Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v3.1
 
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
 
  49
  50#include <linux/nfs_fs.h>
  51#include <linux/nfs_page.h>
  52#include <linux/sunrpc/clnt.h>
  53
  54#include <asm/system.h>
  55#include <asm/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
 
  60
  61#define NFSDBG_FACILITY		NFSDBG_VFS
  62
  63static struct kmem_cache *nfs_direct_cachep;
  64
  65/*
  66 * This represents a set of asynchronous requests that we're waiting on
  67 */
  68struct nfs_direct_req {
  69	struct kref		kref;		/* release manager */
  70
  71	/* I/O parameters */
  72	struct nfs_open_context	*ctx;		/* file open context info */
  73	struct nfs_lock_context *l_ctx;		/* Lock context info */
  74	struct kiocb *		iocb;		/* controlling i/o request */
  75	struct inode *		inode;		/* target file of i/o */
  76
  77	/* completion state */
  78	atomic_t		io_count;	/* i/os we're waiting for */
  79	spinlock_t		lock;		/* protect completion state */
 
 
  80	ssize_t			count,		/* bytes actually processed */
 
 
  81				error;		/* any reported error */
  82	struct completion	completion;	/* wait for i/o completion */
  83
  84	/* commit state */
  85	struct list_head	rewrite_list;	/* saved nfs_write_data structs */
  86	struct nfs_write_data *	commit_data;	/* special write_data for commits */
 
  87	int			flags;
 
  88#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
  89#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
  90	struct nfs_writeverf	verf;		/* unstable write verifier */
 
 
  91};
  92
  93static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  94static const struct rpc_call_ops nfs_write_direct_ops;
 
 
  95
  96static inline void get_dreq(struct nfs_direct_req *dreq)
  97{
  98	atomic_inc(&dreq->io_count);
  99}
 100
 101static inline int put_dreq(struct nfs_direct_req *dreq)
 102{
 103	return atomic_dec_and_test(&dreq->io_count);
 104}
 105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106/**
 107 * nfs_direct_IO - NFS address space operation for direct I/O
 108 * @rw: direction (read or write)
 109 * @iocb: target I/O control block
 110 * @iov: array of vectors that define I/O buffer
 111 * @pos: offset in file to begin the operation
 112 * @nr_segs: size of iovec array
 113 *
 114 * The presence of this routine in the address space ops vector means
 115 * the NFS client supports direct I/O.  However, we shunt off direct
 116 * read and write requests before the VFS gets them, so this method
 117 * should never be called.
 118 */
 119ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
 120{
 121	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
 122			iocb->ki_filp->f_path.dentry->d_name.name,
 123			(long long) pos, nr_segs);
 124
 125	return -EINVAL;
 
 
 
 
 
 
 
 
 126}
 127
 128static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
 129{
 130	unsigned int npages;
 131	unsigned int i;
 132
 133	if (count == 0)
 134		return;
 135	pages += (pgbase >> PAGE_SHIFT);
 136	npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 137	for (i = 0; i < npages; i++) {
 138		struct page *page = pages[i];
 139		if (!PageCompound(page))
 140			set_page_dirty(page);
 141	}
 142}
 143
 144static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 
 145{
 146	unsigned int i;
 147	for (i = 0; i < npages; i++)
 148		page_cache_release(pages[i]);
 
 
 149}
 150
 151static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 152{
 153	struct nfs_direct_req *dreq;
 154
 155	dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
 156	if (!dreq)
 157		return NULL;
 158
 159	kref_init(&dreq->kref);
 160	kref_get(&dreq->kref);
 161	init_completion(&dreq->completion);
 162	INIT_LIST_HEAD(&dreq->rewrite_list);
 163	dreq->iocb = NULL;
 164	dreq->ctx = NULL;
 165	dreq->l_ctx = NULL;
 166	spin_lock_init(&dreq->lock);
 167	atomic_set(&dreq->io_count, 0);
 168	dreq->count = 0;
 169	dreq->error = 0;
 170	dreq->flags = 0;
 171
 172	return dreq;
 173}
 174
 175static void nfs_direct_req_free(struct kref *kref)
 176{
 177	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 178
 
 179	if (dreq->l_ctx != NULL)
 180		nfs_put_lock_context(dreq->l_ctx);
 181	if (dreq->ctx != NULL)
 182		put_nfs_open_context(dreq->ctx);
 183	kmem_cache_free(nfs_direct_cachep, dreq);
 184}
 185
 186static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 187{
 188	kref_put(&dreq->kref, nfs_direct_req_free);
 189}
 190
 
 
 
 
 
 
 191/*
 192 * Collects and returns the final error value/byte-count.
 193 */
 194static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 195{
 196	ssize_t result = -EIOCBQUEUED;
 197
 198	/* Async requests don't wait here */
 199	if (dreq->iocb)
 200		goto out;
 201
 202	result = wait_for_completion_killable(&dreq->completion);
 203
 
 
 
 
 204	if (!result)
 205		result = dreq->error;
 206	if (!result)
 207		result = dreq->count;
 208
 209out:
 210	return (ssize_t) result;
 211}
 212
 213/*
 214 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 215 * the iocb is still valid here if this is a synchronous request.
 216 */
 217static void nfs_direct_complete(struct nfs_direct_req *dreq)
 218{
 
 
 
 
 219	if (dreq->iocb) {
 220		long res = (long) dreq->error;
 221		if (!res)
 222			res = (long) dreq->count;
 223		aio_complete(dreq->iocb, res, 0);
 
 
 224	}
 225	complete_all(&dreq->completion);
 226
 227	nfs_direct_req_release(dreq);
 228}
 229
 230/*
 231 * We must hold a reference to all the pages in this direct read request
 232 * until the RPCs complete.  This could be long *after* we are woken up in
 233 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
 234 */
 235static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
 236{
 237	struct nfs_read_data *data = calldata;
 238
 239	nfs_readpage_result(task, data);
 240}
 241
 242static void nfs_direct_read_release(void *calldata)
 243{
 244
 245	struct nfs_read_data *data = calldata;
 246	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
 247	int status = data->task.tk_status;
 248
 249	spin_lock(&dreq->lock);
 250	if (unlikely(status < 0)) {
 251		dreq->error = status;
 252		spin_unlock(&dreq->lock);
 253	} else {
 254		dreq->count += data->res.count;
 255		spin_unlock(&dreq->lock);
 256		nfs_direct_dirty_pages(data->pagevec,
 257				data->args.pgbase,
 258				data->res.count);
 259	}
 260	nfs_direct_release_pages(data->pagevec, data->npages);
 261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262	if (put_dreq(dreq))
 263		nfs_direct_complete(dreq);
 264	nfs_readdata_free(data);
 
 
 
 
 
 
 
 
 
 
 
 265}
 266
 267static const struct rpc_call_ops nfs_read_direct_ops = {
 268#if defined(CONFIG_NFS_V4_1)
 269	.rpc_call_prepare = nfs_read_prepare,
 270#endif /* CONFIG_NFS_V4_1 */
 271	.rpc_call_done = nfs_direct_read_result,
 272	.rpc_release = nfs_direct_read_release,
 
 
 
 273};
 274
 275/*
 276 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 277 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 278 * bail and stop sending more reads.  Read length accounting is
 279 * handled automatically by nfs_direct_read_result().  Otherwise, if
 280 * no requests have been sent, just return an error.
 281 */
 282static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
 283						const struct iovec *iov,
 284						loff_t pos)
 285{
 286	struct nfs_open_context *ctx = dreq->ctx;
 287	struct inode *inode = ctx->dentry->d_inode;
 288	unsigned long user_addr = (unsigned long)iov->iov_base;
 289	size_t count = iov->iov_len;
 290	size_t rsize = NFS_SERVER(inode)->rsize;
 291	struct rpc_task *task;
 292	struct rpc_message msg = {
 293		.rpc_cred = ctx->cred,
 294	};
 295	struct rpc_task_setup task_setup_data = {
 296		.rpc_client = NFS_CLIENT(inode),
 297		.rpc_message = &msg,
 298		.callback_ops = &nfs_read_direct_ops,
 299		.workqueue = nfsiod_workqueue,
 300		.flags = RPC_TASK_ASYNC,
 301	};
 302	unsigned int pgbase;
 303	int result;
 304	ssize_t started = 0;
 305
 306	do {
 307		struct nfs_read_data *data;
 308		size_t bytes;
 309
 310		pgbase = user_addr & ~PAGE_MASK;
 311		bytes = min(rsize,count);
 312
 313		result = -ENOMEM;
 314		data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
 315		if (unlikely(!data))
 316			break;
 317
 318		down_read(&current->mm->mmap_sem);
 319		result = get_user_pages(current, current->mm, user_addr,
 320					data->npages, 1, 0, data->pagevec, NULL);
 321		up_read(&current->mm->mmap_sem);
 322		if (result < 0) {
 323			nfs_readdata_free(data);
 324			break;
 325		}
 326		if ((unsigned)result < data->npages) {
 327			bytes = result * PAGE_SIZE;
 328			if (bytes <= pgbase) {
 329				nfs_direct_release_pages(data->pagevec, result);
 330				nfs_readdata_free(data);
 331				break;
 332			}
 333			bytes -= pgbase;
 334			data->npages = result;
 335		}
 336
 337		get_dreq(dreq);
 338
 339		data->req = (struct nfs_page *) dreq;
 340		data->inode = inode;
 341		data->cred = msg.rpc_cred;
 342		data->args.fh = NFS_FH(inode);
 343		data->args.context = ctx;
 344		data->args.lock_context = dreq->l_ctx;
 345		data->args.offset = pos;
 346		data->args.pgbase = pgbase;
 347		data->args.pages = data->pagevec;
 348		data->args.count = bytes;
 349		data->res.fattr = &data->fattr;
 350		data->res.eof = 0;
 351		data->res.count = bytes;
 352		nfs_fattr_init(&data->fattr);
 353		msg.rpc_argp = &data->args;
 354		msg.rpc_resp = &data->res;
 355
 356		task_setup_data.task = &data->task;
 357		task_setup_data.callback_data = data;
 358		NFS_PROTO(inode)->read_setup(data, &msg);
 359
 360		task = rpc_run_task(&task_setup_data);
 361		if (IS_ERR(task))
 362			break;
 363		rpc_put_task(task);
 364
 365		dprintk("NFS: %5u initiated direct read call "
 366			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
 367				data->task.tk_pid,
 368				inode->i_sb->s_id,
 369				(long long)NFS_FILEID(inode),
 370				bytes,
 371				(unsigned long long)data->args.offset);
 372
 373		started += bytes;
 374		user_addr += bytes;
 375		pos += bytes;
 376		/* FIXME: Remove this unnecessary math from final patch */
 377		pgbase += bytes;
 378		pgbase &= ~PAGE_MASK;
 379		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
 380
 381		count -= bytes;
 382	} while (count != 0);
 383
 384	if (started)
 385		return started;
 386	return result < 0 ? (ssize_t) result : -EFAULT;
 387}
 388
 389static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 390					      const struct iovec *iov,
 391					      unsigned long nr_segs,
 392					      loff_t pos)
 393{
 
 
 394	ssize_t result = -EINVAL;
 395	size_t requested_bytes = 0;
 396	unsigned long seg;
 397
 
 
 398	get_dreq(dreq);
 
 
 399
 400	for (seg = 0; seg < nr_segs; seg++) {
 401		const struct iovec *vec = &iov[seg];
 402		result = nfs_direct_read_schedule_segment(dreq, vec, pos);
 
 
 
 
 
 403		if (result < 0)
 404			break;
 405		requested_bytes += result;
 406		if ((size_t)result < vec->iov_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407			break;
 408		pos += vec->iov_len;
 409	}
 410
 
 
 411	/*
 412	 * If no bytes were started, return the error, and let the
 413	 * generic layer handle the completion.
 414	 */
 415	if (requested_bytes == 0) {
 
 416		nfs_direct_req_release(dreq);
 417		return result < 0 ? result : -EIO;
 418	}
 419
 420	if (put_dreq(dreq))
 421		nfs_direct_complete(dreq);
 422	return 0;
 423}
 424
 425static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
 426			       unsigned long nr_segs, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427{
 428	ssize_t result = -ENOMEM;
 429	struct inode *inode = iocb->ki_filp->f_mapping->host;
 
 430	struct nfs_direct_req *dreq;
 
 
 
 
 
 
 
 
 
 
 
 431
 
 
 
 432	dreq = nfs_direct_req_alloc();
 433	if (dreq == NULL)
 434		goto out;
 435
 436	dreq->inode = inode;
 
 
 437	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 438	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
 439	if (dreq->l_ctx == NULL)
 
 
 440		goto out_release;
 
 
 441	if (!is_sync_kiocb(iocb))
 442		dreq->iocb = iocb;
 443
 444	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
 445	if (!result)
 
 
 
 
 
 
 
 
 
 446		result = nfs_direct_wait(dreq);
 
 
 
 
 
 
 
 
 
 447out_release:
 448	nfs_direct_req_release(dreq);
 449out:
 450	return result;
 451}
 452
 453static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
 
 454{
 455	while (!list_empty(&dreq->rewrite_list)) {
 456		struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
 457		list_del(&data->pages);
 458		nfs_direct_release_pages(data->pagevec, data->npages);
 459		nfs_writedata_free(data);
 
 
 
 
 
 
 
 460	}
 461}
 462
 463#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
 
 
 
 
 
 
 
 
 
 
 464static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 465{
 466	struct inode *inode = dreq->inode;
 467	struct list_head *p;
 468	struct nfs_write_data *data;
 469	struct rpc_task *task;
 470	struct rpc_message msg = {
 471		.rpc_cred = dreq->ctx->cred,
 472	};
 473	struct rpc_task_setup task_setup_data = {
 474		.rpc_client = NFS_CLIENT(inode),
 475		.rpc_message = &msg,
 476		.callback_ops = &nfs_write_direct_ops,
 477		.workqueue = nfsiod_workqueue,
 478		.flags = RPC_TASK_ASYNC,
 479	};
 480
 481	dreq->count = 0;
 482	get_dreq(dreq);
 483
 484	list_for_each(p, &dreq->rewrite_list) {
 485		data = list_entry(p, struct nfs_write_data, pages);
 486
 487		get_dreq(dreq);
 
 
 
 
 
 488
 489		/* Use stable writes */
 490		data->args.stable = NFS_FILE_SYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491
 492		/*
 493		 * Reset data->res.
 494		 */
 495		nfs_fattr_init(&data->fattr);
 496		data->res.count = data->args.count;
 497		memset(&data->verf, 0, sizeof(data->verf));
 498
 499		/*
 500		 * Reuse data->task; data->args should not have changed
 501		 * since the original request was sent.
 502		 */
 503		task_setup_data.task = &data->task;
 504		task_setup_data.callback_data = data;
 505		msg.rpc_argp = &data->args;
 506		msg.rpc_resp = &data->res;
 507		NFS_PROTO(inode)->write_setup(data, &msg);
 508
 509		/*
 510		 * We're called via an RPC callback, so BKL is already held.
 511		 */
 512		task = rpc_run_task(&task_setup_data);
 513		if (!IS_ERR(task))
 514			rpc_put_task(task);
 515
 516		dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
 517				data->task.tk_pid,
 518				inode->i_sb->s_id,
 519				(long long)NFS_FILEID(inode),
 520				data->args.count,
 521				(unsigned long long)data->args.offset);
 522	}
 523
 524	if (put_dreq(dreq))
 525		nfs_direct_write_complete(dreq, inode);
 526}
 527
 528static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
 529{
 530	struct nfs_write_data *data = calldata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531
 532	/* Call the NFS version-specific code */
 533	NFS_PROTO(data->inode)->commit_done(task, data);
 534}
 535
 536static void nfs_direct_commit_release(void *calldata)
 
 537{
 538	struct nfs_write_data *data = calldata;
 539	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
 540	int status = data->task.tk_status;
 541
 542	if (status < 0) {
 543		dprintk("NFS: %5u commit failed with error %d.\n",
 544				data->task.tk_pid, status);
 545		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 546	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
 547		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 548		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 549	}
 550
 551	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 552	nfs_direct_write_complete(dreq, data->inode);
 553	nfs_commit_free(data);
 554}
 555
 556static const struct rpc_call_ops nfs_commit_direct_ops = {
 557#if defined(CONFIG_NFS_V4_1)
 558	.rpc_call_prepare = nfs_write_prepare,
 559#endif /* CONFIG_NFS_V4_1 */
 560	.rpc_call_done = nfs_direct_commit_result,
 561	.rpc_release = nfs_direct_commit_release,
 562};
 563
 564static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 565{
 566	struct nfs_write_data *data = dreq->commit_data;
 567	struct rpc_task *task;
 568	struct rpc_message msg = {
 569		.rpc_argp = &data->args,
 570		.rpc_resp = &data->res,
 571		.rpc_cred = dreq->ctx->cred,
 572	};
 573	struct rpc_task_setup task_setup_data = {
 574		.task = &data->task,
 575		.rpc_client = NFS_CLIENT(dreq->inode),
 576		.rpc_message = &msg,
 577		.callback_ops = &nfs_commit_direct_ops,
 578		.callback_data = data,
 579		.workqueue = nfsiod_workqueue,
 580		.flags = RPC_TASK_ASYNC,
 581	};
 582
 583	data->inode = dreq->inode;
 584	data->cred = msg.rpc_cred;
 585
 586	data->args.fh = NFS_FH(data->inode);
 587	data->args.offset = 0;
 588	data->args.count = 0;
 589	data->args.context = dreq->ctx;
 590	data->args.lock_context = dreq->l_ctx;
 591	data->res.count = 0;
 592	data->res.fattr = &data->fattr;
 593	data->res.verf = &data->verf;
 594	nfs_fattr_init(&data->fattr);
 595
 596	NFS_PROTO(data->inode)->commit_setup(data, &msg);
 597
 598	/* Note: task.tk_ops->rpc_release will free dreq->commit_data */
 599	dreq->commit_data = NULL;
 600
 601	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
 602
 603	task = rpc_run_task(&task_setup_data);
 604	if (!IS_ERR(task))
 605		rpc_put_task(task);
 606}
 607
 608static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 609{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 610	int flags = dreq->flags;
 611
 612	dreq->flags = 0;
 613	switch (flags) {
 614		case NFS_ODIRECT_DO_COMMIT:
 615			nfs_direct_commit_schedule(dreq);
 616			break;
 617		case NFS_ODIRECT_RESCHED_WRITES:
 618			nfs_direct_write_reschedule(dreq);
 619			break;
 620		default:
 621			if (dreq->commit_data != NULL)
 622				nfs_commit_free(dreq->commit_data);
 623			nfs_direct_free_writedata(dreq);
 624			nfs_zap_mapping(inode, inode->i_mapping);
 625			nfs_direct_complete(dreq);
 626	}
 627}
 628
 629static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
 630{
 631	dreq->commit_data = nfs_commitdata_alloc();
 632	if (dreq->commit_data != NULL)
 633		dreq->commit_data->req = (struct nfs_page *) dreq;
 634}
 635#else
 636static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
 637{
 638	dreq->commit_data = NULL;
 639}
 640
 641static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 642{
 643	nfs_direct_free_writedata(dreq);
 644	nfs_zap_mapping(inode, inode->i_mapping);
 645	nfs_direct_complete(dreq);
 646}
 647#endif
 648
 649static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
 650{
 651	struct nfs_write_data *data = calldata;
 
 
 
 652
 653	nfs_writeback_done(task, data);
 654}
 655
 656/*
 657 * NB: Return the value of the first error return code.  Subsequent
 658 *     errors after the first one are ignored.
 659 */
 660static void nfs_direct_write_release(void *calldata)
 661{
 662	struct nfs_write_data *data = calldata;
 663	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
 664	int status = data->task.tk_status;
 665
 666	spin_lock(&dreq->lock);
 
 
 
 
 667
 668	if (unlikely(status < 0)) {
 669		/* An error has occurred, so we should not commit */
 670		dreq->flags = 0;
 671		dreq->error = status;
 
 672	}
 673	if (unlikely(dreq->error != 0))
 674		goto out_unlock;
 675
 676	dreq->count += data->res.count;
 677
 678	if (data->res.verf->committed != NFS_FILE_SYNC) {
 679		switch (dreq->flags) {
 680			case 0:
 681				memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
 682				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 683				break;
 684			case NFS_ODIRECT_DO_COMMIT:
 685				if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
 686					dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
 687					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 688				}
 689		}
 
 690	}
 691out_unlock:
 692	spin_unlock(&dreq->lock);
 693
 
 694	if (put_dreq(dreq))
 695		nfs_direct_write_complete(dreq, data->inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696}
 697
 698static const struct rpc_call_ops nfs_write_direct_ops = {
 699#if defined(CONFIG_NFS_V4_1)
 700	.rpc_call_prepare = nfs_write_prepare,
 701#endif /* CONFIG_NFS_V4_1 */
 702	.rpc_call_done = nfs_direct_write_result,
 703	.rpc_release = nfs_direct_write_release,
 704};
 705
 
 
 
 
 
 706/*
 707 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 708 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 709 * bail and stop sending more writes.  Write length accounting is
 710 * handled automatically by nfs_direct_write_result().  Otherwise, if
 711 * no requests have been sent, just return an error.
 712 */
 713static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
 714						 const struct iovec *iov,
 715						 loff_t pos, int sync)
 716{
 717	struct nfs_open_context *ctx = dreq->ctx;
 718	struct inode *inode = ctx->dentry->d_inode;
 719	unsigned long user_addr = (unsigned long)iov->iov_base;
 720	size_t count = iov->iov_len;
 721	struct rpc_task *task;
 722	struct rpc_message msg = {
 723		.rpc_cred = ctx->cred,
 724	};
 725	struct rpc_task_setup task_setup_data = {
 726		.rpc_client = NFS_CLIENT(inode),
 727		.rpc_message = &msg,
 728		.callback_ops = &nfs_write_direct_ops,
 729		.workqueue = nfsiod_workqueue,
 730		.flags = RPC_TASK_ASYNC,
 731	};
 732	size_t wsize = NFS_SERVER(inode)->wsize;
 733	unsigned int pgbase;
 734	int result;
 735	ssize_t started = 0;
 736
 737	do {
 738		struct nfs_write_data *data;
 739		size_t bytes;
 
 
 740
 741		pgbase = user_addr & ~PAGE_MASK;
 742		bytes = min(wsize,count);
 
 
 
 
 743
 744		result = -ENOMEM;
 745		data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
 746		if (unlikely(!data))
 747			break;
 748
 749		down_read(&current->mm->mmap_sem);
 750		result = get_user_pages(current, current->mm, user_addr,
 751					data->npages, 0, 0, data->pagevec, NULL);
 752		up_read(&current->mm->mmap_sem);
 753		if (result < 0) {
 754			nfs_writedata_free(data);
 755			break;
 756		}
 757		if ((unsigned)result < data->npages) {
 758			bytes = result * PAGE_SIZE;
 759			if (bytes <= pgbase) {
 760				nfs_direct_release_pages(data->pagevec, result);
 761				nfs_writedata_free(data);
 762				break;
 763			}
 764			bytes -= pgbase;
 765			data->npages = result;
 766		}
 767
 768		get_dreq(dreq);
 769
 770		list_move_tail(&data->pages, &dreq->rewrite_list);
 771
 772		data->req = (struct nfs_page *) dreq;
 773		data->inode = inode;
 774		data->cred = msg.rpc_cred;
 775		data->args.fh = NFS_FH(inode);
 776		data->args.context = ctx;
 777		data->args.lock_context = dreq->l_ctx;
 778		data->args.offset = pos;
 779		data->args.pgbase = pgbase;
 780		data->args.pages = data->pagevec;
 781		data->args.count = bytes;
 782		data->args.stable = sync;
 783		data->res.fattr = &data->fattr;
 784		data->res.count = bytes;
 785		data->res.verf = &data->verf;
 786		nfs_fattr_init(&data->fattr);
 787
 788		task_setup_data.task = &data->task;
 789		task_setup_data.callback_data = data;
 790		msg.rpc_argp = &data->args;
 791		msg.rpc_resp = &data->res;
 792		NFS_PROTO(inode)->write_setup(data, &msg);
 793
 794		task = rpc_run_task(&task_setup_data);
 795		if (IS_ERR(task))
 796			break;
 797		rpc_put_task(task);
 798
 799		dprintk("NFS: %5u initiated direct write call "
 800			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
 801				data->task.tk_pid,
 802				inode->i_sb->s_id,
 803				(long long)NFS_FILEID(inode),
 804				bytes,
 805				(unsigned long long)data->args.offset);
 806
 807		started += bytes;
 808		user_addr += bytes;
 809		pos += bytes;
 810
 811		/* FIXME: Remove this useless math from the final patch */
 812		pgbase += bytes;
 813		pgbase &= ~PAGE_MASK;
 814		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
 815
 816		count -= bytes;
 817	} while (count != 0);
 818
 819	if (started)
 820		return started;
 821	return result < 0 ? (ssize_t) result : -EFAULT;
 822}
 823
 824static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 825					       const struct iovec *iov,
 826					       unsigned long nr_segs,
 827					       loff_t pos, int sync)
 828{
 829	ssize_t result = 0;
 830	size_t requested_bytes = 0;
 831	unsigned long seg;
 832
 833	get_dreq(dreq);
 834
 835	for (seg = 0; seg < nr_segs; seg++) {
 836		const struct iovec *vec = &iov[seg];
 837		result = nfs_direct_write_schedule_segment(dreq, vec,
 838							   pos, sync);
 
 
 
 
 
 
 
 
 
 
 
 
 839		if (result < 0)
 840			break;
 841		requested_bytes += result;
 842		if ((size_t)result < vec->iov_len)
 843			break;
 844		pos += vec->iov_len;
 845	}
 
 846
 847	/*
 848	 * If no bytes were started, return the error, and let the
 849	 * generic layer handle the completion.
 850	 */
 851	if (requested_bytes == 0) {
 
 852		nfs_direct_req_release(dreq);
 853		return result < 0 ? result : -EIO;
 854	}
 855
 856	if (put_dreq(dreq))
 857		nfs_direct_write_complete(dreq, dreq->inode);
 858	return 0;
 859}
 860
 861static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
 862				unsigned long nr_segs, loff_t pos,
 863				size_t count)
 864{
 865	ssize_t result = -ENOMEM;
 866	struct inode *inode = iocb->ki_filp->f_mapping->host;
 867	struct nfs_direct_req *dreq;
 868	size_t wsize = NFS_SERVER(inode)->wsize;
 869	int sync = NFS_UNSTABLE;
 870
 871	dreq = nfs_direct_req_alloc();
 872	if (!dreq)
 873		goto out;
 874	nfs_alloc_commit_data(dreq);
 875
 876	if (dreq->commit_data == NULL || count <= wsize)
 877		sync = NFS_FILE_SYNC;
 878
 879	dreq->inode = inode;
 880	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 881	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
 882	if (dreq->l_ctx == NULL)
 883		goto out_release;
 884	if (!is_sync_kiocb(iocb))
 885		dreq->iocb = iocb;
 886
 887	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
 888	if (!result)
 889		result = nfs_direct_wait(dreq);
 890out_release:
 891	nfs_direct_req_release(dreq);
 892out:
 893	return result;
 894}
 895
 896/**
 897 * nfs_file_direct_read - file direct read operation for NFS files
 898 * @iocb: target I/O control block
 899 * @iov: vector of user buffers into which to read data
 900 * @nr_segs: size of iov vector
 901 * @pos: byte offset in file where reading starts
 902 *
 903 * We use this function for direct reads instead of calling
 904 * generic_file_aio_read() in order to avoid gfar's check to see if
 905 * the request starts before the end of the file.  For that check
 906 * to work, we must generate a GETATTR before each direct read, and
 907 * even then there is a window between the GETATTR and the subsequent
 908 * READ where the file size could change.  Our preference is simply
 909 * to do all reads the application wants, and the server will take
 910 * care of managing the end of file boundary.
 911 *
 912 * This function also eliminates unnecessarily updating the file's
 913 * atime locally, as the NFS server sets the file's atime, and this
 914 * client must read the updated atime from the server back into its
 915 * cache.
 916 */
 917ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
 918				unsigned long nr_segs, loff_t pos)
 919{
 920	ssize_t retval = -EINVAL;
 921	struct file *file = iocb->ki_filp;
 922	struct address_space *mapping = file->f_mapping;
 923	size_t count;
 924
 925	count = iov_length(iov, nr_segs);
 926	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 927
 928	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
 929		file->f_path.dentry->d_parent->d_name.name,
 930		file->f_path.dentry->d_name.name,
 931		count, (long long) pos);
 932
 933	retval = 0;
 934	if (!count)
 935		goto out;
 936
 937	retval = nfs_sync_mapping(mapping);
 938	if (retval)
 939		goto out;
 940
 941	task_io_account_read(count);
 942
 943	retval = nfs_direct_read(iocb, iov, nr_segs, pos);
 944	if (retval > 0)
 945		iocb->ki_pos = pos + retval;
 946
 947out:
 948	return retval;
 949}
 950
 951/**
 952 * nfs_file_direct_write - file direct write operation for NFS files
 953 * @iocb: target I/O control block
 954 * @iov: vector of user buffers from which to write data
 955 * @nr_segs: size of iov vector
 956 * @pos: byte offset in file where writing starts
 957 *
 958 * We use this function for direct writes instead of calling
 959 * generic_file_aio_write() in order to avoid taking the inode
 960 * semaphore and updating the i_size.  The NFS server will set
 961 * the new i_size and this client must read the updated size
 962 * back into its cache.  We let the server do generic write
 963 * parameter checking and report problems.
 964 *
 965 * We eliminate local atime updates, see direct read above.
 966 *
 967 * We avoid unnecessary page cache invalidations for normal cached
 968 * readers of this file.
 969 *
 970 * Note that O_APPEND is not supported for NFS direct writes, as there
 971 * is no atomic O_APPEND write facility in the NFS protocol.
 972 */
 973ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 974				unsigned long nr_segs, loff_t pos)
 975{
 976	ssize_t retval = -EINVAL;
 
 977	struct file *file = iocb->ki_filp;
 978	struct address_space *mapping = file->f_mapping;
 979	size_t count;
 
 
 
 
 
 
 980
 981	count = iov_length(iov, nr_segs);
 
 
 
 982	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 983
 984	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
 985		file->f_path.dentry->d_parent->d_name.name,
 986		file->f_path.dentry->d_name.name,
 987		count, (long long) pos);
 988
 989	retval = generic_write_checks(file, &pos, &count, 0);
 990	if (retval)
 991		goto out;
 992
 993	retval = -EINVAL;
 994	if ((ssize_t) count < 0)
 995		goto out;
 996	retval = 0;
 997	if (!count)
 998		goto out;
 999
1000	retval = nfs_sync_mapping(mapping);
1001	if (retval)
1002		goto out;
 
 
 
 
 
 
 
 
 
 
 
1003
1004	task_io_account_write(count);
1005
1006	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
1007
1008	if (retval > 0)
1009		iocb->ki_pos = pos + retval;
 
 
 
 
1010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011out:
1012	return retval;
1013}
1014
1015/**
1016 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1017 *
1018 */
1019int __init nfs_init_directcache(void)
1020{
1021	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1022						sizeof(struct nfs_direct_req),
1023						0, (SLAB_RECLAIM_ACCOUNT|
1024							SLAB_MEM_SPREAD),
1025						NULL);
1026	if (nfs_direct_cachep == NULL)
1027		return -ENOMEM;
1028
1029	return 0;
1030}
1031
1032/**
1033 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1034 *
1035 */
1036void nfs_destroy_directcache(void)
1037{
1038	kmem_cache_destroy(nfs_direct_cachep);
1039}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * linux/fs/nfs/direct.c
  4 *
  5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  6 *
  7 * High-performance uncached I/O for the Linux NFS client
  8 *
  9 * There are important applications whose performance or correctness
 10 * depends on uncached access to file data.  Database clusters
 11 * (multiple copies of the same instance running on separate hosts)
 12 * implement their own cache coherency protocol that subsumes file
 13 * system cache protocols.  Applications that process datasets
 14 * considerably larger than the client's memory do not always benefit
 15 * from a local cache.  A streaming video server, for instance, has no
 16 * need to cache the contents of a file.
 17 *
 18 * When an application requests uncached I/O, all read and write requests
 19 * are made directly to the server; data stored or fetched via these
 20 * requests is not cached in the Linux page cache.  The client does not
 21 * correct unaligned requests from applications.  All requested bytes are
 22 * held on permanent storage before a direct write system call returns to
 23 * an application.
 24 *
 25 * Solaris implements an uncached I/O facility called directio() that
 26 * is used for backups and sequential I/O to very large files.  Solaris
 27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
 28 * an undocumented mount option.
 29 *
 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
 31 * help from Andrew Morton.
 32 *
 33 * 18 Dec 2001	Initial implementation for 2.4  --cel
 34 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
 35 * 08 Jun 2003	Port to 2.5 APIs  --cel
 36 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
 37 * 15 Sep 2004	Parallel async reads  --cel
 38 * 04 May 2005	support O_DIRECT with aio  --cel
 39 *
 40 */
 41
 42#include <linux/errno.h>
 43#include <linux/sched.h>
 44#include <linux/kernel.h>
 45#include <linux/file.h>
 46#include <linux/pagemap.h>
 47#include <linux/kref.h>
 48#include <linux/slab.h>
 49#include <linux/task_io_accounting_ops.h>
 50#include <linux/module.h>
 51
 52#include <linux/nfs_fs.h>
 53#include <linux/nfs_page.h>
 54#include <linux/sunrpc/clnt.h>
 55
 56#include <linux/uaccess.h>
 
 57#include <linux/atomic.h>
 58
 59#include "internal.h"
 60#include "iostat.h"
 61#include "pnfs.h"
 62
 63#define NFSDBG_FACILITY		NFSDBG_VFS
 64
 65static struct kmem_cache *nfs_direct_cachep;
 66
 
 
 
 67struct nfs_direct_req {
 68	struct kref		kref;		/* release manager */
 69
 70	/* I/O parameters */
 71	struct nfs_open_context	*ctx;		/* file open context info */
 72	struct nfs_lock_context *l_ctx;		/* Lock context info */
 73	struct kiocb *		iocb;		/* controlling i/o request */
 74	struct inode *		inode;		/* target file of i/o */
 75
 76	/* completion state */
 77	atomic_t		io_count;	/* i/os we're waiting for */
 78	spinlock_t		lock;		/* protect completion state */
 79
 80	loff_t			io_start;	/* Start offset for I/O */
 81	ssize_t			count,		/* bytes actually processed */
 82				max_count,	/* max expected count */
 83				bytes_left,	/* bytes left to be sent */
 84				error;		/* any reported error */
 85	struct completion	completion;	/* wait for i/o completion */
 86
 87	/* commit state */
 88	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
 89	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
 90	struct work_struct	work;
 91	int			flags;
 92	/* for write */
 93#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
 94#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
 95	/* for read */
 96#define NFS_ODIRECT_SHOULD_DIRTY	(3)	/* dirty user-space page after read */
 97#define NFS_ODIRECT_DONE		INT_MAX	/* write verification failed */
 98};
 99
100static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
101static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
102static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
103static void nfs_direct_write_schedule_work(struct work_struct *work);
104
105static inline void get_dreq(struct nfs_direct_req *dreq)
106{
107	atomic_inc(&dreq->io_count);
108}
109
110static inline int put_dreq(struct nfs_direct_req *dreq)
111{
112	return atomic_dec_and_test(&dreq->io_count);
113}
114
115static void
116nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
117			    const struct nfs_pgio_header *hdr,
118			    ssize_t dreq_len)
119{
120	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
121	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
122		return;
123	if (dreq->max_count >= dreq_len) {
124		dreq->max_count = dreq_len;
125		if (dreq->count > dreq_len)
126			dreq->count = dreq_len;
127
128		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
129			dreq->error = hdr->error;
130		else /* Clear outstanding error if this is EOF */
131			dreq->error = 0;
132	}
133}
134
135static void
136nfs_direct_count_bytes(struct nfs_direct_req *dreq,
137		       const struct nfs_pgio_header *hdr)
138{
139	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
140	ssize_t dreq_len = 0;
141
142	if (hdr_end > dreq->io_start)
143		dreq_len = hdr_end - dreq->io_start;
144
145	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
146
147	if (dreq_len > dreq->max_count)
148		dreq_len = dreq->max_count;
149
150	if (dreq->count < dreq_len)
151		dreq->count = dreq_len;
152}
153
154/**
155 * nfs_direct_IO - NFS address space operation for direct I/O
 
156 * @iocb: target I/O control block
157 * @iter: I/O buffer
 
 
158 *
159 * The presence of this routine in the address space ops vector means
160 * the NFS client supports direct I/O. However, for most direct IO, we
161 * shunt off direct read and write requests before the VFS gets them,
162 * so this method is only ever called for swap.
163 */
164ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
165{
166	struct inode *inode = iocb->ki_filp->f_mapping->host;
 
 
167
168	/* we only support swap file calling nfs_direct_IO */
169	if (!IS_SWAPFILE(inode))
170		return 0;
171
172	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
173
174	if (iov_iter_rw(iter) == READ)
175		return nfs_file_direct_read(iocb, iter);
176	return nfs_file_direct_write(iocb, iter);
177}
178
179static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
180{
 
181	unsigned int i;
182	for (i = 0; i < npages; i++)
183		put_page(pages[i]);
 
 
 
 
 
 
 
 
184}
185
186void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
187			      struct nfs_direct_req *dreq)
188{
189	cinfo->inode = dreq->inode;
190	cinfo->mds = &dreq->mds_cinfo;
191	cinfo->ds = &dreq->ds_cinfo;
192	cinfo->dreq = dreq;
193	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
194}
195
196static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
197{
198	struct nfs_direct_req *dreq;
199
200	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
201	if (!dreq)
202		return NULL;
203
204	kref_init(&dreq->kref);
205	kref_get(&dreq->kref);
206	init_completion(&dreq->completion);
207	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
208	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
209	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 
210	spin_lock_init(&dreq->lock);
 
 
 
 
211
212	return dreq;
213}
214
215static void nfs_direct_req_free(struct kref *kref)
216{
217	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
218
219	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
220	if (dreq->l_ctx != NULL)
221		nfs_put_lock_context(dreq->l_ctx);
222	if (dreq->ctx != NULL)
223		put_nfs_open_context(dreq->ctx);
224	kmem_cache_free(nfs_direct_cachep, dreq);
225}
226
227static void nfs_direct_req_release(struct nfs_direct_req *dreq)
228{
229	kref_put(&dreq->kref, nfs_direct_req_free);
230}
231
232ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
233{
234	return dreq->bytes_left;
235}
236EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
237
238/*
239 * Collects and returns the final error value/byte-count.
240 */
241static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
242{
243	ssize_t result = -EIOCBQUEUED;
244
245	/* Async requests don't wait here */
246	if (dreq->iocb)
247		goto out;
248
249	result = wait_for_completion_killable(&dreq->completion);
250
251	if (!result) {
252		result = dreq->count;
253		WARN_ON_ONCE(dreq->count < 0);
254	}
255	if (!result)
256		result = dreq->error;
 
 
257
258out:
259	return (ssize_t) result;
260}
261
262/*
263 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
264 * the iocb is still valid here if this is a synchronous request.
265 */
266static void nfs_direct_complete(struct nfs_direct_req *dreq)
267{
268	struct inode *inode = dreq->inode;
269
270	inode_dio_end(inode);
271
272	if (dreq->iocb) {
273		long res = (long) dreq->error;
274		if (dreq->count != 0) {
275			res = (long) dreq->count;
276			WARN_ON_ONCE(dreq->count < 0);
277		}
278		dreq->iocb->ki_complete(dreq->iocb, res, 0);
279	}
 
 
 
 
280
281	complete(&dreq->completion);
 
 
 
 
 
 
 
282
283	nfs_direct_req_release(dreq);
284}
285
286static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
287{
288	unsigned long bytes = 0;
289	struct nfs_direct_req *dreq = hdr->dreq;
 
 
290
291	spin_lock(&dreq->lock);
292	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
 
 
 
 
293		spin_unlock(&dreq->lock);
294		goto out_put;
 
 
295	}
 
296
297	nfs_direct_count_bytes(dreq, hdr);
298	spin_unlock(&dreq->lock);
299
300	while (!list_empty(&hdr->pages)) {
301		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
302		struct page *page = req->wb_page;
303
304		if (!PageCompound(page) && bytes < hdr->good_bytes &&
305		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
306			set_page_dirty(page);
307		bytes += req->wb_bytes;
308		nfs_list_remove_request(req);
309		nfs_release_request(req);
310	}
311out_put:
312	if (put_dreq(dreq))
313		nfs_direct_complete(dreq);
314	hdr->release(hdr);
315}
316
317static void nfs_read_sync_pgio_error(struct list_head *head, int error)
318{
319	struct nfs_page *req;
320
321	while (!list_empty(head)) {
322		req = nfs_list_entry(head->next);
323		nfs_list_remove_request(req);
324		nfs_release_request(req);
325	}
326}
327
328static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
329{
330	get_dreq(hdr->dreq);
331}
332
333static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
334	.error_cleanup = nfs_read_sync_pgio_error,
335	.init_hdr = nfs_direct_pgio_init,
336	.completion = nfs_direct_read_completion,
337};
338
339/*
340 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
341 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
342 * bail and stop sending more reads.  Read length accounting is
343 * handled automatically by nfs_direct_read_result().  Otherwise, if
344 * no requests have been sent, just return an error.
345 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346
347static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
348					      struct iov_iter *iter,
 
349					      loff_t pos)
350{
351	struct nfs_pageio_descriptor desc;
352	struct inode *inode = dreq->inode;
353	ssize_t result = -EINVAL;
354	size_t requested_bytes = 0;
355	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
356
357	nfs_pageio_init_read(&desc, dreq->inode, false,
358			     &nfs_direct_read_completion_ops);
359	get_dreq(dreq);
360	desc.pg_dreq = dreq;
361	inode_dio_begin(inode);
362
363	while (iov_iter_count(iter)) {
364		struct page **pagevec;
365		size_t bytes;
366		size_t pgbase;
367		unsigned npages, i;
368
369		result = iov_iter_get_pages_alloc(iter, &pagevec, 
370						  rsize, &pgbase);
371		if (result < 0)
372			break;
373	
374		bytes = result;
375		iov_iter_advance(iter, bytes);
376		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
377		for (i = 0; i < npages; i++) {
378			struct nfs_page *req;
379			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
380			/* XXX do we need to do the eof zeroing found in async_filler? */
381			req = nfs_create_request(dreq->ctx, pagevec[i],
382						 pgbase, req_len);
383			if (IS_ERR(req)) {
384				result = PTR_ERR(req);
385				break;
386			}
387			req->wb_index = pos >> PAGE_SHIFT;
388			req->wb_offset = pos & ~PAGE_MASK;
389			if (!nfs_pageio_add_request(&desc, req)) {
390				result = desc.pg_error;
391				nfs_release_request(req);
392				break;
393			}
394			pgbase = 0;
395			bytes -= req_len;
396			requested_bytes += req_len;
397			pos += req_len;
398			dreq->bytes_left -= req_len;
399		}
400		nfs_direct_release_pages(pagevec, npages);
401		kvfree(pagevec);
402		if (result < 0)
403			break;
 
404	}
405
406	nfs_pageio_complete(&desc);
407
408	/*
409	 * If no bytes were started, return the error, and let the
410	 * generic layer handle the completion.
411	 */
412	if (requested_bytes == 0) {
413		inode_dio_end(inode);
414		nfs_direct_req_release(dreq);
415		return result < 0 ? result : -EIO;
416	}
417
418	if (put_dreq(dreq))
419		nfs_direct_complete(dreq);
420	return requested_bytes;
421}
422
423/**
424 * nfs_file_direct_read - file direct read operation for NFS files
425 * @iocb: target I/O control block
426 * @iter: vector of user buffers into which to read data
427 *
428 * We use this function for direct reads instead of calling
429 * generic_file_aio_read() in order to avoid gfar's check to see if
430 * the request starts before the end of the file.  For that check
431 * to work, we must generate a GETATTR before each direct read, and
432 * even then there is a window between the GETATTR and the subsequent
433 * READ where the file size could change.  Our preference is simply
434 * to do all reads the application wants, and the server will take
435 * care of managing the end of file boundary.
436 *
437 * This function also eliminates unnecessarily updating the file's
438 * atime locally, as the NFS server sets the file's atime, and this
439 * client must read the updated atime from the server back into its
440 * cache.
441 */
442ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter)
443{
444	struct file *file = iocb->ki_filp;
445	struct address_space *mapping = file->f_mapping;
446	struct inode *inode = mapping->host;
447	struct nfs_direct_req *dreq;
448	struct nfs_lock_context *l_ctx;
449	ssize_t result, requested;
450	size_t count = iov_iter_count(iter);
451	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
452
453	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
454		file, count, (long long) iocb->ki_pos);
455
456	result = 0;
457	if (!count)
458		goto out;
459
460	task_io_account_read(count);
461
462	result = -ENOMEM;
463	dreq = nfs_direct_req_alloc();
464	if (dreq == NULL)
465		goto out;
466
467	dreq->inode = inode;
468	dreq->bytes_left = dreq->max_count = count;
469	dreq->io_start = iocb->ki_pos;
470	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
471	l_ctx = nfs_get_lock_context(dreq->ctx);
472	if (IS_ERR(l_ctx)) {
473		result = PTR_ERR(l_ctx);
474		nfs_direct_req_release(dreq);
475		goto out_release;
476	}
477	dreq->l_ctx = l_ctx;
478	if (!is_sync_kiocb(iocb))
479		dreq->iocb = iocb;
480
481	if (iter_is_iovec(iter))
482		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
483
484	nfs_start_io_direct(inode);
485
486	NFS_I(inode)->read_io += count;
487	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
488
489	nfs_end_io_direct(inode);
490
491	if (requested > 0) {
492		result = nfs_direct_wait(dreq);
493		if (result > 0) {
494			requested -= result;
495			iocb->ki_pos += result;
496		}
497		iov_iter_revert(iter, requested);
498	} else {
499		result = requested;
500	}
501
502out_release:
503	nfs_direct_req_release(dreq);
504out:
505	return result;
506}
507
508static void
509nfs_direct_join_group(struct list_head *list, struct inode *inode)
510{
511	struct nfs_page *req, *next;
512
513	list_for_each_entry(req, list, wb_list) {
514		if (req->wb_head != req || req->wb_this_page == req)
515			continue;
516		for (next = req->wb_this_page;
517				next != req->wb_head;
518				next = next->wb_this_page) {
519			nfs_list_remove_request(next);
520			nfs_release_request(next);
521		}
522		nfs_join_page_group(req, inode);
523	}
524}
525
526static void
527nfs_direct_write_scan_commit_list(struct inode *inode,
528				  struct list_head *list,
529				  struct nfs_commit_info *cinfo)
530{
531	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
532	pnfs_recover_commit_reqs(list, cinfo);
533	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
534	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
535}
536
537static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
538{
539	struct nfs_pageio_descriptor desc;
540	struct nfs_page *req, *tmp;
541	LIST_HEAD(reqs);
542	struct nfs_commit_info cinfo;
543	LIST_HEAD(failed);
 
 
 
 
 
 
 
 
 
544
545	nfs_init_cinfo_from_dreq(&cinfo, dreq);
546	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
547
548	nfs_direct_join_group(&reqs, dreq->inode);
 
549
550	dreq->count = 0;
551	dreq->max_count = 0;
552	list_for_each_entry(req, &reqs, wb_list)
553		dreq->max_count += req->wb_bytes;
554	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
555	get_dreq(dreq);
556
557	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
558			      &nfs_direct_write_completion_ops);
559	desc.pg_dreq = dreq;
560
561	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
562		/* Bump the transmission count */
563		req->wb_nio++;
564		if (!nfs_pageio_add_request(&desc, req)) {
565			nfs_list_move_request(req, &failed);
566			spin_lock(&cinfo.inode->i_lock);
567			dreq->flags = 0;
568			if (desc.pg_error < 0)
569				dreq->error = desc.pg_error;
570			else
571				dreq->error = -EIO;
572			spin_unlock(&cinfo.inode->i_lock);
573		}
574		nfs_release_request(req);
575	}
576	nfs_pageio_complete(&desc);
577
578	while (!list_empty(&failed)) {
579		req = nfs_list_entry(failed.next);
580		nfs_list_remove_request(req);
581		nfs_unlock_and_release_request(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
582	}
583
584	if (put_dreq(dreq))
585		nfs_direct_write_complete(dreq);
586}
587
588static void nfs_direct_commit_complete(struct nfs_commit_data *data)
589{
590	const struct nfs_writeverf *verf = data->res.verf;
591	struct nfs_direct_req *dreq = data->dreq;
592	struct nfs_commit_info cinfo;
593	struct nfs_page *req;
594	int status = data->task.tk_status;
595
596	if (status < 0) {
597		/* Errors in commit are fatal */
598		dreq->error = status;
599		dreq->max_count = 0;
600		dreq->count = 0;
601		dreq->flags = NFS_ODIRECT_DONE;
602	} else if (dreq->flags == NFS_ODIRECT_DONE)
603		status = dreq->error;
604
605	nfs_init_cinfo_from_dreq(&cinfo, dreq);
606
607	while (!list_empty(&data->pages)) {
608		req = nfs_list_entry(data->pages.next);
609		nfs_list_remove_request(req);
610		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
611			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
612			/*
613			 * Despite the reboot, the write was successful,
614			 * so reset wb_nio.
615			 */
616			req->wb_nio = 0;
617			nfs_mark_request_commit(req, NULL, &cinfo, 0);
618		} else /* Error or match */
619			nfs_release_request(req);
620		nfs_unlock_and_release_request(req);
621	}
622
623	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
624		nfs_direct_write_complete(dreq);
625}
626
627static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
628		struct nfs_page *req)
629{
630	struct nfs_direct_req *dreq = cinfo->dreq;
 
 
631
632	spin_lock(&dreq->lock);
633	if (dreq->flags != NFS_ODIRECT_DONE)
 
 
 
 
634		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
635	spin_unlock(&dreq->lock);
636	nfs_mark_request_commit(req, NULL, cinfo, 0);
 
 
 
637}
638
639static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
640	.completion = nfs_direct_commit_complete,
641	.resched_write = nfs_direct_resched_write,
 
 
 
642};
643
644static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
645{
646	int res;
647	struct nfs_commit_info cinfo;
648	LIST_HEAD(mds_list);
649
650	nfs_init_cinfo_from_dreq(&cinfo, dreq);
651	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
652	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
653	if (res < 0) /* res == -ENOMEM */
654		nfs_direct_write_reschedule(dreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655}
656
657static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
658{
659	struct nfs_commit_info cinfo;
660	struct nfs_page *req;
661	LIST_HEAD(reqs);
662
663	nfs_init_cinfo_from_dreq(&cinfo, dreq);
664	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
665
666	while (!list_empty(&reqs)) {
667		req = nfs_list_entry(reqs.next);
668		nfs_list_remove_request(req);
669		nfs_release_request(req);
670		nfs_unlock_and_release_request(req);
671	}
672}
673
674static void nfs_direct_write_schedule_work(struct work_struct *work)
675{
676	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
677	int flags = dreq->flags;
678
679	dreq->flags = 0;
680	switch (flags) {
681		case NFS_ODIRECT_DO_COMMIT:
682			nfs_direct_commit_schedule(dreq);
683			break;
684		case NFS_ODIRECT_RESCHED_WRITES:
685			nfs_direct_write_reschedule(dreq);
686			break;
687		default:
688			nfs_direct_write_clear_reqs(dreq);
689			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
 
 
690			nfs_direct_complete(dreq);
691	}
692}
693
694static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
 
 
 
 
 
 
 
 
 
 
 
 
695{
696	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
 
 
697}
 
698
699static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
700{
701	struct nfs_direct_req *dreq = hdr->dreq;
702	struct nfs_commit_info cinfo;
703	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
704	int flags = NFS_ODIRECT_DONE;
705
706	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 
 
 
 
 
 
 
 
 
 
 
707
708	spin_lock(&dreq->lock);
709	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
710		spin_unlock(&dreq->lock);
711		goto out_put;
712	}
713
714	nfs_direct_count_bytes(dreq, hdr);
715	if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) {
716		if (!dreq->flags)
717			dreq->flags = NFS_ODIRECT_DO_COMMIT;
718		flags = dreq->flags;
719	}
720	spin_unlock(&dreq->lock);
 
721
722	while (!list_empty(&hdr->pages)) {
723
724		req = nfs_list_entry(hdr->pages.next);
725		nfs_list_remove_request(req);
726		if (flags == NFS_ODIRECT_DO_COMMIT) {
727			kref_get(&req->wb_kref);
728			memcpy(&req->wb_verf, &hdr->verf.verifier,
729			       sizeof(req->wb_verf));
730			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
731				hdr->ds_commit_idx);
732		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
733			kref_get(&req->wb_kref);
734			nfs_mark_request_commit(req, NULL, &cinfo, 0);
735		}
736		nfs_unlock_and_release_request(req);
737	}
 
 
738
739out_put:
740	if (put_dreq(dreq))
741		nfs_direct_write_complete(dreq);
742	hdr->release(hdr);
743}
744
745static void nfs_write_sync_pgio_error(struct list_head *head, int error)
746{
747	struct nfs_page *req;
748
749	while (!list_empty(head)) {
750		req = nfs_list_entry(head->next);
751		nfs_list_remove_request(req);
752		nfs_unlock_and_release_request(req);
753	}
754}
755
756static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
757{
758	struct nfs_direct_req *dreq = hdr->dreq;
759
760	spin_lock(&dreq->lock);
761	if (dreq->error == 0) {
762		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
763		/* fake unstable write to let common nfs resend pages */
764		hdr->verf.committed = NFS_UNSTABLE;
765		hdr->good_bytes = hdr->args.offset + hdr->args.count -
766			hdr->io_start;
767	}
768	spin_unlock(&dreq->lock);
769}
770
771static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
772	.error_cleanup = nfs_write_sync_pgio_error,
773	.init_hdr = nfs_direct_pgio_init,
774	.completion = nfs_direct_write_completion,
775	.reschedule_io = nfs_direct_write_reschedule_io,
 
776};
777
778
779/*
780 * NB: Return the value of the first error return code.  Subsequent
781 *     errors after the first one are ignored.
782 */
783/*
784 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
785 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
786 * bail and stop sending more writes.  Write length accounting is
787 * handled automatically by nfs_direct_write_result().  Otherwise, if
788 * no requests have been sent, just return an error.
789 */
790static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
791					       struct iov_iter *iter,
792					       loff_t pos)
793{
794	struct nfs_pageio_descriptor desc;
795	struct inode *inode = dreq->inode;
796	ssize_t result = 0;
797	size_t requested_bytes = 0;
798	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
799
800	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
801			      &nfs_direct_write_completion_ops);
802	desc.pg_dreq = dreq;
803	get_dreq(dreq);
804	inode_dio_begin(inode);
805
806	NFS_I(inode)->write_io += iov_iter_count(iter);
807	while (iov_iter_count(iter)) {
808		struct page **pagevec;
809		size_t bytes;
810		size_t pgbase;
811		unsigned npages, i;
812
813		result = iov_iter_get_pages_alloc(iter, &pagevec, 
814						  wsize, &pgbase);
815		if (result < 0)
816			break;
817
818		bytes = result;
819		iov_iter_advance(iter, bytes);
820		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
821		for (i = 0; i < npages; i++) {
822			struct nfs_page *req;
823			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
824
825			req = nfs_create_request(dreq->ctx, pagevec[i],
826						 pgbase, req_len);
827			if (IS_ERR(req)) {
828				result = PTR_ERR(req);
 
 
829				break;
830			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831
832			if (desc.pg_error < 0) {
833				nfs_free_request(req);
834				result = desc.pg_error;
835				break;
836			}
 
 
 
 
 
837
838			nfs_lock_request(req);
839			req->wb_index = pos >> PAGE_SHIFT;
840			req->wb_offset = pos & ~PAGE_MASK;
841			if (!nfs_pageio_add_request(&desc, req)) {
842				result = desc.pg_error;
843				nfs_unlock_and_release_request(req);
844				break;
845			}
846			pgbase = 0;
847			bytes -= req_len;
848			requested_bytes += req_len;
849			pos += req_len;
850			dreq->bytes_left -= req_len;
851		}
852		nfs_direct_release_pages(pagevec, npages);
853		kvfree(pagevec);
854		if (result < 0)
855			break;
 
 
 
 
856	}
857	nfs_pageio_complete(&desc);
858
859	/*
860	 * If no bytes were started, return the error, and let the
861	 * generic layer handle the completion.
862	 */
863	if (requested_bytes == 0) {
864		inode_dio_end(inode);
865		nfs_direct_req_release(dreq);
866		return result < 0 ? result : -EIO;
867	}
868
869	if (put_dreq(dreq))
870		nfs_direct_write_complete(dreq);
871	return requested_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872}
873
874/**
875 * nfs_file_direct_write - file direct write operation for NFS files
876 * @iocb: target I/O control block
877 * @iter: vector of user buffers from which to write data
 
 
878 *
879 * We use this function for direct writes instead of calling
880 * generic_file_aio_write() in order to avoid taking the inode
881 * semaphore and updating the i_size.  The NFS server will set
882 * the new i_size and this client must read the updated size
883 * back into its cache.  We let the server do generic write
884 * parameter checking and report problems.
885 *
886 * We eliminate local atime updates, see direct read above.
887 *
888 * We avoid unnecessary page cache invalidations for normal cached
889 * readers of this file.
890 *
891 * Note that O_APPEND is not supported for NFS direct writes, as there
892 * is no atomic O_APPEND write facility in the NFS protocol.
893 */
894ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
 
895{
896	ssize_t result, requested;
897	size_t count;
898	struct file *file = iocb->ki_filp;
899	struct address_space *mapping = file->f_mapping;
900	struct inode *inode = mapping->host;
901	struct nfs_direct_req *dreq;
902	struct nfs_lock_context *l_ctx;
903	loff_t pos, end;
904
905	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
906		file, iov_iter_count(iter), (long long) iocb->ki_pos);
907
908	result = generic_write_checks(iocb, iter);
909	if (result <= 0)
910		return result;
911	count = result;
912	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
913
914	pos = iocb->ki_pos;
915	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
 
 
916
917	task_io_account_write(count);
 
 
918
919	result = -ENOMEM;
920	dreq = nfs_direct_req_alloc();
921	if (!dreq)
 
 
922		goto out;
923
924	dreq->inode = inode;
925	dreq->bytes_left = dreq->max_count = count;
926	dreq->io_start = pos;
927	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
928	l_ctx = nfs_get_lock_context(dreq->ctx);
929	if (IS_ERR(l_ctx)) {
930		result = PTR_ERR(l_ctx);
931		nfs_direct_req_release(dreq);
932		goto out_release;
933	}
934	dreq->l_ctx = l_ctx;
935	if (!is_sync_kiocb(iocb))
936		dreq->iocb = iocb;
937	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
938
939	nfs_start_io_direct(inode);
940
941	requested = nfs_direct_write_schedule_iovec(dreq, iter, pos);
942
943	if (mapping->nrpages) {
944		invalidate_inode_pages2_range(mapping,
945					      pos >> PAGE_SHIFT, end);
946	}
947
948	nfs_end_io_direct(inode);
949
950	if (requested > 0) {
951		result = nfs_direct_wait(dreq);
952		if (result > 0) {
953			requested -= result;
954			iocb->ki_pos = pos + result;
955			/* XXX: should check the generic_write_sync retval */
956			generic_write_sync(iocb, result);
957		}
958		iov_iter_revert(iter, requested);
959	} else {
960		result = requested;
961	}
962out_release:
963	nfs_direct_req_release(dreq);
964out:
965	return result;
966}
967
968/**
969 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
970 *
971 */
972int __init nfs_init_directcache(void)
973{
974	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
975						sizeof(struct nfs_direct_req),
976						0, (SLAB_RECLAIM_ACCOUNT|
977							SLAB_MEM_SPREAD),
978						NULL);
979	if (nfs_direct_cachep == NULL)
980		return -ENOMEM;
981
982	return 0;
983}
984
985/**
986 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
987 *
988 */
989void nfs_destroy_directcache(void)
990{
991	kmem_cache_destroy(nfs_direct_cachep);
992}