Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * hcd.c - DesignWare HS OTG Controller host-mode routines
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37
  38/*
  39 * This file contains the core HCD code, and implements the Linux hc_driver
  40 * API
  41 */
  42#include <linux/kernel.h>
  43#include <linux/module.h>
  44#include <linux/spinlock.h>
  45#include <linux/interrupt.h>
  46#include <linux/platform_device.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/delay.h>
  49#include <linux/io.h>
  50#include <linux/slab.h>
  51#include <linux/usb.h>
  52
  53#include <linux/usb/hcd.h>
  54#include <linux/usb/ch11.h>
  55
  56#include "core.h"
  57#include "hcd.h"
  58
  59/*
  60 * =========================================================================
  61 *  Host Core Layer Functions
  62 * =========================================================================
  63 */
  64
  65/**
  66 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
  67 * used in both device and host modes
  68 *
  69 * @hsotg: Programming view of the DWC_otg controller
  70 */
  71static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
  72{
  73	u32 intmsk;
  74
  75	/* Clear any pending OTG Interrupts */
  76	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
  77
  78	/* Clear any pending interrupts */
  79	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
  80
  81	/* Enable the interrupts in the GINTMSK */
  82	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
  83
  84	if (!hsotg->params.host_dma)
  85		intmsk |= GINTSTS_RXFLVL;
  86	if (!hsotg->params.external_id_pin_ctl)
  87		intmsk |= GINTSTS_CONIDSTSCHNG;
  88
  89	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
  90		  GINTSTS_SESSREQINT;
  91
  92	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
  93		intmsk |= GINTSTS_LPMTRANRCVD;
  94
  95	dwc2_writel(hsotg, intmsk, GINTMSK);
  96}
  97
  98static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
  99{
 100	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
 101
 102	switch (hsotg->hw_params.arch) {
 103	case GHWCFG2_EXT_DMA_ARCH:
 104		dev_err(hsotg->dev, "External DMA Mode not supported\n");
 105		return -EINVAL;
 106
 107	case GHWCFG2_INT_DMA_ARCH:
 108		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
 109		if (hsotg->params.ahbcfg != -1) {
 110			ahbcfg &= GAHBCFG_CTRL_MASK;
 111			ahbcfg |= hsotg->params.ahbcfg &
 112				  ~GAHBCFG_CTRL_MASK;
 113		}
 114		break;
 115
 116	case GHWCFG2_SLAVE_ONLY_ARCH:
 117	default:
 118		dev_dbg(hsotg->dev, "Slave Only Mode\n");
 119		break;
 120	}
 121
 122	if (hsotg->params.host_dma)
 123		ahbcfg |= GAHBCFG_DMA_EN;
 124	else
 125		hsotg->params.dma_desc_enable = false;
 126
 127	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
 128
 129	return 0;
 130}
 131
 132static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
 133{
 134	u32 usbcfg;
 135
 136	usbcfg = dwc2_readl(hsotg, GUSBCFG);
 137	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
 138
 139	switch (hsotg->hw_params.op_mode) {
 140	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
 141		if (hsotg->params.otg_cap ==
 142				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
 143			usbcfg |= GUSBCFG_HNPCAP;
 144		if (hsotg->params.otg_cap !=
 145				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 146			usbcfg |= GUSBCFG_SRPCAP;
 147		break;
 148
 149	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
 150	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
 151	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
 152		if (hsotg->params.otg_cap !=
 153				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 154			usbcfg |= GUSBCFG_SRPCAP;
 155		break;
 156
 157	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
 158	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
 159	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
 160	default:
 161		break;
 162	}
 163
 164	dwc2_writel(hsotg, usbcfg, GUSBCFG);
 165}
 166
 167static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
 168{
 169	if (hsotg->vbus_supply)
 170		return regulator_enable(hsotg->vbus_supply);
 171
 172	return 0;
 173}
 174
 175static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
 176{
 177	if (hsotg->vbus_supply)
 178		return regulator_disable(hsotg->vbus_supply);
 179
 180	return 0;
 181}
 182
 183/**
 184 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
 185 *
 186 * @hsotg: Programming view of DWC_otg controller
 187 */
 188static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
 189{
 190	u32 intmsk;
 191
 192	dev_dbg(hsotg->dev, "%s()\n", __func__);
 193
 194	/* Disable all interrupts */
 195	dwc2_writel(hsotg, 0, GINTMSK);
 196	dwc2_writel(hsotg, 0, HAINTMSK);
 197
 198	/* Enable the common interrupts */
 199	dwc2_enable_common_interrupts(hsotg);
 200
 201	/* Enable host mode interrupts without disturbing common interrupts */
 202	intmsk = dwc2_readl(hsotg, GINTMSK);
 203	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
 204	dwc2_writel(hsotg, intmsk, GINTMSK);
 205}
 206
 207/**
 208 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
 209 *
 210 * @hsotg: Programming view of DWC_otg controller
 211 */
 212static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
 213{
 214	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
 215
 216	/* Disable host mode interrupts without disturbing common interrupts */
 217	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
 218		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
 219	dwc2_writel(hsotg, intmsk, GINTMSK);
 220}
 221
 222/*
 223 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
 224 * For system that have a total fifo depth that is smaller than the default
 225 * RX + TX fifo size.
 226 *
 227 * @hsotg: Programming view of DWC_otg controller
 228 */
 229static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
 230{
 231	struct dwc2_core_params *params = &hsotg->params;
 232	struct dwc2_hw_params *hw = &hsotg->hw_params;
 233	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
 234
 235	total_fifo_size = hw->total_fifo_size;
 236	rxfsiz = params->host_rx_fifo_size;
 237	nptxfsiz = params->host_nperio_tx_fifo_size;
 238	ptxfsiz = params->host_perio_tx_fifo_size;
 239
 240	/*
 241	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
 242	 * allocation with support for high bandwidth endpoints. Synopsys
 243	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
 244	 * non-periodic as 512.
 245	 */
 246	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
 247		/*
 248		 * For Buffer DMA mode/Scatter Gather DMA mode
 249		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
 250		 * with n = number of host channel.
 251		 * 2 * ((1024/4) + 2) = 516
 252		 */
 253		rxfsiz = 516 + hw->host_channels;
 254
 255		/*
 256		 * min non-periodic tx fifo depth
 257		 * 2 * (largest non-periodic USB packet used / 4)
 258		 * 2 * (512/4) = 256
 259		 */
 260		nptxfsiz = 256;
 261
 262		/*
 263		 * min periodic tx fifo depth
 264		 * (largest packet size*MC)/4
 265		 * (1024 * 3)/4 = 768
 266		 */
 267		ptxfsiz = 768;
 268
 269		params->host_rx_fifo_size = rxfsiz;
 270		params->host_nperio_tx_fifo_size = nptxfsiz;
 271		params->host_perio_tx_fifo_size = ptxfsiz;
 272	}
 273
 274	/*
 275	 * If the summation of RX, NPTX and PTX fifo sizes is still
 276	 * bigger than the total_fifo_size, then we have a problem.
 277	 *
 278	 * We won't be able to allocate as many endpoints. Right now,
 279	 * we're just printing an error message, but ideally this FIFO
 280	 * allocation algorithm would be improved in the future.
 281	 *
 282	 * FIXME improve this FIFO allocation algorithm.
 283	 */
 284	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
 285		dev_err(hsotg->dev, "invalid fifo sizes\n");
 286}
 287
 288static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
 289{
 290	struct dwc2_core_params *params = &hsotg->params;
 291	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
 292
 293	if (!params->enable_dynamic_fifo)
 294		return;
 295
 296	dwc2_calculate_dynamic_fifo(hsotg);
 297
 298	/* Rx FIFO */
 299	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
 300	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
 301	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
 302	grxfsiz |= params->host_rx_fifo_size <<
 303		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
 304	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
 305	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
 306		dwc2_readl(hsotg, GRXFSIZ));
 307
 308	/* Non-periodic Tx FIFO */
 309	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
 310		dwc2_readl(hsotg, GNPTXFSIZ));
 311	nptxfsiz = params->host_nperio_tx_fifo_size <<
 312		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 313	nptxfsiz |= params->host_rx_fifo_size <<
 314		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 315	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
 316	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
 317		dwc2_readl(hsotg, GNPTXFSIZ));
 318
 319	/* Periodic Tx FIFO */
 320	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
 321		dwc2_readl(hsotg, HPTXFSIZ));
 322	hptxfsiz = params->host_perio_tx_fifo_size <<
 323		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 324	hptxfsiz |= (params->host_rx_fifo_size +
 325		     params->host_nperio_tx_fifo_size) <<
 326		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 327	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
 328	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
 329		dwc2_readl(hsotg, HPTXFSIZ));
 330
 331	if (hsotg->params.en_multiple_tx_fifo &&
 332	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
 333		/*
 334		 * This feature was implemented in 2.91a version
 335		 * Global DFIFOCFG calculation for Host mode -
 336		 * include RxFIFO, NPTXFIFO and HPTXFIFO
 337		 */
 338		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
 339		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
 340		dfifocfg |= (params->host_rx_fifo_size +
 341			     params->host_nperio_tx_fifo_size +
 342			     params->host_perio_tx_fifo_size) <<
 343			    GDFIFOCFG_EPINFOBASE_SHIFT &
 344			    GDFIFOCFG_EPINFOBASE_MASK;
 345		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
 346	}
 347}
 348
 349/**
 350 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
 351 * the HFIR register according to PHY type and speed
 352 *
 353 * @hsotg: Programming view of DWC_otg controller
 354 *
 355 * NOTE: The caller can modify the value of the HFIR register only after the
 356 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
 357 * has been set
 358 */
 359u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
 360{
 361	u32 usbcfg;
 362	u32 hprt0;
 363	int clock = 60;	/* default value */
 364
 365	usbcfg = dwc2_readl(hsotg, GUSBCFG);
 366	hprt0 = dwc2_readl(hsotg, HPRT0);
 367
 368	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
 369	    !(usbcfg & GUSBCFG_PHYIF16))
 370		clock = 60;
 371	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
 372	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
 373		clock = 48;
 374	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 375	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 376		clock = 30;
 377	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 378	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
 379		clock = 60;
 380	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 381	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 382		clock = 48;
 383	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
 384	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
 385		clock = 48;
 386	if ((usbcfg & GUSBCFG_PHYSEL) &&
 387	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
 388		clock = 48;
 389
 390	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
 391		/* High speed case */
 392		return 125 * clock - 1;
 393
 394	/* FS/LS case */
 395	return 1000 * clock - 1;
 396}
 397
 398/**
 399 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
 400 * buffer
 401 *
 402 * @hsotg: Programming view of DWC_otg controller
 403 * @dest:    Destination buffer for the packet
 404 * @bytes:   Number of bytes to copy to the destination
 405 */
 406void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
 407{
 408	u32 *data_buf = (u32 *)dest;
 409	int word_count = (bytes + 3) / 4;
 410	int i;
 411
 412	/*
 413	 * Todo: Account for the case where dest is not dword aligned. This
 414	 * requires reading data from the FIFO into a u32 temp buffer, then
 415	 * moving it into the data buffer.
 416	 */
 417
 418	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
 419
 420	for (i = 0; i < word_count; i++, data_buf++)
 421		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
 422}
 423
 424/**
 425 * dwc2_dump_channel_info() - Prints the state of a host channel
 426 *
 427 * @hsotg: Programming view of DWC_otg controller
 428 * @chan:  Pointer to the channel to dump
 429 *
 430 * Must be called with interrupt disabled and spinlock held
 431 *
 432 * NOTE: This function will be removed once the peripheral controller code
 433 * is integrated and the driver is stable
 434 */
 435static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
 436				   struct dwc2_host_chan *chan)
 437{
 438#ifdef VERBOSE_DEBUG
 439	int num_channels = hsotg->params.host_channels;
 440	struct dwc2_qh *qh;
 441	u32 hcchar;
 442	u32 hcsplt;
 443	u32 hctsiz;
 444	u32 hc_dma;
 445	int i;
 446
 447	if (!chan)
 448		return;
 449
 450	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 451	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
 452	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
 453	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
 454
 455	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
 456	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
 457		hcchar, hcsplt);
 458	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
 459		hctsiz, hc_dma);
 460	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
 461		chan->dev_addr, chan->ep_num, chan->ep_is_in);
 462	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
 463	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
 464	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
 465	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
 466	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
 467	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
 468	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
 469		(unsigned long)chan->xfer_dma);
 470	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
 471	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
 472	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
 473	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
 474			    qh_list_entry)
 475		dev_dbg(hsotg->dev, "    %p\n", qh);
 476	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
 477	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
 478			    qh_list_entry)
 479		dev_dbg(hsotg->dev, "    %p\n", qh);
 480	dev_dbg(hsotg->dev, "  NP active sched:\n");
 481	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
 482			    qh_list_entry)
 483		dev_dbg(hsotg->dev, "    %p\n", qh);
 484	dev_dbg(hsotg->dev, "  Channels:\n");
 485	for (i = 0; i < num_channels; i++) {
 486		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
 487
 488		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
 489	}
 490#endif /* VERBOSE_DEBUG */
 491}
 492
 493static int _dwc2_hcd_start(struct usb_hcd *hcd);
 494
 495static void dwc2_host_start(struct dwc2_hsotg *hsotg)
 496{
 497	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 498
 499	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
 500	_dwc2_hcd_start(hcd);
 501}
 502
 503static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
 504{
 505	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 506
 507	hcd->self.is_b_host = 0;
 508}
 509
 510static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
 511			       int *hub_addr, int *hub_port)
 512{
 513	struct urb *urb = context;
 514
 515	if (urb->dev->tt)
 516		*hub_addr = urb->dev->tt->hub->devnum;
 517	else
 518		*hub_addr = 0;
 519	*hub_port = urb->dev->ttport;
 520}
 521
 522/*
 523 * =========================================================================
 524 *  Low Level Host Channel Access Functions
 525 * =========================================================================
 526 */
 527
 528static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
 529				      struct dwc2_host_chan *chan)
 530{
 531	u32 hcintmsk = HCINTMSK_CHHLTD;
 532
 533	switch (chan->ep_type) {
 534	case USB_ENDPOINT_XFER_CONTROL:
 535	case USB_ENDPOINT_XFER_BULK:
 536		dev_vdbg(hsotg->dev, "control/bulk\n");
 537		hcintmsk |= HCINTMSK_XFERCOMPL;
 538		hcintmsk |= HCINTMSK_STALL;
 539		hcintmsk |= HCINTMSK_XACTERR;
 540		hcintmsk |= HCINTMSK_DATATGLERR;
 541		if (chan->ep_is_in) {
 542			hcintmsk |= HCINTMSK_BBLERR;
 543		} else {
 544			hcintmsk |= HCINTMSK_NAK;
 545			hcintmsk |= HCINTMSK_NYET;
 546			if (chan->do_ping)
 547				hcintmsk |= HCINTMSK_ACK;
 548		}
 549
 550		if (chan->do_split) {
 551			hcintmsk |= HCINTMSK_NAK;
 552			if (chan->complete_split)
 553				hcintmsk |= HCINTMSK_NYET;
 554			else
 555				hcintmsk |= HCINTMSK_ACK;
 556		}
 557
 558		if (chan->error_state)
 559			hcintmsk |= HCINTMSK_ACK;
 560		break;
 561
 562	case USB_ENDPOINT_XFER_INT:
 563		if (dbg_perio())
 564			dev_vdbg(hsotg->dev, "intr\n");
 565		hcintmsk |= HCINTMSK_XFERCOMPL;
 566		hcintmsk |= HCINTMSK_NAK;
 567		hcintmsk |= HCINTMSK_STALL;
 568		hcintmsk |= HCINTMSK_XACTERR;
 569		hcintmsk |= HCINTMSK_DATATGLERR;
 570		hcintmsk |= HCINTMSK_FRMOVRUN;
 571
 572		if (chan->ep_is_in)
 573			hcintmsk |= HCINTMSK_BBLERR;
 574		if (chan->error_state)
 575			hcintmsk |= HCINTMSK_ACK;
 576		if (chan->do_split) {
 577			if (chan->complete_split)
 578				hcintmsk |= HCINTMSK_NYET;
 579			else
 580				hcintmsk |= HCINTMSK_ACK;
 581		}
 582		break;
 583
 584	case USB_ENDPOINT_XFER_ISOC:
 585		if (dbg_perio())
 586			dev_vdbg(hsotg->dev, "isoc\n");
 587		hcintmsk |= HCINTMSK_XFERCOMPL;
 588		hcintmsk |= HCINTMSK_FRMOVRUN;
 589		hcintmsk |= HCINTMSK_ACK;
 590
 591		if (chan->ep_is_in) {
 592			hcintmsk |= HCINTMSK_XACTERR;
 593			hcintmsk |= HCINTMSK_BBLERR;
 594		}
 595		break;
 596	default:
 597		dev_err(hsotg->dev, "## Unknown EP type ##\n");
 598		break;
 599	}
 600
 601	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 602	if (dbg_hc(chan))
 603		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 604}
 605
 606static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
 607				    struct dwc2_host_chan *chan)
 608{
 609	u32 hcintmsk = HCINTMSK_CHHLTD;
 610
 611	/*
 612	 * For Descriptor DMA mode core halts the channel on AHB error.
 613	 * Interrupt is not required.
 614	 */
 615	if (!hsotg->params.dma_desc_enable) {
 616		if (dbg_hc(chan))
 617			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 618		hcintmsk |= HCINTMSK_AHBERR;
 619	} else {
 620		if (dbg_hc(chan))
 621			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
 622		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
 623			hcintmsk |= HCINTMSK_XFERCOMPL;
 624	}
 625
 626	if (chan->error_state && !chan->do_split &&
 627	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
 628		if (dbg_hc(chan))
 629			dev_vdbg(hsotg->dev, "setting ACK\n");
 630		hcintmsk |= HCINTMSK_ACK;
 631		if (chan->ep_is_in) {
 632			hcintmsk |= HCINTMSK_DATATGLERR;
 633			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
 634				hcintmsk |= HCINTMSK_NAK;
 635		}
 636	}
 637
 638	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 639	if (dbg_hc(chan))
 640		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 641}
 642
 643static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
 644				struct dwc2_host_chan *chan)
 645{
 646	u32 intmsk;
 647
 648	if (hsotg->params.host_dma) {
 649		if (dbg_hc(chan))
 650			dev_vdbg(hsotg->dev, "DMA enabled\n");
 651		dwc2_hc_enable_dma_ints(hsotg, chan);
 652	} else {
 653		if (dbg_hc(chan))
 654			dev_vdbg(hsotg->dev, "DMA disabled\n");
 655		dwc2_hc_enable_slave_ints(hsotg, chan);
 656	}
 657
 658	/* Enable the top level host channel interrupt */
 659	intmsk = dwc2_readl(hsotg, HAINTMSK);
 660	intmsk |= 1 << chan->hc_num;
 661	dwc2_writel(hsotg, intmsk, HAINTMSK);
 662	if (dbg_hc(chan))
 663		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
 664
 665	/* Make sure host channel interrupts are enabled */
 666	intmsk = dwc2_readl(hsotg, GINTMSK);
 667	intmsk |= GINTSTS_HCHINT;
 668	dwc2_writel(hsotg, intmsk, GINTMSK);
 669	if (dbg_hc(chan))
 670		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
 671}
 672
 673/**
 674 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
 675 * a specific endpoint
 676 *
 677 * @hsotg: Programming view of DWC_otg controller
 678 * @chan:  Information needed to initialize the host channel
 679 *
 680 * The HCCHARn register is set up with the characteristics specified in chan.
 681 * Host channel interrupts that may need to be serviced while this transfer is
 682 * in progress are enabled.
 683 */
 684static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 685{
 686	u8 hc_num = chan->hc_num;
 687	u32 hcintmsk;
 688	u32 hcchar;
 689	u32 hcsplt = 0;
 690
 691	if (dbg_hc(chan))
 692		dev_vdbg(hsotg->dev, "%s()\n", __func__);
 693
 694	/* Clear old interrupt conditions for this host channel */
 695	hcintmsk = 0xffffffff;
 696	hcintmsk &= ~HCINTMSK_RESERVED14_31;
 697	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
 698
 699	/* Enable channel interrupts required for this transfer */
 700	dwc2_hc_enable_ints(hsotg, chan);
 701
 702	/*
 703	 * Program the HCCHARn register with the endpoint characteristics for
 704	 * the current transfer
 705	 */
 706	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
 707	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
 708	if (chan->ep_is_in)
 709		hcchar |= HCCHAR_EPDIR;
 710	if (chan->speed == USB_SPEED_LOW)
 711		hcchar |= HCCHAR_LSPDDEV;
 712	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
 713	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
 714	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
 715	if (dbg_hc(chan)) {
 716		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
 717			 hc_num, hcchar);
 718
 719		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
 720			 __func__, hc_num);
 721		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
 722			 chan->dev_addr);
 723		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
 724			 chan->ep_num);
 725		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
 726			 chan->ep_is_in);
 727		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
 728			 chan->speed == USB_SPEED_LOW);
 729		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
 730			 chan->ep_type);
 731		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
 732			 chan->max_packet);
 733	}
 734
 735	/* Program the HCSPLT register for SPLITs */
 736	if (chan->do_split) {
 737		if (dbg_hc(chan))
 738			dev_vdbg(hsotg->dev,
 739				 "Programming HC %d with split --> %s\n",
 740				 hc_num,
 741				 chan->complete_split ? "CSPLIT" : "SSPLIT");
 742		if (chan->complete_split)
 743			hcsplt |= HCSPLT_COMPSPLT;
 744		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
 745			  HCSPLT_XACTPOS_MASK;
 746		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
 747			  HCSPLT_HUBADDR_MASK;
 748		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
 749			  HCSPLT_PRTADDR_MASK;
 750		if (dbg_hc(chan)) {
 751			dev_vdbg(hsotg->dev, "	  comp split %d\n",
 752				 chan->complete_split);
 753			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
 754				 chan->xact_pos);
 755			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
 756				 chan->hub_addr);
 757			dev_vdbg(hsotg->dev, "	  hub port %d\n",
 758				 chan->hub_port);
 759			dev_vdbg(hsotg->dev, "	  is_in %d\n",
 760				 chan->ep_is_in);
 761			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
 762				 chan->max_packet);
 763			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
 764				 chan->xfer_len);
 765		}
 766	}
 767
 768	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
 769}
 770
 771/**
 772 * dwc2_hc_halt() - Attempts to halt a host channel
 773 *
 774 * @hsotg:       Controller register interface
 775 * @chan:        Host channel to halt
 776 * @halt_status: Reason for halting the channel
 777 *
 778 * This function should only be called in Slave mode or to abort a transfer in
 779 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
 780 * controller halts the channel when the transfer is complete or a condition
 781 * occurs that requires application intervention.
 782 *
 783 * In slave mode, checks for a free request queue entry, then sets the Channel
 784 * Enable and Channel Disable bits of the Host Channel Characteristics
 785 * register of the specified channel to intiate the halt. If there is no free
 786 * request queue entry, sets only the Channel Disable bit of the HCCHARn
 787 * register to flush requests for this channel. In the latter case, sets a
 788 * flag to indicate that the host channel needs to be halted when a request
 789 * queue slot is open.
 790 *
 791 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
 792 * HCCHARn register. The controller ensures there is space in the request
 793 * queue before submitting the halt request.
 794 *
 795 * Some time may elapse before the core flushes any posted requests for this
 796 * host channel and halts. The Channel Halted interrupt handler completes the
 797 * deactivation of the host channel.
 798 */
 799void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 800		  enum dwc2_halt_status halt_status)
 801{
 802	u32 nptxsts, hptxsts, hcchar;
 803
 804	if (dbg_hc(chan))
 805		dev_vdbg(hsotg->dev, "%s()\n", __func__);
 806
 807	/*
 808	 * In buffer DMA or external DMA mode channel can't be halted
 809	 * for non-split periodic channels. At the end of the next
 810	 * uframe/frame (in the worst case), the core generates a channel
 811	 * halted and disables the channel automatically.
 812	 */
 813	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
 814	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
 815		if (!chan->do_split &&
 816		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
 817		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
 818			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
 819				__func__);
 820			return;
 821		}
 822	}
 823
 824	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
 825		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
 826
 827	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
 828	    halt_status == DWC2_HC_XFER_AHB_ERR) {
 829		/*
 830		 * Disable all channel interrupts except Ch Halted. The QTD
 831		 * and QH state associated with this transfer has been cleared
 832		 * (in the case of URB_DEQUEUE), so the channel needs to be
 833		 * shut down carefully to prevent crashes.
 834		 */
 835		u32 hcintmsk = HCINTMSK_CHHLTD;
 836
 837		dev_vdbg(hsotg->dev, "dequeue/error\n");
 838		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 839
 840		/*
 841		 * Make sure no other interrupts besides halt are currently
 842		 * pending. Handling another interrupt could cause a crash due
 843		 * to the QTD and QH state.
 844		 */
 845		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
 846
 847		/*
 848		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
 849		 * even if the channel was already halted for some other
 850		 * reason
 851		 */
 852		chan->halt_status = halt_status;
 853
 854		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 855		if (!(hcchar & HCCHAR_CHENA)) {
 856			/*
 857			 * The channel is either already halted or it hasn't
 858			 * started yet. In DMA mode, the transfer may halt if
 859			 * it finishes normally or a condition occurs that
 860			 * requires driver intervention. Don't want to halt
 861			 * the channel again. In either Slave or DMA mode,
 862			 * it's possible that the transfer has been assigned
 863			 * to a channel, but not started yet when an URB is
 864			 * dequeued. Don't want to halt a channel that hasn't
 865			 * started yet.
 866			 */
 867			return;
 868		}
 869	}
 870	if (chan->halt_pending) {
 871		/*
 872		 * A halt has already been issued for this channel. This might
 873		 * happen when a transfer is aborted by a higher level in
 874		 * the stack.
 875		 */
 876		dev_vdbg(hsotg->dev,
 877			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
 878			 __func__, chan->hc_num);
 879		return;
 880	}
 881
 882	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 883
 884	/* No need to set the bit in DDMA for disabling the channel */
 885	/* TODO check it everywhere channel is disabled */
 886	if (!hsotg->params.dma_desc_enable) {
 887		if (dbg_hc(chan))
 888			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 889		hcchar |= HCCHAR_CHENA;
 890	} else {
 891		if (dbg_hc(chan))
 892			dev_dbg(hsotg->dev, "desc DMA enabled\n");
 893	}
 894	hcchar |= HCCHAR_CHDIS;
 895
 896	if (!hsotg->params.host_dma) {
 897		if (dbg_hc(chan))
 898			dev_vdbg(hsotg->dev, "DMA not enabled\n");
 899		hcchar |= HCCHAR_CHENA;
 900
 901		/* Check for space in the request queue to issue the halt */
 902		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
 903		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
 904			dev_vdbg(hsotg->dev, "control/bulk\n");
 905			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
 906			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
 907				dev_vdbg(hsotg->dev, "Disabling channel\n");
 908				hcchar &= ~HCCHAR_CHENA;
 909			}
 910		} else {
 911			if (dbg_perio())
 912				dev_vdbg(hsotg->dev, "isoc/intr\n");
 913			hptxsts = dwc2_readl(hsotg, HPTXSTS);
 914			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
 915			    hsotg->queuing_high_bandwidth) {
 916				if (dbg_perio())
 917					dev_vdbg(hsotg->dev, "Disabling channel\n");
 918				hcchar &= ~HCCHAR_CHENA;
 919			}
 920		}
 921	} else {
 922		if (dbg_hc(chan))
 923			dev_vdbg(hsotg->dev, "DMA enabled\n");
 924	}
 925
 926	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
 927	chan->halt_status = halt_status;
 928
 929	if (hcchar & HCCHAR_CHENA) {
 930		if (dbg_hc(chan))
 931			dev_vdbg(hsotg->dev, "Channel enabled\n");
 932		chan->halt_pending = 1;
 933		chan->halt_on_queue = 0;
 934	} else {
 935		if (dbg_hc(chan))
 936			dev_vdbg(hsotg->dev, "Channel disabled\n");
 937		chan->halt_on_queue = 1;
 938	}
 939
 940	if (dbg_hc(chan)) {
 941		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
 942			 chan->hc_num);
 943		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
 944			 hcchar);
 945		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
 946			 chan->halt_pending);
 947		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
 948			 chan->halt_on_queue);
 949		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
 950			 chan->halt_status);
 951	}
 952}
 953
 954/**
 955 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
 956 *
 957 * @hsotg: Programming view of DWC_otg controller
 958 * @chan:  Identifies the host channel to clean up
 959 *
 960 * This function is normally called after a transfer is done and the host
 961 * channel is being released
 962 */
 963void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 964{
 965	u32 hcintmsk;
 966
 967	chan->xfer_started = 0;
 968
 969	list_del_init(&chan->split_order_list_entry);
 970
 971	/*
 972	 * Clear channel interrupt enables and any unhandled channel interrupt
 973	 * conditions
 974	 */
 975	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
 976	hcintmsk = 0xffffffff;
 977	hcintmsk &= ~HCINTMSK_RESERVED14_31;
 978	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
 979}
 980
 981/**
 982 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
 983 * which frame a periodic transfer should occur
 984 *
 985 * @hsotg:  Programming view of DWC_otg controller
 986 * @chan:   Identifies the host channel to set up and its properties
 987 * @hcchar: Current value of the HCCHAR register for the specified host channel
 988 *
 989 * This function has no effect on non-periodic transfers
 990 */
 991static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
 992				       struct dwc2_host_chan *chan, u32 *hcchar)
 993{
 994	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
 995	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
 996		int host_speed;
 997		int xfer_ns;
 998		int xfer_us;
 999		int bytes_in_fifo;
1000		u16 fifo_space;
1001		u16 frame_number;
1002		u16 wire_frame;
1003
1004		/*
1005		 * Try to figure out if we're an even or odd frame. If we set
1006		 * even and the current frame number is even the the transfer
1007		 * will happen immediately.  Similar if both are odd. If one is
1008		 * even and the other is odd then the transfer will happen when
1009		 * the frame number ticks.
1010		 *
1011		 * There's a bit of a balancing act to get this right.
1012		 * Sometimes we may want to send data in the current frame (AK
1013		 * right away).  We might want to do this if the frame number
1014		 * _just_ ticked, but we might also want to do this in order
1015		 * to continue a split transaction that happened late in a
1016		 * microframe (so we didn't know to queue the next transfer
1017		 * until the frame number had ticked).  The problem is that we
1018		 * need a lot of knowledge to know if there's actually still
1019		 * time to send things or if it would be better to wait until
1020		 * the next frame.
1021		 *
1022		 * We can look at how much time is left in the current frame
1023		 * and make a guess about whether we'll have time to transfer.
1024		 * We'll do that.
1025		 */
1026
1027		/* Get speed host is running at */
1028		host_speed = (chan->speed != USB_SPEED_HIGH &&
1029			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1030
1031		/* See how many bytes are in the periodic FIFO right now */
1032		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1033			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1034		bytes_in_fifo = sizeof(u32) *
1035				(hsotg->params.host_perio_tx_fifo_size -
1036				 fifo_space);
1037
1038		/*
1039		 * Roughly estimate bus time for everything in the periodic
1040		 * queue + our new transfer.  This is "rough" because we're
1041		 * using a function that makes takes into account IN/OUT
1042		 * and INT/ISO and we're just slamming in one value for all
1043		 * transfers.  This should be an over-estimate and that should
1044		 * be OK, but we can probably tighten it.
1045		 */
1046		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1047					    chan->xfer_len + bytes_in_fifo);
1048		xfer_us = NS_TO_US(xfer_ns);
1049
1050		/* See what frame number we'll be at by the time we finish */
1051		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1052
1053		/* This is when we were scheduled to be on the wire */
1054		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1055
1056		/*
1057		 * If we'd finish _after_ the frame we're scheduled in then
1058		 * it's hopeless.  Just schedule right away and hope for the
1059		 * best.  Note that it _might_ be wise to call back into the
1060		 * scheduler to pick a better frame, but this is better than
1061		 * nothing.
1062		 */
1063		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1064			dwc2_sch_vdbg(hsotg,
1065				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1066				      chan->qh, wire_frame, frame_number,
1067				      dwc2_frame_num_dec(frame_number,
1068							 wire_frame));
1069			wire_frame = frame_number;
1070
1071			/*
1072			 * We picked a different frame number; communicate this
1073			 * back to the scheduler so it doesn't try to schedule
1074			 * another in the same frame.
1075			 *
1076			 * Remember that next_active_frame is 1 before the wire
1077			 * frame.
1078			 */
1079			chan->qh->next_active_frame =
1080				dwc2_frame_num_dec(frame_number, 1);
1081		}
1082
1083		if (wire_frame & 1)
1084			*hcchar |= HCCHAR_ODDFRM;
1085		else
1086			*hcchar &= ~HCCHAR_ODDFRM;
1087	}
1088}
1089
1090static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1091{
1092	/* Set up the initial PID for the transfer */
1093	if (chan->speed == USB_SPEED_HIGH) {
1094		if (chan->ep_is_in) {
1095			if (chan->multi_count == 1)
1096				chan->data_pid_start = DWC2_HC_PID_DATA0;
1097			else if (chan->multi_count == 2)
1098				chan->data_pid_start = DWC2_HC_PID_DATA1;
1099			else
1100				chan->data_pid_start = DWC2_HC_PID_DATA2;
1101		} else {
1102			if (chan->multi_count == 1)
1103				chan->data_pid_start = DWC2_HC_PID_DATA0;
1104			else
1105				chan->data_pid_start = DWC2_HC_PID_MDATA;
1106		}
1107	} else {
1108		chan->data_pid_start = DWC2_HC_PID_DATA0;
1109	}
1110}
1111
1112/**
1113 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1114 * the Host Channel
1115 *
1116 * @hsotg: Programming view of DWC_otg controller
1117 * @chan:  Information needed to initialize the host channel
1118 *
1119 * This function should only be called in Slave mode. For a channel associated
1120 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1121 * associated with a periodic EP, the periodic Tx FIFO is written.
1122 *
1123 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1124 * the number of bytes written to the Tx FIFO.
1125 */
1126static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1127				 struct dwc2_host_chan *chan)
1128{
1129	u32 i;
1130	u32 remaining_count;
1131	u32 byte_count;
1132	u32 dword_count;
1133	u32 *data_buf = (u32 *)chan->xfer_buf;
1134
1135	if (dbg_hc(chan))
1136		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1137
1138	remaining_count = chan->xfer_len - chan->xfer_count;
1139	if (remaining_count > chan->max_packet)
1140		byte_count = chan->max_packet;
1141	else
1142		byte_count = remaining_count;
1143
1144	dword_count = (byte_count + 3) / 4;
1145
1146	if (((unsigned long)data_buf & 0x3) == 0) {
1147		/* xfer_buf is DWORD aligned */
1148		for (i = 0; i < dword_count; i++, data_buf++)
1149			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1150	} else {
1151		/* xfer_buf is not DWORD aligned */
1152		for (i = 0; i < dword_count; i++, data_buf++) {
1153			u32 data = data_buf[0] | data_buf[1] << 8 |
1154				   data_buf[2] << 16 | data_buf[3] << 24;
1155			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1156		}
1157	}
1158
1159	chan->xfer_count += byte_count;
1160	chan->xfer_buf += byte_count;
1161}
1162
1163/**
1164 * dwc2_hc_do_ping() - Starts a PING transfer
1165 *
1166 * @hsotg: Programming view of DWC_otg controller
1167 * @chan:  Information needed to initialize the host channel
1168 *
1169 * This function should only be called in Slave mode. The Do Ping bit is set in
1170 * the HCTSIZ register, then the channel is enabled.
1171 */
1172static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1173			    struct dwc2_host_chan *chan)
1174{
1175	u32 hcchar;
1176	u32 hctsiz;
1177
1178	if (dbg_hc(chan))
1179		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1180			 chan->hc_num);
1181
1182	hctsiz = TSIZ_DOPNG;
1183	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1184	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1185
1186	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1187	hcchar |= HCCHAR_CHENA;
1188	hcchar &= ~HCCHAR_CHDIS;
1189	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1190}
1191
1192/**
1193 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1194 * channel and starts the transfer
1195 *
1196 * @hsotg: Programming view of DWC_otg controller
1197 * @chan:  Information needed to initialize the host channel. The xfer_len value
1198 *         may be reduced to accommodate the max widths of the XferSize and
1199 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1200 *         changed to reflect the final xfer_len value.
1201 *
1202 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1203 * the caller must ensure that there is sufficient space in the request queue
1204 * and Tx Data FIFO.
1205 *
1206 * For an OUT transfer in Slave mode, it loads a data packet into the
1207 * appropriate FIFO. If necessary, additional data packets are loaded in the
1208 * Host ISR.
1209 *
1210 * For an IN transfer in Slave mode, a data packet is requested. The data
1211 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1212 * additional data packets are requested in the Host ISR.
1213 *
1214 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1215 * register along with a packet count of 1 and the channel is enabled. This
1216 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1217 * simply set to 0 since no data transfer occurs in this case.
1218 *
1219 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1220 * all the information required to perform the subsequent data transfer. In
1221 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1222 * controller performs the entire PING protocol, then starts the data
1223 * transfer.
1224 */
1225static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1226				   struct dwc2_host_chan *chan)
1227{
1228	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1229	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1230	u32 hcchar;
1231	u32 hctsiz = 0;
1232	u16 num_packets;
1233	u32 ec_mc;
1234
1235	if (dbg_hc(chan))
1236		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1237
1238	if (chan->do_ping) {
1239		if (!hsotg->params.host_dma) {
1240			if (dbg_hc(chan))
1241				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1242			dwc2_hc_do_ping(hsotg, chan);
1243			chan->xfer_started = 1;
1244			return;
1245		}
1246
1247		if (dbg_hc(chan))
1248			dev_vdbg(hsotg->dev, "ping, DMA\n");
1249
1250		hctsiz |= TSIZ_DOPNG;
1251	}
1252
1253	if (chan->do_split) {
1254		if (dbg_hc(chan))
1255			dev_vdbg(hsotg->dev, "split\n");
1256		num_packets = 1;
1257
1258		if (chan->complete_split && !chan->ep_is_in)
1259			/*
1260			 * For CSPLIT OUT Transfer, set the size to 0 so the
1261			 * core doesn't expect any data written to the FIFO
1262			 */
1263			chan->xfer_len = 0;
1264		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1265			chan->xfer_len = chan->max_packet;
1266		else if (!chan->ep_is_in && chan->xfer_len > 188)
1267			chan->xfer_len = 188;
1268
1269		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1270			  TSIZ_XFERSIZE_MASK;
1271
1272		/* For split set ec_mc for immediate retries */
1273		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1274		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1275			ec_mc = 3;
1276		else
1277			ec_mc = 1;
1278	} else {
1279		if (dbg_hc(chan))
1280			dev_vdbg(hsotg->dev, "no split\n");
1281		/*
1282		 * Ensure that the transfer length and packet count will fit
1283		 * in the widths allocated for them in the HCTSIZn register
1284		 */
1285		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1286		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1287			/*
1288			 * Make sure the transfer size is no larger than one
1289			 * (micro)frame's worth of data. (A check was done
1290			 * when the periodic transfer was accepted to ensure
1291			 * that a (micro)frame's worth of data can be
1292			 * programmed into a channel.)
1293			 */
1294			u32 max_periodic_len =
1295				chan->multi_count * chan->max_packet;
1296
1297			if (chan->xfer_len > max_periodic_len)
1298				chan->xfer_len = max_periodic_len;
1299		} else if (chan->xfer_len > max_hc_xfer_size) {
1300			/*
1301			 * Make sure that xfer_len is a multiple of max packet
1302			 * size
1303			 */
1304			chan->xfer_len =
1305				max_hc_xfer_size - chan->max_packet + 1;
1306		}
1307
1308		if (chan->xfer_len > 0) {
1309			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1310					chan->max_packet;
1311			if (num_packets > max_hc_pkt_count) {
1312				num_packets = max_hc_pkt_count;
1313				chan->xfer_len = num_packets * chan->max_packet;
1314			} else if (chan->ep_is_in) {
1315				/*
1316				 * Always program an integral # of max packets
1317				 * for IN transfers.
1318				 * Note: This assumes that the input buffer is
1319				 * aligned and sized accordingly.
1320				 */
1321				chan->xfer_len = num_packets * chan->max_packet;
1322			}
1323		} else {
1324			/* Need 1 packet for transfer length of 0 */
1325			num_packets = 1;
1326		}
1327
1328		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1329		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1330			/*
1331			 * Make sure that the multi_count field matches the
1332			 * actual transfer length
1333			 */
1334			chan->multi_count = num_packets;
1335
1336		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1337			dwc2_set_pid_isoc(chan);
1338
1339		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1340			  TSIZ_XFERSIZE_MASK;
1341
1342		/* The ec_mc gets the multi_count for non-split */
1343		ec_mc = chan->multi_count;
1344	}
1345
1346	chan->start_pkt_count = num_packets;
1347	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1348	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1349		  TSIZ_SC_MC_PID_MASK;
1350	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1351	if (dbg_hc(chan)) {
1352		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1353			 hctsiz, chan->hc_num);
1354
1355		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1356			 chan->hc_num);
1357		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1358			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1359			 TSIZ_XFERSIZE_SHIFT);
1360		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1361			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1362			 TSIZ_PKTCNT_SHIFT);
1363		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1364			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1365			 TSIZ_SC_MC_PID_SHIFT);
1366	}
1367
1368	if (hsotg->params.host_dma) {
1369		dma_addr_t dma_addr;
1370
1371		if (chan->align_buf) {
1372			if (dbg_hc(chan))
1373				dev_vdbg(hsotg->dev, "align_buf\n");
1374			dma_addr = chan->align_buf;
1375		} else {
1376			dma_addr = chan->xfer_dma;
1377		}
1378		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1379
1380		if (dbg_hc(chan))
1381			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1382				 (unsigned long)dma_addr, chan->hc_num);
1383	}
1384
1385	/* Start the split */
1386	if (chan->do_split) {
1387		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1388
1389		hcsplt |= HCSPLT_SPLTENA;
1390		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1391	}
1392
1393	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1394	hcchar &= ~HCCHAR_MULTICNT_MASK;
1395	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1396	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1397
1398	if (hcchar & HCCHAR_CHDIS)
1399		dev_warn(hsotg->dev,
1400			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1401			 __func__, chan->hc_num, hcchar);
1402
1403	/* Set host channel enable after all other setup is complete */
1404	hcchar |= HCCHAR_CHENA;
1405	hcchar &= ~HCCHAR_CHDIS;
1406
1407	if (dbg_hc(chan))
1408		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1409			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1410			 HCCHAR_MULTICNT_SHIFT);
1411
1412	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1413	if (dbg_hc(chan))
1414		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1415			 chan->hc_num);
1416
1417	chan->xfer_started = 1;
1418	chan->requests++;
1419
1420	if (!hsotg->params.host_dma &&
1421	    !chan->ep_is_in && chan->xfer_len > 0)
1422		/* Load OUT packet into the appropriate Tx FIFO */
1423		dwc2_hc_write_packet(hsotg, chan);
1424}
1425
1426/**
1427 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1428 * host channel and starts the transfer in Descriptor DMA mode
1429 *
1430 * @hsotg: Programming view of DWC_otg controller
1431 * @chan:  Information needed to initialize the host channel
1432 *
1433 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1434 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1435 * with micro-frame bitmap.
1436 *
1437 * Initializes HCDMA register with descriptor list address and CTD value then
1438 * starts the transfer via enabling the channel.
1439 */
1440void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1441				 struct dwc2_host_chan *chan)
1442{
1443	u32 hcchar;
1444	u32 hctsiz = 0;
1445
1446	if (chan->do_ping)
1447		hctsiz |= TSIZ_DOPNG;
1448
1449	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1450		dwc2_set_pid_isoc(chan);
1451
1452	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1453	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1454		  TSIZ_SC_MC_PID_MASK;
1455
1456	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1457	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1458
1459	/* Non-zero only for high-speed interrupt endpoints */
1460	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1461
1462	if (dbg_hc(chan)) {
1463		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1464			 chan->hc_num);
1465		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1466			 chan->data_pid_start);
1467		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1468	}
1469
1470	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1471
1472	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1473				   chan->desc_list_sz, DMA_TO_DEVICE);
1474
1475	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1476
1477	if (dbg_hc(chan))
1478		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1479			 &chan->desc_list_addr, chan->hc_num);
1480
1481	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1482	hcchar &= ~HCCHAR_MULTICNT_MASK;
1483	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1484		  HCCHAR_MULTICNT_MASK;
1485
1486	if (hcchar & HCCHAR_CHDIS)
1487		dev_warn(hsotg->dev,
1488			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1489			 __func__, chan->hc_num, hcchar);
1490
1491	/* Set host channel enable after all other setup is complete */
1492	hcchar |= HCCHAR_CHENA;
1493	hcchar &= ~HCCHAR_CHDIS;
1494
1495	if (dbg_hc(chan))
1496		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1497			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1498			 HCCHAR_MULTICNT_SHIFT);
1499
1500	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1501	if (dbg_hc(chan))
1502		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1503			 chan->hc_num);
1504
1505	chan->xfer_started = 1;
1506	chan->requests++;
1507}
1508
1509/**
1510 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1511 * a previous call to dwc2_hc_start_transfer()
1512 *
1513 * @hsotg: Programming view of DWC_otg controller
1514 * @chan:  Information needed to initialize the host channel
1515 *
1516 * The caller must ensure there is sufficient space in the request queue and Tx
1517 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1518 * the controller acts autonomously to complete transfers programmed to a host
1519 * channel.
1520 *
1521 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1522 * if there is any data remaining to be queued. For an IN transfer, another
1523 * data packet is always requested. For the SETUP phase of a control transfer,
1524 * this function does nothing.
1525 *
1526 * Return: 1 if a new request is queued, 0 if no more requests are required
1527 * for this transfer
1528 */
1529static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1530				     struct dwc2_host_chan *chan)
1531{
1532	if (dbg_hc(chan))
1533		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1534			 chan->hc_num);
1535
1536	if (chan->do_split)
1537		/* SPLITs always queue just once per channel */
1538		return 0;
1539
1540	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1541		/* SETUPs are queued only once since they can't be NAK'd */
1542		return 0;
1543
1544	if (chan->ep_is_in) {
1545		/*
1546		 * Always queue another request for other IN transfers. If
1547		 * back-to-back INs are issued and NAKs are received for both,
1548		 * the driver may still be processing the first NAK when the
1549		 * second NAK is received. When the interrupt handler clears
1550		 * the NAK interrupt for the first NAK, the second NAK will
1551		 * not be seen. So we can't depend on the NAK interrupt
1552		 * handler to requeue a NAK'd request. Instead, IN requests
1553		 * are issued each time this function is called. When the
1554		 * transfer completes, the extra requests for the channel will
1555		 * be flushed.
1556		 */
1557		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1558
1559		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1560		hcchar |= HCCHAR_CHENA;
1561		hcchar &= ~HCCHAR_CHDIS;
1562		if (dbg_hc(chan))
1563			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1564				 hcchar);
1565		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1566		chan->requests++;
1567		return 1;
1568	}
1569
1570	/* OUT transfers */
1571
1572	if (chan->xfer_count < chan->xfer_len) {
1573		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1574		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1575			u32 hcchar = dwc2_readl(hsotg,
1576						HCCHAR(chan->hc_num));
1577
1578			dwc2_hc_set_even_odd_frame(hsotg, chan,
1579						   &hcchar);
1580		}
1581
1582		/* Load OUT packet into the appropriate Tx FIFO */
1583		dwc2_hc_write_packet(hsotg, chan);
1584		chan->requests++;
1585		return 1;
1586	}
1587
1588	return 0;
1589}
1590
1591/*
1592 * =========================================================================
1593 *  HCD
1594 * =========================================================================
1595 */
1596
1597/*
1598 * Processes all the URBs in a single list of QHs. Completes them with
1599 * -ETIMEDOUT and frees the QTD.
1600 *
1601 * Must be called with interrupt disabled and spinlock held
1602 */
1603static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1604				      struct list_head *qh_list)
1605{
1606	struct dwc2_qh *qh, *qh_tmp;
1607	struct dwc2_qtd *qtd, *qtd_tmp;
1608
1609	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1610		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1611					 qtd_list_entry) {
1612			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1613			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1614		}
1615	}
1616}
1617
1618static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1619			      struct list_head *qh_list)
1620{
1621	struct dwc2_qtd *qtd, *qtd_tmp;
1622	struct dwc2_qh *qh, *qh_tmp;
1623	unsigned long flags;
1624
1625	if (!qh_list->next)
1626		/* The list hasn't been initialized yet */
1627		return;
1628
1629	spin_lock_irqsave(&hsotg->lock, flags);
1630
1631	/* Ensure there are no QTDs or URBs left */
1632	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1633
1634	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1635		dwc2_hcd_qh_unlink(hsotg, qh);
1636
1637		/* Free each QTD in the QH's QTD list */
1638		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1639					 qtd_list_entry)
1640			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1641
1642		if (qh->channel && qh->channel->qh == qh)
1643			qh->channel->qh = NULL;
1644
1645		spin_unlock_irqrestore(&hsotg->lock, flags);
1646		dwc2_hcd_qh_free(hsotg, qh);
1647		spin_lock_irqsave(&hsotg->lock, flags);
1648	}
1649
1650	spin_unlock_irqrestore(&hsotg->lock, flags);
1651}
1652
1653/*
1654 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1655 * and periodic schedules. The QTD associated with each URB is removed from
1656 * the schedule and freed. This function may be called when a disconnect is
1657 * detected or when the HCD is being stopped.
1658 *
1659 * Must be called with interrupt disabled and spinlock held
1660 */
1661static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1662{
1663	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1664	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1665	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1666	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1667	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1668	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1669	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1670}
1671
1672/**
1673 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1674 *
1675 * @hsotg: Pointer to struct dwc2_hsotg
1676 */
1677void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1678{
1679	u32 hprt0;
1680
1681	if (hsotg->op_state == OTG_STATE_B_HOST) {
1682		/*
1683		 * Reset the port. During a HNP mode switch the reset
1684		 * needs to occur within 1ms and have a duration of at
1685		 * least 50ms.
1686		 */
1687		hprt0 = dwc2_read_hprt0(hsotg);
1688		hprt0 |= HPRT0_RST;
1689		dwc2_writel(hsotg, hprt0, HPRT0);
1690	}
1691
1692	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1693			   msecs_to_jiffies(50));
1694}
1695
1696/* Must be called with interrupt disabled and spinlock held */
1697static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1698{
1699	int num_channels = hsotg->params.host_channels;
1700	struct dwc2_host_chan *channel;
1701	u32 hcchar;
1702	int i;
1703
1704	if (!hsotg->params.host_dma) {
1705		/* Flush out any channel requests in slave mode */
1706		for (i = 0; i < num_channels; i++) {
1707			channel = hsotg->hc_ptr_array[i];
1708			if (!list_empty(&channel->hc_list_entry))
1709				continue;
1710			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1711			if (hcchar & HCCHAR_CHENA) {
1712				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1713				hcchar |= HCCHAR_CHDIS;
1714				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1715			}
1716		}
1717	}
1718
1719	for (i = 0; i < num_channels; i++) {
1720		channel = hsotg->hc_ptr_array[i];
1721		if (!list_empty(&channel->hc_list_entry))
1722			continue;
1723		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1724		if (hcchar & HCCHAR_CHENA) {
1725			/* Halt the channel */
1726			hcchar |= HCCHAR_CHDIS;
1727			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1728		}
1729
1730		dwc2_hc_cleanup(hsotg, channel);
1731		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1732		/*
1733		 * Added for Descriptor DMA to prevent channel double cleanup in
1734		 * release_channel_ddma(), which is called from ep_disable when
1735		 * device disconnects
1736		 */
1737		channel->qh = NULL;
1738	}
1739	/* All channels have been freed, mark them available */
1740	if (hsotg->params.uframe_sched) {
1741		hsotg->available_host_channels =
1742			hsotg->params.host_channels;
1743	} else {
1744		hsotg->non_periodic_channels = 0;
1745		hsotg->periodic_channels = 0;
1746	}
1747}
1748
1749/**
1750 * dwc2_hcd_connect() - Handles connect of the HCD
1751 *
1752 * @hsotg: Pointer to struct dwc2_hsotg
1753 *
1754 * Must be called with interrupt disabled and spinlock held
1755 */
1756void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1757{
1758	if (hsotg->lx_state != DWC2_L0)
1759		usb_hcd_resume_root_hub(hsotg->priv);
1760
1761	hsotg->flags.b.port_connect_status_change = 1;
1762	hsotg->flags.b.port_connect_status = 1;
1763}
1764
1765/**
1766 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1767 *
1768 * @hsotg: Pointer to struct dwc2_hsotg
1769 * @force: If true, we won't try to reconnect even if we see device connected.
1770 *
1771 * Must be called with interrupt disabled and spinlock held
1772 */
1773void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1774{
1775	u32 intr;
1776	u32 hprt0;
1777
1778	/* Set status flags for the hub driver */
1779	hsotg->flags.b.port_connect_status_change = 1;
1780	hsotg->flags.b.port_connect_status = 0;
1781
1782	/*
1783	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1784	 * interrupt mask and status bits and disabling subsequent host
1785	 * channel interrupts.
1786	 */
1787	intr = dwc2_readl(hsotg, GINTMSK);
1788	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1789	dwc2_writel(hsotg, intr, GINTMSK);
1790	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1791	dwc2_writel(hsotg, intr, GINTSTS);
1792
1793	/*
1794	 * Turn off the vbus power only if the core has transitioned to device
1795	 * mode. If still in host mode, need to keep power on to detect a
1796	 * reconnection.
1797	 */
1798	if (dwc2_is_device_mode(hsotg)) {
1799		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1800			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1801			dwc2_writel(hsotg, 0, HPRT0);
1802		}
1803
1804		dwc2_disable_host_interrupts(hsotg);
1805	}
1806
1807	/* Respond with an error status to all URBs in the schedule */
1808	dwc2_kill_all_urbs(hsotg);
1809
1810	if (dwc2_is_host_mode(hsotg))
1811		/* Clean up any host channels that were in use */
1812		dwc2_hcd_cleanup_channels(hsotg);
1813
1814	dwc2_host_disconnect(hsotg);
1815
1816	/*
1817	 * Add an extra check here to see if we're actually connected but
1818	 * we don't have a detection interrupt pending.  This can happen if:
1819	 *   1. hardware sees connect
1820	 *   2. hardware sees disconnect
1821	 *   3. hardware sees connect
1822	 *   4. dwc2_port_intr() - clears connect interrupt
1823	 *   5. dwc2_handle_common_intr() - calls here
1824	 *
1825	 * Without the extra check here we will end calling disconnect
1826	 * and won't get any future interrupts to handle the connect.
1827	 */
1828	if (!force) {
1829		hprt0 = dwc2_readl(hsotg, HPRT0);
1830		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1831			dwc2_hcd_connect(hsotg);
1832	}
1833}
1834
1835/**
1836 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1837 *
1838 * @hsotg: Pointer to struct dwc2_hsotg
1839 */
1840static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1841{
1842	if (hsotg->bus_suspended) {
1843		hsotg->flags.b.port_suspend_change = 1;
1844		usb_hcd_resume_root_hub(hsotg->priv);
1845	}
1846
1847	if (hsotg->lx_state == DWC2_L1)
1848		hsotg->flags.b.port_l1_change = 1;
1849}
1850
1851/**
1852 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1853 *
1854 * @hsotg: Pointer to struct dwc2_hsotg
1855 *
1856 * Must be called with interrupt disabled and spinlock held
1857 */
1858void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1859{
1860	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1861
1862	/*
1863	 * The root hub should be disconnected before this function is called.
1864	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1865	 * and the QH lists (via ..._hcd_endpoint_disable).
1866	 */
1867
1868	/* Turn off all host-specific interrupts */
1869	dwc2_disable_host_interrupts(hsotg);
1870
1871	/* Turn off the vbus power */
1872	dev_dbg(hsotg->dev, "PortPower off\n");
1873	dwc2_writel(hsotg, 0, HPRT0);
1874}
1875
1876/* Caller must hold driver lock */
1877static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1878				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1879				struct dwc2_qtd *qtd)
1880{
1881	u32 intr_mask;
1882	int retval;
1883	int dev_speed;
1884
1885	if (!hsotg->flags.b.port_connect_status) {
1886		/* No longer connected */
1887		dev_err(hsotg->dev, "Not connected\n");
1888		return -ENODEV;
1889	}
1890
1891	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1892
1893	/* Some configurations cannot support LS traffic on a FS root port */
1894	if ((dev_speed == USB_SPEED_LOW) &&
1895	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1896	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1897		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1898		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1899
1900		if (prtspd == HPRT0_SPD_FULL_SPEED)
1901			return -ENODEV;
1902	}
1903
1904	if (!qtd)
1905		return -EINVAL;
1906
1907	dwc2_hcd_qtd_init(qtd, urb);
1908	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1909	if (retval) {
1910		dev_err(hsotg->dev,
1911			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1912			retval);
1913		return retval;
1914	}
1915
1916	intr_mask = dwc2_readl(hsotg, GINTMSK);
1917	if (!(intr_mask & GINTSTS_SOF)) {
1918		enum dwc2_transaction_type tr_type;
1919
1920		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1921		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1922			/*
1923			 * Do not schedule SG transactions until qtd has
1924			 * URB_GIVEBACK_ASAP set
1925			 */
1926			return 0;
1927
1928		tr_type = dwc2_hcd_select_transactions(hsotg);
1929		if (tr_type != DWC2_TRANSACTION_NONE)
1930			dwc2_hcd_queue_transactions(hsotg, tr_type);
1931	}
1932
1933	return 0;
1934}
1935
1936/* Must be called with interrupt disabled and spinlock held */
1937static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1938				struct dwc2_hcd_urb *urb)
1939{
1940	struct dwc2_qh *qh;
1941	struct dwc2_qtd *urb_qtd;
1942
1943	urb_qtd = urb->qtd;
1944	if (!urb_qtd) {
1945		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1946		return -EINVAL;
1947	}
1948
1949	qh = urb_qtd->qh;
1950	if (!qh) {
1951		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1952		return -EINVAL;
1953	}
1954
1955	urb->priv = NULL;
1956
1957	if (urb_qtd->in_process && qh->channel) {
1958		dwc2_dump_channel_info(hsotg, qh->channel);
1959
1960		/* The QTD is in process (it has been assigned to a channel) */
1961		if (hsotg->flags.b.port_connect_status)
1962			/*
1963			 * If still connected (i.e. in host mode), halt the
1964			 * channel so it can be used for other transfers. If
1965			 * no longer connected, the host registers can't be
1966			 * written to halt the channel since the core is in
1967			 * device mode.
1968			 */
1969			dwc2_hc_halt(hsotg, qh->channel,
1970				     DWC2_HC_XFER_URB_DEQUEUE);
1971	}
1972
1973	/*
1974	 * Free the QTD and clean up the associated QH. Leave the QH in the
1975	 * schedule if it has any remaining QTDs.
1976	 */
1977	if (!hsotg->params.dma_desc_enable) {
1978		u8 in_process = urb_qtd->in_process;
1979
1980		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1981		if (in_process) {
1982			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1983			qh->channel = NULL;
1984		} else if (list_empty(&qh->qtd_list)) {
1985			dwc2_hcd_qh_unlink(hsotg, qh);
1986		}
1987	} else {
1988		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1989	}
1990
1991	return 0;
1992}
1993
1994/* Must NOT be called with interrupt disabled or spinlock held */
1995static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1996				     struct usb_host_endpoint *ep, int retry)
1997{
1998	struct dwc2_qtd *qtd, *qtd_tmp;
1999	struct dwc2_qh *qh;
2000	unsigned long flags;
2001	int rc;
2002
2003	spin_lock_irqsave(&hsotg->lock, flags);
2004
2005	qh = ep->hcpriv;
2006	if (!qh) {
2007		rc = -EINVAL;
2008		goto err;
2009	}
2010
2011	while (!list_empty(&qh->qtd_list) && retry--) {
2012		if (retry == 0) {
2013			dev_err(hsotg->dev,
2014				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2015			rc = -EBUSY;
2016			goto err;
2017		}
2018
2019		spin_unlock_irqrestore(&hsotg->lock, flags);
2020		msleep(20);
2021		spin_lock_irqsave(&hsotg->lock, flags);
2022		qh = ep->hcpriv;
2023		if (!qh) {
2024			rc = -EINVAL;
2025			goto err;
2026		}
2027	}
2028
2029	dwc2_hcd_qh_unlink(hsotg, qh);
2030
2031	/* Free each QTD in the QH's QTD list */
2032	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2033		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2034
2035	ep->hcpriv = NULL;
2036
2037	if (qh->channel && qh->channel->qh == qh)
2038		qh->channel->qh = NULL;
2039
2040	spin_unlock_irqrestore(&hsotg->lock, flags);
2041
2042	dwc2_hcd_qh_free(hsotg, qh);
2043
2044	return 0;
2045
2046err:
2047	ep->hcpriv = NULL;
2048	spin_unlock_irqrestore(&hsotg->lock, flags);
2049
2050	return rc;
2051}
2052
2053/* Must be called with interrupt disabled and spinlock held */
2054static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2055				   struct usb_host_endpoint *ep)
2056{
2057	struct dwc2_qh *qh = ep->hcpriv;
2058
2059	if (!qh)
2060		return -EINVAL;
2061
2062	qh->data_toggle = DWC2_HC_PID_DATA0;
2063
2064	return 0;
2065}
2066
2067/**
2068 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2069 * prepares the core for device mode or host mode operation
2070 *
2071 * @hsotg:         Programming view of the DWC_otg controller
2072 * @initial_setup: If true then this is the first init for this instance.
2073 */
2074int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2075{
2076	u32 usbcfg, otgctl;
2077	int retval;
2078
2079	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2080
2081	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2082
2083	/* Set ULPI External VBUS bit if needed */
2084	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2085	if (hsotg->params.phy_ulpi_ext_vbus)
2086		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2087
2088	/* Set external TS Dline pulsing bit if needed */
2089	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2090	if (hsotg->params.ts_dline)
2091		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2092
2093	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2094
2095	/*
2096	 * Reset the Controller
2097	 *
2098	 * We only need to reset the controller if this is a re-init.
2099	 * For the first init we know for sure that earlier code reset us (it
2100	 * needed to in order to properly detect various parameters).
2101	 */
2102	if (!initial_setup) {
2103		retval = dwc2_core_reset(hsotg, false);
2104		if (retval) {
2105			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2106				__func__);
2107			return retval;
2108		}
2109	}
2110
2111	/*
2112	 * This needs to happen in FS mode before any other programming occurs
2113	 */
2114	retval = dwc2_phy_init(hsotg, initial_setup);
2115	if (retval)
2116		return retval;
2117
2118	/* Program the GAHBCFG Register */
2119	retval = dwc2_gahbcfg_init(hsotg);
2120	if (retval)
2121		return retval;
2122
2123	/* Program the GUSBCFG register */
2124	dwc2_gusbcfg_init(hsotg);
2125
2126	/* Program the GOTGCTL register */
2127	otgctl = dwc2_readl(hsotg, GOTGCTL);
2128	otgctl &= ~GOTGCTL_OTGVER;
2129	dwc2_writel(hsotg, otgctl, GOTGCTL);
2130
2131	/* Clear the SRP success bit for FS-I2c */
2132	hsotg->srp_success = 0;
2133
2134	/* Enable common interrupts */
2135	dwc2_enable_common_interrupts(hsotg);
2136
2137	/*
2138	 * Do device or host initialization based on mode during PCD and
2139	 * HCD initialization
2140	 */
2141	if (dwc2_is_host_mode(hsotg)) {
2142		dev_dbg(hsotg->dev, "Host Mode\n");
2143		hsotg->op_state = OTG_STATE_A_HOST;
2144	} else {
2145		dev_dbg(hsotg->dev, "Device Mode\n");
2146		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2147	}
2148
2149	return 0;
2150}
2151
2152/**
2153 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2154 * Host mode
2155 *
2156 * @hsotg: Programming view of DWC_otg controller
2157 *
2158 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2159 * request queues. Host channels are reset to ensure that they are ready for
2160 * performing transfers.
2161 */
2162static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2163{
2164	u32 hcfg, hfir, otgctl, usbcfg;
2165
2166	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2167
2168	/* Set HS/FS Timeout Calibration to 7 (max available value).
2169	 * The number of PHY clocks that the application programs in
2170	 * this field is added to the high/full speed interpacket timeout
2171	 * duration in the core to account for any additional delays
2172	 * introduced by the PHY. This can be required, because the delay
2173	 * introduced by the PHY in generating the linestate condition
2174	 * can vary from one PHY to another.
2175	 */
2176	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2177	usbcfg |= GUSBCFG_TOUTCAL(7);
2178	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2179
2180	/* Restart the Phy Clock */
2181	dwc2_writel(hsotg, 0, PCGCTL);
2182
2183	/* Initialize Host Configuration Register */
2184	dwc2_init_fs_ls_pclk_sel(hsotg);
2185	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2186	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2187		hcfg = dwc2_readl(hsotg, HCFG);
2188		hcfg |= HCFG_FSLSSUPP;
2189		dwc2_writel(hsotg, hcfg, HCFG);
2190	}
2191
2192	/*
2193	 * This bit allows dynamic reloading of the HFIR register during
2194	 * runtime. This bit needs to be programmed during initial configuration
2195	 * and its value must not be changed during runtime.
2196	 */
2197	if (hsotg->params.reload_ctl) {
2198		hfir = dwc2_readl(hsotg, HFIR);
2199		hfir |= HFIR_RLDCTRL;
2200		dwc2_writel(hsotg, hfir, HFIR);
2201	}
2202
2203	if (hsotg->params.dma_desc_enable) {
2204		u32 op_mode = hsotg->hw_params.op_mode;
2205
2206		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2207		    !hsotg->hw_params.dma_desc_enable ||
2208		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2209		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2210		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2211			dev_err(hsotg->dev,
2212				"Hardware does not support descriptor DMA mode -\n");
2213			dev_err(hsotg->dev,
2214				"falling back to buffer DMA mode.\n");
2215			hsotg->params.dma_desc_enable = false;
2216		} else {
2217			hcfg = dwc2_readl(hsotg, HCFG);
2218			hcfg |= HCFG_DESCDMA;
2219			dwc2_writel(hsotg, hcfg, HCFG);
2220		}
2221	}
2222
2223	/* Configure data FIFO sizes */
2224	dwc2_config_fifos(hsotg);
2225
2226	/* TODO - check this */
2227	/* Clear Host Set HNP Enable in the OTG Control Register */
2228	otgctl = dwc2_readl(hsotg, GOTGCTL);
2229	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2230	dwc2_writel(hsotg, otgctl, GOTGCTL);
2231
2232	/* Make sure the FIFOs are flushed */
2233	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2234	dwc2_flush_rx_fifo(hsotg);
2235
2236	/* Clear Host Set HNP Enable in the OTG Control Register */
2237	otgctl = dwc2_readl(hsotg, GOTGCTL);
2238	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2239	dwc2_writel(hsotg, otgctl, GOTGCTL);
2240
2241	if (!hsotg->params.dma_desc_enable) {
2242		int num_channels, i;
2243		u32 hcchar;
2244
2245		/* Flush out any leftover queued requests */
2246		num_channels = hsotg->params.host_channels;
2247		for (i = 0; i < num_channels; i++) {
2248			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2249			if (hcchar & HCCHAR_CHENA) {
2250				hcchar &= ~HCCHAR_CHENA;
2251				hcchar |= HCCHAR_CHDIS;
2252				hcchar &= ~HCCHAR_EPDIR;
2253				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2254			}
2255		}
2256
2257		/* Halt all channels to put them into a known state */
2258		for (i = 0; i < num_channels; i++) {
2259			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2260			if (hcchar & HCCHAR_CHENA) {
2261				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2262				hcchar &= ~HCCHAR_EPDIR;
2263				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2264				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2265					__func__, i);
2266
2267				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2268							      HCCHAR_CHENA,
2269							      1000)) {
2270					dev_warn(hsotg->dev,
2271						 "Unable to clear enable on channel %d\n",
2272						 i);
2273				}
2274			}
2275		}
2276	}
2277
2278	/* Enable ACG feature in host mode, if supported */
2279	dwc2_enable_acg(hsotg);
2280
2281	/* Turn on the vbus power */
2282	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2283	if (hsotg->op_state == OTG_STATE_A_HOST) {
2284		u32 hprt0 = dwc2_read_hprt0(hsotg);
2285
2286		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2287			!!(hprt0 & HPRT0_PWR));
2288		if (!(hprt0 & HPRT0_PWR)) {
2289			hprt0 |= HPRT0_PWR;
2290			dwc2_writel(hsotg, hprt0, HPRT0);
2291		}
2292	}
2293
2294	dwc2_enable_host_interrupts(hsotg);
2295}
2296
2297/*
2298 * Initializes dynamic portions of the DWC_otg HCD state
2299 *
2300 * Must be called with interrupt disabled and spinlock held
2301 */
2302static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2303{
2304	struct dwc2_host_chan *chan, *chan_tmp;
2305	int num_channels;
2306	int i;
2307
2308	hsotg->flags.d32 = 0;
2309	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2310
2311	if (hsotg->params.uframe_sched) {
2312		hsotg->available_host_channels =
2313			hsotg->params.host_channels;
2314	} else {
2315		hsotg->non_periodic_channels = 0;
2316		hsotg->periodic_channels = 0;
2317	}
2318
2319	/*
2320	 * Put all channels in the free channel list and clean up channel
2321	 * states
2322	 */
2323	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2324				 hc_list_entry)
2325		list_del_init(&chan->hc_list_entry);
2326
2327	num_channels = hsotg->params.host_channels;
2328	for (i = 0; i < num_channels; i++) {
2329		chan = hsotg->hc_ptr_array[i];
2330		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2331		dwc2_hc_cleanup(hsotg, chan);
2332	}
2333
2334	/* Initialize the DWC core for host mode operation */
2335	dwc2_core_host_init(hsotg);
2336}
2337
2338static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2339			       struct dwc2_host_chan *chan,
2340			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2341{
2342	int hub_addr, hub_port;
2343
2344	chan->do_split = 1;
2345	chan->xact_pos = qtd->isoc_split_pos;
2346	chan->complete_split = qtd->complete_split;
2347	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2348	chan->hub_addr = (u8)hub_addr;
2349	chan->hub_port = (u8)hub_port;
2350}
2351
2352static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2353			      struct dwc2_host_chan *chan,
2354			      struct dwc2_qtd *qtd)
2355{
2356	struct dwc2_hcd_urb *urb = qtd->urb;
2357	struct dwc2_hcd_iso_packet_desc *frame_desc;
2358
2359	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2360	case USB_ENDPOINT_XFER_CONTROL:
2361		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2362
2363		switch (qtd->control_phase) {
2364		case DWC2_CONTROL_SETUP:
2365			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2366			chan->do_ping = 0;
2367			chan->ep_is_in = 0;
2368			chan->data_pid_start = DWC2_HC_PID_SETUP;
2369			if (hsotg->params.host_dma)
2370				chan->xfer_dma = urb->setup_dma;
2371			else
2372				chan->xfer_buf = urb->setup_packet;
2373			chan->xfer_len = 8;
2374			break;
2375
2376		case DWC2_CONTROL_DATA:
2377			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2378			chan->data_pid_start = qtd->data_toggle;
2379			break;
2380
2381		case DWC2_CONTROL_STATUS:
2382			/*
2383			 * Direction is opposite of data direction or IN if no
2384			 * data
2385			 */
2386			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2387			if (urb->length == 0)
2388				chan->ep_is_in = 1;
2389			else
2390				chan->ep_is_in =
2391					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2392			if (chan->ep_is_in)
2393				chan->do_ping = 0;
2394			chan->data_pid_start = DWC2_HC_PID_DATA1;
2395			chan->xfer_len = 0;
2396			if (hsotg->params.host_dma)
2397				chan->xfer_dma = hsotg->status_buf_dma;
2398			else
2399				chan->xfer_buf = hsotg->status_buf;
2400			break;
2401		}
2402		break;
2403
2404	case USB_ENDPOINT_XFER_BULK:
2405		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2406		break;
2407
2408	case USB_ENDPOINT_XFER_INT:
2409		chan->ep_type = USB_ENDPOINT_XFER_INT;
2410		break;
2411
2412	case USB_ENDPOINT_XFER_ISOC:
2413		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2414		if (hsotg->params.dma_desc_enable)
2415			break;
2416
2417		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2418		frame_desc->status = 0;
2419
2420		if (hsotg->params.host_dma) {
2421			chan->xfer_dma = urb->dma;
2422			chan->xfer_dma += frame_desc->offset +
2423					qtd->isoc_split_offset;
2424		} else {
2425			chan->xfer_buf = urb->buf;
2426			chan->xfer_buf += frame_desc->offset +
2427					qtd->isoc_split_offset;
2428		}
2429
2430		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2431
2432		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2433			if (chan->xfer_len <= 188)
2434				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2435			else
2436				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2437		}
2438		break;
2439	}
2440}
2441
2442static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2443					    struct dwc2_qh *qh,
2444					    struct dwc2_host_chan *chan)
2445{
2446	if (!hsotg->unaligned_cache ||
2447	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2448		return -ENOMEM;
2449
2450	if (!qh->dw_align_buf) {
2451		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2452						    GFP_ATOMIC | GFP_DMA);
2453		if (!qh->dw_align_buf)
2454			return -ENOMEM;
2455	}
2456
2457	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2458					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2459					      DMA_FROM_DEVICE);
2460
2461	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2462		dev_err(hsotg->dev, "can't map align_buf\n");
2463		chan->align_buf = 0;
2464		return -EINVAL;
2465	}
2466
2467	chan->align_buf = qh->dw_align_buf_dma;
2468	return 0;
2469}
2470
2471#define DWC2_USB_DMA_ALIGN 4
2472
2473static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2474{
2475	void *stored_xfer_buffer;
2476	size_t length;
2477
2478	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2479		return;
2480
2481	/* Restore urb->transfer_buffer from the end of the allocated area */
2482	memcpy(&stored_xfer_buffer,
2483	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2484			 dma_get_cache_alignment()),
2485	       sizeof(urb->transfer_buffer));
2486
2487	if (usb_urb_dir_in(urb)) {
2488		if (usb_pipeisoc(urb->pipe))
2489			length = urb->transfer_buffer_length;
2490		else
2491			length = urb->actual_length;
2492
2493		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2494	}
2495	kfree(urb->transfer_buffer);
2496	urb->transfer_buffer = stored_xfer_buffer;
2497
2498	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2499}
2500
2501static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2502{
2503	void *kmalloc_ptr;
2504	size_t kmalloc_size;
2505
2506	if (urb->num_sgs || urb->sg ||
2507	    urb->transfer_buffer_length == 0 ||
2508	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2509		return 0;
2510
2511	/*
2512	 * Allocate a buffer with enough padding for original transfer_buffer
2513	 * pointer. This allocation is guaranteed to be aligned properly for
2514	 * DMA
2515	 */
2516	kmalloc_size = urb->transfer_buffer_length +
2517		(dma_get_cache_alignment() - 1) +
2518		sizeof(urb->transfer_buffer);
2519
2520	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2521	if (!kmalloc_ptr)
2522		return -ENOMEM;
2523
2524	/*
2525	 * Position value of original urb->transfer_buffer pointer to the end
2526	 * of allocation for later referencing
2527	 */
2528	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2529			 dma_get_cache_alignment()),
2530	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2531
2532	if (usb_urb_dir_out(urb))
2533		memcpy(kmalloc_ptr, urb->transfer_buffer,
2534		       urb->transfer_buffer_length);
2535	urb->transfer_buffer = kmalloc_ptr;
2536
2537	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2538
2539	return 0;
2540}
2541
2542static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2543				gfp_t mem_flags)
2544{
2545	int ret;
2546
2547	/* We assume setup_dma is always aligned; warn if not */
2548	WARN_ON_ONCE(urb->setup_dma &&
2549		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2550
2551	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2552	if (ret)
2553		return ret;
2554
2555	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2556	if (ret)
2557		dwc2_free_dma_aligned_buffer(urb);
2558
2559	return ret;
2560}
2561
2562static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2563{
2564	usb_hcd_unmap_urb_for_dma(hcd, urb);
2565	dwc2_free_dma_aligned_buffer(urb);
2566}
2567
2568/**
2569 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2570 * channel and initializes the host channel to perform the transactions. The
2571 * host channel is removed from the free list.
2572 *
2573 * @hsotg: The HCD state structure
2574 * @qh:    Transactions from the first QTD for this QH are selected and assigned
2575 *         to a free host channel
2576 */
2577static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2578{
2579	struct dwc2_host_chan *chan;
2580	struct dwc2_hcd_urb *urb;
2581	struct dwc2_qtd *qtd;
2582
2583	if (dbg_qh(qh))
2584		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2585
2586	if (list_empty(&qh->qtd_list)) {
2587		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2588		return -ENOMEM;
2589	}
2590
2591	if (list_empty(&hsotg->free_hc_list)) {
2592		dev_dbg(hsotg->dev, "No free channel to assign\n");
2593		return -ENOMEM;
2594	}
2595
2596	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2597				hc_list_entry);
2598
2599	/* Remove host channel from free list */
2600	list_del_init(&chan->hc_list_entry);
2601
2602	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2603	urb = qtd->urb;
2604	qh->channel = chan;
2605	qtd->in_process = 1;
2606
2607	/*
2608	 * Use usb_pipedevice to determine device address. This address is
2609	 * 0 before the SET_ADDRESS command and the correct address afterward.
2610	 */
2611	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2612	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2613	chan->speed = qh->dev_speed;
2614	chan->max_packet = qh->maxp;
2615
2616	chan->xfer_started = 0;
2617	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2618	chan->error_state = (qtd->error_count > 0);
2619	chan->halt_on_queue = 0;
2620	chan->halt_pending = 0;
2621	chan->requests = 0;
2622
2623	/*
2624	 * The following values may be modified in the transfer type section
2625	 * below. The xfer_len value may be reduced when the transfer is
2626	 * started to accommodate the max widths of the XferSize and PktCnt
2627	 * fields in the HCTSIZn register.
2628	 */
2629
2630	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2631	if (chan->ep_is_in)
2632		chan->do_ping = 0;
2633	else
2634		chan->do_ping = qh->ping_state;
2635
2636	chan->data_pid_start = qh->data_toggle;
2637	chan->multi_count = 1;
2638
2639	if (urb->actual_length > urb->length &&
2640	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2641		urb->actual_length = urb->length;
2642
2643	if (hsotg->params.host_dma)
2644		chan->xfer_dma = urb->dma + urb->actual_length;
2645	else
2646		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2647
2648	chan->xfer_len = urb->length - urb->actual_length;
2649	chan->xfer_count = 0;
2650
2651	/* Set the split attributes if required */
2652	if (qh->do_split)
2653		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2654	else
2655		chan->do_split = 0;
2656
2657	/* Set the transfer attributes */
2658	dwc2_hc_init_xfer(hsotg, chan, qtd);
2659
2660	/* For non-dword aligned buffers */
2661	if (hsotg->params.host_dma && qh->do_split &&
2662	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2663		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2664		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2665			dev_err(hsotg->dev,
2666				"Failed to allocate memory to handle non-aligned buffer\n");
2667			/* Add channel back to free list */
2668			chan->align_buf = 0;
2669			chan->multi_count = 0;
2670			list_add_tail(&chan->hc_list_entry,
2671				      &hsotg->free_hc_list);
2672			qtd->in_process = 0;
2673			qh->channel = NULL;
2674			return -ENOMEM;
2675		}
2676	} else {
2677		/*
2678		 * We assume that DMA is always aligned in non-split
2679		 * case or split out case. Warn if not.
2680		 */
2681		WARN_ON_ONCE(hsotg->params.host_dma &&
2682			     (chan->xfer_dma & 0x3));
2683		chan->align_buf = 0;
2684	}
2685
2686	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2687	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2688		/*
2689		 * This value may be modified when the transfer is started
2690		 * to reflect the actual transfer length
2691		 */
2692		chan->multi_count = qh->maxp_mult;
2693
2694	if (hsotg->params.dma_desc_enable) {
2695		chan->desc_list_addr = qh->desc_list_dma;
2696		chan->desc_list_sz = qh->desc_list_sz;
2697	}
2698
2699	dwc2_hc_init(hsotg, chan);
2700	chan->qh = qh;
2701
2702	return 0;
2703}
2704
2705/**
2706 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2707 * schedule and assigns them to available host channels. Called from the HCD
2708 * interrupt handler functions.
2709 *
2710 * @hsotg: The HCD state structure
2711 *
2712 * Return: The types of new transactions that were assigned to host channels
2713 */
2714enum dwc2_transaction_type dwc2_hcd_select_transactions(
2715		struct dwc2_hsotg *hsotg)
2716{
2717	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2718	struct list_head *qh_ptr;
2719	struct dwc2_qh *qh;
2720	int num_channels;
2721
2722#ifdef DWC2_DEBUG_SOF
2723	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2724#endif
2725
2726	/* Process entries in the periodic ready list */
2727	qh_ptr = hsotg->periodic_sched_ready.next;
2728	while (qh_ptr != &hsotg->periodic_sched_ready) {
2729		if (list_empty(&hsotg->free_hc_list))
2730			break;
2731		if (hsotg->params.uframe_sched) {
2732			if (hsotg->available_host_channels <= 1)
2733				break;
2734			hsotg->available_host_channels--;
2735		}
2736		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2737		if (dwc2_assign_and_init_hc(hsotg, qh))
2738			break;
2739
2740		/*
2741		 * Move the QH from the periodic ready schedule to the
2742		 * periodic assigned schedule
2743		 */
2744		qh_ptr = qh_ptr->next;
2745		list_move_tail(&qh->qh_list_entry,
2746			       &hsotg->periodic_sched_assigned);
2747		ret_val = DWC2_TRANSACTION_PERIODIC;
2748	}
2749
2750	/*
2751	 * Process entries in the inactive portion of the non-periodic
2752	 * schedule. Some free host channels may not be used if they are
2753	 * reserved for periodic transfers.
2754	 */
2755	num_channels = hsotg->params.host_channels;
2756	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2757	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2758		if (!hsotg->params.uframe_sched &&
2759		    hsotg->non_periodic_channels >= num_channels -
2760						hsotg->periodic_channels)
2761			break;
2762		if (list_empty(&hsotg->free_hc_list))
2763			break;
2764		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2765		if (hsotg->params.uframe_sched) {
2766			if (hsotg->available_host_channels < 1)
2767				break;
2768			hsotg->available_host_channels--;
2769		}
2770
2771		if (dwc2_assign_and_init_hc(hsotg, qh))
2772			break;
2773
2774		/*
2775		 * Move the QH from the non-periodic inactive schedule to the
2776		 * non-periodic active schedule
2777		 */
2778		qh_ptr = qh_ptr->next;
2779		list_move_tail(&qh->qh_list_entry,
2780			       &hsotg->non_periodic_sched_active);
2781
2782		if (ret_val == DWC2_TRANSACTION_NONE)
2783			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2784		else
2785			ret_val = DWC2_TRANSACTION_ALL;
2786
2787		if (!hsotg->params.uframe_sched)
2788			hsotg->non_periodic_channels++;
2789	}
2790
2791	return ret_val;
2792}
2793
2794/**
2795 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2796 * a host channel associated with either a periodic or non-periodic transfer
2797 *
2798 * @hsotg: The HCD state structure
2799 * @chan:  Host channel descriptor associated with either a periodic or
2800 *         non-periodic transfer
2801 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2802 *                     for periodic transfers or the non-periodic Tx FIFO
2803 *                     for non-periodic transfers
2804 *
2805 * Return: 1 if a request is queued and more requests may be needed to
2806 * complete the transfer, 0 if no more requests are required for this
2807 * transfer, -1 if there is insufficient space in the Tx FIFO
2808 *
2809 * This function assumes that there is space available in the appropriate
2810 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2811 * it checks whether space is available in the appropriate Tx FIFO.
2812 *
2813 * Must be called with interrupt disabled and spinlock held
2814 */
2815static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2816				  struct dwc2_host_chan *chan,
2817				  u16 fifo_dwords_avail)
2818{
2819	int retval = 0;
2820
2821	if (chan->do_split)
2822		/* Put ourselves on the list to keep order straight */
2823		list_move_tail(&chan->split_order_list_entry,
2824			       &hsotg->split_order);
2825
2826	if (hsotg->params.host_dma && chan->qh) {
2827		if (hsotg->params.dma_desc_enable) {
2828			if (!chan->xfer_started ||
2829			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2830				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2831				chan->qh->ping_state = 0;
2832			}
2833		} else if (!chan->xfer_started) {
2834			dwc2_hc_start_transfer(hsotg, chan);
2835			chan->qh->ping_state = 0;
2836		}
2837	} else if (chan->halt_pending) {
2838		/* Don't queue a request if the channel has been halted */
2839	} else if (chan->halt_on_queue) {
2840		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2841	} else if (chan->do_ping) {
2842		if (!chan->xfer_started)
2843			dwc2_hc_start_transfer(hsotg, chan);
2844	} else if (!chan->ep_is_in ||
2845		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2846		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2847			if (!chan->xfer_started) {
2848				dwc2_hc_start_transfer(hsotg, chan);
2849				retval = 1;
2850			} else {
2851				retval = dwc2_hc_continue_transfer(hsotg, chan);
2852			}
2853		} else {
2854			retval = -1;
2855		}
2856	} else {
2857		if (!chan->xfer_started) {
2858			dwc2_hc_start_transfer(hsotg, chan);
2859			retval = 1;
2860		} else {
2861			retval = dwc2_hc_continue_transfer(hsotg, chan);
2862		}
2863	}
2864
2865	return retval;
2866}
2867
2868/*
2869 * Processes periodic channels for the next frame and queues transactions for
2870 * these channels to the DWC_otg controller. After queueing transactions, the
2871 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2872 * to queue as Periodic Tx FIFO or request queue space becomes available.
2873 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2874 *
2875 * Must be called with interrupt disabled and spinlock held
2876 */
2877static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2878{
2879	struct list_head *qh_ptr;
2880	struct dwc2_qh *qh;
2881	u32 tx_status;
2882	u32 fspcavail;
2883	u32 gintmsk;
2884	int status;
2885	bool no_queue_space = false;
2886	bool no_fifo_space = false;
2887	u32 qspcavail;
2888
2889	/* If empty list then just adjust interrupt enables */
2890	if (list_empty(&hsotg->periodic_sched_assigned))
2891		goto exit;
2892
2893	if (dbg_perio())
2894		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2895
2896	tx_status = dwc2_readl(hsotg, HPTXSTS);
2897	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2898		    TXSTS_QSPCAVAIL_SHIFT;
2899	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2900		    TXSTS_FSPCAVAIL_SHIFT;
2901
2902	if (dbg_perio()) {
2903		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2904			 qspcavail);
2905		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2906			 fspcavail);
2907	}
2908
2909	qh_ptr = hsotg->periodic_sched_assigned.next;
2910	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2911		tx_status = dwc2_readl(hsotg, HPTXSTS);
2912		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2913			    TXSTS_QSPCAVAIL_SHIFT;
2914		if (qspcavail == 0) {
2915			no_queue_space = true;
2916			break;
2917		}
2918
2919		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2920		if (!qh->channel) {
2921			qh_ptr = qh_ptr->next;
2922			continue;
2923		}
2924
2925		/* Make sure EP's TT buffer is clean before queueing qtds */
2926		if (qh->tt_buffer_dirty) {
2927			qh_ptr = qh_ptr->next;
2928			continue;
2929		}
2930
2931		/*
2932		 * Set a flag if we're queuing high-bandwidth in slave mode.
2933		 * The flag prevents any halts to get into the request queue in
2934		 * the middle of multiple high-bandwidth packets getting queued.
2935		 */
2936		if (!hsotg->params.host_dma &&
2937		    qh->channel->multi_count > 1)
2938			hsotg->queuing_high_bandwidth = 1;
2939
2940		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2941			    TXSTS_FSPCAVAIL_SHIFT;
2942		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2943		if (status < 0) {
2944			no_fifo_space = true;
2945			break;
2946		}
2947
2948		/*
2949		 * In Slave mode, stay on the current transfer until there is
2950		 * nothing more to do or the high-bandwidth request count is
2951		 * reached. In DMA mode, only need to queue one request. The
2952		 * controller automatically handles multiple packets for
2953		 * high-bandwidth transfers.
2954		 */
2955		if (hsotg->params.host_dma || status == 0 ||
2956		    qh->channel->requests == qh->channel->multi_count) {
2957			qh_ptr = qh_ptr->next;
2958			/*
2959			 * Move the QH from the periodic assigned schedule to
2960			 * the periodic queued schedule
2961			 */
2962			list_move_tail(&qh->qh_list_entry,
2963				       &hsotg->periodic_sched_queued);
2964
2965			/* done queuing high bandwidth */
2966			hsotg->queuing_high_bandwidth = 0;
2967		}
2968	}
2969
2970exit:
2971	if (no_queue_space || no_fifo_space ||
2972	    (!hsotg->params.host_dma &&
2973	     !list_empty(&hsotg->periodic_sched_assigned))) {
2974		/*
2975		 * May need to queue more transactions as the request
2976		 * queue or Tx FIFO empties. Enable the periodic Tx
2977		 * FIFO empty interrupt. (Always use the half-empty
2978		 * level to ensure that new requests are loaded as
2979		 * soon as possible.)
2980		 */
2981		gintmsk = dwc2_readl(hsotg, GINTMSK);
2982		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2983			gintmsk |= GINTSTS_PTXFEMP;
2984			dwc2_writel(hsotg, gintmsk, GINTMSK);
2985		}
2986	} else {
2987		/*
2988		 * Disable the Tx FIFO empty interrupt since there are
2989		 * no more transactions that need to be queued right
2990		 * now. This function is called from interrupt
2991		 * handlers to queue more transactions as transfer
2992		 * states change.
2993		 */
2994		gintmsk = dwc2_readl(hsotg, GINTMSK);
2995		if (gintmsk & GINTSTS_PTXFEMP) {
2996			gintmsk &= ~GINTSTS_PTXFEMP;
2997			dwc2_writel(hsotg, gintmsk, GINTMSK);
2998		}
2999	}
3000}
3001
3002/*
3003 * Processes active non-periodic channels and queues transactions for these
3004 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3005 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3006 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3007 * FIFO Empty interrupt is disabled.
3008 *
3009 * Must be called with interrupt disabled and spinlock held
3010 */
3011static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3012{
3013	struct list_head *orig_qh_ptr;
3014	struct dwc2_qh *qh;
3015	u32 tx_status;
3016	u32 qspcavail;
3017	u32 fspcavail;
3018	u32 gintmsk;
3019	int status;
3020	int no_queue_space = 0;
3021	int no_fifo_space = 0;
3022	int more_to_do = 0;
3023
3024	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3025
3026	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3027	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3028		    TXSTS_QSPCAVAIL_SHIFT;
3029	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3030		    TXSTS_FSPCAVAIL_SHIFT;
3031	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3032		 qspcavail);
3033	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3034		 fspcavail);
3035
3036	/*
3037	 * Keep track of the starting point. Skip over the start-of-list
3038	 * entry.
3039	 */
3040	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3041		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3042	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3043
3044	/*
3045	 * Process once through the active list or until no more space is
3046	 * available in the request queue or the Tx FIFO
3047	 */
3048	do {
3049		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3050		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3051			    TXSTS_QSPCAVAIL_SHIFT;
3052		if (!hsotg->params.host_dma && qspcavail == 0) {
3053			no_queue_space = 1;
3054			break;
3055		}
3056
3057		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3058				qh_list_entry);
3059		if (!qh->channel)
3060			goto next;
3061
3062		/* Make sure EP's TT buffer is clean before queueing qtds */
3063		if (qh->tt_buffer_dirty)
3064			goto next;
3065
3066		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3067			    TXSTS_FSPCAVAIL_SHIFT;
3068		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3069
3070		if (status > 0) {
3071			more_to_do = 1;
3072		} else if (status < 0) {
3073			no_fifo_space = 1;
3074			break;
3075		}
3076next:
3077		/* Advance to next QH, skipping start-of-list entry */
3078		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3079		if (hsotg->non_periodic_qh_ptr ==
3080				&hsotg->non_periodic_sched_active)
3081			hsotg->non_periodic_qh_ptr =
3082					hsotg->non_periodic_qh_ptr->next;
3083	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3084
3085	if (!hsotg->params.host_dma) {
3086		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3087		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3088			    TXSTS_QSPCAVAIL_SHIFT;
3089		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3090			    TXSTS_FSPCAVAIL_SHIFT;
3091		dev_vdbg(hsotg->dev,
3092			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3093			 qspcavail);
3094		dev_vdbg(hsotg->dev,
3095			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3096			 fspcavail);
3097
3098		if (more_to_do || no_queue_space || no_fifo_space) {
3099			/*
3100			 * May need to queue more transactions as the request
3101			 * queue or Tx FIFO empties. Enable the non-periodic
3102			 * Tx FIFO empty interrupt. (Always use the half-empty
3103			 * level to ensure that new requests are loaded as
3104			 * soon as possible.)
3105			 */
3106			gintmsk = dwc2_readl(hsotg, GINTMSK);
3107			gintmsk |= GINTSTS_NPTXFEMP;
3108			dwc2_writel(hsotg, gintmsk, GINTMSK);
3109		} else {
3110			/*
3111			 * Disable the Tx FIFO empty interrupt since there are
3112			 * no more transactions that need to be queued right
3113			 * now. This function is called from interrupt
3114			 * handlers to queue more transactions as transfer
3115			 * states change.
3116			 */
3117			gintmsk = dwc2_readl(hsotg, GINTMSK);
3118			gintmsk &= ~GINTSTS_NPTXFEMP;
3119			dwc2_writel(hsotg, gintmsk, GINTMSK);
3120		}
3121	}
3122}
3123
3124/**
3125 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3126 * and queues transactions for these channels to the DWC_otg controller. Called
3127 * from the HCD interrupt handler functions.
3128 *
3129 * @hsotg:   The HCD state structure
3130 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3131 *           or both)
3132 *
3133 * Must be called with interrupt disabled and spinlock held
3134 */
3135void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3136				 enum dwc2_transaction_type tr_type)
3137{
3138#ifdef DWC2_DEBUG_SOF
3139	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3140#endif
3141	/* Process host channels associated with periodic transfers */
3142	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3143	    tr_type == DWC2_TRANSACTION_ALL)
3144		dwc2_process_periodic_channels(hsotg);
3145
3146	/* Process host channels associated with non-periodic transfers */
3147	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3148	    tr_type == DWC2_TRANSACTION_ALL) {
3149		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3150			dwc2_process_non_periodic_channels(hsotg);
3151		} else {
3152			/*
3153			 * Ensure NP Tx FIFO empty interrupt is disabled when
3154			 * there are no non-periodic transfers to process
3155			 */
3156			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3157
3158			gintmsk &= ~GINTSTS_NPTXFEMP;
3159			dwc2_writel(hsotg, gintmsk, GINTMSK);
3160		}
3161	}
3162}
3163
3164static void dwc2_conn_id_status_change(struct work_struct *work)
3165{
3166	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3167						wf_otg);
3168	u32 count = 0;
3169	u32 gotgctl;
3170	unsigned long flags;
3171
3172	dev_dbg(hsotg->dev, "%s()\n", __func__);
3173
3174	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3175	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3176	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3177		!!(gotgctl & GOTGCTL_CONID_B));
3178
3179	/* B-Device connector (Device Mode) */
3180	if (gotgctl & GOTGCTL_CONID_B) {
3181		dwc2_vbus_supply_exit(hsotg);
3182		/* Wait for switch to device mode */
3183		dev_dbg(hsotg->dev, "connId B\n");
3184		if (hsotg->bus_suspended) {
3185			dev_info(hsotg->dev,
3186				 "Do port resume before switching to device mode\n");
3187			dwc2_port_resume(hsotg);
3188		}
3189		while (!dwc2_is_device_mode(hsotg)) {
3190			dev_info(hsotg->dev,
3191				 "Waiting for Peripheral Mode, Mode=%s\n",
3192				 dwc2_is_host_mode(hsotg) ? "Host" :
3193				 "Peripheral");
3194			msleep(20);
3195			/*
3196			 * Sometimes the initial GOTGCTRL read is wrong, so
3197			 * check it again and jump to host mode if that was
3198			 * the case.
3199			 */
3200			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3201			if (!(gotgctl & GOTGCTL_CONID_B))
3202				goto host;
3203			if (++count > 250)
3204				break;
3205		}
3206		if (count > 250)
3207			dev_err(hsotg->dev,
3208				"Connection id status change timed out\n");
3209
3210		/*
3211		 * Exit Partial Power Down without restoring registers.
3212		 * No need to check the return value as registers
3213		 * are not being restored.
3214		 */
3215		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3216			dwc2_exit_partial_power_down(hsotg, 0, false);
3217
3218		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3219		dwc2_core_init(hsotg, false);
3220		dwc2_enable_global_interrupts(hsotg);
3221		spin_lock_irqsave(&hsotg->lock, flags);
3222		dwc2_hsotg_core_init_disconnected(hsotg, false);
3223		spin_unlock_irqrestore(&hsotg->lock, flags);
3224		/* Enable ACG feature in device mode,if supported */
3225		dwc2_enable_acg(hsotg);
3226		dwc2_hsotg_core_connect(hsotg);
3227	} else {
3228host:
3229		/* A-Device connector (Host Mode) */
3230		dev_dbg(hsotg->dev, "connId A\n");
3231		while (!dwc2_is_host_mode(hsotg)) {
3232			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3233				 dwc2_is_host_mode(hsotg) ?
3234				 "Host" : "Peripheral");
3235			msleep(20);
3236			if (++count > 250)
3237				break;
3238		}
3239		if (count > 250)
3240			dev_err(hsotg->dev,
3241				"Connection id status change timed out\n");
3242
3243		spin_lock_irqsave(&hsotg->lock, flags);
3244		dwc2_hsotg_disconnect(hsotg);
3245		spin_unlock_irqrestore(&hsotg->lock, flags);
3246
3247		hsotg->op_state = OTG_STATE_A_HOST;
3248		/* Initialize the Core for Host mode */
3249		dwc2_core_init(hsotg, false);
3250		dwc2_enable_global_interrupts(hsotg);
3251		dwc2_hcd_start(hsotg);
3252	}
3253}
3254
3255static void dwc2_wakeup_detected(struct timer_list *t)
3256{
3257	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3258	u32 hprt0;
3259
3260	dev_dbg(hsotg->dev, "%s()\n", __func__);
3261
3262	/*
3263	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3264	 * so that OPT tests pass with all PHYs.)
3265	 */
3266	hprt0 = dwc2_read_hprt0(hsotg);
3267	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3268	hprt0 &= ~HPRT0_RES;
3269	dwc2_writel(hsotg, hprt0, HPRT0);
3270	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3271		dwc2_readl(hsotg, HPRT0));
3272
3273	dwc2_hcd_rem_wakeup(hsotg);
3274	hsotg->bus_suspended = false;
3275
3276	/* Change to L0 state */
3277	hsotg->lx_state = DWC2_L0;
3278}
3279
3280static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3281{
3282	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3283
3284	return hcd->self.b_hnp_enable;
3285}
3286
3287/**
3288 * dwc2_port_suspend() - Put controller in suspend mode for host.
3289 *
3290 * @hsotg: Programming view of the DWC_otg controller
3291 * @windex: The control request wIndex field
3292 *
3293 * Return: non-zero if failed to enter suspend mode for host.
3294 *
3295 * This function is for entering Host mode suspend.
3296 * Must NOT be called with interrupt disabled or spinlock held.
3297 */
3298int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3299{
3300	unsigned long flags;
3301	u32 pcgctl;
3302	u32 gotgctl;
3303	int ret = 0;
3304
3305	dev_dbg(hsotg->dev, "%s()\n", __func__);
3306
3307	spin_lock_irqsave(&hsotg->lock, flags);
3308
3309	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3310		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3311		gotgctl |= GOTGCTL_HSTSETHNPEN;
3312		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3313		hsotg->op_state = OTG_STATE_A_SUSPEND;
3314	}
3315
3316	switch (hsotg->params.power_down) {
3317	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3318		ret = dwc2_enter_partial_power_down(hsotg);
3319		if (ret)
3320			dev_err(hsotg->dev,
3321				"enter partial_power_down failed.\n");
3322		break;
3323	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3324		/*
3325		 * Perform spin unlock and lock because in
3326		 * "dwc2_host_enter_hibernation()" function there is a spinlock
3327		 * logic which prevents servicing of any IRQ during entering
3328		 * hibernation.
3329		 */
3330		spin_unlock_irqrestore(&hsotg->lock, flags);
3331		ret = dwc2_enter_hibernation(hsotg, 1);
3332		if (ret)
3333			dev_err(hsotg->dev, "enter hibernation failed.\n");
3334		spin_lock_irqsave(&hsotg->lock, flags);
3335		break;
3336	case DWC2_POWER_DOWN_PARAM_NONE:
3337		/*
3338		 * If not hibernation nor partial power down are supported,
3339		 * clock gating is used to save power.
3340		 */
3341		if (!hsotg->params.no_clock_gating)
3342			dwc2_host_enter_clock_gating(hsotg);
3343		break;
3344	}
3345
3346	/* For HNP the bus must be suspended for at least 200ms */
3347	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3348		pcgctl = dwc2_readl(hsotg, PCGCTL);
3349		pcgctl &= ~PCGCTL_STOPPCLK;
3350		dwc2_writel(hsotg, pcgctl, PCGCTL);
3351
3352		spin_unlock_irqrestore(&hsotg->lock, flags);
3353
3354		msleep(200);
3355	} else {
3356		spin_unlock_irqrestore(&hsotg->lock, flags);
3357	}
3358
3359	return ret;
3360}
3361
3362/**
3363 * dwc2_port_resume() - Exit controller from suspend mode for host.
3364 *
3365 * @hsotg: Programming view of the DWC_otg controller
3366 *
3367 * Return: non-zero if failed to exit suspend mode for host.
3368 *
3369 * This function is for exiting Host mode suspend.
3370 * Must NOT be called with interrupt disabled or spinlock held.
3371 */
3372int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3373{
3374	unsigned long flags;
3375	int ret = 0;
3376
3377	spin_lock_irqsave(&hsotg->lock, flags);
3378
3379	switch (hsotg->params.power_down) {
3380	case DWC2_POWER_DOWN_PARAM_PARTIAL:
3381		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3382		if (ret)
3383			dev_err(hsotg->dev,
3384				"exit partial_power_down failed.\n");
3385		break;
3386	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3387		/* Exit host hibernation. */
3388		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3389		if (ret)
3390			dev_err(hsotg->dev, "exit hibernation failed.\n");
3391		break;
3392	case DWC2_POWER_DOWN_PARAM_NONE:
3393		/*
3394		 * If not hibernation nor partial power down are supported,
3395		 * port resume is done using the clock gating programming flow.
3396		 */
3397		spin_unlock_irqrestore(&hsotg->lock, flags);
3398		dwc2_host_exit_clock_gating(hsotg, 0);
3399		spin_lock_irqsave(&hsotg->lock, flags);
3400		break;
3401	}
3402
3403	spin_unlock_irqrestore(&hsotg->lock, flags);
3404
3405	return ret;
3406}
3407
3408/* Handles hub class-specific requests */
3409static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3410				u16 wvalue, u16 windex, char *buf, u16 wlength)
3411{
3412	struct usb_hub_descriptor *hub_desc;
3413	int retval = 0;
3414	u32 hprt0;
3415	u32 port_status;
3416	u32 speed;
3417	u32 pcgctl;
3418	u32 pwr;
3419
3420	switch (typereq) {
3421	case ClearHubFeature:
3422		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3423
3424		switch (wvalue) {
3425		case C_HUB_LOCAL_POWER:
3426		case C_HUB_OVER_CURRENT:
3427			/* Nothing required here */
3428			break;
3429
3430		default:
3431			retval = -EINVAL;
3432			dev_err(hsotg->dev,
3433				"ClearHubFeature request %1xh unknown\n",
3434				wvalue);
3435		}
3436		break;
3437
3438	case ClearPortFeature:
3439		if (wvalue != USB_PORT_FEAT_L1)
3440			if (!windex || windex > 1)
3441				goto error;
3442		switch (wvalue) {
3443		case USB_PORT_FEAT_ENABLE:
3444			dev_dbg(hsotg->dev,
3445				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3446			hprt0 = dwc2_read_hprt0(hsotg);
3447			hprt0 |= HPRT0_ENA;
3448			dwc2_writel(hsotg, hprt0, HPRT0);
3449			break;
3450
3451		case USB_PORT_FEAT_SUSPEND:
3452			dev_dbg(hsotg->dev,
3453				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3454
3455			if (hsotg->bus_suspended)
3456				retval = dwc2_port_resume(hsotg);
3457			break;
3458
3459		case USB_PORT_FEAT_POWER:
3460			dev_dbg(hsotg->dev,
3461				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3462			hprt0 = dwc2_read_hprt0(hsotg);
3463			pwr = hprt0 & HPRT0_PWR;
3464			hprt0 &= ~HPRT0_PWR;
3465			dwc2_writel(hsotg, hprt0, HPRT0);
3466			if (pwr)
3467				dwc2_vbus_supply_exit(hsotg);
3468			break;
3469
3470		case USB_PORT_FEAT_INDICATOR:
3471			dev_dbg(hsotg->dev,
3472				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3473			/* Port indicator not supported */
3474			break;
3475
3476		case USB_PORT_FEAT_C_CONNECTION:
3477			/*
3478			 * Clears driver's internal Connect Status Change flag
3479			 */
3480			dev_dbg(hsotg->dev,
3481				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3482			hsotg->flags.b.port_connect_status_change = 0;
3483			break;
3484
3485		case USB_PORT_FEAT_C_RESET:
3486			/* Clears driver's internal Port Reset Change flag */
3487			dev_dbg(hsotg->dev,
3488				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3489			hsotg->flags.b.port_reset_change = 0;
3490			break;
3491
3492		case USB_PORT_FEAT_C_ENABLE:
3493			/*
3494			 * Clears the driver's internal Port Enable/Disable
3495			 * Change flag
3496			 */
3497			dev_dbg(hsotg->dev,
3498				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3499			hsotg->flags.b.port_enable_change = 0;
3500			break;
3501
3502		case USB_PORT_FEAT_C_SUSPEND:
3503			/*
3504			 * Clears the driver's internal Port Suspend Change
3505			 * flag, which is set when resume signaling on the host
3506			 * port is complete
3507			 */
3508			dev_dbg(hsotg->dev,
3509				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3510			hsotg->flags.b.port_suspend_change = 0;
3511			break;
3512
3513		case USB_PORT_FEAT_C_PORT_L1:
3514			dev_dbg(hsotg->dev,
3515				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3516			hsotg->flags.b.port_l1_change = 0;
3517			break;
3518
3519		case USB_PORT_FEAT_C_OVER_CURRENT:
3520			dev_dbg(hsotg->dev,
3521				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3522			hsotg->flags.b.port_over_current_change = 0;
3523			break;
3524
3525		default:
3526			retval = -EINVAL;
3527			dev_err(hsotg->dev,
3528				"ClearPortFeature request %1xh unknown or unsupported\n",
3529				wvalue);
3530		}
3531		break;
3532
3533	case GetHubDescriptor:
3534		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3535		hub_desc = (struct usb_hub_descriptor *)buf;
3536		hub_desc->bDescLength = 9;
3537		hub_desc->bDescriptorType = USB_DT_HUB;
3538		hub_desc->bNbrPorts = 1;
3539		hub_desc->wHubCharacteristics =
3540			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3541				    HUB_CHAR_INDV_PORT_OCPM);
3542		hub_desc->bPwrOn2PwrGood = 1;
3543		hub_desc->bHubContrCurrent = 0;
3544		hub_desc->u.hs.DeviceRemovable[0] = 0;
3545		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3546		break;
3547
3548	case GetHubStatus:
3549		dev_dbg(hsotg->dev, "GetHubStatus\n");
3550		memset(buf, 0, 4);
3551		break;
3552
3553	case GetPortStatus:
3554		dev_vdbg(hsotg->dev,
3555			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3556			 hsotg->flags.d32);
3557		if (!windex || windex > 1)
3558			goto error;
3559
3560		port_status = 0;
3561		if (hsotg->flags.b.port_connect_status_change)
3562			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3563		if (hsotg->flags.b.port_enable_change)
3564			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3565		if (hsotg->flags.b.port_suspend_change)
3566			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3567		if (hsotg->flags.b.port_l1_change)
3568			port_status |= USB_PORT_STAT_C_L1 << 16;
3569		if (hsotg->flags.b.port_reset_change)
3570			port_status |= USB_PORT_STAT_C_RESET << 16;
3571		if (hsotg->flags.b.port_over_current_change) {
3572			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3573			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3574		}
3575
3576		if (!hsotg->flags.b.port_connect_status) {
3577			/*
3578			 * The port is disconnected, which means the core is
3579			 * either in device mode or it soon will be. Just
3580			 * return 0's for the remainder of the port status
3581			 * since the port register can't be read if the core
3582			 * is in device mode.
3583			 */
3584			*(__le32 *)buf = cpu_to_le32(port_status);
3585			break;
3586		}
3587
3588		hprt0 = dwc2_readl(hsotg, HPRT0);
3589		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3590
3591		if (hprt0 & HPRT0_CONNSTS)
3592			port_status |= USB_PORT_STAT_CONNECTION;
3593		if (hprt0 & HPRT0_ENA)
3594			port_status |= USB_PORT_STAT_ENABLE;
3595		if (hprt0 & HPRT0_SUSP)
3596			port_status |= USB_PORT_STAT_SUSPEND;
3597		if (hprt0 & HPRT0_OVRCURRACT)
3598			port_status |= USB_PORT_STAT_OVERCURRENT;
3599		if (hprt0 & HPRT0_RST)
3600			port_status |= USB_PORT_STAT_RESET;
3601		if (hprt0 & HPRT0_PWR)
3602			port_status |= USB_PORT_STAT_POWER;
3603
3604		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3605		if (speed == HPRT0_SPD_HIGH_SPEED)
3606			port_status |= USB_PORT_STAT_HIGH_SPEED;
3607		else if (speed == HPRT0_SPD_LOW_SPEED)
3608			port_status |= USB_PORT_STAT_LOW_SPEED;
3609
3610		if (hprt0 & HPRT0_TSTCTL_MASK)
3611			port_status |= USB_PORT_STAT_TEST;
3612		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3613
3614		if (hsotg->params.dma_desc_fs_enable) {
3615			/*
3616			 * Enable descriptor DMA only if a full speed
3617			 * device is connected.
3618			 */
3619			if (hsotg->new_connection &&
3620			    ((port_status &
3621			      (USB_PORT_STAT_CONNECTION |
3622			       USB_PORT_STAT_HIGH_SPEED |
3623			       USB_PORT_STAT_LOW_SPEED)) ==
3624			       USB_PORT_STAT_CONNECTION)) {
3625				u32 hcfg;
3626
3627				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3628				hsotg->params.dma_desc_enable = true;
3629				hcfg = dwc2_readl(hsotg, HCFG);
3630				hcfg |= HCFG_DESCDMA;
3631				dwc2_writel(hsotg, hcfg, HCFG);
3632				hsotg->new_connection = false;
3633			}
3634		}
3635
3636		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3637		*(__le32 *)buf = cpu_to_le32(port_status);
3638		break;
3639
3640	case SetHubFeature:
3641		dev_dbg(hsotg->dev, "SetHubFeature\n");
3642		/* No HUB features supported */
3643		break;
3644
3645	case SetPortFeature:
3646		dev_dbg(hsotg->dev, "SetPortFeature\n");
3647		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3648			goto error;
3649
3650		if (!hsotg->flags.b.port_connect_status) {
3651			/*
3652			 * The port is disconnected, which means the core is
3653			 * either in device mode or it soon will be. Just
3654			 * return without doing anything since the port
3655			 * register can't be written if the core is in device
3656			 * mode.
3657			 */
3658			break;
3659		}
3660
3661		switch (wvalue) {
3662		case USB_PORT_FEAT_SUSPEND:
3663			dev_dbg(hsotg->dev,
3664				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3665			if (windex != hsotg->otg_port)
3666				goto error;
3667			if (!hsotg->bus_suspended)
3668				retval = dwc2_port_suspend(hsotg, windex);
3669			break;
3670
3671		case USB_PORT_FEAT_POWER:
3672			dev_dbg(hsotg->dev,
3673				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3674			hprt0 = dwc2_read_hprt0(hsotg);
3675			pwr = hprt0 & HPRT0_PWR;
3676			hprt0 |= HPRT0_PWR;
3677			dwc2_writel(hsotg, hprt0, HPRT0);
3678			if (!pwr)
3679				dwc2_vbus_supply_init(hsotg);
3680			break;
3681
3682		case USB_PORT_FEAT_RESET:
3683			dev_dbg(hsotg->dev,
3684				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3685
3686			hprt0 = dwc2_read_hprt0(hsotg);
3687
3688			if (hsotg->hibernated) {
3689				retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3690				if (retval)
3691					dev_err(hsotg->dev,
3692						"exit hibernation failed\n");
3693			}
3694
3695			if (hsotg->in_ppd) {
3696				retval = dwc2_exit_partial_power_down(hsotg, 1,
3697								      true);
3698				if (retval)
3699					dev_err(hsotg->dev,
3700						"exit partial_power_down failed\n");
3701			}
3702
3703			if (hsotg->params.power_down ==
3704			    DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3705				dwc2_host_exit_clock_gating(hsotg, 0);
3706
3707			pcgctl = dwc2_readl(hsotg, PCGCTL);
3708			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3709			dwc2_writel(hsotg, pcgctl, PCGCTL);
3710			/* ??? Original driver does this */
3711			dwc2_writel(hsotg, 0, PCGCTL);
3712
3713			hprt0 = dwc2_read_hprt0(hsotg);
3714			pwr = hprt0 & HPRT0_PWR;
3715			/* Clear suspend bit if resetting from suspend state */
3716			hprt0 &= ~HPRT0_SUSP;
3717
3718			/*
3719			 * When B-Host the Port reset bit is set in the Start
3720			 * HCD Callback function, so that the reset is started
3721			 * within 1ms of the HNP success interrupt
3722			 */
3723			if (!dwc2_hcd_is_b_host(hsotg)) {
3724				hprt0 |= HPRT0_PWR | HPRT0_RST;
3725				dev_dbg(hsotg->dev,
3726					"In host mode, hprt0=%08x\n", hprt0);
3727				dwc2_writel(hsotg, hprt0, HPRT0);
3728				if (!pwr)
3729					dwc2_vbus_supply_init(hsotg);
3730			}
3731
3732			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3733			msleep(50);
3734			hprt0 &= ~HPRT0_RST;
3735			dwc2_writel(hsotg, hprt0, HPRT0);
3736			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3737			break;
3738
3739		case USB_PORT_FEAT_INDICATOR:
3740			dev_dbg(hsotg->dev,
3741				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3742			/* Not supported */
3743			break;
3744
3745		case USB_PORT_FEAT_TEST:
3746			hprt0 = dwc2_read_hprt0(hsotg);
3747			dev_dbg(hsotg->dev,
3748				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3749			hprt0 &= ~HPRT0_TSTCTL_MASK;
3750			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3751			dwc2_writel(hsotg, hprt0, HPRT0);
3752			break;
3753
3754		default:
3755			retval = -EINVAL;
3756			dev_err(hsotg->dev,
3757				"SetPortFeature %1xh unknown or unsupported\n",
3758				wvalue);
3759			break;
3760		}
3761		break;
3762
3763	default:
3764error:
3765		retval = -EINVAL;
3766		dev_dbg(hsotg->dev,
3767			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3768			typereq, windex, wvalue);
3769		break;
3770	}
3771
3772	return retval;
3773}
3774
3775static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3776{
3777	int retval;
3778
3779	if (port != 1)
3780		return -EINVAL;
3781
3782	retval = (hsotg->flags.b.port_connect_status_change ||
3783		  hsotg->flags.b.port_reset_change ||
3784		  hsotg->flags.b.port_enable_change ||
3785		  hsotg->flags.b.port_suspend_change ||
3786		  hsotg->flags.b.port_over_current_change);
3787
3788	if (retval) {
3789		dev_dbg(hsotg->dev,
3790			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3791		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3792			hsotg->flags.b.port_connect_status_change);
3793		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3794			hsotg->flags.b.port_reset_change);
3795		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3796			hsotg->flags.b.port_enable_change);
3797		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3798			hsotg->flags.b.port_suspend_change);
3799		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3800			hsotg->flags.b.port_over_current_change);
3801	}
3802
3803	return retval;
3804}
3805
3806int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3807{
3808	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3809
3810#ifdef DWC2_DEBUG_SOF
3811	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3812		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3813#endif
3814	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3815}
3816
3817int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3818{
3819	u32 hprt = dwc2_readl(hsotg, HPRT0);
3820	u32 hfir = dwc2_readl(hsotg, HFIR);
3821	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3822	unsigned int us_per_frame;
3823	unsigned int frame_number;
3824	unsigned int remaining;
3825	unsigned int interval;
3826	unsigned int phy_clks;
3827
3828	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3829	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3830
3831	/* Extract fields */
3832	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3833	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3834	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3835
3836	/*
3837	 * Number of phy clocks since the last tick of the frame number after
3838	 * "us" has passed.
3839	 */
3840	phy_clks = (interval - remaining) +
3841		   DIV_ROUND_UP(interval * us, us_per_frame);
3842
3843	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3844}
3845
3846int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3847{
3848	return hsotg->op_state == OTG_STATE_B_HOST;
3849}
3850
3851static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3852					       int iso_desc_count,
3853					       gfp_t mem_flags)
3854{
3855	struct dwc2_hcd_urb *urb;
3856
3857	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3858	if (urb)
3859		urb->packet_count = iso_desc_count;
3860	return urb;
3861}
3862
3863static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3864				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3865				      u8 ep_num, u8 ep_type, u8 ep_dir,
3866				      u16 maxp, u16 maxp_mult)
3867{
3868	if (dbg_perio() ||
3869	    ep_type == USB_ENDPOINT_XFER_BULK ||
3870	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3871		dev_vdbg(hsotg->dev,
3872			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3873			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3874	urb->pipe_info.dev_addr = dev_addr;
3875	urb->pipe_info.ep_num = ep_num;
3876	urb->pipe_info.pipe_type = ep_type;
3877	urb->pipe_info.pipe_dir = ep_dir;
3878	urb->pipe_info.maxp = maxp;
3879	urb->pipe_info.maxp_mult = maxp_mult;
3880}
3881
3882/*
3883 * NOTE: This function will be removed once the peripheral controller code
3884 * is integrated and the driver is stable
3885 */
3886void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3887{
3888#ifdef DEBUG
3889	struct dwc2_host_chan *chan;
3890	struct dwc2_hcd_urb *urb;
3891	struct dwc2_qtd *qtd;
3892	int num_channels;
3893	u32 np_tx_status;
3894	u32 p_tx_status;
3895	int i;
3896
3897	num_channels = hsotg->params.host_channels;
3898	dev_dbg(hsotg->dev, "\n");
3899	dev_dbg(hsotg->dev,
3900		"************************************************************\n");
3901	dev_dbg(hsotg->dev, "HCD State:\n");
3902	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3903
3904	for (i = 0; i < num_channels; i++) {
3905		chan = hsotg->hc_ptr_array[i];
3906		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3907		dev_dbg(hsotg->dev,
3908			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3909			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3910		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3911		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3912		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3913		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3914			chan->data_pid_start);
3915		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3916		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3917			chan->xfer_started);
3918		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3919		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3920			(unsigned long)chan->xfer_dma);
3921		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3922		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3923		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3924			chan->halt_on_queue);
3925		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3926			chan->halt_pending);
3927		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3928		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3929		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3930			chan->complete_split);
3931		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3932		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3933		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3934		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3935		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3936
3937		if (chan->xfer_started) {
3938			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3939
3940			hfnum = dwc2_readl(hsotg, HFNUM);
3941			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3942			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3943			hcint = dwc2_readl(hsotg, HCINT(i));
3944			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3945			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3946			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3947			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3948			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3949			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3950		}
3951
3952		if (!(chan->xfer_started && chan->qh))
3953			continue;
3954
3955		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3956			if (!qtd->in_process)
3957				break;
3958			urb = qtd->urb;
3959			dev_dbg(hsotg->dev, "    URB Info:\n");
3960			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3961				qtd, urb);
3962			if (urb) {
3963				dev_dbg(hsotg->dev,
3964					"      Dev: %d, EP: %d %s\n",
3965					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3966					dwc2_hcd_get_ep_num(&urb->pipe_info),
3967					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3968					"IN" : "OUT");
3969				dev_dbg(hsotg->dev,
3970					"      Max packet size: %d (%d mult)\n",
3971					dwc2_hcd_get_maxp(&urb->pipe_info),
3972					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3973				dev_dbg(hsotg->dev,
3974					"      transfer_buffer: %p\n",
3975					urb->buf);
3976				dev_dbg(hsotg->dev,
3977					"      transfer_dma: %08lx\n",
3978					(unsigned long)urb->dma);
3979				dev_dbg(hsotg->dev,
3980					"      transfer_buffer_length: %d\n",
3981					urb->length);
3982				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3983					urb->actual_length);
3984			}
3985		}
3986	}
3987
3988	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3989		hsotg->non_periodic_channels);
3990	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3991		hsotg->periodic_channels);
3992	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3993	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3994	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3995		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3996	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3997		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3998	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3999	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4000		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4001	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4002		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4003	dwc2_dump_global_registers(hsotg);
4004	dwc2_dump_host_registers(hsotg);
4005	dev_dbg(hsotg->dev,
4006		"************************************************************\n");
4007	dev_dbg(hsotg->dev, "\n");
4008#endif
4009}
4010
4011struct wrapper_priv_data {
4012	struct dwc2_hsotg *hsotg;
4013};
4014
4015/* Gets the dwc2_hsotg from a usb_hcd */
4016static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4017{
4018	struct wrapper_priv_data *p;
4019
4020	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4021	return p->hsotg;
4022}
4023
4024/**
4025 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4026 *
4027 * This will get the dwc2_tt structure (and ttport) associated with the given
4028 * context (which is really just a struct urb pointer).
4029 *
4030 * The first time this is called for a given TT we allocate memory for our
4031 * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4032 * then the refcount for the structure will go to 0 and we'll free it.
4033 *
4034 * @hsotg:     The HCD state structure for the DWC OTG controller.
4035 * @context:   The priv pointer from a struct dwc2_hcd_urb.
4036 * @mem_flags: Flags for allocating memory.
4037 * @ttport:    We'll return this device's port number here.  That's used to
4038 *             reference into the bitmap if we're on a multi_tt hub.
4039 *
4040 * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4041 *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4042 */
4043
4044struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4045				      gfp_t mem_flags, int *ttport)
4046{
4047	struct urb *urb = context;
4048	struct dwc2_tt *dwc_tt = NULL;
4049
4050	if (urb->dev->tt) {
4051		*ttport = urb->dev->ttport;
4052
4053		dwc_tt = urb->dev->tt->hcpriv;
4054		if (!dwc_tt) {
4055			size_t bitmap_size;
4056
4057			/*
4058			 * For single_tt we need one schedule.  For multi_tt
4059			 * we need one per port.
4060			 */
4061			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4062				      sizeof(dwc_tt->periodic_bitmaps[0]);
4063			if (urb->dev->tt->multi)
4064				bitmap_size *= urb->dev->tt->hub->maxchild;
4065
4066			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4067					 mem_flags);
4068			if (!dwc_tt)
4069				return NULL;
4070
4071			dwc_tt->usb_tt = urb->dev->tt;
4072			dwc_tt->usb_tt->hcpriv = dwc_tt;
4073		}
4074
4075		dwc_tt->refcount++;
4076	}
4077
4078	return dwc_tt;
4079}
4080
4081/**
4082 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4083 *
4084 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4085 * of the structure are done.
4086 *
4087 * It's OK to call this with NULL.
4088 *
4089 * @hsotg:     The HCD state structure for the DWC OTG controller.
4090 * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4091 */
4092void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4093{
4094	/* Model kfree and make put of NULL a no-op */
4095	if (!dwc_tt)
4096		return;
4097
4098	WARN_ON(dwc_tt->refcount < 1);
4099
4100	dwc_tt->refcount--;
4101	if (!dwc_tt->refcount) {
4102		dwc_tt->usb_tt->hcpriv = NULL;
4103		kfree(dwc_tt);
4104	}
4105}
4106
4107int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4108{
4109	struct urb *urb = context;
4110
4111	return urb->dev->speed;
4112}
4113
4114static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4115					struct urb *urb)
4116{
4117	struct usb_bus *bus = hcd_to_bus(hcd);
4118
4119	if (urb->interval)
4120		bus->bandwidth_allocated += bw / urb->interval;
4121	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4122		bus->bandwidth_isoc_reqs++;
4123	else
4124		bus->bandwidth_int_reqs++;
4125}
4126
4127static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4128				    struct urb *urb)
4129{
4130	struct usb_bus *bus = hcd_to_bus(hcd);
4131
4132	if (urb->interval)
4133		bus->bandwidth_allocated -= bw / urb->interval;
4134	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4135		bus->bandwidth_isoc_reqs--;
4136	else
4137		bus->bandwidth_int_reqs--;
4138}
4139
4140/*
4141 * Sets the final status of an URB and returns it to the upper layer. Any
4142 * required cleanup of the URB is performed.
4143 *
4144 * Must be called with interrupt disabled and spinlock held
4145 */
4146void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4147			int status)
4148{
4149	struct urb *urb;
4150	int i;
4151
4152	if (!qtd) {
4153		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4154		return;
4155	}
4156
4157	if (!qtd->urb) {
4158		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4159		return;
4160	}
4161
4162	urb = qtd->urb->priv;
4163	if (!urb) {
4164		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4165		return;
4166	}
4167
4168	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4169
4170	if (dbg_urb(urb))
4171		dev_vdbg(hsotg->dev,
4172			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4173			 __func__, urb, usb_pipedevice(urb->pipe),
4174			 usb_pipeendpoint(urb->pipe),
4175			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4176			 urb->actual_length);
4177
4178	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4179		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4180		for (i = 0; i < urb->number_of_packets; ++i) {
4181			urb->iso_frame_desc[i].actual_length =
4182				dwc2_hcd_urb_get_iso_desc_actual_length(
4183						qtd->urb, i);
4184			urb->iso_frame_desc[i].status =
4185				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4186		}
4187	}
4188
4189	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4190		for (i = 0; i < urb->number_of_packets; i++)
4191			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4192				 i, urb->iso_frame_desc[i].status);
4193	}
4194
4195	urb->status = status;
4196	if (!status) {
4197		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4198		    urb->actual_length < urb->transfer_buffer_length)
4199			urb->status = -EREMOTEIO;
4200	}
4201
4202	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4203	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4204		struct usb_host_endpoint *ep = urb->ep;
4205
4206		if (ep)
4207			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4208					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4209					urb);
4210	}
4211
4212	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4213	urb->hcpriv = NULL;
4214	kfree(qtd->urb);
4215	qtd->urb = NULL;
4216
4217	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4218}
4219
4220/*
4221 * Work queue function for starting the HCD when A-Cable is connected
4222 */
4223static void dwc2_hcd_start_func(struct work_struct *work)
4224{
4225	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4226						start_work.work);
4227
4228	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4229	dwc2_host_start(hsotg);
4230}
4231
4232/*
4233 * Reset work queue function
4234 */
4235static void dwc2_hcd_reset_func(struct work_struct *work)
4236{
4237	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4238						reset_work.work);
4239	unsigned long flags;
4240	u32 hprt0;
4241
4242	dev_dbg(hsotg->dev, "USB RESET function called\n");
4243
4244	spin_lock_irqsave(&hsotg->lock, flags);
4245
4246	hprt0 = dwc2_read_hprt0(hsotg);
4247	hprt0 &= ~HPRT0_RST;
4248	dwc2_writel(hsotg, hprt0, HPRT0);
4249	hsotg->flags.b.port_reset_change = 1;
4250
4251	spin_unlock_irqrestore(&hsotg->lock, flags);
4252}
4253
4254static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4255{
4256	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4257						phy_reset_work);
4258	int ret;
4259
4260	ret = phy_reset(hsotg->phy);
4261	if (ret)
4262		dev_warn(hsotg->dev, "PHY reset failed\n");
4263}
4264
4265/*
4266 * =========================================================================
4267 *  Linux HC Driver Functions
4268 * =========================================================================
4269 */
4270
4271/*
4272 * Initializes the DWC_otg controller and its root hub and prepares it for host
4273 * mode operation. Activates the root port. Returns 0 on success and a negative
4274 * error code on failure.
4275 */
4276static int _dwc2_hcd_start(struct usb_hcd *hcd)
4277{
4278	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4279	struct usb_bus *bus = hcd_to_bus(hcd);
4280	unsigned long flags;
4281	u32 hprt0;
4282	int ret;
4283
4284	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4285
4286	spin_lock_irqsave(&hsotg->lock, flags);
4287	hsotg->lx_state = DWC2_L0;
4288	hcd->state = HC_STATE_RUNNING;
4289	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4290
4291	if (dwc2_is_device_mode(hsotg)) {
4292		spin_unlock_irqrestore(&hsotg->lock, flags);
4293		return 0;	/* why 0 ?? */
4294	}
4295
4296	dwc2_hcd_reinit(hsotg);
4297
4298	hprt0 = dwc2_read_hprt0(hsotg);
4299	/* Has vbus power been turned on in dwc2_core_host_init ? */
4300	if (hprt0 & HPRT0_PWR) {
4301		/* Enable external vbus supply before resuming root hub */
4302		spin_unlock_irqrestore(&hsotg->lock, flags);
4303		ret = dwc2_vbus_supply_init(hsotg);
4304		if (ret)
4305			return ret;
4306		spin_lock_irqsave(&hsotg->lock, flags);
4307	}
4308
4309	/* Initialize and connect root hub if one is not already attached */
4310	if (bus->root_hub) {
4311		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4312		/* Inform the HUB driver to resume */
4313		usb_hcd_resume_root_hub(hcd);
4314	}
4315
4316	spin_unlock_irqrestore(&hsotg->lock, flags);
4317
4318	return 0;
4319}
4320
4321/*
4322 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4323 * stopped.
4324 */
4325static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4326{
4327	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4328	unsigned long flags;
4329	u32 hprt0;
4330
4331	/* Turn off all host-specific interrupts */
4332	dwc2_disable_host_interrupts(hsotg);
4333
4334	/* Wait for interrupt processing to finish */
4335	synchronize_irq(hcd->irq);
4336
4337	spin_lock_irqsave(&hsotg->lock, flags);
4338	hprt0 = dwc2_read_hprt0(hsotg);
4339	/* Ensure hcd is disconnected */
4340	dwc2_hcd_disconnect(hsotg, true);
4341	dwc2_hcd_stop(hsotg);
4342	hsotg->lx_state = DWC2_L3;
4343	hcd->state = HC_STATE_HALT;
4344	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4345	spin_unlock_irqrestore(&hsotg->lock, flags);
4346
4347	/* keep balanced supply init/exit by checking HPRT0_PWR */
4348	if (hprt0 & HPRT0_PWR)
4349		dwc2_vbus_supply_exit(hsotg);
4350
4351	usleep_range(1000, 3000);
4352}
4353
4354static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4355{
4356	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4357	unsigned long flags;
4358	int ret = 0;
4359
4360	spin_lock_irqsave(&hsotg->lock, flags);
4361
4362	if (dwc2_is_device_mode(hsotg))
4363		goto unlock;
4364
4365	if (hsotg->lx_state != DWC2_L0)
4366		goto unlock;
4367
4368	if (!HCD_HW_ACCESSIBLE(hcd))
4369		goto unlock;
4370
4371	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4372		goto unlock;
4373
4374	if (hsotg->bus_suspended)
4375		goto skip_power_saving;
4376
4377	if (hsotg->flags.b.port_connect_status == 0)
4378		goto skip_power_saving;
4379
4380	switch (hsotg->params.power_down) {
4381	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4382		/* Enter partial_power_down */
4383		ret = dwc2_enter_partial_power_down(hsotg);
4384		if (ret)
4385			dev_err(hsotg->dev,
4386				"enter partial_power_down failed\n");
4387		/* After entering suspend, hardware is not accessible */
4388		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4389		break;
4390	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4391		/* Enter hibernation */
4392		spin_unlock_irqrestore(&hsotg->lock, flags);
4393		ret = dwc2_enter_hibernation(hsotg, 1);
4394		if (ret)
4395			dev_err(hsotg->dev, "enter hibernation failed\n");
4396		spin_lock_irqsave(&hsotg->lock, flags);
4397
4398		/* After entering suspend, hardware is not accessible */
4399		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4400		break;
4401	case DWC2_POWER_DOWN_PARAM_NONE:
4402		/*
4403		 * If not hibernation nor partial power down are supported,
4404		 * clock gating is used to save power.
4405		 */
4406		if (!hsotg->params.no_clock_gating)
4407			dwc2_host_enter_clock_gating(hsotg);
4408
4409		/* After entering suspend, hardware is not accessible */
4410		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4411		break;
4412	default:
4413		goto skip_power_saving;
4414	}
4415
4416	spin_unlock_irqrestore(&hsotg->lock, flags);
4417	dwc2_vbus_supply_exit(hsotg);
4418	spin_lock_irqsave(&hsotg->lock, flags);
4419
4420	/* Ask phy to be suspended */
4421	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4422		spin_unlock_irqrestore(&hsotg->lock, flags);
4423		usb_phy_set_suspend(hsotg->uphy, true);
4424		spin_lock_irqsave(&hsotg->lock, flags);
4425	}
4426
4427skip_power_saving:
4428	hsotg->lx_state = DWC2_L2;
4429unlock:
4430	spin_unlock_irqrestore(&hsotg->lock, flags);
4431
4432	return ret;
4433}
4434
4435static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4436{
4437	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4438	unsigned long flags;
4439	u32 hprt0;
4440	int ret = 0;
4441
4442	spin_lock_irqsave(&hsotg->lock, flags);
4443
4444	if (dwc2_is_device_mode(hsotg))
4445		goto unlock;
4446
4447	if (hsotg->lx_state != DWC2_L2)
4448		goto unlock;
4449
4450	hprt0 = dwc2_read_hprt0(hsotg);
4451
4452	/*
4453	 * Added port connection status checking which prevents exiting from
4454	 * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4455	 * Power Down mode.
4456	 */
4457	if (hprt0 & HPRT0_CONNSTS) {
4458		hsotg->lx_state = DWC2_L0;
4459		goto unlock;
4460	}
4461
4462	switch (hsotg->params.power_down) {
4463	case DWC2_POWER_DOWN_PARAM_PARTIAL:
4464		ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4465		if (ret)
4466			dev_err(hsotg->dev,
4467				"exit partial_power_down failed\n");
4468		/*
4469		 * Set HW accessible bit before powering on the controller
4470		 * since an interrupt may rise.
4471		 */
4472		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4473		break;
4474	case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4475		ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4476		if (ret)
4477			dev_err(hsotg->dev, "exit hibernation failed.\n");
4478
4479		/*
4480		 * Set HW accessible bit before powering on the controller
4481		 * since an interrupt may rise.
4482		 */
4483		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4484		break;
4485	case DWC2_POWER_DOWN_PARAM_NONE:
4486		/*
4487		 * If not hibernation nor partial power down are supported,
4488		 * port resume is done using the clock gating programming flow.
4489		 */
4490		spin_unlock_irqrestore(&hsotg->lock, flags);
4491		dwc2_host_exit_clock_gating(hsotg, 0);
4492
4493		/*
4494		 * Initialize the Core for Host mode, as after system resume
4495		 * the global interrupts are disabled.
4496		 */
4497		dwc2_core_init(hsotg, false);
4498		dwc2_enable_global_interrupts(hsotg);
4499		dwc2_hcd_reinit(hsotg);
4500		spin_lock_irqsave(&hsotg->lock, flags);
4501
4502		/*
4503		 * Set HW accessible bit before powering on the controller
4504		 * since an interrupt may rise.
4505		 */
4506		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4507		break;
4508	default:
4509		hsotg->lx_state = DWC2_L0;
4510		goto unlock;
4511	}
4512
4513	/* Change Root port status, as port status change occurred after resume.*/
4514	hsotg->flags.b.port_suspend_change = 1;
4515
4516	/*
4517	 * Enable power if not already done.
4518	 * This must not be spinlocked since duration
4519	 * of this call is unknown.
4520	 */
4521	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4522		spin_unlock_irqrestore(&hsotg->lock, flags);
4523		usb_phy_set_suspend(hsotg->uphy, false);
4524		spin_lock_irqsave(&hsotg->lock, flags);
4525	}
4526
4527	/* Enable external vbus supply after resuming the port. */
4528	spin_unlock_irqrestore(&hsotg->lock, flags);
4529	dwc2_vbus_supply_init(hsotg);
4530
4531	/* Wait for controller to correctly update D+/D- level */
4532	usleep_range(3000, 5000);
4533	spin_lock_irqsave(&hsotg->lock, flags);
4534
4535	/*
4536	 * Clear Port Enable and Port Status changes.
4537	 * Enable Port Power.
4538	 */
4539	dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4540			HPRT0_ENACHG, HPRT0);
4541
4542	/* Wait for controller to detect Port Connect */
4543	spin_unlock_irqrestore(&hsotg->lock, flags);
4544	usleep_range(5000, 7000);
4545	spin_lock_irqsave(&hsotg->lock, flags);
4546unlock:
4547	spin_unlock_irqrestore(&hsotg->lock, flags);
4548
4549	return ret;
4550}
4551
4552/* Returns the current frame number */
4553static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4554{
4555	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4556
4557	return dwc2_hcd_get_frame_number(hsotg);
4558}
4559
4560static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4561			       char *fn_name)
4562{
4563#ifdef VERBOSE_DEBUG
4564	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4565	char *pipetype = NULL;
4566	char *speed = NULL;
4567
4568	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4569	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4570		 usb_pipedevice(urb->pipe));
4571	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4572		 usb_pipeendpoint(urb->pipe),
4573		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4574
4575	switch (usb_pipetype(urb->pipe)) {
4576	case PIPE_CONTROL:
4577		pipetype = "CONTROL";
4578		break;
4579	case PIPE_BULK:
4580		pipetype = "BULK";
4581		break;
4582	case PIPE_INTERRUPT:
4583		pipetype = "INTERRUPT";
4584		break;
4585	case PIPE_ISOCHRONOUS:
4586		pipetype = "ISOCHRONOUS";
4587		break;
4588	}
4589
4590	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4591		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4592		 "IN" : "OUT");
4593
4594	switch (urb->dev->speed) {
4595	case USB_SPEED_HIGH:
4596		speed = "HIGH";
4597		break;
4598	case USB_SPEED_FULL:
4599		speed = "FULL";
4600		break;
4601	case USB_SPEED_LOW:
4602		speed = "LOW";
4603		break;
4604	default:
4605		speed = "UNKNOWN";
4606		break;
4607	}
4608
4609	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4610	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4611		 usb_endpoint_maxp(&urb->ep->desc),
4612		 usb_endpoint_maxp_mult(&urb->ep->desc));
4613
4614	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4615		 urb->transfer_buffer_length);
4616	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4617		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4618	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4619		 urb->setup_packet, (unsigned long)urb->setup_dma);
4620	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4621
4622	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4623		int i;
4624
4625		for (i = 0; i < urb->number_of_packets; i++) {
4626			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4627			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4628				 urb->iso_frame_desc[i].offset,
4629				 urb->iso_frame_desc[i].length);
4630		}
4631	}
4632#endif
4633}
4634
4635/*
4636 * Starts processing a USB transfer request specified by a USB Request Block
4637 * (URB). mem_flags indicates the type of memory allocation to use while
4638 * processing this URB.
4639 */
4640static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4641				 gfp_t mem_flags)
4642{
4643	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4644	struct usb_host_endpoint *ep = urb->ep;
4645	struct dwc2_hcd_urb *dwc2_urb;
4646	int i;
4647	int retval;
4648	int alloc_bandwidth = 0;
4649	u8 ep_type = 0;
4650	u32 tflags = 0;
4651	void *buf;
4652	unsigned long flags;
4653	struct dwc2_qh *qh;
4654	bool qh_allocated = false;
4655	struct dwc2_qtd *qtd;
4656	struct dwc2_gregs_backup *gr;
4657
4658	gr = &hsotg->gr_backup;
4659
4660	if (dbg_urb(urb)) {
4661		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4662		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4663	}
4664
4665	if (hsotg->hibernated) {
4666		if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4667			retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4668		else
4669			retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4670
4671		if (retval)
4672			dev_err(hsotg->dev,
4673				"exit hibernation failed.\n");
4674	}
4675
4676	if (hsotg->in_ppd) {
4677		retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4678		if (retval)
4679			dev_err(hsotg->dev,
4680				"exit partial_power_down failed\n");
4681	}
4682
4683	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4684	    hsotg->bus_suspended) {
4685		if (dwc2_is_device_mode(hsotg))
4686			dwc2_gadget_exit_clock_gating(hsotg, 0);
4687		else
4688			dwc2_host_exit_clock_gating(hsotg, 0);
4689	}
4690
4691	if (!ep)
4692		return -EINVAL;
4693
4694	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4695	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4696		spin_lock_irqsave(&hsotg->lock, flags);
4697		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4698			alloc_bandwidth = 1;
4699		spin_unlock_irqrestore(&hsotg->lock, flags);
4700	}
4701
4702	switch (usb_pipetype(urb->pipe)) {
4703	case PIPE_CONTROL:
4704		ep_type = USB_ENDPOINT_XFER_CONTROL;
4705		break;
4706	case PIPE_ISOCHRONOUS:
4707		ep_type = USB_ENDPOINT_XFER_ISOC;
4708		break;
4709	case PIPE_BULK:
4710		ep_type = USB_ENDPOINT_XFER_BULK;
4711		break;
4712	case PIPE_INTERRUPT:
4713		ep_type = USB_ENDPOINT_XFER_INT;
4714		break;
4715	}
4716
4717	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4718				      mem_flags);
4719	if (!dwc2_urb)
4720		return -ENOMEM;
4721
4722	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4723				  usb_pipeendpoint(urb->pipe), ep_type,
4724				  usb_pipein(urb->pipe),
4725				  usb_endpoint_maxp(&ep->desc),
4726				  usb_endpoint_maxp_mult(&ep->desc));
4727
4728	buf = urb->transfer_buffer;
4729
4730	if (hcd_uses_dma(hcd)) {
4731		if (!buf && (urb->transfer_dma & 3)) {
4732			dev_err(hsotg->dev,
4733				"%s: unaligned transfer with no transfer_buffer",
4734				__func__);
4735			retval = -EINVAL;
4736			goto fail0;
4737		}
4738	}
4739
4740	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4741		tflags |= URB_GIVEBACK_ASAP;
4742	if (urb->transfer_flags & URB_ZERO_PACKET)
4743		tflags |= URB_SEND_ZERO_PACKET;
4744
4745	dwc2_urb->priv = urb;
4746	dwc2_urb->buf = buf;
4747	dwc2_urb->dma = urb->transfer_dma;
4748	dwc2_urb->length = urb->transfer_buffer_length;
4749	dwc2_urb->setup_packet = urb->setup_packet;
4750	dwc2_urb->setup_dma = urb->setup_dma;
4751	dwc2_urb->flags = tflags;
4752	dwc2_urb->interval = urb->interval;
4753	dwc2_urb->status = -EINPROGRESS;
4754
4755	for (i = 0; i < urb->number_of_packets; ++i)
4756		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4757						 urb->iso_frame_desc[i].offset,
4758						 urb->iso_frame_desc[i].length);
4759
4760	urb->hcpriv = dwc2_urb;
4761	qh = (struct dwc2_qh *)ep->hcpriv;
4762	/* Create QH for the endpoint if it doesn't exist */
4763	if (!qh) {
4764		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4765		if (!qh) {
4766			retval = -ENOMEM;
4767			goto fail0;
4768		}
4769		ep->hcpriv = qh;
4770		qh_allocated = true;
4771	}
4772
4773	qtd = kzalloc(sizeof(*qtd), mem_flags);
4774	if (!qtd) {
4775		retval = -ENOMEM;
4776		goto fail1;
4777	}
4778
4779	spin_lock_irqsave(&hsotg->lock, flags);
4780	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4781	if (retval)
4782		goto fail2;
4783
4784	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4785	if (retval)
4786		goto fail3;
4787
4788	if (alloc_bandwidth) {
4789		dwc2_allocate_bus_bandwidth(hcd,
4790				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4791				urb);
4792	}
4793
4794	spin_unlock_irqrestore(&hsotg->lock, flags);
4795
4796	return 0;
4797
4798fail3:
4799	dwc2_urb->priv = NULL;
4800	usb_hcd_unlink_urb_from_ep(hcd, urb);
4801	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4802		qh->channel->qh = NULL;
4803fail2:
4804	spin_unlock_irqrestore(&hsotg->lock, flags);
4805	urb->hcpriv = NULL;
4806	kfree(qtd);
4807fail1:
4808	if (qh_allocated) {
4809		struct dwc2_qtd *qtd2, *qtd2_tmp;
4810
4811		ep->hcpriv = NULL;
4812		dwc2_hcd_qh_unlink(hsotg, qh);
4813		/* Free each QTD in the QH's QTD list */
4814		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4815					 qtd_list_entry)
4816			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4817		dwc2_hcd_qh_free(hsotg, qh);
4818	}
4819fail0:
4820	kfree(dwc2_urb);
4821
4822	return retval;
4823}
4824
4825/*
4826 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4827 */
4828static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4829				 int status)
4830{
4831	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4832	int rc;
4833	unsigned long flags;
4834
4835	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4836	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4837
4838	spin_lock_irqsave(&hsotg->lock, flags);
4839
4840	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4841	if (rc)
4842		goto out;
4843
4844	if (!urb->hcpriv) {
4845		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4846		goto out;
4847	}
4848
4849	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4850
4851	usb_hcd_unlink_urb_from_ep(hcd, urb);
4852
4853	kfree(urb->hcpriv);
4854	urb->hcpriv = NULL;
4855
4856	/* Higher layer software sets URB status */
4857	spin_unlock(&hsotg->lock);
4858	usb_hcd_giveback_urb(hcd, urb, status);
4859	spin_lock(&hsotg->lock);
4860
4861	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4862	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4863out:
4864	spin_unlock_irqrestore(&hsotg->lock, flags);
4865
4866	return rc;
4867}
4868
4869/*
4870 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4871 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4872 * must already be dequeued.
4873 */
4874static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4875				       struct usb_host_endpoint *ep)
4876{
4877	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4878
4879	dev_dbg(hsotg->dev,
4880		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4881		ep->desc.bEndpointAddress, ep->hcpriv);
4882	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4883}
4884
4885/*
4886 * Resets endpoint specific parameter values, in current version used to reset
4887 * the data toggle (as a WA). This function can be called from usb_clear_halt
4888 * routine.
4889 */
4890static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4891				     struct usb_host_endpoint *ep)
4892{
4893	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4894	unsigned long flags;
4895
4896	dev_dbg(hsotg->dev,
4897		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4898		ep->desc.bEndpointAddress);
4899
4900	spin_lock_irqsave(&hsotg->lock, flags);
4901	dwc2_hcd_endpoint_reset(hsotg, ep);
4902	spin_unlock_irqrestore(&hsotg->lock, flags);
4903}
4904
4905/*
4906 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4907 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4908 * interrupt.
4909 *
4910 * This function is called by the USB core when an interrupt occurs
4911 */
4912static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4913{
4914	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4915
4916	return dwc2_handle_hcd_intr(hsotg);
4917}
4918
4919/*
4920 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4921 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4922 * is the status change indicator for the single root port. Returns 1 if either
4923 * change indicator is 1, otherwise returns 0.
4924 */
4925static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4926{
4927	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4928
4929	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4930	return buf[0] != 0;
4931}
4932
4933/* Handles hub class-specific requests */
4934static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4935				 u16 windex, char *buf, u16 wlength)
4936{
4937	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4938					  wvalue, windex, buf, wlength);
4939	return retval;
4940}
4941
4942/* Handles hub TT buffer clear completions */
4943static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4944					       struct usb_host_endpoint *ep)
4945{
4946	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4947	struct dwc2_qh *qh;
4948	unsigned long flags;
4949
4950	qh = ep->hcpriv;
4951	if (!qh)
4952		return;
4953
4954	spin_lock_irqsave(&hsotg->lock, flags);
4955	qh->tt_buffer_dirty = 0;
4956
4957	if (hsotg->flags.b.port_connect_status)
4958		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4959
4960	spin_unlock_irqrestore(&hsotg->lock, flags);
4961}
4962
4963/*
4964 * HPRT0_SPD_HIGH_SPEED: high speed
4965 * HPRT0_SPD_FULL_SPEED: full speed
4966 */
4967static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4968{
4969	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4970
4971	if (hsotg->params.speed == speed)
4972		return;
4973
4974	hsotg->params.speed = speed;
4975	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4976}
4977
4978static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4979{
4980	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4981
4982	if (!hsotg->params.change_speed_quirk)
4983		return;
4984
4985	/*
4986	 * On removal, set speed to default high-speed.
4987	 */
4988	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4989	    udev->parent->speed < USB_SPEED_HIGH) {
4990		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4991		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4992	}
4993}
4994
4995static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4996{
4997	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4998
4999	if (!hsotg->params.change_speed_quirk)
5000		return 0;
5001
5002	if (udev->speed == USB_SPEED_HIGH) {
5003		dev_info(hsotg->dev, "Set speed to high-speed\n");
5004		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5005	} else if ((udev->speed == USB_SPEED_FULL ||
5006				udev->speed == USB_SPEED_LOW)) {
5007		/*
5008		 * Change speed setting to full-speed if there's
5009		 * a full-speed or low-speed device plugged in.
5010		 */
5011		dev_info(hsotg->dev, "Set speed to full-speed\n");
5012		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5013	}
5014
5015	return 0;
5016}
5017
5018static struct hc_driver dwc2_hc_driver = {
5019	.description = "dwc2_hsotg",
5020	.product_desc = "DWC OTG Controller",
5021	.hcd_priv_size = sizeof(struct wrapper_priv_data),
5022
5023	.irq = _dwc2_hcd_irq,
5024	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5025
5026	.start = _dwc2_hcd_start,
5027	.stop = _dwc2_hcd_stop,
5028	.urb_enqueue = _dwc2_hcd_urb_enqueue,
5029	.urb_dequeue = _dwc2_hcd_urb_dequeue,
5030	.endpoint_disable = _dwc2_hcd_endpoint_disable,
5031	.endpoint_reset = _dwc2_hcd_endpoint_reset,
5032	.get_frame_number = _dwc2_hcd_get_frame_number,
5033
5034	.hub_status_data = _dwc2_hcd_hub_status_data,
5035	.hub_control = _dwc2_hcd_hub_control,
5036	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5037
5038	.bus_suspend = _dwc2_hcd_suspend,
5039	.bus_resume = _dwc2_hcd_resume,
5040
5041	.map_urb_for_dma	= dwc2_map_urb_for_dma,
5042	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
5043};
5044
5045/*
5046 * Frees secondary storage associated with the dwc2_hsotg structure contained
5047 * in the struct usb_hcd field
5048 */
5049static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5050{
5051	u32 ahbcfg;
5052	u32 dctl;
5053	int i;
5054
5055	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5056
5057	/* Free memory for QH/QTD lists */
5058	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5059	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5060	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5061	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5062	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5063	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5064	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5065
5066	/* Free memory for the host channels */
5067	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5068		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5069
5070		if (chan) {
5071			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5072				i, chan);
5073			hsotg->hc_ptr_array[i] = NULL;
5074			kfree(chan);
5075		}
5076	}
5077
5078	if (hsotg->params.host_dma) {
5079		if (hsotg->status_buf) {
5080			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5081					  hsotg->status_buf,
5082					  hsotg->status_buf_dma);
5083			hsotg->status_buf = NULL;
5084		}
5085	} else {
5086		kfree(hsotg->status_buf);
5087		hsotg->status_buf = NULL;
5088	}
5089
5090	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5091
5092	/* Disable all interrupts */
5093	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5094	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5095	dwc2_writel(hsotg, 0, GINTMSK);
5096
5097	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5098		dctl = dwc2_readl(hsotg, DCTL);
5099		dctl |= DCTL_SFTDISCON;
5100		dwc2_writel(hsotg, dctl, DCTL);
5101	}
5102
5103	if (hsotg->wq_otg) {
5104		if (!cancel_work_sync(&hsotg->wf_otg))
5105			flush_workqueue(hsotg->wq_otg);
5106		destroy_workqueue(hsotg->wq_otg);
5107	}
5108
5109	cancel_work_sync(&hsotg->phy_reset_work);
5110
5111	del_timer(&hsotg->wkp_timer);
5112}
5113
5114static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5115{
5116	/* Turn off all host-specific interrupts */
5117	dwc2_disable_host_interrupts(hsotg);
5118
5119	dwc2_hcd_free(hsotg);
5120}
5121
5122/*
5123 * Initializes the HCD. This function allocates memory for and initializes the
5124 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5125 * USB bus with the core and calls the hc_driver->start() function. It returns
5126 * a negative error on failure.
5127 */
5128int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5129{
5130	struct platform_device *pdev = to_platform_device(hsotg->dev);
5131	struct resource *res;
5132	struct usb_hcd *hcd;
5133	struct dwc2_host_chan *channel;
5134	u32 hcfg;
5135	int i, num_channels;
5136	int retval;
5137
5138	if (usb_disabled())
5139		return -ENODEV;
5140
5141	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5142
5143	retval = -ENOMEM;
5144
5145	hcfg = dwc2_readl(hsotg, HCFG);
5146	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5147
5148#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5149	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5150					 sizeof(*hsotg->frame_num_array),
5151					 GFP_KERNEL);
5152	if (!hsotg->frame_num_array)
5153		goto error1;
5154	hsotg->last_frame_num_array =
5155		kcalloc(FRAME_NUM_ARRAY_SIZE,
5156			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5157	if (!hsotg->last_frame_num_array)
5158		goto error1;
5159#endif
5160	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5161
5162	/* Check if the bus driver or platform code has setup a dma_mask */
5163	if (hsotg->params.host_dma &&
5164	    !hsotg->dev->dma_mask) {
5165		dev_warn(hsotg->dev,
5166			 "dma_mask not set, disabling DMA\n");
5167		hsotg->params.host_dma = false;
5168		hsotg->params.dma_desc_enable = false;
5169	}
5170
5171	/* Set device flags indicating whether the HCD supports DMA */
5172	if (hsotg->params.host_dma) {
5173		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5174			dev_warn(hsotg->dev, "can't set DMA mask\n");
5175		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5176			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5177	}
5178
5179	if (hsotg->params.change_speed_quirk) {
5180		dwc2_hc_driver.free_dev = dwc2_free_dev;
5181		dwc2_hc_driver.reset_device = dwc2_reset_device;
5182	}
5183
5184	if (hsotg->params.host_dma)
5185		dwc2_hc_driver.flags |= HCD_DMA;
5186
5187	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5188	if (!hcd)
5189		goto error1;
5190
5191	hcd->has_tt = 1;
5192
5193	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5194	if (!res) {
5195		retval = -EINVAL;
5196		goto error1;
5197	}
5198	hcd->rsrc_start = res->start;
5199	hcd->rsrc_len = resource_size(res);
5200
5201	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5202	hsotg->priv = hcd;
5203
5204	/*
5205	 * Disable the global interrupt until all the interrupt handlers are
5206	 * installed
5207	 */
5208	dwc2_disable_global_interrupts(hsotg);
5209
5210	/* Initialize the DWC_otg core, and select the Phy type */
5211	retval = dwc2_core_init(hsotg, true);
5212	if (retval)
5213		goto error2;
5214
5215	/* Create new workqueue and init work */
5216	retval = -ENOMEM;
5217	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5218	if (!hsotg->wq_otg) {
5219		dev_err(hsotg->dev, "Failed to create workqueue\n");
5220		goto error2;
5221	}
5222	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5223
5224	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5225
5226	/* Initialize the non-periodic schedule */
5227	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5228	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5229	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5230
5231	/* Initialize the periodic schedule */
5232	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5233	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5234	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5235	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5236
5237	INIT_LIST_HEAD(&hsotg->split_order);
5238
5239	/*
5240	 * Create a host channel descriptor for each host channel implemented
5241	 * in the controller. Initialize the channel descriptor array.
5242	 */
5243	INIT_LIST_HEAD(&hsotg->free_hc_list);
5244	num_channels = hsotg->params.host_channels;
5245	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5246
5247	for (i = 0; i < num_channels; i++) {
5248		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5249		if (!channel)
5250			goto error3;
5251		channel->hc_num = i;
5252		INIT_LIST_HEAD(&channel->split_order_list_entry);
5253		hsotg->hc_ptr_array[i] = channel;
5254	}
5255
5256	/* Initialize work */
5257	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5258	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5259	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5260
5261	/*
5262	 * Allocate space for storing data on status transactions. Normally no
5263	 * data is sent, but this space acts as a bit bucket. This must be
5264	 * done after usb_add_hcd since that function allocates the DMA buffer
5265	 * pool.
5266	 */
5267	if (hsotg->params.host_dma)
5268		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5269					DWC2_HCD_STATUS_BUF_SIZE,
5270					&hsotg->status_buf_dma, GFP_KERNEL);
5271	else
5272		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5273					  GFP_KERNEL);
5274
5275	if (!hsotg->status_buf)
5276		goto error3;
5277
5278	/*
5279	 * Create kmem caches to handle descriptor buffers in descriptor
5280	 * DMA mode.
5281	 * Alignment must be set to 512 bytes.
5282	 */
5283	if (hsotg->params.dma_desc_enable ||
5284	    hsotg->params.dma_desc_fs_enable) {
5285		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5286				sizeof(struct dwc2_dma_desc) *
5287				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5288				NULL);
5289		if (!hsotg->desc_gen_cache) {
5290			dev_err(hsotg->dev,
5291				"unable to create dwc2 generic desc cache\n");
5292
5293			/*
5294			 * Disable descriptor dma mode since it will not be
5295			 * usable.
5296			 */
5297			hsotg->params.dma_desc_enable = false;
5298			hsotg->params.dma_desc_fs_enable = false;
5299		}
5300
5301		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5302				sizeof(struct dwc2_dma_desc) *
5303				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5304		if (!hsotg->desc_hsisoc_cache) {
5305			dev_err(hsotg->dev,
5306				"unable to create dwc2 hs isoc desc cache\n");
5307
5308			kmem_cache_destroy(hsotg->desc_gen_cache);
5309
5310			/*
5311			 * Disable descriptor dma mode since it will not be
5312			 * usable.
5313			 */
5314			hsotg->params.dma_desc_enable = false;
5315			hsotg->params.dma_desc_fs_enable = false;
5316		}
5317	}
5318
5319	if (hsotg->params.host_dma) {
5320		/*
5321		 * Create kmem caches to handle non-aligned buffer
5322		 * in Buffer DMA mode.
5323		 */
5324		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5325						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5326						SLAB_CACHE_DMA, NULL);
5327		if (!hsotg->unaligned_cache)
5328			dev_err(hsotg->dev,
5329				"unable to create dwc2 unaligned cache\n");
5330	}
5331
5332	hsotg->otg_port = 1;
5333	hsotg->frame_list = NULL;
5334	hsotg->frame_list_dma = 0;
5335	hsotg->periodic_qh_count = 0;
5336
5337	/* Initiate lx_state to L3 disconnected state */
5338	hsotg->lx_state = DWC2_L3;
5339
5340	hcd->self.otg_port = hsotg->otg_port;
5341
5342	/* Don't support SG list at this point */
5343	hcd->self.sg_tablesize = 0;
5344
5345	if (!IS_ERR_OR_NULL(hsotg->uphy))
5346		otg_set_host(hsotg->uphy->otg, &hcd->self);
5347
5348	/*
5349	 * Finish generic HCD initialization and start the HCD. This function
5350	 * allocates the DMA buffer pool, registers the USB bus, requests the
5351	 * IRQ line, and calls hcd_start method.
5352	 */
5353	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5354	if (retval < 0)
5355		goto error4;
5356
5357	device_wakeup_enable(hcd->self.controller);
5358
5359	dwc2_hcd_dump_state(hsotg);
5360
5361	dwc2_enable_global_interrupts(hsotg);
5362
5363	return 0;
5364
5365error4:
5366	kmem_cache_destroy(hsotg->unaligned_cache);
5367	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5368	kmem_cache_destroy(hsotg->desc_gen_cache);
5369error3:
5370	dwc2_hcd_release(hsotg);
5371error2:
5372	usb_put_hcd(hcd);
5373error1:
5374
5375#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5376	kfree(hsotg->last_frame_num_array);
5377	kfree(hsotg->frame_num_array);
5378#endif
5379
5380	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5381	return retval;
5382}
5383
5384/*
5385 * Removes the HCD.
5386 * Frees memory and resources associated with the HCD and deregisters the bus.
5387 */
5388void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5389{
5390	struct usb_hcd *hcd;
5391
5392	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5393
5394	hcd = dwc2_hsotg_to_hcd(hsotg);
5395	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5396
5397	if (!hcd) {
5398		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5399			__func__);
5400		return;
5401	}
5402
5403	if (!IS_ERR_OR_NULL(hsotg->uphy))
5404		otg_set_host(hsotg->uphy->otg, NULL);
5405
5406	usb_remove_hcd(hcd);
5407	hsotg->priv = NULL;
5408
5409	kmem_cache_destroy(hsotg->unaligned_cache);
5410	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5411	kmem_cache_destroy(hsotg->desc_gen_cache);
5412
5413	dwc2_hcd_release(hsotg);
5414	usb_put_hcd(hcd);
5415
5416#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5417	kfree(hsotg->last_frame_num_array);
5418	kfree(hsotg->frame_num_array);
5419#endif
5420}
5421
5422/**
5423 * dwc2_backup_host_registers() - Backup controller host registers.
5424 * When suspending usb bus, registers needs to be backuped
5425 * if controller power is disabled once suspended.
5426 *
5427 * @hsotg: Programming view of the DWC_otg controller
5428 */
5429int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5430{
5431	struct dwc2_hregs_backup *hr;
5432	int i;
5433
5434	dev_dbg(hsotg->dev, "%s\n", __func__);
5435
5436	/* Backup Host regs */
5437	hr = &hsotg->hr_backup;
5438	hr->hcfg = dwc2_readl(hsotg, HCFG);
5439	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5440	for (i = 0; i < hsotg->params.host_channels; ++i)
5441		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5442
5443	hr->hprt0 = dwc2_read_hprt0(hsotg);
5444	hr->hfir = dwc2_readl(hsotg, HFIR);
5445	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5446	hr->valid = true;
5447
5448	return 0;
5449}
5450
5451/**
5452 * dwc2_restore_host_registers() - Restore controller host registers.
5453 * When resuming usb bus, device registers needs to be restored
5454 * if controller power were disabled.
5455 *
5456 * @hsotg: Programming view of the DWC_otg controller
5457 */
5458int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5459{
5460	struct dwc2_hregs_backup *hr;
5461	int i;
5462
5463	dev_dbg(hsotg->dev, "%s\n", __func__);
5464
5465	/* Restore host regs */
5466	hr = &hsotg->hr_backup;
5467	if (!hr->valid) {
5468		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5469			__func__);
5470		return -EINVAL;
5471	}
5472	hr->valid = false;
5473
5474	dwc2_writel(hsotg, hr->hcfg, HCFG);
5475	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5476
5477	for (i = 0; i < hsotg->params.host_channels; ++i)
5478		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5479
5480	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5481	dwc2_writel(hsotg, hr->hfir, HFIR);
5482	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5483	hsotg->frame_number = 0;
5484
5485	return 0;
5486}
5487
5488/**
5489 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5490 *
5491 * @hsotg: Programming view of the DWC_otg controller
5492 */
5493int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5494{
5495	unsigned long flags;
5496	int ret = 0;
5497	u32 hprt0;
5498	u32 pcgcctl;
5499	u32 gusbcfg;
5500	u32 gpwrdn;
5501
5502	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5503	ret = dwc2_backup_global_registers(hsotg);
5504	if (ret) {
5505		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5506			__func__);
5507		return ret;
5508	}
5509	ret = dwc2_backup_host_registers(hsotg);
5510	if (ret) {
5511		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5512			__func__);
5513		return ret;
5514	}
5515
5516	/* Enter USB Suspend Mode */
5517	hprt0 = dwc2_readl(hsotg, HPRT0);
5518	hprt0 |= HPRT0_SUSP;
5519	hprt0 &= ~HPRT0_ENA;
5520	dwc2_writel(hsotg, hprt0, HPRT0);
5521
5522	/* Wait for the HPRT0.PrtSusp register field to be set */
5523	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5524		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5525
5526	/*
5527	 * We need to disable interrupts to prevent servicing of any IRQ
5528	 * during going to hibernation
5529	 */
5530	spin_lock_irqsave(&hsotg->lock, flags);
5531	hsotg->lx_state = DWC2_L2;
5532
5533	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5534	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5535		/* ULPI interface */
5536		/* Suspend the Phy Clock */
5537		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5538		pcgcctl |= PCGCTL_STOPPCLK;
5539		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5540		udelay(10);
5541
5542		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5543		gpwrdn |= GPWRDN_PMUACTV;
5544		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5545		udelay(10);
5546	} else {
5547		/* UTMI+ Interface */
5548		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5549		gpwrdn |= GPWRDN_PMUACTV;
5550		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5551		udelay(10);
5552
5553		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5554		pcgcctl |= PCGCTL_STOPPCLK;
5555		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5556		udelay(10);
5557	}
5558
5559	/* Enable interrupts from wake up logic */
5560	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5561	gpwrdn |= GPWRDN_PMUINTSEL;
5562	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5563	udelay(10);
5564
5565	/* Unmask host mode interrupts in GPWRDN */
5566	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5567	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5568	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5569	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5570	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5571	udelay(10);
5572
5573	/* Enable Power Down Clamp */
5574	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5575	gpwrdn |= GPWRDN_PWRDNCLMP;
5576	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5577	udelay(10);
5578
5579	/* Switch off VDD */
5580	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5581	gpwrdn |= GPWRDN_PWRDNSWTCH;
5582	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5583
5584	hsotg->hibernated = 1;
5585	hsotg->bus_suspended = 1;
5586	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5587	spin_unlock_irqrestore(&hsotg->lock, flags);
5588	return ret;
5589}
5590
5591/*
5592 * dwc2_host_exit_hibernation()
5593 *
5594 * @hsotg: Programming view of the DWC_otg controller
5595 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5596 * @param reset: indicates whether resume is initiated by Reset.
5597 *
5598 * Return: non-zero if failed to enter to hibernation.
5599 *
5600 * This function is for exiting from Host mode hibernation by
5601 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5602 */
5603int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5604			       int reset)
5605{
5606	u32 gpwrdn;
5607	u32 hprt0;
5608	int ret = 0;
5609	struct dwc2_gregs_backup *gr;
5610	struct dwc2_hregs_backup *hr;
5611
5612	gr = &hsotg->gr_backup;
5613	hr = &hsotg->hr_backup;
5614
5615	dev_dbg(hsotg->dev,
5616		"%s: called with rem_wakeup = %d reset = %d\n",
5617		__func__, rem_wakeup, reset);
5618
5619	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5620	hsotg->hibernated = 0;
5621
5622	/*
5623	 * This step is not described in functional spec but if not wait for
5624	 * this delay, mismatch interrupts occurred because just after restore
5625	 * core is in Device mode(gintsts.curmode == 0)
5626	 */
5627	mdelay(100);
5628
5629	/* Clear all pending interupts */
5630	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5631
5632	/* De-assert Restore */
5633	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5634	gpwrdn &= ~GPWRDN_RESTORE;
5635	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5636	udelay(10);
5637
5638	/* Restore GUSBCFG, HCFG */
5639	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5640	dwc2_writel(hsotg, hr->hcfg, HCFG);
5641
5642	/* De-assert Wakeup Logic */
5643	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5644	gpwrdn &= ~GPWRDN_PMUACTV;
5645	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5646	udelay(10);
5647
5648	hprt0 = hr->hprt0;
5649	hprt0 |= HPRT0_PWR;
5650	hprt0 &= ~HPRT0_ENA;
5651	hprt0 &= ~HPRT0_SUSP;
5652	dwc2_writel(hsotg, hprt0, HPRT0);
5653
5654	hprt0 = hr->hprt0;
5655	hprt0 |= HPRT0_PWR;
5656	hprt0 &= ~HPRT0_ENA;
5657	hprt0 &= ~HPRT0_SUSP;
5658
5659	if (reset) {
5660		hprt0 |= HPRT0_RST;
5661		dwc2_writel(hsotg, hprt0, HPRT0);
5662
5663		/* Wait for Resume time and then program HPRT again */
5664		mdelay(60);
5665		hprt0 &= ~HPRT0_RST;
5666		dwc2_writel(hsotg, hprt0, HPRT0);
5667	} else {
5668		hprt0 |= HPRT0_RES;
5669		dwc2_writel(hsotg, hprt0, HPRT0);
5670
5671		/* Wait for Resume time and then program HPRT again */
5672		mdelay(100);
5673		hprt0 &= ~HPRT0_RES;
5674		dwc2_writel(hsotg, hprt0, HPRT0);
5675	}
5676	/* Clear all interrupt status */
5677	hprt0 = dwc2_readl(hsotg, HPRT0);
5678	hprt0 |= HPRT0_CONNDET;
5679	hprt0 |= HPRT0_ENACHG;
5680	hprt0 &= ~HPRT0_ENA;
5681	dwc2_writel(hsotg, hprt0, HPRT0);
5682
5683	hprt0 = dwc2_readl(hsotg, HPRT0);
5684
5685	/* Clear all pending interupts */
5686	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5687
5688	/* Restore global registers */
5689	ret = dwc2_restore_global_registers(hsotg);
5690	if (ret) {
5691		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5692			__func__);
5693		return ret;
5694	}
5695
5696	/* Restore host registers */
5697	ret = dwc2_restore_host_registers(hsotg);
5698	if (ret) {
5699		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5700			__func__);
5701		return ret;
5702	}
5703
5704	if (rem_wakeup) {
5705		dwc2_hcd_rem_wakeup(hsotg);
5706		/*
5707		 * Change "port_connect_status_change" flag to re-enumerate,
5708		 * because after exit from hibernation port connection status
5709		 * is not detected.
5710		 */
5711		hsotg->flags.b.port_connect_status_change = 1;
5712	}
5713
5714	hsotg->hibernated = 0;
5715	hsotg->bus_suspended = 0;
5716	hsotg->lx_state = DWC2_L0;
5717	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5718	return ret;
5719}
5720
5721bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5722{
5723	struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5724
5725	/* If the controller isn't allowed to wakeup then we can power off. */
5726	if (!device_may_wakeup(dwc2->dev))
5727		return true;
5728
5729	/*
5730	 * We don't want to power off the PHY if something under the
5731	 * root hub has wakeup enabled.
5732	 */
5733	if (usb_wakeup_enabled_descendants(root_hub))
5734		return false;
5735
5736	/* No reason to keep the PHY powered, so allow poweroff */
5737	return true;
5738}
5739
5740/**
5741 * dwc2_host_enter_partial_power_down() - Put controller in partial
5742 * power down.
5743 *
5744 * @hsotg: Programming view of the DWC_otg controller
5745 *
5746 * Return: non-zero if failed to enter host partial power down.
5747 *
5748 * This function is for entering Host mode partial power down.
5749 */
5750int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5751{
5752	u32 pcgcctl;
5753	u32 hprt0;
5754	int ret = 0;
5755
5756	dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5757
5758	/* Put this port in suspend mode. */
5759	hprt0 = dwc2_read_hprt0(hsotg);
5760	hprt0 |= HPRT0_SUSP;
5761	dwc2_writel(hsotg, hprt0, HPRT0);
5762	udelay(5);
5763
5764	/* Wait for the HPRT0.PrtSusp register field to be set */
5765	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5766		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5767
5768	/* Backup all registers */
5769	ret = dwc2_backup_global_registers(hsotg);
5770	if (ret) {
5771		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5772			__func__);
5773		return ret;
5774	}
5775
5776	ret = dwc2_backup_host_registers(hsotg);
5777	if (ret) {
5778		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5779			__func__);
5780		return ret;
5781	}
5782
5783	/*
5784	 * Clear any pending interrupts since dwc2 will not be able to
5785	 * clear them after entering partial_power_down.
5786	 */
5787	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5788
5789	/* Put the controller in low power state */
5790	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5791
5792	pcgcctl |= PCGCTL_PWRCLMP;
5793	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5794	udelay(5);
5795
5796	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5797	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5798	udelay(5);
5799
5800	pcgcctl |= PCGCTL_STOPPCLK;
5801	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5802
5803	/* Set in_ppd flag to 1 as here core enters suspend. */
5804	hsotg->in_ppd = 1;
5805	hsotg->lx_state = DWC2_L2;
5806	hsotg->bus_suspended = true;
5807
5808	dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5809
5810	return ret;
5811}
5812
5813/*
5814 * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5815 * power down.
5816 *
5817 * @hsotg: Programming view of the DWC_otg controller
5818 * @rem_wakeup: indicates whether resume is initiated by Reset.
5819 * @restore: indicates whether need to restore the registers or not.
5820 *
5821 * Return: non-zero if failed to exit host partial power down.
5822 *
5823 * This function is for exiting from Host mode partial power down.
5824 */
5825int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5826				      int rem_wakeup, bool restore)
5827{
5828	u32 pcgcctl;
5829	int ret = 0;
5830	u32 hprt0;
5831
5832	dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5833
5834	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5835	pcgcctl &= ~PCGCTL_STOPPCLK;
5836	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5837	udelay(5);
5838
5839	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5840	pcgcctl &= ~PCGCTL_PWRCLMP;
5841	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5842	udelay(5);
5843
5844	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5845	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5846	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5847
5848	udelay(100);
5849	if (restore) {
5850		ret = dwc2_restore_global_registers(hsotg);
5851		if (ret) {
5852			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5853				__func__);
5854			return ret;
5855		}
5856
5857		ret = dwc2_restore_host_registers(hsotg);
5858		if (ret) {
5859			dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5860				__func__);
5861			return ret;
5862		}
5863	}
5864
5865	/* Drive resume signaling and exit suspend mode on the port. */
5866	hprt0 = dwc2_read_hprt0(hsotg);
5867	hprt0 |= HPRT0_RES;
5868	hprt0 &= ~HPRT0_SUSP;
5869	dwc2_writel(hsotg, hprt0, HPRT0);
5870	udelay(5);
5871
5872	if (!rem_wakeup) {
5873		/* Stop driveing resume signaling on the port. */
5874		hprt0 = dwc2_read_hprt0(hsotg);
5875		hprt0 &= ~HPRT0_RES;
5876		dwc2_writel(hsotg, hprt0, HPRT0);
5877
5878		hsotg->bus_suspended = false;
5879	} else {
5880		/* Turn on the port power bit. */
5881		hprt0 = dwc2_read_hprt0(hsotg);
5882		hprt0 |= HPRT0_PWR;
5883		dwc2_writel(hsotg, hprt0, HPRT0);
5884
5885		/* Connect hcd. */
5886		dwc2_hcd_connect(hsotg);
5887
5888		mod_timer(&hsotg->wkp_timer,
5889			  jiffies + msecs_to_jiffies(71));
5890	}
5891
5892	/* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5893	hsotg->in_ppd = 0;
5894	hsotg->lx_state = DWC2_L0;
5895
5896	dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5897	return ret;
5898}
5899
5900/**
5901 * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5902 *
5903 * @hsotg: Programming view of the DWC_otg controller
5904 *
5905 * This function is for entering Host mode clock gating.
5906 */
5907void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5908{
5909	u32 hprt0;
5910	u32 pcgctl;
5911
5912	dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5913
5914	/* Put this port in suspend mode. */
5915	hprt0 = dwc2_read_hprt0(hsotg);
5916	hprt0 |= HPRT0_SUSP;
5917	dwc2_writel(hsotg, hprt0, HPRT0);
5918
5919	/* Set the Phy Clock bit as suspend is received. */
5920	pcgctl = dwc2_readl(hsotg, PCGCTL);
5921	pcgctl |= PCGCTL_STOPPCLK;
5922	dwc2_writel(hsotg, pcgctl, PCGCTL);
5923	udelay(5);
5924
5925	/* Set the Gate hclk as suspend is received. */
5926	pcgctl = dwc2_readl(hsotg, PCGCTL);
5927	pcgctl |= PCGCTL_GATEHCLK;
5928	dwc2_writel(hsotg, pcgctl, PCGCTL);
5929	udelay(5);
5930
5931	hsotg->bus_suspended = true;
5932	hsotg->lx_state = DWC2_L2;
5933}
5934
5935/**
5936 * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5937 *
5938 * @hsotg: Programming view of the DWC_otg controller
5939 * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5940 *
5941 * This function is for exiting Host mode clock gating.
5942 */
5943void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5944{
5945	u32 hprt0;
5946	u32 pcgctl;
5947
5948	dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5949
5950	/* Clear the Gate hclk. */
5951	pcgctl = dwc2_readl(hsotg, PCGCTL);
5952	pcgctl &= ~PCGCTL_GATEHCLK;
5953	dwc2_writel(hsotg, pcgctl, PCGCTL);
5954	udelay(5);
5955
5956	/* Phy Clock bit. */
5957	pcgctl = dwc2_readl(hsotg, PCGCTL);
5958	pcgctl &= ~PCGCTL_STOPPCLK;
5959	dwc2_writel(hsotg, pcgctl, PCGCTL);
5960	udelay(5);
5961
5962	/* Drive resume signaling and exit suspend mode on the port. */
5963	hprt0 = dwc2_read_hprt0(hsotg);
5964	hprt0 |= HPRT0_RES;
5965	hprt0 &= ~HPRT0_SUSP;
5966	dwc2_writel(hsotg, hprt0, HPRT0);
5967	udelay(5);
5968
5969	if (!rem_wakeup) {
5970		/* In case of port resume need to wait for 40 ms */
5971		msleep(USB_RESUME_TIMEOUT);
5972
5973		/* Stop driveing resume signaling on the port. */
5974		hprt0 = dwc2_read_hprt0(hsotg);
5975		hprt0 &= ~HPRT0_RES;
5976		dwc2_writel(hsotg, hprt0, HPRT0);
5977
5978		hsotg->bus_suspended = false;
5979		hsotg->lx_state = DWC2_L0;
5980	} else {
5981		mod_timer(&hsotg->wkp_timer,
5982			  jiffies + msecs_to_jiffies(71));
5983	}
5984}