Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * x86 instruction analysis
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
 19 */
 20
 
 21#include <linux/string.h>
 
 
 
 22#include <asm/inat.h>
 23#include <asm/insn.h>
 24
 25#define get_next(t, insn)	\
 26	({t r; r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
 
 
 
 
 27
 28#define peek_next(t, insn)	\
 29	({t r; r = *(t*)insn->next_byte; r; })
 
 
 
 30
 31#define peek_nbyte_next(t, insn, n)	\
 32	({t r; r = *(t*)((insn)->next_byte + n); r; })
 
 
 33
 34/**
 35 * insn_init() - initialize struct insn
 36 * @insn:	&struct insn to be initialized
 37 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 38 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 39 */
 40void insn_init(struct insn *insn, const void *kaddr, int x86_64)
 41{
 
 
 
 
 
 
 
 42	memset(insn, 0, sizeof(*insn));
 43	insn->kaddr = kaddr;
 
 44	insn->next_byte = kaddr;
 45	insn->x86_64 = x86_64 ? 1 : 0;
 46	insn->opnd_bytes = 4;
 47	if (x86_64)
 48		insn->addr_bytes = 8;
 49	else
 50		insn->addr_bytes = 4;
 51}
 52
 53/**
 54 * insn_get_prefixes - scan x86 instruction prefix bytes
 55 * @insn:	&struct insn containing instruction
 56 *
 57 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
 58 * to point to the (first) opcode.  No effect if @insn->prefixes.got
 59 * is already set.
 60 */
 61void insn_get_prefixes(struct insn *insn)
 62{
 63	struct insn_field *prefixes = &insn->prefixes;
 64	insn_attr_t attr;
 65	insn_byte_t b, lb;
 66	int i, nb;
 67
 68	if (prefixes->got)
 69		return;
 70
 71	nb = 0;
 72	lb = 0;
 73	b = peek_next(insn_byte_t, insn);
 74	attr = inat_get_opcode_attribute(b);
 75	while (inat_is_legacy_prefix(attr)) {
 76		/* Skip if same prefix */
 77		for (i = 0; i < nb; i++)
 78			if (prefixes->bytes[i] == b)
 79				goto found;
 80		if (nb == 4)
 81			/* Invalid instruction */
 82			break;
 83		prefixes->bytes[nb++] = b;
 84		if (inat_is_address_size_prefix(attr)) {
 85			/* address size switches 2/4 or 4/8 */
 86			if (insn->x86_64)
 87				insn->addr_bytes ^= 12;
 88			else
 89				insn->addr_bytes ^= 6;
 90		} else if (inat_is_operand_size_prefix(attr)) {
 91			/* oprand size switches 2/4 */
 92			insn->opnd_bytes ^= 6;
 93		}
 94found:
 95		prefixes->nbytes++;
 96		insn->next_byte++;
 97		lb = b;
 98		b = peek_next(insn_byte_t, insn);
 99		attr = inat_get_opcode_attribute(b);
100	}
101	/* Set the last prefix */
102	if (lb && lb != insn->prefixes.bytes[3]) {
103		if (unlikely(insn->prefixes.bytes[3])) {
104			/* Swap the last prefix */
105			b = insn->prefixes.bytes[3];
106			for (i = 0; i < nb; i++)
107				if (prefixes->bytes[i] == lb)
108					prefixes->bytes[i] = b;
109		}
110		insn->prefixes.bytes[3] = lb;
111	}
112
113	/* Decode REX prefix */
114	if (insn->x86_64) {
115		b = peek_next(insn_byte_t, insn);
116		attr = inat_get_opcode_attribute(b);
117		if (inat_is_rex_prefix(attr)) {
118			insn->rex_prefix.value = b;
119			insn->rex_prefix.nbytes = 1;
120			insn->next_byte++;
121			if (X86_REX_W(b))
122				/* REX.W overrides opnd_size */
123				insn->opnd_bytes = 8;
124		}
125	}
126	insn->rex_prefix.got = 1;
127
128	/* Decode VEX prefix */
129	b = peek_next(insn_byte_t, insn);
130	attr = inat_get_opcode_attribute(b);
131	if (inat_is_vex_prefix(attr)) {
132		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
133		if (!insn->x86_64) {
134			/*
135			 * In 32-bits mode, if the [7:6] bits (mod bits of
136			 * ModRM) on the second byte are not 11b, it is
137			 * LDS or LES.
138			 */
139			if (X86_MODRM_MOD(b2) != 3)
140				goto vex_end;
141		}
142		insn->vex_prefix.bytes[0] = b;
143		insn->vex_prefix.bytes[1] = b2;
144		if (inat_is_vex3_prefix(attr)) {
 
 
 
 
 
 
 
 
 
 
145			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
146			insn->vex_prefix.bytes[2] = b2;
147			insn->vex_prefix.nbytes = 3;
148			insn->next_byte += 3;
149			if (insn->x86_64 && X86_VEX_W(b2))
150				/* VEX.W overrides opnd_size */
151				insn->opnd_bytes = 8;
152		} else {
 
 
 
 
 
 
153			insn->vex_prefix.nbytes = 2;
154			insn->next_byte += 2;
155		}
156	}
157vex_end:
158	insn->vex_prefix.got = 1;
159
160	prefixes->got = 1;
 
 
161	return;
162}
163
164/**
165 * insn_get_opcode - collect opcode(s)
166 * @insn:	&struct insn containing instruction
167 *
168 * Populates @insn->opcode, updates @insn->next_byte to point past the
169 * opcode byte(s), and set @insn->attr (except for groups).
170 * If necessary, first collects any preceding (prefix) bytes.
171 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
172 * is already 1.
173 */
174void insn_get_opcode(struct insn *insn)
175{
176	struct insn_field *opcode = &insn->opcode;
177	insn_byte_t op, pfx;
 
178	if (opcode->got)
179		return;
180	if (!insn->prefixes.got)
181		insn_get_prefixes(insn);
182
183	/* Get first opcode */
184	op = get_next(insn_byte_t, insn);
185	opcode->bytes[0] = op;
186	opcode->nbytes = 1;
187
188	/* Check if there is VEX prefix or not */
189	if (insn_is_avx(insn)) {
190		insn_byte_t m, p;
191		m = insn_vex_m_bits(insn);
192		p = insn_vex_p_bits(insn);
193		insn->attr = inat_get_avx_attribute(op, m, p);
194		if (!inat_accept_vex(insn->attr))
 
 
195			insn->attr = 0;	/* This instruction is bad */
196		goto end;	/* VEX has only 1 byte for opcode */
197	}
198
199	insn->attr = inat_get_opcode_attribute(op);
200	while (inat_is_escape(insn->attr)) {
201		/* Get escaped opcode */
202		op = get_next(insn_byte_t, insn);
203		opcode->bytes[opcode->nbytes++] = op;
204		pfx = insn_last_prefix(insn);
205		insn->attr = inat_get_escape_attribute(op, pfx, insn->attr);
206	}
207	if (inat_must_vex(insn->attr))
208		insn->attr = 0;	/* This instruction is bad */
209end:
210	opcode->got = 1;
 
 
 
211}
212
213/**
214 * insn_get_modrm - collect ModRM byte, if any
215 * @insn:	&struct insn containing instruction
216 *
217 * Populates @insn->modrm and updates @insn->next_byte to point past the
218 * ModRM byte, if any.  If necessary, first collects the preceding bytes
219 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
220 */
221void insn_get_modrm(struct insn *insn)
222{
223	struct insn_field *modrm = &insn->modrm;
224	insn_byte_t pfx, mod;
225	if (modrm->got)
226		return;
227	if (!insn->opcode.got)
228		insn_get_opcode(insn);
229
230	if (inat_has_modrm(insn->attr)) {
231		mod = get_next(insn_byte_t, insn);
232		modrm->value = mod;
233		modrm->nbytes = 1;
234		if (inat_is_group(insn->attr)) {
235			pfx = insn_last_prefix(insn);
236			insn->attr = inat_get_group_attribute(mod, pfx,
237							      insn->attr);
 
 
238		}
239	}
240
241	if (insn->x86_64 && inat_is_force64(insn->attr))
242		insn->opnd_bytes = 8;
243	modrm->got = 1;
 
 
 
244}
245
246
247/**
248 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
249 * @insn:	&struct insn containing instruction
250 *
251 * If necessary, first collects the instruction up to and including the
252 * ModRM byte.  No effect if @insn->x86_64 is 0.
253 */
254int insn_rip_relative(struct insn *insn)
255{
256	struct insn_field *modrm = &insn->modrm;
257
258	if (!insn->x86_64)
259		return 0;
260	if (!modrm->got)
261		insn_get_modrm(insn);
262	/*
263	 * For rip-relative instructions, the mod field (top 2 bits)
264	 * is zero and the r/m field (bottom 3 bits) is 0x5.
265	 */
266	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
267}
268
269/**
270 * insn_get_sib() - Get the SIB byte of instruction
271 * @insn:	&struct insn containing instruction
272 *
273 * If necessary, first collects the instruction up to and including the
274 * ModRM byte.
275 */
276void insn_get_sib(struct insn *insn)
277{
278	insn_byte_t modrm;
279
280	if (insn->sib.got)
281		return;
282	if (!insn->modrm.got)
283		insn_get_modrm(insn);
284	if (insn->modrm.nbytes) {
285		modrm = (insn_byte_t)insn->modrm.value;
286		if (insn->addr_bytes != 2 &&
287		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
288			insn->sib.value = get_next(insn_byte_t, insn);
289			insn->sib.nbytes = 1;
290		}
291	}
292	insn->sib.got = 1;
 
 
 
293}
294
295
296/**
297 * insn_get_displacement() - Get the displacement of instruction
298 * @insn:	&struct insn containing instruction
299 *
300 * If necessary, first collects the instruction up to and including the
301 * SIB byte.
302 * Displacement value is sign-expanded.
303 */
304void insn_get_displacement(struct insn *insn)
305{
306	insn_byte_t mod, rm, base;
307
308	if (insn->displacement.got)
309		return;
310	if (!insn->sib.got)
311		insn_get_sib(insn);
312	if (insn->modrm.nbytes) {
313		/*
314		 * Interpreting the modrm byte:
315		 * mod = 00 - no displacement fields (exceptions below)
316		 * mod = 01 - 1-byte displacement field
317		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
318		 * 	address size = 2 (0x67 prefix in 32-bit mode)
319		 * mod = 11 - no memory operand
320		 *
321		 * If address size = 2...
322		 * mod = 00, r/m = 110 - displacement field is 2 bytes
323		 *
324		 * If address size != 2...
325		 * mod != 11, r/m = 100 - SIB byte exists
326		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
327		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
328		 * 	field is 4 bytes
329		 */
330		mod = X86_MODRM_MOD(insn->modrm.value);
331		rm = X86_MODRM_RM(insn->modrm.value);
332		base = X86_SIB_BASE(insn->sib.value);
333		if (mod == 3)
334			goto out;
335		if (mod == 1) {
336			insn->displacement.value = get_next(char, insn);
337			insn->displacement.nbytes = 1;
338		} else if (insn->addr_bytes == 2) {
339			if ((mod == 0 && rm == 6) || mod == 2) {
340				insn->displacement.value =
341					 get_next(short, insn);
342				insn->displacement.nbytes = 2;
343			}
344		} else {
345			if ((mod == 0 && rm == 5) || mod == 2 ||
346			    (mod == 0 && base == 5)) {
347				insn->displacement.value = get_next(int, insn);
348				insn->displacement.nbytes = 4;
349			}
350		}
351	}
352out:
353	insn->displacement.got = 1;
 
 
 
354}
355
356/* Decode moffset16/32/64 */
357static void __get_moffset(struct insn *insn)
358{
359	switch (insn->addr_bytes) {
360	case 2:
361		insn->moffset1.value = get_next(short, insn);
362		insn->moffset1.nbytes = 2;
363		break;
364	case 4:
365		insn->moffset1.value = get_next(int, insn);
366		insn->moffset1.nbytes = 4;
367		break;
368	case 8:
369		insn->moffset1.value = get_next(int, insn);
370		insn->moffset1.nbytes = 4;
371		insn->moffset2.value = get_next(int, insn);
372		insn->moffset2.nbytes = 4;
373		break;
 
 
374	}
375	insn->moffset1.got = insn->moffset2.got = 1;
 
 
 
 
 
376}
377
378/* Decode imm v32(Iz) */
379static void __get_immv32(struct insn *insn)
380{
381	switch (insn->opnd_bytes) {
382	case 2:
383		insn->immediate.value = get_next(short, insn);
384		insn->immediate.nbytes = 2;
385		break;
386	case 4:
387	case 8:
388		insn->immediate.value = get_next(int, insn);
389		insn->immediate.nbytes = 4;
390		break;
 
 
391	}
 
 
 
 
 
392}
393
394/* Decode imm v64(Iv/Ov) */
395static void __get_immv(struct insn *insn)
396{
397	switch (insn->opnd_bytes) {
398	case 2:
399		insn->immediate1.value = get_next(short, insn);
400		insn->immediate1.nbytes = 2;
401		break;
402	case 4:
403		insn->immediate1.value = get_next(int, insn);
404		insn->immediate1.nbytes = 4;
405		break;
406	case 8:
407		insn->immediate1.value = get_next(int, insn);
408		insn->immediate1.nbytes = 4;
409		insn->immediate2.value = get_next(int, insn);
410		insn->immediate2.nbytes = 4;
411		break;
 
 
412	}
413	insn->immediate1.got = insn->immediate2.got = 1;
 
 
 
 
414}
415
416/* Decode ptr16:16/32(Ap) */
417static void __get_immptr(struct insn *insn)
418{
419	switch (insn->opnd_bytes) {
420	case 2:
421		insn->immediate1.value = get_next(short, insn);
422		insn->immediate1.nbytes = 2;
423		break;
424	case 4:
425		insn->immediate1.value = get_next(int, insn);
426		insn->immediate1.nbytes = 4;
427		break;
428	case 8:
429		/* ptr16:64 is not exist (no segment) */
430		return;
 
 
431	}
432	insn->immediate2.value = get_next(unsigned short, insn);
433	insn->immediate2.nbytes = 2;
434	insn->immediate1.got = insn->immediate2.got = 1;
 
 
 
 
435}
436
437/**
438 * insn_get_immediate() - Get the immediates of instruction
439 * @insn:	&struct insn containing instruction
440 *
441 * If necessary, first collects the instruction up to and including the
442 * displacement bytes.
443 * Basically, most of immediates are sign-expanded. Unsigned-value can be
444 * get by bit masking with ((1 << (nbytes * 8)) - 1)
445 */
446void insn_get_immediate(struct insn *insn)
447{
448	if (insn->immediate.got)
449		return;
450	if (!insn->displacement.got)
451		insn_get_displacement(insn);
452
453	if (inat_has_moffset(insn->attr)) {
454		__get_moffset(insn);
 
455		goto done;
456	}
457
458	if (!inat_has_immediate(insn->attr))
459		/* no immediates */
460		goto done;
461
462	switch (inat_immediate_size(insn->attr)) {
463	case INAT_IMM_BYTE:
464		insn->immediate.value = get_next(char, insn);
465		insn->immediate.nbytes = 1;
466		break;
467	case INAT_IMM_WORD:
468		insn->immediate.value = get_next(short, insn);
469		insn->immediate.nbytes = 2;
470		break;
471	case INAT_IMM_DWORD:
472		insn->immediate.value = get_next(int, insn);
473		insn->immediate.nbytes = 4;
474		break;
475	case INAT_IMM_QWORD:
476		insn->immediate1.value = get_next(int, insn);
477		insn->immediate1.nbytes = 4;
478		insn->immediate2.value = get_next(int, insn);
479		insn->immediate2.nbytes = 4;
480		break;
481	case INAT_IMM_PTR:
482		__get_immptr(insn);
 
483		break;
484	case INAT_IMM_VWORD32:
485		__get_immv32(insn);
 
486		break;
487	case INAT_IMM_VWORD:
488		__get_immv(insn);
 
489		break;
490	default:
491		break;
 
492	}
493	if (inat_has_second_immediate(insn->attr)) {
494		insn->immediate2.value = get_next(char, insn);
495		insn->immediate2.nbytes = 1;
496	}
497done:
498	insn->immediate.got = 1;
 
 
 
499}
500
501/**
502 * insn_get_length() - Get the length of instruction
503 * @insn:	&struct insn containing instruction
504 *
505 * If necessary, first collects the instruction up to and including the
506 * immediates bytes.
507 */
508void insn_get_length(struct insn *insn)
509{
510	if (insn->length)
511		return;
512	if (!insn->immediate.got)
513		insn_get_immediate(insn);
514	insn->length = (unsigned char)((unsigned long)insn->next_byte
515				     - (unsigned long)insn->kaddr);
516}
v4.10.11
  1/*
  2 * x86 instruction analysis
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
 19 */
 20
 21#ifdef __KERNEL__
 22#include <linux/string.h>
 23#else
 24#include <string.h>
 25#endif
 26#include <asm/inat.h>
 27#include <asm/insn.h>
 28
 29/* Verify next sizeof(t) bytes can be on the same instruction */
 30#define validate_next(t, insn, n)	\
 31	((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
 32
 33#define __get_next(t, insn)	\
 34	({ t r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
 35
 36#define __peek_nbyte_next(t, insn, n)	\
 37	({ t r = *(t*)((insn)->next_byte + n); r; })
 38
 39#define get_next(t, insn)	\
 40	({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
 41
 42#define peek_nbyte_next(t, insn, n)	\
 43	({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
 44
 45#define peek_next(t, insn)	peek_nbyte_next(t, insn, 0)
 46
 47/**
 48 * insn_init() - initialize struct insn
 49 * @insn:	&struct insn to be initialized
 50 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 51 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 52 */
 53void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
 54{
 55	/*
 56	 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
 57	 * even if the input buffer is long enough to hold them.
 58	 */
 59	if (buf_len > MAX_INSN_SIZE)
 60		buf_len = MAX_INSN_SIZE;
 61
 62	memset(insn, 0, sizeof(*insn));
 63	insn->kaddr = kaddr;
 64	insn->end_kaddr = kaddr + buf_len;
 65	insn->next_byte = kaddr;
 66	insn->x86_64 = x86_64 ? 1 : 0;
 67	insn->opnd_bytes = 4;
 68	if (x86_64)
 69		insn->addr_bytes = 8;
 70	else
 71		insn->addr_bytes = 4;
 72}
 73
 74/**
 75 * insn_get_prefixes - scan x86 instruction prefix bytes
 76 * @insn:	&struct insn containing instruction
 77 *
 78 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
 79 * to point to the (first) opcode.  No effect if @insn->prefixes.got
 80 * is already set.
 81 */
 82void insn_get_prefixes(struct insn *insn)
 83{
 84	struct insn_field *prefixes = &insn->prefixes;
 85	insn_attr_t attr;
 86	insn_byte_t b, lb;
 87	int i, nb;
 88
 89	if (prefixes->got)
 90		return;
 91
 92	nb = 0;
 93	lb = 0;
 94	b = peek_next(insn_byte_t, insn);
 95	attr = inat_get_opcode_attribute(b);
 96	while (inat_is_legacy_prefix(attr)) {
 97		/* Skip if same prefix */
 98		for (i = 0; i < nb; i++)
 99			if (prefixes->bytes[i] == b)
100				goto found;
101		if (nb == 4)
102			/* Invalid instruction */
103			break;
104		prefixes->bytes[nb++] = b;
105		if (inat_is_address_size_prefix(attr)) {
106			/* address size switches 2/4 or 4/8 */
107			if (insn->x86_64)
108				insn->addr_bytes ^= 12;
109			else
110				insn->addr_bytes ^= 6;
111		} else if (inat_is_operand_size_prefix(attr)) {
112			/* oprand size switches 2/4 */
113			insn->opnd_bytes ^= 6;
114		}
115found:
116		prefixes->nbytes++;
117		insn->next_byte++;
118		lb = b;
119		b = peek_next(insn_byte_t, insn);
120		attr = inat_get_opcode_attribute(b);
121	}
122	/* Set the last prefix */
123	if (lb && lb != insn->prefixes.bytes[3]) {
124		if (unlikely(insn->prefixes.bytes[3])) {
125			/* Swap the last prefix */
126			b = insn->prefixes.bytes[3];
127			for (i = 0; i < nb; i++)
128				if (prefixes->bytes[i] == lb)
129					prefixes->bytes[i] = b;
130		}
131		insn->prefixes.bytes[3] = lb;
132	}
133
134	/* Decode REX prefix */
135	if (insn->x86_64) {
136		b = peek_next(insn_byte_t, insn);
137		attr = inat_get_opcode_attribute(b);
138		if (inat_is_rex_prefix(attr)) {
139			insn->rex_prefix.value = b;
140			insn->rex_prefix.nbytes = 1;
141			insn->next_byte++;
142			if (X86_REX_W(b))
143				/* REX.W overrides opnd_size */
144				insn->opnd_bytes = 8;
145		}
146	}
147	insn->rex_prefix.got = 1;
148
149	/* Decode VEX prefix */
150	b = peek_next(insn_byte_t, insn);
151	attr = inat_get_opcode_attribute(b);
152	if (inat_is_vex_prefix(attr)) {
153		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
154		if (!insn->x86_64) {
155			/*
156			 * In 32-bits mode, if the [7:6] bits (mod bits of
157			 * ModRM) on the second byte are not 11b, it is
158			 * LDS or LES or BOUND.
159			 */
160			if (X86_MODRM_MOD(b2) != 3)
161				goto vex_end;
162		}
163		insn->vex_prefix.bytes[0] = b;
164		insn->vex_prefix.bytes[1] = b2;
165		if (inat_is_evex_prefix(attr)) {
166			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
167			insn->vex_prefix.bytes[2] = b2;
168			b2 = peek_nbyte_next(insn_byte_t, insn, 3);
169			insn->vex_prefix.bytes[3] = b2;
170			insn->vex_prefix.nbytes = 4;
171			insn->next_byte += 4;
172			if (insn->x86_64 && X86_VEX_W(b2))
173				/* VEX.W overrides opnd_size */
174				insn->opnd_bytes = 8;
175		} else if (inat_is_vex3_prefix(attr)) {
176			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
177			insn->vex_prefix.bytes[2] = b2;
178			insn->vex_prefix.nbytes = 3;
179			insn->next_byte += 3;
180			if (insn->x86_64 && X86_VEX_W(b2))
181				/* VEX.W overrides opnd_size */
182				insn->opnd_bytes = 8;
183		} else {
184			/*
185			 * For VEX2, fake VEX3-like byte#2.
186			 * Makes it easier to decode vex.W, vex.vvvv,
187			 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
188			 */
189			insn->vex_prefix.bytes[2] = b2 & 0x7f;
190			insn->vex_prefix.nbytes = 2;
191			insn->next_byte += 2;
192		}
193	}
194vex_end:
195	insn->vex_prefix.got = 1;
196
197	prefixes->got = 1;
198
199err_out:
200	return;
201}
202
203/**
204 * insn_get_opcode - collect opcode(s)
205 * @insn:	&struct insn containing instruction
206 *
207 * Populates @insn->opcode, updates @insn->next_byte to point past the
208 * opcode byte(s), and set @insn->attr (except for groups).
209 * If necessary, first collects any preceding (prefix) bytes.
210 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
211 * is already 1.
212 */
213void insn_get_opcode(struct insn *insn)
214{
215	struct insn_field *opcode = &insn->opcode;
216	insn_byte_t op;
217	int pfx_id;
218	if (opcode->got)
219		return;
220	if (!insn->prefixes.got)
221		insn_get_prefixes(insn);
222
223	/* Get first opcode */
224	op = get_next(insn_byte_t, insn);
225	opcode->bytes[0] = op;
226	opcode->nbytes = 1;
227
228	/* Check if there is VEX prefix or not */
229	if (insn_is_avx(insn)) {
230		insn_byte_t m, p;
231		m = insn_vex_m_bits(insn);
232		p = insn_vex_p_bits(insn);
233		insn->attr = inat_get_avx_attribute(op, m, p);
234		if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
235		    (!inat_accept_vex(insn->attr) &&
236		     !inat_is_group(insn->attr)))
237			insn->attr = 0;	/* This instruction is bad */
238		goto end;	/* VEX has only 1 byte for opcode */
239	}
240
241	insn->attr = inat_get_opcode_attribute(op);
242	while (inat_is_escape(insn->attr)) {
243		/* Get escaped opcode */
244		op = get_next(insn_byte_t, insn);
245		opcode->bytes[opcode->nbytes++] = op;
246		pfx_id = insn_last_prefix_id(insn);
247		insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
248	}
249	if (inat_must_vex(insn->attr))
250		insn->attr = 0;	/* This instruction is bad */
251end:
252	opcode->got = 1;
253
254err_out:
255	return;
256}
257
258/**
259 * insn_get_modrm - collect ModRM byte, if any
260 * @insn:	&struct insn containing instruction
261 *
262 * Populates @insn->modrm and updates @insn->next_byte to point past the
263 * ModRM byte, if any.  If necessary, first collects the preceding bytes
264 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
265 */
266void insn_get_modrm(struct insn *insn)
267{
268	struct insn_field *modrm = &insn->modrm;
269	insn_byte_t pfx_id, mod;
270	if (modrm->got)
271		return;
272	if (!insn->opcode.got)
273		insn_get_opcode(insn);
274
275	if (inat_has_modrm(insn->attr)) {
276		mod = get_next(insn_byte_t, insn);
277		modrm->value = mod;
278		modrm->nbytes = 1;
279		if (inat_is_group(insn->attr)) {
280			pfx_id = insn_last_prefix_id(insn);
281			insn->attr = inat_get_group_attribute(mod, pfx_id,
282							      insn->attr);
283			if (insn_is_avx(insn) && !inat_accept_vex(insn->attr))
284				insn->attr = 0;	/* This is bad */
285		}
286	}
287
288	if (insn->x86_64 && inat_is_force64(insn->attr))
289		insn->opnd_bytes = 8;
290	modrm->got = 1;
291
292err_out:
293	return;
294}
295
296
297/**
298 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
299 * @insn:	&struct insn containing instruction
300 *
301 * If necessary, first collects the instruction up to and including the
302 * ModRM byte.  No effect if @insn->x86_64 is 0.
303 */
304int insn_rip_relative(struct insn *insn)
305{
306	struct insn_field *modrm = &insn->modrm;
307
308	if (!insn->x86_64)
309		return 0;
310	if (!modrm->got)
311		insn_get_modrm(insn);
312	/*
313	 * For rip-relative instructions, the mod field (top 2 bits)
314	 * is zero and the r/m field (bottom 3 bits) is 0x5.
315	 */
316	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
317}
318
319/**
320 * insn_get_sib() - Get the SIB byte of instruction
321 * @insn:	&struct insn containing instruction
322 *
323 * If necessary, first collects the instruction up to and including the
324 * ModRM byte.
325 */
326void insn_get_sib(struct insn *insn)
327{
328	insn_byte_t modrm;
329
330	if (insn->sib.got)
331		return;
332	if (!insn->modrm.got)
333		insn_get_modrm(insn);
334	if (insn->modrm.nbytes) {
335		modrm = (insn_byte_t)insn->modrm.value;
336		if (insn->addr_bytes != 2 &&
337		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
338			insn->sib.value = get_next(insn_byte_t, insn);
339			insn->sib.nbytes = 1;
340		}
341	}
342	insn->sib.got = 1;
343
344err_out:
345	return;
346}
347
348
349/**
350 * insn_get_displacement() - Get the displacement of instruction
351 * @insn:	&struct insn containing instruction
352 *
353 * If necessary, first collects the instruction up to and including the
354 * SIB byte.
355 * Displacement value is sign-expanded.
356 */
357void insn_get_displacement(struct insn *insn)
358{
359	insn_byte_t mod, rm, base;
360
361	if (insn->displacement.got)
362		return;
363	if (!insn->sib.got)
364		insn_get_sib(insn);
365	if (insn->modrm.nbytes) {
366		/*
367		 * Interpreting the modrm byte:
368		 * mod = 00 - no displacement fields (exceptions below)
369		 * mod = 01 - 1-byte displacement field
370		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
371		 * 	address size = 2 (0x67 prefix in 32-bit mode)
372		 * mod = 11 - no memory operand
373		 *
374		 * If address size = 2...
375		 * mod = 00, r/m = 110 - displacement field is 2 bytes
376		 *
377		 * If address size != 2...
378		 * mod != 11, r/m = 100 - SIB byte exists
379		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
380		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
381		 * 	field is 4 bytes
382		 */
383		mod = X86_MODRM_MOD(insn->modrm.value);
384		rm = X86_MODRM_RM(insn->modrm.value);
385		base = X86_SIB_BASE(insn->sib.value);
386		if (mod == 3)
387			goto out;
388		if (mod == 1) {
389			insn->displacement.value = get_next(signed char, insn);
390			insn->displacement.nbytes = 1;
391		} else if (insn->addr_bytes == 2) {
392			if ((mod == 0 && rm == 6) || mod == 2) {
393				insn->displacement.value =
394					 get_next(short, insn);
395				insn->displacement.nbytes = 2;
396			}
397		} else {
398			if ((mod == 0 && rm == 5) || mod == 2 ||
399			    (mod == 0 && base == 5)) {
400				insn->displacement.value = get_next(int, insn);
401				insn->displacement.nbytes = 4;
402			}
403		}
404	}
405out:
406	insn->displacement.got = 1;
407
408err_out:
409	return;
410}
411
412/* Decode moffset16/32/64. Return 0 if failed */
413static int __get_moffset(struct insn *insn)
414{
415	switch (insn->addr_bytes) {
416	case 2:
417		insn->moffset1.value = get_next(short, insn);
418		insn->moffset1.nbytes = 2;
419		break;
420	case 4:
421		insn->moffset1.value = get_next(int, insn);
422		insn->moffset1.nbytes = 4;
423		break;
424	case 8:
425		insn->moffset1.value = get_next(int, insn);
426		insn->moffset1.nbytes = 4;
427		insn->moffset2.value = get_next(int, insn);
428		insn->moffset2.nbytes = 4;
429		break;
430	default:	/* opnd_bytes must be modified manually */
431		goto err_out;
432	}
433	insn->moffset1.got = insn->moffset2.got = 1;
434
435	return 1;
436
437err_out:
438	return 0;
439}
440
441/* Decode imm v32(Iz). Return 0 if failed */
442static int __get_immv32(struct insn *insn)
443{
444	switch (insn->opnd_bytes) {
445	case 2:
446		insn->immediate.value = get_next(short, insn);
447		insn->immediate.nbytes = 2;
448		break;
449	case 4:
450	case 8:
451		insn->immediate.value = get_next(int, insn);
452		insn->immediate.nbytes = 4;
453		break;
454	default:	/* opnd_bytes must be modified manually */
455		goto err_out;
456	}
457
458	return 1;
459
460err_out:
461	return 0;
462}
463
464/* Decode imm v64(Iv/Ov), Return 0 if failed */
465static int __get_immv(struct insn *insn)
466{
467	switch (insn->opnd_bytes) {
468	case 2:
469		insn->immediate1.value = get_next(short, insn);
470		insn->immediate1.nbytes = 2;
471		break;
472	case 4:
473		insn->immediate1.value = get_next(int, insn);
474		insn->immediate1.nbytes = 4;
475		break;
476	case 8:
477		insn->immediate1.value = get_next(int, insn);
478		insn->immediate1.nbytes = 4;
479		insn->immediate2.value = get_next(int, insn);
480		insn->immediate2.nbytes = 4;
481		break;
482	default:	/* opnd_bytes must be modified manually */
483		goto err_out;
484	}
485	insn->immediate1.got = insn->immediate2.got = 1;
486
487	return 1;
488err_out:
489	return 0;
490}
491
492/* Decode ptr16:16/32(Ap) */
493static int __get_immptr(struct insn *insn)
494{
495	switch (insn->opnd_bytes) {
496	case 2:
497		insn->immediate1.value = get_next(short, insn);
498		insn->immediate1.nbytes = 2;
499		break;
500	case 4:
501		insn->immediate1.value = get_next(int, insn);
502		insn->immediate1.nbytes = 4;
503		break;
504	case 8:
505		/* ptr16:64 is not exist (no segment) */
506		return 0;
507	default:	/* opnd_bytes must be modified manually */
508		goto err_out;
509	}
510	insn->immediate2.value = get_next(unsigned short, insn);
511	insn->immediate2.nbytes = 2;
512	insn->immediate1.got = insn->immediate2.got = 1;
513
514	return 1;
515err_out:
516	return 0;
517}
518
519/**
520 * insn_get_immediate() - Get the immediates of instruction
521 * @insn:	&struct insn containing instruction
522 *
523 * If necessary, first collects the instruction up to and including the
524 * displacement bytes.
525 * Basically, most of immediates are sign-expanded. Unsigned-value can be
526 * get by bit masking with ((1 << (nbytes * 8)) - 1)
527 */
528void insn_get_immediate(struct insn *insn)
529{
530	if (insn->immediate.got)
531		return;
532	if (!insn->displacement.got)
533		insn_get_displacement(insn);
534
535	if (inat_has_moffset(insn->attr)) {
536		if (!__get_moffset(insn))
537			goto err_out;
538		goto done;
539	}
540
541	if (!inat_has_immediate(insn->attr))
542		/* no immediates */
543		goto done;
544
545	switch (inat_immediate_size(insn->attr)) {
546	case INAT_IMM_BYTE:
547		insn->immediate.value = get_next(signed char, insn);
548		insn->immediate.nbytes = 1;
549		break;
550	case INAT_IMM_WORD:
551		insn->immediate.value = get_next(short, insn);
552		insn->immediate.nbytes = 2;
553		break;
554	case INAT_IMM_DWORD:
555		insn->immediate.value = get_next(int, insn);
556		insn->immediate.nbytes = 4;
557		break;
558	case INAT_IMM_QWORD:
559		insn->immediate1.value = get_next(int, insn);
560		insn->immediate1.nbytes = 4;
561		insn->immediate2.value = get_next(int, insn);
562		insn->immediate2.nbytes = 4;
563		break;
564	case INAT_IMM_PTR:
565		if (!__get_immptr(insn))
566			goto err_out;
567		break;
568	case INAT_IMM_VWORD32:
569		if (!__get_immv32(insn))
570			goto err_out;
571		break;
572	case INAT_IMM_VWORD:
573		if (!__get_immv(insn))
574			goto err_out;
575		break;
576	default:
577		/* Here, insn must have an immediate, but failed */
578		goto err_out;
579	}
580	if (inat_has_second_immediate(insn->attr)) {
581		insn->immediate2.value = get_next(signed char, insn);
582		insn->immediate2.nbytes = 1;
583	}
584done:
585	insn->immediate.got = 1;
586
587err_out:
588	return;
589}
590
591/**
592 * insn_get_length() - Get the length of instruction
593 * @insn:	&struct insn containing instruction
594 *
595 * If necessary, first collects the instruction up to and including the
596 * immediates bytes.
597 */
598void insn_get_length(struct insn *insn)
599{
600	if (insn->length)
601		return;
602	if (!insn->immediate.got)
603		insn_get_immediate(insn);
604	insn->length = (unsigned char)((unsigned long)insn->next_byte
605				     - (unsigned long)insn->kaddr);
606}