Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * hcd.c - DesignWare HS OTG Controller host-mode routines
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37
  38/*
  39 * This file contains the core HCD code, and implements the Linux hc_driver
  40 * API
  41 */
  42#include <linux/kernel.h>
  43#include <linux/module.h>
  44#include <linux/spinlock.h>
  45#include <linux/interrupt.h>
  46#include <linux/platform_device.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/delay.h>
  49#include <linux/io.h>
  50#include <linux/slab.h>
  51#include <linux/usb.h>
  52
  53#include <linux/usb/hcd.h>
  54#include <linux/usb/ch11.h>
  55
  56#include "core.h"
  57#include "hcd.h"
  58
  59static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
  60
  61/*
  62 * =========================================================================
  63 *  Host Core Layer Functions
  64 * =========================================================================
  65 */
  66
  67/**
  68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
  69 * used in both device and host modes
  70 *
  71 * @hsotg: Programming view of the DWC_otg controller
  72 */
  73static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
  74{
  75	u32 intmsk;
  76
  77	/* Clear any pending OTG Interrupts */
  78	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
  79
  80	/* Clear any pending interrupts */
  81	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
  82
  83	/* Enable the interrupts in the GINTMSK */
  84	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
  85
  86	if (!hsotg->params.host_dma)
  87		intmsk |= GINTSTS_RXFLVL;
  88	if (!hsotg->params.external_id_pin_ctl)
  89		intmsk |= GINTSTS_CONIDSTSCHNG;
  90
  91	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
  92		  GINTSTS_SESSREQINT;
  93
  94	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
  95		intmsk |= GINTSTS_LPMTRANRCVD;
  96
  97	dwc2_writel(hsotg, intmsk, GINTMSK);
  98}
  99
 100static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
 101{
 102	u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
 103
 104	switch (hsotg->hw_params.arch) {
 105	case GHWCFG2_EXT_DMA_ARCH:
 106		dev_err(hsotg->dev, "External DMA Mode not supported\n");
 107		return -EINVAL;
 108
 109	case GHWCFG2_INT_DMA_ARCH:
 110		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
 111		if (hsotg->params.ahbcfg != -1) {
 112			ahbcfg &= GAHBCFG_CTRL_MASK;
 113			ahbcfg |= hsotg->params.ahbcfg &
 114				  ~GAHBCFG_CTRL_MASK;
 115		}
 116		break;
 117
 118	case GHWCFG2_SLAVE_ONLY_ARCH:
 119	default:
 120		dev_dbg(hsotg->dev, "Slave Only Mode\n");
 121		break;
 122	}
 123
 124	if (hsotg->params.host_dma)
 125		ahbcfg |= GAHBCFG_DMA_EN;
 126	else
 127		hsotg->params.dma_desc_enable = false;
 128
 129	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
 130
 131	return 0;
 132}
 133
 134static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
 135{
 136	u32 usbcfg;
 137
 138	usbcfg = dwc2_readl(hsotg, GUSBCFG);
 139	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
 140
 141	switch (hsotg->hw_params.op_mode) {
 142	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
 143		if (hsotg->params.otg_cap ==
 144				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
 145			usbcfg |= GUSBCFG_HNPCAP;
 146		if (hsotg->params.otg_cap !=
 147				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 148			usbcfg |= GUSBCFG_SRPCAP;
 149		break;
 150
 151	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
 152	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
 153	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
 154		if (hsotg->params.otg_cap !=
 155				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
 156			usbcfg |= GUSBCFG_SRPCAP;
 157		break;
 158
 159	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
 160	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
 161	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
 162	default:
 163		break;
 164	}
 165
 166	dwc2_writel(hsotg, usbcfg, GUSBCFG);
 167}
 168
 169static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
 170{
 171	if (hsotg->vbus_supply)
 172		return regulator_enable(hsotg->vbus_supply);
 173
 174	return 0;
 175}
 176
 177static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
 178{
 179	if (hsotg->vbus_supply)
 180		return regulator_disable(hsotg->vbus_supply);
 181
 182	return 0;
 183}
 184
 185/**
 186 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
 187 *
 188 * @hsotg: Programming view of DWC_otg controller
 189 */
 190static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
 191{
 192	u32 intmsk;
 193
 194	dev_dbg(hsotg->dev, "%s()\n", __func__);
 195
 196	/* Disable all interrupts */
 197	dwc2_writel(hsotg, 0, GINTMSK);
 198	dwc2_writel(hsotg, 0, HAINTMSK);
 199
 200	/* Enable the common interrupts */
 201	dwc2_enable_common_interrupts(hsotg);
 202
 203	/* Enable host mode interrupts without disturbing common interrupts */
 204	intmsk = dwc2_readl(hsotg, GINTMSK);
 205	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
 206	dwc2_writel(hsotg, intmsk, GINTMSK);
 207}
 208
 209/**
 210 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
 211 *
 212 * @hsotg: Programming view of DWC_otg controller
 213 */
 214static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
 215{
 216	u32 intmsk = dwc2_readl(hsotg, GINTMSK);
 217
 218	/* Disable host mode interrupts without disturbing common interrupts */
 219	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
 220		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
 221	dwc2_writel(hsotg, intmsk, GINTMSK);
 222}
 223
 224/*
 225 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
 226 * For system that have a total fifo depth that is smaller than the default
 227 * RX + TX fifo size.
 228 *
 229 * @hsotg: Programming view of DWC_otg controller
 230 */
 231static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
 232{
 233	struct dwc2_core_params *params = &hsotg->params;
 234	struct dwc2_hw_params *hw = &hsotg->hw_params;
 235	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
 236
 237	total_fifo_size = hw->total_fifo_size;
 238	rxfsiz = params->host_rx_fifo_size;
 239	nptxfsiz = params->host_nperio_tx_fifo_size;
 240	ptxfsiz = params->host_perio_tx_fifo_size;
 241
 242	/*
 243	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
 244	 * allocation with support for high bandwidth endpoints. Synopsys
 245	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
 246	 * non-periodic as 512.
 247	 */
 248	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
 249		/*
 250		 * For Buffer DMA mode/Scatter Gather DMA mode
 251		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
 252		 * with n = number of host channel.
 253		 * 2 * ((1024/4) + 2) = 516
 254		 */
 255		rxfsiz = 516 + hw->host_channels;
 256
 257		/*
 258		 * min non-periodic tx fifo depth
 259		 * 2 * (largest non-periodic USB packet used / 4)
 260		 * 2 * (512/4) = 256
 261		 */
 262		nptxfsiz = 256;
 263
 264		/*
 265		 * min periodic tx fifo depth
 266		 * (largest packet size*MC)/4
 267		 * (1024 * 3)/4 = 768
 268		 */
 269		ptxfsiz = 768;
 270
 271		params->host_rx_fifo_size = rxfsiz;
 272		params->host_nperio_tx_fifo_size = nptxfsiz;
 273		params->host_perio_tx_fifo_size = ptxfsiz;
 274	}
 275
 276	/*
 277	 * If the summation of RX, NPTX and PTX fifo sizes is still
 278	 * bigger than the total_fifo_size, then we have a problem.
 279	 *
 280	 * We won't be able to allocate as many endpoints. Right now,
 281	 * we're just printing an error message, but ideally this FIFO
 282	 * allocation algorithm would be improved in the future.
 283	 *
 284	 * FIXME improve this FIFO allocation algorithm.
 285	 */
 286	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
 287		dev_err(hsotg->dev, "invalid fifo sizes\n");
 288}
 289
 290static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
 291{
 292	struct dwc2_core_params *params = &hsotg->params;
 293	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
 294
 295	if (!params->enable_dynamic_fifo)
 296		return;
 297
 298	dwc2_calculate_dynamic_fifo(hsotg);
 299
 300	/* Rx FIFO */
 301	grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
 302	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
 303	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
 304	grxfsiz |= params->host_rx_fifo_size <<
 305		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
 306	dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
 307	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
 308		dwc2_readl(hsotg, GRXFSIZ));
 309
 310	/* Non-periodic Tx FIFO */
 311	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
 312		dwc2_readl(hsotg, GNPTXFSIZ));
 313	nptxfsiz = params->host_nperio_tx_fifo_size <<
 314		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 315	nptxfsiz |= params->host_rx_fifo_size <<
 316		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 317	dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
 318	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
 319		dwc2_readl(hsotg, GNPTXFSIZ));
 320
 321	/* Periodic Tx FIFO */
 322	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
 323		dwc2_readl(hsotg, HPTXFSIZ));
 324	hptxfsiz = params->host_perio_tx_fifo_size <<
 325		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
 326	hptxfsiz |= (params->host_rx_fifo_size +
 327		     params->host_nperio_tx_fifo_size) <<
 328		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
 329	dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
 330	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
 331		dwc2_readl(hsotg, HPTXFSIZ));
 332
 333	if (hsotg->params.en_multiple_tx_fifo &&
 334	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
 335		/*
 336		 * This feature was implemented in 2.91a version
 337		 * Global DFIFOCFG calculation for Host mode -
 338		 * include RxFIFO, NPTXFIFO and HPTXFIFO
 339		 */
 340		dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
 341		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
 342		dfifocfg |= (params->host_rx_fifo_size +
 343			     params->host_nperio_tx_fifo_size +
 344			     params->host_perio_tx_fifo_size) <<
 345			    GDFIFOCFG_EPINFOBASE_SHIFT &
 346			    GDFIFOCFG_EPINFOBASE_MASK;
 347		dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
 348	}
 349}
 350
 351/**
 352 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
 353 * the HFIR register according to PHY type and speed
 354 *
 355 * @hsotg: Programming view of DWC_otg controller
 356 *
 357 * NOTE: The caller can modify the value of the HFIR register only after the
 358 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
 359 * has been set
 360 */
 361u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
 362{
 363	u32 usbcfg;
 364	u32 hprt0;
 365	int clock = 60;	/* default value */
 366
 367	usbcfg = dwc2_readl(hsotg, GUSBCFG);
 368	hprt0 = dwc2_readl(hsotg, HPRT0);
 369
 370	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
 371	    !(usbcfg & GUSBCFG_PHYIF16))
 372		clock = 60;
 373	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
 374	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
 375		clock = 48;
 376	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 377	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 378		clock = 30;
 379	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 380	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
 381		clock = 60;
 382	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
 383	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
 384		clock = 48;
 385	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
 386	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
 387		clock = 48;
 388	if ((usbcfg & GUSBCFG_PHYSEL) &&
 389	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
 390		clock = 48;
 391
 392	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
 393		/* High speed case */
 394		return 125 * clock - 1;
 395
 396	/* FS/LS case */
 397	return 1000 * clock - 1;
 398}
 399
 400/**
 401 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
 402 * buffer
 403 *
 404 * @hsotg: Programming view of DWC_otg controller
 405 * @dest:    Destination buffer for the packet
 406 * @bytes:   Number of bytes to copy to the destination
 407 */
 408void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
 409{
 410	u32 *data_buf = (u32 *)dest;
 411	int word_count = (bytes + 3) / 4;
 412	int i;
 413
 414	/*
 415	 * Todo: Account for the case where dest is not dword aligned. This
 416	 * requires reading data from the FIFO into a u32 temp buffer, then
 417	 * moving it into the data buffer.
 418	 */
 419
 420	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
 421
 422	for (i = 0; i < word_count; i++, data_buf++)
 423		*data_buf = dwc2_readl(hsotg, HCFIFO(0));
 424}
 425
 426/**
 427 * dwc2_dump_channel_info() - Prints the state of a host channel
 428 *
 429 * @hsotg: Programming view of DWC_otg controller
 430 * @chan:  Pointer to the channel to dump
 431 *
 432 * Must be called with interrupt disabled and spinlock held
 433 *
 434 * NOTE: This function will be removed once the peripheral controller code
 435 * is integrated and the driver is stable
 436 */
 437static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
 438				   struct dwc2_host_chan *chan)
 439{
 440#ifdef VERBOSE_DEBUG
 441	int num_channels = hsotg->params.host_channels;
 442	struct dwc2_qh *qh;
 443	u32 hcchar;
 444	u32 hcsplt;
 445	u32 hctsiz;
 446	u32 hc_dma;
 447	int i;
 448
 449	if (!chan)
 450		return;
 451
 452	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 453	hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
 454	hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
 455	hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
 456
 457	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
 458	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
 459		hcchar, hcsplt);
 460	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
 461		hctsiz, hc_dma);
 462	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
 463		chan->dev_addr, chan->ep_num, chan->ep_is_in);
 464	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
 465	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
 466	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
 467	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
 468	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
 469	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
 470	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
 471		(unsigned long)chan->xfer_dma);
 472	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
 473	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
 474	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
 475	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
 476			    qh_list_entry)
 477		dev_dbg(hsotg->dev, "    %p\n", qh);
 478	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
 479	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
 480			    qh_list_entry)
 481		dev_dbg(hsotg->dev, "    %p\n", qh);
 482	dev_dbg(hsotg->dev, "  NP active sched:\n");
 483	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
 484			    qh_list_entry)
 485		dev_dbg(hsotg->dev, "    %p\n", qh);
 486	dev_dbg(hsotg->dev, "  Channels:\n");
 487	for (i = 0; i < num_channels; i++) {
 488		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
 489
 490		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
 491	}
 492#endif /* VERBOSE_DEBUG */
 493}
 494
 495static int _dwc2_hcd_start(struct usb_hcd *hcd);
 496
 497static void dwc2_host_start(struct dwc2_hsotg *hsotg)
 498{
 499	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 500
 501	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
 502	_dwc2_hcd_start(hcd);
 503}
 504
 505static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
 506{
 507	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
 508
 509	hcd->self.is_b_host = 0;
 510}
 511
 512static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
 513			       int *hub_addr, int *hub_port)
 514{
 515	struct urb *urb = context;
 516
 517	if (urb->dev->tt)
 518		*hub_addr = urb->dev->tt->hub->devnum;
 519	else
 520		*hub_addr = 0;
 521	*hub_port = urb->dev->ttport;
 522}
 523
 524/*
 525 * =========================================================================
 526 *  Low Level Host Channel Access Functions
 527 * =========================================================================
 528 */
 529
 530static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
 531				      struct dwc2_host_chan *chan)
 532{
 533	u32 hcintmsk = HCINTMSK_CHHLTD;
 534
 535	switch (chan->ep_type) {
 536	case USB_ENDPOINT_XFER_CONTROL:
 537	case USB_ENDPOINT_XFER_BULK:
 538		dev_vdbg(hsotg->dev, "control/bulk\n");
 539		hcintmsk |= HCINTMSK_XFERCOMPL;
 540		hcintmsk |= HCINTMSK_STALL;
 541		hcintmsk |= HCINTMSK_XACTERR;
 542		hcintmsk |= HCINTMSK_DATATGLERR;
 543		if (chan->ep_is_in) {
 544			hcintmsk |= HCINTMSK_BBLERR;
 545		} else {
 546			hcintmsk |= HCINTMSK_NAK;
 547			hcintmsk |= HCINTMSK_NYET;
 548			if (chan->do_ping)
 549				hcintmsk |= HCINTMSK_ACK;
 550		}
 551
 552		if (chan->do_split) {
 553			hcintmsk |= HCINTMSK_NAK;
 554			if (chan->complete_split)
 555				hcintmsk |= HCINTMSK_NYET;
 556			else
 557				hcintmsk |= HCINTMSK_ACK;
 558		}
 559
 560		if (chan->error_state)
 561			hcintmsk |= HCINTMSK_ACK;
 562		break;
 563
 564	case USB_ENDPOINT_XFER_INT:
 565		if (dbg_perio())
 566			dev_vdbg(hsotg->dev, "intr\n");
 567		hcintmsk |= HCINTMSK_XFERCOMPL;
 568		hcintmsk |= HCINTMSK_NAK;
 569		hcintmsk |= HCINTMSK_STALL;
 570		hcintmsk |= HCINTMSK_XACTERR;
 571		hcintmsk |= HCINTMSK_DATATGLERR;
 572		hcintmsk |= HCINTMSK_FRMOVRUN;
 573
 574		if (chan->ep_is_in)
 575			hcintmsk |= HCINTMSK_BBLERR;
 576		if (chan->error_state)
 577			hcintmsk |= HCINTMSK_ACK;
 578		if (chan->do_split) {
 579			if (chan->complete_split)
 580				hcintmsk |= HCINTMSK_NYET;
 581			else
 582				hcintmsk |= HCINTMSK_ACK;
 583		}
 584		break;
 585
 586	case USB_ENDPOINT_XFER_ISOC:
 587		if (dbg_perio())
 588			dev_vdbg(hsotg->dev, "isoc\n");
 589		hcintmsk |= HCINTMSK_XFERCOMPL;
 590		hcintmsk |= HCINTMSK_FRMOVRUN;
 591		hcintmsk |= HCINTMSK_ACK;
 592
 593		if (chan->ep_is_in) {
 594			hcintmsk |= HCINTMSK_XACTERR;
 595			hcintmsk |= HCINTMSK_BBLERR;
 596		}
 597		break;
 598	default:
 599		dev_err(hsotg->dev, "## Unknown EP type ##\n");
 600		break;
 601	}
 602
 603	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 604	if (dbg_hc(chan))
 605		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 606}
 607
 608static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
 609				    struct dwc2_host_chan *chan)
 610{
 611	u32 hcintmsk = HCINTMSK_CHHLTD;
 612
 613	/*
 614	 * For Descriptor DMA mode core halts the channel on AHB error.
 615	 * Interrupt is not required.
 616	 */
 617	if (!hsotg->params.dma_desc_enable) {
 618		if (dbg_hc(chan))
 619			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 620		hcintmsk |= HCINTMSK_AHBERR;
 621	} else {
 622		if (dbg_hc(chan))
 623			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
 624		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
 625			hcintmsk |= HCINTMSK_XFERCOMPL;
 626	}
 627
 628	if (chan->error_state && !chan->do_split &&
 629	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
 630		if (dbg_hc(chan))
 631			dev_vdbg(hsotg->dev, "setting ACK\n");
 632		hcintmsk |= HCINTMSK_ACK;
 633		if (chan->ep_is_in) {
 634			hcintmsk |= HCINTMSK_DATATGLERR;
 635			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
 636				hcintmsk |= HCINTMSK_NAK;
 637		}
 638	}
 639
 640	dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 641	if (dbg_hc(chan))
 642		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
 643}
 644
 645static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
 646				struct dwc2_host_chan *chan)
 647{
 648	u32 intmsk;
 649
 650	if (hsotg->params.host_dma) {
 651		if (dbg_hc(chan))
 652			dev_vdbg(hsotg->dev, "DMA enabled\n");
 653		dwc2_hc_enable_dma_ints(hsotg, chan);
 654	} else {
 655		if (dbg_hc(chan))
 656			dev_vdbg(hsotg->dev, "DMA disabled\n");
 657		dwc2_hc_enable_slave_ints(hsotg, chan);
 658	}
 659
 660	/* Enable the top level host channel interrupt */
 661	intmsk = dwc2_readl(hsotg, HAINTMSK);
 662	intmsk |= 1 << chan->hc_num;
 663	dwc2_writel(hsotg, intmsk, HAINTMSK);
 664	if (dbg_hc(chan))
 665		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
 666
 667	/* Make sure host channel interrupts are enabled */
 668	intmsk = dwc2_readl(hsotg, GINTMSK);
 669	intmsk |= GINTSTS_HCHINT;
 670	dwc2_writel(hsotg, intmsk, GINTMSK);
 671	if (dbg_hc(chan))
 672		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
 673}
 674
 675/**
 676 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
 677 * a specific endpoint
 678 *
 679 * @hsotg: Programming view of DWC_otg controller
 680 * @chan:  Information needed to initialize the host channel
 681 *
 682 * The HCCHARn register is set up with the characteristics specified in chan.
 683 * Host channel interrupts that may need to be serviced while this transfer is
 684 * in progress are enabled.
 685 */
 686static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 687{
 688	u8 hc_num = chan->hc_num;
 689	u32 hcintmsk;
 690	u32 hcchar;
 691	u32 hcsplt = 0;
 692
 693	if (dbg_hc(chan))
 694		dev_vdbg(hsotg->dev, "%s()\n", __func__);
 695
 696	/* Clear old interrupt conditions for this host channel */
 697	hcintmsk = 0xffffffff;
 698	hcintmsk &= ~HCINTMSK_RESERVED14_31;
 699	dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
 700
 701	/* Enable channel interrupts required for this transfer */
 702	dwc2_hc_enable_ints(hsotg, chan);
 703
 704	/*
 705	 * Program the HCCHARn register with the endpoint characteristics for
 706	 * the current transfer
 707	 */
 708	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
 709	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
 710	if (chan->ep_is_in)
 711		hcchar |= HCCHAR_EPDIR;
 712	if (chan->speed == USB_SPEED_LOW)
 713		hcchar |= HCCHAR_LSPDDEV;
 714	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
 715	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
 716	dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
 717	if (dbg_hc(chan)) {
 718		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
 719			 hc_num, hcchar);
 720
 721		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
 722			 __func__, hc_num);
 723		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
 724			 chan->dev_addr);
 725		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
 726			 chan->ep_num);
 727		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
 728			 chan->ep_is_in);
 729		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
 730			 chan->speed == USB_SPEED_LOW);
 731		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
 732			 chan->ep_type);
 733		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
 734			 chan->max_packet);
 735	}
 736
 737	/* Program the HCSPLT register for SPLITs */
 738	if (chan->do_split) {
 739		if (dbg_hc(chan))
 740			dev_vdbg(hsotg->dev,
 741				 "Programming HC %d with split --> %s\n",
 742				 hc_num,
 743				 chan->complete_split ? "CSPLIT" : "SSPLIT");
 744		if (chan->complete_split)
 745			hcsplt |= HCSPLT_COMPSPLT;
 746		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
 747			  HCSPLT_XACTPOS_MASK;
 748		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
 749			  HCSPLT_HUBADDR_MASK;
 750		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
 751			  HCSPLT_PRTADDR_MASK;
 752		if (dbg_hc(chan)) {
 753			dev_vdbg(hsotg->dev, "	  comp split %d\n",
 754				 chan->complete_split);
 755			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
 756				 chan->xact_pos);
 757			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
 758				 chan->hub_addr);
 759			dev_vdbg(hsotg->dev, "	  hub port %d\n",
 760				 chan->hub_port);
 761			dev_vdbg(hsotg->dev, "	  is_in %d\n",
 762				 chan->ep_is_in);
 763			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
 764				 chan->max_packet);
 765			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
 766				 chan->xfer_len);
 767		}
 768	}
 769
 770	dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
 771}
 772
 773/**
 774 * dwc2_hc_halt() - Attempts to halt a host channel
 775 *
 776 * @hsotg:       Controller register interface
 777 * @chan:        Host channel to halt
 778 * @halt_status: Reason for halting the channel
 779 *
 780 * This function should only be called in Slave mode or to abort a transfer in
 781 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
 782 * controller halts the channel when the transfer is complete or a condition
 783 * occurs that requires application intervention.
 784 *
 785 * In slave mode, checks for a free request queue entry, then sets the Channel
 786 * Enable and Channel Disable bits of the Host Channel Characteristics
 787 * register of the specified channel to intiate the halt. If there is no free
 788 * request queue entry, sets only the Channel Disable bit of the HCCHARn
 789 * register to flush requests for this channel. In the latter case, sets a
 790 * flag to indicate that the host channel needs to be halted when a request
 791 * queue slot is open.
 792 *
 793 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
 794 * HCCHARn register. The controller ensures there is space in the request
 795 * queue before submitting the halt request.
 796 *
 797 * Some time may elapse before the core flushes any posted requests for this
 798 * host channel and halts. The Channel Halted interrupt handler completes the
 799 * deactivation of the host channel.
 800 */
 801void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
 802		  enum dwc2_halt_status halt_status)
 803{
 804	u32 nptxsts, hptxsts, hcchar;
 805
 806	if (dbg_hc(chan))
 807		dev_vdbg(hsotg->dev, "%s()\n", __func__);
 808
 809	/*
 810	 * In buffer DMA or external DMA mode channel can't be halted
 811	 * for non-split periodic channels. At the end of the next
 812	 * uframe/frame (in the worst case), the core generates a channel
 813	 * halted and disables the channel automatically.
 814	 */
 815	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
 816	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
 817		if (!chan->do_split &&
 818		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
 819		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
 820			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
 821				__func__);
 822			return;
 823		}
 824	}
 825
 826	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
 827		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
 828
 829	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
 830	    halt_status == DWC2_HC_XFER_AHB_ERR) {
 831		/*
 832		 * Disable all channel interrupts except Ch Halted. The QTD
 833		 * and QH state associated with this transfer has been cleared
 834		 * (in the case of URB_DEQUEUE), so the channel needs to be
 835		 * shut down carefully to prevent crashes.
 836		 */
 837		u32 hcintmsk = HCINTMSK_CHHLTD;
 838
 839		dev_vdbg(hsotg->dev, "dequeue/error\n");
 840		dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
 841
 842		/*
 843		 * Make sure no other interrupts besides halt are currently
 844		 * pending. Handling another interrupt could cause a crash due
 845		 * to the QTD and QH state.
 846		 */
 847		dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
 848
 849		/*
 850		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
 851		 * even if the channel was already halted for some other
 852		 * reason
 853		 */
 854		chan->halt_status = halt_status;
 855
 856		hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 857		if (!(hcchar & HCCHAR_CHENA)) {
 858			/*
 859			 * The channel is either already halted or it hasn't
 860			 * started yet. In DMA mode, the transfer may halt if
 861			 * it finishes normally or a condition occurs that
 862			 * requires driver intervention. Don't want to halt
 863			 * the channel again. In either Slave or DMA mode,
 864			 * it's possible that the transfer has been assigned
 865			 * to a channel, but not started yet when an URB is
 866			 * dequeued. Don't want to halt a channel that hasn't
 867			 * started yet.
 868			 */
 869			return;
 870		}
 871	}
 872	if (chan->halt_pending) {
 873		/*
 874		 * A halt has already been issued for this channel. This might
 875		 * happen when a transfer is aborted by a higher level in
 876		 * the stack.
 877		 */
 878		dev_vdbg(hsotg->dev,
 879			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
 880			 __func__, chan->hc_num);
 881		return;
 882	}
 883
 884	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
 885
 886	/* No need to set the bit in DDMA for disabling the channel */
 887	/* TODO check it everywhere channel is disabled */
 888	if (!hsotg->params.dma_desc_enable) {
 889		if (dbg_hc(chan))
 890			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
 891		hcchar |= HCCHAR_CHENA;
 892	} else {
 893		if (dbg_hc(chan))
 894			dev_dbg(hsotg->dev, "desc DMA enabled\n");
 895	}
 896	hcchar |= HCCHAR_CHDIS;
 897
 898	if (!hsotg->params.host_dma) {
 899		if (dbg_hc(chan))
 900			dev_vdbg(hsotg->dev, "DMA not enabled\n");
 901		hcchar |= HCCHAR_CHENA;
 902
 903		/* Check for space in the request queue to issue the halt */
 904		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
 905		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
 906			dev_vdbg(hsotg->dev, "control/bulk\n");
 907			nptxsts = dwc2_readl(hsotg, GNPTXSTS);
 908			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
 909				dev_vdbg(hsotg->dev, "Disabling channel\n");
 910				hcchar &= ~HCCHAR_CHENA;
 911			}
 912		} else {
 913			if (dbg_perio())
 914				dev_vdbg(hsotg->dev, "isoc/intr\n");
 915			hptxsts = dwc2_readl(hsotg, HPTXSTS);
 916			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
 917			    hsotg->queuing_high_bandwidth) {
 918				if (dbg_perio())
 919					dev_vdbg(hsotg->dev, "Disabling channel\n");
 920				hcchar &= ~HCCHAR_CHENA;
 921			}
 922		}
 923	} else {
 924		if (dbg_hc(chan))
 925			dev_vdbg(hsotg->dev, "DMA enabled\n");
 926	}
 927
 928	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
 929	chan->halt_status = halt_status;
 930
 931	if (hcchar & HCCHAR_CHENA) {
 932		if (dbg_hc(chan))
 933			dev_vdbg(hsotg->dev, "Channel enabled\n");
 934		chan->halt_pending = 1;
 935		chan->halt_on_queue = 0;
 936	} else {
 937		if (dbg_hc(chan))
 938			dev_vdbg(hsotg->dev, "Channel disabled\n");
 939		chan->halt_on_queue = 1;
 940	}
 941
 942	if (dbg_hc(chan)) {
 943		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
 944			 chan->hc_num);
 945		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
 946			 hcchar);
 947		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
 948			 chan->halt_pending);
 949		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
 950			 chan->halt_on_queue);
 951		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
 952			 chan->halt_status);
 953	}
 954}
 955
 956/**
 957 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
 958 *
 959 * @hsotg: Programming view of DWC_otg controller
 960 * @chan:  Identifies the host channel to clean up
 961 *
 962 * This function is normally called after a transfer is done and the host
 963 * channel is being released
 964 */
 965void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
 966{
 967	u32 hcintmsk;
 968
 969	chan->xfer_started = 0;
 970
 971	list_del_init(&chan->split_order_list_entry);
 972
 973	/*
 974	 * Clear channel interrupt enables and any unhandled channel interrupt
 975	 * conditions
 976	 */
 977	dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
 978	hcintmsk = 0xffffffff;
 979	hcintmsk &= ~HCINTMSK_RESERVED14_31;
 980	dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
 981}
 982
 983/**
 984 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
 985 * which frame a periodic transfer should occur
 986 *
 987 * @hsotg:  Programming view of DWC_otg controller
 988 * @chan:   Identifies the host channel to set up and its properties
 989 * @hcchar: Current value of the HCCHAR register for the specified host channel
 990 *
 991 * This function has no effect on non-periodic transfers
 992 */
 993static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
 994				       struct dwc2_host_chan *chan, u32 *hcchar)
 995{
 996	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
 997	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
 998		int host_speed;
 999		int xfer_ns;
1000		int xfer_us;
1001		int bytes_in_fifo;
1002		u16 fifo_space;
1003		u16 frame_number;
1004		u16 wire_frame;
1005
1006		/*
1007		 * Try to figure out if we're an even or odd frame. If we set
1008		 * even and the current frame number is even the the transfer
1009		 * will happen immediately.  Similar if both are odd. If one is
1010		 * even and the other is odd then the transfer will happen when
1011		 * the frame number ticks.
1012		 *
1013		 * There's a bit of a balancing act to get this right.
1014		 * Sometimes we may want to send data in the current frame (AK
1015		 * right away).  We might want to do this if the frame number
1016		 * _just_ ticked, but we might also want to do this in order
1017		 * to continue a split transaction that happened late in a
1018		 * microframe (so we didn't know to queue the next transfer
1019		 * until the frame number had ticked).  The problem is that we
1020		 * need a lot of knowledge to know if there's actually still
1021		 * time to send things or if it would be better to wait until
1022		 * the next frame.
1023		 *
1024		 * We can look at how much time is left in the current frame
1025		 * and make a guess about whether we'll have time to transfer.
1026		 * We'll do that.
1027		 */
1028
1029		/* Get speed host is running at */
1030		host_speed = (chan->speed != USB_SPEED_HIGH &&
1031			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1032
1033		/* See how many bytes are in the periodic FIFO right now */
1034		fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1035			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1036		bytes_in_fifo = sizeof(u32) *
1037				(hsotg->params.host_perio_tx_fifo_size -
1038				 fifo_space);
1039
1040		/*
1041		 * Roughly estimate bus time for everything in the periodic
1042		 * queue + our new transfer.  This is "rough" because we're
1043		 * using a function that makes takes into account IN/OUT
1044		 * and INT/ISO and we're just slamming in one value for all
1045		 * transfers.  This should be an over-estimate and that should
1046		 * be OK, but we can probably tighten it.
1047		 */
1048		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1049					    chan->xfer_len + bytes_in_fifo);
1050		xfer_us = NS_TO_US(xfer_ns);
1051
1052		/* See what frame number we'll be at by the time we finish */
1053		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1054
1055		/* This is when we were scheduled to be on the wire */
1056		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1057
1058		/*
1059		 * If we'd finish _after_ the frame we're scheduled in then
1060		 * it's hopeless.  Just schedule right away and hope for the
1061		 * best.  Note that it _might_ be wise to call back into the
1062		 * scheduler to pick a better frame, but this is better than
1063		 * nothing.
1064		 */
1065		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1066			dwc2_sch_vdbg(hsotg,
1067				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1068				      chan->qh, wire_frame, frame_number,
1069				      dwc2_frame_num_dec(frame_number,
1070							 wire_frame));
1071			wire_frame = frame_number;
1072
1073			/*
1074			 * We picked a different frame number; communicate this
1075			 * back to the scheduler so it doesn't try to schedule
1076			 * another in the same frame.
1077			 *
1078			 * Remember that next_active_frame is 1 before the wire
1079			 * frame.
1080			 */
1081			chan->qh->next_active_frame =
1082				dwc2_frame_num_dec(frame_number, 1);
1083		}
1084
1085		if (wire_frame & 1)
1086			*hcchar |= HCCHAR_ODDFRM;
1087		else
1088			*hcchar &= ~HCCHAR_ODDFRM;
1089	}
1090}
1091
1092static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1093{
1094	/* Set up the initial PID for the transfer */
1095	if (chan->speed == USB_SPEED_HIGH) {
1096		if (chan->ep_is_in) {
1097			if (chan->multi_count == 1)
1098				chan->data_pid_start = DWC2_HC_PID_DATA0;
1099			else if (chan->multi_count == 2)
1100				chan->data_pid_start = DWC2_HC_PID_DATA1;
1101			else
1102				chan->data_pid_start = DWC2_HC_PID_DATA2;
1103		} else {
1104			if (chan->multi_count == 1)
1105				chan->data_pid_start = DWC2_HC_PID_DATA0;
1106			else
1107				chan->data_pid_start = DWC2_HC_PID_MDATA;
1108		}
1109	} else {
1110		chan->data_pid_start = DWC2_HC_PID_DATA0;
1111	}
1112}
1113
1114/**
1115 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1116 * the Host Channel
1117 *
1118 * @hsotg: Programming view of DWC_otg controller
1119 * @chan:  Information needed to initialize the host channel
1120 *
1121 * This function should only be called in Slave mode. For a channel associated
1122 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1123 * associated with a periodic EP, the periodic Tx FIFO is written.
1124 *
1125 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1126 * the number of bytes written to the Tx FIFO.
1127 */
1128static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1129				 struct dwc2_host_chan *chan)
1130{
1131	u32 i;
1132	u32 remaining_count;
1133	u32 byte_count;
1134	u32 dword_count;
1135	u32 *data_buf = (u32 *)chan->xfer_buf;
1136
1137	if (dbg_hc(chan))
1138		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1139
1140	remaining_count = chan->xfer_len - chan->xfer_count;
1141	if (remaining_count > chan->max_packet)
1142		byte_count = chan->max_packet;
1143	else
1144		byte_count = remaining_count;
1145
1146	dword_count = (byte_count + 3) / 4;
1147
1148	if (((unsigned long)data_buf & 0x3) == 0) {
1149		/* xfer_buf is DWORD aligned */
1150		for (i = 0; i < dword_count; i++, data_buf++)
1151			dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1152	} else {
1153		/* xfer_buf is not DWORD aligned */
1154		for (i = 0; i < dword_count; i++, data_buf++) {
1155			u32 data = data_buf[0] | data_buf[1] << 8 |
1156				   data_buf[2] << 16 | data_buf[3] << 24;
1157			dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1158		}
1159	}
1160
1161	chan->xfer_count += byte_count;
1162	chan->xfer_buf += byte_count;
1163}
1164
1165/**
1166 * dwc2_hc_do_ping() - Starts a PING transfer
1167 *
1168 * @hsotg: Programming view of DWC_otg controller
1169 * @chan:  Information needed to initialize the host channel
1170 *
1171 * This function should only be called in Slave mode. The Do Ping bit is set in
1172 * the HCTSIZ register, then the channel is enabled.
1173 */
1174static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1175			    struct dwc2_host_chan *chan)
1176{
1177	u32 hcchar;
1178	u32 hctsiz;
1179
1180	if (dbg_hc(chan))
1181		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1182			 chan->hc_num);
1183
1184	hctsiz = TSIZ_DOPNG;
1185	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1186	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1187
1188	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1189	hcchar |= HCCHAR_CHENA;
1190	hcchar &= ~HCCHAR_CHDIS;
1191	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1192}
1193
1194/**
1195 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1196 * channel and starts the transfer
1197 *
1198 * @hsotg: Programming view of DWC_otg controller
1199 * @chan:  Information needed to initialize the host channel. The xfer_len value
1200 *         may be reduced to accommodate the max widths of the XferSize and
1201 *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1202 *         changed to reflect the final xfer_len value.
1203 *
1204 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1205 * the caller must ensure that there is sufficient space in the request queue
1206 * and Tx Data FIFO.
1207 *
1208 * For an OUT transfer in Slave mode, it loads a data packet into the
1209 * appropriate FIFO. If necessary, additional data packets are loaded in the
1210 * Host ISR.
1211 *
1212 * For an IN transfer in Slave mode, a data packet is requested. The data
1213 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1214 * additional data packets are requested in the Host ISR.
1215 *
1216 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1217 * register along with a packet count of 1 and the channel is enabled. This
1218 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1219 * simply set to 0 since no data transfer occurs in this case.
1220 *
1221 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1222 * all the information required to perform the subsequent data transfer. In
1223 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1224 * controller performs the entire PING protocol, then starts the data
1225 * transfer.
1226 */
1227static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1228				   struct dwc2_host_chan *chan)
1229{
1230	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1231	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1232	u32 hcchar;
1233	u32 hctsiz = 0;
1234	u16 num_packets;
1235	u32 ec_mc;
1236
1237	if (dbg_hc(chan))
1238		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1239
1240	if (chan->do_ping) {
1241		if (!hsotg->params.host_dma) {
1242			if (dbg_hc(chan))
1243				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1244			dwc2_hc_do_ping(hsotg, chan);
1245			chan->xfer_started = 1;
1246			return;
1247		}
1248
1249		if (dbg_hc(chan))
1250			dev_vdbg(hsotg->dev, "ping, DMA\n");
1251
1252		hctsiz |= TSIZ_DOPNG;
1253	}
1254
1255	if (chan->do_split) {
1256		if (dbg_hc(chan))
1257			dev_vdbg(hsotg->dev, "split\n");
1258		num_packets = 1;
1259
1260		if (chan->complete_split && !chan->ep_is_in)
1261			/*
1262			 * For CSPLIT OUT Transfer, set the size to 0 so the
1263			 * core doesn't expect any data written to the FIFO
1264			 */
1265			chan->xfer_len = 0;
1266		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1267			chan->xfer_len = chan->max_packet;
1268		else if (!chan->ep_is_in && chan->xfer_len > 188)
1269			chan->xfer_len = 188;
1270
1271		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1272			  TSIZ_XFERSIZE_MASK;
1273
1274		/* For split set ec_mc for immediate retries */
1275		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1276		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1277			ec_mc = 3;
1278		else
1279			ec_mc = 1;
1280	} else {
1281		if (dbg_hc(chan))
1282			dev_vdbg(hsotg->dev, "no split\n");
1283		/*
1284		 * Ensure that the transfer length and packet count will fit
1285		 * in the widths allocated for them in the HCTSIZn register
1286		 */
1287		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1288		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1289			/*
1290			 * Make sure the transfer size is no larger than one
1291			 * (micro)frame's worth of data. (A check was done
1292			 * when the periodic transfer was accepted to ensure
1293			 * that a (micro)frame's worth of data can be
1294			 * programmed into a channel.)
1295			 */
1296			u32 max_periodic_len =
1297				chan->multi_count * chan->max_packet;
1298
1299			if (chan->xfer_len > max_periodic_len)
1300				chan->xfer_len = max_periodic_len;
1301		} else if (chan->xfer_len > max_hc_xfer_size) {
1302			/*
1303			 * Make sure that xfer_len is a multiple of max packet
1304			 * size
1305			 */
1306			chan->xfer_len =
1307				max_hc_xfer_size - chan->max_packet + 1;
1308		}
1309
1310		if (chan->xfer_len > 0) {
1311			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1312					chan->max_packet;
1313			if (num_packets > max_hc_pkt_count) {
1314				num_packets = max_hc_pkt_count;
1315				chan->xfer_len = num_packets * chan->max_packet;
1316			}
1317		} else {
1318			/* Need 1 packet for transfer length of 0 */
1319			num_packets = 1;
1320		}
1321
1322		if (chan->ep_is_in)
1323			/*
1324			 * Always program an integral # of max packets for IN
1325			 * transfers
1326			 */
1327			chan->xfer_len = num_packets * chan->max_packet;
1328
1329		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1330		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1331			/*
1332			 * Make sure that the multi_count field matches the
1333			 * actual transfer length
1334			 */
1335			chan->multi_count = num_packets;
1336
1337		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1338			dwc2_set_pid_isoc(chan);
1339
1340		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1341			  TSIZ_XFERSIZE_MASK;
1342
1343		/* The ec_mc gets the multi_count for non-split */
1344		ec_mc = chan->multi_count;
1345	}
1346
1347	chan->start_pkt_count = num_packets;
1348	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1349	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1350		  TSIZ_SC_MC_PID_MASK;
1351	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1352	if (dbg_hc(chan)) {
1353		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1354			 hctsiz, chan->hc_num);
1355
1356		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1357			 chan->hc_num);
1358		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1359			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1360			 TSIZ_XFERSIZE_SHIFT);
1361		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1362			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1363			 TSIZ_PKTCNT_SHIFT);
1364		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1365			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1366			 TSIZ_SC_MC_PID_SHIFT);
1367	}
1368
1369	if (hsotg->params.host_dma) {
1370		dma_addr_t dma_addr;
1371
1372		if (chan->align_buf) {
1373			if (dbg_hc(chan))
1374				dev_vdbg(hsotg->dev, "align_buf\n");
1375			dma_addr = chan->align_buf;
1376		} else {
1377			dma_addr = chan->xfer_dma;
1378		}
1379		dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1380
1381		if (dbg_hc(chan))
1382			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1383				 (unsigned long)dma_addr, chan->hc_num);
1384	}
1385
1386	/* Start the split */
1387	if (chan->do_split) {
1388		u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1389
1390		hcsplt |= HCSPLT_SPLTENA;
1391		dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1392	}
1393
1394	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1395	hcchar &= ~HCCHAR_MULTICNT_MASK;
1396	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1397	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1398
1399	if (hcchar & HCCHAR_CHDIS)
1400		dev_warn(hsotg->dev,
1401			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1402			 __func__, chan->hc_num, hcchar);
1403
1404	/* Set host channel enable after all other setup is complete */
1405	hcchar |= HCCHAR_CHENA;
1406	hcchar &= ~HCCHAR_CHDIS;
1407
1408	if (dbg_hc(chan))
1409		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1410			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1411			 HCCHAR_MULTICNT_SHIFT);
1412
1413	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1414	if (dbg_hc(chan))
1415		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1416			 chan->hc_num);
1417
1418	chan->xfer_started = 1;
1419	chan->requests++;
1420
1421	if (!hsotg->params.host_dma &&
1422	    !chan->ep_is_in && chan->xfer_len > 0)
1423		/* Load OUT packet into the appropriate Tx FIFO */
1424		dwc2_hc_write_packet(hsotg, chan);
1425}
1426
1427/**
1428 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1429 * host channel and starts the transfer in Descriptor DMA mode
1430 *
1431 * @hsotg: Programming view of DWC_otg controller
1432 * @chan:  Information needed to initialize the host channel
1433 *
1434 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1435 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1436 * with micro-frame bitmap.
1437 *
1438 * Initializes HCDMA register with descriptor list address and CTD value then
1439 * starts the transfer via enabling the channel.
1440 */
1441void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1442				 struct dwc2_host_chan *chan)
1443{
1444	u32 hcchar;
1445	u32 hctsiz = 0;
1446
1447	if (chan->do_ping)
1448		hctsiz |= TSIZ_DOPNG;
1449
1450	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1451		dwc2_set_pid_isoc(chan);
1452
1453	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1454	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1455		  TSIZ_SC_MC_PID_MASK;
1456
1457	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1458	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1459
1460	/* Non-zero only for high-speed interrupt endpoints */
1461	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1462
1463	if (dbg_hc(chan)) {
1464		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1465			 chan->hc_num);
1466		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1467			 chan->data_pid_start);
1468		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1469	}
1470
1471	dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1472
1473	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1474				   chan->desc_list_sz, DMA_TO_DEVICE);
1475
1476	dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1477
1478	if (dbg_hc(chan))
1479		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1480			 &chan->desc_list_addr, chan->hc_num);
1481
1482	hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1483	hcchar &= ~HCCHAR_MULTICNT_MASK;
1484	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1485		  HCCHAR_MULTICNT_MASK;
1486
1487	if (hcchar & HCCHAR_CHDIS)
1488		dev_warn(hsotg->dev,
1489			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1490			 __func__, chan->hc_num, hcchar);
1491
1492	/* Set host channel enable after all other setup is complete */
1493	hcchar |= HCCHAR_CHENA;
1494	hcchar &= ~HCCHAR_CHDIS;
1495
1496	if (dbg_hc(chan))
1497		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1498			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1499			 HCCHAR_MULTICNT_SHIFT);
1500
1501	dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1502	if (dbg_hc(chan))
1503		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1504			 chan->hc_num);
1505
1506	chan->xfer_started = 1;
1507	chan->requests++;
1508}
1509
1510/**
1511 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1512 * a previous call to dwc2_hc_start_transfer()
1513 *
1514 * @hsotg: Programming view of DWC_otg controller
1515 * @chan:  Information needed to initialize the host channel
1516 *
1517 * The caller must ensure there is sufficient space in the request queue and Tx
1518 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1519 * the controller acts autonomously to complete transfers programmed to a host
1520 * channel.
1521 *
1522 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1523 * if there is any data remaining to be queued. For an IN transfer, another
1524 * data packet is always requested. For the SETUP phase of a control transfer,
1525 * this function does nothing.
1526 *
1527 * Return: 1 if a new request is queued, 0 if no more requests are required
1528 * for this transfer
1529 */
1530static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1531				     struct dwc2_host_chan *chan)
1532{
1533	if (dbg_hc(chan))
1534		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1535			 chan->hc_num);
1536
1537	if (chan->do_split)
1538		/* SPLITs always queue just once per channel */
1539		return 0;
1540
1541	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1542		/* SETUPs are queued only once since they can't be NAK'd */
1543		return 0;
1544
1545	if (chan->ep_is_in) {
1546		/*
1547		 * Always queue another request for other IN transfers. If
1548		 * back-to-back INs are issued and NAKs are received for both,
1549		 * the driver may still be processing the first NAK when the
1550		 * second NAK is received. When the interrupt handler clears
1551		 * the NAK interrupt for the first NAK, the second NAK will
1552		 * not be seen. So we can't depend on the NAK interrupt
1553		 * handler to requeue a NAK'd request. Instead, IN requests
1554		 * are issued each time this function is called. When the
1555		 * transfer completes, the extra requests for the channel will
1556		 * be flushed.
1557		 */
1558		u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1559
1560		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1561		hcchar |= HCCHAR_CHENA;
1562		hcchar &= ~HCCHAR_CHDIS;
1563		if (dbg_hc(chan))
1564			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1565				 hcchar);
1566		dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1567		chan->requests++;
1568		return 1;
1569	}
1570
1571	/* OUT transfers */
1572
1573	if (chan->xfer_count < chan->xfer_len) {
1574		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1575		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1576			u32 hcchar = dwc2_readl(hsotg,
1577						HCCHAR(chan->hc_num));
1578
1579			dwc2_hc_set_even_odd_frame(hsotg, chan,
1580						   &hcchar);
1581		}
1582
1583		/* Load OUT packet into the appropriate Tx FIFO */
1584		dwc2_hc_write_packet(hsotg, chan);
1585		chan->requests++;
1586		return 1;
1587	}
1588
1589	return 0;
1590}
1591
1592/*
1593 * =========================================================================
1594 *  HCD
1595 * =========================================================================
1596 */
1597
1598/*
1599 * Processes all the URBs in a single list of QHs. Completes them with
1600 * -ETIMEDOUT and frees the QTD.
1601 *
1602 * Must be called with interrupt disabled and spinlock held
1603 */
1604static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1605				      struct list_head *qh_list)
1606{
1607	struct dwc2_qh *qh, *qh_tmp;
1608	struct dwc2_qtd *qtd, *qtd_tmp;
1609
1610	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1611		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1612					 qtd_list_entry) {
1613			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1614			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1615		}
1616	}
1617}
1618
1619static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1620			      struct list_head *qh_list)
1621{
1622	struct dwc2_qtd *qtd, *qtd_tmp;
1623	struct dwc2_qh *qh, *qh_tmp;
1624	unsigned long flags;
1625
1626	if (!qh_list->next)
1627		/* The list hasn't been initialized yet */
1628		return;
1629
1630	spin_lock_irqsave(&hsotg->lock, flags);
1631
1632	/* Ensure there are no QTDs or URBs left */
1633	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1634
1635	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1636		dwc2_hcd_qh_unlink(hsotg, qh);
1637
1638		/* Free each QTD in the QH's QTD list */
1639		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1640					 qtd_list_entry)
1641			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1642
1643		if (qh->channel && qh->channel->qh == qh)
1644			qh->channel->qh = NULL;
1645
1646		spin_unlock_irqrestore(&hsotg->lock, flags);
1647		dwc2_hcd_qh_free(hsotg, qh);
1648		spin_lock_irqsave(&hsotg->lock, flags);
1649	}
1650
1651	spin_unlock_irqrestore(&hsotg->lock, flags);
1652}
1653
1654/*
1655 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1656 * and periodic schedules. The QTD associated with each URB is removed from
1657 * the schedule and freed. This function may be called when a disconnect is
1658 * detected or when the HCD is being stopped.
1659 *
1660 * Must be called with interrupt disabled and spinlock held
1661 */
1662static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1663{
1664	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1665	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1666	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1667	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1668	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1669	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1670	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1671}
1672
1673/**
1674 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1675 *
1676 * @hsotg: Pointer to struct dwc2_hsotg
1677 */
1678void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1679{
1680	u32 hprt0;
1681
1682	if (hsotg->op_state == OTG_STATE_B_HOST) {
1683		/*
1684		 * Reset the port. During a HNP mode switch the reset
1685		 * needs to occur within 1ms and have a duration of at
1686		 * least 50ms.
1687		 */
1688		hprt0 = dwc2_read_hprt0(hsotg);
1689		hprt0 |= HPRT0_RST;
1690		dwc2_writel(hsotg, hprt0, HPRT0);
1691	}
1692
1693	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1694			   msecs_to_jiffies(50));
1695}
1696
1697/* Must be called with interrupt disabled and spinlock held */
1698static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1699{
1700	int num_channels = hsotg->params.host_channels;
1701	struct dwc2_host_chan *channel;
1702	u32 hcchar;
1703	int i;
1704
1705	if (!hsotg->params.host_dma) {
1706		/* Flush out any channel requests in slave mode */
1707		for (i = 0; i < num_channels; i++) {
1708			channel = hsotg->hc_ptr_array[i];
1709			if (!list_empty(&channel->hc_list_entry))
1710				continue;
1711			hcchar = dwc2_readl(hsotg, HCCHAR(i));
1712			if (hcchar & HCCHAR_CHENA) {
1713				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1714				hcchar |= HCCHAR_CHDIS;
1715				dwc2_writel(hsotg, hcchar, HCCHAR(i));
1716			}
1717		}
1718	}
1719
1720	for (i = 0; i < num_channels; i++) {
1721		channel = hsotg->hc_ptr_array[i];
1722		if (!list_empty(&channel->hc_list_entry))
1723			continue;
1724		hcchar = dwc2_readl(hsotg, HCCHAR(i));
1725		if (hcchar & HCCHAR_CHENA) {
1726			/* Halt the channel */
1727			hcchar |= HCCHAR_CHDIS;
1728			dwc2_writel(hsotg, hcchar, HCCHAR(i));
1729		}
1730
1731		dwc2_hc_cleanup(hsotg, channel);
1732		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1733		/*
1734		 * Added for Descriptor DMA to prevent channel double cleanup in
1735		 * release_channel_ddma(), which is called from ep_disable when
1736		 * device disconnects
1737		 */
1738		channel->qh = NULL;
1739	}
1740	/* All channels have been freed, mark them available */
1741	if (hsotg->params.uframe_sched) {
1742		hsotg->available_host_channels =
1743			hsotg->params.host_channels;
1744	} else {
1745		hsotg->non_periodic_channels = 0;
1746		hsotg->periodic_channels = 0;
1747	}
1748}
1749
1750/**
1751 * dwc2_hcd_connect() - Handles connect of the HCD
1752 *
1753 * @hsotg: Pointer to struct dwc2_hsotg
1754 *
1755 * Must be called with interrupt disabled and spinlock held
1756 */
1757void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1758{
1759	if (hsotg->lx_state != DWC2_L0)
1760		usb_hcd_resume_root_hub(hsotg->priv);
1761
1762	hsotg->flags.b.port_connect_status_change = 1;
1763	hsotg->flags.b.port_connect_status = 1;
1764}
1765
1766/**
1767 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1768 *
1769 * @hsotg: Pointer to struct dwc2_hsotg
1770 * @force: If true, we won't try to reconnect even if we see device connected.
1771 *
1772 * Must be called with interrupt disabled and spinlock held
1773 */
1774void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1775{
1776	u32 intr;
1777	u32 hprt0;
1778
1779	/* Set status flags for the hub driver */
1780	hsotg->flags.b.port_connect_status_change = 1;
1781	hsotg->flags.b.port_connect_status = 0;
1782
1783	/*
1784	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1785	 * interrupt mask and status bits and disabling subsequent host
1786	 * channel interrupts.
1787	 */
1788	intr = dwc2_readl(hsotg, GINTMSK);
1789	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1790	dwc2_writel(hsotg, intr, GINTMSK);
1791	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1792	dwc2_writel(hsotg, intr, GINTSTS);
1793
1794	/*
1795	 * Turn off the vbus power only if the core has transitioned to device
1796	 * mode. If still in host mode, need to keep power on to detect a
1797	 * reconnection.
1798	 */
1799	if (dwc2_is_device_mode(hsotg)) {
1800		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1801			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1802			dwc2_writel(hsotg, 0, HPRT0);
1803		}
1804
1805		dwc2_disable_host_interrupts(hsotg);
1806	}
1807
1808	/* Respond with an error status to all URBs in the schedule */
1809	dwc2_kill_all_urbs(hsotg);
1810
1811	if (dwc2_is_host_mode(hsotg))
1812		/* Clean up any host channels that were in use */
1813		dwc2_hcd_cleanup_channels(hsotg);
1814
1815	dwc2_host_disconnect(hsotg);
1816
1817	/*
1818	 * Add an extra check here to see if we're actually connected but
1819	 * we don't have a detection interrupt pending.  This can happen if:
1820	 *   1. hardware sees connect
1821	 *   2. hardware sees disconnect
1822	 *   3. hardware sees connect
1823	 *   4. dwc2_port_intr() - clears connect interrupt
1824	 *   5. dwc2_handle_common_intr() - calls here
1825	 *
1826	 * Without the extra check here we will end calling disconnect
1827	 * and won't get any future interrupts to handle the connect.
1828	 */
1829	if (!force) {
1830		hprt0 = dwc2_readl(hsotg, HPRT0);
1831		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1832			dwc2_hcd_connect(hsotg);
1833	}
1834}
1835
1836/**
1837 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1838 *
1839 * @hsotg: Pointer to struct dwc2_hsotg
1840 */
1841static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1842{
1843	if (hsotg->bus_suspended) {
1844		hsotg->flags.b.port_suspend_change = 1;
1845		usb_hcd_resume_root_hub(hsotg->priv);
1846	}
1847
1848	if (hsotg->lx_state == DWC2_L1)
1849		hsotg->flags.b.port_l1_change = 1;
1850}
1851
1852/**
1853 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1854 *
1855 * @hsotg: Pointer to struct dwc2_hsotg
1856 *
1857 * Must be called with interrupt disabled and spinlock held
1858 */
1859void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1860{
1861	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1862
1863	/*
1864	 * The root hub should be disconnected before this function is called.
1865	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1866	 * and the QH lists (via ..._hcd_endpoint_disable).
1867	 */
1868
1869	/* Turn off all host-specific interrupts */
1870	dwc2_disable_host_interrupts(hsotg);
1871
1872	/* Turn off the vbus power */
1873	dev_dbg(hsotg->dev, "PortPower off\n");
1874	dwc2_writel(hsotg, 0, HPRT0);
1875}
1876
1877/* Caller must hold driver lock */
1878static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1879				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1880				struct dwc2_qtd *qtd)
1881{
1882	u32 intr_mask;
1883	int retval;
1884	int dev_speed;
1885
1886	if (!hsotg->flags.b.port_connect_status) {
1887		/* No longer connected */
1888		dev_err(hsotg->dev, "Not connected\n");
1889		return -ENODEV;
1890	}
1891
1892	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1893
1894	/* Some configurations cannot support LS traffic on a FS root port */
1895	if ((dev_speed == USB_SPEED_LOW) &&
1896	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1897	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1898		u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1899		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1900
1901		if (prtspd == HPRT0_SPD_FULL_SPEED)
1902			return -ENODEV;
1903	}
1904
1905	if (!qtd)
1906		return -EINVAL;
1907
1908	dwc2_hcd_qtd_init(qtd, urb);
1909	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1910	if (retval) {
1911		dev_err(hsotg->dev,
1912			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1913			retval);
1914		return retval;
1915	}
1916
1917	intr_mask = dwc2_readl(hsotg, GINTMSK);
1918	if (!(intr_mask & GINTSTS_SOF)) {
1919		enum dwc2_transaction_type tr_type;
1920
1921		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1922		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1923			/*
1924			 * Do not schedule SG transactions until qtd has
1925			 * URB_GIVEBACK_ASAP set
1926			 */
1927			return 0;
1928
1929		tr_type = dwc2_hcd_select_transactions(hsotg);
1930		if (tr_type != DWC2_TRANSACTION_NONE)
1931			dwc2_hcd_queue_transactions(hsotg, tr_type);
1932	}
1933
1934	return 0;
1935}
1936
1937/* Must be called with interrupt disabled and spinlock held */
1938static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1939				struct dwc2_hcd_urb *urb)
1940{
1941	struct dwc2_qh *qh;
1942	struct dwc2_qtd *urb_qtd;
1943
1944	urb_qtd = urb->qtd;
1945	if (!urb_qtd) {
1946		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1947		return -EINVAL;
1948	}
1949
1950	qh = urb_qtd->qh;
1951	if (!qh) {
1952		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1953		return -EINVAL;
1954	}
1955
1956	urb->priv = NULL;
1957
1958	if (urb_qtd->in_process && qh->channel) {
1959		dwc2_dump_channel_info(hsotg, qh->channel);
1960
1961		/* The QTD is in process (it has been assigned to a channel) */
1962		if (hsotg->flags.b.port_connect_status)
1963			/*
1964			 * If still connected (i.e. in host mode), halt the
1965			 * channel so it can be used for other transfers. If
1966			 * no longer connected, the host registers can't be
1967			 * written to halt the channel since the core is in
1968			 * device mode.
1969			 */
1970			dwc2_hc_halt(hsotg, qh->channel,
1971				     DWC2_HC_XFER_URB_DEQUEUE);
1972	}
1973
1974	/*
1975	 * Free the QTD and clean up the associated QH. Leave the QH in the
1976	 * schedule if it has any remaining QTDs.
1977	 */
1978	if (!hsotg->params.dma_desc_enable) {
1979		u8 in_process = urb_qtd->in_process;
1980
1981		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1982		if (in_process) {
1983			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1984			qh->channel = NULL;
1985		} else if (list_empty(&qh->qtd_list)) {
1986			dwc2_hcd_qh_unlink(hsotg, qh);
1987		}
1988	} else {
1989		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1990	}
1991
1992	return 0;
1993}
1994
1995/* Must NOT be called with interrupt disabled or spinlock held */
1996static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1997				     struct usb_host_endpoint *ep, int retry)
1998{
1999	struct dwc2_qtd *qtd, *qtd_tmp;
2000	struct dwc2_qh *qh;
2001	unsigned long flags;
2002	int rc;
2003
2004	spin_lock_irqsave(&hsotg->lock, flags);
2005
2006	qh = ep->hcpriv;
2007	if (!qh) {
2008		rc = -EINVAL;
2009		goto err;
2010	}
2011
2012	while (!list_empty(&qh->qtd_list) && retry--) {
2013		if (retry == 0) {
2014			dev_err(hsotg->dev,
2015				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2016			rc = -EBUSY;
2017			goto err;
2018		}
2019
2020		spin_unlock_irqrestore(&hsotg->lock, flags);
2021		msleep(20);
2022		spin_lock_irqsave(&hsotg->lock, flags);
2023		qh = ep->hcpriv;
2024		if (!qh) {
2025			rc = -EINVAL;
2026			goto err;
2027		}
2028	}
2029
2030	dwc2_hcd_qh_unlink(hsotg, qh);
2031
2032	/* Free each QTD in the QH's QTD list */
2033	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2034		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2035
2036	ep->hcpriv = NULL;
2037
2038	if (qh->channel && qh->channel->qh == qh)
2039		qh->channel->qh = NULL;
2040
2041	spin_unlock_irqrestore(&hsotg->lock, flags);
2042
2043	dwc2_hcd_qh_free(hsotg, qh);
2044
2045	return 0;
2046
2047err:
2048	ep->hcpriv = NULL;
2049	spin_unlock_irqrestore(&hsotg->lock, flags);
2050
2051	return rc;
2052}
2053
2054/* Must be called with interrupt disabled and spinlock held */
2055static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2056				   struct usb_host_endpoint *ep)
2057{
2058	struct dwc2_qh *qh = ep->hcpriv;
2059
2060	if (!qh)
2061		return -EINVAL;
2062
2063	qh->data_toggle = DWC2_HC_PID_DATA0;
2064
2065	return 0;
2066}
2067
2068/**
2069 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2070 * prepares the core for device mode or host mode operation
2071 *
2072 * @hsotg:         Programming view of the DWC_otg controller
2073 * @initial_setup: If true then this is the first init for this instance.
2074 */
2075int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2076{
2077	u32 usbcfg, otgctl;
2078	int retval;
2079
2080	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2081
2082	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2083
2084	/* Set ULPI External VBUS bit if needed */
2085	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2086	if (hsotg->params.phy_ulpi_ext_vbus)
2087		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2088
2089	/* Set external TS Dline pulsing bit if needed */
2090	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2091	if (hsotg->params.ts_dline)
2092		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2093
2094	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2095
2096	/*
2097	 * Reset the Controller
2098	 *
2099	 * We only need to reset the controller if this is a re-init.
2100	 * For the first init we know for sure that earlier code reset us (it
2101	 * needed to in order to properly detect various parameters).
2102	 */
2103	if (!initial_setup) {
2104		retval = dwc2_core_reset(hsotg, false);
2105		if (retval) {
2106			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2107				__func__);
2108			return retval;
2109		}
2110	}
2111
2112	/*
2113	 * This needs to happen in FS mode before any other programming occurs
2114	 */
2115	retval = dwc2_phy_init(hsotg, initial_setup);
2116	if (retval)
2117		return retval;
2118
2119	/* Program the GAHBCFG Register */
2120	retval = dwc2_gahbcfg_init(hsotg);
2121	if (retval)
2122		return retval;
2123
2124	/* Program the GUSBCFG register */
2125	dwc2_gusbcfg_init(hsotg);
2126
2127	/* Program the GOTGCTL register */
2128	otgctl = dwc2_readl(hsotg, GOTGCTL);
2129	otgctl &= ~GOTGCTL_OTGVER;
2130	dwc2_writel(hsotg, otgctl, GOTGCTL);
2131
2132	/* Clear the SRP success bit for FS-I2c */
2133	hsotg->srp_success = 0;
2134
2135	/* Enable common interrupts */
2136	dwc2_enable_common_interrupts(hsotg);
2137
2138	/*
2139	 * Do device or host initialization based on mode during PCD and
2140	 * HCD initialization
2141	 */
2142	if (dwc2_is_host_mode(hsotg)) {
2143		dev_dbg(hsotg->dev, "Host Mode\n");
2144		hsotg->op_state = OTG_STATE_A_HOST;
2145	} else {
2146		dev_dbg(hsotg->dev, "Device Mode\n");
2147		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2148	}
2149
2150	return 0;
2151}
2152
2153/**
2154 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2155 * Host mode
2156 *
2157 * @hsotg: Programming view of DWC_otg controller
2158 *
2159 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2160 * request queues. Host channels are reset to ensure that they are ready for
2161 * performing transfers.
2162 */
2163static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2164{
2165	u32 hcfg, hfir, otgctl, usbcfg;
2166
2167	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2168
2169	/* Set HS/FS Timeout Calibration to 7 (max available value).
2170	 * The number of PHY clocks that the application programs in
2171	 * this field is added to the high/full speed interpacket timeout
2172	 * duration in the core to account for any additional delays
2173	 * introduced by the PHY. This can be required, because the delay
2174	 * introduced by the PHY in generating the linestate condition
2175	 * can vary from one PHY to another.
2176	 */
2177	usbcfg = dwc2_readl(hsotg, GUSBCFG);
2178	usbcfg |= GUSBCFG_TOUTCAL(7);
2179	dwc2_writel(hsotg, usbcfg, GUSBCFG);
2180
2181	/* Restart the Phy Clock */
2182	dwc2_writel(hsotg, 0, PCGCTL);
2183
2184	/* Initialize Host Configuration Register */
2185	dwc2_init_fs_ls_pclk_sel(hsotg);
2186	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2187	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2188		hcfg = dwc2_readl(hsotg, HCFG);
2189		hcfg |= HCFG_FSLSSUPP;
2190		dwc2_writel(hsotg, hcfg, HCFG);
2191	}
2192
2193	/*
2194	 * This bit allows dynamic reloading of the HFIR register during
2195	 * runtime. This bit needs to be programmed during initial configuration
2196	 * and its value must not be changed during runtime.
2197	 */
2198	if (hsotg->params.reload_ctl) {
2199		hfir = dwc2_readl(hsotg, HFIR);
2200		hfir |= HFIR_RLDCTRL;
2201		dwc2_writel(hsotg, hfir, HFIR);
2202	}
2203
2204	if (hsotg->params.dma_desc_enable) {
2205		u32 op_mode = hsotg->hw_params.op_mode;
2206
2207		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2208		    !hsotg->hw_params.dma_desc_enable ||
2209		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2210		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2211		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2212			dev_err(hsotg->dev,
2213				"Hardware does not support descriptor DMA mode -\n");
2214			dev_err(hsotg->dev,
2215				"falling back to buffer DMA mode.\n");
2216			hsotg->params.dma_desc_enable = false;
2217		} else {
2218			hcfg = dwc2_readl(hsotg, HCFG);
2219			hcfg |= HCFG_DESCDMA;
2220			dwc2_writel(hsotg, hcfg, HCFG);
2221		}
2222	}
2223
2224	/* Configure data FIFO sizes */
2225	dwc2_config_fifos(hsotg);
2226
2227	/* TODO - check this */
2228	/* Clear Host Set HNP Enable in the OTG Control Register */
2229	otgctl = dwc2_readl(hsotg, GOTGCTL);
2230	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2231	dwc2_writel(hsotg, otgctl, GOTGCTL);
2232
2233	/* Make sure the FIFOs are flushed */
2234	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2235	dwc2_flush_rx_fifo(hsotg);
2236
2237	/* Clear Host Set HNP Enable in the OTG Control Register */
2238	otgctl = dwc2_readl(hsotg, GOTGCTL);
2239	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2240	dwc2_writel(hsotg, otgctl, GOTGCTL);
2241
2242	if (!hsotg->params.dma_desc_enable) {
2243		int num_channels, i;
2244		u32 hcchar;
2245
2246		/* Flush out any leftover queued requests */
2247		num_channels = hsotg->params.host_channels;
2248		for (i = 0; i < num_channels; i++) {
2249			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2250			if (hcchar & HCCHAR_CHENA) {
2251				hcchar &= ~HCCHAR_CHENA;
2252				hcchar |= HCCHAR_CHDIS;
2253				hcchar &= ~HCCHAR_EPDIR;
2254				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2255			}
2256		}
2257
2258		/* Halt all channels to put them into a known state */
2259		for (i = 0; i < num_channels; i++) {
2260			hcchar = dwc2_readl(hsotg, HCCHAR(i));
2261			if (hcchar & HCCHAR_CHENA) {
2262				hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2263				hcchar &= ~HCCHAR_EPDIR;
2264				dwc2_writel(hsotg, hcchar, HCCHAR(i));
2265				dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2266					__func__, i);
2267
2268				if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2269							      HCCHAR_CHENA,
2270							      1000)) {
2271					dev_warn(hsotg->dev,
2272						 "Unable to clear enable on channel %d\n",
2273						 i);
2274				}
2275			}
2276		}
2277	}
2278
2279	/* Enable ACG feature in host mode, if supported */
2280	dwc2_enable_acg(hsotg);
2281
2282	/* Turn on the vbus power */
2283	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2284	if (hsotg->op_state == OTG_STATE_A_HOST) {
2285		u32 hprt0 = dwc2_read_hprt0(hsotg);
2286
2287		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2288			!!(hprt0 & HPRT0_PWR));
2289		if (!(hprt0 & HPRT0_PWR)) {
2290			hprt0 |= HPRT0_PWR;
2291			dwc2_writel(hsotg, hprt0, HPRT0);
2292		}
2293	}
2294
2295	dwc2_enable_host_interrupts(hsotg);
2296}
2297
2298/*
2299 * Initializes dynamic portions of the DWC_otg HCD state
2300 *
2301 * Must be called with interrupt disabled and spinlock held
2302 */
2303static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2304{
2305	struct dwc2_host_chan *chan, *chan_tmp;
2306	int num_channels;
2307	int i;
2308
2309	hsotg->flags.d32 = 0;
2310	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2311
2312	if (hsotg->params.uframe_sched) {
2313		hsotg->available_host_channels =
2314			hsotg->params.host_channels;
2315	} else {
2316		hsotg->non_periodic_channels = 0;
2317		hsotg->periodic_channels = 0;
2318	}
2319
2320	/*
2321	 * Put all channels in the free channel list and clean up channel
2322	 * states
2323	 */
2324	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2325				 hc_list_entry)
2326		list_del_init(&chan->hc_list_entry);
2327
2328	num_channels = hsotg->params.host_channels;
2329	for (i = 0; i < num_channels; i++) {
2330		chan = hsotg->hc_ptr_array[i];
2331		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2332		dwc2_hc_cleanup(hsotg, chan);
2333	}
2334
2335	/* Initialize the DWC core for host mode operation */
2336	dwc2_core_host_init(hsotg);
2337}
2338
2339static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2340			       struct dwc2_host_chan *chan,
2341			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2342{
2343	int hub_addr, hub_port;
2344
2345	chan->do_split = 1;
2346	chan->xact_pos = qtd->isoc_split_pos;
2347	chan->complete_split = qtd->complete_split;
2348	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2349	chan->hub_addr = (u8)hub_addr;
2350	chan->hub_port = (u8)hub_port;
2351}
2352
2353static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2354			      struct dwc2_host_chan *chan,
2355			      struct dwc2_qtd *qtd)
2356{
2357	struct dwc2_hcd_urb *urb = qtd->urb;
2358	struct dwc2_hcd_iso_packet_desc *frame_desc;
2359
2360	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2361	case USB_ENDPOINT_XFER_CONTROL:
2362		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2363
2364		switch (qtd->control_phase) {
2365		case DWC2_CONTROL_SETUP:
2366			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2367			chan->do_ping = 0;
2368			chan->ep_is_in = 0;
2369			chan->data_pid_start = DWC2_HC_PID_SETUP;
2370			if (hsotg->params.host_dma)
2371				chan->xfer_dma = urb->setup_dma;
2372			else
2373				chan->xfer_buf = urb->setup_packet;
2374			chan->xfer_len = 8;
2375			break;
2376
2377		case DWC2_CONTROL_DATA:
2378			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2379			chan->data_pid_start = qtd->data_toggle;
2380			break;
2381
2382		case DWC2_CONTROL_STATUS:
2383			/*
2384			 * Direction is opposite of data direction or IN if no
2385			 * data
2386			 */
2387			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2388			if (urb->length == 0)
2389				chan->ep_is_in = 1;
2390			else
2391				chan->ep_is_in =
2392					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2393			if (chan->ep_is_in)
2394				chan->do_ping = 0;
2395			chan->data_pid_start = DWC2_HC_PID_DATA1;
2396			chan->xfer_len = 0;
2397			if (hsotg->params.host_dma)
2398				chan->xfer_dma = hsotg->status_buf_dma;
2399			else
2400				chan->xfer_buf = hsotg->status_buf;
2401			break;
2402		}
2403		break;
2404
2405	case USB_ENDPOINT_XFER_BULK:
2406		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2407		break;
2408
2409	case USB_ENDPOINT_XFER_INT:
2410		chan->ep_type = USB_ENDPOINT_XFER_INT;
2411		break;
2412
2413	case USB_ENDPOINT_XFER_ISOC:
2414		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2415		if (hsotg->params.dma_desc_enable)
2416			break;
2417
2418		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2419		frame_desc->status = 0;
2420
2421		if (hsotg->params.host_dma) {
2422			chan->xfer_dma = urb->dma;
2423			chan->xfer_dma += frame_desc->offset +
2424					qtd->isoc_split_offset;
2425		} else {
2426			chan->xfer_buf = urb->buf;
2427			chan->xfer_buf += frame_desc->offset +
2428					qtd->isoc_split_offset;
2429		}
2430
2431		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2432
2433		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2434			if (chan->xfer_len <= 188)
2435				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2436			else
2437				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2438		}
2439		break;
2440	}
2441}
2442
2443static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2444					    struct dwc2_qh *qh,
2445					    struct dwc2_host_chan *chan)
2446{
2447	if (!hsotg->unaligned_cache ||
2448	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2449		return -ENOMEM;
2450
2451	if (!qh->dw_align_buf) {
2452		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2453						    GFP_ATOMIC | GFP_DMA);
2454		if (!qh->dw_align_buf)
2455			return -ENOMEM;
2456	}
2457
2458	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2459					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2460					      DMA_FROM_DEVICE);
2461
2462	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2463		dev_err(hsotg->dev, "can't map align_buf\n");
2464		chan->align_buf = 0;
2465		return -EINVAL;
2466	}
2467
2468	chan->align_buf = qh->dw_align_buf_dma;
2469	return 0;
2470}
2471
2472#define DWC2_USB_DMA_ALIGN 4
2473
2474static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2475{
2476	void *stored_xfer_buffer;
2477	size_t length;
2478
2479	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2480		return;
2481
2482	/* Restore urb->transfer_buffer from the end of the allocated area */
2483	memcpy(&stored_xfer_buffer,
2484	       PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2485			 dma_get_cache_alignment()),
2486	       sizeof(urb->transfer_buffer));
2487
2488	if (usb_urb_dir_in(urb)) {
2489		if (usb_pipeisoc(urb->pipe))
2490			length = urb->transfer_buffer_length;
2491		else
2492			length = urb->actual_length;
2493
2494		memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2495	}
2496	kfree(urb->transfer_buffer);
2497	urb->transfer_buffer = stored_xfer_buffer;
2498
2499	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2500}
2501
2502static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2503{
2504	void *kmalloc_ptr;
2505	size_t kmalloc_size;
2506
2507	if (urb->num_sgs || urb->sg ||
2508	    urb->transfer_buffer_length == 0 ||
2509	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2510		return 0;
2511
2512	/*
2513	 * Allocate a buffer with enough padding for original transfer_buffer
2514	 * pointer. This allocation is guaranteed to be aligned properly for
2515	 * DMA
2516	 */
2517	kmalloc_size = urb->transfer_buffer_length +
2518		(dma_get_cache_alignment() - 1) +
2519		sizeof(urb->transfer_buffer);
2520
2521	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2522	if (!kmalloc_ptr)
2523		return -ENOMEM;
2524
2525	/*
2526	 * Position value of original urb->transfer_buffer pointer to the end
2527	 * of allocation for later referencing
2528	 */
2529	memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2530			 dma_get_cache_alignment()),
2531	       &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2532
2533	if (usb_urb_dir_out(urb))
2534		memcpy(kmalloc_ptr, urb->transfer_buffer,
2535		       urb->transfer_buffer_length);
2536	urb->transfer_buffer = kmalloc_ptr;
2537
2538	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2539
2540	return 0;
2541}
2542
2543static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2544				gfp_t mem_flags)
2545{
2546	int ret;
2547
2548	/* We assume setup_dma is always aligned; warn if not */
2549	WARN_ON_ONCE(urb->setup_dma &&
2550		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2551
2552	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2553	if (ret)
2554		return ret;
2555
2556	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2557	if (ret)
2558		dwc2_free_dma_aligned_buffer(urb);
2559
2560	return ret;
2561}
2562
2563static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2564{
2565	usb_hcd_unmap_urb_for_dma(hcd, urb);
2566	dwc2_free_dma_aligned_buffer(urb);
2567}
2568
2569/**
2570 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2571 * channel and initializes the host channel to perform the transactions. The
2572 * host channel is removed from the free list.
2573 *
2574 * @hsotg: The HCD state structure
2575 * @qh:    Transactions from the first QTD for this QH are selected and assigned
2576 *         to a free host channel
2577 */
2578static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2579{
2580	struct dwc2_host_chan *chan;
2581	struct dwc2_hcd_urb *urb;
2582	struct dwc2_qtd *qtd;
2583
2584	if (dbg_qh(qh))
2585		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2586
2587	if (list_empty(&qh->qtd_list)) {
2588		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2589		return -ENOMEM;
2590	}
2591
2592	if (list_empty(&hsotg->free_hc_list)) {
2593		dev_dbg(hsotg->dev, "No free channel to assign\n");
2594		return -ENOMEM;
2595	}
2596
2597	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2598				hc_list_entry);
2599
2600	/* Remove host channel from free list */
2601	list_del_init(&chan->hc_list_entry);
2602
2603	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2604	urb = qtd->urb;
2605	qh->channel = chan;
2606	qtd->in_process = 1;
2607
2608	/*
2609	 * Use usb_pipedevice to determine device address. This address is
2610	 * 0 before the SET_ADDRESS command and the correct address afterward.
2611	 */
2612	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2613	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2614	chan->speed = qh->dev_speed;
2615	chan->max_packet = qh->maxp;
2616
2617	chan->xfer_started = 0;
2618	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2619	chan->error_state = (qtd->error_count > 0);
2620	chan->halt_on_queue = 0;
2621	chan->halt_pending = 0;
2622	chan->requests = 0;
2623
2624	/*
2625	 * The following values may be modified in the transfer type section
2626	 * below. The xfer_len value may be reduced when the transfer is
2627	 * started to accommodate the max widths of the XferSize and PktCnt
2628	 * fields in the HCTSIZn register.
2629	 */
2630
2631	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2632	if (chan->ep_is_in)
2633		chan->do_ping = 0;
2634	else
2635		chan->do_ping = qh->ping_state;
2636
2637	chan->data_pid_start = qh->data_toggle;
2638	chan->multi_count = 1;
2639
2640	if (urb->actual_length > urb->length &&
2641	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2642		urb->actual_length = urb->length;
2643
2644	if (hsotg->params.host_dma)
2645		chan->xfer_dma = urb->dma + urb->actual_length;
2646	else
2647		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2648
2649	chan->xfer_len = urb->length - urb->actual_length;
2650	chan->xfer_count = 0;
2651
2652	/* Set the split attributes if required */
2653	if (qh->do_split)
2654		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2655	else
2656		chan->do_split = 0;
2657
2658	/* Set the transfer attributes */
2659	dwc2_hc_init_xfer(hsotg, chan, qtd);
2660
2661	/* For non-dword aligned buffers */
2662	if (hsotg->params.host_dma && qh->do_split &&
2663	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2664		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2665		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2666			dev_err(hsotg->dev,
2667				"Failed to allocate memory to handle non-aligned buffer\n");
2668			/* Add channel back to free list */
2669			chan->align_buf = 0;
2670			chan->multi_count = 0;
2671			list_add_tail(&chan->hc_list_entry,
2672				      &hsotg->free_hc_list);
2673			qtd->in_process = 0;
2674			qh->channel = NULL;
2675			return -ENOMEM;
2676		}
2677	} else {
2678		/*
2679		 * We assume that DMA is always aligned in non-split
2680		 * case or split out case. Warn if not.
2681		 */
2682		WARN_ON_ONCE(hsotg->params.host_dma &&
2683			     (chan->xfer_dma & 0x3));
2684		chan->align_buf = 0;
2685	}
2686
2687	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2688	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2689		/*
2690		 * This value may be modified when the transfer is started
2691		 * to reflect the actual transfer length
2692		 */
2693		chan->multi_count = qh->maxp_mult;
2694
2695	if (hsotg->params.dma_desc_enable) {
2696		chan->desc_list_addr = qh->desc_list_dma;
2697		chan->desc_list_sz = qh->desc_list_sz;
2698	}
2699
2700	dwc2_hc_init(hsotg, chan);
2701	chan->qh = qh;
2702
2703	return 0;
2704}
2705
2706/**
2707 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2708 * schedule and assigns them to available host channels. Called from the HCD
2709 * interrupt handler functions.
2710 *
2711 * @hsotg: The HCD state structure
2712 *
2713 * Return: The types of new transactions that were assigned to host channels
2714 */
2715enum dwc2_transaction_type dwc2_hcd_select_transactions(
2716		struct dwc2_hsotg *hsotg)
2717{
2718	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2719	struct list_head *qh_ptr;
2720	struct dwc2_qh *qh;
2721	int num_channels;
2722
2723#ifdef DWC2_DEBUG_SOF
2724	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2725#endif
2726
2727	/* Process entries in the periodic ready list */
2728	qh_ptr = hsotg->periodic_sched_ready.next;
2729	while (qh_ptr != &hsotg->periodic_sched_ready) {
2730		if (list_empty(&hsotg->free_hc_list))
2731			break;
2732		if (hsotg->params.uframe_sched) {
2733			if (hsotg->available_host_channels <= 1)
2734				break;
2735			hsotg->available_host_channels--;
2736		}
2737		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2738		if (dwc2_assign_and_init_hc(hsotg, qh))
2739			break;
2740
2741		/*
2742		 * Move the QH from the periodic ready schedule to the
2743		 * periodic assigned schedule
2744		 */
2745		qh_ptr = qh_ptr->next;
2746		list_move_tail(&qh->qh_list_entry,
2747			       &hsotg->periodic_sched_assigned);
2748		ret_val = DWC2_TRANSACTION_PERIODIC;
2749	}
2750
2751	/*
2752	 * Process entries in the inactive portion of the non-periodic
2753	 * schedule. Some free host channels may not be used if they are
2754	 * reserved for periodic transfers.
2755	 */
2756	num_channels = hsotg->params.host_channels;
2757	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2758	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2759		if (!hsotg->params.uframe_sched &&
2760		    hsotg->non_periodic_channels >= num_channels -
2761						hsotg->periodic_channels)
2762			break;
2763		if (list_empty(&hsotg->free_hc_list))
2764			break;
2765		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2766		if (hsotg->params.uframe_sched) {
2767			if (hsotg->available_host_channels < 1)
2768				break;
2769			hsotg->available_host_channels--;
2770		}
2771
2772		if (dwc2_assign_and_init_hc(hsotg, qh))
2773			break;
2774
2775		/*
2776		 * Move the QH from the non-periodic inactive schedule to the
2777		 * non-periodic active schedule
2778		 */
2779		qh_ptr = qh_ptr->next;
2780		list_move_tail(&qh->qh_list_entry,
2781			       &hsotg->non_periodic_sched_active);
2782
2783		if (ret_val == DWC2_TRANSACTION_NONE)
2784			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2785		else
2786			ret_val = DWC2_TRANSACTION_ALL;
2787
2788		if (!hsotg->params.uframe_sched)
2789			hsotg->non_periodic_channels++;
2790	}
2791
2792	return ret_val;
2793}
2794
2795/**
2796 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2797 * a host channel associated with either a periodic or non-periodic transfer
2798 *
2799 * @hsotg: The HCD state structure
2800 * @chan:  Host channel descriptor associated with either a periodic or
2801 *         non-periodic transfer
2802 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2803 *                     for periodic transfers or the non-periodic Tx FIFO
2804 *                     for non-periodic transfers
2805 *
2806 * Return: 1 if a request is queued and more requests may be needed to
2807 * complete the transfer, 0 if no more requests are required for this
2808 * transfer, -1 if there is insufficient space in the Tx FIFO
2809 *
2810 * This function assumes that there is space available in the appropriate
2811 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2812 * it checks whether space is available in the appropriate Tx FIFO.
2813 *
2814 * Must be called with interrupt disabled and spinlock held
2815 */
2816static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2817				  struct dwc2_host_chan *chan,
2818				  u16 fifo_dwords_avail)
2819{
2820	int retval = 0;
2821
2822	if (chan->do_split)
2823		/* Put ourselves on the list to keep order straight */
2824		list_move_tail(&chan->split_order_list_entry,
2825			       &hsotg->split_order);
2826
2827	if (hsotg->params.host_dma) {
2828		if (hsotg->params.dma_desc_enable) {
2829			if (!chan->xfer_started ||
2830			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2831				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2832				chan->qh->ping_state = 0;
2833			}
2834		} else if (!chan->xfer_started) {
2835			dwc2_hc_start_transfer(hsotg, chan);
2836			chan->qh->ping_state = 0;
2837		}
2838	} else if (chan->halt_pending) {
2839		/* Don't queue a request if the channel has been halted */
2840	} else if (chan->halt_on_queue) {
2841		dwc2_hc_halt(hsotg, chan, chan->halt_status);
2842	} else if (chan->do_ping) {
2843		if (!chan->xfer_started)
2844			dwc2_hc_start_transfer(hsotg, chan);
2845	} else if (!chan->ep_is_in ||
2846		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
2847		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2848			if (!chan->xfer_started) {
2849				dwc2_hc_start_transfer(hsotg, chan);
2850				retval = 1;
2851			} else {
2852				retval = dwc2_hc_continue_transfer(hsotg, chan);
2853			}
2854		} else {
2855			retval = -1;
2856		}
2857	} else {
2858		if (!chan->xfer_started) {
2859			dwc2_hc_start_transfer(hsotg, chan);
2860			retval = 1;
2861		} else {
2862			retval = dwc2_hc_continue_transfer(hsotg, chan);
2863		}
2864	}
2865
2866	return retval;
2867}
2868
2869/*
2870 * Processes periodic channels for the next frame and queues transactions for
2871 * these channels to the DWC_otg controller. After queueing transactions, the
2872 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2873 * to queue as Periodic Tx FIFO or request queue space becomes available.
2874 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2875 *
2876 * Must be called with interrupt disabled and spinlock held
2877 */
2878static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2879{
2880	struct list_head *qh_ptr;
2881	struct dwc2_qh *qh;
2882	u32 tx_status;
2883	u32 fspcavail;
2884	u32 gintmsk;
2885	int status;
2886	bool no_queue_space = false;
2887	bool no_fifo_space = false;
2888	u32 qspcavail;
2889
2890	/* If empty list then just adjust interrupt enables */
2891	if (list_empty(&hsotg->periodic_sched_assigned))
2892		goto exit;
2893
2894	if (dbg_perio())
2895		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2896
2897	tx_status = dwc2_readl(hsotg, HPTXSTS);
2898	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2899		    TXSTS_QSPCAVAIL_SHIFT;
2900	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2901		    TXSTS_FSPCAVAIL_SHIFT;
2902
2903	if (dbg_perio()) {
2904		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2905			 qspcavail);
2906		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2907			 fspcavail);
2908	}
2909
2910	qh_ptr = hsotg->periodic_sched_assigned.next;
2911	while (qh_ptr != &hsotg->periodic_sched_assigned) {
2912		tx_status = dwc2_readl(hsotg, HPTXSTS);
2913		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2914			    TXSTS_QSPCAVAIL_SHIFT;
2915		if (qspcavail == 0) {
2916			no_queue_space = true;
2917			break;
2918		}
2919
2920		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2921		if (!qh->channel) {
2922			qh_ptr = qh_ptr->next;
2923			continue;
2924		}
2925
2926		/* Make sure EP's TT buffer is clean before queueing qtds */
2927		if (qh->tt_buffer_dirty) {
2928			qh_ptr = qh_ptr->next;
2929			continue;
2930		}
2931
2932		/*
2933		 * Set a flag if we're queuing high-bandwidth in slave mode.
2934		 * The flag prevents any halts to get into the request queue in
2935		 * the middle of multiple high-bandwidth packets getting queued.
2936		 */
2937		if (!hsotg->params.host_dma &&
2938		    qh->channel->multi_count > 1)
2939			hsotg->queuing_high_bandwidth = 1;
2940
2941		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2942			    TXSTS_FSPCAVAIL_SHIFT;
2943		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2944		if (status < 0) {
2945			no_fifo_space = true;
2946			break;
2947		}
2948
2949		/*
2950		 * In Slave mode, stay on the current transfer until there is
2951		 * nothing more to do or the high-bandwidth request count is
2952		 * reached. In DMA mode, only need to queue one request. The
2953		 * controller automatically handles multiple packets for
2954		 * high-bandwidth transfers.
2955		 */
2956		if (hsotg->params.host_dma || status == 0 ||
2957		    qh->channel->requests == qh->channel->multi_count) {
2958			qh_ptr = qh_ptr->next;
2959			/*
2960			 * Move the QH from the periodic assigned schedule to
2961			 * the periodic queued schedule
2962			 */
2963			list_move_tail(&qh->qh_list_entry,
2964				       &hsotg->periodic_sched_queued);
2965
2966			/* done queuing high bandwidth */
2967			hsotg->queuing_high_bandwidth = 0;
2968		}
2969	}
2970
2971exit:
2972	if (no_queue_space || no_fifo_space ||
2973	    (!hsotg->params.host_dma &&
2974	     !list_empty(&hsotg->periodic_sched_assigned))) {
2975		/*
2976		 * May need to queue more transactions as the request
2977		 * queue or Tx FIFO empties. Enable the periodic Tx
2978		 * FIFO empty interrupt. (Always use the half-empty
2979		 * level to ensure that new requests are loaded as
2980		 * soon as possible.)
2981		 */
2982		gintmsk = dwc2_readl(hsotg, GINTMSK);
2983		if (!(gintmsk & GINTSTS_PTXFEMP)) {
2984			gintmsk |= GINTSTS_PTXFEMP;
2985			dwc2_writel(hsotg, gintmsk, GINTMSK);
2986		}
2987	} else {
2988		/*
2989		 * Disable the Tx FIFO empty interrupt since there are
2990		 * no more transactions that need to be queued right
2991		 * now. This function is called from interrupt
2992		 * handlers to queue more transactions as transfer
2993		 * states change.
2994		 */
2995		gintmsk = dwc2_readl(hsotg, GINTMSK);
2996		if (gintmsk & GINTSTS_PTXFEMP) {
2997			gintmsk &= ~GINTSTS_PTXFEMP;
2998			dwc2_writel(hsotg, gintmsk, GINTMSK);
2999		}
3000	}
3001}
3002
3003/*
3004 * Processes active non-periodic channels and queues transactions for these
3005 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3006 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3007 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3008 * FIFO Empty interrupt is disabled.
3009 *
3010 * Must be called with interrupt disabled and spinlock held
3011 */
3012static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3013{
3014	struct list_head *orig_qh_ptr;
3015	struct dwc2_qh *qh;
3016	u32 tx_status;
3017	u32 qspcavail;
3018	u32 fspcavail;
3019	u32 gintmsk;
3020	int status;
3021	int no_queue_space = 0;
3022	int no_fifo_space = 0;
3023	int more_to_do = 0;
3024
3025	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3026
3027	tx_status = dwc2_readl(hsotg, GNPTXSTS);
3028	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3029		    TXSTS_QSPCAVAIL_SHIFT;
3030	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3031		    TXSTS_FSPCAVAIL_SHIFT;
3032	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3033		 qspcavail);
3034	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3035		 fspcavail);
3036
3037	/*
3038	 * Keep track of the starting point. Skip over the start-of-list
3039	 * entry.
3040	 */
3041	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3042		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3043	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3044
3045	/*
3046	 * Process once through the active list or until no more space is
3047	 * available in the request queue or the Tx FIFO
3048	 */
3049	do {
3050		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3051		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3052			    TXSTS_QSPCAVAIL_SHIFT;
3053		if (!hsotg->params.host_dma && qspcavail == 0) {
3054			no_queue_space = 1;
3055			break;
3056		}
3057
3058		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3059				qh_list_entry);
3060		if (!qh->channel)
3061			goto next;
3062
3063		/* Make sure EP's TT buffer is clean before queueing qtds */
3064		if (qh->tt_buffer_dirty)
3065			goto next;
3066
3067		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3068			    TXSTS_FSPCAVAIL_SHIFT;
3069		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3070
3071		if (status > 0) {
3072			more_to_do = 1;
3073		} else if (status < 0) {
3074			no_fifo_space = 1;
3075			break;
3076		}
3077next:
3078		/* Advance to next QH, skipping start-of-list entry */
3079		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3080		if (hsotg->non_periodic_qh_ptr ==
3081				&hsotg->non_periodic_sched_active)
3082			hsotg->non_periodic_qh_ptr =
3083					hsotg->non_periodic_qh_ptr->next;
3084	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3085
3086	if (!hsotg->params.host_dma) {
3087		tx_status = dwc2_readl(hsotg, GNPTXSTS);
3088		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3089			    TXSTS_QSPCAVAIL_SHIFT;
3090		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3091			    TXSTS_FSPCAVAIL_SHIFT;
3092		dev_vdbg(hsotg->dev,
3093			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3094			 qspcavail);
3095		dev_vdbg(hsotg->dev,
3096			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3097			 fspcavail);
3098
3099		if (more_to_do || no_queue_space || no_fifo_space) {
3100			/*
3101			 * May need to queue more transactions as the request
3102			 * queue or Tx FIFO empties. Enable the non-periodic
3103			 * Tx FIFO empty interrupt. (Always use the half-empty
3104			 * level to ensure that new requests are loaded as
3105			 * soon as possible.)
3106			 */
3107			gintmsk = dwc2_readl(hsotg, GINTMSK);
3108			gintmsk |= GINTSTS_NPTXFEMP;
3109			dwc2_writel(hsotg, gintmsk, GINTMSK);
3110		} else {
3111			/*
3112			 * Disable the Tx FIFO empty interrupt since there are
3113			 * no more transactions that need to be queued right
3114			 * now. This function is called from interrupt
3115			 * handlers to queue more transactions as transfer
3116			 * states change.
3117			 */
3118			gintmsk = dwc2_readl(hsotg, GINTMSK);
3119			gintmsk &= ~GINTSTS_NPTXFEMP;
3120			dwc2_writel(hsotg, gintmsk, GINTMSK);
3121		}
3122	}
3123}
3124
3125/**
3126 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3127 * and queues transactions for these channels to the DWC_otg controller. Called
3128 * from the HCD interrupt handler functions.
3129 *
3130 * @hsotg:   The HCD state structure
3131 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3132 *           or both)
3133 *
3134 * Must be called with interrupt disabled and spinlock held
3135 */
3136void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3137				 enum dwc2_transaction_type tr_type)
3138{
3139#ifdef DWC2_DEBUG_SOF
3140	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3141#endif
3142	/* Process host channels associated with periodic transfers */
3143	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3144	    tr_type == DWC2_TRANSACTION_ALL)
3145		dwc2_process_periodic_channels(hsotg);
3146
3147	/* Process host channels associated with non-periodic transfers */
3148	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3149	    tr_type == DWC2_TRANSACTION_ALL) {
3150		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3151			dwc2_process_non_periodic_channels(hsotg);
3152		} else {
3153			/*
3154			 * Ensure NP Tx FIFO empty interrupt is disabled when
3155			 * there are no non-periodic transfers to process
3156			 */
3157			u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3158
3159			gintmsk &= ~GINTSTS_NPTXFEMP;
3160			dwc2_writel(hsotg, gintmsk, GINTMSK);
3161		}
3162	}
3163}
3164
3165static void dwc2_conn_id_status_change(struct work_struct *work)
3166{
3167	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3168						wf_otg);
3169	u32 count = 0;
3170	u32 gotgctl;
3171	unsigned long flags;
3172
3173	dev_dbg(hsotg->dev, "%s()\n", __func__);
3174
3175	gotgctl = dwc2_readl(hsotg, GOTGCTL);
3176	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3177	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3178		!!(gotgctl & GOTGCTL_CONID_B));
3179
3180	/* B-Device connector (Device Mode) */
3181	if (gotgctl & GOTGCTL_CONID_B) {
3182		dwc2_vbus_supply_exit(hsotg);
3183		/* Wait for switch to device mode */
3184		dev_dbg(hsotg->dev, "connId B\n");
3185		if (hsotg->bus_suspended) {
3186			dev_info(hsotg->dev,
3187				 "Do port resume before switching to device mode\n");
3188			dwc2_port_resume(hsotg);
3189		}
3190		while (!dwc2_is_device_mode(hsotg)) {
3191			dev_info(hsotg->dev,
3192				 "Waiting for Peripheral Mode, Mode=%s\n",
3193				 dwc2_is_host_mode(hsotg) ? "Host" :
3194				 "Peripheral");
3195			msleep(20);
3196			/*
3197			 * Sometimes the initial GOTGCTRL read is wrong, so
3198			 * check it again and jump to host mode if that was
3199			 * the case.
3200			 */
3201			gotgctl = dwc2_readl(hsotg, GOTGCTL);
3202			if (!(gotgctl & GOTGCTL_CONID_B))
3203				goto host;
3204			if (++count > 250)
3205				break;
3206		}
3207		if (count > 250)
3208			dev_err(hsotg->dev,
3209				"Connection id status change timed out\n");
3210		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3211		dwc2_core_init(hsotg, false);
3212		dwc2_enable_global_interrupts(hsotg);
3213		spin_lock_irqsave(&hsotg->lock, flags);
3214		dwc2_hsotg_core_init_disconnected(hsotg, false);
3215		spin_unlock_irqrestore(&hsotg->lock, flags);
3216		/* Enable ACG feature in device mode,if supported */
3217		dwc2_enable_acg(hsotg);
3218		dwc2_hsotg_core_connect(hsotg);
3219	} else {
3220host:
3221		/* A-Device connector (Host Mode) */
3222		dev_dbg(hsotg->dev, "connId A\n");
3223		while (!dwc2_is_host_mode(hsotg)) {
3224			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3225				 dwc2_is_host_mode(hsotg) ?
3226				 "Host" : "Peripheral");
3227			msleep(20);
3228			if (++count > 250)
3229				break;
3230		}
3231		if (count > 250)
3232			dev_err(hsotg->dev,
3233				"Connection id status change timed out\n");
3234
3235		spin_lock_irqsave(&hsotg->lock, flags);
3236		dwc2_hsotg_disconnect(hsotg);
3237		spin_unlock_irqrestore(&hsotg->lock, flags);
3238
3239		hsotg->op_state = OTG_STATE_A_HOST;
3240		/* Initialize the Core for Host mode */
3241		dwc2_core_init(hsotg, false);
3242		dwc2_enable_global_interrupts(hsotg);
3243		dwc2_hcd_start(hsotg);
3244	}
3245}
3246
3247static void dwc2_wakeup_detected(struct timer_list *t)
3248{
3249	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3250	u32 hprt0;
3251
3252	dev_dbg(hsotg->dev, "%s()\n", __func__);
3253
3254	/*
3255	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3256	 * so that OPT tests pass with all PHYs.)
3257	 */
3258	hprt0 = dwc2_read_hprt0(hsotg);
3259	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3260	hprt0 &= ~HPRT0_RES;
3261	dwc2_writel(hsotg, hprt0, HPRT0);
3262	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3263		dwc2_readl(hsotg, HPRT0));
3264
3265	dwc2_hcd_rem_wakeup(hsotg);
3266	hsotg->bus_suspended = false;
3267
3268	/* Change to L0 state */
3269	hsotg->lx_state = DWC2_L0;
3270}
3271
3272static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3273{
3274	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3275
3276	return hcd->self.b_hnp_enable;
3277}
3278
3279/* Must NOT be called with interrupt disabled or spinlock held */
3280static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3281{
3282	unsigned long flags;
3283	u32 hprt0;
3284	u32 pcgctl;
3285	u32 gotgctl;
3286
3287	dev_dbg(hsotg->dev, "%s()\n", __func__);
3288
3289	spin_lock_irqsave(&hsotg->lock, flags);
3290
3291	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3292		gotgctl = dwc2_readl(hsotg, GOTGCTL);
3293		gotgctl |= GOTGCTL_HSTSETHNPEN;
3294		dwc2_writel(hsotg, gotgctl, GOTGCTL);
3295		hsotg->op_state = OTG_STATE_A_SUSPEND;
3296	}
3297
3298	hprt0 = dwc2_read_hprt0(hsotg);
3299	hprt0 |= HPRT0_SUSP;
3300	dwc2_writel(hsotg, hprt0, HPRT0);
3301
3302	hsotg->bus_suspended = true;
3303
3304	/*
3305	 * If power_down is supported, Phy clock will be suspended
3306	 * after registers are backuped.
3307	 */
3308	if (!hsotg->params.power_down) {
3309		/* Suspend the Phy Clock */
3310		pcgctl = dwc2_readl(hsotg, PCGCTL);
3311		pcgctl |= PCGCTL_STOPPCLK;
3312		dwc2_writel(hsotg, pcgctl, PCGCTL);
3313		udelay(10);
3314	}
3315
3316	/* For HNP the bus must be suspended for at least 200ms */
3317	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3318		pcgctl = dwc2_readl(hsotg, PCGCTL);
3319		pcgctl &= ~PCGCTL_STOPPCLK;
3320		dwc2_writel(hsotg, pcgctl, PCGCTL);
3321
3322		spin_unlock_irqrestore(&hsotg->lock, flags);
3323
3324		msleep(200);
3325	} else {
3326		spin_unlock_irqrestore(&hsotg->lock, flags);
3327	}
3328}
3329
3330/* Must NOT be called with interrupt disabled or spinlock held */
3331static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3332{
3333	unsigned long flags;
3334	u32 hprt0;
3335	u32 pcgctl;
3336
3337	spin_lock_irqsave(&hsotg->lock, flags);
3338
3339	/*
3340	 * If power_down is supported, Phy clock is already resumed
3341	 * after registers restore.
3342	 */
3343	if (!hsotg->params.power_down) {
3344		pcgctl = dwc2_readl(hsotg, PCGCTL);
3345		pcgctl &= ~PCGCTL_STOPPCLK;
3346		dwc2_writel(hsotg, pcgctl, PCGCTL);
3347		spin_unlock_irqrestore(&hsotg->lock, flags);
3348		msleep(20);
3349		spin_lock_irqsave(&hsotg->lock, flags);
3350	}
3351
3352	hprt0 = dwc2_read_hprt0(hsotg);
3353	hprt0 |= HPRT0_RES;
3354	hprt0 &= ~HPRT0_SUSP;
3355	dwc2_writel(hsotg, hprt0, HPRT0);
3356	spin_unlock_irqrestore(&hsotg->lock, flags);
3357
3358	msleep(USB_RESUME_TIMEOUT);
3359
3360	spin_lock_irqsave(&hsotg->lock, flags);
3361	hprt0 = dwc2_read_hprt0(hsotg);
3362	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3363	dwc2_writel(hsotg, hprt0, HPRT0);
3364	hsotg->bus_suspended = false;
3365	spin_unlock_irqrestore(&hsotg->lock, flags);
3366}
3367
3368/* Handles hub class-specific requests */
3369static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3370				u16 wvalue, u16 windex, char *buf, u16 wlength)
3371{
3372	struct usb_hub_descriptor *hub_desc;
3373	int retval = 0;
3374	u32 hprt0;
3375	u32 port_status;
3376	u32 speed;
3377	u32 pcgctl;
3378	u32 pwr;
3379
3380	switch (typereq) {
3381	case ClearHubFeature:
3382		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3383
3384		switch (wvalue) {
3385		case C_HUB_LOCAL_POWER:
3386		case C_HUB_OVER_CURRENT:
3387			/* Nothing required here */
3388			break;
3389
3390		default:
3391			retval = -EINVAL;
3392			dev_err(hsotg->dev,
3393				"ClearHubFeature request %1xh unknown\n",
3394				wvalue);
3395		}
3396		break;
3397
3398	case ClearPortFeature:
3399		if (wvalue != USB_PORT_FEAT_L1)
3400			if (!windex || windex > 1)
3401				goto error;
3402		switch (wvalue) {
3403		case USB_PORT_FEAT_ENABLE:
3404			dev_dbg(hsotg->dev,
3405				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3406			hprt0 = dwc2_read_hprt0(hsotg);
3407			hprt0 |= HPRT0_ENA;
3408			dwc2_writel(hsotg, hprt0, HPRT0);
3409			break;
3410
3411		case USB_PORT_FEAT_SUSPEND:
3412			dev_dbg(hsotg->dev,
3413				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3414
3415			if (hsotg->bus_suspended) {
3416				if (hsotg->hibernated)
3417					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3418				else
3419					dwc2_port_resume(hsotg);
3420			}
3421			break;
3422
3423		case USB_PORT_FEAT_POWER:
3424			dev_dbg(hsotg->dev,
3425				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3426			hprt0 = dwc2_read_hprt0(hsotg);
3427			pwr = hprt0 & HPRT0_PWR;
3428			hprt0 &= ~HPRT0_PWR;
3429			dwc2_writel(hsotg, hprt0, HPRT0);
3430			if (pwr)
3431				dwc2_vbus_supply_exit(hsotg);
3432			break;
3433
3434		case USB_PORT_FEAT_INDICATOR:
3435			dev_dbg(hsotg->dev,
3436				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3437			/* Port indicator not supported */
3438			break;
3439
3440		case USB_PORT_FEAT_C_CONNECTION:
3441			/*
3442			 * Clears driver's internal Connect Status Change flag
3443			 */
3444			dev_dbg(hsotg->dev,
3445				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3446			hsotg->flags.b.port_connect_status_change = 0;
3447			break;
3448
3449		case USB_PORT_FEAT_C_RESET:
3450			/* Clears driver's internal Port Reset Change flag */
3451			dev_dbg(hsotg->dev,
3452				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3453			hsotg->flags.b.port_reset_change = 0;
3454			break;
3455
3456		case USB_PORT_FEAT_C_ENABLE:
3457			/*
3458			 * Clears the driver's internal Port Enable/Disable
3459			 * Change flag
3460			 */
3461			dev_dbg(hsotg->dev,
3462				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3463			hsotg->flags.b.port_enable_change = 0;
3464			break;
3465
3466		case USB_PORT_FEAT_C_SUSPEND:
3467			/*
3468			 * Clears the driver's internal Port Suspend Change
3469			 * flag, which is set when resume signaling on the host
3470			 * port is complete
3471			 */
3472			dev_dbg(hsotg->dev,
3473				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3474			hsotg->flags.b.port_suspend_change = 0;
3475			break;
3476
3477		case USB_PORT_FEAT_C_PORT_L1:
3478			dev_dbg(hsotg->dev,
3479				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3480			hsotg->flags.b.port_l1_change = 0;
3481			break;
3482
3483		case USB_PORT_FEAT_C_OVER_CURRENT:
3484			dev_dbg(hsotg->dev,
3485				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3486			hsotg->flags.b.port_over_current_change = 0;
3487			break;
3488
3489		default:
3490			retval = -EINVAL;
3491			dev_err(hsotg->dev,
3492				"ClearPortFeature request %1xh unknown or unsupported\n",
3493				wvalue);
3494		}
3495		break;
3496
3497	case GetHubDescriptor:
3498		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3499		hub_desc = (struct usb_hub_descriptor *)buf;
3500		hub_desc->bDescLength = 9;
3501		hub_desc->bDescriptorType = USB_DT_HUB;
3502		hub_desc->bNbrPorts = 1;
3503		hub_desc->wHubCharacteristics =
3504			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3505				    HUB_CHAR_INDV_PORT_OCPM);
3506		hub_desc->bPwrOn2PwrGood = 1;
3507		hub_desc->bHubContrCurrent = 0;
3508		hub_desc->u.hs.DeviceRemovable[0] = 0;
3509		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3510		break;
3511
3512	case GetHubStatus:
3513		dev_dbg(hsotg->dev, "GetHubStatus\n");
3514		memset(buf, 0, 4);
3515		break;
3516
3517	case GetPortStatus:
3518		dev_vdbg(hsotg->dev,
3519			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3520			 hsotg->flags.d32);
3521		if (!windex || windex > 1)
3522			goto error;
3523
3524		port_status = 0;
3525		if (hsotg->flags.b.port_connect_status_change)
3526			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3527		if (hsotg->flags.b.port_enable_change)
3528			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3529		if (hsotg->flags.b.port_suspend_change)
3530			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3531		if (hsotg->flags.b.port_l1_change)
3532			port_status |= USB_PORT_STAT_C_L1 << 16;
3533		if (hsotg->flags.b.port_reset_change)
3534			port_status |= USB_PORT_STAT_C_RESET << 16;
3535		if (hsotg->flags.b.port_over_current_change) {
3536			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3537			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3538		}
3539
3540		if (!hsotg->flags.b.port_connect_status) {
3541			/*
3542			 * The port is disconnected, which means the core is
3543			 * either in device mode or it soon will be. Just
3544			 * return 0's for the remainder of the port status
3545			 * since the port register can't be read if the core
3546			 * is in device mode.
3547			 */
3548			*(__le32 *)buf = cpu_to_le32(port_status);
3549			break;
3550		}
3551
3552		hprt0 = dwc2_readl(hsotg, HPRT0);
3553		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3554
3555		if (hprt0 & HPRT0_CONNSTS)
3556			port_status |= USB_PORT_STAT_CONNECTION;
3557		if (hprt0 & HPRT0_ENA)
3558			port_status |= USB_PORT_STAT_ENABLE;
3559		if (hprt0 & HPRT0_SUSP)
3560			port_status |= USB_PORT_STAT_SUSPEND;
3561		if (hprt0 & HPRT0_OVRCURRACT)
3562			port_status |= USB_PORT_STAT_OVERCURRENT;
3563		if (hprt0 & HPRT0_RST)
3564			port_status |= USB_PORT_STAT_RESET;
3565		if (hprt0 & HPRT0_PWR)
3566			port_status |= USB_PORT_STAT_POWER;
3567
3568		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3569		if (speed == HPRT0_SPD_HIGH_SPEED)
3570			port_status |= USB_PORT_STAT_HIGH_SPEED;
3571		else if (speed == HPRT0_SPD_LOW_SPEED)
3572			port_status |= USB_PORT_STAT_LOW_SPEED;
3573
3574		if (hprt0 & HPRT0_TSTCTL_MASK)
3575			port_status |= USB_PORT_STAT_TEST;
3576		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3577
3578		if (hsotg->params.dma_desc_fs_enable) {
3579			/*
3580			 * Enable descriptor DMA only if a full speed
3581			 * device is connected.
3582			 */
3583			if (hsotg->new_connection &&
3584			    ((port_status &
3585			      (USB_PORT_STAT_CONNECTION |
3586			       USB_PORT_STAT_HIGH_SPEED |
3587			       USB_PORT_STAT_LOW_SPEED)) ==
3588			       USB_PORT_STAT_CONNECTION)) {
3589				u32 hcfg;
3590
3591				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3592				hsotg->params.dma_desc_enable = true;
3593				hcfg = dwc2_readl(hsotg, HCFG);
3594				hcfg |= HCFG_DESCDMA;
3595				dwc2_writel(hsotg, hcfg, HCFG);
3596				hsotg->new_connection = false;
3597			}
3598		}
3599
3600		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3601		*(__le32 *)buf = cpu_to_le32(port_status);
3602		break;
3603
3604	case SetHubFeature:
3605		dev_dbg(hsotg->dev, "SetHubFeature\n");
3606		/* No HUB features supported */
3607		break;
3608
3609	case SetPortFeature:
3610		dev_dbg(hsotg->dev, "SetPortFeature\n");
3611		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3612			goto error;
3613
3614		if (!hsotg->flags.b.port_connect_status) {
3615			/*
3616			 * The port is disconnected, which means the core is
3617			 * either in device mode or it soon will be. Just
3618			 * return without doing anything since the port
3619			 * register can't be written if the core is in device
3620			 * mode.
3621			 */
3622			break;
3623		}
3624
3625		switch (wvalue) {
3626		case USB_PORT_FEAT_SUSPEND:
3627			dev_dbg(hsotg->dev,
3628				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3629			if (windex != hsotg->otg_port)
3630				goto error;
3631			if (hsotg->params.power_down == 2)
3632				dwc2_enter_hibernation(hsotg, 1);
3633			else
3634				dwc2_port_suspend(hsotg, windex);
3635			break;
3636
3637		case USB_PORT_FEAT_POWER:
3638			dev_dbg(hsotg->dev,
3639				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3640			hprt0 = dwc2_read_hprt0(hsotg);
3641			pwr = hprt0 & HPRT0_PWR;
3642			hprt0 |= HPRT0_PWR;
3643			dwc2_writel(hsotg, hprt0, HPRT0);
3644			if (!pwr)
3645				dwc2_vbus_supply_init(hsotg);
3646			break;
3647
3648		case USB_PORT_FEAT_RESET:
3649			if (hsotg->params.power_down == 2 &&
3650			    hsotg->hibernated)
3651				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3652			hprt0 = dwc2_read_hprt0(hsotg);
3653			dev_dbg(hsotg->dev,
3654				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3655			pcgctl = dwc2_readl(hsotg, PCGCTL);
3656			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3657			dwc2_writel(hsotg, pcgctl, PCGCTL);
3658			/* ??? Original driver does this */
3659			dwc2_writel(hsotg, 0, PCGCTL);
3660
3661			hprt0 = dwc2_read_hprt0(hsotg);
3662			pwr = hprt0 & HPRT0_PWR;
3663			/* Clear suspend bit if resetting from suspend state */
3664			hprt0 &= ~HPRT0_SUSP;
3665
3666			/*
3667			 * When B-Host the Port reset bit is set in the Start
3668			 * HCD Callback function, so that the reset is started
3669			 * within 1ms of the HNP success interrupt
3670			 */
3671			if (!dwc2_hcd_is_b_host(hsotg)) {
3672				hprt0 |= HPRT0_PWR | HPRT0_RST;
3673				dev_dbg(hsotg->dev,
3674					"In host mode, hprt0=%08x\n", hprt0);
3675				dwc2_writel(hsotg, hprt0, HPRT0);
3676				if (!pwr)
3677					dwc2_vbus_supply_init(hsotg);
3678			}
3679
3680			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3681			msleep(50);
3682			hprt0 &= ~HPRT0_RST;
3683			dwc2_writel(hsotg, hprt0, HPRT0);
3684			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3685			break;
3686
3687		case USB_PORT_FEAT_INDICATOR:
3688			dev_dbg(hsotg->dev,
3689				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3690			/* Not supported */
3691			break;
3692
3693		case USB_PORT_FEAT_TEST:
3694			hprt0 = dwc2_read_hprt0(hsotg);
3695			dev_dbg(hsotg->dev,
3696				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3697			hprt0 &= ~HPRT0_TSTCTL_MASK;
3698			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3699			dwc2_writel(hsotg, hprt0, HPRT0);
3700			break;
3701
3702		default:
3703			retval = -EINVAL;
3704			dev_err(hsotg->dev,
3705				"SetPortFeature %1xh unknown or unsupported\n",
3706				wvalue);
3707			break;
3708		}
3709		break;
3710
3711	default:
3712error:
3713		retval = -EINVAL;
3714		dev_dbg(hsotg->dev,
3715			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3716			typereq, windex, wvalue);
3717		break;
3718	}
3719
3720	return retval;
3721}
3722
3723static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3724{
3725	int retval;
3726
3727	if (port != 1)
3728		return -EINVAL;
3729
3730	retval = (hsotg->flags.b.port_connect_status_change ||
3731		  hsotg->flags.b.port_reset_change ||
3732		  hsotg->flags.b.port_enable_change ||
3733		  hsotg->flags.b.port_suspend_change ||
3734		  hsotg->flags.b.port_over_current_change);
3735
3736	if (retval) {
3737		dev_dbg(hsotg->dev,
3738			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3739		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3740			hsotg->flags.b.port_connect_status_change);
3741		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3742			hsotg->flags.b.port_reset_change);
3743		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3744			hsotg->flags.b.port_enable_change);
3745		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3746			hsotg->flags.b.port_suspend_change);
3747		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3748			hsotg->flags.b.port_over_current_change);
3749	}
3750
3751	return retval;
3752}
3753
3754int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3755{
3756	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3757
3758#ifdef DWC2_DEBUG_SOF
3759	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3760		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3761#endif
3762	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3763}
3764
3765int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3766{
3767	u32 hprt = dwc2_readl(hsotg, HPRT0);
3768	u32 hfir = dwc2_readl(hsotg, HFIR);
3769	u32 hfnum = dwc2_readl(hsotg, HFNUM);
3770	unsigned int us_per_frame;
3771	unsigned int frame_number;
3772	unsigned int remaining;
3773	unsigned int interval;
3774	unsigned int phy_clks;
3775
3776	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3777	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3778
3779	/* Extract fields */
3780	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3781	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3782	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3783
3784	/*
3785	 * Number of phy clocks since the last tick of the frame number after
3786	 * "us" has passed.
3787	 */
3788	phy_clks = (interval - remaining) +
3789		   DIV_ROUND_UP(interval * us, us_per_frame);
3790
3791	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3792}
3793
3794int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3795{
3796	return hsotg->op_state == OTG_STATE_B_HOST;
3797}
3798
3799static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3800					       int iso_desc_count,
3801					       gfp_t mem_flags)
3802{
3803	struct dwc2_hcd_urb *urb;
3804
3805	urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3806	if (urb)
3807		urb->packet_count = iso_desc_count;
3808	return urb;
3809}
3810
3811static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3812				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3813				      u8 ep_num, u8 ep_type, u8 ep_dir,
3814				      u16 maxp, u16 maxp_mult)
3815{
3816	if (dbg_perio() ||
3817	    ep_type == USB_ENDPOINT_XFER_BULK ||
3818	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3819		dev_vdbg(hsotg->dev,
3820			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3821			 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3822	urb->pipe_info.dev_addr = dev_addr;
3823	urb->pipe_info.ep_num = ep_num;
3824	urb->pipe_info.pipe_type = ep_type;
3825	urb->pipe_info.pipe_dir = ep_dir;
3826	urb->pipe_info.maxp = maxp;
3827	urb->pipe_info.maxp_mult = maxp_mult;
3828}
3829
3830/*
3831 * NOTE: This function will be removed once the peripheral controller code
3832 * is integrated and the driver is stable
3833 */
3834void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3835{
3836#ifdef DEBUG
3837	struct dwc2_host_chan *chan;
3838	struct dwc2_hcd_urb *urb;
3839	struct dwc2_qtd *qtd;
3840	int num_channels;
3841	u32 np_tx_status;
3842	u32 p_tx_status;
3843	int i;
3844
3845	num_channels = hsotg->params.host_channels;
3846	dev_dbg(hsotg->dev, "\n");
3847	dev_dbg(hsotg->dev,
3848		"************************************************************\n");
3849	dev_dbg(hsotg->dev, "HCD State:\n");
3850	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3851
3852	for (i = 0; i < num_channels; i++) {
3853		chan = hsotg->hc_ptr_array[i];
3854		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3855		dev_dbg(hsotg->dev,
3856			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3857			chan->dev_addr, chan->ep_num, chan->ep_is_in);
3858		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3859		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3860		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3861		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3862			chan->data_pid_start);
3863		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3864		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3865			chan->xfer_started);
3866		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3867		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3868			(unsigned long)chan->xfer_dma);
3869		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3870		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3871		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3872			chan->halt_on_queue);
3873		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3874			chan->halt_pending);
3875		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3876		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3877		dev_dbg(hsotg->dev, "    complete_split: %d\n",
3878			chan->complete_split);
3879		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3880		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3881		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3882		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3883		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3884
3885		if (chan->xfer_started) {
3886			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3887
3888			hfnum = dwc2_readl(hsotg, HFNUM);
3889			hcchar = dwc2_readl(hsotg, HCCHAR(i));
3890			hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3891			hcint = dwc2_readl(hsotg, HCINT(i));
3892			hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3893			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3894			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3895			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3896			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3897			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3898		}
3899
3900		if (!(chan->xfer_started && chan->qh))
3901			continue;
3902
3903		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3904			if (!qtd->in_process)
3905				break;
3906			urb = qtd->urb;
3907			dev_dbg(hsotg->dev, "    URB Info:\n");
3908			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3909				qtd, urb);
3910			if (urb) {
3911				dev_dbg(hsotg->dev,
3912					"      Dev: %d, EP: %d %s\n",
3913					dwc2_hcd_get_dev_addr(&urb->pipe_info),
3914					dwc2_hcd_get_ep_num(&urb->pipe_info),
3915					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3916					"IN" : "OUT");
3917				dev_dbg(hsotg->dev,
3918					"      Max packet size: %d (%d mult)\n",
3919					dwc2_hcd_get_maxp(&urb->pipe_info),
3920					dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3921				dev_dbg(hsotg->dev,
3922					"      transfer_buffer: %p\n",
3923					urb->buf);
3924				dev_dbg(hsotg->dev,
3925					"      transfer_dma: %08lx\n",
3926					(unsigned long)urb->dma);
3927				dev_dbg(hsotg->dev,
3928					"      transfer_buffer_length: %d\n",
3929					urb->length);
3930				dev_dbg(hsotg->dev, "      actual_length: %d\n",
3931					urb->actual_length);
3932			}
3933		}
3934	}
3935
3936	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3937		hsotg->non_periodic_channels);
3938	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3939		hsotg->periodic_channels);
3940	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3941	np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3942	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3943		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3944	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3945		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3946	p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3947	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
3948		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3949	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
3950		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3951	dwc2_dump_global_registers(hsotg);
3952	dwc2_dump_host_registers(hsotg);
3953	dev_dbg(hsotg->dev,
3954		"************************************************************\n");
3955	dev_dbg(hsotg->dev, "\n");
3956#endif
3957}
3958
3959struct wrapper_priv_data {
3960	struct dwc2_hsotg *hsotg;
3961};
3962
3963/* Gets the dwc2_hsotg from a usb_hcd */
3964static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3965{
3966	struct wrapper_priv_data *p;
3967
3968	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3969	return p->hsotg;
3970}
3971
3972/**
3973 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3974 *
3975 * This will get the dwc2_tt structure (and ttport) associated with the given
3976 * context (which is really just a struct urb pointer).
3977 *
3978 * The first time this is called for a given TT we allocate memory for our
3979 * structure.  When everyone is done and has called dwc2_host_put_tt_info()
3980 * then the refcount for the structure will go to 0 and we'll free it.
3981 *
3982 * @hsotg:     The HCD state structure for the DWC OTG controller.
3983 * @context:   The priv pointer from a struct dwc2_hcd_urb.
3984 * @mem_flags: Flags for allocating memory.
3985 * @ttport:    We'll return this device's port number here.  That's used to
3986 *             reference into the bitmap if we're on a multi_tt hub.
3987 *
3988 * Return: a pointer to a struct dwc2_tt.  Don't forget to call
3989 *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
3990 */
3991
3992struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
3993				      gfp_t mem_flags, int *ttport)
3994{
3995	struct urb *urb = context;
3996	struct dwc2_tt *dwc_tt = NULL;
3997
3998	if (urb->dev->tt) {
3999		*ttport = urb->dev->ttport;
4000
4001		dwc_tt = urb->dev->tt->hcpriv;
4002		if (!dwc_tt) {
4003			size_t bitmap_size;
4004
4005			/*
4006			 * For single_tt we need one schedule.  For multi_tt
4007			 * we need one per port.
4008			 */
4009			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4010				      sizeof(dwc_tt->periodic_bitmaps[0]);
4011			if (urb->dev->tt->multi)
4012				bitmap_size *= urb->dev->tt->hub->maxchild;
4013
4014			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4015					 mem_flags);
4016			if (!dwc_tt)
4017				return NULL;
4018
4019			dwc_tt->usb_tt = urb->dev->tt;
4020			dwc_tt->usb_tt->hcpriv = dwc_tt;
4021		}
4022
4023		dwc_tt->refcount++;
4024	}
4025
4026	return dwc_tt;
4027}
4028
4029/**
4030 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4031 *
4032 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4033 * of the structure are done.
4034 *
4035 * It's OK to call this with NULL.
4036 *
4037 * @hsotg:     The HCD state structure for the DWC OTG controller.
4038 * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4039 */
4040void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4041{
4042	/* Model kfree and make put of NULL a no-op */
4043	if (!dwc_tt)
4044		return;
4045
4046	WARN_ON(dwc_tt->refcount < 1);
4047
4048	dwc_tt->refcount--;
4049	if (!dwc_tt->refcount) {
4050		dwc_tt->usb_tt->hcpriv = NULL;
4051		kfree(dwc_tt);
4052	}
4053}
4054
4055int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4056{
4057	struct urb *urb = context;
4058
4059	return urb->dev->speed;
4060}
4061
4062static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4063					struct urb *urb)
4064{
4065	struct usb_bus *bus = hcd_to_bus(hcd);
4066
4067	if (urb->interval)
4068		bus->bandwidth_allocated += bw / urb->interval;
4069	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4070		bus->bandwidth_isoc_reqs++;
4071	else
4072		bus->bandwidth_int_reqs++;
4073}
4074
4075static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4076				    struct urb *urb)
4077{
4078	struct usb_bus *bus = hcd_to_bus(hcd);
4079
4080	if (urb->interval)
4081		bus->bandwidth_allocated -= bw / urb->interval;
4082	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4083		bus->bandwidth_isoc_reqs--;
4084	else
4085		bus->bandwidth_int_reqs--;
4086}
4087
4088/*
4089 * Sets the final status of an URB and returns it to the upper layer. Any
4090 * required cleanup of the URB is performed.
4091 *
4092 * Must be called with interrupt disabled and spinlock held
4093 */
4094void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4095			int status)
4096{
4097	struct urb *urb;
4098	int i;
4099
4100	if (!qtd) {
4101		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4102		return;
4103	}
4104
4105	if (!qtd->urb) {
4106		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4107		return;
4108	}
4109
4110	urb = qtd->urb->priv;
4111	if (!urb) {
4112		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4113		return;
4114	}
4115
4116	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4117
4118	if (dbg_urb(urb))
4119		dev_vdbg(hsotg->dev,
4120			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4121			 __func__, urb, usb_pipedevice(urb->pipe),
4122			 usb_pipeendpoint(urb->pipe),
4123			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4124			 urb->actual_length);
4125
4126	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4127		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4128		for (i = 0; i < urb->number_of_packets; ++i) {
4129			urb->iso_frame_desc[i].actual_length =
4130				dwc2_hcd_urb_get_iso_desc_actual_length(
4131						qtd->urb, i);
4132			urb->iso_frame_desc[i].status =
4133				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4134		}
4135	}
4136
4137	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4138		for (i = 0; i < urb->number_of_packets; i++)
4139			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4140				 i, urb->iso_frame_desc[i].status);
4141	}
4142
4143	urb->status = status;
4144	if (!status) {
4145		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4146		    urb->actual_length < urb->transfer_buffer_length)
4147			urb->status = -EREMOTEIO;
4148	}
4149
4150	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4151	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4152		struct usb_host_endpoint *ep = urb->ep;
4153
4154		if (ep)
4155			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4156					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4157					urb);
4158	}
4159
4160	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4161	urb->hcpriv = NULL;
4162	kfree(qtd->urb);
4163	qtd->urb = NULL;
4164
4165	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4166}
4167
4168/*
4169 * Work queue function for starting the HCD when A-Cable is connected
4170 */
4171static void dwc2_hcd_start_func(struct work_struct *work)
4172{
4173	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4174						start_work.work);
4175
4176	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4177	dwc2_host_start(hsotg);
4178}
4179
4180/*
4181 * Reset work queue function
4182 */
4183static void dwc2_hcd_reset_func(struct work_struct *work)
4184{
4185	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4186						reset_work.work);
4187	unsigned long flags;
4188	u32 hprt0;
4189
4190	dev_dbg(hsotg->dev, "USB RESET function called\n");
4191
4192	spin_lock_irqsave(&hsotg->lock, flags);
4193
4194	hprt0 = dwc2_read_hprt0(hsotg);
4195	hprt0 &= ~HPRT0_RST;
4196	dwc2_writel(hsotg, hprt0, HPRT0);
4197	hsotg->flags.b.port_reset_change = 1;
4198
4199	spin_unlock_irqrestore(&hsotg->lock, flags);
4200}
4201
4202static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4203{
4204	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4205						phy_reset_work);
4206	int ret;
4207
4208	ret = phy_reset(hsotg->phy);
4209	if (ret)
4210		dev_warn(hsotg->dev, "PHY reset failed\n");
4211}
4212
4213/*
4214 * =========================================================================
4215 *  Linux HC Driver Functions
4216 * =========================================================================
4217 */
4218
4219/*
4220 * Initializes the DWC_otg controller and its root hub and prepares it for host
4221 * mode operation. Activates the root port. Returns 0 on success and a negative
4222 * error code on failure.
4223 */
4224static int _dwc2_hcd_start(struct usb_hcd *hcd)
4225{
4226	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4227	struct usb_bus *bus = hcd_to_bus(hcd);
4228	unsigned long flags;
4229	u32 hprt0;
4230	int ret;
4231
4232	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4233
4234	spin_lock_irqsave(&hsotg->lock, flags);
4235	hsotg->lx_state = DWC2_L0;
4236	hcd->state = HC_STATE_RUNNING;
4237	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4238
4239	if (dwc2_is_device_mode(hsotg)) {
4240		spin_unlock_irqrestore(&hsotg->lock, flags);
4241		return 0;	/* why 0 ?? */
4242	}
4243
4244	dwc2_hcd_reinit(hsotg);
4245
4246	hprt0 = dwc2_read_hprt0(hsotg);
4247	/* Has vbus power been turned on in dwc2_core_host_init ? */
4248	if (hprt0 & HPRT0_PWR) {
4249		/* Enable external vbus supply before resuming root hub */
4250		spin_unlock_irqrestore(&hsotg->lock, flags);
4251		ret = dwc2_vbus_supply_init(hsotg);
4252		if (ret)
4253			return ret;
4254		spin_lock_irqsave(&hsotg->lock, flags);
4255	}
4256
4257	/* Initialize and connect root hub if one is not already attached */
4258	if (bus->root_hub) {
4259		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4260		/* Inform the HUB driver to resume */
4261		usb_hcd_resume_root_hub(hcd);
4262	}
4263
4264	spin_unlock_irqrestore(&hsotg->lock, flags);
4265
4266	return 0;
4267}
4268
4269/*
4270 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4271 * stopped.
4272 */
4273static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4274{
4275	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4276	unsigned long flags;
4277	u32 hprt0;
4278
4279	/* Turn off all host-specific interrupts */
4280	dwc2_disable_host_interrupts(hsotg);
4281
4282	/* Wait for interrupt processing to finish */
4283	synchronize_irq(hcd->irq);
4284
4285	spin_lock_irqsave(&hsotg->lock, flags);
4286	hprt0 = dwc2_read_hprt0(hsotg);
4287	/* Ensure hcd is disconnected */
4288	dwc2_hcd_disconnect(hsotg, true);
4289	dwc2_hcd_stop(hsotg);
4290	hsotg->lx_state = DWC2_L3;
4291	hcd->state = HC_STATE_HALT;
4292	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4293	spin_unlock_irqrestore(&hsotg->lock, flags);
4294
4295	/* keep balanced supply init/exit by checking HPRT0_PWR */
4296	if (hprt0 & HPRT0_PWR)
4297		dwc2_vbus_supply_exit(hsotg);
4298
4299	usleep_range(1000, 3000);
4300}
4301
4302static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4303{
4304	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4305	unsigned long flags;
4306	int ret = 0;
4307	u32 hprt0;
4308	u32 pcgctl;
4309
4310	spin_lock_irqsave(&hsotg->lock, flags);
4311
4312	if (dwc2_is_device_mode(hsotg))
4313		goto unlock;
4314
4315	if (hsotg->lx_state != DWC2_L0)
4316		goto unlock;
4317
4318	if (!HCD_HW_ACCESSIBLE(hcd))
4319		goto unlock;
4320
4321	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4322		goto unlock;
4323
4324	if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL)
4325		goto skip_power_saving;
4326
4327	/*
4328	 * Drive USB suspend and disable port Power
4329	 * if usb bus is not suspended.
4330	 */
4331	if (!hsotg->bus_suspended) {
4332		hprt0 = dwc2_read_hprt0(hsotg);
4333		if (hprt0 & HPRT0_CONNSTS) {
4334			hprt0 |= HPRT0_SUSP;
4335			if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL)
4336				hprt0 &= ~HPRT0_PWR;
4337			dwc2_writel(hsotg, hprt0, HPRT0);
4338		}
4339		if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4340			spin_unlock_irqrestore(&hsotg->lock, flags);
4341			dwc2_vbus_supply_exit(hsotg);
4342			spin_lock_irqsave(&hsotg->lock, flags);
4343		} else {
4344			pcgctl = readl(hsotg->regs + PCGCTL);
4345			pcgctl |= PCGCTL_STOPPCLK;
4346			writel(pcgctl, hsotg->regs + PCGCTL);
4347		}
4348	}
4349
4350	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4351		/* Enter partial_power_down */
4352		ret = dwc2_enter_partial_power_down(hsotg);
4353		if (ret) {
4354			if (ret != -ENOTSUPP)
4355				dev_err(hsotg->dev,
4356					"enter partial_power_down failed\n");
4357			goto skip_power_saving;
4358		}
4359
4360		/* After entering partial_power_down, hardware is no more accessible */
4361		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4362	}
4363
4364	/* Ask phy to be suspended */
4365	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4366		spin_unlock_irqrestore(&hsotg->lock, flags);
4367		usb_phy_set_suspend(hsotg->uphy, true);
4368		spin_lock_irqsave(&hsotg->lock, flags);
4369	}
4370
4371skip_power_saving:
4372	hsotg->lx_state = DWC2_L2;
4373unlock:
4374	spin_unlock_irqrestore(&hsotg->lock, flags);
4375
4376	return ret;
4377}
4378
4379static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4380{
4381	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4382	unsigned long flags;
4383	u32 pcgctl;
4384	int ret = 0;
4385
4386	spin_lock_irqsave(&hsotg->lock, flags);
4387
4388	if (dwc2_is_device_mode(hsotg))
4389		goto unlock;
4390
4391	if (hsotg->lx_state != DWC2_L2)
4392		goto unlock;
4393
4394	if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) {
4395		hsotg->lx_state = DWC2_L0;
4396		goto unlock;
4397	}
4398
4399	/*
4400	 * Enable power if not already done.
4401	 * This must not be spinlocked since duration
4402	 * of this call is unknown.
4403	 */
4404	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4405		spin_unlock_irqrestore(&hsotg->lock, flags);
4406		usb_phy_set_suspend(hsotg->uphy, false);
4407		spin_lock_irqsave(&hsotg->lock, flags);
4408	}
4409
4410	if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4411		/*
4412		 * Set HW accessible bit before powering on the controller
4413		 * since an interrupt may rise.
4414		 */
4415		set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4416
4417
4418		/* Exit partial_power_down */
4419		ret = dwc2_exit_partial_power_down(hsotg, true);
4420		if (ret && (ret != -ENOTSUPP))
4421			dev_err(hsotg->dev, "exit partial_power_down failed\n");
4422	} else {
4423		pcgctl = readl(hsotg->regs + PCGCTL);
4424		pcgctl &= ~PCGCTL_STOPPCLK;
4425		writel(pcgctl, hsotg->regs + PCGCTL);
4426	}
4427
4428	hsotg->lx_state = DWC2_L0;
4429
4430	spin_unlock_irqrestore(&hsotg->lock, flags);
4431
4432	if (hsotg->bus_suspended) {
4433		spin_lock_irqsave(&hsotg->lock, flags);
4434		hsotg->flags.b.port_suspend_change = 1;
4435		spin_unlock_irqrestore(&hsotg->lock, flags);
4436		dwc2_port_resume(hsotg);
4437	} else {
4438		if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4439			dwc2_vbus_supply_init(hsotg);
4440
4441			/* Wait for controller to correctly update D+/D- level */
4442			usleep_range(3000, 5000);
4443		}
4444
4445		/*
4446		 * Clear Port Enable and Port Status changes.
4447		 * Enable Port Power.
4448		 */
4449		dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4450				HPRT0_ENACHG, HPRT0);
4451		/* Wait for controller to detect Port Connect */
4452		usleep_range(5000, 7000);
4453	}
4454
4455	return ret;
4456unlock:
4457	spin_unlock_irqrestore(&hsotg->lock, flags);
4458
4459	return ret;
4460}
4461
4462/* Returns the current frame number */
4463static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4464{
4465	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4466
4467	return dwc2_hcd_get_frame_number(hsotg);
4468}
4469
4470static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4471			       char *fn_name)
4472{
4473#ifdef VERBOSE_DEBUG
4474	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4475	char *pipetype = NULL;
4476	char *speed = NULL;
4477
4478	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4479	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4480		 usb_pipedevice(urb->pipe));
4481	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4482		 usb_pipeendpoint(urb->pipe),
4483		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4484
4485	switch (usb_pipetype(urb->pipe)) {
4486	case PIPE_CONTROL:
4487		pipetype = "CONTROL";
4488		break;
4489	case PIPE_BULK:
4490		pipetype = "BULK";
4491		break;
4492	case PIPE_INTERRUPT:
4493		pipetype = "INTERRUPT";
4494		break;
4495	case PIPE_ISOCHRONOUS:
4496		pipetype = "ISOCHRONOUS";
4497		break;
4498	}
4499
4500	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4501		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4502		 "IN" : "OUT");
4503
4504	switch (urb->dev->speed) {
4505	case USB_SPEED_HIGH:
4506		speed = "HIGH";
4507		break;
4508	case USB_SPEED_FULL:
4509		speed = "FULL";
4510		break;
4511	case USB_SPEED_LOW:
4512		speed = "LOW";
4513		break;
4514	default:
4515		speed = "UNKNOWN";
4516		break;
4517	}
4518
4519	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4520	dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4521		 usb_endpoint_maxp(&urb->ep->desc),
4522		 usb_endpoint_maxp_mult(&urb->ep->desc));
4523
4524	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4525		 urb->transfer_buffer_length);
4526	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4527		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4528	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4529		 urb->setup_packet, (unsigned long)urb->setup_dma);
4530	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4531
4532	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4533		int i;
4534
4535		for (i = 0; i < urb->number_of_packets; i++) {
4536			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4537			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4538				 urb->iso_frame_desc[i].offset,
4539				 urb->iso_frame_desc[i].length);
4540		}
4541	}
4542#endif
4543}
4544
4545/*
4546 * Starts processing a USB transfer request specified by a USB Request Block
4547 * (URB). mem_flags indicates the type of memory allocation to use while
4548 * processing this URB.
4549 */
4550static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4551				 gfp_t mem_flags)
4552{
4553	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4554	struct usb_host_endpoint *ep = urb->ep;
4555	struct dwc2_hcd_urb *dwc2_urb;
4556	int i;
4557	int retval;
4558	int alloc_bandwidth = 0;
4559	u8 ep_type = 0;
4560	u32 tflags = 0;
4561	void *buf;
4562	unsigned long flags;
4563	struct dwc2_qh *qh;
4564	bool qh_allocated = false;
4565	struct dwc2_qtd *qtd;
4566
4567	if (dbg_urb(urb)) {
4568		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4569		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4570	}
4571
4572	if (!ep)
4573		return -EINVAL;
4574
4575	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4576	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4577		spin_lock_irqsave(&hsotg->lock, flags);
4578		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4579			alloc_bandwidth = 1;
4580		spin_unlock_irqrestore(&hsotg->lock, flags);
4581	}
4582
4583	switch (usb_pipetype(urb->pipe)) {
4584	case PIPE_CONTROL:
4585		ep_type = USB_ENDPOINT_XFER_CONTROL;
4586		break;
4587	case PIPE_ISOCHRONOUS:
4588		ep_type = USB_ENDPOINT_XFER_ISOC;
4589		break;
4590	case PIPE_BULK:
4591		ep_type = USB_ENDPOINT_XFER_BULK;
4592		break;
4593	case PIPE_INTERRUPT:
4594		ep_type = USB_ENDPOINT_XFER_INT;
4595		break;
4596	}
4597
4598	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4599				      mem_flags);
4600	if (!dwc2_urb)
4601		return -ENOMEM;
4602
4603	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4604				  usb_pipeendpoint(urb->pipe), ep_type,
4605				  usb_pipein(urb->pipe),
4606				  usb_endpoint_maxp(&ep->desc),
4607				  usb_endpoint_maxp_mult(&ep->desc));
4608
4609	buf = urb->transfer_buffer;
4610
4611	if (hcd_uses_dma(hcd)) {
4612		if (!buf && (urb->transfer_dma & 3)) {
4613			dev_err(hsotg->dev,
4614				"%s: unaligned transfer with no transfer_buffer",
4615				__func__);
4616			retval = -EINVAL;
4617			goto fail0;
4618		}
4619	}
4620
4621	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4622		tflags |= URB_GIVEBACK_ASAP;
4623	if (urb->transfer_flags & URB_ZERO_PACKET)
4624		tflags |= URB_SEND_ZERO_PACKET;
4625
4626	dwc2_urb->priv = urb;
4627	dwc2_urb->buf = buf;
4628	dwc2_urb->dma = urb->transfer_dma;
4629	dwc2_urb->length = urb->transfer_buffer_length;
4630	dwc2_urb->setup_packet = urb->setup_packet;
4631	dwc2_urb->setup_dma = urb->setup_dma;
4632	dwc2_urb->flags = tflags;
4633	dwc2_urb->interval = urb->interval;
4634	dwc2_urb->status = -EINPROGRESS;
4635
4636	for (i = 0; i < urb->number_of_packets; ++i)
4637		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4638						 urb->iso_frame_desc[i].offset,
4639						 urb->iso_frame_desc[i].length);
4640
4641	urb->hcpriv = dwc2_urb;
4642	qh = (struct dwc2_qh *)ep->hcpriv;
4643	/* Create QH for the endpoint if it doesn't exist */
4644	if (!qh) {
4645		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4646		if (!qh) {
4647			retval = -ENOMEM;
4648			goto fail0;
4649		}
4650		ep->hcpriv = qh;
4651		qh_allocated = true;
4652	}
4653
4654	qtd = kzalloc(sizeof(*qtd), mem_flags);
4655	if (!qtd) {
4656		retval = -ENOMEM;
4657		goto fail1;
4658	}
4659
4660	spin_lock_irqsave(&hsotg->lock, flags);
4661	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4662	if (retval)
4663		goto fail2;
4664
4665	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4666	if (retval)
4667		goto fail3;
4668
4669	if (alloc_bandwidth) {
4670		dwc2_allocate_bus_bandwidth(hcd,
4671				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4672				urb);
4673	}
4674
4675	spin_unlock_irqrestore(&hsotg->lock, flags);
4676
4677	return 0;
4678
4679fail3:
4680	dwc2_urb->priv = NULL;
4681	usb_hcd_unlink_urb_from_ep(hcd, urb);
4682	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4683		qh->channel->qh = NULL;
4684fail2:
4685	spin_unlock_irqrestore(&hsotg->lock, flags);
4686	urb->hcpriv = NULL;
4687	kfree(qtd);
4688fail1:
4689	if (qh_allocated) {
4690		struct dwc2_qtd *qtd2, *qtd2_tmp;
4691
4692		ep->hcpriv = NULL;
4693		dwc2_hcd_qh_unlink(hsotg, qh);
4694		/* Free each QTD in the QH's QTD list */
4695		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4696					 qtd_list_entry)
4697			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4698		dwc2_hcd_qh_free(hsotg, qh);
4699	}
4700fail0:
4701	kfree(dwc2_urb);
4702
4703	return retval;
4704}
4705
4706/*
4707 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4708 */
4709static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4710				 int status)
4711{
4712	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4713	int rc;
4714	unsigned long flags;
4715
4716	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4717	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4718
4719	spin_lock_irqsave(&hsotg->lock, flags);
4720
4721	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4722	if (rc)
4723		goto out;
4724
4725	if (!urb->hcpriv) {
4726		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4727		goto out;
4728	}
4729
4730	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4731
4732	usb_hcd_unlink_urb_from_ep(hcd, urb);
4733
4734	kfree(urb->hcpriv);
4735	urb->hcpriv = NULL;
4736
4737	/* Higher layer software sets URB status */
4738	spin_unlock(&hsotg->lock);
4739	usb_hcd_giveback_urb(hcd, urb, status);
4740	spin_lock(&hsotg->lock);
4741
4742	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4743	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4744out:
4745	spin_unlock_irqrestore(&hsotg->lock, flags);
4746
4747	return rc;
4748}
4749
4750/*
4751 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4752 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4753 * must already be dequeued.
4754 */
4755static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4756				       struct usb_host_endpoint *ep)
4757{
4758	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4759
4760	dev_dbg(hsotg->dev,
4761		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4762		ep->desc.bEndpointAddress, ep->hcpriv);
4763	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4764}
4765
4766/*
4767 * Resets endpoint specific parameter values, in current version used to reset
4768 * the data toggle (as a WA). This function can be called from usb_clear_halt
4769 * routine.
4770 */
4771static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4772				     struct usb_host_endpoint *ep)
4773{
4774	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4775	unsigned long flags;
4776
4777	dev_dbg(hsotg->dev,
4778		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4779		ep->desc.bEndpointAddress);
4780
4781	spin_lock_irqsave(&hsotg->lock, flags);
4782	dwc2_hcd_endpoint_reset(hsotg, ep);
4783	spin_unlock_irqrestore(&hsotg->lock, flags);
4784}
4785
4786/*
4787 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4788 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4789 * interrupt.
4790 *
4791 * This function is called by the USB core when an interrupt occurs
4792 */
4793static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4794{
4795	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4796
4797	return dwc2_handle_hcd_intr(hsotg);
4798}
4799
4800/*
4801 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4802 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4803 * is the status change indicator for the single root port. Returns 1 if either
4804 * change indicator is 1, otherwise returns 0.
4805 */
4806static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4807{
4808	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4809
4810	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4811	return buf[0] != 0;
4812}
4813
4814/* Handles hub class-specific requests */
4815static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4816				 u16 windex, char *buf, u16 wlength)
4817{
4818	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4819					  wvalue, windex, buf, wlength);
4820	return retval;
4821}
4822
4823/* Handles hub TT buffer clear completions */
4824static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4825					       struct usb_host_endpoint *ep)
4826{
4827	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4828	struct dwc2_qh *qh;
4829	unsigned long flags;
4830
4831	qh = ep->hcpriv;
4832	if (!qh)
4833		return;
4834
4835	spin_lock_irqsave(&hsotg->lock, flags);
4836	qh->tt_buffer_dirty = 0;
4837
4838	if (hsotg->flags.b.port_connect_status)
4839		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4840
4841	spin_unlock_irqrestore(&hsotg->lock, flags);
4842}
4843
4844/*
4845 * HPRT0_SPD_HIGH_SPEED: high speed
4846 * HPRT0_SPD_FULL_SPEED: full speed
4847 */
4848static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4849{
4850	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4851
4852	if (hsotg->params.speed == speed)
4853		return;
4854
4855	hsotg->params.speed = speed;
4856	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4857}
4858
4859static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4860{
4861	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4862
4863	if (!hsotg->params.change_speed_quirk)
4864		return;
4865
4866	/*
4867	 * On removal, set speed to default high-speed.
4868	 */
4869	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4870	    udev->parent->speed < USB_SPEED_HIGH) {
4871		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4872		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4873	}
4874}
4875
4876static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4877{
4878	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4879
4880	if (!hsotg->params.change_speed_quirk)
4881		return 0;
4882
4883	if (udev->speed == USB_SPEED_HIGH) {
4884		dev_info(hsotg->dev, "Set speed to high-speed\n");
4885		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4886	} else if ((udev->speed == USB_SPEED_FULL ||
4887				udev->speed == USB_SPEED_LOW)) {
4888		/*
4889		 * Change speed setting to full-speed if there's
4890		 * a full-speed or low-speed device plugged in.
4891		 */
4892		dev_info(hsotg->dev, "Set speed to full-speed\n");
4893		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4894	}
4895
4896	return 0;
4897}
4898
4899static struct hc_driver dwc2_hc_driver = {
4900	.description = "dwc2_hsotg",
4901	.product_desc = "DWC OTG Controller",
4902	.hcd_priv_size = sizeof(struct wrapper_priv_data),
4903
4904	.irq = _dwc2_hcd_irq,
4905	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4906
4907	.start = _dwc2_hcd_start,
4908	.stop = _dwc2_hcd_stop,
4909	.urb_enqueue = _dwc2_hcd_urb_enqueue,
4910	.urb_dequeue = _dwc2_hcd_urb_dequeue,
4911	.endpoint_disable = _dwc2_hcd_endpoint_disable,
4912	.endpoint_reset = _dwc2_hcd_endpoint_reset,
4913	.get_frame_number = _dwc2_hcd_get_frame_number,
4914
4915	.hub_status_data = _dwc2_hcd_hub_status_data,
4916	.hub_control = _dwc2_hcd_hub_control,
4917	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4918
4919	.bus_suspend = _dwc2_hcd_suspend,
4920	.bus_resume = _dwc2_hcd_resume,
4921
4922	.map_urb_for_dma	= dwc2_map_urb_for_dma,
4923	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
4924};
4925
4926/*
4927 * Frees secondary storage associated with the dwc2_hsotg structure contained
4928 * in the struct usb_hcd field
4929 */
4930static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4931{
4932	u32 ahbcfg;
4933	u32 dctl;
4934	int i;
4935
4936	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4937
4938	/* Free memory for QH/QTD lists */
4939	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4940	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4941	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4942	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4943	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4944	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4945	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4946
4947	/* Free memory for the host channels */
4948	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4949		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4950
4951		if (chan) {
4952			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4953				i, chan);
4954			hsotg->hc_ptr_array[i] = NULL;
4955			kfree(chan);
4956		}
4957	}
4958
4959	if (hsotg->params.host_dma) {
4960		if (hsotg->status_buf) {
4961			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4962					  hsotg->status_buf,
4963					  hsotg->status_buf_dma);
4964			hsotg->status_buf = NULL;
4965		}
4966	} else {
4967		kfree(hsotg->status_buf);
4968		hsotg->status_buf = NULL;
4969	}
4970
4971	ahbcfg = dwc2_readl(hsotg, GAHBCFG);
4972
4973	/* Disable all interrupts */
4974	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4975	dwc2_writel(hsotg, ahbcfg, GAHBCFG);
4976	dwc2_writel(hsotg, 0, GINTMSK);
4977
4978	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4979		dctl = dwc2_readl(hsotg, DCTL);
4980		dctl |= DCTL_SFTDISCON;
4981		dwc2_writel(hsotg, dctl, DCTL);
4982	}
4983
4984	if (hsotg->wq_otg) {
4985		if (!cancel_work_sync(&hsotg->wf_otg))
4986			flush_workqueue(hsotg->wq_otg);
4987		destroy_workqueue(hsotg->wq_otg);
4988	}
4989
4990	cancel_work_sync(&hsotg->phy_reset_work);
4991
4992	del_timer(&hsotg->wkp_timer);
4993}
4994
4995static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4996{
4997	/* Turn off all host-specific interrupts */
4998	dwc2_disable_host_interrupts(hsotg);
4999
5000	dwc2_hcd_free(hsotg);
5001}
5002
5003/*
5004 * Initializes the HCD. This function allocates memory for and initializes the
5005 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5006 * USB bus with the core and calls the hc_driver->start() function. It returns
5007 * a negative error on failure.
5008 */
5009int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5010{
5011	struct platform_device *pdev = to_platform_device(hsotg->dev);
5012	struct resource *res;
5013	struct usb_hcd *hcd;
5014	struct dwc2_host_chan *channel;
5015	u32 hcfg;
5016	int i, num_channels;
5017	int retval;
5018
5019	if (usb_disabled())
5020		return -ENODEV;
5021
5022	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5023
5024	retval = -ENOMEM;
5025
5026	hcfg = dwc2_readl(hsotg, HCFG);
5027	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5028
5029#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5030	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5031					 sizeof(*hsotg->frame_num_array),
5032					 GFP_KERNEL);
5033	if (!hsotg->frame_num_array)
5034		goto error1;
5035	hsotg->last_frame_num_array =
5036		kcalloc(FRAME_NUM_ARRAY_SIZE,
5037			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5038	if (!hsotg->last_frame_num_array)
5039		goto error1;
5040#endif
5041	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5042
5043	/* Check if the bus driver or platform code has setup a dma_mask */
5044	if (hsotg->params.host_dma &&
5045	    !hsotg->dev->dma_mask) {
5046		dev_warn(hsotg->dev,
5047			 "dma_mask not set, disabling DMA\n");
5048		hsotg->params.host_dma = false;
5049		hsotg->params.dma_desc_enable = false;
5050	}
5051
5052	/* Set device flags indicating whether the HCD supports DMA */
5053	if (hsotg->params.host_dma) {
5054		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5055			dev_warn(hsotg->dev, "can't set DMA mask\n");
5056		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5057			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5058	}
5059
5060	if (hsotg->params.change_speed_quirk) {
5061		dwc2_hc_driver.free_dev = dwc2_free_dev;
5062		dwc2_hc_driver.reset_device = dwc2_reset_device;
5063	}
5064
5065	if (hsotg->params.host_dma)
5066		dwc2_hc_driver.flags |= HCD_DMA;
5067
5068	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5069	if (!hcd)
5070		goto error1;
5071
5072	hcd->has_tt = 1;
5073
5074	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5075	hcd->rsrc_start = res->start;
5076	hcd->rsrc_len = resource_size(res);
5077
5078	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5079	hsotg->priv = hcd;
5080
5081	/*
5082	 * Disable the global interrupt until all the interrupt handlers are
5083	 * installed
5084	 */
5085	dwc2_disable_global_interrupts(hsotg);
5086
5087	/* Initialize the DWC_otg core, and select the Phy type */
5088	retval = dwc2_core_init(hsotg, true);
5089	if (retval)
5090		goto error2;
5091
5092	/* Create new workqueue and init work */
5093	retval = -ENOMEM;
5094	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5095	if (!hsotg->wq_otg) {
5096		dev_err(hsotg->dev, "Failed to create workqueue\n");
5097		goto error2;
5098	}
5099	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5100
5101	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5102
5103	/* Initialize the non-periodic schedule */
5104	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5105	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5106	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5107
5108	/* Initialize the periodic schedule */
5109	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5110	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5111	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5112	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5113
5114	INIT_LIST_HEAD(&hsotg->split_order);
5115
5116	/*
5117	 * Create a host channel descriptor for each host channel implemented
5118	 * in the controller. Initialize the channel descriptor array.
5119	 */
5120	INIT_LIST_HEAD(&hsotg->free_hc_list);
5121	num_channels = hsotg->params.host_channels;
5122	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5123
5124	for (i = 0; i < num_channels; i++) {
5125		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5126		if (!channel)
5127			goto error3;
5128		channel->hc_num = i;
5129		INIT_LIST_HEAD(&channel->split_order_list_entry);
5130		hsotg->hc_ptr_array[i] = channel;
5131	}
5132
5133	/* Initialize work */
5134	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5135	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5136	INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5137
5138	/*
5139	 * Allocate space for storing data on status transactions. Normally no
5140	 * data is sent, but this space acts as a bit bucket. This must be
5141	 * done after usb_add_hcd since that function allocates the DMA buffer
5142	 * pool.
5143	 */
5144	if (hsotg->params.host_dma)
5145		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5146					DWC2_HCD_STATUS_BUF_SIZE,
5147					&hsotg->status_buf_dma, GFP_KERNEL);
5148	else
5149		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5150					  GFP_KERNEL);
5151
5152	if (!hsotg->status_buf)
5153		goto error3;
5154
5155	/*
5156	 * Create kmem caches to handle descriptor buffers in descriptor
5157	 * DMA mode.
5158	 * Alignment must be set to 512 bytes.
5159	 */
5160	if (hsotg->params.dma_desc_enable ||
5161	    hsotg->params.dma_desc_fs_enable) {
5162		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5163				sizeof(struct dwc2_dma_desc) *
5164				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5165				NULL);
5166		if (!hsotg->desc_gen_cache) {
5167			dev_err(hsotg->dev,
5168				"unable to create dwc2 generic desc cache\n");
5169
5170			/*
5171			 * Disable descriptor dma mode since it will not be
5172			 * usable.
5173			 */
5174			hsotg->params.dma_desc_enable = false;
5175			hsotg->params.dma_desc_fs_enable = false;
5176		}
5177
5178		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5179				sizeof(struct dwc2_dma_desc) *
5180				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5181		if (!hsotg->desc_hsisoc_cache) {
5182			dev_err(hsotg->dev,
5183				"unable to create dwc2 hs isoc desc cache\n");
5184
5185			kmem_cache_destroy(hsotg->desc_gen_cache);
5186
5187			/*
5188			 * Disable descriptor dma mode since it will not be
5189			 * usable.
5190			 */
5191			hsotg->params.dma_desc_enable = false;
5192			hsotg->params.dma_desc_fs_enable = false;
5193		}
5194	}
5195
5196	if (hsotg->params.host_dma) {
5197		/*
5198		 * Create kmem caches to handle non-aligned buffer
5199		 * in Buffer DMA mode.
5200		 */
5201		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5202						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5203						SLAB_CACHE_DMA, NULL);
5204		if (!hsotg->unaligned_cache)
5205			dev_err(hsotg->dev,
5206				"unable to create dwc2 unaligned cache\n");
5207	}
5208
5209	hsotg->otg_port = 1;
5210	hsotg->frame_list = NULL;
5211	hsotg->frame_list_dma = 0;
5212	hsotg->periodic_qh_count = 0;
5213
5214	/* Initiate lx_state to L3 disconnected state */
5215	hsotg->lx_state = DWC2_L3;
5216
5217	hcd->self.otg_port = hsotg->otg_port;
5218
5219	/* Don't support SG list at this point */
5220	hcd->self.sg_tablesize = 0;
5221
5222	if (!IS_ERR_OR_NULL(hsotg->uphy))
5223		otg_set_host(hsotg->uphy->otg, &hcd->self);
5224
5225	/*
5226	 * Finish generic HCD initialization and start the HCD. This function
5227	 * allocates the DMA buffer pool, registers the USB bus, requests the
5228	 * IRQ line, and calls hcd_start method.
5229	 */
5230	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5231	if (retval < 0)
5232		goto error4;
5233
5234	device_wakeup_enable(hcd->self.controller);
5235
5236	dwc2_hcd_dump_state(hsotg);
5237
5238	dwc2_enable_global_interrupts(hsotg);
5239
5240	return 0;
5241
5242error4:
5243	kmem_cache_destroy(hsotg->unaligned_cache);
5244	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5245	kmem_cache_destroy(hsotg->desc_gen_cache);
5246error3:
5247	dwc2_hcd_release(hsotg);
5248error2:
5249	usb_put_hcd(hcd);
5250error1:
5251
5252#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5253	kfree(hsotg->last_frame_num_array);
5254	kfree(hsotg->frame_num_array);
5255#endif
5256
5257	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5258	return retval;
5259}
5260
5261/*
5262 * Removes the HCD.
5263 * Frees memory and resources associated with the HCD and deregisters the bus.
5264 */
5265void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5266{
5267	struct usb_hcd *hcd;
5268
5269	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5270
5271	hcd = dwc2_hsotg_to_hcd(hsotg);
5272	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5273
5274	if (!hcd) {
5275		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5276			__func__);
5277		return;
5278	}
5279
5280	if (!IS_ERR_OR_NULL(hsotg->uphy))
5281		otg_set_host(hsotg->uphy->otg, NULL);
5282
5283	usb_remove_hcd(hcd);
5284	hsotg->priv = NULL;
5285
5286	kmem_cache_destroy(hsotg->unaligned_cache);
5287	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5288	kmem_cache_destroy(hsotg->desc_gen_cache);
5289
5290	dwc2_hcd_release(hsotg);
5291	usb_put_hcd(hcd);
5292
5293#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5294	kfree(hsotg->last_frame_num_array);
5295	kfree(hsotg->frame_num_array);
5296#endif
5297}
5298
5299/**
5300 * dwc2_backup_host_registers() - Backup controller host registers.
5301 * When suspending usb bus, registers needs to be backuped
5302 * if controller power is disabled once suspended.
5303 *
5304 * @hsotg: Programming view of the DWC_otg controller
5305 */
5306int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5307{
5308	struct dwc2_hregs_backup *hr;
5309	int i;
5310
5311	dev_dbg(hsotg->dev, "%s\n", __func__);
5312
5313	/* Backup Host regs */
5314	hr = &hsotg->hr_backup;
5315	hr->hcfg = dwc2_readl(hsotg, HCFG);
5316	hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5317	for (i = 0; i < hsotg->params.host_channels; ++i)
5318		hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5319
5320	hr->hprt0 = dwc2_read_hprt0(hsotg);
5321	hr->hfir = dwc2_readl(hsotg, HFIR);
5322	hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5323	hr->valid = true;
5324
5325	return 0;
5326}
5327
5328/**
5329 * dwc2_restore_host_registers() - Restore controller host registers.
5330 * When resuming usb bus, device registers needs to be restored
5331 * if controller power were disabled.
5332 *
5333 * @hsotg: Programming view of the DWC_otg controller
5334 */
5335int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5336{
5337	struct dwc2_hregs_backup *hr;
5338	int i;
5339
5340	dev_dbg(hsotg->dev, "%s\n", __func__);
5341
5342	/* Restore host regs */
5343	hr = &hsotg->hr_backup;
5344	if (!hr->valid) {
5345		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5346			__func__);
5347		return -EINVAL;
5348	}
5349	hr->valid = false;
5350
5351	dwc2_writel(hsotg, hr->hcfg, HCFG);
5352	dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5353
5354	for (i = 0; i < hsotg->params.host_channels; ++i)
5355		dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5356
5357	dwc2_writel(hsotg, hr->hprt0, HPRT0);
5358	dwc2_writel(hsotg, hr->hfir, HFIR);
5359	dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5360	hsotg->frame_number = 0;
5361
5362	return 0;
5363}
5364
5365/**
5366 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5367 *
5368 * @hsotg: Programming view of the DWC_otg controller
5369 */
5370int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5371{
5372	unsigned long flags;
5373	int ret = 0;
5374	u32 hprt0;
5375	u32 pcgcctl;
5376	u32 gusbcfg;
5377	u32 gpwrdn;
5378
5379	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5380	ret = dwc2_backup_global_registers(hsotg);
5381	if (ret) {
5382		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5383			__func__);
5384		return ret;
5385	}
5386	ret = dwc2_backup_host_registers(hsotg);
5387	if (ret) {
5388		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5389			__func__);
5390		return ret;
5391	}
5392
5393	/* Enter USB Suspend Mode */
5394	hprt0 = dwc2_readl(hsotg, HPRT0);
5395	hprt0 |= HPRT0_SUSP;
5396	hprt0 &= ~HPRT0_ENA;
5397	dwc2_writel(hsotg, hprt0, HPRT0);
5398
5399	/* Wait for the HPRT0.PrtSusp register field to be set */
5400	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5401		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5402
5403	/*
5404	 * We need to disable interrupts to prevent servicing of any IRQ
5405	 * during going to hibernation
5406	 */
5407	spin_lock_irqsave(&hsotg->lock, flags);
5408	hsotg->lx_state = DWC2_L2;
5409
5410	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5411	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5412		/* ULPI interface */
5413		/* Suspend the Phy Clock */
5414		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5415		pcgcctl |= PCGCTL_STOPPCLK;
5416		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5417		udelay(10);
5418
5419		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5420		gpwrdn |= GPWRDN_PMUACTV;
5421		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5422		udelay(10);
5423	} else {
5424		/* UTMI+ Interface */
5425		gpwrdn = dwc2_readl(hsotg, GPWRDN);
5426		gpwrdn |= GPWRDN_PMUACTV;
5427		dwc2_writel(hsotg, gpwrdn, GPWRDN);
5428		udelay(10);
5429
5430		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5431		pcgcctl |= PCGCTL_STOPPCLK;
5432		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5433		udelay(10);
5434	}
5435
5436	/* Enable interrupts from wake up logic */
5437	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5438	gpwrdn |= GPWRDN_PMUINTSEL;
5439	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5440	udelay(10);
5441
5442	/* Unmask host mode interrupts in GPWRDN */
5443	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5444	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5445	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5446	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5447	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5448	udelay(10);
5449
5450	/* Enable Power Down Clamp */
5451	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5452	gpwrdn |= GPWRDN_PWRDNCLMP;
5453	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5454	udelay(10);
5455
5456	/* Switch off VDD */
5457	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5458	gpwrdn |= GPWRDN_PWRDNSWTCH;
5459	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5460
5461	hsotg->hibernated = 1;
5462	hsotg->bus_suspended = 1;
5463	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5464	spin_unlock_irqrestore(&hsotg->lock, flags);
5465	return ret;
5466}
5467
5468/*
5469 * dwc2_host_exit_hibernation()
5470 *
5471 * @hsotg: Programming view of the DWC_otg controller
5472 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5473 * @param reset: indicates whether resume is initiated by Reset.
5474 *
5475 * Return: non-zero if failed to enter to hibernation.
5476 *
5477 * This function is for exiting from Host mode hibernation by
5478 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5479 */
5480int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5481			       int reset)
5482{
5483	u32 gpwrdn;
5484	u32 hprt0;
5485	int ret = 0;
5486	struct dwc2_gregs_backup *gr;
5487	struct dwc2_hregs_backup *hr;
5488
5489	gr = &hsotg->gr_backup;
5490	hr = &hsotg->hr_backup;
5491
5492	dev_dbg(hsotg->dev,
5493		"%s: called with rem_wakeup = %d reset = %d\n",
5494		__func__, rem_wakeup, reset);
5495
5496	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5497	hsotg->hibernated = 0;
5498
5499	/*
5500	 * This step is not described in functional spec but if not wait for
5501	 * this delay, mismatch interrupts occurred because just after restore
5502	 * core is in Device mode(gintsts.curmode == 0)
5503	 */
5504	mdelay(100);
5505
5506	/* Clear all pending interupts */
5507	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5508
5509	/* De-assert Restore */
5510	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5511	gpwrdn &= ~GPWRDN_RESTORE;
5512	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5513	udelay(10);
5514
5515	/* Restore GUSBCFG, HCFG */
5516	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5517	dwc2_writel(hsotg, hr->hcfg, HCFG);
5518
5519	/* De-assert Wakeup Logic */
5520	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5521	gpwrdn &= ~GPWRDN_PMUACTV;
5522	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5523	udelay(10);
5524
5525	hprt0 = hr->hprt0;
5526	hprt0 |= HPRT0_PWR;
5527	hprt0 &= ~HPRT0_ENA;
5528	hprt0 &= ~HPRT0_SUSP;
5529	dwc2_writel(hsotg, hprt0, HPRT0);
5530
5531	hprt0 = hr->hprt0;
5532	hprt0 |= HPRT0_PWR;
5533	hprt0 &= ~HPRT0_ENA;
5534	hprt0 &= ~HPRT0_SUSP;
5535
5536	if (reset) {
5537		hprt0 |= HPRT0_RST;
5538		dwc2_writel(hsotg, hprt0, HPRT0);
5539
5540		/* Wait for Resume time and then program HPRT again */
5541		mdelay(60);
5542		hprt0 &= ~HPRT0_RST;
5543		dwc2_writel(hsotg, hprt0, HPRT0);
5544	} else {
5545		hprt0 |= HPRT0_RES;
5546		dwc2_writel(hsotg, hprt0, HPRT0);
5547
5548		/* Wait for Resume time and then program HPRT again */
5549		mdelay(100);
5550		hprt0 &= ~HPRT0_RES;
5551		dwc2_writel(hsotg, hprt0, HPRT0);
5552	}
5553	/* Clear all interrupt status */
5554	hprt0 = dwc2_readl(hsotg, HPRT0);
5555	hprt0 |= HPRT0_CONNDET;
5556	hprt0 |= HPRT0_ENACHG;
5557	hprt0 &= ~HPRT0_ENA;
5558	dwc2_writel(hsotg, hprt0, HPRT0);
5559
5560	hprt0 = dwc2_readl(hsotg, HPRT0);
5561
5562	/* Clear all pending interupts */
5563	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5564
5565	/* Restore global registers */
5566	ret = dwc2_restore_global_registers(hsotg);
5567	if (ret) {
5568		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5569			__func__);
5570		return ret;
5571	}
5572
5573	/* Restore host registers */
5574	ret = dwc2_restore_host_registers(hsotg);
5575	if (ret) {
5576		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5577			__func__);
5578		return ret;
5579	}
5580
5581	dwc2_hcd_rem_wakeup(hsotg);
5582
5583	hsotg->hibernated = 0;
5584	hsotg->bus_suspended = 0;
5585	hsotg->lx_state = DWC2_L0;
5586	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5587	return ret;
5588}
5589
5590bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5591{
5592	struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5593
5594	/* If the controller isn't allowed to wakeup then we can power off. */
5595	if (!device_may_wakeup(dwc2->dev))
5596		return true;
5597
5598	/*
5599	 * We don't want to power off the PHY if something under the
5600	 * root hub has wakeup enabled.
5601	 */
5602	if (usb_wakeup_enabled_descendants(root_hub))
5603		return false;
5604
5605	/* No reason to keep the PHY powered, so allow poweroff */
5606	return true;
5607}