Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
 
  49
  50#include <linux/nfs_fs.h>
  51#include <linux/nfs_page.h>
  52#include <linux/sunrpc/clnt.h>
  53
  54#include <asm/system.h>
  55#include <asm/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
 
  60
  61#define NFSDBG_FACILITY		NFSDBG_VFS
  62
  63static struct kmem_cache *nfs_direct_cachep;
  64
  65/*
  66 * This represents a set of asynchronous requests that we're waiting on
  67 */
  68struct nfs_direct_req {
  69	struct kref		kref;		/* release manager */
  70
  71	/* I/O parameters */
  72	struct nfs_open_context	*ctx;		/* file open context info */
  73	struct nfs_lock_context *l_ctx;		/* Lock context info */
  74	struct kiocb *		iocb;		/* controlling i/o request */
  75	struct inode *		inode;		/* target file of i/o */
  76
  77	/* completion state */
  78	atomic_t		io_count;	/* i/os we're waiting for */
  79	spinlock_t		lock;		/* protect completion state */
  80	ssize_t			count,		/* bytes actually processed */
 
  81				error;		/* any reported error */
  82	struct completion	completion;	/* wait for i/o completion */
  83
  84	/* commit state */
  85	struct list_head	rewrite_list;	/* saved nfs_write_data structs */
  86	struct nfs_write_data *	commit_data;	/* special write_data for commits */
 
  87	int			flags;
  88#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
  89#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
  90	struct nfs_writeverf	verf;		/* unstable write verifier */
  91};
  92
 
 
  93static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  94static const struct rpc_call_ops nfs_write_direct_ops;
  95
  96static inline void get_dreq(struct nfs_direct_req *dreq)
  97{
  98	atomic_inc(&dreq->io_count);
  99}
 100
 101static inline int put_dreq(struct nfs_direct_req *dreq)
 102{
 103	return atomic_dec_and_test(&dreq->io_count);
 104}
 105
 106/**
 107 * nfs_direct_IO - NFS address space operation for direct I/O
 108 * @rw: direction (read or write)
 109 * @iocb: target I/O control block
 110 * @iov: array of vectors that define I/O buffer
 111 * @pos: offset in file to begin the operation
 112 * @nr_segs: size of iovec array
 113 *
 114 * The presence of this routine in the address space ops vector means
 115 * the NFS client supports direct I/O.  However, we shunt off direct
 116 * read and write requests before the VFS gets them, so this method
 117 * should never be called.
 118 */
 119ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
 120{
 121	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
 122			iocb->ki_filp->f_path.dentry->d_name.name,
 123			(long long) pos, nr_segs);
 124
 125	return -EINVAL;
 126}
 127
 128static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
 129{
 130	unsigned int npages;
 131	unsigned int i;
 132
 133	if (count == 0)
 134		return;
 135	pages += (pgbase >> PAGE_SHIFT);
 136	npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 137	for (i = 0; i < npages; i++) {
 138		struct page *page = pages[i];
 139		if (!PageCompound(page))
 140			set_page_dirty(page);
 141	}
 142}
 143
 144static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 145{
 146	unsigned int i;
 147	for (i = 0; i < npages; i++)
 148		page_cache_release(pages[i]);
 149}
 150
 
 
 
 
 
 
 
 
 
 
 151static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 152{
 153	struct nfs_direct_req *dreq;
 154
 155	dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
 156	if (!dreq)
 157		return NULL;
 158
 159	kref_init(&dreq->kref);
 160	kref_get(&dreq->kref);
 161	init_completion(&dreq->completion);
 162	INIT_LIST_HEAD(&dreq->rewrite_list);
 163	dreq->iocb = NULL;
 164	dreq->ctx = NULL;
 165	dreq->l_ctx = NULL;
 166	spin_lock_init(&dreq->lock);
 167	atomic_set(&dreq->io_count, 0);
 168	dreq->count = 0;
 169	dreq->error = 0;
 170	dreq->flags = 0;
 171
 172	return dreq;
 173}
 174
 175static void nfs_direct_req_free(struct kref *kref)
 176{
 177	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 178
 179	if (dreq->l_ctx != NULL)
 180		nfs_put_lock_context(dreq->l_ctx);
 181	if (dreq->ctx != NULL)
 182		put_nfs_open_context(dreq->ctx);
 183	kmem_cache_free(nfs_direct_cachep, dreq);
 184}
 185
 186static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 187{
 188	kref_put(&dreq->kref, nfs_direct_req_free);
 189}
 190
 
 
 
 
 
 
 191/*
 192 * Collects and returns the final error value/byte-count.
 193 */
 194static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 195{
 196	ssize_t result = -EIOCBQUEUED;
 197
 198	/* Async requests don't wait here */
 199	if (dreq->iocb)
 200		goto out;
 201
 202	result = wait_for_completion_killable(&dreq->completion);
 203
 204	if (!result)
 205		result = dreq->error;
 206	if (!result)
 207		result = dreq->count;
 208
 209out:
 210	return (ssize_t) result;
 211}
 212
 213/*
 214 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 215 * the iocb is still valid here if this is a synchronous request.
 216 */
 217static void nfs_direct_complete(struct nfs_direct_req *dreq)
 218{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219	if (dreq->iocb) {
 220		long res = (long) dreq->error;
 221		if (!res)
 222			res = (long) dreq->count;
 223		aio_complete(dreq->iocb, res, 0);
 224	}
 
 225	complete_all(&dreq->completion);
 226
 227	nfs_direct_req_release(dreq);
 228}
 229
 230/*
 231 * We must hold a reference to all the pages in this direct read request
 232 * until the RPCs complete.  This could be long *after* we are woken up in
 233 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
 234 */
 235static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
 236{
 237	struct nfs_read_data *data = calldata;
 238
 239	nfs_readpage_result(task, data);
 
 
 
 240}
 241
 242static void nfs_direct_read_release(void *calldata)
 243{
 
 
 244
 245	struct nfs_read_data *data = calldata;
 246	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
 247	int status = data->task.tk_status;
 248
 249	spin_lock(&dreq->lock);
 250	if (unlikely(status < 0)) {
 251		dreq->error = status;
 252		spin_unlock(&dreq->lock);
 253	} else {
 254		dreq->count += data->res.count;
 255		spin_unlock(&dreq->lock);
 256		nfs_direct_dirty_pages(data->pagevec,
 257				data->args.pgbase,
 258				data->res.count);
 259	}
 260	nfs_direct_release_pages(data->pagevec, data->npages);
 261
 
 
 
 
 
 
 
 262	if (put_dreq(dreq))
 263		nfs_direct_complete(dreq);
 264	nfs_readdata_free(data);
 
 
 
 
 
 
 
 
 
 
 
 265}
 266
 267static const struct rpc_call_ops nfs_read_direct_ops = {
 268#if defined(CONFIG_NFS_V4_1)
 269	.rpc_call_prepare = nfs_read_prepare,
 270#endif /* CONFIG_NFS_V4_1 */
 271	.rpc_call_done = nfs_direct_read_result,
 272	.rpc_release = nfs_direct_read_release,
 
 
 
 273};
 274
 275/*
 276 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 277 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 278 * bail and stop sending more reads.  Read length accounting is
 279 * handled automatically by nfs_direct_read_result().  Otherwise, if
 280 * no requests have been sent, just return an error.
 281 */
 282static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
 283						const struct iovec *iov,
 284						loff_t pos)
 285{
 
 286	struct nfs_open_context *ctx = dreq->ctx;
 287	struct inode *inode = ctx->dentry->d_inode;
 288	unsigned long user_addr = (unsigned long)iov->iov_base;
 289	size_t count = iov->iov_len;
 290	size_t rsize = NFS_SERVER(inode)->rsize;
 291	struct rpc_task *task;
 292	struct rpc_message msg = {
 293		.rpc_cred = ctx->cred,
 294	};
 295	struct rpc_task_setup task_setup_data = {
 296		.rpc_client = NFS_CLIENT(inode),
 297		.rpc_message = &msg,
 298		.callback_ops = &nfs_read_direct_ops,
 299		.workqueue = nfsiod_workqueue,
 300		.flags = RPC_TASK_ASYNC,
 301	};
 302	unsigned int pgbase;
 303	int result;
 304	ssize_t started = 0;
 
 
 305
 306	do {
 307		struct nfs_read_data *data;
 308		size_t bytes;
 
 309
 310		pgbase = user_addr & ~PAGE_MASK;
 311		bytes = min(rsize,count);
 312
 313		result = -ENOMEM;
 314		data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
 315		if (unlikely(!data))
 316			break;
 317
 318		down_read(&current->mm->mmap_sem);
 319		result = get_user_pages(current, current->mm, user_addr,
 320					data->npages, 1, 0, data->pagevec, NULL);
 321		up_read(&current->mm->mmap_sem);
 322		if (result < 0) {
 323			nfs_readdata_free(data);
 324			break;
 
 
 
 
 
 
 
 325		}
 326		if ((unsigned)result < data->npages) {
 
 327			bytes = result * PAGE_SIZE;
 328			if (bytes <= pgbase) {
 329				nfs_direct_release_pages(data->pagevec, result);
 330				nfs_readdata_free(data);
 331				break;
 332			}
 333			bytes -= pgbase;
 334			data->npages = result;
 335		}
 336
 337		get_dreq(dreq);
 338
 339		data->req = (struct nfs_page *) dreq;
 340		data->inode = inode;
 341		data->cred = msg.rpc_cred;
 342		data->args.fh = NFS_FH(inode);
 343		data->args.context = ctx;
 344		data->args.lock_context = dreq->l_ctx;
 345		data->args.offset = pos;
 346		data->args.pgbase = pgbase;
 347		data->args.pages = data->pagevec;
 348		data->args.count = bytes;
 349		data->res.fattr = &data->fattr;
 350		data->res.eof = 0;
 351		data->res.count = bytes;
 352		nfs_fattr_init(&data->fattr);
 353		msg.rpc_argp = &data->args;
 354		msg.rpc_resp = &data->res;
 355
 356		task_setup_data.task = &data->task;
 357		task_setup_data.callback_data = data;
 358		NFS_PROTO(inode)->read_setup(data, &msg);
 359
 360		task = rpc_run_task(&task_setup_data);
 361		if (IS_ERR(task))
 362			break;
 363		rpc_put_task(task);
 364
 365		dprintk("NFS: %5u initiated direct read call "
 366			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
 367				data->task.tk_pid,
 368				inode->i_sb->s_id,
 369				(long long)NFS_FILEID(inode),
 370				bytes,
 371				(unsigned long long)data->args.offset);
 372
 373		started += bytes;
 374		user_addr += bytes;
 375		pos += bytes;
 376		/* FIXME: Remove this unnecessary math from final patch */
 377		pgbase += bytes;
 378		pgbase &= ~PAGE_MASK;
 379		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
 380
 381		count -= bytes;
 382	} while (count != 0);
 383
 384	if (started)
 385		return started;
 386	return result < 0 ? (ssize_t) result : -EFAULT;
 387}
 388
 389static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 390					      const struct iovec *iov,
 391					      unsigned long nr_segs,
 392					      loff_t pos)
 393{
 
 
 394	ssize_t result = -EINVAL;
 395	size_t requested_bytes = 0;
 396	unsigned long seg;
 397
 
 
 398	get_dreq(dreq);
 
 
 399
 400	for (seg = 0; seg < nr_segs; seg++) {
 401		const struct iovec *vec = &iov[seg];
 402		result = nfs_direct_read_schedule_segment(dreq, vec, pos);
 403		if (result < 0)
 404			break;
 405		requested_bytes += result;
 406		if ((size_t)result < vec->iov_len)
 407			break;
 408		pos += vec->iov_len;
 409	}
 410
 
 
 411	/*
 412	 * If no bytes were started, return the error, and let the
 413	 * generic layer handle the completion.
 414	 */
 415	if (requested_bytes == 0) {
 
 416		nfs_direct_req_release(dreq);
 417		return result < 0 ? result : -EIO;
 418	}
 419
 420	if (put_dreq(dreq))
 421		nfs_direct_complete(dreq);
 422	return 0;
 423}
 424
 425static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
 426			       unsigned long nr_segs, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427{
 428	ssize_t result = -ENOMEM;
 429	struct inode *inode = iocb->ki_filp->f_mapping->host;
 
 430	struct nfs_direct_req *dreq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431
 
 
 
 432	dreq = nfs_direct_req_alloc();
 433	if (dreq == NULL)
 434		goto out;
 435
 436	dreq->inode = inode;
 
 437	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 438	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
 439	if (dreq->l_ctx == NULL)
 
 440		goto out_release;
 
 
 441	if (!is_sync_kiocb(iocb))
 442		dreq->iocb = iocb;
 443
 444	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
 445	if (!result)
 
 
 
 
 446		result = nfs_direct_wait(dreq);
 
 
 
 
 
 
 
 447out_release:
 448	nfs_direct_req_release(dreq);
 
 
 449out:
 450	return result;
 451}
 452
 453static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
 454{
 455	while (!list_empty(&dreq->rewrite_list)) {
 456		struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
 457		list_del(&data->pages);
 458		nfs_direct_release_pages(data->pagevec, data->npages);
 459		nfs_writedata_free(data);
 460	}
 461}
 462
 463#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
 464static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 465{
 466	struct inode *inode = dreq->inode;
 467	struct list_head *p;
 468	struct nfs_write_data *data;
 469	struct rpc_task *task;
 470	struct rpc_message msg = {
 471		.rpc_cred = dreq->ctx->cred,
 472	};
 473	struct rpc_task_setup task_setup_data = {
 474		.rpc_client = NFS_CLIENT(inode),
 475		.rpc_message = &msg,
 476		.callback_ops = &nfs_write_direct_ops,
 477		.workqueue = nfsiod_workqueue,
 478		.flags = RPC_TASK_ASYNC,
 479	};
 480
 481	dreq->count = 0;
 482	get_dreq(dreq);
 483
 484	list_for_each(p, &dreq->rewrite_list) {
 485		data = list_entry(p, struct nfs_write_data, pages);
 486
 487		get_dreq(dreq);
 488
 489		/* Use stable writes */
 490		data->args.stable = NFS_FILE_SYNC;
 
 
 
 
 
 
 
 
 
 491
 492		/*
 493		 * Reset data->res.
 494		 */
 495		nfs_fattr_init(&data->fattr);
 496		data->res.count = data->args.count;
 497		memset(&data->verf, 0, sizeof(data->verf));
 498
 499		/*
 500		 * Reuse data->task; data->args should not have changed
 501		 * since the original request was sent.
 502		 */
 503		task_setup_data.task = &data->task;
 504		task_setup_data.callback_data = data;
 505		msg.rpc_argp = &data->args;
 506		msg.rpc_resp = &data->res;
 507		NFS_PROTO(inode)->write_setup(data, &msg);
 508
 509		/*
 510		 * We're called via an RPC callback, so BKL is already held.
 511		 */
 512		task = rpc_run_task(&task_setup_data);
 513		if (!IS_ERR(task))
 514			rpc_put_task(task);
 515
 516		dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
 517				data->task.tk_pid,
 518				inode->i_sb->s_id,
 519				(long long)NFS_FILEID(inode),
 520				data->args.count,
 521				(unsigned long long)data->args.offset);
 522	}
 523
 524	if (put_dreq(dreq))
 525		nfs_direct_write_complete(dreq, inode);
 526}
 527
 528static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
 529{
 530	struct nfs_write_data *data = calldata;
 531
 532	/* Call the NFS version-specific code */
 533	NFS_PROTO(data->inode)->commit_done(task, data);
 534}
 535
 536static void nfs_direct_commit_release(void *calldata)
 537{
 538	struct nfs_write_data *data = calldata;
 539	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
 
 540	int status = data->task.tk_status;
 541
 
 542	if (status < 0) {
 543		dprintk("NFS: %5u commit failed with error %d.\n",
 544				data->task.tk_pid, status);
 545		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 546	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
 547		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 548		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 549	}
 550
 551	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 552	nfs_direct_write_complete(dreq, data->inode);
 553	nfs_commit_free(data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554}
 555
 556static const struct rpc_call_ops nfs_commit_direct_ops = {
 557#if defined(CONFIG_NFS_V4_1)
 558	.rpc_call_prepare = nfs_write_prepare,
 559#endif /* CONFIG_NFS_V4_1 */
 560	.rpc_call_done = nfs_direct_commit_result,
 561	.rpc_release = nfs_direct_commit_release,
 562};
 563
 564static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 565{
 566	struct nfs_write_data *data = dreq->commit_data;
 567	struct rpc_task *task;
 568	struct rpc_message msg = {
 569		.rpc_argp = &data->args,
 570		.rpc_resp = &data->res,
 571		.rpc_cred = dreq->ctx->cred,
 572	};
 573	struct rpc_task_setup task_setup_data = {
 574		.task = &data->task,
 575		.rpc_client = NFS_CLIENT(dreq->inode),
 576		.rpc_message = &msg,
 577		.callback_ops = &nfs_commit_direct_ops,
 578		.callback_data = data,
 579		.workqueue = nfsiod_workqueue,
 580		.flags = RPC_TASK_ASYNC,
 581	};
 582
 583	data->inode = dreq->inode;
 584	data->cred = msg.rpc_cred;
 585
 586	data->args.fh = NFS_FH(data->inode);
 587	data->args.offset = 0;
 588	data->args.count = 0;
 589	data->args.context = dreq->ctx;
 590	data->args.lock_context = dreq->l_ctx;
 591	data->res.count = 0;
 592	data->res.fattr = &data->fattr;
 593	data->res.verf = &data->verf;
 594	nfs_fattr_init(&data->fattr);
 595
 596	NFS_PROTO(data->inode)->commit_setup(data, &msg);
 597
 598	/* Note: task.tk_ops->rpc_release will free dreq->commit_data */
 599	dreq->commit_data = NULL;
 600
 601	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
 602
 603	task = rpc_run_task(&task_setup_data);
 604	if (!IS_ERR(task))
 605		rpc_put_task(task);
 606}
 607
 608static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 609{
 
 610	int flags = dreq->flags;
 611
 612	dreq->flags = 0;
 613	switch (flags) {
 614		case NFS_ODIRECT_DO_COMMIT:
 615			nfs_direct_commit_schedule(dreq);
 616			break;
 617		case NFS_ODIRECT_RESCHED_WRITES:
 618			nfs_direct_write_reschedule(dreq);
 619			break;
 620		default:
 621			if (dreq->commit_data != NULL)
 622				nfs_commit_free(dreq->commit_data);
 623			nfs_direct_free_writedata(dreq);
 624			nfs_zap_mapping(inode, inode->i_mapping);
 625			nfs_direct_complete(dreq);
 626	}
 627}
 628
 629static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
 630{
 631	dreq->commit_data = nfs_commitdata_alloc();
 632	if (dreq->commit_data != NULL)
 633		dreq->commit_data->req = (struct nfs_page *) dreq;
 634}
 
 635#else
 636static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
 637{
 638	dreq->commit_data = NULL;
 639}
 640
 641static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 642{
 643	nfs_direct_free_writedata(dreq);
 644	nfs_zap_mapping(inode, inode->i_mapping);
 645	nfs_direct_complete(dreq);
 646}
 647#endif
 648
 649static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
 650{
 651	struct nfs_write_data *data = calldata;
 652
 653	nfs_writeback_done(task, data);
 654}
 655
 656/*
 657 * NB: Return the value of the first error return code.  Subsequent
 658 *     errors after the first one are ignored.
 659 */
 660static void nfs_direct_write_release(void *calldata)
 661{
 662	struct nfs_write_data *data = calldata;
 663	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
 664	int status = data->task.tk_status;
 665
 666	spin_lock(&dreq->lock);
 667
 668	if (unlikely(status < 0)) {
 669		/* An error has occurred, so we should not commit */
 670		dreq->flags = 0;
 671		dreq->error = status;
 672	}
 673	if (unlikely(dreq->error != 0))
 674		goto out_unlock;
 675
 676	dreq->count += data->res.count;
 677
 678	if (data->res.verf->committed != NFS_FILE_SYNC) {
 679		switch (dreq->flags) {
 680			case 0:
 681				memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
 682				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 683				break;
 684			case NFS_ODIRECT_DO_COMMIT:
 685				if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
 686					dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
 687					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 688				}
 689		}
 690	}
 691out_unlock:
 692	spin_unlock(&dreq->lock);
 693
 694	if (put_dreq(dreq))
 695		nfs_direct_write_complete(dreq, data->inode);
 696}
 697
 698static const struct rpc_call_ops nfs_write_direct_ops = {
 699#if defined(CONFIG_NFS_V4_1)
 700	.rpc_call_prepare = nfs_write_prepare,
 701#endif /* CONFIG_NFS_V4_1 */
 702	.rpc_call_done = nfs_direct_write_result,
 703	.rpc_release = nfs_direct_write_release,
 704};
 705
 706/*
 707 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 708 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 709 * bail and stop sending more writes.  Write length accounting is
 710 * handled automatically by nfs_direct_write_result().  Otherwise, if
 711 * no requests have been sent, just return an error.
 712 */
 713static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
 714						 const struct iovec *iov,
 715						 loff_t pos, int sync)
 716{
 
 717	struct nfs_open_context *ctx = dreq->ctx;
 718	struct inode *inode = ctx->dentry->d_inode;
 719	unsigned long user_addr = (unsigned long)iov->iov_base;
 720	size_t count = iov->iov_len;
 721	struct rpc_task *task;
 722	struct rpc_message msg = {
 723		.rpc_cred = ctx->cred,
 724	};
 725	struct rpc_task_setup task_setup_data = {
 726		.rpc_client = NFS_CLIENT(inode),
 727		.rpc_message = &msg,
 728		.callback_ops = &nfs_write_direct_ops,
 729		.workqueue = nfsiod_workqueue,
 730		.flags = RPC_TASK_ASYNC,
 731	};
 732	size_t wsize = NFS_SERVER(inode)->wsize;
 733	unsigned int pgbase;
 734	int result;
 735	ssize_t started = 0;
 
 
 736
 737	do {
 738		struct nfs_write_data *data;
 739		size_t bytes;
 
 740
 741		pgbase = user_addr & ~PAGE_MASK;
 742		bytes = min(wsize,count);
 743
 744		result = -ENOMEM;
 745		data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
 746		if (unlikely(!data))
 
 
 747			break;
 748
 749		down_read(&current->mm->mmap_sem);
 750		result = get_user_pages(current, current->mm, user_addr,
 751					data->npages, 0, 0, data->pagevec, NULL);
 752		up_read(&current->mm->mmap_sem);
 753		if (result < 0) {
 754			nfs_writedata_free(data);
 755			break;
 
 
 
 
 
 756		}
 757		if ((unsigned)result < data->npages) {
 
 758			bytes = result * PAGE_SIZE;
 759			if (bytes <= pgbase) {
 760				nfs_direct_release_pages(data->pagevec, result);
 761				nfs_writedata_free(data);
 762				break;
 763			}
 764			bytes -= pgbase;
 765			data->npages = result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766		}
 
 
 
 767
 768		get_dreq(dreq);
 769
 770		list_move_tail(&data->pages, &dreq->rewrite_list);
 
 
 
 771
 772		data->req = (struct nfs_page *) dreq;
 773		data->inode = inode;
 774		data->cred = msg.rpc_cred;
 775		data->args.fh = NFS_FH(inode);
 776		data->args.context = ctx;
 777		data->args.lock_context = dreq->l_ctx;
 778		data->args.offset = pos;
 779		data->args.pgbase = pgbase;
 780		data->args.pages = data->pagevec;
 781		data->args.count = bytes;
 782		data->args.stable = sync;
 783		data->res.fattr = &data->fattr;
 784		data->res.count = bytes;
 785		data->res.verf = &data->verf;
 786		nfs_fattr_init(&data->fattr);
 787
 788		task_setup_data.task = &data->task;
 789		task_setup_data.callback_data = data;
 790		msg.rpc_argp = &data->args;
 791		msg.rpc_resp = &data->res;
 792		NFS_PROTO(inode)->write_setup(data, &msg);
 793
 794		task = rpc_run_task(&task_setup_data);
 795		if (IS_ERR(task))
 796			break;
 797		rpc_put_task(task);
 798
 799		dprintk("NFS: %5u initiated direct write call "
 800			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
 801				data->task.tk_pid,
 802				inode->i_sb->s_id,
 803				(long long)NFS_FILEID(inode),
 804				bytes,
 805				(unsigned long long)data->args.offset);
 806
 807		started += bytes;
 808		user_addr += bytes;
 809		pos += bytes;
 810
 811		/* FIXME: Remove this useless math from the final patch */
 812		pgbase += bytes;
 813		pgbase &= ~PAGE_MASK;
 814		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
 815
 816		count -= bytes;
 817	} while (count != 0);
 818
 819	if (started)
 820		return started;
 821	return result < 0 ? (ssize_t) result : -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822}
 823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 824static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 825					       const struct iovec *iov,
 826					       unsigned long nr_segs,
 827					       loff_t pos, int sync)
 828{
 
 
 829	ssize_t result = 0;
 830	size_t requested_bytes = 0;
 831	unsigned long seg;
 832
 
 
 
 833	get_dreq(dreq);
 
 834
 
 835	for (seg = 0; seg < nr_segs; seg++) {
 836		const struct iovec *vec = &iov[seg];
 837		result = nfs_direct_write_schedule_segment(dreq, vec,
 838							   pos, sync);
 839		if (result < 0)
 840			break;
 841		requested_bytes += result;
 842		if ((size_t)result < vec->iov_len)
 843			break;
 844		pos += vec->iov_len;
 845	}
 
 846
 847	/*
 848	 * If no bytes were started, return the error, and let the
 849	 * generic layer handle the completion.
 850	 */
 851	if (requested_bytes == 0) {
 
 852		nfs_direct_req_release(dreq);
 853		return result < 0 ? result : -EIO;
 854	}
 855
 856	if (put_dreq(dreq))
 857		nfs_direct_write_complete(dreq, dreq->inode);
 858	return 0;
 859}
 860
 861static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
 862				unsigned long nr_segs, loff_t pos,
 863				size_t count)
 864{
 865	ssize_t result = -ENOMEM;
 866	struct inode *inode = iocb->ki_filp->f_mapping->host;
 867	struct nfs_direct_req *dreq;
 868	size_t wsize = NFS_SERVER(inode)->wsize;
 869	int sync = NFS_UNSTABLE;
 870
 871	dreq = nfs_direct_req_alloc();
 872	if (!dreq)
 873		goto out;
 874	nfs_alloc_commit_data(dreq);
 875
 876	if (dreq->commit_data == NULL || count <= wsize)
 877		sync = NFS_FILE_SYNC;
 878
 879	dreq->inode = inode;
 880	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 881	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
 882	if (dreq->l_ctx == NULL)
 883		goto out_release;
 884	if (!is_sync_kiocb(iocb))
 885		dreq->iocb = iocb;
 886
 887	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
 888	if (!result)
 889		result = nfs_direct_wait(dreq);
 890out_release:
 891	nfs_direct_req_release(dreq);
 892out:
 893	return result;
 894}
 895
 896/**
 897 * nfs_file_direct_read - file direct read operation for NFS files
 898 * @iocb: target I/O control block
 899 * @iov: vector of user buffers into which to read data
 900 * @nr_segs: size of iov vector
 901 * @pos: byte offset in file where reading starts
 902 *
 903 * We use this function for direct reads instead of calling
 904 * generic_file_aio_read() in order to avoid gfar's check to see if
 905 * the request starts before the end of the file.  For that check
 906 * to work, we must generate a GETATTR before each direct read, and
 907 * even then there is a window between the GETATTR and the subsequent
 908 * READ where the file size could change.  Our preference is simply
 909 * to do all reads the application wants, and the server will take
 910 * care of managing the end of file boundary.
 911 *
 912 * This function also eliminates unnecessarily updating the file's
 913 * atime locally, as the NFS server sets the file's atime, and this
 914 * client must read the updated atime from the server back into its
 915 * cache.
 916 */
 917ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
 918				unsigned long nr_segs, loff_t pos)
 919{
 920	ssize_t retval = -EINVAL;
 921	struct file *file = iocb->ki_filp;
 922	struct address_space *mapping = file->f_mapping;
 923	size_t count;
 924
 925	count = iov_length(iov, nr_segs);
 926	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 927
 928	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
 929		file->f_path.dentry->d_parent->d_name.name,
 930		file->f_path.dentry->d_name.name,
 931		count, (long long) pos);
 932
 933	retval = 0;
 934	if (!count)
 935		goto out;
 936
 937	retval = nfs_sync_mapping(mapping);
 938	if (retval)
 939		goto out;
 940
 941	task_io_account_read(count);
 942
 943	retval = nfs_direct_read(iocb, iov, nr_segs, pos);
 944	if (retval > 0)
 945		iocb->ki_pos = pos + retval;
 946
 947out:
 948	return retval;
 949}
 950
 951/**
 952 * nfs_file_direct_write - file direct write operation for NFS files
 953 * @iocb: target I/O control block
 954 * @iov: vector of user buffers from which to write data
 955 * @nr_segs: size of iov vector
 956 * @pos: byte offset in file where writing starts
 957 *
 958 * We use this function for direct writes instead of calling
 959 * generic_file_aio_write() in order to avoid taking the inode
 960 * semaphore and updating the i_size.  The NFS server will set
 961 * the new i_size and this client must read the updated size
 962 * back into its cache.  We let the server do generic write
 963 * parameter checking and report problems.
 964 *
 965 * We eliminate local atime updates, see direct read above.
 966 *
 967 * We avoid unnecessary page cache invalidations for normal cached
 968 * readers of this file.
 969 *
 970 * Note that O_APPEND is not supported for NFS direct writes, as there
 971 * is no atomic O_APPEND write facility in the NFS protocol.
 972 */
 973ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 974				unsigned long nr_segs, loff_t pos)
 975{
 976	ssize_t retval = -EINVAL;
 977	struct file *file = iocb->ki_filp;
 978	struct address_space *mapping = file->f_mapping;
 
 
 
 
 979	size_t count;
 980
 981	count = iov_length(iov, nr_segs);
 
 
 982	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 983
 984	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
 985		file->f_path.dentry->d_parent->d_name.name,
 986		file->f_path.dentry->d_name.name,
 987		count, (long long) pos);
 988
 989	retval = generic_write_checks(file, &pos, &count, 0);
 990	if (retval)
 991		goto out;
 992
 993	retval = -EINVAL;
 994	if ((ssize_t) count < 0)
 995		goto out;
 996	retval = 0;
 997	if (!count)
 998		goto out;
 999
1000	retval = nfs_sync_mapping(mapping);
1001	if (retval)
1002		goto out;
 
 
 
 
 
 
 
 
 
1003
1004	task_io_account_write(count);
1005
1006	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
 
 
 
1007
1008	if (retval > 0)
1009		iocb->ki_pos = pos + retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011out:
1012	return retval;
1013}
1014
1015/**
1016 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1017 *
1018 */
1019int __init nfs_init_directcache(void)
1020{
1021	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1022						sizeof(struct nfs_direct_req),
1023						0, (SLAB_RECLAIM_ACCOUNT|
1024							SLAB_MEM_SPREAD),
1025						NULL);
1026	if (nfs_direct_cachep == NULL)
1027		return -ENOMEM;
1028
1029	return 0;
1030}
1031
1032/**
1033 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1034 *
1035 */
1036void nfs_destroy_directcache(void)
1037{
1038	kmem_cache_destroy(nfs_direct_cachep);
1039}
v3.15
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
  49#include <linux/module.h>
  50
  51#include <linux/nfs_fs.h>
  52#include <linux/nfs_page.h>
  53#include <linux/sunrpc/clnt.h>
  54
 
  55#include <asm/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
  60#include "pnfs.h"
  61
  62#define NFSDBG_FACILITY		NFSDBG_VFS
  63
  64static struct kmem_cache *nfs_direct_cachep;
  65
  66/*
  67 * This represents a set of asynchronous requests that we're waiting on
  68 */
  69struct nfs_direct_req {
  70	struct kref		kref;		/* release manager */
  71
  72	/* I/O parameters */
  73	struct nfs_open_context	*ctx;		/* file open context info */
  74	struct nfs_lock_context *l_ctx;		/* Lock context info */
  75	struct kiocb *		iocb;		/* controlling i/o request */
  76	struct inode *		inode;		/* target file of i/o */
  77
  78	/* completion state */
  79	atomic_t		io_count;	/* i/os we're waiting for */
  80	spinlock_t		lock;		/* protect completion state */
  81	ssize_t			count,		/* bytes actually processed */
  82				bytes_left,	/* bytes left to be sent */
  83				error;		/* any reported error */
  84	struct completion	completion;	/* wait for i/o completion */
  85
  86	/* commit state */
  87	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
  88	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
  89	struct work_struct	work;
  90	int			flags;
  91#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
  92#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
  93	struct nfs_writeverf	verf;		/* unstable write verifier */
  94};
  95
  96static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  97static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  98static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  99static void nfs_direct_write_schedule_work(struct work_struct *work);
 100
 101static inline void get_dreq(struct nfs_direct_req *dreq)
 102{
 103	atomic_inc(&dreq->io_count);
 104}
 105
 106static inline int put_dreq(struct nfs_direct_req *dreq)
 107{
 108	return atomic_dec_and_test(&dreq->io_count);
 109}
 110
 111/**
 112 * nfs_direct_IO - NFS address space operation for direct I/O
 113 * @rw: direction (read or write)
 114 * @iocb: target I/O control block
 115 * @iov: array of vectors that define I/O buffer
 116 * @pos: offset in file to begin the operation
 117 * @nr_segs: size of iovec array
 118 *
 119 * The presence of this routine in the address space ops vector means
 120 * the NFS client supports direct I/O. However, for most direct IO, we
 121 * shunt off direct read and write requests before the VFS gets them,
 122 * so this method is only ever called for swap.
 123 */
 124ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
 125{
 126#ifndef CONFIG_NFS_SWAP
 127	dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
 128			iocb->ki_filp, (long long) pos, nr_segs);
 129
 130	return -EINVAL;
 131#else
 132	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
 
 
 
 
 133
 134	if (rw == READ || rw == KERNEL_READ)
 135		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
 136				rw == READ ? true : false);
 137	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
 138				rw == WRITE ? true : false);
 139#endif /* CONFIG_NFS_SWAP */
 
 
 
 140}
 141
 142static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 143{
 144	unsigned int i;
 145	for (i = 0; i < npages; i++)
 146		page_cache_release(pages[i]);
 147}
 148
 149void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 150			      struct nfs_direct_req *dreq)
 151{
 152	cinfo->lock = &dreq->lock;
 153	cinfo->mds = &dreq->mds_cinfo;
 154	cinfo->ds = &dreq->ds_cinfo;
 155	cinfo->dreq = dreq;
 156	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 157}
 158
 159static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 160{
 161	struct nfs_direct_req *dreq;
 162
 163	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 164	if (!dreq)
 165		return NULL;
 166
 167	kref_init(&dreq->kref);
 168	kref_get(&dreq->kref);
 169	init_completion(&dreq->completion);
 170	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 171	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 
 
 172	spin_lock_init(&dreq->lock);
 
 
 
 
 173
 174	return dreq;
 175}
 176
 177static void nfs_direct_req_free(struct kref *kref)
 178{
 179	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 180
 181	if (dreq->l_ctx != NULL)
 182		nfs_put_lock_context(dreq->l_ctx);
 183	if (dreq->ctx != NULL)
 184		put_nfs_open_context(dreq->ctx);
 185	kmem_cache_free(nfs_direct_cachep, dreq);
 186}
 187
 188static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 189{
 190	kref_put(&dreq->kref, nfs_direct_req_free);
 191}
 192
 193ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
 194{
 195	return dreq->bytes_left;
 196}
 197EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 198
 199/*
 200 * Collects and returns the final error value/byte-count.
 201 */
 202static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 203{
 204	ssize_t result = -EIOCBQUEUED;
 205
 206	/* Async requests don't wait here */
 207	if (dreq->iocb)
 208		goto out;
 209
 210	result = wait_for_completion_killable(&dreq->completion);
 211
 212	if (!result)
 213		result = dreq->error;
 214	if (!result)
 215		result = dreq->count;
 216
 217out:
 218	return (ssize_t) result;
 219}
 220
 221/*
 222 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 223 * the iocb is still valid here if this is a synchronous request.
 224 */
 225static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
 226{
 227	struct inode *inode = dreq->inode;
 228
 229	if (dreq->iocb && write) {
 230		loff_t pos = dreq->iocb->ki_pos + dreq->count;
 231
 232		spin_lock(&inode->i_lock);
 233		if (i_size_read(inode) < pos)
 234			i_size_write(inode, pos);
 235		spin_unlock(&inode->i_lock);
 236	}
 237
 238	if (write)
 239		nfs_zap_mapping(inode, inode->i_mapping);
 240
 241	inode_dio_done(inode);
 242
 243	if (dreq->iocb) {
 244		long res = (long) dreq->error;
 245		if (!res)
 246			res = (long) dreq->count;
 247		aio_complete(dreq->iocb, res, 0);
 248	}
 249
 250	complete_all(&dreq->completion);
 251
 252	nfs_direct_req_release(dreq);
 253}
 254
 255static void nfs_direct_readpage_release(struct nfs_page *req)
 
 
 
 
 
 256{
 257	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
 258		req->wb_context->dentry->d_inode->i_sb->s_id,
 259		(unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
 260		req->wb_bytes,
 261		(long long)req_offset(req));
 262	nfs_release_request(req);
 263}
 264
 265static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 266{
 267	unsigned long bytes = 0;
 268	struct nfs_direct_req *dreq = hdr->dreq;
 269
 270	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 271		goto out_put;
 
 272
 273	spin_lock(&dreq->lock);
 274	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
 275		dreq->error = hdr->error;
 276	else
 277		dreq->count += hdr->good_bytes;
 278	spin_unlock(&dreq->lock);
 279
 280	while (!list_empty(&hdr->pages)) {
 281		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 282		struct page *page = req->wb_page;
 
 
 283
 284		if (!PageCompound(page) && bytes < hdr->good_bytes)
 285			set_page_dirty(page);
 286		bytes += req->wb_bytes;
 287		nfs_list_remove_request(req);
 288		nfs_direct_readpage_release(req);
 289	}
 290out_put:
 291	if (put_dreq(dreq))
 292		nfs_direct_complete(dreq, false);
 293	hdr->release(hdr);
 294}
 295
 296static void nfs_read_sync_pgio_error(struct list_head *head)
 297{
 298	struct nfs_page *req;
 299
 300	while (!list_empty(head)) {
 301		req = nfs_list_entry(head->next);
 302		nfs_list_remove_request(req);
 303		nfs_release_request(req);
 304	}
 305}
 306
 307static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 308{
 309	get_dreq(hdr->dreq);
 310}
 311
 312static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 313	.error_cleanup = nfs_read_sync_pgio_error,
 314	.init_hdr = nfs_direct_pgio_init,
 315	.completion = nfs_direct_read_completion,
 316};
 317
 318/*
 319 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 320 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 321 * bail and stop sending more reads.  Read length accounting is
 322 * handled automatically by nfs_direct_read_result().  Otherwise, if
 323 * no requests have been sent, just return an error.
 324 */
 325static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
 326						const struct iovec *iov,
 327						loff_t pos, bool uio)
 328{
 329	struct nfs_direct_req *dreq = desc->pg_dreq;
 330	struct nfs_open_context *ctx = dreq->ctx;
 331	struct inode *inode = ctx->dentry->d_inode;
 332	unsigned long user_addr = (unsigned long)iov->iov_base;
 333	size_t count = iov->iov_len;
 334	size_t rsize = NFS_SERVER(inode)->rsize;
 
 
 
 
 
 
 
 
 
 
 
 335	unsigned int pgbase;
 336	int result;
 337	ssize_t started = 0;
 338	struct page **pagevec = NULL;
 339	unsigned int npages;
 340
 341	do {
 
 342		size_t bytes;
 343		int i;
 344
 345		pgbase = user_addr & ~PAGE_MASK;
 346		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
 347
 348		result = -ENOMEM;
 349		npages = nfs_page_array_len(pgbase, bytes);
 350		if (!pagevec)
 351			pagevec = kmalloc(npages * sizeof(struct page *),
 352					  GFP_KERNEL);
 353		if (!pagevec)
 354			break;
 355		if (uio) {
 356			down_read(&current->mm->mmap_sem);
 357			result = get_user_pages(current, current->mm, user_addr,
 358					npages, 1, 0, pagevec, NULL);
 359			up_read(&current->mm->mmap_sem);
 360			if (result < 0)
 361				break;
 362		} else {
 363			WARN_ON(npages != 1);
 364			result = get_kernel_page(user_addr, 1, pagevec);
 365			if (WARN_ON(result != 1))
 366				break;
 367		}
 368
 369		if ((unsigned)result < npages) {
 370			bytes = result * PAGE_SIZE;
 371			if (bytes <= pgbase) {
 372				nfs_direct_release_pages(pagevec, result);
 
 373				break;
 374			}
 375			bytes -= pgbase;
 376			npages = result;
 377		}
 378
 379		for (i = 0; i < npages; i++) {
 380			struct nfs_page *req;
 381			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 382			/* XXX do we need to do the eof zeroing found in async_filler? */
 383			req = nfs_create_request(dreq->ctx, dreq->inode,
 384						 pagevec[i],
 385						 pgbase, req_len);
 386			if (IS_ERR(req)) {
 387				result = PTR_ERR(req);
 388				break;
 389			}
 390			req->wb_index = pos >> PAGE_SHIFT;
 391			req->wb_offset = pos & ~PAGE_MASK;
 392			if (!nfs_pageio_add_request(desc, req)) {
 393				result = desc->pg_error;
 394				nfs_release_request(req);
 395				break;
 396			}
 397			pgbase = 0;
 398			bytes -= req_len;
 399			started += req_len;
 400			user_addr += req_len;
 401			pos += req_len;
 402			count -= req_len;
 403			dreq->bytes_left -= req_len;
 404		}
 405		/* The nfs_page now hold references to these pages */
 406		nfs_direct_release_pages(pagevec, npages);
 407	} while (count != 0 && result >= 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408
 409	kfree(pagevec);
 
 410
 411	if (started)
 412		return started;
 413	return result < 0 ? (ssize_t) result : -EFAULT;
 414}
 415
 416static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 417					      const struct iovec *iov,
 418					      unsigned long nr_segs,
 419					      loff_t pos, bool uio)
 420{
 421	struct nfs_pageio_descriptor desc;
 422	struct inode *inode = dreq->inode;
 423	ssize_t result = -EINVAL;
 424	size_t requested_bytes = 0;
 425	unsigned long seg;
 426
 427	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
 428			     &nfs_direct_read_completion_ops);
 429	get_dreq(dreq);
 430	desc.pg_dreq = dreq;
 431	atomic_inc(&inode->i_dio_count);
 432
 433	for (seg = 0; seg < nr_segs; seg++) {
 434		const struct iovec *vec = &iov[seg];
 435		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
 436		if (result < 0)
 437			break;
 438		requested_bytes += result;
 439		if ((size_t)result < vec->iov_len)
 440			break;
 441		pos += vec->iov_len;
 442	}
 443
 444	nfs_pageio_complete(&desc);
 445
 446	/*
 447	 * If no bytes were started, return the error, and let the
 448	 * generic layer handle the completion.
 449	 */
 450	if (requested_bytes == 0) {
 451		inode_dio_done(inode);
 452		nfs_direct_req_release(dreq);
 453		return result < 0 ? result : -EIO;
 454	}
 455
 456	if (put_dreq(dreq))
 457		nfs_direct_complete(dreq, false);
 458	return 0;
 459}
 460
 461/**
 462 * nfs_file_direct_read - file direct read operation for NFS files
 463 * @iocb: target I/O control block
 464 * @iov: vector of user buffers into which to read data
 465 * @nr_segs: size of iov vector
 466 * @pos: byte offset in file where reading starts
 467 *
 468 * We use this function for direct reads instead of calling
 469 * generic_file_aio_read() in order to avoid gfar's check to see if
 470 * the request starts before the end of the file.  For that check
 471 * to work, we must generate a GETATTR before each direct read, and
 472 * even then there is a window between the GETATTR and the subsequent
 473 * READ where the file size could change.  Our preference is simply
 474 * to do all reads the application wants, and the server will take
 475 * care of managing the end of file boundary.
 476 *
 477 * This function also eliminates unnecessarily updating the file's
 478 * atime locally, as the NFS server sets the file's atime, and this
 479 * client must read the updated atime from the server back into its
 480 * cache.
 481 */
 482ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
 483				unsigned long nr_segs, loff_t pos, bool uio)
 484{
 485	struct file *file = iocb->ki_filp;
 486	struct address_space *mapping = file->f_mapping;
 487	struct inode *inode = mapping->host;
 488	struct nfs_direct_req *dreq;
 489	struct nfs_lock_context *l_ctx;
 490	ssize_t result = -EINVAL;
 491	size_t count;
 492
 493	count = iov_length(iov, nr_segs);
 494	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 495
 496	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 497		file, count, (long long) pos);
 498
 499	result = 0;
 500	if (!count)
 501		goto out;
 502
 503	mutex_lock(&inode->i_mutex);
 504	result = nfs_sync_mapping(mapping);
 505	if (result)
 506		goto out_unlock;
 507
 508	task_io_account_read(count);
 509
 510	result = -ENOMEM;
 511	dreq = nfs_direct_req_alloc();
 512	if (dreq == NULL)
 513		goto out_unlock;
 514
 515	dreq->inode = inode;
 516	dreq->bytes_left = iov_length(iov, nr_segs);
 517	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 518	l_ctx = nfs_get_lock_context(dreq->ctx);
 519	if (IS_ERR(l_ctx)) {
 520		result = PTR_ERR(l_ctx);
 521		goto out_release;
 522	}
 523	dreq->l_ctx = l_ctx;
 524	if (!is_sync_kiocb(iocb))
 525		dreq->iocb = iocb;
 526
 527	NFS_I(inode)->read_io += iov_length(iov, nr_segs);
 528	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
 529
 530	mutex_unlock(&inode->i_mutex);
 531
 532	if (!result) {
 533		result = nfs_direct_wait(dreq);
 534		if (result > 0)
 535			iocb->ki_pos = pos + result;
 536	}
 537
 538	nfs_direct_req_release(dreq);
 539	return result;
 540
 541out_release:
 542	nfs_direct_req_release(dreq);
 543out_unlock:
 544	mutex_unlock(&inode->i_mutex);
 545out:
 546	return result;
 547}
 548
 549#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
 
 
 
 
 
 
 
 
 
 
 550static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 551{
 552	struct nfs_pageio_descriptor desc;
 553	struct nfs_page *req, *tmp;
 554	LIST_HEAD(reqs);
 555	struct nfs_commit_info cinfo;
 556	LIST_HEAD(failed);
 557
 558	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 559	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
 560	spin_lock(cinfo.lock);
 561	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
 562	spin_unlock(cinfo.lock);
 
 
 
 563
 564	dreq->count = 0;
 565	get_dreq(dreq);
 566
 567	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
 568			      &nfs_direct_write_completion_ops);
 569	desc.pg_dreq = dreq;
 570
 571	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 572		if (!nfs_pageio_add_request(&desc, req)) {
 573			nfs_list_remove_request(req);
 574			nfs_list_add_request(req, &failed);
 575			spin_lock(cinfo.lock);
 576			dreq->flags = 0;
 577			dreq->error = -EIO;
 578			spin_unlock(cinfo.lock);
 579		}
 580		nfs_release_request(req);
 581	}
 582	nfs_pageio_complete(&desc);
 583
 584	while (!list_empty(&failed)) {
 585		req = nfs_list_entry(failed.next);
 586		nfs_list_remove_request(req);
 587		nfs_unlock_and_release_request(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588	}
 589
 590	if (put_dreq(dreq))
 591		nfs_direct_write_complete(dreq, dreq->inode);
 
 
 
 
 
 
 
 
 592}
 593
 594static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 595{
 596	struct nfs_direct_req *dreq = data->dreq;
 597	struct nfs_commit_info cinfo;
 598	struct nfs_page *req;
 599	int status = data->task.tk_status;
 600
 601	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 602	if (status < 0) {
 603		dprintk("NFS: %5u commit failed with error %d.\n",
 604			data->task.tk_pid, status);
 605		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 606	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
 607		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 608		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 609	}
 610
 611	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 612	while (!list_empty(&data->pages)) {
 613		req = nfs_list_entry(data->pages.next);
 614		nfs_list_remove_request(req);
 615		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
 616			/* Note the rewrite will go through mds */
 617			nfs_mark_request_commit(req, NULL, &cinfo);
 618		} else
 619			nfs_release_request(req);
 620		nfs_unlock_and_release_request(req);
 621	}
 622
 623	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
 624		nfs_direct_write_complete(dreq, data->inode);
 625}
 626
 627static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
 628{
 629	/* There is no lock to clear */
 630}
 631
 632static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 633	.completion = nfs_direct_commit_complete,
 634	.error_cleanup = nfs_direct_error_cleanup,
 
 
 
 635};
 636
 637static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 638{
 639	int res;
 640	struct nfs_commit_info cinfo;
 641	LIST_HEAD(mds_list);
 642
 643	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 644	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 645	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 646	if (res < 0) /* res == -ENOMEM */
 647		nfs_direct_write_reschedule(dreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648}
 649
 650static void nfs_direct_write_schedule_work(struct work_struct *work)
 651{
 652	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 653	int flags = dreq->flags;
 654
 655	dreq->flags = 0;
 656	switch (flags) {
 657		case NFS_ODIRECT_DO_COMMIT:
 658			nfs_direct_commit_schedule(dreq);
 659			break;
 660		case NFS_ODIRECT_RESCHED_WRITES:
 661			nfs_direct_write_reschedule(dreq);
 662			break;
 663		default:
 664			nfs_direct_complete(dreq, true);
 
 
 
 
 665	}
 666}
 667
 668static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 669{
 670	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
 
 
 671}
 672
 673#else
 674static void nfs_direct_write_schedule_work(struct work_struct *work)
 675{
 
 676}
 677
 678static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 679{
 680	nfs_direct_complete(dreq, true);
 
 
 681}
 682#endif
 683
 
 
 
 
 
 
 
 684/*
 685 * NB: Return the value of the first error return code.  Subsequent
 686 *     errors after the first one are ignored.
 687 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688/*
 689 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 690 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 691 * bail and stop sending more writes.  Write length accounting is
 692 * handled automatically by nfs_direct_write_result().  Otherwise, if
 693 * no requests have been sent, just return an error.
 694 */
 695static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
 696						 const struct iovec *iov,
 697						 loff_t pos, bool uio)
 698{
 699	struct nfs_direct_req *dreq = desc->pg_dreq;
 700	struct nfs_open_context *ctx = dreq->ctx;
 701	struct inode *inode = ctx->dentry->d_inode;
 702	unsigned long user_addr = (unsigned long)iov->iov_base;
 703	size_t count = iov->iov_len;
 
 
 
 
 
 
 
 
 
 
 
 704	size_t wsize = NFS_SERVER(inode)->wsize;
 705	unsigned int pgbase;
 706	int result;
 707	ssize_t started = 0;
 708	struct page **pagevec = NULL;
 709	unsigned int npages;
 710
 711	do {
 
 712		size_t bytes;
 713		int i;
 714
 715		pgbase = user_addr & ~PAGE_MASK;
 716		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
 717
 718		result = -ENOMEM;
 719		npages = nfs_page_array_len(pgbase, bytes);
 720		if (!pagevec)
 721			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
 722		if (!pagevec)
 723			break;
 724
 725		if (uio) {
 726			down_read(&current->mm->mmap_sem);
 727			result = get_user_pages(current, current->mm, user_addr,
 728						npages, 0, 0, pagevec, NULL);
 729			up_read(&current->mm->mmap_sem);
 730			if (result < 0)
 731				break;
 732		} else {
 733			WARN_ON(npages != 1);
 734			result = get_kernel_page(user_addr, 0, pagevec);
 735			if (WARN_ON(result != 1))
 736				break;
 737		}
 738
 739		if ((unsigned)result < npages) {
 740			bytes = result * PAGE_SIZE;
 741			if (bytes <= pgbase) {
 742				nfs_direct_release_pages(pagevec, result);
 
 743				break;
 744			}
 745			bytes -= pgbase;
 746			npages = result;
 747		}
 748
 749		for (i = 0; i < npages; i++) {
 750			struct nfs_page *req;
 751			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 752
 753			req = nfs_create_request(dreq->ctx, dreq->inode,
 754						 pagevec[i],
 755						 pgbase, req_len);
 756			if (IS_ERR(req)) {
 757				result = PTR_ERR(req);
 758				break;
 759			}
 760			nfs_lock_request(req);
 761			req->wb_index = pos >> PAGE_SHIFT;
 762			req->wb_offset = pos & ~PAGE_MASK;
 763			if (!nfs_pageio_add_request(desc, req)) {
 764				result = desc->pg_error;
 765				nfs_unlock_and_release_request(req);
 766				break;
 767			}
 768			pgbase = 0;
 769			bytes -= req_len;
 770			started += req_len;
 771			user_addr += req_len;
 772			pos += req_len;
 773			count -= req_len;
 774			dreq->bytes_left -= req_len;
 775		}
 776		/* The nfs_page now hold references to these pages */
 777		nfs_direct_release_pages(pagevec, npages);
 778	} while (count != 0 && result >= 0);
 779
 780	kfree(pagevec);
 781
 782	if (started)
 783		return started;
 784	return result < 0 ? (ssize_t) result : -EFAULT;
 785}
 786
 787static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 788{
 789	struct nfs_direct_req *dreq = hdr->dreq;
 790	struct nfs_commit_info cinfo;
 791	int bit = -1;
 792	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 793
 794	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 795		goto out_put;
 
 
 796
 797	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798
 799	spin_lock(&dreq->lock);
 
 800
 801	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
 802		dreq->flags = 0;
 803		dreq->error = hdr->error;
 804	}
 805	if (dreq->error != 0)
 806		bit = NFS_IOHDR_ERROR;
 807	else {
 808		dreq->count += hdr->good_bytes;
 809		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
 810			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 811			bit = NFS_IOHDR_NEED_RESCHED;
 812		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
 813			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
 814				bit = NFS_IOHDR_NEED_RESCHED;
 815			else if (dreq->flags == 0) {
 816				memcpy(&dreq->verf, hdr->verf,
 817				       sizeof(dreq->verf));
 818				bit = NFS_IOHDR_NEED_COMMIT;
 819				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 820			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
 821				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
 822					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 823					bit = NFS_IOHDR_NEED_RESCHED;
 824				} else
 825					bit = NFS_IOHDR_NEED_COMMIT;
 826			}
 827		}
 828	}
 829	spin_unlock(&dreq->lock);
 830
 831	while (!list_empty(&hdr->pages)) {
 832		req = nfs_list_entry(hdr->pages.next);
 833		nfs_list_remove_request(req);
 834		switch (bit) {
 835		case NFS_IOHDR_NEED_RESCHED:
 836		case NFS_IOHDR_NEED_COMMIT:
 837			kref_get(&req->wb_kref);
 838			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
 839		}
 840		nfs_unlock_and_release_request(req);
 841	}
 842
 843out_put:
 844	if (put_dreq(dreq))
 845		nfs_direct_write_complete(dreq, hdr->inode);
 846	hdr->release(hdr);
 847}
 848
 849static void nfs_write_sync_pgio_error(struct list_head *head)
 850{
 851	struct nfs_page *req;
 852
 853	while (!list_empty(head)) {
 854		req = nfs_list_entry(head->next);
 855		nfs_list_remove_request(req);
 856		nfs_unlock_and_release_request(req);
 857	}
 858}
 859
 860static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 861	.error_cleanup = nfs_write_sync_pgio_error,
 862	.init_hdr = nfs_direct_pgio_init,
 863	.completion = nfs_direct_write_completion,
 864};
 865
 866static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 867					       const struct iovec *iov,
 868					       unsigned long nr_segs,
 869					       loff_t pos, bool uio)
 870{
 871	struct nfs_pageio_descriptor desc;
 872	struct inode *inode = dreq->inode;
 873	ssize_t result = 0;
 874	size_t requested_bytes = 0;
 875	unsigned long seg;
 876
 877	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
 878			      &nfs_direct_write_completion_ops);
 879	desc.pg_dreq = dreq;
 880	get_dreq(dreq);
 881	atomic_inc(&inode->i_dio_count);
 882
 883	NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
 884	for (seg = 0; seg < nr_segs; seg++) {
 885		const struct iovec *vec = &iov[seg];
 886		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
 
 887		if (result < 0)
 888			break;
 889		requested_bytes += result;
 890		if ((size_t)result < vec->iov_len)
 891			break;
 892		pos += vec->iov_len;
 893	}
 894	nfs_pageio_complete(&desc);
 895
 896	/*
 897	 * If no bytes were started, return the error, and let the
 898	 * generic layer handle the completion.
 899	 */
 900	if (requested_bytes == 0) {
 901		inode_dio_done(inode);
 902		nfs_direct_req_release(dreq);
 903		return result < 0 ? result : -EIO;
 904	}
 905
 906	if (put_dreq(dreq))
 907		nfs_direct_write_complete(dreq, dreq->inode);
 908	return 0;
 909}
 910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911/**
 912 * nfs_file_direct_write - file direct write operation for NFS files
 913 * @iocb: target I/O control block
 914 * @iov: vector of user buffers from which to write data
 915 * @nr_segs: size of iov vector
 916 * @pos: byte offset in file where writing starts
 917 *
 918 * We use this function for direct writes instead of calling
 919 * generic_file_aio_write() in order to avoid taking the inode
 920 * semaphore and updating the i_size.  The NFS server will set
 921 * the new i_size and this client must read the updated size
 922 * back into its cache.  We let the server do generic write
 923 * parameter checking and report problems.
 924 *
 925 * We eliminate local atime updates, see direct read above.
 926 *
 927 * We avoid unnecessary page cache invalidations for normal cached
 928 * readers of this file.
 929 *
 930 * Note that O_APPEND is not supported for NFS direct writes, as there
 931 * is no atomic O_APPEND write facility in the NFS protocol.
 932 */
 933ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 934				unsigned long nr_segs, loff_t pos, bool uio)
 935{
 936	ssize_t result = -EINVAL;
 937	struct file *file = iocb->ki_filp;
 938	struct address_space *mapping = file->f_mapping;
 939	struct inode *inode = mapping->host;
 940	struct nfs_direct_req *dreq;
 941	struct nfs_lock_context *l_ctx;
 942	loff_t end;
 943	size_t count;
 944
 945	count = iov_length(iov, nr_segs);
 946	end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
 947
 948	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 949
 950	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
 951		file, count, (long long) pos);
 
 
 952
 953	result = generic_write_checks(file, &pos, &count, 0);
 954	if (result)
 955		goto out;
 956
 957	result = -EINVAL;
 958	if ((ssize_t) count < 0)
 959		goto out;
 960	result = 0;
 961	if (!count)
 962		goto out;
 963
 964	mutex_lock(&inode->i_mutex);
 965
 966	result = nfs_sync_mapping(mapping);
 967	if (result)
 968		goto out_unlock;
 969
 970	if (mapping->nrpages) {
 971		result = invalidate_inode_pages2_range(mapping,
 972					pos >> PAGE_CACHE_SHIFT, end);
 973		if (result)
 974			goto out_unlock;
 975	}
 976
 977	task_io_account_write(count);
 978
 979	result = -ENOMEM;
 980	dreq = nfs_direct_req_alloc();
 981	if (!dreq)
 982		goto out_unlock;
 983
 984	dreq->inode = inode;
 985	dreq->bytes_left = count;
 986	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 987	l_ctx = nfs_get_lock_context(dreq->ctx);
 988	if (IS_ERR(l_ctx)) {
 989		result = PTR_ERR(l_ctx);
 990		goto out_release;
 991	}
 992	dreq->l_ctx = l_ctx;
 993	if (!is_sync_kiocb(iocb))
 994		dreq->iocb = iocb;
 995
 996	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
 997
 998	if (mapping->nrpages) {
 999		invalidate_inode_pages2_range(mapping,
1000					      pos >> PAGE_CACHE_SHIFT, end);
1001	}
1002
1003	mutex_unlock(&inode->i_mutex);
1004
1005	if (!result) {
1006		result = nfs_direct_wait(dreq);
1007		if (result > 0) {
1008			struct inode *inode = mapping->host;
1009
1010			iocb->ki_pos = pos + result;
1011			spin_lock(&inode->i_lock);
1012			if (i_size_read(inode) < iocb->ki_pos)
1013				i_size_write(inode, iocb->ki_pos);
1014			spin_unlock(&inode->i_lock);
1015		}
1016	}
1017	nfs_direct_req_release(dreq);
1018	return result;
1019
1020out_release:
1021	nfs_direct_req_release(dreq);
1022out_unlock:
1023	mutex_unlock(&inode->i_mutex);
1024out:
1025	return result;
1026}
1027
1028/**
1029 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1030 *
1031 */
1032int __init nfs_init_directcache(void)
1033{
1034	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1035						sizeof(struct nfs_direct_req),
1036						0, (SLAB_RECLAIM_ACCOUNT|
1037							SLAB_MEM_SPREAD),
1038						NULL);
1039	if (nfs_direct_cachep == NULL)
1040		return -ENOMEM;
1041
1042	return 0;
1043}
1044
1045/**
1046 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1047 *
1048 */
1049void nfs_destroy_directcache(void)
1050{
1051	kmem_cache_destroy(nfs_direct_cachep);
1052}