm->got = 1;
 
 
 
244}
245
246
247/**
248 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
249 * @insn:	&struct insn containing instruction
250 *
251 * If necessary, first collects the instruction up to and including the
252 * ModRM byte.  No effect if @insn->x86_64 is 0.
253 */
254int insn_rip_relative(struct insn *insn)
255{
256	struct insn_field *modrm = &insn->modrm;
257
258	if (!insn->x86_64)
259		return 0;
260	if (!modrm->got)
261		insn_get_modrm(insn);
262	/*
263	 * For rip-relative instructions, the mod field (top 2 bits)
264	 * is zero and the r/m field (bottom 3 bits) is 0x5.
265	 */
266	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
267}
268
269/**
270 * insn_get_sib() - Get the SIB byte of instruction
271 * @insn:	&struct insn containing instruction
272 *
273 * If necessary, first collects the instruction up to and including the
274 * ModRM byte.
275 */
276void insn_get_sib(struct insn *insn)
277{
278	insn_byte_t modrm;
279
280	if (insn->sib.got)
281		return;
282	if (!insn->modrm.got)
283		insn_get_modrm(insn);
284	if (insn->modrm.nbytes) {
285		modrm = (insn_byte_t)insn->modrm.value;
286		if (insn->addr_bytes != 2 &&
287		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
288			insn->sib.value = get_next(insn_byte_t, insn);
289			insn->sib.nbytes = 1;
290		}
291	}
292	insn->sib.got = 1;
 
 
 
293}
294
295
296/**
297 * insn_get_displacement() - Get the displacement of instruction
298 * @insn:	&struct insn containing instruction
299 *
300 * If necessary, first collects the instruction up to and including the
301 * SIB byte.
302 * Displacement value is sign-expanded.
303 */
304void insn_get_displacement(struct insn *insn)
305{
306	insn_byte_t mod, rm, base;
307
308	if (insn->displacement.got)
309		return;
310	if (!insn->sib.got)
311		insn_get_sib(insn);
312	if (insn->modrm.nbytes) {
313		/*
314		 * Interpreting the modrm byte:
315		 * mod = 00 - no displacement fields (exceptions below)
316		 * mod = 01 - 1-byte displacement field
317		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
318		 * 	address size = 2 (0x67 prefix in 32-bit mode)
319		 * mod = 11 - no memory operand
320		 *
321		 * If address size = 2...
322		 * mod = 00, r/m = 110 - displacement field is 2 bytes
323		 *
324		 * If address size != 2...
325		 * mod != 11, r/m = 100 - SIB byte exists
326		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
327		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
328		 * 	field is 4 bytes
329		 */
330		mod = X86_MODRM_MOD(insn->modrm.value);
331		rm = X86_MODRM_RM(insn->modrm.value);
332		base = X86_SIB_BASE(insn->sib.value);
333		if (mod == 3)
334			goto out;
335		if (mod == 1) {
336			insn->displacement.value = get_next(char, insn);
337			insn->displacement.nbytes = 1;
338		} else if (insn->addr_bytes == 2) {
339			if ((mod == 0 && rm == 6) || mod == 2) {
340				insn->displacement.value =
341					 get_next(short, insn);
342				insn->displacement.nbytes = 2;
343			}
344		} else {
345			if ((mod == 0 && rm == 5) || mod == 2 ||
346			    (mod == 0 && base == 5)) {
347				insn->displacement.value = get_next(int, insn);
348				insn->displacement.nbytes = 4;
349			}
350		}
351	}
352out:
353	insn->displacement.got = 1;
 
 
 
354}
355
356/* Decode moffset16/32/64 */
357static void __get_moffset(struct insn *insn)
358{
359	switch (insn->addr_bytes) {
360	case 2:
361		insn->moffset1.value = get_next(short, insn);
362		insn->moffset1.nbytes = 2;
363		break;
364	case 4:
365		insn->moffset1.value = get_next(int, insn);
366		insn->moffset1.nbytes = 4;
367		break;
368	case 8:
369		insn->moffset1.value = get_next(int, insn);
370		insn->moffset1.nbytes = 4;
371		insn->moffset2.value = get_next(int, insn);
372		insn->moffset2.nbytes = 4;
373		break;
 
 
374	}
375	insn->moffset1.got = insn->moffset2.got = 1;
 
 
 
 
 
376}
377
378/* Decode imm v32(Iz) */
379static void __get_immv32(struct insn *insn)
380{
381	switch (insn->opnd_bytes) {
382	case 2:
383		insn->immediate.value = get_next(short, insn);
384		insn->immediate.nbytes = 2;
385		break;
386	case 4:
387	case 8:
388		insn->immediate.value = get_next(int, insn);
389		insn->immediate.nbytes = 4;
390		break;
 
 
391	}
 
 
 
 
 
392}
393
394/* Decode imm v64(Iv/Ov) */
395static void __get_immv(struct insn *insn)
396{
397	switch (insn->opnd_bytes) {
398	case 2:
399		insn->immediate1.value = get_next(short, insn);
400		insn->immediate1.nbytes = 2;
401		break;
402	case 4:
403		insn->immediate1.value = get_next(int, insn);
404		insn->immediate1.nbytes = 4;
405		break;
406	case 8:
407		insn->immediate1.value = get_next(int, insn);
408		insn->immediate1.nbytes = 4;
409		insn->immediate2.value = get_next(int, insn);
410		insn->immediate2.nbytes = 4;
411		break;
 
 
412	}
413	insn->immediate1.got = insn->immediate2.got = 1;
 
 
 
 
414}
415
416/* Decode ptr16:16/32(Ap) */
417static void __get_immptr(struct insn *insn)
418{
419	switch (insn->opnd_bytes) {
420	case 2:
421		insn->immediate1.value = get_next(short, insn);
422		insn->immediate1.nbytes = 2;
423		break;
424	case 4:
425		insn->immediate1.value = get_next(int, insn);
426		insn->immediate1.nbytes = 4;
427		break;
428	case 8:
429		/* ptr16:64 is not exist (no segment) */
430		return;
 
 
431	}
432	insn->immediate2.value = get_next(unsigned short, insn);
433	insn->immediate2.nbytes = 2;
434	insn->immediate1.got = insn->immediate2.got = 1;
 
 
 
 
435}
436
437/**
438 * insn_get_immediate() - Get the immediates of instruction
439 * @insn:	&struct insn containing instruction
440 *
441 * If necessary, first collects the instruction up to and including the
442 * displacement bytes.
443 * Basically, most of immediates are sign-expanded. Unsigned-value can be
444 * get by bit masking with ((1 << (nbytes * 8)) - 1)
445 */
446void insn_get_immediate(struct insn *insn)
447{
448	if (insn->immediate.got)
449		return;
450	if (!insn->displacement.got)
451		insn_get_displacement(insn);
452
453	if (inat_has_moffset(insn->attr)) {
454		__get_moffset(insn);
 
455		goto done;
456	}
457
458	if (!inat_has_immediate(insn->attr))
459		/* no immediates */
460		goto done;
461
462	switch (inat_immediate_size(insn->attr)) {
463	case INAT_IMM_BYTE:
464		insn->immediate.value = get_next(char, insn);
465		insn->immediate.nbytes = 1;
466		break;
467	case INAT_IMM_WORD:
468		insn->immediate.value = get_next(short, insn);
469		insn->immediate.nbytes = 2;
470		break;
471	case INAT_IMM_DWORD:
472		insn->immediate.value = get_next(int, insn);
473		insn->immediate.nbytes = 4;
474		break;
475	case INAT_IMM_QWORD:
476		insn->immediate1.value = get_next(int, insn);
477		insn->immediate1.nbytes = 4;
478		insn->immediate2.value = get_next(int, insn);
479		insn->immediate2.nbytes = 4;
480		break;
481	case INAT_IMM_PTR:
482		__get_immptr(insn);
 
483		break;
484	case INAT_IMM_VWORD32:
485		__get_immv32(insn);
 
486		break;
487	case INAT_IMM_VWORD:
488		__get_immv(insn);
 
489		break;
490	default:
491		break;
 
492	}
493	if (inat_has_second_immediate(insn->attr)) {
494		insn->immediate2.value = get_next(char, insn);
495		insn->immediate2.nbytes = 1;
496	}
497done:
498	insn->immediate.got = 1;
 
 
 
499}
500
501/**
502 * insn_get_length() - Get the length of instruction
503 * @insn:	&struct insn containing instruction
504 *
505 * If necessary, first collects the instruction up to and including the
506 * immediates bytes.
507 */
508void insn_get_length(struct insn *insn)
509{
510	if (insn->length)
511		return;
512	if (!insn->immediate.got)
513		insn_get_immediate(insn);
514	insn->length = (unsigned char)((unsigned long)insn->next_byte
515				     - (unsigned long)insn->kaddr);
516}
v4.6
  1/*
  2 * x86 instruction analysis
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
 19 */
 20
 21#ifdef __KERNEL__
 22#include <linux/string.h>
 23#else
 24#include <string.h>
 25#endif
 26#include <asm/inat.h>
 27#include <asm/insn.h>
 28
 29/* Verify next sizeof(t) bytes can be on the same instruction */
 30#define validate_next(t, insn, n)	\
 31	((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
 32
 33#define __get_next(t, insn)	\
 34	({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
 35
 36#define __peek_nbyte_next(t, insn, n)	\
 37	({ t r = *(t*)((insn)->next_byte + n); r; })
 38
 39#define get_next(t, insn)	\
 40	({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
 41
 42#define peek_nbyte_next(t, insn, n)	\
 43	({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
 44
 45#define peek_next(t, insn)	peek_nbyte_next(t, insn, 0)
 46
 47/**
 48 * insn_init() - initialize struct insn
 49 * @insn:	&struct insn to be initialized
 50 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 51 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 52 */
 53void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
 54{
 55	/*
 56	 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
 57	 * even if the input buffer is long enough to hold them.
 58	 */
 59	if (buf_len > MAX_INSN_SIZE)
 60		buf_len = MAX_INSN_SIZE;
 61
 62	memset(insn, 0, sizeof(*insn));
 63	insn->kaddr = kaddr;
 64	insn->end_kaddr = kaddr + buf_len;
 65	insn->next_byte = kaddr;
 66	insn->x86_64 = x86_64 ? 1 : 0;
 67	insn->opnd_bytes = 4;
 68	if (x86_64)
 69		insn->addr_bytes = 8;
 70	else
 71		insn->addr_bytes = 4;
 72}
 73
 74/**
 75 * insn_get_prefixes - scan x86 instruction prefix bytes
 76 * @insn:	&struct insn containing instruction
 77 *
 78 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
 79 * to point to the (first) opcode.  No effect if @insn->prefixes.got
 80 * is already set.
 81 */
 82void insn_get_prefixes(struct insn *insn)
 83{
 84	struct insn_field *prefixes = &insn->prefixes;
 85	insn_attr_t attr;
 86	insn_byte_t b, lb;
 87	int i, nb;
 88
 89	if (prefixes->got)
 90		return;
 91
 92	nb = 0;
 93	lb = 0;
 94	b = peek_next(insn_byte_t, insn);
 95	attr = inat_get_opcode_attribute(b);
 96	while (inat_is_legacy_prefix(attr)) {
 97		/* Skip if same prefix */
 98		for (i = 0; i < nb; i++)
 99			if (prefixes->bytes[i] == b)
100				goto found;
101		if (nb == 4)
102			/* Invalid instruction */
103			break;
104		prefixes->bytes[nb++] = b;
105		if (inat_is_address_size_prefix(attr)) {
106			/* address size switches 2/4 or 4/8 */
107			if (insn->x86_64)
108				insn->addr_bytes ^= 12;
109			else
110				insn->addr_bytes ^= 6;
111		} else if (inat_is_operand_size_prefix(attr)) {
112			/* oprand size switches 2/4 */
113			insn->opnd_bytes ^= 6;
114		}
115found:
116		prefixes->nbytes++;
117		insn->next_byte++;
118		lb = b;
119		b = peek_next(insn_byte_t, insn);
120		attr = inat_get_opcode_attribute(b);
121	}
122	/* Set the last prefix */
123	if (lb && lb != insn->prefixes.bytes[3]) {
124		if (unlikely(insn->prefixes.bytes[3])) {
125			/* Swap the last prefix */
126			b = insn->prefixes.bytes[3];
127			for (i = 0; i < nb; i++)
128				if (prefixes->bytes[i] == lb)
129					prefixes->bytes[i] = b;
130		}
131		insn->prefixes.bytes[3] = lb;
132	}
133
134	/* Decode REX prefix */
135	if (insn->x86_64) {
136		b = peek_next(insn_byte_t, insn);
137		attr = inat_get_opcode_attribute(b);
138		if (inat_is_rex_prefix(attr)) {
139			insn->rex_prefix.value = b;
140			insn->rex_prefix.nbytes = 1;
141			insn->next_byte++;
142			if (X86_REX_W(b))
143				/* REX.W overrides opnd_size */
144				insn->opnd_bytes = 8;
145		}
146	}
147	insn->rex_prefix.got = 1;
148
149	/* Decode VEX prefix */
150	b = peek_next(insn_byte_t, insn);
151	attr = inat_get_opcode_attribute(b);
152	if (inat_is_vex_prefix(attr)) {
153		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
154		if (!insn->x86_64) {
155			/*
156			 * In 32-bits mode, if the [7:6] bits (mod bits of
157			 * ModRM) on the second byte are not 11b, it is
158			 * LDS or LES.
159			 */
160			if (X86_MODRM_MOD(b2) != 3)
161				goto vex_end;
162		}
163		insn->vex_prefix.bytes[0] = b;
164		insn->vex_prefix.bytes[1] = b2;
165		if (inat_is_vex3_prefix(attr)) {
166			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
167			insn->vex_prefix.bytes[2] = b2;
168			insn->vex_prefix.nbytes = 3;
169			insn->next_byte += 3;
170			if (insn->x86_64 && X86_VEX_W(b2))
171				/* VEX.W overrides opnd_size */
172				insn->opnd_bytes = 8;
173		} else {
174			/*
175			 * For VEX2, fake VEX3-like byte#2.
176			 * Makes it easier to decode vex.W, vex.vvvv,
177			 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
178			 */
179			insn->vex_prefix.bytes[2] = b2 & 0x7f;
180			insn->vex_prefix.nbytes = 2;
181			insn->next_byte += 2;
182		}
183	}
184vex_end:
185	insn->vex_prefix.got = 1;
186
187	prefixes->got = 1;
188
189err_out:
190	return;
191}
192
193/**
194 * insn_get_opcode - collect opcode(s)
195 * @insn:	&struct insn containing instruction
196 *
197 * Populates @insn->opcode, updates @insn->next_byte to point past the
198 * opcode byte(s), and set @insn->attr (except for groups).
199 * If necessary, first collects any preceding (prefix) bytes.
200 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
201 * is already 1.
202 */
203void insn_get_opcode(struct insn *insn)
204{
205	struct insn_field *opcode = &insn->opcode;
206	insn_byte_t op;
207	int pfx_id;
208	if (opcode->got)
209		return;
210	if (!insn->prefixes.got)
211		insn_get_prefixes(insn);
212
213	/* Get first opcode */
214	op = get_next(insn_byte_t, insn);
215	opcode->bytes[0] = op;
216	opcode->nbytes = 1;
217
218	/* Check if there is VEX prefix or not */
219	if (insn_is_avx(insn)) {
220		insn_byte_t m, p;
221		m = insn_vex_m_bits(insn);
222		p = insn_vex_p_bits(insn);
223		insn->attr = inat_get_avx_attribute(op, m, p);
224		if (!inat_accept_vex(insn->attr) && !inat_is_group(insn->attr))
225			insn->attr = 0;	/* This instruction is bad */
226		goto end;	/* VEX has only 1 byte for opcode */
227	}
228
229	insn->attr = inat_get_opcode_attribute(op);
230	while (inat_is_escape(insn->attr)) {
231		/* Get escaped opcode */
232		op = get_next(insn_byte_t, insn);
233		opcode->bytes[opcode->nbytes++] = op;
234		pfx_id = insn_last_prefix_id(insn);
235		insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
236	}
237	if (inat_must_vex(insn->attr))
238		insn->attr = 0;	/* This instruction is bad */
239end:
240	opcode->got = 1;
241
242err_out:
243	return;
244}
245
246/**
247 * insn_get_modrm - collect ModRM byte, if any
248 * @insn:	&struct insn containing instruction
249 *
250 * Populates @insn->modrm and updates @insn->next_byte to point past the
251 * ModRM byte, if any.  If necessary, first collects the preceding bytes
252 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
253 */
254void insn_get_modrm(struct insn *insn)
255{
256	struct insn_field *modrm = &insn->modrm;
257	insn_byte_t pfx_id, mod;
258	if (modrm->got)
259		return;
260	if (!insn->opcode.got)
261		insn_get_opcode(insn);
262
263	if (inat_has_modrm(insn->attr)) {
264		mod = get_next(insn_byte_t, insn);
265		modrm->value = mod;
266		modrm->nbytes = 1;
267		if (inat_is_group(insn->attr)) {
268			pfx_id = insn_last_prefix_id(insn);
269			insn->attr = inat_get_group_attribute(mod, pfx_id,
270							      insn->attr);
271			if (insn_is_avx(insn) && !inat_accept_vex(insn->attr))
272				insn->attr = 0;	/* This is bad */
273		}
274	}
275
276	if (insn->x86_64 && inat_is_force64(insn->attr))
277		insn->opnd_bytes = 8;
278	modrm->got = 1;
279
280err_out:
281	return;
282}
283
284
285/**
286 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
287 * @insn:	&struct insn containing instruction
288 *
289 * If necessary, first collects the instruction up to and including the
290 * ModRM byte.  No effect if @insn->x86_64 is 0.
291 */
292int insn_rip_relative(struct insn *insn)
293{
294	struct insn_field *modrm = &insn->modrm;
295
296	if (!insn->x86_64)
297		return 0;
298	if (!modrm->got)
299		insn_get_modrm(insn);
300	/*
301	 * For rip-relative instructions, the mod field (top 2 bits)
302	 * is zero and the r/m field (bottom 3 bits) is 0x5.
303	 */
304	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
305}
306
307/**
308 * insn_get_sib() - Get the SIB byte of instruction
309 * @insn:	&struct insn containing instruction
310 *
311 * If necessary, first collects the instruction up to and including the
312 * ModRM byte.
313 */
314void insn_get_sib(struct insn *insn)
315{
316	insn_byte_t modrm;
317
318	if (insn->sib.got)
319		return;
320	if (!insn->modrm.got)
321		insn_get_modrm(insn);
322	if (insn->modrm.nbytes) {
323		modrm = (insn_byte_t)insn->modrm.value;
324		if (insn->addr_bytes != 2 &&
325		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
326			insn->sib.value = get_next(insn_byte_t, insn);
327			insn->sib.nbytes = 1;
328		}
329	}
330	insn->sib.got = 1;
331
332err_out:
333	return;
334}
335
336
337/**
338 * insn_get_displacement() - Get the displacement of instruction
339 * @insn:	&struct insn containing instruction
340 *
341 * If necessary, first collects the instruction up to and including the
342 * SIB byte.
343 * Displacement value is sign-expanded.
344 */
345void insn_get_displacement(struct insn *insn)
346{
347	insn_byte_t mod, rm, base;
348
349	if (insn->displacement.got)
350		return;
351	if (!insn->sib.got)
352		insn_get_sib(insn);
353	if (insn->modrm.nbytes) {
354		/*
355		 * Interpreting the modrm byte:
356		 * mod = 00 - no displacement fields (exceptions below)
357		 * mod = 01 - 1-byte displacement field
358		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
359		 * 	address size = 2 (0x67 prefix in 32-bit mode)
360		 * mod = 11 - no memory operand
361		 *
362		 * If address size = 2...
363		 * mod = 00, r/m = 110 - displacement field is 2 bytes
364		 *
365		 * If address size != 2...
366		 * mod != 11, r/m = 100 - SIB byte exists
367		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
368		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
369		 * 	field is 4 bytes
370		 */
371		mod = X86_MODRM_MOD(insn->modrm.value);
372		rm = X86_MODRM_RM(insn->modrm.value);
373		base = X86_SIB_BASE(insn->sib.value);
374		if (mod == 3)
375			goto out;
376		if (mod == 1) {
377			insn->displacement.value = get_next(signed char, insn);
378			insn->displacement.nbytes = 1;
379		} else if (insn->addr_bytes == 2) {
380			if ((mod == 0 && rm == 6) || mod == 2) {
381				insn->displacement.value =
382					 get_next(short, insn);
383				insn->displacement.nbytes = 2;
384			}
385		} else {
386			if ((mod == 0 && rm == 5) || mod == 2 ||
387			    (mod == 0 && base == 5)) {
388				insn->displacement.value = get_next(int, insn);
389				insn->displacement.nbytes = 4;
390			}
391		}
392	}
393out:
394	insn->displacement.got = 1;
395
396err_out:
397	return;
398}
399
400/* Decode moffset16/32/64. Return 0 if failed */
401static int __get_moffset(struct insn *insn)
402{
403	switch (insn->addr_bytes) {
404	case 2:
405		insn->moffset1.value = get_next(short, insn);
406		insn->moffset1.nbytes = 2;
407		break;
408	case 4:
409		insn->moffset1.value = get_next(int, insn);
410		insn->moffset1.nbytes = 4;
411		break;
412	case 8:
413		insn->moffset1.value = get_next(int, insn);
414		insn->moffset1.nbytes = 4;
415		insn->moffset2.value = get_next(int, insn);
416		insn->moffset2.nbytes = 4;
417		break;
418	default:	/* opnd_bytes must be modified manually */
419		goto err_out;
420	}
421	insn->moffset1.got = insn->moffset2.got = 1;
422
423	return 1;
424
425err_out:
426	return 0;
427}
428
429/* Decode imm v32(Iz). Return 0 if failed */
430static int __get_immv32(struct insn *insn)
431{
432	switch (insn->opnd_bytes) {
433	case 2:
434		insn->immediate.value = get_next(short, insn);
435		insn->immediate.nbytes = 2;
436		break;
437	case 4:
438	case 8:
439		insn->immediate.value = get_next(int, insn);
440		insn->immediate.nbytes = 4;
441		break;
442	default:	/* opnd_bytes must be modified manually */
443		goto err_out;
444	}
445
446	return 1;
447
448err_out:
449	return 0;
450}
451
452/* Decode imm v64(Iv/Ov), Return 0 if failed */
453static int __get_immv(struct insn *insn)
454{
455	switch (insn->opnd_bytes) {
456	case 2:
457		insn->immediate1.value = get_next(short, insn);
458		insn->immediate1.nbytes = 2;
459		break;
460	case 4:
461		insn->immediate1.value = get_next(int, insn);
462		insn->immediate1.nbytes = 4;
463		break;
464	case 8:
465		insn->immediate1.value = get_next(int, insn);
466		insn->immediate1.nbytes = 4;
467		insn->immediate2.value = get_next(int, insn);
468		insn->immediate2.nbytes = 4;
469		break;
470	default:	/* opnd_bytes must be modified manually */
471		goto err_out;
472	}
473	insn->immediate1.got = insn->immediate2.got = 1;
474
475	return 1;
476err_out:
477	return 0;
478}
479
480/* Decode ptr16:16/32(Ap) */
481static int __get_immptr(struct insn *insn)
482{
483	switch (insn->opnd_bytes) {
484	case 2:
485		insn->immediate1.value = get_next(short, insn);
486		insn->immediate1.nbytes = 2;
487		break;
488	case 4:
489		insn->immediate1.value = get_next(int, insn);
490		insn->immediate1.nbytes = 4;
491		break;
492	case 8:
493		/* ptr16:64 is not exist (no segment) */
494		return 0;
495	default:	/* opnd_bytes must be modified manually */
496		goto err_out;
497	}
498	insn->immediate2.value = get_next(unsigned short, insn);
499	insn->immediate2.nbytes = 2;
500	insn->immediate1.got = insn->immediate2.got = 1;
501
502	return 1;
503err_out:
504	return 0;
505}
506
507/**
508 * insn_get_immediate() - Get the immediates of instruction
509 * @insn:	&struct insn containing instruction
510 *
511 * If necessary, first collects the instruction up to and including the
512 * displacement bytes.
513 * Basically, most of immediates are sign-expanded. Unsigned-value can be
514 * get by bit masking with ((1 << (nbytes * 8)) - 1)
515 */
516void insn_get_immediate(struct insn *insn)
517{
518	if (insn->immediate.got)
519		return;
520	if (!insn->displacement.got)
521		insn_get_displacement(insn);
522
523	if (inat_has_moffset(insn->attr)) {
524		if (!__get_moffset(insn))
525			goto err_out;
526		goto done;
527	}
528
529	if (!inat_has_immediate(insn->attr))
530		/* no immediates */
531		goto done;
532
533	switch (inat_immediate_size(insn->attr)) {
534	case INAT_IMM_BYTE:
535		insn->immediate.value = get_next(signed char, insn);
536		insn->immediate.nbytes = 1;
537		break;
538	case INAT_IMM_WORD:
539		insn->immediate.value = get_next(short, insn);
540		insn->immediate.nbytes = 2;
541		break;
542	case INAT_IMM_DWORD:
543		insn->immediate.value = get_next(int, insn);
544		insn->immediate.nbytes = 4;
545		break;
546	case INAT_IMM_QWORD:
547		insn->immediate1.value = get_next(int, insn);
548		insn->immediate1.nbytes = 4;
549		insn->immediate2.value = get_next(int, insn);
550		insn->immediate2.nbytes = 4;
551		break;
552	case INAT_IMM_PTR:
553		if (!__get_immptr(insn))
554			goto err_out;
555		break;
556	case INAT_IMM_VWORD32:
557		if (!__get_immv32(insn))
558			goto err_out;
559		break;
560	case INAT_IMM_VWORD:
561		if (!__get_immv(insn))
562			goto err_out;
563		break;
564	default:
565		/* Here, insn must have an immediate, but failed */
566		goto err_out;
567	}
568	if (inat_has_second_immediate(insn->attr)) {
569		insn->immediate2.value = get_next(signed char, insn);
570		insn->immediate2.nbytes = 1;
571	}
572done:
573	insn->immediate.got = 1;
574
575err_out:
576	return;
577}
578
579/**
580 * insn_get_length() - Get the length of instruction
581 * @insn:	&struct insn containing instruction
582 *
583 * If necessary, first collects the instruction up to and including the
584 * immediates bytes.
585 */
586void insn_get_length(struct insn *insn)
587{
588	if (insn->length)
589		return;
590	if (!insn->immediate.got)
591		insn_get_immediate(insn);
592	insn->length = (unsigned char)((unsigned long)insn->next_byte
593				     - (unsigned long)insn->kaddr);
594}