Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * hcd.c - DesignWare HS OTG Controller host-mode routines
   3 *
   4 * Copyright (C) 2004-2013 Synopsys, Inc.
   5 *
   6 * Redistribution and use in source and binary forms, with or without
   7 * modification, are permitted provided that the following conditions
   8 * are met:
   9 * 1. Redistributions of source code must retain the above copyright
  10 *    notice, this list of conditions, and the following disclaimer,
  11 *    without modification.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. The names of the above-listed copyright holders may not be used
  16 *    to endorse or promote products derived from this software without
  17 *    specific prior written permission.
  18 *
  19 * ALTERNATIVELY, this software may be distributed under the terms of the
  20 * GNU General Public License ("GPL") as published by the Free Software
  21 * Foundation; either version 2 of the License, or (at your option) any
  22 * later version.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37/*
  38 * This file contains the core HCD code, and implements the Linux hc_driver
  39 * API
  40 */
  41#include <linux/kernel.h>
  42#include <linux/module.h>
  43#include <linux/spinlock.h>
  44#include <linux/interrupt.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/delay.h>
  47#include <linux/io.h>
  48#include <linux/slab.h>
  49#include <linux/usb.h>
  50
  51#include <linux/usb/hcd.h>
  52#include <linux/usb/ch11.h>
  53
  54#include "core.h"
  55#include "hcd.h"
  56
  57/*
  58 * =========================================================================
  59 *  Host Core Layer Functions
  60 * =========================================================================
  61 */
  62
  63/**
  64 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
  65 * used in both device and host modes
  66 *
  67 * @hsotg: Programming view of the DWC_otg controller
  68 */
  69static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
  70{
  71	u32 intmsk;
  72
  73	/* Clear any pending OTG Interrupts */
  74	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
  75
  76	/* Clear any pending interrupts */
  77	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
  78
  79	/* Enable the interrupts in the GINTMSK */
  80	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
  81
  82	if (hsotg->params.host_dma <= 0)
  83		intmsk |= GINTSTS_RXFLVL;
  84	if (hsotg->params.external_id_pin_ctl <= 0)
  85		intmsk |= GINTSTS_CONIDSTSCHNG;
  86
  87	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
  88		  GINTSTS_SESSREQINT;
  89
  90	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
  91}
  92
  93/*
  94 * Initializes the FSLSPClkSel field of the HCFG register depending on the
  95 * PHY type
  96 */
  97static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
  98{
  99	u32 hcfg, val;
 100
 101	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
 102	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
 103	     hsotg->params.ulpi_fs_ls > 0) ||
 104	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
 105		/* Full speed PHY */
 106		val = HCFG_FSLSPCLKSEL_48_MHZ;
 107	} else {
 108		/* High speed PHY running at full speed or high speed */
 109		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
 110	}
 111
 112	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
 113	hcfg = dwc2_readl(hsotg->regs + HCFG);
 114	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
 115	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
 116	dwc2_writel(hcfg, hsotg->regs + HCFG);
 117}
 118
 119static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
 120{
 121	u32 usbcfg, i2cctl;
 122	int retval = 0;
 123
 124	/*
 125	 * core_init() is now called on every switch so only call the
 126	 * following for the first time through
 127	 */
 128	if (select_phy) {
 129		dev_dbg(hsotg->dev, "FS PHY selected\n");
 130
 131		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 132		if (!(usbcfg & GUSBCFG_PHYSEL)) {
 133			usbcfg |= GUSBCFG_PHYSEL;
 134			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 135
 136			/* Reset after a PHY select */
 137			retval = dwc2_core_reset_and_force_dr_mode(hsotg);
 138
 139			if (retval) {
 140				dev_err(hsotg->dev,
 141					"%s: Reset failed, aborting", __func__);
 142				return retval;
 143			}
 144		}
 145	}
 146
 147	/*
 148	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
 149	 * do this on HNP Dev/Host mode switches (done in dev_init and
 150	 * host_init).
 151	 */
 152	if (dwc2_is_host_mode(hsotg))
 153		dwc2_init_fs_ls_pclk_sel(hsotg);
 154
 155	if (hsotg->params.i2c_enable > 0) {
 156		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
 157
 158		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
 159		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 160		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
 161		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 162
 163		/* Program GI2CCTL.I2CEn */
 164		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
 165		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
 166		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
 167		i2cctl &= ~GI2CCTL_I2CEN;
 168		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
 169		i2cctl |= GI2CCTL_I2CEN;
 170		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
 171	}
 172
 173	return retval;
 174}
 175
 176static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
 177{
 178	u32 usbcfg, usbcfg_old;
 179	int retval = 0;
 180
 181	if (!select_phy)
 182		return 0;
 183
 184	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 185	usbcfg_old = usbcfg;
 186
 187	/*
 188	 * HS PHY parameters. These parameters are preserved during soft reset
 189	 * so only program the first time. Do a soft reset immediately after
 190	 * setting phyif.
 191	 */
 192	switch (hsotg->params.phy_type) {
 193	case DWC2_PHY_TYPE_PARAM_ULPI:
 194		/* ULPI interface */
 195		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
 196		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
 197		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
 198		if (hsotg->params.phy_ulpi_ddr > 0)
 199			usbcfg |= GUSBCFG_DDRSEL;
 200		break;
 201	case DWC2_PHY_TYPE_PARAM_UTMI:
 202		/* UTMI+ interface */
 203		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
 204		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
 205		if (hsotg->params.phy_utmi_width == 16)
 206			usbcfg |= GUSBCFG_PHYIF16;
 207		break;
 208	default:
 209		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
 210		break;
 211	}
 212
 213	if (usbcfg != usbcfg_old) {
 214		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 215
 216		/* Reset after setting the PHY parameters */
 217		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
 218		if (retval) {
 219			dev_err(hsotg->dev,
 220				"%s: Reset failed, aborting", __func__);
 221			return retval;
 222		}
 223	}
 224
 225	return retval;
 226}
 227
 228static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
 229{
 230	u32 usbcfg;
 231	int retval = 0;
 232
 233	if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
 234	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
 235	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
 236		/* If FS/LS mode with FS/LS PHY */
 237		retval = dwc2_fs_phy_init(hsotg, select_phy);
 238		if (retval)
 239			return retval;
 240	} else {
 241		/* High speed PHY */
 242		retval = dwc2_hs_phy_init(hsotg, select_phy);
 243		if (retval)
 244			return retval;
 245	}
 246
 247	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
 248	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
 249	    hsotg->params.ulpi_fs_ls > 0) {
 250		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
 251		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 252		usbcfg |= GUSBCFG_ULPI_FS_LS;
 253		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
 254		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 255	} else {
 256		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 257		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
 258		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
 259		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 260	}
 261
 262	return retval;
 263}
 264
 265static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
 266{
 267	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
 268
 269	switch (hsotg->hw_params.arch) {
 270	case GHWCFG2_EXT_DMA_ARCH:
 271		dev_err(hsotg->dev, "External DMA Mode not supported\n");
 272		return -EINVAL;
 273
 274	case GHWCFG2_INT_DMA_ARCH:
 275		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
 276		if (hsotg->params.ahbcfg != -1) {
 277			ahbcfg &= GAHBCFG_CTRL_MASK;
 278			ahbcfg |= hsotg->params.ahbcfg &
 279				  ~GAHBCFG_CTRL_MASK;
 280		}
 281		break;
 282
 283	case GHWCFG2_SLAVE_ONLY_ARCH:
 284	default:
 285		dev_dbg(hsotg->dev, "Slave Only Mode\n");
 286		break;
 287	}
 288
 289	dev_dbg(hsotg->dev, "host_dma:%d dma_desc_enable:%d\n",
 290		hsotg->params.host_dma,
 291		hsotg->params.dma_desc_enable);
 292
 293	if (hsotg->params.host_dma > 0) {
 294		if (hsotg->params.dma_desc_enable > 0)
 295			dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
 296		else
 297			dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
 298	} else {
 299		dev_dbg(hsotg->dev, "Using Slave mode\n");
 300		hsotg->params.dma_desc_enable = 0;
 301	}
 302
 303	if (hsotg->params.host_dma > 0)
 304		ahbcfg |= GAHBCFG_DMA_EN;
 305
 306	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
 307
 308	return 0;
 309}
 310
 311static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
 312{
 313	u32 usbcfg;
 314
 315	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 316	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
 317
 318	switch (hsotg->hw_params.op_mode) {
 319	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
 320		if (hsotg->params.otg_cap ==
 321				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
 322			usbcfg |= GUSBCFG_HNPCAP;
 323		if (hsotg->params.otg_cap !=
 324				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 325			usbcfg |= GUSBCFG_SRPCAP;
 326		break;
 327
 328	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
 329	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
 330	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
 331		if (hsotg->params.otg_cap !=
 332				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 333			usbcfg |= GUSBCFG_SRPCAP;
 334		break;
 335
 336	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
 337	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
 338	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
 339	default:
 340		break;
 341	}
 342
 343	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
 344}
 345
 346/**
 347 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
 348 *
 349 * @hsotg: Programming view of DWC_otg controller
 350 */
 351static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
 352{
 353	u32 intmsk;
 354
 355	dev_dbg(hsotg->dev, "%s()\n", __func__);
 356
 357	/* Disable all interrupts */
 358	dwc2_writel(0, hsotg->regs + GINTMSK);
 359	dwc2_writel(0, hsotg->regs + HAINTMSK);
 360
 361	/* Enable the common interrupts */
 362	dwc2_enable_common_interrupts(hsotg);
 363
 364	/* Enable host mode interrupts without disturbing common interrupts */
 365	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
 366	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
 367	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
 368}
 369
 370/**
 371 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
 372 *
 373 * @hsotg: Programming view of DWC_otg controller
 374 */
 375static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
 376{
 377	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
 378
 379	/* Disable host mode interrupts without disturbing common interrupts */
 380	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
 381		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
 382	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
 383}
 384
 385/*
 386 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
 387 * For system that have a total fifo depth that is smaller than the default
 388 * RX + TX fifo size.
 389 *
 390 * @hsotg: Programming view of DWC_otg controller
 391 */
 392static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
 393{
 394	struct dwc2_core_params *params = &hsotg->params;
 395	struct dwc2_hw_params *hw = &hsotg->hw_params;
 396	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
 397
 398	total_fifo_size = hw->total_fifo_size;
 399	rxfsiz = params->host_rx_fifo_size;
 400	nptxfsiz = params->host_nperio_tx_fifo_size;
 401	ptxfsiz = params->host_perio_tx_fifo_size;
 402
 403	/*
 404	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
 405	 * allocation with support for high bandwidth endpoints. Synopsys
 406	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
 407	 * non-periodic as 512.
 408	 */
 409	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
 410		/*
 411		 * For Buffer DMA mode/Scatter Gather DMA mode
 412		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
 413		 * with n = number of host channel.
 414		 * 2 * ((1024/4) + 2) = 516
 415		 */
 416		rxfsiz = 516 + hw->host_channels;
 417
 418		/*
 419		 * min non-periodic tx fifo depth
 420		 * 2 * (largest non-periodic USB packet used / 4)
 421		 * 2 * (512/4) = 256
 422		 */
 423		nptxfsiz = 256;
 424
 425		/*
 426		 * min periodic tx fifo depth
 427		 * (largest packet size*MC)/4
 428		 * (1024 * 3)/4 = 768
 429		 */
 430		ptxfsiz = 768;
 431
 432		params->host_rx_fifo_size = rxfsiz;
 433		params->host_nperio_tx_fifo_size = nptxfsiz;
 434		params->host_perio_tx_fifo_size = ptxfsiz;
 435	}
 436
 437	/*
 438	 * If the summation of RX, NPTX and PTX fifo sizes is still
 439	 * bigger than the total_fifo_size, then we have a problem.
 440	 *
 441	 * We won't be able to allocate as many endpoints. Right now,
 442	 * we're just printing an error message, but ideally this FIFO
 443	 * allocation algorithm would be improved in the future.
 444	 *
 445	 * FIXME improve this FIFO allocation algorithm.
 446	 */
 447	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
 448		dev_err(hsotg->dev, "invalid fifo sizes\n");
 449}
 450
 451static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
 452{
 453	struct dwc2_core_params *params = &hsotg->params;
 454	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
 455
 456	if (!params->enable_dynamic_fifo)
 457		return;
 458
 459	dwc2_calculate_dynamic_fifo(hsotg);
 460
 461	/* Rx FIFO */
 462	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
 463	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
 464	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
 465	grxfsiz |= params->host_rx_fifo_size <<
 466		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
 467	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
 468	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
 469		dwc2_readl(hsotg->regs + GRXFSIZ));
 470
 471	/* Non-periodic Tx FIFO */
 472	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
 473		dwc2_readl(hsotg->regs + GNPTXFSIZ));
 474	nptxfsiz = params->host_nperio_tx_fifo_size <<
 475		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 476	nptxfsiz |= params->host_rx_fifo_size <<
 477		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 478	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
 479	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
 480		dwc2_readl(hsotg->regs + GNPTXFSIZ));
 481
 482	/* Periodic Tx FIFO */
 483	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
 484		dwc2_readl(hsotg->regs + HPTXFSIZ));
 485	hptxfsiz = params->host_perio_tx_fifo_size <<
 486		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 487	hptxfsiz |= (params->host_rx_fifo_size +
 488		     params->host_nperio_tx_fifo_size) <<
 489		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 490	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
 491	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
 492		dwc2_readl(hsotg->regs + HPTXFSIZ));
 493
 494	if (hsotg->params.en_multiple_tx_fifo > 0 &&
 495	    hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
 496		/*
 497		 * Global DFIFOCFG calculation for Host mode -
 498		 * include RxFIFO, NPTXFIFO and HPTXFIFO
 499		 */
 500		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
 501		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
 502		dfifocfg |= (params->host_rx_fifo_size +
 503			     params->host_nperio_tx_fifo_size +
 504			     params->host_perio_tx_fifo_size) <<
 505			    GDFIFOCFG_EPINFOBASE_SHIFT &
 506			    GDFIFOCFG_EPINFOBASE_MASK;
 507		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
 508	}
 509}
 510
 511/**
 512 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
 513 * the HFIR register according to PHY type and speed
 514 *
 515 * @hsotg: Programming view of DWC_otg controller
 516 *
 517 * NOTE: The caller can modify the value of the HFIR register only after the
 518 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
 519 * has been set
 520 */
 521u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
 522{
 523	u32 usbcfg;
 524	u32 hprt0;
 525	int clock = 60;	/* default value */
 526
 527	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
 528	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
 529
 530	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
 531	    !(usbcfg & GUSBCFG_PHYIF16))
 532		clock = 60;
 533	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
 534	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
 535		clock = 48;
 536	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 537	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 538		clock = 30;
 539	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 540	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
 541		clock = 60;
 542	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 543	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 544		clock = 48;
 545	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
 546	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
 547		clock = 48;
 548	if ((usbcfg & GUSBCFG_PHYSEL) &&
 549	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
 550		clock = 48;
 551
 552	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
 553		/* High speed case */
 554		return 125 * clock - 1;
 555
 556	/* FS/LS case */
 557	return 1000 * clock - 1;
 558}
 559
 560/**
 561 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
 562 * buffer
 563 *
 564 * @core_if: Programming view of DWC_otg controller
 565 * @dest:    Destination buffer for the packet
 566 * @bytes:   Number of bytes to copy to the destination
 567 */
 568void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
 569{
 570	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
 571	u32 *data_buf = (u32 *)dest;
 572	int word_count = (bytes + 3) / 4;
 573	int i;
 574
 575	/*
 576	 * Todo: Account for the case where dest is not dword aligned. This
 577	 * requires reading data from the FIFO into a u32 temp buffer, then
 578	 * moving it into the data buffer.
 579	 */
 580
 581	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
 582
 583	for (i = 0; i < word_count; i++, data_buf++)
 584		*data_buf = dwc2_readl(fifo);
 585}
 586
 587/**
 588 * dwc2_dump_channel_info() - Prints the state of a host channel
 589 *
 590 * @hsotg: Programming view of DWC_otg controller
 591 * @chan:  Pointer to the channel to dump
 592 *
 593 * Must be called with interrupt disabled and spinlock held
 594 *
 595 * NOTE: This function will be removed once the peripheral controller code
 596 * is integrated and the driver is stable
 597 */
 598static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
 599				   struct dwc2_host_chan *chan)
 600{
 601#ifdef VERBOSE_DEBUG
 602	int num_channels = hsotg->params.host_channels;
 603	struct dwc2_qh *qh;
 604	u32 hcchar;
 605	u32 hcsplt;
 606	u32 hctsiz;
 607	u32 hc_dma;
 608	int i;
 609
 610	if (!chan)
 611		return;
 612
 613	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
 614	hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
 615	hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
 616	hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
 617
 618	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
 619	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
 620		hcchar, hcsplt);
 621	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
 622		hctsiz, hc_dma);
 623	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
 624		chan->dev_addr, chan->ep_num, chan->ep_is_in);
 625	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
 626	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
 627	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
 628	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
 629	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
 630	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
 631	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
 632		(unsigned long)chan->xfer_dma);
 633	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
 634	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
 635	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
 636	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
 637			    qh_list_entry)
 638		dev_dbg(hsotg->dev, "    %p\n", qh);
 639	dev_dbg(hsotg->dev, "  NP active sched:\n");
 640	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
 641			    qh_list_entry)
 642		dev_dbg(hsotg->dev, "    %p\n", qh);
 643	dev_dbg(hsotg->dev, "  Channels:\n");
 644	for (i = 0; i < num_channels; i++) {
 645		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
 646
 647		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
 648	}
 649#endif /* VERBOSE_DEBUG */
 650}
 651
 652static int _dwc2_hcd_start(struct usb_hcd *hcd);
 653
 654static void dwc2_host_start(struct dwc2_hsotg *hsotg)
 655{
 656	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 657
 658	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
 659	_dwc2_hcd_start(hcd);
 660}
 661
 662static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
 663{
 664	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 665
 666	hcd->self.is_b_host = 0;
 667}
 668
 669static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
 670			       int *hub_addr, int *hub_port)
 671{
 672	struct urb *urb = context;
 673
 674	if (urb->dev->tt)
 675		*hub_addr = urb->dev->tt->hub->devnum;
 676	else
 677		*hub_addr = 0;
 678	*hub_port = urb->dev->ttport;
 679}
 680
 681/*
 682 * =========================================================================
 683 *  Low Level Host Channel Access Functions
 684 * =========================================================================
 685 */
 686
 687static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
 688				      struct dwc2_host_chan *chan)
 689{
 690	u32 hcintmsk = HCINTMSK_CHHLTD;
 691
 692	switch (chan->ep_type) {
 693	case USB_ENDPOINT_XFER_CONTROL:
 694	case USB_ENDPOINT_XFER_BULK:
 695		dev_vdbg(hsotg->dev, "control/bulk\n");
 696		hcintmsk |= HCINTMSK_XFERCOMPL;
 697		hcintmsk |= HCINTMSK_STALL;
 698		hcintmsk |= HCINTMSK_XACTERR;
 699		hcintmsk |= HCINTMSK_DATATGLERR;
 700		if (chan->ep_is_in) {
 701			hcintmsk |= HCINTMSK_BBLERR;
 702		} else {
 703			hcintmsk |= HCINTMSK_NAK;
 704			hcintmsk |= HCINTMSK_NYET;
 705			if (chan->do_ping)
 706				hcintmsk |= HCINTMSK_ACK;
 707		}
 708
 709		if (chan->do_split) {
 710			hcintmsk |= HCINTMSK_NAK;
 711			if (chan->complete_split)
 712				hcintmsk |= HCINTMSK_NYET;
 713			else
 714				hcintmsk |= HCINTMSK_ACK;
 715		}
 716
 717		if (chan->error_state)
 718			hcintmsk |= HCINTMSK_ACK;
 719		break;
 720
 721	case USB_ENDPOINT_XFER_INT:
 722		if (dbg_perio())
 723			dev_vdbg(hsotg->dev, "intr\n");
 724		hcintmsk |= HCINTMSK_XFERCOMPL;
 725		hcintmsk |= HCINTMSK_NAK;
 726		hcintmsk |= HCINTMSK_STALL;
 727		hcintmsk |= HCINTMSK_XACTERR;
 728		hcintmsk |= HCINTMSK_DATATGLERR;
 729		hcintmsk |= HCINTMSK_FRMOVRUN;
 730
 731		if (chan->ep_is_in)
 732			hcintmsk |= HCINTMSK_BBLERR;
 733		if (chan->error_state)
 734			hcintmsk |= HCINTMSK_ACK;
 735		if (chan->do_split) {
 736			if (chan->complete_split)
 737				hcintmsk |= HCINTMSK_NYET;
 738			else
 739				hcintmsk |= HCINTMSK_ACK;
 740		}
 741		break;
 742
 743	case USB_ENDPOINT_XFER_ISOC:
 744		if (dbg_perio())
 745			dev_vdbg(hsotg->dev, "isoc\n");
 746		hcintmsk |= HCINTMSK_XFERCOMPL;
 747		hcintmsk |= HCINTMSK_FRMOVRUN;
 748		hcintmsk |= HCINTMSK_ACK;
 749
 750		if (chan->ep_is_in) {
 751			hcintmsk |= HCINTMSK_XACTERR;
 752			hcintmsk |= HCINTMSK_BBLERR;
 753		}
 754		break;
 755	default:
 756		dev_err(hsotg->dev, "## Unknown EP type ##\n");
 757		break;
 758	}
 759
 760	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
 761	if (dbg_hc(chan))
 762		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 763}
 764
 765static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
 766				    struct dwc2_host_chan *chan)
 767{
 768	u32 hcintmsk = HCINTMSK_CHHLTD;
 769
 770	/*
 771	 * For Descriptor DMA mode core halts the channel on AHB error.
 772	 * Interrupt is not required.
 773	 */
 774	if (hsotg->params.dma_desc_enable <= 0) {
 775		if (dbg_hc(chan))
 776			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 777		hcintmsk |= HCINTMSK_AHBERR;
 778	} else {
 779		if (dbg_hc(chan))
 780			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
 781		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
 782			hcintmsk |= HCINTMSK_XFERCOMPL;
 783	}
 784
 785	if (chan->error_state && !chan->do_split &&
 786	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
 787		if (dbg_hc(chan))
 788			dev_vdbg(hsotg->dev, "setting ACK\n");
 789		hcintmsk |= HCINTMSK_ACK;
 790		if (chan->ep_is_in) {
 791			hcintmsk |= HCINTMSK_DATATGLERR;
 792			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
 793				hcintmsk |= HCINTMSK_NAK;
 794		}
 795	}
 796
 797	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
 798	if (dbg_hc(chan))
 799		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 800}
 801
 802static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
 803				struct dwc2_host_chan *chan)
 804{
 805	u32 intmsk;
 806
 807	if (hsotg->params.host_dma > 0) {
 808		if (dbg_hc(chan))
 809			dev_vdbg(hsotg->dev, "DMA enabled\n");
 810		dwc2_hc_enable_dma_ints(hsotg, chan);
 811	} else {
 812		if (dbg_hc(chan))
 813			dev_vdbg(hsotg->dev, "DMA disabled\n");
 814		dwc2_hc_enable_slave_ints(hsotg, chan);
 815	}
 816
 817	/* Enable the top level host channel interrupt */
 818	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
 819	intmsk |= 1 << chan->hc_num;
 820	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
 821	if (dbg_hc(chan))
 822		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
 823
 824	/* Make sure host channel interrupts are enabled */
 825	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
 826	intmsk |= GINTSTS_HCHINT;
 827	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
 828	if (dbg_hc(chan))
 829		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
 830}
 831
 832/**
 833 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
 834 * a specific endpoint
 835 *
 836 * @hsotg: Programming view of DWC_otg controller
 837 * @chan:  Information needed to initialize the host channel
 838 *
 839 * The HCCHARn register is set up with the characteristics specified in chan.
 840 * Host channel interrupts that may need to be serviced while this transfer is
 841 * in progress are enabled.
 842 */
 843static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 844{
 845	u8 hc_num = chan->hc_num;
 846	u32 hcintmsk;
 847	u32 hcchar;
 848	u32 hcsplt = 0;
 849
 850	if (dbg_hc(chan))
 851		dev_vdbg(hsotg->dev, "%s()\n", __func__);
 852
 853	/* Clear old interrupt conditions for this host channel */
 854	hcintmsk = 0xffffffff;
 855	hcintmsk &= ~HCINTMSK_RESERVED14_31;
 856	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
 857
 858	/* Enable channel interrupts required for this transfer */
 859	dwc2_hc_enable_ints(hsotg, chan);
 860
 861	/*
 862	 * Program the HCCHARn register with the endpoint characteristics for
 863	 * the current transfer
 864	 */
 865	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
 866	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
 867	if (chan->ep_is_in)
 868		hcchar |= HCCHAR_EPDIR;
 869	if (chan->speed == USB_SPEED_LOW)
 870		hcchar |= HCCHAR_LSPDDEV;
 871	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
 872	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
 873	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
 874	if (dbg_hc(chan)) {
 875		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
 876			 hc_num, hcchar);
 877
 878		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
 879			 __func__, hc_num);
 880		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
 881			 chan->dev_addr);
 882		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
 883			 chan->ep_num);
 884		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
 885			 chan->ep_is_in);
 886		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
 887			 chan->speed == USB_SPEED_LOW);
 888		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
 889			 chan->ep_type);
 890		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
 891			 chan->max_packet);
 892	}
 893
 894	/* Program the HCSPLT register for SPLITs */
 895	if (chan->do_split) {
 896		if (dbg_hc(chan))
 897			dev_vdbg(hsotg->dev,
 898				 "Programming HC %d with split --> %s\n",
 899				 hc_num,
 900				 chan->complete_split ? "CSPLIT" : "SSPLIT");
 901		if (chan->complete_split)
 902			hcsplt |= HCSPLT_COMPSPLT;
 903		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
 904			  HCSPLT_XACTPOS_MASK;
 905		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
 906			  HCSPLT_HUBADDR_MASK;
 907		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
 908			  HCSPLT_PRTADDR_MASK;
 909		if (dbg_hc(chan)) {
 910			dev_vdbg(hsotg->dev, "	  comp split %d\n",
 911				 chan->complete_split);
 912			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
 913				 chan->xact_pos);
 914			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
 915				 chan->hub_addr);
 916			dev_vdbg(hsotg->dev, "	  hub port %d\n",
 917				 chan->hub_port);
 918			dev_vdbg(hsotg->dev, "	  is_in %d\n",
 919				 chan->ep_is_in);
 920			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
 921				 chan->max_packet);
 922			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
 923				 chan->xfer_len);
 924		}
 925	}
 926
 927	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
 928}
 929
 930/**
 931 * dwc2_hc_halt() - Attempts to halt a host channel
 932 *
 933 * @hsotg:       Controller register interface
 934 * @chan:        Host channel to halt
 935 * @halt_status: Reason for halting the channel
 936 *
 937 * This function should only be called in Slave mode or to abort a transfer in
 938 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
 939 * controller halts the channel when the transfer is complete or a condition
 940 * occurs that requires application intervention.
 941 *
 942 * In slave mode, checks for a free request queue entry, then sets the Channel
 943 * Enable and Channel Disable bits of the Host Channel Characteristics
 944 * register of the specified channel to intiate the halt. If there is no free
 945 * request queue entry, sets only the Channel Disable bit of the HCCHARn
 946 * register to flush requests for this channel. In the latter case, sets a
 947 * flag to indicate that the host channel needs to be halted when a request
 948 * queue slot is open.
 949 *
 950 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
 951 * HCCHARn register. The controller ensures there is space in the request
 952 * queue before submitting the halt request.
 953 *
 954 * Some time may elapse before the core flushes any posted requests for this
 955 * host channel and halts. The Channel Halted interrupt handler completes the
 956 * deactivation of the host channel.
 957 */
 958void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 959		  enum dwc2_halt_status halt_status)
 960{
 961	u32 nptxsts, hptxsts, hcchar;
 962
 963	if (dbg_hc(chan))
 964		dev_vdbg(hsotg->dev, "%s()\n", __func__);
 965	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
 966		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
 967
 968	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
 969	    halt_status == DWC2_HC_XFER_AHB_ERR) {
 970		/*
 971		 * Disable all channel interrupts except Ch Halted. The QTD
 972		 * and QH state associated with this transfer has been cleared
 973		 * (in the case of URB_DEQUEUE), so the channel needs to be
 974		 * shut down carefully to prevent crashes.
 975		 */
 976		u32 hcintmsk = HCINTMSK_CHHLTD;
 977
 978		dev_vdbg(hsotg->dev, "dequeue/error\n");
 979		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
 980
 981		/*
 982		 * Make sure no other interrupts besides halt are currently
 983		 * pending. Handling another interrupt could cause a crash due
 984		 * to the QTD and QH state.
 985		 */
 986		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
 987
 988		/*
 989		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
 990		 * even if the channel was already halted for some other
 991		 * reason
 992		 */
 993		chan->halt_status = halt_status;
 994
 995		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
 996		if (!(hcchar & HCCHAR_CHENA)) {
 997			/*
 998			 * The channel is either already halted or it hasn't
 999			 * started yet. In DMA mode, the transfer may halt if
1000			 * it finishes normally or a condition occurs that
1001			 * requires driver intervention. Don't want to halt
1002			 * the channel again. In either Slave or DMA mode,
1003			 * it's possible that the transfer has been assigned
1004			 * to a channel, but not started yet when an URB is
1005			 * dequeued. Don't want to halt a channel that hasn't
1006			 * started yet.
1007			 */
1008			return;
1009		}
1010	}
1011	if (chan->halt_pending) {
1012		/*
1013		 * A halt has already been issued for this channel. This might
1014		 * happen when a transfer is aborted by a higher level in
1015		 * the stack.
1016		 */
1017		dev_vdbg(hsotg->dev,
1018			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1019			 __func__, chan->hc_num);
1020		return;
1021	}
1022
1023	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1024
1025	/* No need to set the bit in DDMA for disabling the channel */
1026	/* TODO check it everywhere channel is disabled */
1027	if (hsotg->params.dma_desc_enable <= 0) {
1028		if (dbg_hc(chan))
1029			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1030		hcchar |= HCCHAR_CHENA;
1031	} else {
1032		if (dbg_hc(chan))
1033			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1034	}
1035	hcchar |= HCCHAR_CHDIS;
1036
1037	if (hsotg->params.host_dma <= 0) {
1038		if (dbg_hc(chan))
1039			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1040		hcchar |= HCCHAR_CHENA;
1041
1042		/* Check for space in the request queue to issue the halt */
1043		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1044		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1045			dev_vdbg(hsotg->dev, "control/bulk\n");
1046			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1047			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1048				dev_vdbg(hsotg->dev, "Disabling channel\n");
1049				hcchar &= ~HCCHAR_CHENA;
1050			}
1051		} else {
1052			if (dbg_perio())
1053				dev_vdbg(hsotg->dev, "isoc/intr\n");
1054			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1055			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1056			    hsotg->queuing_high_bandwidth) {
1057				if (dbg_perio())
1058					dev_vdbg(hsotg->dev, "Disabling channel\n");
1059				hcchar &= ~HCCHAR_CHENA;
1060			}
1061		}
1062	} else {
1063		if (dbg_hc(chan))
1064			dev_vdbg(hsotg->dev, "DMA enabled\n");
1065	}
1066
1067	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1068	chan->halt_status = halt_status;
1069
1070	if (hcchar & HCCHAR_CHENA) {
1071		if (dbg_hc(chan))
1072			dev_vdbg(hsotg->dev, "Channel enabled\n");
1073		chan->halt_pending = 1;
1074		chan->halt_on_queue = 0;
1075	} else {
1076		if (dbg_hc(chan))
1077			dev_vdbg(hsotg->dev, "Channel disabled\n");
1078		chan->halt_on_queue = 1;
1079	}
1080
1081	if (dbg_hc(chan)) {
1082		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1083			 chan->hc_num);
1084		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1085			 hcchar);
1086		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1087			 chan->halt_pending);
1088		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1089			 chan->halt_on_queue);
1090		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1091			 chan->halt_status);
1092	}
1093}
1094
1095/**
1096 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1097 *
1098 * @hsotg: Programming view of DWC_otg controller
1099 * @chan:  Identifies the host channel to clean up
1100 *
1101 * This function is normally called after a transfer is done and the host
1102 * channel is being released
1103 */
1104void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1105{
1106	u32 hcintmsk;
1107
1108	chan->xfer_started = 0;
1109
1110	list_del_init(&chan->split_order_list_entry);
1111
1112	/*
1113	 * Clear channel interrupt enables and any unhandled channel interrupt
1114	 * conditions
1115	 */
1116	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1117	hcintmsk = 0xffffffff;
1118	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1119	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1120}
1121
1122/**
1123 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1124 * which frame a periodic transfer should occur
1125 *
1126 * @hsotg:  Programming view of DWC_otg controller
1127 * @chan:   Identifies the host channel to set up and its properties
1128 * @hcchar: Current value of the HCCHAR register for the specified host channel
1129 *
1130 * This function has no effect on non-periodic transfers
1131 */
1132static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1133				       struct dwc2_host_chan *chan, u32 *hcchar)
1134{
1135	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1136	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1137		int host_speed;
1138		int xfer_ns;
1139		int xfer_us;
1140		int bytes_in_fifo;
1141		u16 fifo_space;
1142		u16 frame_number;
1143		u16 wire_frame;
1144
1145		/*
1146		 * Try to figure out if we're an even or odd frame. If we set
1147		 * even and the current frame number is even the the transfer
1148		 * will happen immediately.  Similar if both are odd. If one is
1149		 * even and the other is odd then the transfer will happen when
1150		 * the frame number ticks.
1151		 *
1152		 * There's a bit of a balancing act to get this right.
1153		 * Sometimes we may want to send data in the current frame (AK
1154		 * right away).  We might want to do this if the frame number
1155		 * _just_ ticked, but we might also want to do this in order
1156		 * to continue a split transaction that happened late in a
1157		 * microframe (so we didn't know to queue the next transfer
1158		 * until the frame number had ticked).  The problem is that we
1159		 * need a lot of knowledge to know if there's actually still
1160		 * time to send things or if it would be better to wait until
1161		 * the next frame.
1162		 *
1163		 * We can look at how much time is left in the current frame
1164		 * and make a guess about whether we'll have time to transfer.
1165		 * We'll do that.
1166		 */
1167
1168		/* Get speed host is running at */
1169		host_speed = (chan->speed != USB_SPEED_HIGH &&
1170			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1171
1172		/* See how many bytes are in the periodic FIFO right now */
1173		fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1174			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1175		bytes_in_fifo = sizeof(u32) *
1176				(hsotg->params.host_perio_tx_fifo_size -
1177				 fifo_space);
1178
1179		/*
1180		 * Roughly estimate bus time for everything in the periodic
1181		 * queue + our new transfer.  This is "rough" because we're
1182		 * using a function that makes takes into account IN/OUT
1183		 * and INT/ISO and we're just slamming in one value for all
1184		 * transfers.  This should be an over-estimate and that should
1185		 * be OK, but we can probably tighten it.
1186		 */
1187		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1188					    chan->xfer_len + bytes_in_fifo);
1189		xfer_us = NS_TO_US(xfer_ns);
1190
1191		/* See what frame number we'll be at by the time we finish */
1192		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1193
1194		/* This is when we were scheduled to be on the wire */
1195		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1196
1197		/*
1198		 * If we'd finish _after_ the frame we're scheduled in then
1199		 * it's hopeless.  Just schedule right away and hope for the
1200		 * best.  Note that it _might_ be wise to call back into the
1201		 * scheduler to pick a better frame, but this is better than
1202		 * nothing.
1203		 */
1204		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1205			dwc2_sch_vdbg(hsotg,
1206				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1207				      chan->qh, wire_frame, frame_number,
1208				      dwc2_frame_num_dec(frame_number,
1209							 wire_frame));
1210			wire_frame = frame_number;
1211
1212			/*
1213			 * We picked a different frame number; communicate this
1214			 * back to the scheduler so it doesn't try to schedule
1215			 * another in the same frame.
1216			 *
1217			 * Remember that next_active_frame is 1 before the wire
1218			 * frame.
1219			 */
1220			chan->qh->next_active_frame =
1221				dwc2_frame_num_dec(frame_number, 1);
1222		}
1223
1224		if (wire_frame & 1)
1225			*hcchar |= HCCHAR_ODDFRM;
1226		else
1227			*hcchar &= ~HCCHAR_ODDFRM;
1228	}
1229}
1230
1231static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1232{
1233	/* Set up the initial PID for the transfer */
1234	if (chan->speed == USB_SPEED_HIGH) {
1235		if (chan->ep_is_in) {
1236			if (chan->multi_count == 1)
1237				chan->data_pid_start = DWC2_HC_PID_DATA0;
1238			else if (chan->multi_count == 2)
1239				chan->data_pid_start = DWC2_HC_PID_DATA1;
1240			else
1241				chan->data_pid_start = DWC2_HC_PID_DATA2;
1242		} else {
1243			if (chan->multi_count == 1)
1244				chan->data_pid_start = DWC2_HC_PID_DATA0;
1245			else
1246				chan->data_pid_start = DWC2_HC_PID_MDATA;
1247		}
1248	} else {
1249		chan->data_pid_start = DWC2_HC_PID_DATA0;
1250	}
1251}
1252
1253/**
1254 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1255 * the Host Channel
1256 *
1257 * @hsotg: Programming view of DWC_otg controller
1258 * @chan:  Information needed to initialize the host channel
1259 *
1260 * This function should only be called in Slave mode. For a channel associated
1261 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1262 * associated with a periodic EP, the periodic Tx FIFO is written.
1263 *
1264 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1265 * the number of bytes written to the Tx FIFO.
1266 */
1267static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1268				 struct dwc2_host_chan *chan)
1269{
1270	u32 i;
1271	u32 remaining_count;
1272	u32 byte_count;
1273	u32 dword_count;
1274	u32 __iomem *data_fifo;
1275	u32 *data_buf = (u32 *)chan->xfer_buf;
1276
1277	if (dbg_hc(chan))
1278		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1279
1280	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1281
1282	remaining_count = chan->xfer_len - chan->xfer_count;
1283	if (remaining_count > chan->max_packet)
1284		byte_count = chan->max_packet;
1285	else
1286		byte_count = remaining_count;
1287
1288	dword_count = (byte_count + 3) / 4;
1289
1290	if (((unsigned long)data_buf & 0x3) == 0) {
1291		/* xfer_buf is DWORD aligned */
1292		for (i = 0; i < dword_count; i++, data_buf++)
1293			dwc2_writel(*data_buf, data_fifo);
1294	} else {
1295		/* xfer_buf is not DWORD aligned */
1296		for (i = 0; i < dword_count; i++, data_buf++) {
1297			u32 data = data_buf[0] | data_buf[1] << 8 |
1298				   data_buf[2] << 16 | data_buf[3] << 24;
1299			dwc2_writel(data, data_fifo);
1300		}
1301	}
1302
1303	chan->xfer_count += byte_count;
1304	chan->xfer_buf += byte_count;
1305}
1306
1307/**
1308 * dwc2_hc_do_ping() - Starts a PING transfer
1309 *
1310 * @hsotg: Programming view of DWC_otg controller
1311 * @chan:  Information needed to initialize the host channel
1312 *
1313 * This function should only be called in Slave mode. The Do Ping bit is set in
1314 * the HCTSIZ register, then the channel is enabled.
1315 */
1316static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1317			    struct dwc2_host_chan *chan)
1318{
1319	u32 hcchar;
1320	u32 hctsiz;
1321
1322	if (dbg_hc(chan))
1323		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1324			 chan->hc_num);
1325
1326	hctsiz = TSIZ_DOPNG;
1327	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1328	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1329
1330	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1331	hcchar |= HCCHAR_CHENA;
1332	hcchar &= ~HCCHAR_CHDIS;
1333	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1334}
1335
1336/**
1337 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1338 * channel and starts the transfer
1339 *
1340 * @hsotg: Programming view of DWC_otg controller
1341 * @chan:  Information needed to initialize the host channel. The xfer_len value
1342 *         may be reduced to accommodate the max widths of the XferSize and
1343 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1344 *         changed to reflect the final xfer_len value.
1345 *
1346 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1347 * the caller must ensure that there is sufficient space in the request queue
1348 * and Tx Data FIFO.
1349 *
1350 * For an OUT transfer in Slave mode, it loads a data packet into the
1351 * appropriate FIFO. If necessary, additional data packets are loaded in the
1352 * Host ISR.
1353 *
1354 * For an IN transfer in Slave mode, a data packet is requested. The data
1355 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1356 * additional data packets are requested in the Host ISR.
1357 *
1358 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1359 * register along with a packet count of 1 and the channel is enabled. This
1360 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1361 * simply set to 0 since no data transfer occurs in this case.
1362 *
1363 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1364 * all the information required to perform the subsequent data transfer. In
1365 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1366 * controller performs the entire PING protocol, then starts the data
1367 * transfer.
1368 */
1369static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1370				   struct dwc2_host_chan *chan)
1371{
1372	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1373	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1374	u32 hcchar;
1375	u32 hctsiz = 0;
1376	u16 num_packets;
1377	u32 ec_mc;
1378
1379	if (dbg_hc(chan))
1380		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1381
1382	if (chan->do_ping) {
1383		if (hsotg->params.host_dma <= 0) {
1384			if (dbg_hc(chan))
1385				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1386			dwc2_hc_do_ping(hsotg, chan);
1387			chan->xfer_started = 1;
1388			return;
1389		}
1390
1391		if (dbg_hc(chan))
1392			dev_vdbg(hsotg->dev, "ping, DMA\n");
1393
1394		hctsiz |= TSIZ_DOPNG;
1395	}
1396
1397	if (chan->do_split) {
1398		if (dbg_hc(chan))
1399			dev_vdbg(hsotg->dev, "split\n");
1400		num_packets = 1;
1401
1402		if (chan->complete_split && !chan->ep_is_in)
1403			/*
1404			 * For CSPLIT OUT Transfer, set the size to 0 so the
1405			 * core doesn't expect any data written to the FIFO
1406			 */
1407			chan->xfer_len = 0;
1408		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1409			chan->xfer_len = chan->max_packet;
1410		else if (!chan->ep_is_in && chan->xfer_len > 188)
1411			chan->xfer_len = 188;
1412
1413		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1414			  TSIZ_XFERSIZE_MASK;
1415
1416		/* For split set ec_mc for immediate retries */
1417		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1418		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1419			ec_mc = 3;
1420		else
1421			ec_mc = 1;
1422	} else {
1423		if (dbg_hc(chan))
1424			dev_vdbg(hsotg->dev, "no split\n");
1425		/*
1426		 * Ensure that the transfer length and packet count will fit
1427		 * in the widths allocated for them in the HCTSIZn register
1428		 */
1429		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1430		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1431			/*
1432			 * Make sure the transfer size is no larger than one
1433			 * (micro)frame's worth of data. (A check was done
1434			 * when the periodic transfer was accepted to ensure
1435			 * that a (micro)frame's worth of data can be
1436			 * programmed into a channel.)
1437			 */
1438			u32 max_periodic_len =
1439				chan->multi_count * chan->max_packet;
1440
1441			if (chan->xfer_len > max_periodic_len)
1442				chan->xfer_len = max_periodic_len;
1443		} else if (chan->xfer_len > max_hc_xfer_size) {
1444			/*
1445			 * Make sure that xfer_len is a multiple of max packet
1446			 * size
1447			 */
1448			chan->xfer_len =
1449				max_hc_xfer_size - chan->max_packet + 1;
1450		}
1451
1452		if (chan->xfer_len > 0) {
1453			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1454					chan->max_packet;
1455			if (num_packets > max_hc_pkt_count) {
1456				num_packets = max_hc_pkt_count;
1457				chan->xfer_len = num_packets * chan->max_packet;
1458			}
1459		} else {
1460			/* Need 1 packet for transfer length of 0 */
1461			num_packets = 1;
1462		}
1463
1464		if (chan->ep_is_in)
1465			/*
1466			 * Always program an integral # of max packets for IN
1467			 * transfers
1468			 */
1469			chan->xfer_len = num_packets * chan->max_packet;
1470
1471		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1472		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1473			/*
1474			 * Make sure that the multi_count field matches the
1475			 * actual transfer length
1476			 */
1477			chan->multi_count = num_packets;
1478
1479		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1480			dwc2_set_pid_isoc(chan);
1481
1482		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1483			  TSIZ_XFERSIZE_MASK;
1484
1485		/* The ec_mc gets the multi_count for non-split */
1486		ec_mc = chan->multi_count;
1487	}
1488
1489	chan->start_pkt_count = num_packets;
1490	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1491	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1492		  TSIZ_SC_MC_PID_MASK;
1493	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1494	if (dbg_hc(chan)) {
1495		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1496			 hctsiz, chan->hc_num);
1497
1498		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1499			 chan->hc_num);
1500		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1501			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1502			 TSIZ_XFERSIZE_SHIFT);
1503		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1504			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1505			 TSIZ_PKTCNT_SHIFT);
1506		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1507			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1508			 TSIZ_SC_MC_PID_SHIFT);
1509	}
1510
1511	if (hsotg->params.host_dma > 0) {
1512		dwc2_writel((u32)chan->xfer_dma,
1513			    hsotg->regs + HCDMA(chan->hc_num));
1514		if (dbg_hc(chan))
1515			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1516				 (unsigned long)chan->xfer_dma, chan->hc_num);
1517	}
1518
1519	/* Start the split */
1520	if (chan->do_split) {
1521		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1522
1523		hcsplt |= HCSPLT_SPLTENA;
1524		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1525	}
1526
1527	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1528	hcchar &= ~HCCHAR_MULTICNT_MASK;
1529	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1530	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1531
1532	if (hcchar & HCCHAR_CHDIS)
1533		dev_warn(hsotg->dev,
1534			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1535			 __func__, chan->hc_num, hcchar);
1536
1537	/* Set host channel enable after all other setup is complete */
1538	hcchar |= HCCHAR_CHENA;
1539	hcchar &= ~HCCHAR_CHDIS;
1540
1541	if (dbg_hc(chan))
1542		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1543			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1544			 HCCHAR_MULTICNT_SHIFT);
1545
1546	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1547	if (dbg_hc(chan))
1548		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1549			 chan->hc_num);
1550
1551	chan->xfer_started = 1;
1552	chan->requests++;
1553
1554	if (hsotg->params.host_dma <= 0 &&
1555	    !chan->ep_is_in && chan->xfer_len > 0)
1556		/* Load OUT packet into the appropriate Tx FIFO */
1557		dwc2_hc_write_packet(hsotg, chan);
1558}
1559
1560/**
1561 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1562 * host channel and starts the transfer in Descriptor DMA mode
1563 *
1564 * @hsotg: Programming view of DWC_otg controller
1565 * @chan:  Information needed to initialize the host channel
1566 *
1567 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1568 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1569 * with micro-frame bitmap.
1570 *
1571 * Initializes HCDMA register with descriptor list address and CTD value then
1572 * starts the transfer via enabling the channel.
1573 */
1574void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1575				 struct dwc2_host_chan *chan)
1576{
1577	u32 hcchar;
1578	u32 hctsiz = 0;
1579
1580	if (chan->do_ping)
1581		hctsiz |= TSIZ_DOPNG;
1582
1583	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1584		dwc2_set_pid_isoc(chan);
1585
1586	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1587	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1588		  TSIZ_SC_MC_PID_MASK;
1589
1590	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1591	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1592
1593	/* Non-zero only for high-speed interrupt endpoints */
1594	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1595
1596	if (dbg_hc(chan)) {
1597		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1598			 chan->hc_num);
1599		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1600			 chan->data_pid_start);
1601		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1602	}
1603
1604	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1605
1606	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1607				   chan->desc_list_sz, DMA_TO_DEVICE);
1608
1609	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1610
1611	if (dbg_hc(chan))
1612		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1613			 &chan->desc_list_addr, chan->hc_num);
1614
1615	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1616	hcchar &= ~HCCHAR_MULTICNT_MASK;
1617	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1618		  HCCHAR_MULTICNT_MASK;
1619
1620	if (hcchar & HCCHAR_CHDIS)
1621		dev_warn(hsotg->dev,
1622			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1623			 __func__, chan->hc_num, hcchar);
1624
1625	/* Set host channel enable after all other setup is complete */
1626	hcchar |= HCCHAR_CHENA;
1627	hcchar &= ~HCCHAR_CHDIS;
1628
1629	if (dbg_hc(chan))
1630		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1631			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1632			 HCCHAR_MULTICNT_SHIFT);
1633
1634	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1635	if (dbg_hc(chan))
1636		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1637			 chan->hc_num);
1638
1639	chan->xfer_started = 1;
1640	chan->requests++;
1641}
1642
1643/**
1644 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1645 * a previous call to dwc2_hc_start_transfer()
1646 *
1647 * @hsotg: Programming view of DWC_otg controller
1648 * @chan:  Information needed to initialize the host channel
1649 *
1650 * The caller must ensure there is sufficient space in the request queue and Tx
1651 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1652 * the controller acts autonomously to complete transfers programmed to a host
1653 * channel.
1654 *
1655 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1656 * if there is any data remaining to be queued. For an IN transfer, another
1657 * data packet is always requested. For the SETUP phase of a control transfer,
1658 * this function does nothing.
1659 *
1660 * Return: 1 if a new request is queued, 0 if no more requests are required
1661 * for this transfer
1662 */
1663static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1664				     struct dwc2_host_chan *chan)
1665{
1666	if (dbg_hc(chan))
1667		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1668			 chan->hc_num);
1669
1670	if (chan->do_split)
1671		/* SPLITs always queue just once per channel */
1672		return 0;
1673
1674	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1675		/* SETUPs are queued only once since they can't be NAK'd */
1676		return 0;
1677
1678	if (chan->ep_is_in) {
1679		/*
1680		 * Always queue another request for other IN transfers. If
1681		 * back-to-back INs are issued and NAKs are received for both,
1682		 * the driver may still be processing the first NAK when the
1683		 * second NAK is received. When the interrupt handler clears
1684		 * the NAK interrupt for the first NAK, the second NAK will
1685		 * not be seen. So we can't depend on the NAK interrupt
1686		 * handler to requeue a NAK'd request. Instead, IN requests
1687		 * are issued each time this function is called. When the
1688		 * transfer completes, the extra requests for the channel will
1689		 * be flushed.
1690		 */
1691		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1692
1693		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1694		hcchar |= HCCHAR_CHENA;
1695		hcchar &= ~HCCHAR_CHDIS;
1696		if (dbg_hc(chan))
1697			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1698				 hcchar);
1699		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1700		chan->requests++;
1701		return 1;
1702	}
1703
1704	/* OUT transfers */
1705
1706	if (chan->xfer_count < chan->xfer_len) {
1707		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1708		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1709			u32 hcchar = dwc2_readl(hsotg->regs +
1710						HCCHAR(chan->hc_num));
1711
1712			dwc2_hc_set_even_odd_frame(hsotg, chan,
1713						   &hcchar);
1714		}
1715
1716		/* Load OUT packet into the appropriate Tx FIFO */
1717		dwc2_hc_write_packet(hsotg, chan);
1718		chan->requests++;
1719		return 1;
1720	}
1721
1722	return 0;
1723}
1724
1725/*
1726 * =========================================================================
1727 *  HCD
1728 * =========================================================================
1729 */
1730
1731/*
1732 * Processes all the URBs in a single list of QHs. Completes them with
1733 * -ETIMEDOUT and frees the QTD.
1734 *
1735 * Must be called with interrupt disabled and spinlock held
1736 */
1737static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1738				      struct list_head *qh_list)
1739{
1740	struct dwc2_qh *qh, *qh_tmp;
1741	struct dwc2_qtd *qtd, *qtd_tmp;
1742
1743	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1744		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1745					 qtd_list_entry) {
1746			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1747			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1748		}
1749	}
1750}
1751
1752static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1753			      struct list_head *qh_list)
1754{
1755	struct dwc2_qtd *qtd, *qtd_tmp;
1756	struct dwc2_qh *qh, *qh_tmp;
1757	unsigned long flags;
1758
1759	if (!qh_list->next)
1760		/* The list hasn't been initialized yet */
1761		return;
1762
1763	spin_lock_irqsave(&hsotg->lock, flags);
1764
1765	/* Ensure there are no QTDs or URBs left */
1766	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1767
1768	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1769		dwc2_hcd_qh_unlink(hsotg, qh);
1770
1771		/* Free each QTD in the QH's QTD list */
1772		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1773					 qtd_list_entry)
1774			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1775
1776		if (qh->channel && qh->channel->qh == qh)
1777			qh->channel->qh = NULL;
1778
1779		spin_unlock_irqrestore(&hsotg->lock, flags);
1780		dwc2_hcd_qh_free(hsotg, qh);
1781		spin_lock_irqsave(&hsotg->lock, flags);
1782	}
1783
1784	spin_unlock_irqrestore(&hsotg->lock, flags);
1785}
1786
1787/*
1788 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1789 * and periodic schedules. The QTD associated with each URB is removed from
1790 * the schedule and freed. This function may be called when a disconnect is
1791 * detected or when the HCD is being stopped.
1792 *
1793 * Must be called with interrupt disabled and spinlock held
1794 */
1795static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1796{
1797	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1798	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1799	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1800	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1801	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1802	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1803}
1804
1805/**
1806 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1807 *
1808 * @hsotg: Pointer to struct dwc2_hsotg
1809 */
1810void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1811{
1812	u32 hprt0;
1813
1814	if (hsotg->op_state == OTG_STATE_B_HOST) {
1815		/*
1816		 * Reset the port. During a HNP mode switch the reset
1817		 * needs to occur within 1ms and have a duration of at
1818		 * least 50ms.
1819		 */
1820		hprt0 = dwc2_read_hprt0(hsotg);
1821		hprt0 |= HPRT0_RST;
1822		dwc2_writel(hprt0, hsotg->regs + HPRT0);
1823	}
1824
1825	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1826			   msecs_to_jiffies(50));
1827}
1828
1829/* Must be called with interrupt disabled and spinlock held */
1830static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1831{
1832	int num_channels = hsotg->params.host_channels;
1833	struct dwc2_host_chan *channel;
1834	u32 hcchar;
1835	int i;
1836
1837	if (hsotg->params.host_dma <= 0) {
1838		/* Flush out any channel requests in slave mode */
1839		for (i = 0; i < num_channels; i++) {
1840			channel = hsotg->hc_ptr_array[i];
1841			if (!list_empty(&channel->hc_list_entry))
1842				continue;
1843			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1844			if (hcchar & HCCHAR_CHENA) {
1845				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1846				hcchar |= HCCHAR_CHDIS;
1847				dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1848			}
1849		}
1850	}
1851
1852	for (i = 0; i < num_channels; i++) {
1853		channel = hsotg->hc_ptr_array[i];
1854		if (!list_empty(&channel->hc_list_entry))
1855			continue;
1856		hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1857		if (hcchar & HCCHAR_CHENA) {
1858			/* Halt the channel */
1859			hcchar |= HCCHAR_CHDIS;
1860			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1861		}
1862
1863		dwc2_hc_cleanup(hsotg, channel);
1864		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1865		/*
1866		 * Added for Descriptor DMA to prevent channel double cleanup in
1867		 * release_channel_ddma(), which is called from ep_disable when
1868		 * device disconnects
1869		 */
1870		channel->qh = NULL;
1871	}
1872	/* All channels have been freed, mark them available */
1873	if (hsotg->params.uframe_sched > 0) {
1874		hsotg->available_host_channels =
1875			hsotg->params.host_channels;
1876	} else {
1877		hsotg->non_periodic_channels = 0;
1878		hsotg->periodic_channels = 0;
1879	}
1880}
1881
1882/**
1883 * dwc2_hcd_connect() - Handles connect of the HCD
1884 *
1885 * @hsotg: Pointer to struct dwc2_hsotg
1886 *
1887 * Must be called with interrupt disabled and spinlock held
1888 */
1889void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1890{
1891	if (hsotg->lx_state != DWC2_L0)
1892		usb_hcd_resume_root_hub(hsotg->priv);
1893
1894	hsotg->flags.b.port_connect_status_change = 1;
1895	hsotg->flags.b.port_connect_status = 1;
1896}
1897
1898/**
1899 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1900 *
1901 * @hsotg: Pointer to struct dwc2_hsotg
1902 * @force: If true, we won't try to reconnect even if we see device connected.
1903 *
1904 * Must be called with interrupt disabled and spinlock held
1905 */
1906void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1907{
1908	u32 intr;
1909	u32 hprt0;
1910
1911	/* Set status flags for the hub driver */
1912	hsotg->flags.b.port_connect_status_change = 1;
1913	hsotg->flags.b.port_connect_status = 0;
1914
1915	/*
1916	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1917	 * interrupt mask and status bits and disabling subsequent host
1918	 * channel interrupts.
1919	 */
1920	intr = dwc2_readl(hsotg->regs + GINTMSK);
1921	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1922	dwc2_writel(intr, hsotg->regs + GINTMSK);
1923	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1924	dwc2_writel(intr, hsotg->regs + GINTSTS);
1925
1926	/*
1927	 * Turn off the vbus power only if the core has transitioned to device
1928	 * mode. If still in host mode, need to keep power on to detect a
1929	 * reconnection.
1930	 */
1931	if (dwc2_is_device_mode(hsotg)) {
1932		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1933			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1934			dwc2_writel(0, hsotg->regs + HPRT0);
1935		}
1936
1937		dwc2_disable_host_interrupts(hsotg);
1938	}
1939
1940	/* Respond with an error status to all URBs in the schedule */
1941	dwc2_kill_all_urbs(hsotg);
1942
1943	if (dwc2_is_host_mode(hsotg))
1944		/* Clean up any host channels that were in use */
1945		dwc2_hcd_cleanup_channels(hsotg);
1946
1947	dwc2_host_disconnect(hsotg);
1948
1949	/*
1950	 * Add an extra check here to see if we're actually connected but
1951	 * we don't have a detection interrupt pending.  This can happen if:
1952	 *   1. hardware sees connect
1953	 *   2. hardware sees disconnect
1954	 *   3. hardware sees connect
1955	 *   4. dwc2_port_intr() - clears connect interrupt
1956	 *   5. dwc2_handle_common_intr() - calls here
1957	 *
1958	 * Without the extra check here we will end calling disconnect
1959	 * and won't get any future interrupts to handle the connect.
1960	 */
1961	if (!force) {
1962		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1963		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1964			dwc2_hcd_connect(hsotg);
1965	}
1966}
1967
1968/**
1969 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1970 *
1971 * @hsotg: Pointer to struct dwc2_hsotg
1972 */
1973static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1974{
1975	if (hsotg->bus_suspended) {
1976		hsotg->flags.b.port_suspend_change = 1;
1977		usb_hcd_resume_root_hub(hsotg->priv);
1978	}
1979
1980	if (hsotg->lx_state == DWC2_L1)
1981		hsotg->flags.b.port_l1_change = 1;
1982}
1983
1984/**
1985 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1986 *
1987 * @hsotg: Pointer to struct dwc2_hsotg
1988 *
1989 * Must be called with interrupt disabled and spinlock held
1990 */
1991void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1992{
1993	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1994
1995	/*
1996	 * The root hub should be disconnected before this function is called.
1997	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1998	 * and the QH lists (via ..._hcd_endpoint_disable).
1999	 */
2000
2001	/* Turn off all host-specific interrupts */
2002	dwc2_disable_host_interrupts(hsotg);
2003
2004	/* Turn off the vbus power */
2005	dev_dbg(hsotg->dev, "PortPower off\n");
2006	dwc2_writel(0, hsotg->regs + HPRT0);
2007}
2008
2009/* Caller must hold driver lock */
2010static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2011				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2012				struct dwc2_qtd *qtd)
2013{
2014	u32 intr_mask;
2015	int retval;
2016	int dev_speed;
2017
2018	if (!hsotg->flags.b.port_connect_status) {
2019		/* No longer connected */
2020		dev_err(hsotg->dev, "Not connected\n");
2021		return -ENODEV;
2022	}
2023
2024	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2025
2026	/* Some configurations cannot support LS traffic on a FS root port */
2027	if ((dev_speed == USB_SPEED_LOW) &&
2028	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2029	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2030		u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2031		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2032
2033		if (prtspd == HPRT0_SPD_FULL_SPEED)
2034			return -ENODEV;
2035	}
2036
2037	if (!qtd)
2038		return -EINVAL;
2039
2040	dwc2_hcd_qtd_init(qtd, urb);
2041	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2042	if (retval) {
2043		dev_err(hsotg->dev,
2044			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2045			retval);
2046		return retval;
2047	}
2048
2049	intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2050	if (!(intr_mask & GINTSTS_SOF)) {
2051		enum dwc2_transaction_type tr_type;
2052
2053		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2054		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2055			/*
2056			 * Do not schedule SG transactions until qtd has
2057			 * URB_GIVEBACK_ASAP set
2058			 */
2059			return 0;
2060
2061		tr_type = dwc2_hcd_select_transactions(hsotg);
2062		if (tr_type != DWC2_TRANSACTION_NONE)
2063			dwc2_hcd_queue_transactions(hsotg, tr_type);
2064	}
2065
2066	return 0;
2067}
2068
2069/* Must be called with interrupt disabled and spinlock held */
2070static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2071				struct dwc2_hcd_urb *urb)
2072{
2073	struct dwc2_qh *qh;
2074	struct dwc2_qtd *urb_qtd;
2075
2076	urb_qtd = urb->qtd;
2077	if (!urb_qtd) {
2078		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2079		return -EINVAL;
2080	}
2081
2082	qh = urb_qtd->qh;
2083	if (!qh) {
2084		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2085		return -EINVAL;
2086	}
2087
2088	urb->priv = NULL;
2089
2090	if (urb_qtd->in_process && qh->channel) {
2091		dwc2_dump_channel_info(hsotg, qh->channel);
2092
2093		/* The QTD is in process (it has been assigned to a channel) */
2094		if (hsotg->flags.b.port_connect_status)
2095			/*
2096			 * If still connected (i.e. in host mode), halt the
2097			 * channel so it can be used for other transfers. If
2098			 * no longer connected, the host registers can't be
2099			 * written to halt the channel since the core is in
2100			 * device mode.
2101			 */
2102			dwc2_hc_halt(hsotg, qh->channel,
2103				     DWC2_HC_XFER_URB_DEQUEUE);
2104	}
2105
2106	/*
2107	 * Free the QTD and clean up the associated QH. Leave the QH in the
2108	 * schedule if it has any remaining QTDs.
2109	 */
2110	if (hsotg->params.dma_desc_enable <= 0) {
2111		u8 in_process = urb_qtd->in_process;
2112
2113		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2114		if (in_process) {
2115			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2116			qh->channel = NULL;
2117		} else if (list_empty(&qh->qtd_list)) {
2118			dwc2_hcd_qh_unlink(hsotg, qh);
2119		}
2120	} else {
2121		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2122	}
2123
2124	return 0;
2125}
2126
2127/* Must NOT be called with interrupt disabled or spinlock held */
2128static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2129				     struct usb_host_endpoint *ep, int retry)
2130{
2131	struct dwc2_qtd *qtd, *qtd_tmp;
2132	struct dwc2_qh *qh;
2133	unsigned long flags;
2134	int rc;
2135
2136	spin_lock_irqsave(&hsotg->lock, flags);
2137
2138	qh = ep->hcpriv;
2139	if (!qh) {
2140		rc = -EINVAL;
2141		goto err;
2142	}
2143
2144	while (!list_empty(&qh->qtd_list) && retry--) {
2145		if (retry == 0) {
2146			dev_err(hsotg->dev,
2147				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2148			rc = -EBUSY;
2149			goto err;
2150		}
2151
2152		spin_unlock_irqrestore(&hsotg->lock, flags);
2153		usleep_range(20000, 40000);
2154		spin_lock_irqsave(&hsotg->lock, flags);
2155		qh = ep->hcpriv;
2156		if (!qh) {
2157			rc = -EINVAL;
2158			goto err;
2159		}
2160	}
2161
2162	dwc2_hcd_qh_unlink(hsotg, qh);
2163
2164	/* Free each QTD in the QH's QTD list */
2165	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2166		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2167
2168	ep->hcpriv = NULL;
2169
2170	if (qh->channel && qh->channel->qh == qh)
2171		qh->channel->qh = NULL;
2172
2173	spin_unlock_irqrestore(&hsotg->lock, flags);
2174
2175	dwc2_hcd_qh_free(hsotg, qh);
2176
2177	return 0;
2178
2179err:
2180	ep->hcpriv = NULL;
2181	spin_unlock_irqrestore(&hsotg->lock, flags);
2182
2183	return rc;
2184}
2185
2186/* Must be called with interrupt disabled and spinlock held */
2187static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2188				   struct usb_host_endpoint *ep)
2189{
2190	struct dwc2_qh *qh = ep->hcpriv;
2191
2192	if (!qh)
2193		return -EINVAL;
2194
2195	qh->data_toggle = DWC2_HC_PID_DATA0;
2196
2197	return 0;
2198}
2199
2200/**
2201 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2202 * prepares the core for device mode or host mode operation
2203 *
2204 * @hsotg:         Programming view of the DWC_otg controller
2205 * @initial_setup: If true then this is the first init for this instance.
2206 */
2207static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2208{
2209	u32 usbcfg, otgctl;
2210	int retval;
2211
2212	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2213
2214	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2215
2216	/* Set ULPI External VBUS bit if needed */
2217	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2218	if (hsotg->params.phy_ulpi_ext_vbus ==
2219				DWC2_PHY_ULPI_EXTERNAL_VBUS)
2220		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2221
2222	/* Set external TS Dline pulsing bit if needed */
2223	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2224	if (hsotg->params.ts_dline > 0)
2225		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2226
2227	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2228
2229	/*
2230	 * Reset the Controller
2231	 *
2232	 * We only need to reset the controller if this is a re-init.
2233	 * For the first init we know for sure that earlier code reset us (it
2234	 * needed to in order to properly detect various parameters).
2235	 */
2236	if (!initial_setup) {
2237		retval = dwc2_core_reset_and_force_dr_mode(hsotg);
2238		if (retval) {
2239			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2240				__func__);
2241			return retval;
2242		}
2243	}
2244
2245	/*
2246	 * This needs to happen in FS mode before any other programming occurs
2247	 */
2248	retval = dwc2_phy_init(hsotg, initial_setup);
2249	if (retval)
2250		return retval;
2251
2252	/* Program the GAHBCFG Register */
2253	retval = dwc2_gahbcfg_init(hsotg);
2254	if (retval)
2255		return retval;
2256
2257	/* Program the GUSBCFG register */
2258	dwc2_gusbcfg_init(hsotg);
2259
2260	/* Program the GOTGCTL register */
2261	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2262	otgctl &= ~GOTGCTL_OTGVER;
2263	if (hsotg->params.otg_ver > 0)
2264		otgctl |= GOTGCTL_OTGVER;
2265	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2266	dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->params.otg_ver);
2267
2268	/* Clear the SRP success bit for FS-I2c */
2269	hsotg->srp_success = 0;
2270
2271	/* Enable common interrupts */
2272	dwc2_enable_common_interrupts(hsotg);
2273
2274	/*
2275	 * Do device or host initialization based on mode during PCD and
2276	 * HCD initialization
2277	 */
2278	if (dwc2_is_host_mode(hsotg)) {
2279		dev_dbg(hsotg->dev, "Host Mode\n");
2280		hsotg->op_state = OTG_STATE_A_HOST;
2281	} else {
2282		dev_dbg(hsotg->dev, "Device Mode\n");
2283		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2284	}
2285
2286	return 0;
2287}
2288
2289/**
2290 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2291 * Host mode
2292 *
2293 * @hsotg: Programming view of DWC_otg controller
2294 *
2295 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2296 * request queues. Host channels are reset to ensure that they are ready for
2297 * performing transfers.
2298 */
2299static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2300{
2301	u32 hcfg, hfir, otgctl;
2302
2303	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2304
2305	/* Restart the Phy Clock */
2306	dwc2_writel(0, hsotg->regs + PCGCTL);
2307
2308	/* Initialize Host Configuration Register */
2309	dwc2_init_fs_ls_pclk_sel(hsotg);
2310	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2311	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2312		hcfg = dwc2_readl(hsotg->regs + HCFG);
2313		hcfg |= HCFG_FSLSSUPP;
2314		dwc2_writel(hcfg, hsotg->regs + HCFG);
2315	}
2316
2317	/*
2318	 * This bit allows dynamic reloading of the HFIR register during
2319	 * runtime. This bit needs to be programmed during initial configuration
2320	 * and its value must not be changed during runtime.
2321	 */
2322	if (hsotg->params.reload_ctl > 0) {
2323		hfir = dwc2_readl(hsotg->regs + HFIR);
2324		hfir |= HFIR_RLDCTRL;
2325		dwc2_writel(hfir, hsotg->regs + HFIR);
2326	}
2327
2328	if (hsotg->params.dma_desc_enable > 0) {
2329		u32 op_mode = hsotg->hw_params.op_mode;
2330
2331		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2332		    !hsotg->hw_params.dma_desc_enable ||
2333		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2334		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2335		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2336			dev_err(hsotg->dev,
2337				"Hardware does not support descriptor DMA mode -\n");
2338			dev_err(hsotg->dev,
2339				"falling back to buffer DMA mode.\n");
2340			hsotg->params.dma_desc_enable = 0;
2341		} else {
2342			hcfg = dwc2_readl(hsotg->regs + HCFG);
2343			hcfg |= HCFG_DESCDMA;
2344			dwc2_writel(hcfg, hsotg->regs + HCFG);
2345		}
2346	}
2347
2348	/* Configure data FIFO sizes */
2349	dwc2_config_fifos(hsotg);
2350
2351	/* TODO - check this */
2352	/* Clear Host Set HNP Enable in the OTG Control Register */
2353	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2354	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2355	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2356
2357	/* Make sure the FIFOs are flushed */
2358	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2359	dwc2_flush_rx_fifo(hsotg);
2360
2361	/* Clear Host Set HNP Enable in the OTG Control Register */
2362	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2363	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2364	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2365
2366	if (hsotg->params.dma_desc_enable <= 0) {
2367		int num_channels, i;
2368		u32 hcchar;
2369
2370		/* Flush out any leftover queued requests */
2371		num_channels = hsotg->params.host_channels;
2372		for (i = 0; i < num_channels; i++) {
2373			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2374			hcchar &= ~HCCHAR_CHENA;
2375			hcchar |= HCCHAR_CHDIS;
2376			hcchar &= ~HCCHAR_EPDIR;
2377			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2378		}
2379
2380		/* Halt all channels to put them into a known state */
2381		for (i = 0; i < num_channels; i++) {
2382			int count = 0;
2383
2384			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2385			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2386			hcchar &= ~HCCHAR_EPDIR;
2387			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2388			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2389				__func__, i);
2390			do {
2391				hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2392				if (++count > 1000) {
2393					dev_err(hsotg->dev,
2394						"Unable to clear enable on channel %d\n",
2395						i);
2396					break;
2397				}
2398				udelay(1);
2399			} while (hcchar & HCCHAR_CHENA);
2400		}
2401	}
2402
2403	/* Turn on the vbus power */
2404	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2405	if (hsotg->op_state == OTG_STATE_A_HOST) {
2406		u32 hprt0 = dwc2_read_hprt0(hsotg);
2407
2408		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2409			!!(hprt0 & HPRT0_PWR));
2410		if (!(hprt0 & HPRT0_PWR)) {
2411			hprt0 |= HPRT0_PWR;
2412			dwc2_writel(hprt0, hsotg->regs + HPRT0);
2413		}
2414	}
2415
2416	dwc2_enable_host_interrupts(hsotg);
2417}
2418
2419/*
2420 * Initializes dynamic portions of the DWC_otg HCD state
2421 *
2422 * Must be called with interrupt disabled and spinlock held
2423 */
2424static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2425{
2426	struct dwc2_host_chan *chan, *chan_tmp;
2427	int num_channels;
2428	int i;
2429
2430	hsotg->flags.d32 = 0;
2431	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2432
2433	if (hsotg->params.uframe_sched > 0) {
2434		hsotg->available_host_channels =
2435			hsotg->params.host_channels;
2436	} else {
2437		hsotg->non_periodic_channels = 0;
2438		hsotg->periodic_channels = 0;
2439	}
2440
2441	/*
2442	 * Put all channels in the free channel list and clean up channel
2443	 * states
2444	 */
2445	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2446				 hc_list_entry)
2447		list_del_init(&chan->hc_list_entry);
2448
2449	num_channels = hsotg->params.host_channels;
2450	for (i = 0; i < num_channels; i++) {
2451		chan = hsotg->hc_ptr_array[i];
2452		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2453		dwc2_hc_cleanup(hsotg, chan);
2454	}
2455
2456	/* Initialize the DWC core for host mode operation */
2457	dwc2_core_host_init(hsotg);
2458}
2459
2460static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2461			       struct dwc2_host_chan *chan,
2462			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2463{
2464	int hub_addr, hub_port;
2465
2466	chan->do_split = 1;
2467	chan->xact_pos = qtd->isoc_split_pos;
2468	chan->complete_split = qtd->complete_split;
2469	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2470	chan->hub_addr = (u8)hub_addr;
2471	chan->hub_port = (u8)hub_port;
2472}
2473
2474static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2475			      struct dwc2_host_chan *chan,
2476			      struct dwc2_qtd *qtd)
2477{
2478	struct dwc2_hcd_urb *urb = qtd->urb;
2479	struct dwc2_hcd_iso_packet_desc *frame_desc;
2480
2481	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2482	case USB_ENDPOINT_XFER_CONTROL:
2483		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2484
2485		switch (qtd->control_phase) {
2486		case DWC2_CONTROL_SETUP:
2487			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2488			chan->do_ping = 0;
2489			chan->ep_is_in = 0;
2490			chan->data_pid_start = DWC2_HC_PID_SETUP;
2491			if (hsotg->params.host_dma > 0)
2492				chan->xfer_dma = urb->setup_dma;
2493			else
2494				chan->xfer_buf = urb->setup_packet;
2495			chan->xfer_len = 8;
2496			break;
2497
2498		case DWC2_CONTROL_DATA:
2499			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2500			chan->data_pid_start = qtd->data_toggle;
2501			break;
2502
2503		case DWC2_CONTROL_STATUS:
2504			/*
2505			 * Direction is opposite of data direction or IN if no
2506			 * data
2507			 */
2508			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2509			if (urb->length == 0)
2510				chan->ep_is_in = 1;
2511			else
2512				chan->ep_is_in =
2513					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2514			if (chan->ep_is_in)
2515				chan->do_ping = 0;
2516			chan->data_pid_start = DWC2_HC_PID_DATA1;
2517			chan->xfer_len = 0;
2518			if (hsotg->params.host_dma > 0)
2519				chan->xfer_dma = hsotg->status_buf_dma;
2520			else
2521				chan->xfer_buf = hsotg->status_buf;
2522			break;
2523		}
2524		break;
2525
2526	case USB_ENDPOINT_XFER_BULK:
2527		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2528		break;
2529
2530	case USB_ENDPOINT_XFER_INT:
2531		chan->ep_type = USB_ENDPOINT_XFER_INT;
2532		break;
2533
2534	case USB_ENDPOINT_XFER_ISOC:
2535		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2536		if (hsotg->params.dma_desc_enable > 0)
2537			break;
2538
2539		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2540		frame_desc->status = 0;
2541
2542		if (hsotg->params.host_dma > 0) {
2543			chan->xfer_dma = urb->dma;
2544			chan->xfer_dma += frame_desc->offset +
2545					qtd->isoc_split_offset;
2546		} else {
2547			chan->xfer_buf = urb->buf;
2548			chan->xfer_buf += frame_desc->offset +
2549					qtd->isoc_split_offset;
2550		}
2551
2552		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2553
2554		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2555			if (chan->xfer_len <= 188)
2556				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2557			else
2558				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2559		}
2560		break;
2561	}
2562}
2563
2564#define DWC2_USB_DMA_ALIGN 4
2565
2566struct dma_aligned_buffer {
2567	void *kmalloc_ptr;
2568	void *old_xfer_buffer;
2569	u8 data[0];
2570};
2571
2572static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2573{
2574	struct dma_aligned_buffer *temp;
2575
2576	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2577		return;
2578
2579	temp = container_of(urb->transfer_buffer,
2580		struct dma_aligned_buffer, data);
2581
2582	if (usb_urb_dir_in(urb))
2583		memcpy(temp->old_xfer_buffer, temp->data,
2584		       urb->transfer_buffer_length);
2585	urb->transfer_buffer = temp->old_xfer_buffer;
2586	kfree(temp->kmalloc_ptr);
2587
2588	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2589}
2590
2591static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2592{
2593	struct dma_aligned_buffer *temp, *kmalloc_ptr;
2594	size_t kmalloc_size;
2595
2596	if (urb->num_sgs || urb->sg ||
2597	    urb->transfer_buffer_length == 0 ||
2598	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2599		return 0;
2600
2601	/* Allocate a buffer with enough padding for alignment */
2602	kmalloc_size = urb->transfer_buffer_length +
2603		sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2604
2605	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2606	if (!kmalloc_ptr)
2607		return -ENOMEM;
2608
2609	/* Position our struct dma_aligned_buffer such that data is aligned */
2610	temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2611	temp->kmalloc_ptr = kmalloc_ptr;
2612	temp->old_xfer_buffer = urb->transfer_buffer;
2613	if (usb_urb_dir_out(urb))
2614		memcpy(temp->data, urb->transfer_buffer,
2615		       urb->transfer_buffer_length);
2616	urb->transfer_buffer = temp->data;
2617
2618	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2619
2620	return 0;
2621}
2622
2623static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2624				      gfp_t mem_flags)
2625{
2626	int ret;
2627
2628	/* We assume setup_dma is always aligned; warn if not */
2629	WARN_ON_ONCE(urb->setup_dma &&
2630		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2631
2632	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2633	if (ret)
2634		return ret;
2635
2636	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2637	if (ret)
2638		dwc2_free_dma_aligned_buffer(urb);
2639
2640	return ret;
2641}
2642
2643static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2644{
2645	usb_hcd_unmap_urb_for_dma(hcd, urb);
2646	dwc2_free_dma_aligned_buffer(urb);
2647}
2648
2649/**
2650 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2651 * channel and initializes the host channel to perform the transactions. The
2652 * host channel is removed from the free list.
2653 *
2654 * @hsotg: The HCD state structure
2655 * @qh:    Transactions from the first QTD for this QH are selected and assigned
2656 *         to a free host channel
2657 */
2658static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2659{
2660	struct dwc2_host_chan *chan;
2661	struct dwc2_hcd_urb *urb;
2662	struct dwc2_qtd *qtd;
2663
2664	if (dbg_qh(qh))
2665		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2666
2667	if (list_empty(&qh->qtd_list)) {
2668		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2669		return -ENOMEM;
2670	}
2671
2672	if (list_empty(&hsotg->free_hc_list)) {
2673		dev_dbg(hsotg->dev, "No free channel to assign\n");
2674		return -ENOMEM;
2675	}
2676
2677	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2678				hc_list_entry);
2679
2680	/* Remove host channel from free list */
2681	list_del_init(&chan->hc_list_entry);
2682
2683	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2684	urb = qtd->urb;
2685	qh->channel = chan;
2686	qtd->in_process = 1;
2687
2688	/*
2689	 * Use usb_pipedevice to determine device address. This address is
2690	 * 0 before the SET_ADDRESS command and the correct address afterward.
2691	 */
2692	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2693	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2694	chan->speed = qh->dev_speed;
2695	chan->max_packet = dwc2_max_packet(qh->maxp);
2696
2697	chan->xfer_started = 0;
2698	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2699	chan->error_state = (qtd->error_count > 0);
2700	chan->halt_on_queue = 0;
2701	chan->halt_pending = 0;
2702	chan->requests = 0;
2703
2704	/*
2705	 * The following values may be modified in the transfer type section
2706	 * below. The xfer_len value may be reduced when the transfer is
2707	 * started to accommodate the max widths of the XferSize and PktCnt
2708	 * fields in the HCTSIZn register.
2709	 */
2710
2711	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2712	if (chan->ep_is_in)
2713		chan->do_ping = 0;
2714	else
2715		chan->do_ping = qh->ping_state;
2716
2717	chan->data_pid_start = qh->data_toggle;
2718	chan->multi_count = 1;
2719
2720	if (urb->actual_length > urb->length &&
2721		!dwc2_hcd_is_pipe_in(&urb->pipe_info))
2722		urb->actual_length = urb->length;
2723
2724	if (hsotg->params.host_dma > 0)
2725		chan->xfer_dma = urb->dma + urb->actual_length;
2726	else
2727		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2728
2729	chan->xfer_len = urb->length - urb->actual_length;
2730	chan->xfer_count = 0;
2731
2732	/* Set the split attributes if required */
2733	if (qh->do_split)
2734		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2735	else
2736		chan->do_split = 0;
2737
2738	/* Set the transfer attributes */
2739	dwc2_hc_init_xfer(hsotg, chan, qtd);
2740
2741	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2742	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2743		/*
2744		 * This value may be modified when the transfer is started
2745		 * to reflect the actual transfer length
2746		 */
2747		chan->multi_count = dwc2_hb_mult(qh->maxp);
2748
2749	if (hsotg->params.dma_desc_enable > 0) {
2750		chan->desc_list_addr = qh->desc_list_dma;
2751		chan->desc_list_sz = qh->desc_list_sz;
2752	}
2753
2754	dwc2_hc_init(hsotg, chan);
2755	chan->qh = qh;
2756
2757	return 0;
2758}
2759
2760/**
2761 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2762 * schedule and assigns them to available host channels. Called from the HCD
2763 * interrupt handler functions.
2764 *
2765 * @hsotg: The HCD state structure
2766 *
2767 * Return: The types of new transactions that were assigned to host channels
2768 */
2769enum dwc2_transaction_type dwc2_hcd_select_transactions(
2770		struct dwc2_hsotg *hsotg)
2771{
2772	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2773	struct list_head *qh_ptr;
2774	struct dwc2_qh *qh;
2775	int num_channels;
2776
2777#ifdef DWC2_DEBUG_SOF
2778	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2779#endif
2780
2781	/* Process entries in the periodic ready list */
2782	qh_ptr = hsotg->periodic_sched_ready.next;
2783	while (qh_ptr != &hsotg->periodic_sched_ready) {
2784		if (list_empty(&hsotg->free_hc_list))
2785			break;
2786		if (hsotg->params.uframe_sched > 0) {
2787			if (hsotg->available_host_channels <= 1)
2788				break;
2789			hsotg->available_host_channels--;
2790		}
2791		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2792		if (dwc2_assign_and_init_hc(hsotg, qh))
2793			break;
2794
2795		/*
2796		 * Move the QH from the periodic ready schedule to the
2797		 * periodic assigned schedule
2798		 */
2799		qh_ptr = qh_ptr->next;
2800		list_move_tail(&qh->qh_list_entry,
2801			       &hsotg->periodic_sched_assigned);
2802		ret_val = DWC2_TRANSACTION_PERIODIC;
2803	}
2804
2805	/*
2806	 * Process entries in the inactive portion of the non-periodic
2807	 * schedule. Some free host channels may not be used if they are
2808	 * reserved for periodic transfers.
2809	 */
2810	num_channels = hsotg->params.host_channels;
2811	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2812	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2813		if (hsotg->params.uframe_sched <= 0 &&
2814		    hsotg->non_periodic_channels >= num_channels -
2815						hsotg->periodic_channels)
2816			break;
2817		if (list_empty(&hsotg->free_hc_list))
2818			break;
2819		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2820		if (hsotg->params.uframe_sched > 0) {
2821			if (hsotg->available_host_channels < 1)
2822				break;
2823			hsotg->available_host_channels--;
2824		}
2825
2826		if (dwc2_assign_and_init_hc(hsotg, qh))
2827			break;
2828
2829		/*
2830		 * Move the QH from the non-periodic inactive schedule to the
2831		 * non-periodic active schedule
2832		 */
2833		qh_ptr = qh_ptr->next;
2834		list_move_tail(&qh->qh_list_entry,
2835			       &hsotg->non_periodic_sched_active);
2836
2837		if (ret_val == DWC2_TRANSACTION_NONE)
2838			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2839		else
2840			ret_val = DWC2_TRANSACTION_ALL;
2841
2842		if (hsotg->params.uframe_sched <= 0)
2843			hsotg->non_periodic_channels++;
2844	}
2845
2846	return ret_val;
2847}
2848
2849/**
2850 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2851 * a host channel associated with either a periodic or non-periodic transfer
2852 *
2853 * @hsotg: The HCD state structure
2854 * @chan:  Host channel descriptor associated with either a periodic or
2855 *         non-periodic transfer
2856 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2857 *                     for periodic transfers or the non-periodic Tx FIFO
2858 *                     for non-periodic transfers
2859 *
2860 * Return: 1 if a request is queued and more requests may be needed to
2861 * complete the transfer, 0 if no more requests are required for this
2862 * transfer, -1 if there is insufficient space in the Tx FIFO
2863 *
2864 * This function assumes that there is space available in the appropriate
2865 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2866 * it checks whether space is available in the appropriate Tx FIFO.
2867 *
2868 * Must be called with interrupt disabled and spinlock held
2869 */
2870static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2871				  struct dwc2_host_chan *chan,
2872				  u16 fifo_dwords_avail)
2873{
2874	int retval = 0;
2875
2876	if (chan->do_split)
2877		/* Put ourselves on the list to keep order straight */
2878		list_move_tail(&chan->split_order_list_entry,
2879			       &hsotg->split_order);
2880
2881	if (hsotg->params.host_dma > 0) {
2882		if (hsotg->params.dma_desc_enable > 0) {
2883			if (!chan->xfer_started ||
2884			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2885				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2886				chan->qh->ping_state = 0;
2887			}
2888		} else if (!chan->xfer_started) {
2889			dwc2_hc_start_transfer(hsotg, chan);
2890			chan->qh->ping_state = 0;
2891		}
2892	} else if (chan->halt_pending) {
2893		/* Don't queue a request if the channel has been halted */
2894	} else if (chan->halt_on_queue) {
2895		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2896	} else if (chan->do_ping) {
2897		if (!chan->xfer_started)
2898			dwc2_hc_start_transfer(hsotg, chan);
2899	} else if (!chan->ep_is_in ||
2900		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2901		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2902			if (!chan->xfer_started) {
2903				dwc2_hc_start_transfer(hsotg, chan);
2904				retval = 1;
2905			} else {
2906				retval = dwc2_hc_continue_transfer(hsotg, chan);
2907			}
2908		} else {
2909			retval = -1;
2910		}
2911	} else {
2912		if (!chan->xfer_started) {
2913			dwc2_hc_start_transfer(hsotg, chan);
2914			retval = 1;
2915		} else {
2916			retval = dwc2_hc_continue_transfer(hsotg, chan);
2917		}
2918	}
2919
2920	return retval;
2921}
2922
2923/*
2924 * Processes periodic channels for the next frame and queues transactions for
2925 * these channels to the DWC_otg controller. After queueing transactions, the
2926 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2927 * to queue as Periodic Tx FIFO or request queue space becomes available.
2928 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2929 *
2930 * Must be called with interrupt disabled and spinlock held
2931 */
2932static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2933{
2934	struct list_head *qh_ptr;
2935	struct dwc2_qh *qh;
2936	u32 tx_status;
2937	u32 fspcavail;
2938	u32 gintmsk;
2939	int status;
2940	bool no_queue_space = false;
2941	bool no_fifo_space = false;
2942	u32 qspcavail;
2943
2944	/* If empty list then just adjust interrupt enables */
2945	if (list_empty(&hsotg->periodic_sched_assigned))
2946		goto exit;
2947
2948	if (dbg_perio())
2949		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2950
2951	tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2952	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2953		    TXSTS_QSPCAVAIL_SHIFT;
2954	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2955		    TXSTS_FSPCAVAIL_SHIFT;
2956
2957	if (dbg_perio()) {
2958		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2959			 qspcavail);
2960		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2961			 fspcavail);
2962	}
2963
2964	qh_ptr = hsotg->periodic_sched_assigned.next;
2965	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2966		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2967		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2968			    TXSTS_QSPCAVAIL_SHIFT;
2969		if (qspcavail == 0) {
2970			no_queue_space = 1;
2971			break;
2972		}
2973
2974		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2975		if (!qh->channel) {
2976			qh_ptr = qh_ptr->next;
2977			continue;
2978		}
2979
2980		/* Make sure EP's TT buffer is clean before queueing qtds */
2981		if (qh->tt_buffer_dirty) {
2982			qh_ptr = qh_ptr->next;
2983			continue;
2984		}
2985
2986		/*
2987		 * Set a flag if we're queuing high-bandwidth in slave mode.
2988		 * The flag prevents any halts to get into the request queue in
2989		 * the middle of multiple high-bandwidth packets getting queued.
2990		 */
2991		if (hsotg->params.host_dma <= 0 &&
2992				qh->channel->multi_count > 1)
2993			hsotg->queuing_high_bandwidth = 1;
2994
2995		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2996			    TXSTS_FSPCAVAIL_SHIFT;
2997		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2998		if (status < 0) {
2999			no_fifo_space = 1;
3000			break;
3001		}
3002
3003		/*
3004		 * In Slave mode, stay on the current transfer until there is
3005		 * nothing more to do or the high-bandwidth request count is
3006		 * reached. In DMA mode, only need to queue one request. The
3007		 * controller automatically handles multiple packets for
3008		 * high-bandwidth transfers.
3009		 */
3010		if (hsotg->params.host_dma > 0 || status == 0 ||
3011		    qh->channel->requests == qh->channel->multi_count) {
3012			qh_ptr = qh_ptr->next;
3013			/*
3014			 * Move the QH from the periodic assigned schedule to
3015			 * the periodic queued schedule
3016			 */
3017			list_move_tail(&qh->qh_list_entry,
3018				       &hsotg->periodic_sched_queued);
3019
3020			/* done queuing high bandwidth */
3021			hsotg->queuing_high_bandwidth = 0;
3022		}
3023	}
3024
3025exit:
3026	if (no_queue_space || no_fifo_space ||
3027	    (hsotg->params.host_dma <= 0 &&
3028	     !list_empty(&hsotg->periodic_sched_assigned))) {
3029		/*
3030		 * May need to queue more transactions as the request
3031		 * queue or Tx FIFO empties. Enable the periodic Tx
3032		 * FIFO empty interrupt. (Always use the half-empty
3033		 * level to ensure that new requests are loaded as
3034		 * soon as possible.)
3035		 */
3036		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3037		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3038			gintmsk |= GINTSTS_PTXFEMP;
3039			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3040		}
3041	} else {
3042		/*
3043		 * Disable the Tx FIFO empty interrupt since there are
3044		 * no more transactions that need to be queued right
3045		 * now. This function is called from interrupt
3046		 * handlers to queue more transactions as transfer
3047		 * states change.
3048		*/
3049		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3050		if (gintmsk & GINTSTS_PTXFEMP) {
3051			gintmsk &= ~GINTSTS_PTXFEMP;
3052			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3053		}
3054	}
3055}
3056
3057/*
3058 * Processes active non-periodic channels and queues transactions for these
3059 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3060 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3061 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3062 * FIFO Empty interrupt is disabled.
3063 *
3064 * Must be called with interrupt disabled and spinlock held
3065 */
3066static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3067{
3068	struct list_head *orig_qh_ptr;
3069	struct dwc2_qh *qh;
3070	u32 tx_status;
3071	u32 qspcavail;
3072	u32 fspcavail;
3073	u32 gintmsk;
3074	int status;
3075	int no_queue_space = 0;
3076	int no_fifo_space = 0;
3077	int more_to_do = 0;
3078
3079	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3080
3081	tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3082	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3083		    TXSTS_QSPCAVAIL_SHIFT;
3084	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3085		    TXSTS_FSPCAVAIL_SHIFT;
3086	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3087		 qspcavail);
3088	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3089		 fspcavail);
3090
3091	/*
3092	 * Keep track of the starting point. Skip over the start-of-list
3093	 * entry.
3094	 */
3095	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3096		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3097	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3098
3099	/*
3100	 * Process once through the active list or until no more space is
3101	 * available in the request queue or the Tx FIFO
3102	 */
3103	do {
3104		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3105		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3106			    TXSTS_QSPCAVAIL_SHIFT;
3107		if (hsotg->params.host_dma <= 0 && qspcavail == 0) {
3108			no_queue_space = 1;
3109			break;
3110		}
3111
3112		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3113				qh_list_entry);
3114		if (!qh->channel)
3115			goto next;
3116
3117		/* Make sure EP's TT buffer is clean before queueing qtds */
3118		if (qh->tt_buffer_dirty)
3119			goto next;
3120
3121		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3122			    TXSTS_FSPCAVAIL_SHIFT;
3123		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3124
3125		if (status > 0) {
3126			more_to_do = 1;
3127		} else if (status < 0) {
3128			no_fifo_space = 1;
3129			break;
3130		}
3131next:
3132		/* Advance to next QH, skipping start-of-list entry */
3133		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3134		if (hsotg->non_periodic_qh_ptr ==
3135				&hsotg->non_periodic_sched_active)
3136			hsotg->non_periodic_qh_ptr =
3137					hsotg->non_periodic_qh_ptr->next;
3138	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3139
3140	if (hsotg->params.host_dma <= 0) {
3141		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3142		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3143			    TXSTS_QSPCAVAIL_SHIFT;
3144		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3145			    TXSTS_FSPCAVAIL_SHIFT;
3146		dev_vdbg(hsotg->dev,
3147			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3148			 qspcavail);
3149		dev_vdbg(hsotg->dev,
3150			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3151			 fspcavail);
3152
3153		if (more_to_do || no_queue_space || no_fifo_space) {
3154			/*
3155			 * May need to queue more transactions as the request
3156			 * queue or Tx FIFO empties. Enable the non-periodic
3157			 * Tx FIFO empty interrupt. (Always use the half-empty
3158			 * level to ensure that new requests are loaded as
3159			 * soon as possible.)
3160			 */
3161			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3162			gintmsk |= GINTSTS_NPTXFEMP;
3163			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3164		} else {
3165			/*
3166			 * Disable the Tx FIFO empty interrupt since there are
3167			 * no more transactions that need to be queued right
3168			 * now. This function is called from interrupt
3169			 * handlers to queue more transactions as transfer
3170			 * states change.
3171			 */
3172			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3173			gintmsk &= ~GINTSTS_NPTXFEMP;
3174			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3175		}
3176	}
3177}
3178
3179/**
3180 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3181 * and queues transactions for these channels to the DWC_otg controller. Called
3182 * from the HCD interrupt handler functions.
3183 *
3184 * @hsotg:   The HCD state structure
3185 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3186 *           or both)
3187 *
3188 * Must be called with interrupt disabled and spinlock held
3189 */
3190void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3191				 enum dwc2_transaction_type tr_type)
3192{
3193#ifdef DWC2_DEBUG_SOF
3194	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3195#endif
3196	/* Process host channels associated with periodic transfers */
3197	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3198	    tr_type == DWC2_TRANSACTION_ALL)
3199		dwc2_process_periodic_channels(hsotg);
3200
3201	/* Process host channels associated with non-periodic transfers */
3202	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3203	    tr_type == DWC2_TRANSACTION_ALL) {
3204		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3205			dwc2_process_non_periodic_channels(hsotg);
3206		} else {
3207			/*
3208			 * Ensure NP Tx FIFO empty interrupt is disabled when
3209			 * there are no non-periodic transfers to process
3210			 */
3211			u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3212
3213			gintmsk &= ~GINTSTS_NPTXFEMP;
3214			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3215		}
3216	}
3217}
3218
3219static void dwc2_conn_id_status_change(struct work_struct *work)
3220{
3221	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3222						wf_otg);
3223	u32 count = 0;
3224	u32 gotgctl;
3225	unsigned long flags;
3226
3227	dev_dbg(hsotg->dev, "%s()\n", __func__);
3228
3229	gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3230	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3231	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3232		!!(gotgctl & GOTGCTL_CONID_B));
3233
3234	/* B-Device connector (Device Mode) */
3235	if (gotgctl & GOTGCTL_CONID_B) {
3236		/* Wait for switch to device mode */
3237		dev_dbg(hsotg->dev, "connId B\n");
3238		while (!dwc2_is_device_mode(hsotg)) {
3239			dev_info(hsotg->dev,
3240				 "Waiting for Peripheral Mode, Mode=%s\n",
3241				 dwc2_is_host_mode(hsotg) ? "Host" :
3242				 "Peripheral");
3243			usleep_range(20000, 40000);
3244			if (++count > 250)
3245				break;
3246		}
3247		if (count > 250)
3248			dev_err(hsotg->dev,
3249				"Connection id status change timed out\n");
3250		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3251		dwc2_core_init(hsotg, false);
3252		dwc2_enable_global_interrupts(hsotg);
3253		spin_lock_irqsave(&hsotg->lock, flags);
3254		dwc2_hsotg_core_init_disconnected(hsotg, false);
3255		spin_unlock_irqrestore(&hsotg->lock, flags);
3256		dwc2_hsotg_core_connect(hsotg);
3257	} else {
3258		/* A-Device connector (Host Mode) */
3259		dev_dbg(hsotg->dev, "connId A\n");
3260		while (!dwc2_is_host_mode(hsotg)) {
3261			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3262				 dwc2_is_host_mode(hsotg) ?
3263				 "Host" : "Peripheral");
3264			usleep_range(20000, 40000);
3265			if (++count > 250)
3266				break;
3267		}
3268		if (count > 250)
3269			dev_err(hsotg->dev,
3270				"Connection id status change timed out\n");
3271		hsotg->op_state = OTG_STATE_A_HOST;
3272
3273		/* Initialize the Core for Host mode */
3274		dwc2_core_init(hsotg, false);
3275		dwc2_enable_global_interrupts(hsotg);
3276		dwc2_hcd_start(hsotg);
3277	}
3278}
3279
3280static void dwc2_wakeup_detected(unsigned long data)
3281{
3282	struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
3283	u32 hprt0;
3284
3285	dev_dbg(hsotg->dev, "%s()\n", __func__);
3286
3287	/*
3288	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3289	 * so that OPT tests pass with all PHYs.)
3290	 */
3291	hprt0 = dwc2_read_hprt0(hsotg);
3292	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3293	hprt0 &= ~HPRT0_RES;
3294	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3295	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3296		dwc2_readl(hsotg->regs + HPRT0));
3297
3298	dwc2_hcd_rem_wakeup(hsotg);
3299	hsotg->bus_suspended = 0;
3300
3301	/* Change to L0 state */
3302	hsotg->lx_state = DWC2_L0;
3303}
3304
3305static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3306{
3307	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3308
3309	return hcd->self.b_hnp_enable;
3310}
3311
3312/* Must NOT be called with interrupt disabled or spinlock held */
3313static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3314{
3315	unsigned long flags;
3316	u32 hprt0;
3317	u32 pcgctl;
3318	u32 gotgctl;
3319
3320	dev_dbg(hsotg->dev, "%s()\n", __func__);
3321
3322	spin_lock_irqsave(&hsotg->lock, flags);
3323
3324	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3325		gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3326		gotgctl |= GOTGCTL_HSTSETHNPEN;
3327		dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3328		hsotg->op_state = OTG_STATE_A_SUSPEND;
3329	}
3330
3331	hprt0 = dwc2_read_hprt0(hsotg);
3332	hprt0 |= HPRT0_SUSP;
3333	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3334
3335	hsotg->bus_suspended = 1;
3336
3337	/*
3338	 * If hibernation is supported, Phy clock will be suspended
3339	 * after registers are backuped.
3340	 */
3341	if (!hsotg->params.hibernation) {
3342		/* Suspend the Phy Clock */
3343		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3344		pcgctl |= PCGCTL_STOPPCLK;
3345		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3346		udelay(10);
3347	}
3348
3349	/* For HNP the bus must be suspended for at least 200ms */
3350	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3351		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3352		pcgctl &= ~PCGCTL_STOPPCLK;
3353		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3354
3355		spin_unlock_irqrestore(&hsotg->lock, flags);
3356
3357		usleep_range(200000, 250000);
3358	} else {
3359		spin_unlock_irqrestore(&hsotg->lock, flags);
3360	}
3361}
3362
3363/* Must NOT be called with interrupt disabled or spinlock held */
3364static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3365{
3366	unsigned long flags;
3367	u32 hprt0;
3368	u32 pcgctl;
3369
3370	spin_lock_irqsave(&hsotg->lock, flags);
3371
3372	/*
3373	 * If hibernation is supported, Phy clock is already resumed
3374	 * after registers restore.
3375	 */
3376	if (!hsotg->params.hibernation) {
3377		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3378		pcgctl &= ~PCGCTL_STOPPCLK;
3379		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3380		spin_unlock_irqrestore(&hsotg->lock, flags);
3381		usleep_range(20000, 40000);
3382		spin_lock_irqsave(&hsotg->lock, flags);
3383	}
3384
3385	hprt0 = dwc2_read_hprt0(hsotg);
3386	hprt0 |= HPRT0_RES;
3387	hprt0 &= ~HPRT0_SUSP;
3388	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3389	spin_unlock_irqrestore(&hsotg->lock, flags);
3390
3391	msleep(USB_RESUME_TIMEOUT);
3392
3393	spin_lock_irqsave(&hsotg->lock, flags);
3394	hprt0 = dwc2_read_hprt0(hsotg);
3395	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3396	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3397	hsotg->bus_suspended = 0;
3398	spin_unlock_irqrestore(&hsotg->lock, flags);
3399}
3400
3401/* Handles hub class-specific requests */
3402static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3403				u16 wvalue, u16 windex, char *buf, u16 wlength)
3404{
3405	struct usb_hub_descriptor *hub_desc;
3406	int retval = 0;
3407	u32 hprt0;
3408	u32 port_status;
3409	u32 speed;
3410	u32 pcgctl;
3411
3412	switch (typereq) {
3413	case ClearHubFeature:
3414		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3415
3416		switch (wvalue) {
3417		case C_HUB_LOCAL_POWER:
3418		case C_HUB_OVER_CURRENT:
3419			/* Nothing required here */
3420			break;
3421
3422		default:
3423			retval = -EINVAL;
3424			dev_err(hsotg->dev,
3425				"ClearHubFeature request %1xh unknown\n",
3426				wvalue);
3427		}
3428		break;
3429
3430	case ClearPortFeature:
3431		if (wvalue != USB_PORT_FEAT_L1)
3432			if (!windex || windex > 1)
3433				goto error;
3434		switch (wvalue) {
3435		case USB_PORT_FEAT_ENABLE:
3436			dev_dbg(hsotg->dev,
3437				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3438			hprt0 = dwc2_read_hprt0(hsotg);
3439			hprt0 |= HPRT0_ENA;
3440			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3441			break;
3442
3443		case USB_PORT_FEAT_SUSPEND:
3444			dev_dbg(hsotg->dev,
3445				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3446
3447			if (hsotg->bus_suspended)
3448				dwc2_port_resume(hsotg);
3449			break;
3450
3451		case USB_PORT_FEAT_POWER:
3452			dev_dbg(hsotg->dev,
3453				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3454			hprt0 = dwc2_read_hprt0(hsotg);
3455			hprt0 &= ~HPRT0_PWR;
3456			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3457			break;
3458
3459		case USB_PORT_FEAT_INDICATOR:
3460			dev_dbg(hsotg->dev,
3461				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3462			/* Port indicator not supported */
3463			break;
3464
3465		case USB_PORT_FEAT_C_CONNECTION:
3466			/*
3467			 * Clears driver's internal Connect Status Change flag
3468			 */
3469			dev_dbg(hsotg->dev,
3470				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3471			hsotg->flags.b.port_connect_status_change = 0;
3472			break;
3473
3474		case USB_PORT_FEAT_C_RESET:
3475			/* Clears driver's internal Port Reset Change flag */
3476			dev_dbg(hsotg->dev,
3477				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3478			hsotg->flags.b.port_reset_change = 0;
3479			break;
3480
3481		case USB_PORT_FEAT_C_ENABLE:
3482			/*
3483			 * Clears the driver's internal Port Enable/Disable
3484			 * Change flag
3485			 */
3486			dev_dbg(hsotg->dev,
3487				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3488			hsotg->flags.b.port_enable_change = 0;
3489			break;
3490
3491		case USB_PORT_FEAT_C_SUSPEND:
3492			/*
3493			 * Clears the driver's internal Port Suspend Change
3494			 * flag, which is set when resume signaling on the host
3495			 * port is complete
3496			 */
3497			dev_dbg(hsotg->dev,
3498				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3499			hsotg->flags.b.port_suspend_change = 0;
3500			break;
3501
3502		case USB_PORT_FEAT_C_PORT_L1:
3503			dev_dbg(hsotg->dev,
3504				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3505			hsotg->flags.b.port_l1_change = 0;
3506			break;
3507
3508		case USB_PORT_FEAT_C_OVER_CURRENT:
3509			dev_dbg(hsotg->dev,
3510				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3511			hsotg->flags.b.port_over_current_change = 0;
3512			break;
3513
3514		default:
3515			retval = -EINVAL;
3516			dev_err(hsotg->dev,
3517				"ClearPortFeature request %1xh unknown or unsupported\n",
3518				wvalue);
3519		}
3520		break;
3521
3522	case GetHubDescriptor:
3523		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3524		hub_desc = (struct usb_hub_descriptor *)buf;
3525		hub_desc->bDescLength = 9;
3526		hub_desc->bDescriptorType = USB_DT_HUB;
3527		hub_desc->bNbrPorts = 1;
3528		hub_desc->wHubCharacteristics =
3529			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3530				    HUB_CHAR_INDV_PORT_OCPM);
3531		hub_desc->bPwrOn2PwrGood = 1;
3532		hub_desc->bHubContrCurrent = 0;
3533		hub_desc->u.hs.DeviceRemovable[0] = 0;
3534		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3535		break;
3536
3537	case GetHubStatus:
3538		dev_dbg(hsotg->dev, "GetHubStatus\n");
3539		memset(buf, 0, 4);
3540		break;
3541
3542	case GetPortStatus:
3543		dev_vdbg(hsotg->dev,
3544			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3545			 hsotg->flags.d32);
3546		if (!windex || windex > 1)
3547			goto error;
3548
3549		port_status = 0;
3550		if (hsotg->flags.b.port_connect_status_change)
3551			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3552		if (hsotg->flags.b.port_enable_change)
3553			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3554		if (hsotg->flags.b.port_suspend_change)
3555			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3556		if (hsotg->flags.b.port_l1_change)
3557			port_status |= USB_PORT_STAT_C_L1 << 16;
3558		if (hsotg->flags.b.port_reset_change)
3559			port_status |= USB_PORT_STAT_C_RESET << 16;
3560		if (hsotg->flags.b.port_over_current_change) {
3561			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3562			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3563		}
3564
3565		if (!hsotg->flags.b.port_connect_status) {
3566			/*
3567			 * The port is disconnected, which means the core is
3568			 * either in device mode or it soon will be. Just
3569			 * return 0's for the remainder of the port status
3570			 * since the port register can't be read if the core
3571			 * is in device mode.
3572			 */
3573			*(__le32 *)buf = cpu_to_le32(port_status);
3574			break;
3575		}
3576
3577		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3578		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3579
3580		if (hprt0 & HPRT0_CONNSTS)
3581			port_status |= USB_PORT_STAT_CONNECTION;
3582		if (hprt0 & HPRT0_ENA)
3583			port_status |= USB_PORT_STAT_ENABLE;
3584		if (hprt0 & HPRT0_SUSP)
3585			port_status |= USB_PORT_STAT_SUSPEND;
3586		if (hprt0 & HPRT0_OVRCURRACT)
3587			port_status |= USB_PORT_STAT_OVERCURRENT;
3588		if (hprt0 & HPRT0_RST)
3589			port_status |= USB_PORT_STAT_RESET;
3590		if (hprt0 & HPRT0_PWR)
3591			port_status |= USB_PORT_STAT_POWER;
3592
3593		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3594		if (speed == HPRT0_SPD_HIGH_SPEED)
3595			port_status |= USB_PORT_STAT_HIGH_SPEED;
3596		else if (speed == HPRT0_SPD_LOW_SPEED)
3597			port_status |= USB_PORT_STAT_LOW_SPEED;
3598
3599		if (hprt0 & HPRT0_TSTCTL_MASK)
3600			port_status |= USB_PORT_STAT_TEST;
3601		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3602
3603		if (hsotg->params.dma_desc_fs_enable) {
3604			/*
3605			 * Enable descriptor DMA only if a full speed
3606			 * device is connected.
3607			 */
3608			if (hsotg->new_connection &&
3609			    ((port_status &
3610			      (USB_PORT_STAT_CONNECTION |
3611			       USB_PORT_STAT_HIGH_SPEED |
3612			       USB_PORT_STAT_LOW_SPEED)) ==
3613			       USB_PORT_STAT_CONNECTION)) {
3614				u32 hcfg;
3615
3616				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3617				hsotg->params.dma_desc_enable = 1;
3618				hcfg = dwc2_readl(hsotg->regs + HCFG);
3619				hcfg |= HCFG_DESCDMA;
3620				dwc2_writel(hcfg, hsotg->regs + HCFG);
3621				hsotg->new_connection = false;
3622			}
3623		}
3624
3625		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3626		*(__le32 *)buf = cpu_to_le32(port_status);
3627		break;
3628
3629	case SetHubFeature:
3630		dev_dbg(hsotg->dev, "SetHubFeature\n");
3631		/* No HUB features supported */
3632		break;
3633
3634	case SetPortFeature:
3635		dev_dbg(hsotg->dev, "SetPortFeature\n");
3636		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3637			goto error;
3638
3639		if (!hsotg->flags.b.port_connect_status) {
3640			/*
3641			 * The port is disconnected, which means the core is
3642			 * either in device mode or it soon will be. Just
3643			 * return without doing anything since the port
3644			 * register can't be written if the core is in device
3645			 * mode.
3646			 */
3647			break;
3648		}
3649
3650		switch (wvalue) {
3651		case USB_PORT_FEAT_SUSPEND:
3652			dev_dbg(hsotg->dev,
3653				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3654			if (windex != hsotg->otg_port)
3655				goto error;
3656			dwc2_port_suspend(hsotg, windex);
3657			break;
3658
3659		case USB_PORT_FEAT_POWER:
3660			dev_dbg(hsotg->dev,
3661				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3662			hprt0 = dwc2_read_hprt0(hsotg);
3663			hprt0 |= HPRT0_PWR;
3664			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3665			break;
3666
3667		case USB_PORT_FEAT_RESET:
3668			hprt0 = dwc2_read_hprt0(hsotg);
3669			dev_dbg(hsotg->dev,
3670				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3671			pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3672			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3673			dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3674			/* ??? Original driver does this */
3675			dwc2_writel(0, hsotg->regs + PCGCTL);
3676
3677			hprt0 = dwc2_read_hprt0(hsotg);
3678			/* Clear suspend bit if resetting from suspend state */
3679			hprt0 &= ~HPRT0_SUSP;
3680
3681			/*
3682			 * When B-Host the Port reset bit is set in the Start
3683			 * HCD Callback function, so that the reset is started
3684			 * within 1ms of the HNP success interrupt
3685			 */
3686			if (!dwc2_hcd_is_b_host(hsotg)) {
3687				hprt0 |= HPRT0_PWR | HPRT0_RST;
3688				dev_dbg(hsotg->dev,
3689					"In host mode, hprt0=%08x\n", hprt0);
3690				dwc2_writel(hprt0, hsotg->regs + HPRT0);
3691			}
3692
3693			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3694			usleep_range(50000, 70000);
3695			hprt0 &= ~HPRT0_RST;
3696			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3697			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3698			break;
3699
3700		case USB_PORT_FEAT_INDICATOR:
3701			dev_dbg(hsotg->dev,
3702				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3703			/* Not supported */
3704			break;
3705
3706		case USB_PORT_FEAT_TEST:
3707			hprt0 = dwc2_read_hprt0(hsotg);
3708			dev_dbg(hsotg->dev,
3709				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3710			hprt0 &= ~HPRT0_TSTCTL_MASK;
3711			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3712			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3713			break;
3714
3715		default:
3716			retval = -EINVAL;
3717			dev_err(hsotg->dev,
3718				"SetPortFeature %1xh unknown or unsupported\n",
3719				wvalue);
3720			break;
3721		}
3722		break;
3723
3724	default:
3725error:
3726		retval = -EINVAL;
3727		dev_dbg(hsotg->dev,
3728			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3729			typereq, windex, wvalue);
3730		break;
3731	}
3732
3733	return retval;
3734}
3735
3736static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3737{
3738	int retval;
3739
3740	if (port != 1)
3741		return -EINVAL;
3742
3743	retval = (hsotg->flags.b.port_connect_status_change ||
3744		  hsotg->flags.b.port_reset_change ||
3745		  hsotg->flags.b.port_enable_change ||
3746		  hsotg->flags.b.port_suspend_change ||
3747		  hsotg->flags.b.port_over_current_change);
3748
3749	if (retval) {
3750		dev_dbg(hsotg->dev,
3751			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3752		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3753			hsotg->flags.b.port_connect_status_change);
3754		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3755			hsotg->flags.b.port_reset_change);
3756		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3757			hsotg->flags.b.port_enable_change);
3758		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3759			hsotg->flags.b.port_suspend_change);
3760		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3761			hsotg->flags.b.port_over_current_change);
3762	}
3763
3764	return retval;
3765}
3766
3767int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3768{
3769	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3770
3771#ifdef DWC2_DEBUG_SOF
3772	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3773		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3774#endif
3775	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3776}
3777
3778int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3779{
3780	u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3781	u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3782	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3783	unsigned int us_per_frame;
3784	unsigned int frame_number;
3785	unsigned int remaining;
3786	unsigned int interval;
3787	unsigned int phy_clks;
3788
3789	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3790	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3791
3792	/* Extract fields */
3793	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3794	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3795	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3796
3797	/*
3798	 * Number of phy clocks since the last tick of the frame number after
3799	 * "us" has passed.
3800	 */
3801	phy_clks = (interval - remaining) +
3802		   DIV_ROUND_UP(interval * us, us_per_frame);
3803
3804	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3805}
3806
3807int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3808{
3809	return hsotg->op_state == OTG_STATE_B_HOST;
3810}
3811
3812static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3813					       int iso_desc_count,
3814					       gfp_t mem_flags)
3815{
3816	struct dwc2_hcd_urb *urb;
3817	u32 size = sizeof(*urb) + iso_desc_count *
3818		   sizeof(struct dwc2_hcd_iso_packet_desc);
3819
3820	urb = kzalloc(size, mem_flags);
3821	if (urb)
3822		urb->packet_count = iso_desc_count;
3823	return urb;
3824}
3825
3826static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3827				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3828				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3829{
3830	if (dbg_perio() ||
3831	    ep_type == USB_ENDPOINT_XFER_BULK ||
3832	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3833		dev_vdbg(hsotg->dev,
3834			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3835			 dev_addr, ep_num, ep_dir, ep_type, mps);
3836	urb->pipe_info.dev_addr = dev_addr;
3837	urb->pipe_info.ep_num = ep_num;
3838	urb->pipe_info.pipe_type = ep_type;
3839	urb->pipe_info.pipe_dir = ep_dir;
3840	urb->pipe_info.mps = mps;
3841}
3842
3843/*
3844 * NOTE: This function will be removed once the peripheral controller code
3845 * is integrated and the driver is stable
3846 */
3847void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3848{
3849#ifdef DEBUG
3850	struct dwc2_host_chan *chan;
3851	struct dwc2_hcd_urb *urb;
3852	struct dwc2_qtd *qtd;
3853	int num_channels;
3854	u32 np_tx_status;
3855	u32 p_tx_status;
3856	int i;
3857
3858	num_channels = hsotg->params.host_channels;
3859	dev_dbg(hsotg->dev, "\n");
3860	dev_dbg(hsotg->dev,
3861		"************************************************************\n");
3862	dev_dbg(hsotg->dev, "HCD State:\n");
3863	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3864
3865	for (i = 0; i < num_channels; i++) {
3866		chan = hsotg->hc_ptr_array[i];
3867		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3868		dev_dbg(hsotg->dev,
3869			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3870			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3871		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3872		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3873		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3874		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3875			chan->data_pid_start);
3876		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3877		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3878			chan->xfer_started);
3879		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3880		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3881			(unsigned long)chan->xfer_dma);
3882		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3883		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3884		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3885			chan->halt_on_queue);
3886		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3887			chan->halt_pending);
3888		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3889		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3890		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3891			chan->complete_split);
3892		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3893		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3894		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3895		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3896		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3897
3898		if (chan->xfer_started) {
3899			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3900
3901			hfnum = dwc2_readl(hsotg->regs + HFNUM);
3902			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3903			hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3904			hcint = dwc2_readl(hsotg->regs + HCINT(i));
3905			hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3906			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3907			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3908			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3909			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3910			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3911		}
3912
3913		if (!(chan->xfer_started && chan->qh))
3914			continue;
3915
3916		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3917			if (!qtd->in_process)
3918				break;
3919			urb = qtd->urb;
3920			dev_dbg(hsotg->dev, "    URB Info:\n");
3921			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3922				qtd, urb);
3923			if (urb) {
3924				dev_dbg(hsotg->dev,
3925					"      Dev: %d, EP: %d %s\n",
3926					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3927					dwc2_hcd_get_ep_num(&urb->pipe_info),
3928					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3929					"IN" : "OUT");
3930				dev_dbg(hsotg->dev,
3931					"      Max packet size: %d\n",
3932					dwc2_hcd_get_mps(&urb->pipe_info));
3933				dev_dbg(hsotg->dev,
3934					"      transfer_buffer: %p\n",
3935					urb->buf);
3936				dev_dbg(hsotg->dev,
3937					"      transfer_dma: %08lx\n",
3938					(unsigned long)urb->dma);
3939				dev_dbg(hsotg->dev,
3940					"      transfer_buffer_length: %d\n",
3941					urb->length);
3942				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3943					urb->actual_length);
3944			}
3945		}
3946	}
3947
3948	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3949		hsotg->non_periodic_channels);
3950	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3951		hsotg->periodic_channels);
3952	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3953	np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3954	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3955		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3956	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3957		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3958	p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3959	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3960		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3961	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3962		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3963	dwc2_hcd_dump_frrem(hsotg);
3964	dwc2_dump_global_registers(hsotg);
3965	dwc2_dump_host_registers(hsotg);
3966	dev_dbg(hsotg->dev,
3967		"************************************************************\n");
3968	dev_dbg(hsotg->dev, "\n");
3969#endif
3970}
3971
3972/*
3973 * NOTE: This function will be removed once the peripheral controller code
3974 * is integrated and the driver is stable
3975 */
3976void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
3977{
3978#ifdef DWC2_DUMP_FRREM
3979	dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
3980	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3981		hsotg->frrem_samples, hsotg->frrem_accum,
3982		hsotg->frrem_samples > 0 ?
3983		hsotg->frrem_accum / hsotg->frrem_samples : 0);
3984	dev_dbg(hsotg->dev, "\n");
3985	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
3986	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3987		hsotg->hfnum_7_samples,
3988		hsotg->hfnum_7_frrem_accum,
3989		hsotg->hfnum_7_samples > 0 ?
3990		hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
3991	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
3992	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3993		hsotg->hfnum_0_samples,
3994		hsotg->hfnum_0_frrem_accum,
3995		hsotg->hfnum_0_samples > 0 ?
3996		hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
3997	dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
3998	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
3999		hsotg->hfnum_other_samples,
4000		hsotg->hfnum_other_frrem_accum,
4001		hsotg->hfnum_other_samples > 0 ?
4002		hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
4003		0);
4004	dev_dbg(hsotg->dev, "\n");
4005	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
4006	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4007		hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
4008		hsotg->hfnum_7_samples_a > 0 ?
4009		hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
4010	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
4011	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4012		hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
4013		hsotg->hfnum_0_samples_a > 0 ?
4014		hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
4015	dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
4016	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4017		hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
4018		hsotg->hfnum_other_samples_a > 0 ?
4019		hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
4020		: 0);
4021	dev_dbg(hsotg->dev, "\n");
4022	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
4023	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4024		hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
4025		hsotg->hfnum_7_samples_b > 0 ?
4026		hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
4027	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
4028	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4029		hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
4030		(hsotg->hfnum_0_samples_b > 0) ?
4031		hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
4032	dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
4033	dev_dbg(hsotg->dev, "  samples %u, accum %llu, avg %llu\n",
4034		hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
4035		(hsotg->hfnum_other_samples_b > 0) ?
4036		hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
4037		: 0);
4038#endif
4039}
4040
4041struct wrapper_priv_data {
4042	struct dwc2_hsotg *hsotg;
4043};
4044
4045/* Gets the dwc2_hsotg from a usb_hcd */
4046static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4047{
4048	struct wrapper_priv_data *p;
4049
4050	p = (struct wrapper_priv_data *) &hcd->hcd_priv;
4051	return p->hsotg;
4052}
4053
4054/**
4055 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4056 *
4057 * This will get the dwc2_tt structure (and ttport) associated with the given
4058 * context (which is really just a struct urb pointer).
4059 *
4060 * The first time this is called for a given TT we allocate memory for our
4061 * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4062 * then the refcount for the structure will go to 0 and we'll free it.
4063 *
4064 * @hsotg:     The HCD state structure for the DWC OTG controller.
4065 * @qh:        The QH structure.
4066 * @context:   The priv pointer from a struct dwc2_hcd_urb.
4067 * @mem_flags: Flags for allocating memory.
4068 * @ttport:    We'll return this device's port number here.  That's used to
4069 *             reference into the bitmap if we're on a multi_tt hub.
4070 *
4071 * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4072 *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4073 */
4074
4075struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4076				      gfp_t mem_flags, int *ttport)
4077{
4078	struct urb *urb = context;
4079	struct dwc2_tt *dwc_tt = NULL;
4080
4081	if (urb->dev->tt) {
4082		*ttport = urb->dev->ttport;
4083
4084		dwc_tt = urb->dev->tt->hcpriv;
4085		if (dwc_tt == NULL) {
4086			size_t bitmap_size;
4087
4088			/*
4089			 * For single_tt we need one schedule.  For multi_tt
4090			 * we need one per port.
4091			 */
4092			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4093				      sizeof(dwc_tt->periodic_bitmaps[0]);
4094			if (urb->dev->tt->multi)
4095				bitmap_size *= urb->dev->tt->hub->maxchild;
4096
4097			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4098					 mem_flags);
4099			if (dwc_tt == NULL)
4100				return NULL;
4101
4102			dwc_tt->usb_tt = urb->dev->tt;
4103			dwc_tt->usb_tt->hcpriv = dwc_tt;
4104		}
4105
4106		dwc_tt->refcount++;
4107	}
4108
4109	return dwc_tt;
4110}
4111
4112/**
4113 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4114 *
4115 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4116 * of the structure are done.
4117 *
4118 * It's OK to call this with NULL.
4119 *
4120 * @hsotg:     The HCD state structure for the DWC OTG controller.
4121 * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4122 */
4123void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4124{
4125	/* Model kfree and make put of NULL a no-op */
4126	if (dwc_tt == NULL)
4127		return;
4128
4129	WARN_ON(dwc_tt->refcount < 1);
4130
4131	dwc_tt->refcount--;
4132	if (!dwc_tt->refcount) {
4133		dwc_tt->usb_tt->hcpriv = NULL;
4134		kfree(dwc_tt);
4135	}
4136}
4137
4138int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4139{
4140	struct urb *urb = context;
4141
4142	return urb->dev->speed;
4143}
4144
4145static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4146					struct urb *urb)
4147{
4148	struct usb_bus *bus = hcd_to_bus(hcd);
4149
4150	if (urb->interval)
4151		bus->bandwidth_allocated += bw / urb->interval;
4152	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4153		bus->bandwidth_isoc_reqs++;
4154	else
4155		bus->bandwidth_int_reqs++;
4156}
4157
4158static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4159				    struct urb *urb)
4160{
4161	struct usb_bus *bus = hcd_to_bus(hcd);
4162
4163	if (urb->interval)
4164		bus->bandwidth_allocated -= bw / urb->interval;
4165	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4166		bus->bandwidth_isoc_reqs--;
4167	else
4168		bus->bandwidth_int_reqs--;
4169}
4170
4171/*
4172 * Sets the final status of an URB and returns it to the upper layer. Any
4173 * required cleanup of the URB is performed.
4174 *
4175 * Must be called with interrupt disabled and spinlock held
4176 */
4177void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4178			int status)
4179{
4180	struct urb *urb;
4181	int i;
4182
4183	if (!qtd) {
4184		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4185		return;
4186	}
4187
4188	if (!qtd->urb) {
4189		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4190		return;
4191	}
4192
4193	urb = qtd->urb->priv;
4194	if (!urb) {
4195		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4196		return;
4197	}
4198
4199	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4200
4201	if (dbg_urb(urb))
4202		dev_vdbg(hsotg->dev,
4203			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4204			 __func__, urb, usb_pipedevice(urb->pipe),
4205			 usb_pipeendpoint(urb->pipe),
4206			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4207			 urb->actual_length);
4208
4209
4210	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4211		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4212		for (i = 0; i < urb->number_of_packets; ++i) {
4213			urb->iso_frame_desc[i].actual_length =
4214				dwc2_hcd_urb_get_iso_desc_actual_length(
4215						qtd->urb, i);
4216			urb->iso_frame_desc[i].status =
4217				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4218		}
4219	}
4220
4221	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4222		for (i = 0; i < urb->number_of_packets; i++)
4223			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4224				 i, urb->iso_frame_desc[i].status);
4225	}
4226
4227	urb->status = status;
4228	if (!status) {
4229		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4230		    urb->actual_length < urb->transfer_buffer_length)
4231			urb->status = -EREMOTEIO;
4232	}
4233
4234	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4235	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4236		struct usb_host_endpoint *ep = urb->ep;
4237
4238		if (ep)
4239			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4240					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4241					urb);
4242	}
4243
4244	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4245	urb->hcpriv = NULL;
4246	kfree(qtd->urb);
4247	qtd->urb = NULL;
4248
4249	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4250}
4251
4252/*
4253 * Work queue function for starting the HCD when A-Cable is connected
4254 */
4255static void dwc2_hcd_start_func(struct work_struct *work)
4256{
4257	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4258						start_work.work);
4259
4260	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4261	dwc2_host_start(hsotg);
4262}
4263
4264/*
4265 * Reset work queue function
4266 */
4267static void dwc2_hcd_reset_func(struct work_struct *work)
4268{
4269	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4270						reset_work.work);
4271	unsigned long flags;
4272	u32 hprt0;
4273
4274	dev_dbg(hsotg->dev, "USB RESET function called\n");
4275
4276	spin_lock_irqsave(&hsotg->lock, flags);
4277
4278	hprt0 = dwc2_read_hprt0(hsotg);
4279	hprt0 &= ~HPRT0_RST;
4280	dwc2_writel(hprt0, hsotg->regs + HPRT0);
4281	hsotg->flags.b.port_reset_change = 1;
4282
4283	spin_unlock_irqrestore(&hsotg->lock, flags);
4284}
4285
4286/*
4287 * =========================================================================
4288 *  Linux HC Driver Functions
4289 * =========================================================================
4290 */
4291
4292/*
4293 * Initializes the DWC_otg controller and its root hub and prepares it for host
4294 * mode operation. Activates the root port. Returns 0 on success and a negative
4295 * error code on failure.
4296 */
4297static int _dwc2_hcd_start(struct usb_hcd *hcd)
4298{
4299	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4300	struct usb_bus *bus = hcd_to_bus(hcd);
4301	unsigned long flags;
4302
4303	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4304
4305	spin_lock_irqsave(&hsotg->lock, flags);
4306	hsotg->lx_state = DWC2_L0;
4307	hcd->state = HC_STATE_RUNNING;
4308	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4309
4310	if (dwc2_is_device_mode(hsotg)) {
4311		spin_unlock_irqrestore(&hsotg->lock, flags);
4312		return 0;	/* why 0 ?? */
4313	}
4314
4315	dwc2_hcd_reinit(hsotg);
4316
4317	/* Initialize and connect root hub if one is not already attached */
4318	if (bus->root_hub) {
4319		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4320		/* Inform the HUB driver to resume */
4321		usb_hcd_resume_root_hub(hcd);
4322	}
4323
4324	spin_unlock_irqrestore(&hsotg->lock, flags);
4325	return 0;
4326}
4327
4328/*
4329 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4330 * stopped.
4331 */
4332static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4333{
4334	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4335	unsigned long flags;
4336
4337	/* Turn off all host-specific interrupts */
4338	dwc2_disable_host_interrupts(hsotg);
4339
4340	/* Wait for interrupt processing to finish */
4341	synchronize_irq(hcd->irq);
4342
4343	spin_lock_irqsave(&hsotg->lock, flags);
4344	/* Ensure hcd is disconnected */
4345	dwc2_hcd_disconnect(hsotg, true);
4346	dwc2_hcd_stop(hsotg);
4347	hsotg->lx_state = DWC2_L3;
4348	hcd->state = HC_STATE_HALT;
4349	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4350	spin_unlock_irqrestore(&hsotg->lock, flags);
4351
4352	usleep_range(1000, 3000);
4353}
4354
4355static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4356{
4357	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4358	unsigned long flags;
4359	int ret = 0;
4360	u32 hprt0;
4361
4362	spin_lock_irqsave(&hsotg->lock, flags);
4363
4364	if (hsotg->lx_state != DWC2_L0)
4365		goto unlock;
4366
4367	if (!HCD_HW_ACCESSIBLE(hcd))
4368		goto unlock;
4369
4370	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4371		goto unlock;
4372
4373	if (!hsotg->params.hibernation)
4374		goto skip_power_saving;
4375
4376	/*
4377	 * Drive USB suspend and disable port Power
4378	 * if usb bus is not suspended.
4379	 */
4380	if (!hsotg->bus_suspended) {
4381		hprt0 = dwc2_read_hprt0(hsotg);
4382		hprt0 |= HPRT0_SUSP;
4383		hprt0 &= ~HPRT0_PWR;
4384		dwc2_writel(hprt0, hsotg->regs + HPRT0);
4385	}
4386
4387	/* Enter hibernation */
4388	ret = dwc2_enter_hibernation(hsotg);
4389	if (ret) {
4390		if (ret != -ENOTSUPP)
4391			dev_err(hsotg->dev,
4392				"enter hibernation failed\n");
4393		goto skip_power_saving;
4394	}
4395
4396	/* Ask phy to be suspended */
4397	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4398		spin_unlock_irqrestore(&hsotg->lock, flags);
4399		usb_phy_set_suspend(hsotg->uphy, true);
4400		spin_lock_irqsave(&hsotg->lock, flags);
4401	}
4402
4403	/* After entering hibernation, hardware is no more accessible */
4404	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4405
4406skip_power_saving:
4407	hsotg->lx_state = DWC2_L2;
4408unlock:
4409	spin_unlock_irqrestore(&hsotg->lock, flags);
4410
4411	return ret;
4412}
4413
4414static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4415{
4416	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4417	unsigned long flags;
4418	int ret = 0;
4419
4420	spin_lock_irqsave(&hsotg->lock, flags);
4421
4422	if (hsotg->lx_state != DWC2_L2)
4423		goto unlock;
4424
4425	if (!hsotg->params.hibernation) {
4426		hsotg->lx_state = DWC2_L0;
4427		goto unlock;
4428	}
4429
4430	/*
4431	 * Set HW accessible bit before powering on the controller
4432	 * since an interrupt may rise.
4433	 */
4434	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4435
4436	/*
4437	 * Enable power if not already done.
4438	 * This must not be spinlocked since duration
4439	 * of this call is unknown.
4440	 */
4441	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4442		spin_unlock_irqrestore(&hsotg->lock, flags);
4443		usb_phy_set_suspend(hsotg->uphy, false);
4444		spin_lock_irqsave(&hsotg->lock, flags);
4445	}
4446
4447	/* Exit hibernation */
4448	ret = dwc2_exit_hibernation(hsotg, true);
4449	if (ret && (ret != -ENOTSUPP))
4450		dev_err(hsotg->dev, "exit hibernation failed\n");
4451
4452	hsotg->lx_state = DWC2_L0;
4453
4454	spin_unlock_irqrestore(&hsotg->lock, flags);
4455
4456	if (hsotg->bus_suspended) {
4457		spin_lock_irqsave(&hsotg->lock, flags);
4458		hsotg->flags.b.port_suspend_change = 1;
4459		spin_unlock_irqrestore(&hsotg->lock, flags);
4460		dwc2_port_resume(hsotg);
4461	} else {
4462		/* Wait for controller to correctly update D+/D- level */
4463		usleep_range(3000, 5000);
4464
4465		/*
4466		 * Clear Port Enable and Port Status changes.
4467		 * Enable Port Power.
4468		 */
4469		dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4470				HPRT0_ENACHG, hsotg->regs + HPRT0);
4471		/* Wait for controller to detect Port Connect */
4472		usleep_range(5000, 7000);
4473	}
4474
4475	return ret;
4476unlock:
4477	spin_unlock_irqrestore(&hsotg->lock, flags);
4478
4479	return ret;
4480}
4481
4482/* Returns the current frame number */
4483static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4484{
4485	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4486
4487	return dwc2_hcd_get_frame_number(hsotg);
4488}
4489
4490static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4491			       char *fn_name)
4492{
4493#ifdef VERBOSE_DEBUG
4494	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4495	char *pipetype = NULL;
4496	char *speed = NULL;
4497
4498	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4499	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4500		 usb_pipedevice(urb->pipe));
4501	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4502		 usb_pipeendpoint(urb->pipe),
4503		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4504
4505	switch (usb_pipetype(urb->pipe)) {
4506	case PIPE_CONTROL:
4507		pipetype = "CONTROL";
4508		break;
4509	case PIPE_BULK:
4510		pipetype = "BULK";
4511		break;
4512	case PIPE_INTERRUPT:
4513		pipetype = "INTERRUPT";
4514		break;
4515	case PIPE_ISOCHRONOUS:
4516		pipetype = "ISOCHRONOUS";
4517		break;
4518	}
4519
4520	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4521		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4522		 "IN" : "OUT");
4523
4524	switch (urb->dev->speed) {
4525	case USB_SPEED_HIGH:
4526		speed = "HIGH";
4527		break;
4528	case USB_SPEED_FULL:
4529		speed = "FULL";
4530		break;
4531	case USB_SPEED_LOW:
4532		speed = "LOW";
4533		break;
4534	default:
4535		speed = "UNKNOWN";
4536		break;
4537	}
4538
4539	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4540	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4541		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4542	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4543		 urb->transfer_buffer_length);
4544	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4545		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4546	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4547		 urb->setup_packet, (unsigned long)urb->setup_dma);
4548	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4549
4550	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4551		int i;
4552
4553		for (i = 0; i < urb->number_of_packets; i++) {
4554			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4555			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4556				 urb->iso_frame_desc[i].offset,
4557				 urb->iso_frame_desc[i].length);
4558		}
4559	}
4560#endif
4561}
4562
4563/*
4564 * Starts processing a USB transfer request specified by a USB Request Block
4565 * (URB). mem_flags indicates the type of memory allocation to use while
4566 * processing this URB.
4567 */
4568static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4569				 gfp_t mem_flags)
4570{
4571	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4572	struct usb_host_endpoint *ep = urb->ep;
4573	struct dwc2_hcd_urb *dwc2_urb;
4574	int i;
4575	int retval;
4576	int alloc_bandwidth = 0;
4577	u8 ep_type = 0;
4578	u32 tflags = 0;
4579	void *buf;
4580	unsigned long flags;
4581	struct dwc2_qh *qh;
4582	bool qh_allocated = false;
4583	struct dwc2_qtd *qtd;
4584
4585	if (dbg_urb(urb)) {
4586		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4587		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4588	}
4589
4590	if (ep == NULL)
4591		return -EINVAL;
4592
4593	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4594	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4595		spin_lock_irqsave(&hsotg->lock, flags);
4596		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4597			alloc_bandwidth = 1;
4598		spin_unlock_irqrestore(&hsotg->lock, flags);
4599	}
4600
4601	switch (usb_pipetype(urb->pipe)) {
4602	case PIPE_CONTROL:
4603		ep_type = USB_ENDPOINT_XFER_CONTROL;
4604		break;
4605	case PIPE_ISOCHRONOUS:
4606		ep_type = USB_ENDPOINT_XFER_ISOC;
4607		break;
4608	case PIPE_BULK:
4609		ep_type = USB_ENDPOINT_XFER_BULK;
4610		break;
4611	case PIPE_INTERRUPT:
4612		ep_type = USB_ENDPOINT_XFER_INT;
4613		break;
4614	}
4615
4616	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4617				      mem_flags);
4618	if (!dwc2_urb)
4619		return -ENOMEM;
4620
4621	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4622				  usb_pipeendpoint(urb->pipe), ep_type,
4623				  usb_pipein(urb->pipe),
4624				  usb_maxpacket(urb->dev, urb->pipe,
4625						!(usb_pipein(urb->pipe))));
4626
4627	buf = urb->transfer_buffer;
4628
4629	if (hcd->self.uses_dma) {
4630		if (!buf && (urb->transfer_dma & 3)) {
4631			dev_err(hsotg->dev,
4632				"%s: unaligned transfer with no transfer_buffer",
4633				__func__);
4634			retval = -EINVAL;
4635			goto fail0;
4636		}
4637	}
4638
4639	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4640		tflags |= URB_GIVEBACK_ASAP;
4641	if (urb->transfer_flags & URB_ZERO_PACKET)
4642		tflags |= URB_SEND_ZERO_PACKET;
4643
4644	dwc2_urb->priv = urb;
4645	dwc2_urb->buf = buf;
4646	dwc2_urb->dma = urb->transfer_dma;
4647	dwc2_urb->length = urb->transfer_buffer_length;
4648	dwc2_urb->setup_packet = urb->setup_packet;
4649	dwc2_urb->setup_dma = urb->setup_dma;
4650	dwc2_urb->flags = tflags;
4651	dwc2_urb->interval = urb->interval;
4652	dwc2_urb->status = -EINPROGRESS;
4653
4654	for (i = 0; i < urb->number_of_packets; ++i)
4655		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4656						 urb->iso_frame_desc[i].offset,
4657						 urb->iso_frame_desc[i].length);
4658
4659	urb->hcpriv = dwc2_urb;
4660	qh = (struct dwc2_qh *) ep->hcpriv;
4661	/* Create QH for the endpoint if it doesn't exist */
4662	if (!qh) {
4663		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4664		if (!qh) {
4665			retval = -ENOMEM;
4666			goto fail0;
4667		}
4668		ep->hcpriv = qh;
4669		qh_allocated = true;
4670	}
4671
4672	qtd = kzalloc(sizeof(*qtd), mem_flags);
4673	if (!qtd) {
4674		retval = -ENOMEM;
4675		goto fail1;
4676	}
4677
4678	spin_lock_irqsave(&hsotg->lock, flags);
4679	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4680	if (retval)
4681		goto fail2;
4682
4683	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4684	if (retval)
4685		goto fail3;
4686
4687	if (alloc_bandwidth) {
4688		dwc2_allocate_bus_bandwidth(hcd,
4689				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4690				urb);
4691	}
4692
4693	spin_unlock_irqrestore(&hsotg->lock, flags);
4694
4695	return 0;
4696
4697fail3:
4698	dwc2_urb->priv = NULL;
4699	usb_hcd_unlink_urb_from_ep(hcd, urb);
4700	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4701		qh->channel->qh = NULL;
4702fail2:
4703	spin_unlock_irqrestore(&hsotg->lock, flags);
4704	urb->hcpriv = NULL;
4705	kfree(qtd);
4706	qtd = NULL;
4707fail1:
4708	if (qh_allocated) {
4709		struct dwc2_qtd *qtd2, *qtd2_tmp;
4710
4711		ep->hcpriv = NULL;
4712		dwc2_hcd_qh_unlink(hsotg, qh);
4713		/* Free each QTD in the QH's QTD list */
4714		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4715							 qtd_list_entry)
4716			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4717		dwc2_hcd_qh_free(hsotg, qh);
4718	}
4719fail0:
4720	kfree(dwc2_urb);
4721
4722	return retval;
4723}
4724
4725/*
4726 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4727 */
4728static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4729				 int status)
4730{
4731	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4732	int rc;
4733	unsigned long flags;
4734
4735	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4736	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4737
4738	spin_lock_irqsave(&hsotg->lock, flags);
4739
4740	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4741	if (rc)
4742		goto out;
4743
4744	if (!urb->hcpriv) {
4745		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4746		goto out;
4747	}
4748
4749	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4750
4751	usb_hcd_unlink_urb_from_ep(hcd, urb);
4752
4753	kfree(urb->hcpriv);
4754	urb->hcpriv = NULL;
4755
4756	/* Higher layer software sets URB status */
4757	spin_unlock(&hsotg->lock);
4758	usb_hcd_giveback_urb(hcd, urb, status);
4759	spin_lock(&hsotg->lock);
4760
4761	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4762	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4763out:
4764	spin_unlock_irqrestore(&hsotg->lock, flags);
4765
4766	return rc;
4767}
4768
4769/*
4770 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4771 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4772 * must already be dequeued.
4773 */
4774static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4775				       struct usb_host_endpoint *ep)
4776{
4777	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4778
4779	dev_dbg(hsotg->dev,
4780		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4781		ep->desc.bEndpointAddress, ep->hcpriv);
4782	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4783}
4784
4785/*
4786 * Resets endpoint specific parameter values, in current version used to reset
4787 * the data toggle (as a WA). This function can be called from usb_clear_halt
4788 * routine.
4789 */
4790static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4791				     struct usb_host_endpoint *ep)
4792{
4793	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4794	unsigned long flags;
4795
4796	dev_dbg(hsotg->dev,
4797		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4798		ep->desc.bEndpointAddress);
4799
4800	spin_lock_irqsave(&hsotg->lock, flags);
4801	dwc2_hcd_endpoint_reset(hsotg, ep);
4802	spin_unlock_irqrestore(&hsotg->lock, flags);
4803}
4804
4805/*
4806 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4807 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4808 * interrupt.
4809 *
4810 * This function is called by the USB core when an interrupt occurs
4811 */
4812static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4813{
4814	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4815
4816	return dwc2_handle_hcd_intr(hsotg);
4817}
4818
4819/*
4820 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4821 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4822 * is the status change indicator for the single root port. Returns 1 if either
4823 * change indicator is 1, otherwise returns 0.
4824 */
4825static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4826{
4827	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4828
4829	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4830	return buf[0] != 0;
4831}
4832
4833/* Handles hub class-specific requests */
4834static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4835				 u16 windex, char *buf, u16 wlength)
4836{
4837	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4838					  wvalue, windex, buf, wlength);
4839	return retval;
4840}
4841
4842/* Handles hub TT buffer clear completions */
4843static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4844					       struct usb_host_endpoint *ep)
4845{
4846	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4847	struct dwc2_qh *qh;
4848	unsigned long flags;
4849
4850	qh = ep->hcpriv;
4851	if (!qh)
4852		return;
4853
4854	spin_lock_irqsave(&hsotg->lock, flags);
4855	qh->tt_buffer_dirty = 0;
4856
4857	if (hsotg->flags.b.port_connect_status)
4858		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4859
4860	spin_unlock_irqrestore(&hsotg->lock, flags);
4861}
4862
4863static struct hc_driver dwc2_hc_driver = {
4864	.description = "dwc2_hsotg",
4865	.product_desc = "DWC OTG Controller",
4866	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4867
4868	.irq = _dwc2_hcd_irq,
4869	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4870
4871	.start = _dwc2_hcd_start,
4872	.stop = _dwc2_hcd_stop,
4873	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4874	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4875	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4876	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4877	.get_frame_number = _dwc2_hcd_get_frame_number,
4878
4879	.hub_status_data = _dwc2_hcd_hub_status_data,
4880	.hub_control = _dwc2_hcd_hub_control,
4881	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4882
4883	.bus_suspend = _dwc2_hcd_suspend,
4884	.bus_resume = _dwc2_hcd_resume,
4885
4886	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4887	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4888};
4889
4890/*
4891 * Frees secondary storage associated with the dwc2_hsotg structure contained
4892 * in the struct usb_hcd field
4893 */
4894static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4895{
4896	u32 ahbcfg;
4897	u32 dctl;
4898	int i;
4899
4900	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4901
4902	/* Free memory for QH/QTD lists */
4903	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4904	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4905	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4906	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4907	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4908	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4909
4910	/* Free memory for the host channels */
4911	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4912		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4913
4914		if (chan != NULL) {
4915			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4916				i, chan);
4917			hsotg->hc_ptr_array[i] = NULL;
4918			kfree(chan);
4919		}
4920	}
4921
4922	if (hsotg->params.host_dma > 0) {
4923		if (hsotg->status_buf) {
4924			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4925					  hsotg->status_buf,
4926					  hsotg->status_buf_dma);
4927			hsotg->status_buf = NULL;
4928		}
4929	} else {
4930		kfree(hsotg->status_buf);
4931		hsotg->status_buf = NULL;
4932	}
4933
4934	ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
4935
4936	/* Disable all interrupts */
4937	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4938	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
4939	dwc2_writel(0, hsotg->regs + GINTMSK);
4940
4941	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4942		dctl = dwc2_readl(hsotg->regs + DCTL);
4943		dctl |= DCTL_SFTDISCON;
4944		dwc2_writel(dctl, hsotg->regs + DCTL);
4945	}
4946
4947	if (hsotg->wq_otg) {
4948		if (!cancel_work_sync(&hsotg->wf_otg))
4949			flush_workqueue(hsotg->wq_otg);
4950		destroy_workqueue(hsotg->wq_otg);
4951	}
4952
4953	del_timer(&hsotg->wkp_timer);
4954}
4955
4956static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4957{
4958	/* Turn off all host-specific interrupts */
4959	dwc2_disable_host_interrupts(hsotg);
4960
4961	dwc2_hcd_free(hsotg);
4962}
4963
4964/*
4965 * Initializes the HCD. This function allocates memory for and initializes the
4966 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
4967 * USB bus with the core and calls the hc_driver->start() function. It returns
4968 * a negative error on failure.
4969 */
4970int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
4971{
4972	struct usb_hcd *hcd;
4973	struct dwc2_host_chan *channel;
4974	u32 hcfg;
4975	int i, num_channels;
4976	int retval;
4977
4978	if (usb_disabled())
4979		return -ENODEV;
4980
4981	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
4982
4983	retval = -ENOMEM;
4984
4985	hcfg = dwc2_readl(hsotg->regs + HCFG);
4986	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
4987
4988#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
4989	hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
4990					 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4991	if (!hsotg->frame_num_array)
4992		goto error1;
4993	hsotg->last_frame_num_array = kzalloc(
4994			sizeof(*hsotg->last_frame_num_array) *
4995			FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4996	if (!hsotg->last_frame_num_array)
4997		goto error1;
4998#endif
4999	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5000
5001	/* Check if the bus driver or platform code has setup a dma_mask */
5002	if (hsotg->params.host_dma > 0 &&
5003	    hsotg->dev->dma_mask == NULL) {
5004		dev_warn(hsotg->dev,
5005			 "dma_mask not set, disabling DMA\n");
5006		hsotg->params.host_dma = 0;
5007		hsotg->params.dma_desc_enable = 0;
5008	}
5009
5010	/* Set device flags indicating whether the HCD supports DMA */
5011	if (hsotg->params.host_dma > 0) {
5012		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5013			dev_warn(hsotg->dev, "can't set DMA mask\n");
5014		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5015			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5016	}
5017
5018	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5019	if (!hcd)
5020		goto error1;
5021
5022	if (hsotg->params.host_dma <= 0)
5023		hcd->self.uses_dma = 0;
5024
5025	hcd->has_tt = 1;
5026
5027	((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
5028	hsotg->priv = hcd;
5029
5030	/*
5031	 * Disable the global interrupt until all the interrupt handlers are
5032	 * installed
5033	 */
5034	dwc2_disable_global_interrupts(hsotg);
5035
5036	/* Initialize the DWC_otg core, and select the Phy type */
5037	retval = dwc2_core_init(hsotg, true);
5038	if (retval)
5039		goto error2;
5040
5041	/* Create new workqueue and init work */
5042	retval = -ENOMEM;
5043	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5044	if (!hsotg->wq_otg) {
5045		dev_err(hsotg->dev, "Failed to create workqueue\n");
5046		goto error2;
5047	}
5048	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5049
5050	setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
5051		    (unsigned long)hsotg);
5052
5053	/* Initialize the non-periodic schedule */
5054	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5055	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5056
5057	/* Initialize the periodic schedule */
5058	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5059	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5060	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5061	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5062
5063	INIT_LIST_HEAD(&hsotg->split_order);
5064
5065	/*
5066	 * Create a host channel descriptor for each host channel implemented
5067	 * in the controller. Initialize the channel descriptor array.
5068	 */
5069	INIT_LIST_HEAD(&hsotg->free_hc_list);
5070	num_channels = hsotg->params.host_channels;
5071	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5072
5073	for (i = 0; i < num_channels; i++) {
5074		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5075		if (channel == NULL)
5076			goto error3;
5077		channel->hc_num = i;
5078		INIT_LIST_HEAD(&channel->split_order_list_entry);
5079		hsotg->hc_ptr_array[i] = channel;
5080	}
5081
5082	/* Initialize hsotg start work */
5083	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5084
5085	/* Initialize port reset work */
5086	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5087
5088	/*
5089	 * Allocate space for storing data on status transactions. Normally no
5090	 * data is sent, but this space acts as a bit bucket. This must be
5091	 * done after usb_add_hcd since that function allocates the DMA buffer
5092	 * pool.
5093	 */
5094	if (hsotg->params.host_dma > 0)
5095		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5096					DWC2_HCD_STATUS_BUF_SIZE,
5097					&hsotg->status_buf_dma, GFP_KERNEL);
5098	else
5099		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5100					  GFP_KERNEL);
5101
5102	if (!hsotg->status_buf)
5103		goto error3;
5104
5105	/*
5106	 * Create kmem caches to handle descriptor buffers in descriptor
5107	 * DMA mode.
5108	 * Alignment must be set to 512 bytes.
5109	 */
5110	if (hsotg->params.dma_desc_enable ||
5111	    hsotg->params.dma_desc_fs_enable) {
5112		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5113				sizeof(struct dwc2_dma_desc) *
5114				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5115				NULL);
5116		if (!hsotg->desc_gen_cache) {
5117			dev_err(hsotg->dev,
5118				"unable to create dwc2 generic desc cache\n");
5119
5120			/*
5121			 * Disable descriptor dma mode since it will not be
5122			 * usable.
5123			 */
5124			hsotg->params.dma_desc_enable = 0;
5125			hsotg->params.dma_desc_fs_enable = 0;
5126		}
5127
5128		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5129				sizeof(struct dwc2_dma_desc) *
5130				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5131		if (!hsotg->desc_hsisoc_cache) {
5132			dev_err(hsotg->dev,
5133				"unable to create dwc2 hs isoc desc cache\n");
5134
5135			kmem_cache_destroy(hsotg->desc_gen_cache);
5136
5137			/*
5138			 * Disable descriptor dma mode since it will not be
5139			 * usable.
5140			 */
5141			hsotg->params.dma_desc_enable = 0;
5142			hsotg->params.dma_desc_fs_enable = 0;
5143		}
5144	}
5145
5146	hsotg->otg_port = 1;
5147	hsotg->frame_list = NULL;
5148	hsotg->frame_list_dma = 0;
5149	hsotg->periodic_qh_count = 0;
5150
5151	/* Initiate lx_state to L3 disconnected state */
5152	hsotg->lx_state = DWC2_L3;
5153
5154	hcd->self.otg_port = hsotg->otg_port;
5155
5156	/* Don't support SG list at this point */
5157	hcd->self.sg_tablesize = 0;
5158
5159	if (!IS_ERR_OR_NULL(hsotg->uphy))
5160		otg_set_host(hsotg->uphy->otg, &hcd->self);
5161
5162	/*
5163	 * Finish generic HCD initialization and start the HCD. This function
5164	 * allocates the DMA buffer pool, registers the USB bus, requests the
5165	 * IRQ line, and calls hcd_start method.
5166	 */
5167	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5168	if (retval < 0)
5169		goto error4;
5170
5171	device_wakeup_enable(hcd->self.controller);
5172
5173	dwc2_hcd_dump_state(hsotg);
5174
5175	dwc2_enable_global_interrupts(hsotg);
5176
5177	return 0;
5178
5179error4:
5180	kmem_cache_destroy(hsotg->desc_gen_cache);
5181	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5182error3:
5183	dwc2_hcd_release(hsotg);
5184error2:
5185	usb_put_hcd(hcd);
5186error1:
5187
5188#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5189	kfree(hsotg->last_frame_num_array);
5190	kfree(hsotg->frame_num_array);
5191#endif
5192
5193	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5194	return retval;
5195}
5196
5197/*
5198 * Removes the HCD.
5199 * Frees memory and resources associated with the HCD and deregisters the bus.
5200 */
5201void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5202{
5203	struct usb_hcd *hcd;
5204
5205	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5206
5207	hcd = dwc2_hsotg_to_hcd(hsotg);
5208	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5209
5210	if (!hcd) {
5211		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5212			__func__);
5213		return;
5214	}
5215
5216	if (!IS_ERR_OR_NULL(hsotg->uphy))
5217		otg_set_host(hsotg->uphy->otg, NULL);
5218
5219	usb_remove_hcd(hcd);
5220	hsotg->priv = NULL;
5221
5222	kmem_cache_destroy(hsotg->desc_gen_cache);
5223	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5224
5225	dwc2_hcd_release(hsotg);
5226	usb_put_hcd(hcd);
5227
5228#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5229	kfree(hsotg->last_frame_num_array);
5230	kfree(hsotg->frame_num_array);
5231#endif
5232}
5233
5234/**
5235 * dwc2_backup_host_registers() - Backup controller host registers.
5236 * When suspending usb bus, registers needs to be backuped
5237 * if controller power is disabled once suspended.
5238 *
5239 * @hsotg: Programming view of the DWC_otg controller
5240 */
5241int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5242{
5243	struct dwc2_hregs_backup *hr;
5244	int i;
5245
5246	dev_dbg(hsotg->dev, "%s\n", __func__);
5247
5248	/* Backup Host regs */
5249	hr = &hsotg->hr_backup;
5250	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5251	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5252	for (i = 0; i < hsotg->params.host_channels; ++i)
5253		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5254
5255	hr->hprt0 = dwc2_read_hprt0(hsotg);
5256	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5257	hr->valid = true;
5258
5259	return 0;
5260}
5261
5262/**
5263 * dwc2_restore_host_registers() - Restore controller host registers.
5264 * When resuming usb bus, device registers needs to be restored
5265 * if controller power were disabled.
5266 *
5267 * @hsotg: Programming view of the DWC_otg controller
5268 */
5269int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5270{
5271	struct dwc2_hregs_backup *hr;
5272	int i;
5273
5274	dev_dbg(hsotg->dev, "%s\n", __func__);
5275
5276	/* Restore host regs */
5277	hr = &hsotg->hr_backup;
5278	if (!hr->valid) {
5279		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5280			__func__);
5281		return -EINVAL;
5282	}
5283	hr->valid = false;
5284
5285	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5286	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5287
5288	for (i = 0; i < hsotg->params.host_channels; ++i)
5289		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5290
5291	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5292	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5293	hsotg->frame_number = 0;
5294
5295	return 0;
5296}