Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
   2/*
   3 * core.h - DesignWare HS OTG Controller common declarations
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37
  38#ifndef __DWC2_CORE_H__
  39#define __DWC2_CORE_H__
  40
  41#include <linux/acpi.h>
  42#include <linux/phy/phy.h>
  43#include <linux/regulator/consumer.h>
  44#include <linux/usb/gadget.h>
  45#include <linux/usb/otg.h>
  46#include <linux/usb/phy.h>
  47#include "hw.h"
  48
  49/*
  50 * Suggested defines for tracers:
  51 * - no_printk:    Disable tracing
  52 * - pr_info:      Print this info to the console
  53 * - trace_printk: Print this info to trace buffer (good for verbose logging)
  54 */
  55
  56#define DWC2_TRACE_SCHEDULER		no_printk
  57#define DWC2_TRACE_SCHEDULER_VB		no_printk
  58
  59/* Detailed scheduler tracing, but won't overwhelm console */
  60#define dwc2_sch_dbg(hsotg, fmt, ...)					\
  61	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
  62			     dev_name(hsotg->dev), ##__VA_ARGS__)
  63
  64/* Verbose scheduler tracing */
  65#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
  66	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
  67				dev_name(hsotg->dev), ##__VA_ARGS__)
  68
  69/* Maximum number of Endpoints/HostChannels */
  70#define MAX_EPS_CHANNELS	16
  71
  72/* dwc2-hsotg declarations */
  73static const char * const dwc2_hsotg_supply_names[] = {
  74	"vusb_d",               /* digital USB supply, 1.2V */
  75	"vusb_a",               /* analog USB supply, 1.1V */
  76};
  77
  78#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
  79
  80/*
  81 * EP0_MPS_LIMIT
  82 *
  83 * Unfortunately there seems to be a limit of the amount of data that can
  84 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
  85 * packets (which practically means 1 packet and 63 bytes of data) when the
  86 * MPS is set to 64.
  87 *
  88 * This means if we are wanting to move >127 bytes of data, we need to
  89 * split the transactions up, but just doing one packet at a time does
  90 * not work (this may be an implicit DATA0 PID on first packet of the
  91 * transaction) and doing 2 packets is outside the controller's limits.
  92 *
  93 * If we try to lower the MPS size for EP0, then no transfers work properly
  94 * for EP0, and the system will fail basic enumeration. As no cause for this
  95 * has currently been found, we cannot support any large IN transfers for
  96 * EP0.
  97 */
  98#define EP0_MPS_LIMIT   64
  99
 100struct dwc2_hsotg;
 101struct dwc2_hsotg_req;
 102
 103/**
 104 * struct dwc2_hsotg_ep - driver endpoint definition.
 105 * @ep: The gadget layer representation of the endpoint.
 106 * @name: The driver generated name for the endpoint.
 107 * @queue: Queue of requests for this endpoint.
 108 * @parent: Reference back to the parent device structure.
 109 * @req: The current request that the endpoint is processing. This is
 110 *       used to indicate an request has been loaded onto the endpoint
 111 *       and has yet to be completed (maybe due to data move, or simply
 112 *       awaiting an ack from the core all the data has been completed).
 113 * @debugfs: File entry for debugfs file for this endpoint.
 114 * @dir_in: Set to true if this endpoint is of the IN direction, which
 115 *          means that it is sending data to the Host.
 116 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
 117 * @index: The index for the endpoint registers.
 118 * @mc: Multi Count - number of transactions per microframe
 119 * @interval: Interval for periodic endpoints, in frames or microframes.
 120 * @name: The name array passed to the USB core.
 121 * @halted: Set if the endpoint has been halted.
 122 * @periodic: Set if this is a periodic ep, such as Interrupt
 123 * @isochronous: Set if this is a isochronous ep
 124 * @send_zlp: Set if we need to send a zero-length packet.
 125 * @desc_list_dma: The DMA address of descriptor chain currently in use.
 126 * @desc_list: Pointer to descriptor DMA chain head currently in use.
 127 * @desc_count: Count of entries within the DMA descriptor chain of EP.
 128 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
 129 * @compl_desc: index of next descriptor to be completed by xFerComplete
 130 * @total_data: The total number of data bytes done.
 131 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 132 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
 133 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 134 * @last_load: The offset of data for the last start of request.
 135 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 136 * @target_frame: Targeted frame num to setup next ISOC transfer
 137 * @frame_overrun: Indicates SOF number overrun in DSTS
 138 *
 139 * This is the driver's state for each registered endpoint, allowing it
 140 * to keep track of transactions that need doing. Each endpoint has a
 141 * lock to protect the state, to try and avoid using an overall lock
 142 * for the host controller as much as possible.
 143 *
 144 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 145 * and keep track of the amount of data in the periodic FIFO for each
 146 * of these as we don't have a status register that tells us how much
 147 * is in each of them. (note, this may actually be useless information
 148 * as in shared-fifo mode periodic in acts like a single-frame packet
 149 * buffer than a fifo)
 150 */
 151struct dwc2_hsotg_ep {
 152	struct usb_ep           ep;
 153	struct list_head        queue;
 154	struct dwc2_hsotg       *parent;
 155	struct dwc2_hsotg_req    *req;
 156	struct dentry           *debugfs;
 157
 158	unsigned long           total_data;
 159	unsigned int            size_loaded;
 160	unsigned int            last_load;
 161	unsigned int            fifo_load;
 162	unsigned short          fifo_size;
 163	unsigned short		fifo_index;
 164
 165	unsigned char           dir_in;
 166	unsigned char           map_dir;
 167	unsigned char           index;
 168	unsigned char           mc;
 169	u16                     interval;
 170
 171	unsigned int            halted:1;
 172	unsigned int            periodic:1;
 173	unsigned int            isochronous:1;
 174	unsigned int            send_zlp:1;
 175	unsigned int            target_frame;
 176#define TARGET_FRAME_INITIAL   0xFFFFFFFF
 177	bool			frame_overrun;
 178
 179	dma_addr_t		desc_list_dma;
 180	struct dwc2_dma_desc	*desc_list;
 181	u8			desc_count;
 182
 183	unsigned int		next_desc;
 184	unsigned int		compl_desc;
 185
 186	char                    name[10];
 187};
 188
 189/**
 190 * struct dwc2_hsotg_req - data transfer request
 191 * @req: The USB gadget request
 192 * @queue: The list of requests for the endpoint this is queued for.
 193 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 194 */
 195struct dwc2_hsotg_req {
 196	struct usb_request      req;
 197	struct list_head        queue;
 198	void *saved_req_buf;
 199};
 200
 201#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
 202	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 203#define call_gadget(_hs, _entry) \
 204do { \
 205	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
 206		(_hs)->driver && (_hs)->driver->_entry) { \
 207		spin_unlock(&_hs->lock); \
 208		(_hs)->driver->_entry(&(_hs)->gadget); \
 209		spin_lock(&_hs->lock); \
 210	} \
 211} while (0)
 212#else
 213#define call_gadget(_hs, _entry)	do {} while (0)
 214#endif
 215
 216struct dwc2_hsotg;
 217struct dwc2_host_chan;
 218
 219/* Device States */
 220enum dwc2_lx_state {
 221	DWC2_L0,	/* On state */
 222	DWC2_L1,	/* LPM sleep state */
 223	DWC2_L2,	/* USB suspend state */
 224	DWC2_L3,	/* Off state */
 225};
 226
 227/* Gadget ep0 states */
 228enum dwc2_ep0_state {
 229	DWC2_EP0_SETUP,
 230	DWC2_EP0_DATA_IN,
 231	DWC2_EP0_DATA_OUT,
 232	DWC2_EP0_STATUS_IN,
 233	DWC2_EP0_STATUS_OUT,
 234};
 235
 236/**
 237 * struct dwc2_core_params - Parameters for configuring the core
 238 *
 239 * @otg_cap:            Specifies the OTG capabilities.
 240 *                       0 - HNP and SRP capable
 241 *                       1 - SRP Only capable
 242 *                       2 - No HNP/SRP capable (always available)
 243 *                      Defaults to best available option (0, 1, then 2)
 244 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
 245 *                      the data FIFOs. The driver will automatically detect the
 246 *                      value for this parameter if none is specified.
 247 *                       0 - Slave (always available)
 248 *                       1 - DMA (default, if available)
 249 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 250 *                      address DMA mode or descriptor DMA mode for accessing
 251 *                      the data FIFOs. The driver will automatically detect the
 252 *                      value for this if none is specified.
 253 *                       0 - Address DMA
 254 *                       1 - Descriptor DMA (default, if available)
 255 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 256 *                      address DMA mode or descriptor DMA mode for accessing
 257 *                      the data FIFOs in Full Speed mode only. The driver
 258 *                      will automatically detect the value for this if none is
 259 *                      specified.
 260 *                       0 - Address DMA
 261 *                       1 - Descriptor DMA in FS (default, if available)
 262 * @speed:              Specifies the maximum speed of operation in host and
 263 *                      device mode. The actual speed depends on the speed of
 264 *                      the attached device and the value of phy_type.
 265 *                       0 - High Speed
 266 *                           (default when phy_type is UTMI+ or ULPI)
 267 *                       1 - Full Speed
 268 *                           (default when phy_type is Full Speed)
 269 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 270 *                       1 - Allow dynamic FIFO sizing (default, if available)
 271 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 272 *                      are enabled for non-periodic IN endpoints in device
 273 *                      mode.
 274 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 275 *                      dynamic FIFO sizing is enabled
 276 *                       16 to 32768
 277 *                      Actual maximum value is autodetected and also
 278 *                      the default.
 279 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 280 *                      in host mode when dynamic FIFO sizing is enabled
 281 *                       16 to 32768
 282 *                      Actual maximum value is autodetected and also
 283 *                      the default.
 284 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 285 *                      host mode when dynamic FIFO sizing is enabled
 286 *                       16 to 32768
 287 *                      Actual maximum value is autodetected and also
 288 *                      the default.
 289 * @max_transfer_size:  The maximum transfer size supported, in bytes
 290 *                       2047 to 65,535
 291 *                      Actual maximum value is autodetected and also
 292 *                      the default.
 293 * @max_packet_count:   The maximum number of packets in a transfer
 294 *                       15 to 511
 295 *                      Actual maximum value is autodetected and also
 296 *                      the default.
 297 * @host_channels:      The number of host channel registers to use
 298 *                       1 to 16
 299 *                      Actual maximum value is autodetected and also
 300 *                      the default.
 301 * @phy_type:           Specifies the type of PHY interface to use. By default,
 302 *                      the driver will automatically detect the phy_type.
 303 *                       0 - Full Speed Phy
 304 *                       1 - UTMI+ Phy
 305 *                       2 - ULPI Phy
 306 *                      Defaults to best available option (2, 1, then 0)
 307 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 308 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 309 *                      ULPI phy_type, this parameter indicates the data width
 310 *                      between the MAC and the ULPI Wrapper.) Also, this
 311 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 312 *                      parameter was set to "8 and 16 bits", meaning that the
 313 *                      core has been configured to work at either data path
 314 *                      width.
 315 *                       8 or 16 (default 16 if available)
 316 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 317 *                      data rate. This parameter is only applicable if phy_type
 318 *                      is ULPI.
 319 *                       0 - single data rate ULPI interface with 8 bit wide
 320 *                           data bus (default)
 321 *                       1 - double data rate ULPI interface with 4 bit wide
 322 *                           data bus
 323 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 324 *                      external supply to drive the VBus
 325 *                       0 - Internal supply (default)
 326 *                       1 - External supply
 327 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 328 *                      speed PHY. This parameter is only applicable if phy_type
 329 *                      is FS.
 330 *                       0 - No (default)
 331 *                       1 - Yes
 332 * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
 333 *                       0 - Disable (default)
 334 *                       1 - Enable
 335 * @acg_enable:		For enabling Active Clock Gating in the controller
 336 *                       0 - No
 337 *                       1 - Yes
 338 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 339 *                       0 - No (default)
 340 *                       1 - Yes
 341 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 342 *                      when attached to a Full Speed or Low Speed device in
 343 *                      host mode.
 344 *                       0 - Don't support low power mode (default)
 345 *                       1 - Support low power mode
 346 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 347 *                      when connected to a Low Speed device in host
 348 *                      mode. This parameter is applicable only if
 349 *                      host_support_fs_ls_low_power is enabled.
 350 *                       0 - 48 MHz
 351 *                           (default when phy_type is UTMI+ or ULPI)
 352 *                       1 - 6 MHz
 353 *                           (default when phy_type is Full Speed)
 354 * @oc_disable:		Flag to disable overcurrent condition.
 355 *			0 - Allow overcurrent condition to get detected
 356 *			1 - Disable overcurrent condtion to get detected
 357 * @ts_dline:           Enable Term Select Dline pulsing
 358 *                       0 - No (default)
 359 *                       1 - Yes
 360 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 361 *                       0 - No (default for core < 2.92a)
 362 *                       1 - Yes (default for core >= 2.92a)
 363 * @ahbcfg:             This field allows the default value of the GAHBCFG
 364 *                      register to be overridden
 365 *                       -1         - GAHBCFG value will be set to 0x06
 366 *                                    (INCR, default)
 367 *                       all others - GAHBCFG value will be overridden with
 368 *                                    this value
 369 *                      Not all bits can be controlled like this, the
 370 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 371 *                      by the driver and are ignored in this
 372 *                      configuration value.
 373 * @uframe_sched:       True to enable the microframe scheduler
 374 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 375 *                      Disable CONIDSTSCHNG controller interrupt in such
 376 *                      case.
 377 *                      0 - No (default)
 378 *                      1 - Yes
 379 * @power_down:         Specifies whether the controller support power_down.
 380 *			If power_down is enabled, the controller will enter
 381 *			power_down in both peripheral and host mode when
 382 *			needed.
 383 *			0 - No (default)
 384 *			1 - Partial power down
 385 *			2 - Hibernation
 386 * @no_clock_gating:	Specifies whether to avoid clock gating feature.
 387 *			0 - No (use clock gating)
 388 *			1 - Yes (avoid it)
 389 * @lpm:		Enable LPM support.
 390 *			0 - No
 391 *			1 - Yes
 392 * @lpm_clock_gating:		Enable core PHY clock gating.
 393 *			0 - No
 394 *			1 - Yes
 395 * @besl:		Enable LPM Errata support.
 396 *			0 - No
 397 *			1 - Yes
 398 * @hird_threshold_en:	HIRD or HIRD Threshold enable.
 399 *			0 - No
 400 *			1 - Yes
 401 * @hird_threshold:	Value of BESL or HIRD Threshold.
 402 * @ref_clk_per:        Indicates in terms of pico seconds the period
 403 *                      of ref_clk.
 404 *			62500 - 16MHz
 405 *                      58823 - 17MHz
 406 *                      52083 - 19.2MHz
 407 *			50000 - 20MHz
 408 *			41666 - 24MHz
 409 *			33333 - 30MHz (default)
 410 *			25000 - 40MHz
 411 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
 412 *                      the controller should generate an interrupt if the
 413 *                      device had been in L1 state until that period.
 414 *                      This is used by SW to initiate Remote WakeUp in the
 415 *                      controller so as to sync to the uF number from the host.
 416 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
 417 *			register.
 418 *			0 - Deactivate the transceiver (default)
 419 *			1 - Activate the transceiver
 420 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
 421 *			detection using GGPIO register.
 422 *			0 - Deactivate the external level detection (default)
 423 *			1 - Activate the external level detection
 424 * @g_dma:              Enables gadget dma usage (default: autodetect).
 425 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
 426 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
 427 *			DWORDS from 16-32768 (default: 2048 if
 428 *			possible, otherwise autodetect).
 429 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
 430 *			DWORDS from 16-32768 (default: 1024 if
 431 *			possible, otherwise autodetect).
 432 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
 433 *			mode. Each value corresponds to one EP
 434 *			starting from EP1 (max 15 values). Sizes are
 435 *			in DWORDS with possible values from
 436 *			16-32768 (default: 256, 256, 256, 256, 768,
 437 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
 438 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
 439 *                      while full&low speed device connect. And change speed
 440 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
 441 *			0 - No (default)
 442 *			1 - Yes
 443 * @service_interval:   Enable service interval based scheduling.
 444 *                      0 - No
 445 *                      1 - Yes
 446 *
 447 * The following parameters may be specified when starting the module. These
 448 * parameters define how the DWC_otg controller should be configured. A
 449 * value of -1 (or any other out of range value) for any parameter means
 450 * to read the value from hardware (if possible) or use the builtin
 451 * default described above.
 452 */
 453struct dwc2_core_params {
 454	u8 otg_cap;
 455#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
 456#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
 457#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
 458
 459	u8 phy_type;
 460#define DWC2_PHY_TYPE_PARAM_FS		0
 461#define DWC2_PHY_TYPE_PARAM_UTMI	1
 462#define DWC2_PHY_TYPE_PARAM_ULPI	2
 463
 464	u8 speed;
 465#define DWC2_SPEED_PARAM_HIGH	0
 466#define DWC2_SPEED_PARAM_FULL	1
 467#define DWC2_SPEED_PARAM_LOW	2
 468
 469	u8 phy_utmi_width;
 470	bool phy_ulpi_ddr;
 471	bool phy_ulpi_ext_vbus;
 472	bool enable_dynamic_fifo;
 473	bool en_multiple_tx_fifo;
 474	bool i2c_enable;
 475	bool acg_enable;
 476	bool ulpi_fs_ls;
 477	bool ts_dline;
 478	bool reload_ctl;
 479	bool uframe_sched;
 480	bool external_id_pin_ctl;
 481
 482	int power_down;
 483#define DWC2_POWER_DOWN_PARAM_NONE		0
 484#define DWC2_POWER_DOWN_PARAM_PARTIAL		1
 485#define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
 486	bool no_clock_gating;
 487
 488	bool lpm;
 489	bool lpm_clock_gating;
 490	bool besl;
 491	bool hird_threshold_en;
 492	bool service_interval;
 493	u8 hird_threshold;
 494	bool activate_stm_fs_transceiver;
 495	bool activate_stm_id_vb_detection;
 496	bool ipg_isoc_en;
 497	u16 max_packet_count;
 498	u32 max_transfer_size;
 499	u32 ahbcfg;
 500
 501	/* GREFCLK parameters */
 502	u32 ref_clk_per;
 503	u16 sof_cnt_wkup_alert;
 504
 505	/* Host parameters */
 506	bool host_dma;
 507	bool dma_desc_enable;
 508	bool dma_desc_fs_enable;
 509	bool host_support_fs_ls_low_power;
 510	bool host_ls_low_power_phy_clk;
 511	bool oc_disable;
 512
 513	u8 host_channels;
 514	u16 host_rx_fifo_size;
 515	u16 host_nperio_tx_fifo_size;
 516	u16 host_perio_tx_fifo_size;
 517
 518	/* Gadget parameters */
 519	bool g_dma;
 520	bool g_dma_desc;
 521	u32 g_rx_fifo_size;
 522	u32 g_np_tx_fifo_size;
 523	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 524
 525	bool change_speed_quirk;
 526};
 527
 528/**
 529 * struct dwc2_hw_params - Autodetected parameters.
 530 *
 531 * These parameters are the various parameters read from hardware
 532 * registers during initialization. They typically contain the best
 533 * supported or maximum value that can be configured in the
 534 * corresponding dwc2_core_params value.
 535 *
 536 * The values that are not in dwc2_core_params are documented below.
 537 *
 538 * @op_mode:             Mode of Operation
 539 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 540 *                       1 - SRP-Capable OTG (Host & Device)
 541 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 542 *                       3 - SRP-Capable Device
 543 *                       4 - Non-OTG Device
 544 *                       5 - SRP-Capable Host
 545 *                       6 - Non-OTG Host
 546 * @arch:                Architecture
 547 *                       0 - Slave only
 548 *                       1 - External DMA
 549 *                       2 - Internal DMA
 550 * @ipg_isoc_en:        This feature indicates that the controller supports
 551 *                      the worst-case scenario of Rx followed by Rx
 552 *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
 553 *                      specification for any token following ISOC OUT token.
 554 *                       0 - Don't support
 555 *                       1 - Support
 556 * @power_optimized:    Are power optimizations enabled?
 557 * @num_dev_ep:         Number of device endpoints available
 558 * @num_dev_in_eps:     Number of device IN endpoints available
 559 * @num_dev_perio_in_ep: Number of device periodic IN endpoints
 560 *                       available
 561 * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
 562 *                      Depth
 563 *                       0 to 30
 564 * @host_perio_tx_q_depth:
 565 *                      Host Mode Periodic Request Queue Depth
 566 *                       2, 4 or 8
 567 * @nperio_tx_q_depth:
 568 *                      Non-Periodic Request Queue Depth
 569 *                       2, 4 or 8
 570 * @hs_phy_type:         High-speed PHY interface type
 571 *                       0 - High-speed interface not supported
 572 *                       1 - UTMI+
 573 *                       2 - ULPI
 574 *                       3 - UTMI+ and ULPI
 575 * @fs_phy_type:         Full-speed PHY interface type
 576 *                       0 - Full speed interface not supported
 577 *                       1 - Dedicated full speed interface
 578 *                       2 - FS pins shared with UTMI+ pins
 579 *                       3 - FS pins shared with ULPI pins
 580 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 581 * @hibernation:	Is hibernation enabled?
 582 * @utmi_phy_data_width: UTMI+ PHY data width
 583 *                       0 - 8 bits
 584 *                       1 - 16 bits
 585 *                       2 - 8 or 16 bits
 586 * @snpsid:             Value from SNPSID register
 587 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 588 * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
 589 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 590 *                      address DMA mode or descriptor DMA mode for accessing
 591 *                      the data FIFOs. The driver will automatically detect the
 592 *                      value for this if none is specified.
 593 *                       0 - Address DMA
 594 *                       1 - Descriptor DMA (default, if available)
 595 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 596 *                       1 - Allow dynamic FIFO sizing (default, if available)
 597 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 598 *                      are enabled for non-periodic IN endpoints in device
 599 *                      mode.
 600 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 601 *                      in host mode when dynamic FIFO sizing is enabled
 602 *                       16 to 32768
 603 *                      Actual maximum value is autodetected and also
 604 *                      the default.
 605 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 606 *                      host mode when dynamic FIFO sizing is enabled
 607 *                       16 to 32768
 608 *                      Actual maximum value is autodetected and also
 609 *                      the default.
 610 * @max_transfer_size:  The maximum transfer size supported, in bytes
 611 *                       2047 to 65,535
 612 *                      Actual maximum value is autodetected and also
 613 *                      the default.
 614 * @max_packet_count:   The maximum number of packets in a transfer
 615 *                       15 to 511
 616 *                      Actual maximum value is autodetected and also
 617 *                      the default.
 618 * @host_channels:      The number of host channel registers to use
 619 *                       1 to 16
 620 *                      Actual maximum value is autodetected and also
 621 *                      the default.
 622 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 623 *			     in device mode when dynamic FIFO sizing is enabled
 624 *			     16 to 32768
 625 *			     Actual maximum value is autodetected and also
 626 *			     the default.
 627 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 628 *                      speed PHY. This parameter is only applicable if phy_type
 629 *                      is FS.
 630 *                       0 - No (default)
 631 *                       1 - Yes
 632 * @acg_enable:		For enabling Active Clock Gating in the controller
 633 *                       0 - Disable
 634 *                       1 - Enable
 635 * @lpm_mode:		For enabling Link Power Management in the controller
 636 *                       0 - Disable
 637 *                       1 - Enable
 638 * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
 639 *			FIFO sizing is enabled 16 to 32768
 640 *			Actual maximum value is autodetected and also
 641 *			the default.
 642 * @service_interval_mode: For enabling service interval based scheduling in the
 643 *                         controller.
 644 *                           0 - Disable
 645 *                           1 - Enable
 646 */
 647struct dwc2_hw_params {
 648	unsigned op_mode:3;
 649	unsigned arch:2;
 650	unsigned dma_desc_enable:1;
 651	unsigned enable_dynamic_fifo:1;
 652	unsigned en_multiple_tx_fifo:1;
 653	unsigned rx_fifo_size:16;
 654	unsigned host_nperio_tx_fifo_size:16;
 655	unsigned dev_nperio_tx_fifo_size:16;
 656	unsigned host_perio_tx_fifo_size:16;
 657	unsigned nperio_tx_q_depth:3;
 658	unsigned host_perio_tx_q_depth:3;
 659	unsigned dev_token_q_depth:5;
 660	unsigned max_transfer_size:26;
 661	unsigned max_packet_count:11;
 662	unsigned host_channels:5;
 663	unsigned hs_phy_type:2;
 664	unsigned fs_phy_type:2;
 665	unsigned i2c_enable:1;
 666	unsigned acg_enable:1;
 667	unsigned num_dev_ep:4;
 668	unsigned num_dev_in_eps : 4;
 669	unsigned num_dev_perio_in_ep:4;
 670	unsigned total_fifo_size:16;
 671	unsigned power_optimized:1;
 672	unsigned hibernation:1;
 673	unsigned utmi_phy_data_width:2;
 674	unsigned lpm_mode:1;
 675	unsigned ipg_isoc_en:1;
 676	unsigned service_interval_mode:1;
 677	u32 snpsid;
 678	u32 dev_ep_dirs;
 679	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 680};
 681
 682/* Size of control and EP0 buffers */
 683#define DWC2_CTRL_BUFF_SIZE 8
 684
 685/**
 686 * struct dwc2_gregs_backup - Holds global registers state before
 687 * entering partial power down
 688 * @gotgctl:		Backup of GOTGCTL register
 689 * @gintmsk:		Backup of GINTMSK register
 690 * @gahbcfg:		Backup of GAHBCFG register
 691 * @gusbcfg:		Backup of GUSBCFG register
 692 * @grxfsiz:		Backup of GRXFSIZ register
 693 * @gnptxfsiz:		Backup of GNPTXFSIZ register
 694 * @gi2cctl:		Backup of GI2CCTL register
 695 * @glpmcfg:		Backup of GLPMCFG register
 696 * @gdfifocfg:		Backup of GDFIFOCFG register
 697 * @pcgcctl:		Backup of PCGCCTL register
 698 * @pcgcctl1:		Backup of PCGCCTL1 register
 699 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 700 * @gpwrdn:		Backup of GPWRDN register
 701 * @valid:		True if registers values backuped.
 702 */
 703struct dwc2_gregs_backup {
 704	u32 gotgctl;
 705	u32 gintmsk;
 706	u32 gahbcfg;
 707	u32 gusbcfg;
 708	u32 grxfsiz;
 709	u32 gnptxfsiz;
 710	u32 gi2cctl;
 711	u32 glpmcfg;
 712	u32 pcgcctl;
 713	u32 pcgcctl1;
 714	u32 gdfifocfg;
 715	u32 gpwrdn;
 716	bool valid;
 717};
 718
 719/**
 720 * struct dwc2_dregs_backup - Holds device registers state before
 721 * entering partial power down
 722 * @dcfg:		Backup of DCFG register
 723 * @dctl:		Backup of DCTL register
 724 * @daintmsk:		Backup of DAINTMSK register
 725 * @diepmsk:		Backup of DIEPMSK register
 726 * @doepmsk:		Backup of DOEPMSK register
 727 * @diepctl:		Backup of DIEPCTL register
 728 * @dieptsiz:		Backup of DIEPTSIZ register
 729 * @diepdma:		Backup of DIEPDMA register
 730 * @doepctl:		Backup of DOEPCTL register
 731 * @doeptsiz:		Backup of DOEPTSIZ register
 732 * @doepdma:		Backup of DOEPDMA register
 733 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 734 * @valid:      True if registers values backuped.
 735 */
 736struct dwc2_dregs_backup {
 737	u32 dcfg;
 738	u32 dctl;
 739	u32 daintmsk;
 740	u32 diepmsk;
 741	u32 doepmsk;
 742	u32 diepctl[MAX_EPS_CHANNELS];
 743	u32 dieptsiz[MAX_EPS_CHANNELS];
 744	u32 diepdma[MAX_EPS_CHANNELS];
 745	u32 doepctl[MAX_EPS_CHANNELS];
 746	u32 doeptsiz[MAX_EPS_CHANNELS];
 747	u32 doepdma[MAX_EPS_CHANNELS];
 748	u32 dtxfsiz[MAX_EPS_CHANNELS];
 749	bool valid;
 750};
 751
 752/**
 753 * struct dwc2_hregs_backup - Holds host registers state before
 754 * entering partial power down
 755 * @hcfg:		Backup of HCFG register
 756 * @haintmsk:		Backup of HAINTMSK register
 757 * @hcintmsk:		Backup of HCINTMSK register
 758 * @hprt0:		Backup of HPTR0 register
 759 * @hfir:		Backup of HFIR register
 760 * @hptxfsiz:		Backup of HPTXFSIZ register
 761 * @valid:      True if registers values backuped.
 762 */
 763struct dwc2_hregs_backup {
 764	u32 hcfg;
 765	u32 haintmsk;
 766	u32 hcintmsk[MAX_EPS_CHANNELS];
 767	u32 hprt0;
 768	u32 hfir;
 769	u32 hptxfsiz;
 770	bool valid;
 771};
 772
 773/*
 774 * Constants related to high speed periodic scheduling
 775 *
 776 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 777 * reservation point of view it's assumed that the schedule goes right back to
 778 * the beginning after the end of the schedule.
 779 *
 780 * What does that mean for scheduling things with a long interval?  It means
 781 * we'll reserve time for them in every possible microframe that they could
 782 * ever be scheduled in.  ...but we'll still only actually schedule them as
 783 * often as they were requested.
 784 *
 785 * We keep our schedule in a "bitmap" structure.  This simplifies having
 786 * to keep track of and merge intervals: we just let the bitmap code do most
 787 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 788 *
 789 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 790 * supposed to schedule for periodic transfers).  That's according to spec.
 791 *
 792 * Note that though we only schedule 80% of each microframe, the bitmap that we
 793 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 794 * space for each uFrame).
 795 *
 796 * Requirements:
 797 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 798 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 799 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 800 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 801 */
 802#define DWC2_US_PER_UFRAME		125
 803#define DWC2_HS_PERIODIC_US_PER_UFRAME	100
 804
 805#define DWC2_HS_SCHEDULE_UFRAMES	8
 806#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
 807					 DWC2_HS_PERIODIC_US_PER_UFRAME)
 808
 809/*
 810 * Constants related to low speed scheduling
 811 *
 812 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 813 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 814 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 815 * transfers.
 816 *
 817 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 818 * we only schedule 1 frame it means that we'll need to reserve a time every
 819 * frame even for things that only transfer very rarely, so something that runs
 820 * every 2048 frames will get time reserved in every frame.  Our low speed
 821 * schedule can be longer and we'll be able to handle more overlap, but that
 822 * will come at increased memory cost and increased time to schedule.
 823 *
 824 * Note: one other advantage of a short low speed schedule is that if we mess
 825 * up and miss scheduling we can jump in and use any of the slots that we
 826 * happened to reserve.
 827 *
 828 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 829 * the schedule.  There will be one schedule per TT.
 830 *
 831 * Requirements:
 832 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 833 */
 834#define DWC2_US_PER_SLICE	25
 835#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
 836
 837#define DWC2_ROUND_US_TO_SLICE(us) \
 838				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
 839				 DWC2_US_PER_SLICE)
 840
 841#define DWC2_LS_PERIODIC_US_PER_FRAME \
 842				900
 843#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
 844				(DWC2_LS_PERIODIC_US_PER_FRAME / \
 845				 DWC2_US_PER_SLICE)
 846
 847#define DWC2_LS_SCHEDULE_FRAMES	1
 848#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
 849				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
 850
 851/**
 852 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 853 * and periodic schedules
 854 *
 855 * These are common for both host and peripheral modes:
 856 *
 857 * @dev:                The struct device pointer
 858 * @regs:		Pointer to controller regs
 859 * @hw_params:          Parameters that were autodetected from the
 860 *                      hardware registers
 861 * @params:	Parameters that define how the core should be configured
 862 * @op_state:           The operational State, during transitions (a_host=>
 863 *                      a_peripheral and b_device=>b_host) this may not match
 864 *                      the core, but allows the software to determine
 865 *                      transitions
 866 * @dr_mode:            Requested mode of operation, one of following:
 867 *                      - USB_DR_MODE_PERIPHERAL
 868 *                      - USB_DR_MODE_HOST
 869 *                      - USB_DR_MODE_OTG
 870 * @role_sw:		usb_role_switch handle
 871 * @hcd_enabled:	Host mode sub-driver initialization indicator.
 872 * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
 873 * @ll_hw_enabled:	Status of low-level hardware resources.
 874 * @hibernated:		True if core is hibernated
 875 * @in_ppd:		True if core is partial power down mode.
 876 * @bus_suspended:	True if bus is suspended
 877 * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
 878 *			remote wakeup.
 879 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
 880 * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
 881 *			suspend if we need USB to wake us up.
 882 * @frame_number:       Frame number read from the core. For both device
 883 *			and host modes. The value ranges are from 0
 884 *			to HFNUM_MAX_FRNUM.
 885 * @phy:                The otg phy transceiver structure for phy control.
 886 * @uphy:               The otg phy transceiver structure for old USB phy
 887 *                      control.
 888 * @plat:               The platform specific configuration data. This can be
 889 *                      removed once all SoCs support usb transceiver.
 890 * @supplies:           Definition of USB power supplies
 891 * @vbus_supply:        Regulator supplying vbus.
 892 * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
 893 *			supply ID and VBUS detection hardware.
 894 * @lock:		Spinlock that protects all the driver data structures
 895 * @priv:		Stores a pointer to the struct usb_hcd
 896 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 897 *                      transfer are in process of being queued
 898 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 899 *                      with an I2C interface
 900 * @wq_otg:             Workqueue object used for handling of some interrupts
 901 * @wf_otg:             Work object for handling Connector ID Status Change
 902 *                      interrupt
 903 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 904 * @lx_state:           Lx state of connected device
 905 * @gr_backup: Backup of global registers during suspend
 906 * @dr_backup: Backup of device registers during suspend
 907 * @hr_backup: Backup of host registers during suspend
 908 * @needs_byte_swap:		Specifies whether the opposite endianness.
 909 *
 910 * These are for host mode:
 911 *
 912 * @flags:              Flags for handling root port state changes
 913 * @flags.d32:          Contain all root port flags
 914 * @flags.b:            Separate root port flags from each other
 915 * @flags.b.port_connect_status_change: True if root port connect status
 916 *                      changed
 917 * @flags.b.port_connect_status: True if device connected to root port
 918 * @flags.b.port_reset_change: True if root port reset status changed
 919 * @flags.b.port_enable_change: True if root port enable status changed
 920 * @flags.b.port_suspend_change: True if root port suspend status changed
 921 * @flags.b.port_over_current_change: True if root port over current state
 922 *                       changed.
 923 * @flags.b.port_l1_change: True if root port l1 status changed
 924 * @flags.b.reserved:   Reserved bits of root port register
 925 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 926 *                      Transfers associated with these QHs are not currently
 927 *                      assigned to a host channel.
 928 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 929 *                      Transfers associated with these QHs are currently
 930 *                      assigned to a host channel.
 931 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 932 *                      non-periodic schedule
 933 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
 934 *                      Transfers associated with these QHs are not currently
 935 *                      assigned to a host channel.
 936 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 937 *                      list of QHs for periodic transfers that are _not_
 938 *                      scheduled for the next frame. Each QH in the list has an
 939 *                      interval counter that determines when it needs to be
 940 *                      scheduled for execution. This scheduling mechanism
 941 *                      allows only a simple calculation for periodic bandwidth
 942 *                      used (i.e. must assume that all periodic transfers may
 943 *                      need to execute in the same frame). However, it greatly
 944 *                      simplifies scheduling and should be sufficient for the
 945 *                      vast majority of OTG hosts, which need to connect to a
 946 *                      small number of peripherals at one time. Items move from
 947 *                      this list to periodic_sched_ready when the QH interval
 948 *                      counter is 0 at SOF.
 949 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 950 *                      the next frame, but have not yet been assigned to host
 951 *                      channels. Items move from this list to
 952 *                      periodic_sched_assigned as host channels become
 953 *                      available during the current frame.
 954 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 955 *                      frame that are assigned to host channels. Items move
 956 *                      from this list to periodic_sched_queued as the
 957 *                      transactions for the QH are queued to the DWC_otg
 958 *                      controller.
 959 * @periodic_sched_queued: List of periodic QHs that have been queued for
 960 *                      execution. Items move from this list to either
 961 *                      periodic_sched_inactive or periodic_sched_ready when the
 962 *                      channel associated with the transfer is released. If the
 963 *                      interval for the QH is 1, the item moves to
 964 *                      periodic_sched_ready because it must be rescheduled for
 965 *                      the next frame. Otherwise, the item moves to
 966 *                      periodic_sched_inactive.
 967 * @split_order:        List keeping track of channels doing splits, in order.
 968 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 969 *                      This value is in microseconds per (micro)frame. The
 970 *                      assumption is that all periodic transfers may occur in
 971 *                      the same (micro)frame.
 972 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 973 *                      host is in high speed mode; low speed schedules are
 974 *                      stored elsewhere since we need one per TT.
 975 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 976 *                      SOF enable/disable.
 977 * @free_hc_list:       Free host channels in the controller. This is a list of
 978 *                      struct dwc2_host_chan items.
 979 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 980 *                      Currently assuming that there is a dedicated host
 981 *                      channel for each periodic transaction and at least one
 982 *                      host channel is available for non-periodic transactions.
 983 * @non_periodic_channels: Number of host channels assigned to non-periodic
 984 *                      transfers
 985 * @available_host_channels: Number of host channels available for the
 986 *			     microframe scheduler to use
 987 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 988 *                      Allows accessing a host channel descriptor given the
 989 *                      host channel number. This is useful in interrupt
 990 *                      handlers.
 991 * @status_buf:         Buffer used for data received during the status phase of
 992 *                      a control transfer.
 993 * @status_buf_dma:     DMA address for status_buf
 994 * @start_work:         Delayed work for handling host A-cable connection
 995 * @reset_work:         Delayed work for handling a port reset
 996 * @phy_reset_work:     Work structure for doing a PHY reset
 997 * @otg_port:           OTG port number
 998 * @frame_list:         Frame list
 999 * @frame_list_dma:     Frame list DMA address
1000 * @frame_list_sz:      Frame list size
1001 * @desc_gen_cache:     Kmem cache for generic descriptors
1002 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
1003 * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
1004 *
1005 * These are for peripheral mode:
1006 *
1007 * @driver:             USB gadget driver
1008 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1009 * @num_of_eps:         Number of available EPs (excluding EP0)
1010 * @debug_root:         Root directrory for debugfs.
1011 * @ep0_reply:          Request used for ep0 reply.
1012 * @ep0_buff:           Buffer for EP0 reply data, if needed.
1013 * @ctrl_buff:          Buffer for EP0 control requests.
1014 * @ctrl_req:           Request for EP0 control packets.
1015 * @ep0_state:          EP0 control transfers state
1016 * @delayed_status:		true when gadget driver asks for delayed status
1017 * @test_mode:          USB test mode requested by the host
1018 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1019 *                      remote-wakeup signalling
1020 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
1021 * @setup_desc:		EP0 setup stage desc chain pointer
1022 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1023 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1024 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1025 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1026 * @irq:		Interrupt request line number
1027 * @clk:		Pointer to otg clock
1028 * @reset:		Pointer to dwc2 reset controller
1029 * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1030 * @regset:		A pointer to a struct debugfs_regset32, which contains
1031 *			a pointer to an array of register definitions, the
1032 *			array size and the base address where the register bank
1033 *			is to be found.
1034 * @last_frame_num:	Number of last frame. Range from 0 to  32768
1035 * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1036 *			defined, for missed SOFs tracking. Array holds that
1037 *			frame numbers, which not equal to last_frame_num +1
1038 * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1039 *			    defined, for missed SOFs tracking.
1040 *			    If current_frame_number != last_frame_num+1
1041 *			    then last_frame_num added to this array
1042 * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1043 * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1044 *				0 - if missed SOFs frame numbers not dumbed
1045 * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1046 * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1047 *			then that fifo is used
1048 * @gadget:		Represents a usb gadget device
1049 * @connected:		Used in slave mode. True if device connected with host
1050 * @eps_in:		The IN endpoints being supplied to the gadget framework
1051 * @eps_out:		The OUT endpoints being supplied to the gadget framework
1052 * @new_connection:	Used in host mode. True if there are new connected
1053 *			device
1054 * @enabled:		Indicates the enabling state of controller
1055 *
1056 */
1057struct dwc2_hsotg {
1058	struct device *dev;
1059	void __iomem *regs;
1060	/** Params detected from hardware */
1061	struct dwc2_hw_params hw_params;
1062	/** Params to actually use */
1063	struct dwc2_core_params params;
1064	enum usb_otg_state op_state;
1065	enum usb_dr_mode dr_mode;
1066	struct usb_role_switch *role_sw;
1067	unsigned int hcd_enabled:1;
1068	unsigned int gadget_enabled:1;
1069	unsigned int ll_hw_enabled:1;
1070	unsigned int hibernated:1;
1071	unsigned int in_ppd:1;
1072	bool bus_suspended;
1073	unsigned int reset_phy_on_wake:1;
1074	unsigned int need_phy_for_wake:1;
1075	unsigned int phy_off_for_suspend:1;
1076	u16 frame_number;
1077
1078	struct phy *phy;
1079	struct usb_phy *uphy;
1080	struct dwc2_hsotg_plat *plat;
1081	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1082	struct regulator *vbus_supply;
1083	struct regulator *usb33d;
1084
1085	spinlock_t lock;
1086	void *priv;
1087	int     irq;
1088	struct clk *clk;
1089	struct reset_control *reset;
1090	struct reset_control *reset_ecc;
1091
1092	unsigned int queuing_high_bandwidth:1;
1093	unsigned int srp_success:1;
1094
1095	struct workqueue_struct *wq_otg;
1096	struct work_struct wf_otg;
1097	struct timer_list wkp_timer;
1098	enum dwc2_lx_state lx_state;
1099	struct dwc2_gregs_backup gr_backup;
1100	struct dwc2_dregs_backup dr_backup;
1101	struct dwc2_hregs_backup hr_backup;
1102
1103	struct dentry *debug_root;
1104	struct debugfs_regset32 *regset;
1105	bool needs_byte_swap;
1106
1107	/* DWC OTG HW Release versions */
1108#define DWC2_CORE_REV_2_71a	0x4f54271a
1109#define DWC2_CORE_REV_2_72a     0x4f54272a
1110#define DWC2_CORE_REV_2_80a	0x4f54280a
1111#define DWC2_CORE_REV_2_90a	0x4f54290a
1112#define DWC2_CORE_REV_2_91a	0x4f54291a
1113#define DWC2_CORE_REV_2_92a	0x4f54292a
1114#define DWC2_CORE_REV_2_94a	0x4f54294a
1115#define DWC2_CORE_REV_3_00a	0x4f54300a
1116#define DWC2_CORE_REV_3_10a	0x4f54310a
1117#define DWC2_CORE_REV_4_00a	0x4f54400a
1118#define DWC2_CORE_REV_4_20a	0x4f54420a
1119#define DWC2_FS_IOT_REV_1_00a	0x5531100a
1120#define DWC2_HS_IOT_REV_1_00a	0x5532100a
1121#define DWC2_CORE_REV_MASK	0x0000ffff
1122
1123	/* DWC OTG HW Core ID */
1124#define DWC2_OTG_ID		0x4f540000
1125#define DWC2_FS_IOT_ID		0x55310000
1126#define DWC2_HS_IOT_ID		0x55320000
1127
1128#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1129	union dwc2_hcd_internal_flags {
1130		u32 d32;
1131		struct {
1132			unsigned port_connect_status_change:1;
1133			unsigned port_connect_status:1;
1134			unsigned port_reset_change:1;
1135			unsigned port_enable_change:1;
1136			unsigned port_suspend_change:1;
1137			unsigned port_over_current_change:1;
1138			unsigned port_l1_change:1;
1139			unsigned reserved:25;
1140		} b;
1141	} flags;
1142
1143	struct list_head non_periodic_sched_inactive;
1144	struct list_head non_periodic_sched_waiting;
1145	struct list_head non_periodic_sched_active;
1146	struct list_head *non_periodic_qh_ptr;
1147	struct list_head periodic_sched_inactive;
1148	struct list_head periodic_sched_ready;
1149	struct list_head periodic_sched_assigned;
1150	struct list_head periodic_sched_queued;
1151	struct list_head split_order;
1152	u16 periodic_usecs;
1153	unsigned long hs_periodic_bitmap[
1154		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1155	u16 periodic_qh_count;
1156	bool new_connection;
1157
1158	u16 last_frame_num;
1159
1160#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1161#define FRAME_NUM_ARRAY_SIZE 1000
1162	u16 *frame_num_array;
1163	u16 *last_frame_num_array;
1164	int frame_num_idx;
1165	int dumped_frame_num_array;
1166#endif
1167
1168	struct list_head free_hc_list;
1169	int periodic_channels;
1170	int non_periodic_channels;
1171	int available_host_channels;
1172	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1173	u8 *status_buf;
1174	dma_addr_t status_buf_dma;
1175#define DWC2_HCD_STATUS_BUF_SIZE 64
1176
1177	struct delayed_work start_work;
1178	struct delayed_work reset_work;
1179	struct work_struct phy_reset_work;
1180	u8 otg_port;
1181	u32 *frame_list;
1182	dma_addr_t frame_list_dma;
1183	u32 frame_list_sz;
1184	struct kmem_cache *desc_gen_cache;
1185	struct kmem_cache *desc_hsisoc_cache;
1186	struct kmem_cache *unaligned_cache;
1187#define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1188
1189#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1190
1191#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1192	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1193	/* Gadget structures */
1194	struct usb_gadget_driver *driver;
1195	int fifo_mem;
1196	unsigned int dedicated_fifos:1;
1197	unsigned char num_of_eps;
1198	u32 fifo_map;
1199
1200	struct usb_request *ep0_reply;
1201	struct usb_request *ctrl_req;
1202	void *ep0_buff;
1203	void *ctrl_buff;
1204	enum dwc2_ep0_state ep0_state;
1205	unsigned delayed_status : 1;
1206	u8 test_mode;
1207
1208	dma_addr_t setup_desc_dma[2];
1209	struct dwc2_dma_desc *setup_desc[2];
1210	dma_addr_t ctrl_in_desc_dma;
1211	struct dwc2_dma_desc *ctrl_in_desc;
1212	dma_addr_t ctrl_out_desc_dma;
1213	struct dwc2_dma_desc *ctrl_out_desc;
1214
1215	struct usb_gadget gadget;
1216	unsigned int enabled:1;
1217	unsigned int connected:1;
1218	unsigned int remote_wakeup_allowed:1;
1219	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1220	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1221#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1222};
1223
1224/* Normal architectures just use readl/write */
1225static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1226{
1227	u32 val;
1228
1229	val = readl(hsotg->regs + offset);
1230	if (hsotg->needs_byte_swap)
1231		return swab32(val);
1232	else
1233		return val;
1234}
1235
1236static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1237{
1238	if (hsotg->needs_byte_swap)
1239		writel(swab32(value), hsotg->regs + offset);
1240	else
1241		writel(value, hsotg->regs + offset);
1242
1243#ifdef DWC2_LOG_WRITES
1244	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1245#endif
1246}
1247
1248static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1249				  void *buffer, unsigned int count)
1250{
1251	if (count) {
1252		u32 *buf = buffer;
1253
1254		do {
1255			u32 x = dwc2_readl(hsotg, offset);
1256			*buf++ = x;
1257		} while (--count);
1258	}
1259}
1260
1261static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1262				   const void *buffer, unsigned int count)
1263{
1264	if (count) {
1265		const u32 *buf = buffer;
1266
1267		do {
1268			dwc2_writel(hsotg, *buf++, offset);
1269		} while (--count);
1270	}
1271}
1272
1273/* Reasons for halting a host channel */
1274enum dwc2_halt_status {
1275	DWC2_HC_XFER_NO_HALT_STATUS,
1276	DWC2_HC_XFER_COMPLETE,
1277	DWC2_HC_XFER_URB_COMPLETE,
1278	DWC2_HC_XFER_ACK,
1279	DWC2_HC_XFER_NAK,
1280	DWC2_HC_XFER_NYET,
1281	DWC2_HC_XFER_STALL,
1282	DWC2_HC_XFER_XACT_ERR,
1283	DWC2_HC_XFER_FRAME_OVERRUN,
1284	DWC2_HC_XFER_BABBLE_ERR,
1285	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1286	DWC2_HC_XFER_AHB_ERR,
1287	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1288	DWC2_HC_XFER_URB_DEQUEUE,
1289};
1290
1291/* Core version information */
1292static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1293{
1294	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1295}
1296
1297static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1298{
1299	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1300}
1301
1302static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1303{
1304	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1305}
1306
1307/*
1308 * The following functions support initialization of the core driver component
1309 * and the DWC_otg controller
1310 */
1311int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1312int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1313int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1314				 bool restore);
1315int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1316int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1317		int reset, int is_host);
1318void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1319int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1320
1321void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1322void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1323
1324bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1325
1326int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1327
1328/*
1329 * Common core Functions.
1330 * The following functions support managing the DWC_otg controller in either
1331 * device or host mode.
1332 */
1333void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1334void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1335void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1336
1337void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1338void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1339
1340void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1341			     int is_host);
1342int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1343int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1344
1345void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1346
1347/* This function should be called on every hardware interrupt. */
1348irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1349
1350/* The device ID match table */
1351extern const struct of_device_id dwc2_of_match_table[];
1352extern const struct acpi_device_id dwc2_acpi_match[];
1353
1354int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1355int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1356
1357/* Common polling functions */
1358int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1359			    u32 timeout);
1360int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1361			      u32 timeout);
1362/* Parameters */
1363int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1364int dwc2_init_params(struct dwc2_hsotg *hsotg);
1365
1366/*
1367 * The following functions check the controller's OTG operation mode
1368 * capability (GHWCFG2.OTG_MODE).
1369 *
1370 * These functions can be used before the internal hsotg->hw_params
1371 * are read in and cached so they always read directly from the
1372 * GHWCFG2 register.
1373 */
1374unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1375bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1376bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1377bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1378
1379/*
1380 * Returns the mode of operation, host or device
1381 */
1382static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1383{
1384	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1385}
1386
1387static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1388{
1389	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1390}
1391
1392int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1393void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1394void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1395void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1396
1397/*
1398 * Dump core registers and SPRAM
1399 */
1400void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1401void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1402void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1403
1404/* Gadget defines */
1405#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1406	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1407int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1408int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1409int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1410int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1411void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1412				       bool reset);
1413void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1414void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1415void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1416int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1417#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1418int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1419int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1420int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1421int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1422				 int rem_wakeup, int reset);
1423int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1424int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1425					bool restore);
1426void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1427void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1428				   int rem_wakeup);
1429int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1430int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1431int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1432void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1433void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1434static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1435{ hsotg->fifo_map = 0; }
1436#else
1437static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1438{ return 0; }
1439static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1440{ return 0; }
1441static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1442{ return 0; }
1443static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1444{ return 0; }
1445static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1446						     bool reset) {}
1447static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
1448static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1449static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1450static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1451					   int testmode)
1452{ return 0; }
1453#define dwc2_is_device_connected(hsotg) (0)
1454static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1455{ return 0; }
1456static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1457						int remote_wakeup)
1458{ return 0; }
1459static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1460{ return 0; }
1461static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1462					       int rem_wakeup, int reset)
1463{ return 0; }
1464static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1465{ return 0; }
1466static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1467						      bool restore)
1468{ return 0; }
1469static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1470static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1471						 int rem_wakeup) {}
1472static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1473{ return 0; }
1474static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1475{ return 0; }
1476static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1477{ return 0; }
1478static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1479static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1480static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1481#endif
1482
1483#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1484int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1485int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1486void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1487void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1488void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1489int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1490int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1491int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1492int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1493int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1494int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1495int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1496			       int rem_wakeup, int reset);
1497int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1498int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1499				      int rem_wakeup, bool restore);
1500void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1501void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1502bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
1503static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1504{ schedule_work(&hsotg->phy_reset_work); }
1505#else
1506static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1507{ return 0; }
1508static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1509						   int us)
1510{ return 0; }
1511static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1512static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1513static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1514static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1515static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1516{ return 0; }
1517static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1518{ return 0; }
1519static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1520{ return 0; }
1521static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1522{ return 0; }
1523static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1524{ return 0; }
1525static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1526{ return 0; }
1527static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1528{ return 0; }
1529static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1530					     int rem_wakeup, int reset)
1531{ return 0; }
1532static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1533{ return 0; }
1534static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1535						    int rem_wakeup, bool restore)
1536{ return 0; }
1537static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1538static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1539					       int rem_wakeup) {}
1540static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1541{ return false; }
1542static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1543
1544#endif
1545
1546#endif /* __DWC2_CORE_H__ */