Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
   2/*
   3 * core.h - DesignWare HS OTG Controller common declarations
   4 *
   5 * Copyright (C) 2004-2013 Synopsys, Inc.
   6 *
   7 * Redistribution and use in source and binary forms, with or without
   8 * modification, are permitted provided that the following conditions
   9 * are met:
  10 * 1. Redistributions of source code must retain the above copyright
  11 *    notice, this list of conditions, and the following disclaimer,
  12 *    without modification.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. The names of the above-listed copyright holders may not be used
  17 *    to endorse or promote products derived from this software without
  18 *    specific prior written permission.
  19 *
  20 * ALTERNATIVELY, this software may be distributed under the terms of the
  21 * GNU General Public License ("GPL") as published by the Free Software
  22 * Foundation; either version 2 of the License, or (at your option) any
  23 * later version.
  24 *
  25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  36 */
  37
  38#ifndef __DWC2_CORE_H__
  39#define __DWC2_CORE_H__
  40
  41#include <linux/phy/phy.h>
  42#include <linux/regulator/consumer.h>
  43#include <linux/usb/gadget.h>
  44#include <linux/usb/otg.h>
  45#include <linux/usb/phy.h>
  46#include "hw.h"
  47
  48/*
  49 * Suggested defines for tracers:
  50 * - no_printk:    Disable tracing
  51 * - pr_info:      Print this info to the console
  52 * - trace_printk: Print this info to trace buffer (good for verbose logging)
  53 */
  54
  55#define DWC2_TRACE_SCHEDULER		no_printk
  56#define DWC2_TRACE_SCHEDULER_VB		no_printk
  57
  58/* Detailed scheduler tracing, but won't overwhelm console */
  59#define dwc2_sch_dbg(hsotg, fmt, ...)					\
  60	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
  61			     dev_name(hsotg->dev), ##__VA_ARGS__)
  62
  63/* Verbose scheduler tracing */
  64#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
  65	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
  66				dev_name(hsotg->dev), ##__VA_ARGS__)
  67
  68#ifdef CONFIG_MIPS
  69/*
  70 * There are some MIPS machines that can run in either big-endian
  71 * or little-endian mode and that use the dwc2 register without
  72 * a byteswap in both ways.
  73 * Unlike other architectures, MIPS apparently does not require a
  74 * barrier before the __raw_writel() to synchronize with DMA but does
  75 * require the barrier after the __raw_writel() to serialize a set of
  76 * writes. This set of operations was added specifically for MIPS and
  77 * should only be used there.
  78 */
  79static inline u32 dwc2_readl(const void __iomem *addr)
  80{
  81	u32 value = __raw_readl(addr);
  82
  83	/* In order to preserve endianness __raw_* operation is used. Therefore
  84	 * a barrier is needed to ensure IO access is not re-ordered across
  85	 * reads or writes
  86	 */
  87	mb();
  88	return value;
  89}
  90
  91static inline void dwc2_writel(u32 value, void __iomem *addr)
  92{
  93	__raw_writel(value, addr);
  94
  95	/*
  96	 * In order to preserve endianness __raw_* operation is used. Therefore
  97	 * a barrier is needed to ensure IO access is not re-ordered across
  98	 * reads or writes
  99	 */
 100	mb();
 101#ifdef DWC2_LOG_WRITES
 102	pr_info("INFO:: wrote %08x to %p\n", value, addr);
 103#endif
 104}
 105#else
 106/* Normal architectures just use readl/write */
 107static inline u32 dwc2_readl(const void __iomem *addr)
 108{
 109	return readl(addr);
 110}
 111
 112static inline void dwc2_writel(u32 value, void __iomem *addr)
 113{
 114	writel(value, addr);
 115
 116#ifdef DWC2_LOG_WRITES
 117	pr_info("info:: wrote %08x to %p\n", value, addr);
 118#endif
 119}
 120#endif
 121
 122/* Maximum number of Endpoints/HostChannels */
 123#define MAX_EPS_CHANNELS	16
 124
 125/* dwc2-hsotg declarations */
 126static const char * const dwc2_hsotg_supply_names[] = {
 127	"vusb_d",               /* digital USB supply, 1.2V */
 128	"vusb_a",               /* analog USB supply, 1.1V */
 129};
 130
 131#define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
 132
 133/*
 134 * EP0_MPS_LIMIT
 135 *
 136 * Unfortunately there seems to be a limit of the amount of data that can
 137 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 138 * packets (which practically means 1 packet and 63 bytes of data) when the
 139 * MPS is set to 64.
 140 *
 141 * This means if we are wanting to move >127 bytes of data, we need to
 142 * split the transactions up, but just doing one packet at a time does
 143 * not work (this may be an implicit DATA0 PID on first packet of the
 144 * transaction) and doing 2 packets is outside the controller's limits.
 145 *
 146 * If we try to lower the MPS size for EP0, then no transfers work properly
 147 * for EP0, and the system will fail basic enumeration. As no cause for this
 148 * has currently been found, we cannot support any large IN transfers for
 149 * EP0.
 150 */
 151#define EP0_MPS_LIMIT   64
 152
 153struct dwc2_hsotg;
 154struct dwc2_hsotg_req;
 155
 156/**
 157 * struct dwc2_hsotg_ep - driver endpoint definition.
 158 * @ep: The gadget layer representation of the endpoint.
 159 * @name: The driver generated name for the endpoint.
 160 * @queue: Queue of requests for this endpoint.
 161 * @parent: Reference back to the parent device structure.
 162 * @req: The current request that the endpoint is processing. This is
 163 *       used to indicate an request has been loaded onto the endpoint
 164 *       and has yet to be completed (maybe due to data move, or simply
 165 *       awaiting an ack from the core all the data has been completed).
 166 * @debugfs: File entry for debugfs file for this endpoint.
 167 * @lock: State lock to protect contents of endpoint.
 168 * @dir_in: Set to true if this endpoint is of the IN direction, which
 169 *          means that it is sending data to the Host.
 170 * @index: The index for the endpoint registers.
 171 * @mc: Multi Count - number of transactions per microframe
 172 * @interval - Interval for periodic endpoints, in frames or microframes.
 173 * @name: The name array passed to the USB core.
 174 * @halted: Set if the endpoint has been halted.
 175 * @periodic: Set if this is a periodic ep, such as Interrupt
 176 * @isochronous: Set if this is a isochronous ep
 177 * @send_zlp: Set if we need to send a zero-length packet.
 178 * @desc_list_dma: The DMA address of descriptor chain currently in use.
 179 * @desc_list: Pointer to descriptor DMA chain head currently in use.
 180 * @desc_count: Count of entries within the DMA descriptor chain of EP.
 181 * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
 182 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
 183 * @total_data: The total number of data bytes done.
 184 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 185 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 186 * @last_load: The offset of data for the last start of request.
 187 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 188 * @target_frame: Targeted frame num to setup next ISOC transfer
 189 * @frame_overrun: Indicates SOF number overrun in DSTS
 190 *
 191 * This is the driver's state for each registered enpoint, allowing it
 192 * to keep track of transactions that need doing. Each endpoint has a
 193 * lock to protect the state, to try and avoid using an overall lock
 194 * for the host controller as much as possible.
 195 *
 196 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 197 * and keep track of the amount of data in the periodic FIFO for each
 198 * of these as we don't have a status register that tells us how much
 199 * is in each of them. (note, this may actually be useless information
 200 * as in shared-fifo mode periodic in acts like a single-frame packet
 201 * buffer than a fifo)
 202 */
 203struct dwc2_hsotg_ep {
 204	struct usb_ep           ep;
 205	struct list_head        queue;
 206	struct dwc2_hsotg       *parent;
 207	struct dwc2_hsotg_req    *req;
 208	struct dentry           *debugfs;
 209
 210	unsigned long           total_data;
 211	unsigned int            size_loaded;
 212	unsigned int            last_load;
 213	unsigned int            fifo_load;
 214	unsigned short          fifo_size;
 215	unsigned short		fifo_index;
 216
 217	unsigned char           dir_in;
 218	unsigned char           index;
 219	unsigned char           mc;
 220	u16                     interval;
 221
 222	unsigned int            halted:1;
 223	unsigned int            periodic:1;
 224	unsigned int            isochronous:1;
 225	unsigned int            send_zlp:1;
 226	unsigned int            target_frame;
 227#define TARGET_FRAME_INITIAL   0xFFFFFFFF
 228	bool			frame_overrun;
 229
 230	dma_addr_t		desc_list_dma;
 231	struct dwc2_dma_desc	*desc_list;
 232	u8			desc_count;
 233
 234	unsigned char		isoc_chain_num;
 235	unsigned int		next_desc;
 236
 237	char                    name[10];
 238};
 239
 240/**
 241 * struct dwc2_hsotg_req - data transfer request
 242 * @req: The USB gadget request
 243 * @queue: The list of requests for the endpoint this is queued for.
 244 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 245 */
 246struct dwc2_hsotg_req {
 247	struct usb_request      req;
 248	struct list_head        queue;
 249	void *saved_req_buf;
 250};
 251
 252#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
 253	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 254#define call_gadget(_hs, _entry) \
 255do { \
 256	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
 257		(_hs)->driver && (_hs)->driver->_entry) { \
 258		spin_unlock(&_hs->lock); \
 259		(_hs)->driver->_entry(&(_hs)->gadget); \
 260		spin_lock(&_hs->lock); \
 261	} \
 262} while (0)
 263#else
 264#define call_gadget(_hs, _entry)	do {} while (0)
 265#endif
 266
 267struct dwc2_hsotg;
 268struct dwc2_host_chan;
 269
 270/* Device States */
 271enum dwc2_lx_state {
 272	DWC2_L0,	/* On state */
 273	DWC2_L1,	/* LPM sleep state */
 274	DWC2_L2,	/* USB suspend state */
 275	DWC2_L3,	/* Off state */
 276};
 277
 278/* Gadget ep0 states */
 279enum dwc2_ep0_state {
 280	DWC2_EP0_SETUP,
 281	DWC2_EP0_DATA_IN,
 282	DWC2_EP0_DATA_OUT,
 283	DWC2_EP0_STATUS_IN,
 284	DWC2_EP0_STATUS_OUT,
 285};
 286
 287/**
 288 * struct dwc2_core_params - Parameters for configuring the core
 289 *
 290 * @otg_cap:            Specifies the OTG capabilities.
 291 *                       0 - HNP and SRP capable
 292 *                       1 - SRP Only capable
 293 *                       2 - No HNP/SRP capable (always available)
 294 *                      Defaults to best available option (0, 1, then 2)
 295 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
 296 *                      the data FIFOs. The driver will automatically detect the
 297 *                      value for this parameter if none is specified.
 298 *                       0 - Slave (always available)
 299 *                       1 - DMA (default, if available)
 300 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 301 *                      address DMA mode or descriptor DMA mode for accessing
 302 *                      the data FIFOs. The driver will automatically detect the
 303 *                      value for this if none is specified.
 304 *                       0 - Address DMA
 305 *                       1 - Descriptor DMA (default, if available)
 306 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 307 *                      address DMA mode or descriptor DMA mode for accessing
 308 *                      the data FIFOs in Full Speed mode only. The driver
 309 *                      will automatically detect the value for this if none is
 310 *                      specified.
 311 *                       0 - Address DMA
 312 *                       1 - Descriptor DMA in FS (default, if available)
 313 * @speed:              Specifies the maximum speed of operation in host and
 314 *                      device mode. The actual speed depends on the speed of
 315 *                      the attached device and the value of phy_type.
 316 *                       0 - High Speed
 317 *                           (default when phy_type is UTMI+ or ULPI)
 318 *                       1 - Full Speed
 319 *                           (default when phy_type is Full Speed)
 320 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 321 *                       1 - Allow dynamic FIFO sizing (default, if available)
 322 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 323 *                      are enabled for non-periodic IN endpoints in device
 324 *                      mode.
 325 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 326 *                      dynamic FIFO sizing is enabled
 327 *                       16 to 32768
 328 *                      Actual maximum value is autodetected and also
 329 *                      the default.
 330 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 331 *                      in host mode when dynamic FIFO sizing is enabled
 332 *                       16 to 32768
 333 *                      Actual maximum value is autodetected and also
 334 *                      the default.
 335 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 336 *                      host mode when dynamic FIFO sizing is enabled
 337 *                       16 to 32768
 338 *                      Actual maximum value is autodetected and also
 339 *                      the default.
 340 * @max_transfer_size:  The maximum transfer size supported, in bytes
 341 *                       2047 to 65,535
 342 *                      Actual maximum value is autodetected and also
 343 *                      the default.
 344 * @max_packet_count:   The maximum number of packets in a transfer
 345 *                       15 to 511
 346 *                      Actual maximum value is autodetected and also
 347 *                      the default.
 348 * @host_channels:      The number of host channel registers to use
 349 *                       1 to 16
 350 *                      Actual maximum value is autodetected and also
 351 *                      the default.
 352 * @phy_type:           Specifies the type of PHY interface to use. By default,
 353 *                      the driver will automatically detect the phy_type.
 354 *                       0 - Full Speed Phy
 355 *                       1 - UTMI+ Phy
 356 *                       2 - ULPI Phy
 357 *                      Defaults to best available option (2, 1, then 0)
 358 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 359 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 360 *                      ULPI phy_type, this parameter indicates the data width
 361 *                      between the MAC and the ULPI Wrapper.) Also, this
 362 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 363 *                      parameter was set to "8 and 16 bits", meaning that the
 364 *                      core has been configured to work at either data path
 365 *                      width.
 366 *                       8 or 16 (default 16 if available)
 367 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 368 *                      data rate. This parameter is only applicable if phy_type
 369 *                      is ULPI.
 370 *                       0 - single data rate ULPI interface with 8 bit wide
 371 *                           data bus (default)
 372 *                       1 - double data rate ULPI interface with 4 bit wide
 373 *                           data bus
 374 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 375 *                      external supply to drive the VBus
 376 *                       0 - Internal supply (default)
 377 *                       1 - External supply
 378 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 379 *                      speed PHY. This parameter is only applicable if phy_type
 380 *                      is FS.
 381 *                       0 - No (default)
 382 *                       1 - Yes
 383 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 384 *                       0 - No (default)
 385 *                       1 - Yes
 386 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 387 *                      when attached to a Full Speed or Low Speed device in
 388 *                      host mode.
 389 *                       0 - Don't support low power mode (default)
 390 *                       1 - Support low power mode
 391 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 392 *                      when connected to a Low Speed device in host
 393 *                      mode. This parameter is applicable only if
 394 *                      host_support_fs_ls_low_power is enabled.
 395 *                       0 - 48 MHz
 396 *                           (default when phy_type is UTMI+ or ULPI)
 397 *                       1 - 6 MHz
 398 *                           (default when phy_type is Full Speed)
 399 * @oc_disable:		Flag to disable overcurrent condition.
 400 *			0 - Allow overcurrent condition to get detected
 401 *			1 - Disable overcurrent condtion to get detected
 402 * @ts_dline:           Enable Term Select Dline pulsing
 403 *                       0 - No (default)
 404 *                       1 - Yes
 405 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 406 *                       0 - No (default for core < 2.92a)
 407 *                       1 - Yes (default for core >= 2.92a)
 408 * @ahbcfg:             This field allows the default value of the GAHBCFG
 409 *                      register to be overridden
 410 *                       -1         - GAHBCFG value will be set to 0x06
 411 *                                    (INCR, default)
 412 *                       all others - GAHBCFG value will be overridden with
 413 *                                    this value
 414 *                      Not all bits can be controlled like this, the
 415 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 416 *                      by the driver and are ignored in this
 417 *                      configuration value.
 418 * @uframe_sched:       True to enable the microframe scheduler
 419 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 420 *                      Disable CONIDSTSCHNG controller interrupt in such
 421 *                      case.
 422 *                      0 - No (default)
 423 *                      1 - Yes
 424 * @power_down:         Specifies whether the controller support power_down.
 425 *			If power_down is enabled, the controller will enter
 426 *			power_down in both peripheral and host mode when
 427 *			needed.
 428 *			0 - No (default)
 429 *			1 - Partial power down
 430 *			2 - Hibernation
 431 * @lpm:		Enable LPM support.
 432 *			0 - No
 433 *			1 - Yes
 434 * @lpm_clock_gating:		Enable core PHY clock gating.
 435 *			0 - No
 436 *			1 - Yes
 437 * @besl:		Enable LPM Errata support.
 438 *			0 - No
 439 *			1 - Yes
 440 * @hird_threshold_en:	HIRD or HIRD Threshold enable.
 441 *			0 - No
 442 *			1 - Yes
 443 * @hird_threshold:	Value of BESL or HIRD Threshold.
 444 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
 445 *			register.
 446 *			0 - Deactivate the transceiver (default)
 447 *			1 - Activate the transceiver
 448 * @g_dma:              Enables gadget dma usage (default: autodetect).
 449 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
 450 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
 451 *			DWORDS from 16-32768 (default: 2048 if
 452 *			possible, otherwise autodetect).
 453 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
 454 *			DWORDS from 16-32768 (default: 1024 if
 455 *			possible, otherwise autodetect).
 456 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
 457 *			mode. Each value corresponds to one EP
 458 *			starting from EP1 (max 15 values). Sizes are
 459 *			in DWORDS with possible values from from
 460 *			16-32768 (default: 256, 256, 256, 256, 768,
 461 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
 462 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
 463 *                      while full&low speed device connect. And change speed
 464 *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
 465 *			0 - No (default)
 466 *			1 - Yes
 467 *
 468 * The following parameters may be specified when starting the module. These
 469 * parameters define how the DWC_otg controller should be configured. A
 470 * value of -1 (or any other out of range value) for any parameter means
 471 * to read the value from hardware (if possible) or use the builtin
 472 * default described above.
 473 */
 474struct dwc2_core_params {
 475	u8 otg_cap;
 476#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
 477#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
 478#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
 479
 480	u8 phy_type;
 481#define DWC2_PHY_TYPE_PARAM_FS		0
 482#define DWC2_PHY_TYPE_PARAM_UTMI	1
 483#define DWC2_PHY_TYPE_PARAM_ULPI	2
 484
 485	u8 speed;
 486#define DWC2_SPEED_PARAM_HIGH	0
 487#define DWC2_SPEED_PARAM_FULL	1
 488#define DWC2_SPEED_PARAM_LOW	2
 489
 490	u8 phy_utmi_width;
 491	bool phy_ulpi_ddr;
 492	bool phy_ulpi_ext_vbus;
 493	bool enable_dynamic_fifo;
 494	bool en_multiple_tx_fifo;
 495	bool i2c_enable;
 496	bool acg_enable;
 497	bool ulpi_fs_ls;
 498	bool ts_dline;
 499	bool reload_ctl;
 500	bool uframe_sched;
 501	bool external_id_pin_ctl;
 502
 503	int power_down;
 504#define DWC2_POWER_DOWN_PARAM_NONE		0
 505#define DWC2_POWER_DOWN_PARAM_PARTIAL		1
 506#define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
 507
 508	bool lpm;
 509	bool lpm_clock_gating;
 510	bool besl;
 511	bool hird_threshold_en;
 512	u8 hird_threshold;
 513	bool activate_stm_fs_transceiver;
 514	u16 max_packet_count;
 515	u32 max_transfer_size;
 516	u32 ahbcfg;
 517
 518	/* Host parameters */
 519	bool host_dma;
 520	bool dma_desc_enable;
 521	bool dma_desc_fs_enable;
 522	bool host_support_fs_ls_low_power;
 523	bool host_ls_low_power_phy_clk;
 524	bool oc_disable;
 525
 526	u8 host_channels;
 527	u16 host_rx_fifo_size;
 528	u16 host_nperio_tx_fifo_size;
 529	u16 host_perio_tx_fifo_size;
 530
 531	/* Gadget parameters */
 532	bool g_dma;
 533	bool g_dma_desc;
 534	u32 g_rx_fifo_size;
 535	u32 g_np_tx_fifo_size;
 536	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 537
 538	bool change_speed_quirk;
 539};
 540
 541/**
 542 * struct dwc2_hw_params - Autodetected parameters.
 543 *
 544 * These parameters are the various parameters read from hardware
 545 * registers during initialization. They typically contain the best
 546 * supported or maximum value that can be configured in the
 547 * corresponding dwc2_core_params value.
 548 *
 549 * The values that are not in dwc2_core_params are documented below.
 550 *
 551 * @op_mode             Mode of Operation
 552 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 553 *                       1 - SRP-Capable OTG (Host & Device)
 554 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 555 *                       3 - SRP-Capable Device
 556 *                       4 - Non-OTG Device
 557 *                       5 - SRP-Capable Host
 558 *                       6 - Non-OTG Host
 559 * @arch                Architecture
 560 *                       0 - Slave only
 561 *                       1 - External DMA
 562 *                       2 - Internal DMA
 563 * @power_optimized     Are power optimizations enabled?
 564 * @num_dev_ep          Number of device endpoints available
 565 * @num_dev_in_eps      Number of device IN endpoints available
 566 * @num_dev_perio_in_ep Number of device periodic IN endpoints
 567 *                      available
 568 * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
 569 *                      Depth
 570 *                       0 to 30
 571 * @host_perio_tx_q_depth
 572 *                      Host Mode Periodic Request Queue Depth
 573 *                       2, 4 or 8
 574 * @nperio_tx_q_depth
 575 *                      Non-Periodic Request Queue Depth
 576 *                       2, 4 or 8
 577 * @hs_phy_type         High-speed PHY interface type
 578 *                       0 - High-speed interface not supported
 579 *                       1 - UTMI+
 580 *                       2 - ULPI
 581 *                       3 - UTMI+ and ULPI
 582 * @fs_phy_type         Full-speed PHY interface type
 583 *                       0 - Full speed interface not supported
 584 *                       1 - Dedicated full speed interface
 585 *                       2 - FS pins shared with UTMI+ pins
 586 *                       3 - FS pins shared with ULPI pins
 587 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 588 * @hibernation		Is hibernation enabled?
 589 * @utmi_phy_data_width UTMI+ PHY data width
 590 *                       0 - 8 bits
 591 *                       1 - 16 bits
 592 *                       2 - 8 or 16 bits
 593 * @snpsid:             Value from SNPSID register
 594 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 595 * @g_tx_fifo_size[]	Power-on values of TxFIFO sizes
 596 */
 597struct dwc2_hw_params {
 598	unsigned op_mode:3;
 599	unsigned arch:2;
 600	unsigned dma_desc_enable:1;
 601	unsigned enable_dynamic_fifo:1;
 602	unsigned en_multiple_tx_fifo:1;
 603	unsigned rx_fifo_size:16;
 604	unsigned host_nperio_tx_fifo_size:16;
 605	unsigned dev_nperio_tx_fifo_size:16;
 606	unsigned host_perio_tx_fifo_size:16;
 607	unsigned nperio_tx_q_depth:3;
 608	unsigned host_perio_tx_q_depth:3;
 609	unsigned dev_token_q_depth:5;
 610	unsigned max_transfer_size:26;
 611	unsigned max_packet_count:11;
 612	unsigned host_channels:5;
 613	unsigned hs_phy_type:2;
 614	unsigned fs_phy_type:2;
 615	unsigned i2c_enable:1;
 616	unsigned acg_enable:1;
 617	unsigned num_dev_ep:4;
 618	unsigned num_dev_in_eps : 4;
 619	unsigned num_dev_perio_in_ep:4;
 620	unsigned total_fifo_size:16;
 621	unsigned power_optimized:1;
 622	unsigned hibernation:1;
 623	unsigned utmi_phy_data_width:2;
 624	unsigned lpm_mode:1;
 625	u32 snpsid;
 626	u32 dev_ep_dirs;
 627	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 628};
 629
 630/* Size of control and EP0 buffers */
 631#define DWC2_CTRL_BUFF_SIZE 8
 632
 633/**
 634 * struct dwc2_gregs_backup - Holds global registers state before
 635 * entering partial power down
 636 * @gotgctl:		Backup of GOTGCTL register
 637 * @gintmsk:		Backup of GINTMSK register
 638 * @gahbcfg:		Backup of GAHBCFG register
 639 * @gusbcfg:		Backup of GUSBCFG register
 640 * @grxfsiz:		Backup of GRXFSIZ register
 641 * @gnptxfsiz:		Backup of GNPTXFSIZ register
 642 * @gi2cctl:		Backup of GI2CCTL register
 643 * @glpmcfg:		Backup of GLPMCFG register
 644 * @gdfifocfg:		Backup of GDFIFOCFG register
 645 * @gpwrdn:		Backup of GPWRDN register
 646 */
 647struct dwc2_gregs_backup {
 648	u32 gotgctl;
 649	u32 gintmsk;
 650	u32 gahbcfg;
 651	u32 gusbcfg;
 652	u32 grxfsiz;
 653	u32 gnptxfsiz;
 654	u32 gi2cctl;
 655	u32 glpmcfg;
 656	u32 pcgcctl;
 657	u32 pcgcctl1;
 658	u32 gdfifocfg;
 659	u32 gpwrdn;
 660	bool valid;
 661};
 662
 663/**
 664 * struct dwc2_dregs_backup - Holds device registers state before
 665 * entering partial power down
 666 * @dcfg:		Backup of DCFG register
 667 * @dctl:		Backup of DCTL register
 668 * @daintmsk:		Backup of DAINTMSK register
 669 * @diepmsk:		Backup of DIEPMSK register
 670 * @doepmsk:		Backup of DOEPMSK register
 671 * @diepctl:		Backup of DIEPCTL register
 672 * @dieptsiz:		Backup of DIEPTSIZ register
 673 * @diepdma:		Backup of DIEPDMA register
 674 * @doepctl:		Backup of DOEPCTL register
 675 * @doeptsiz:		Backup of DOEPTSIZ register
 676 * @doepdma:		Backup of DOEPDMA register
 677 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 678 */
 679struct dwc2_dregs_backup {
 680	u32 dcfg;
 681	u32 dctl;
 682	u32 daintmsk;
 683	u32 diepmsk;
 684	u32 doepmsk;
 685	u32 diepctl[MAX_EPS_CHANNELS];
 686	u32 dieptsiz[MAX_EPS_CHANNELS];
 687	u32 diepdma[MAX_EPS_CHANNELS];
 688	u32 doepctl[MAX_EPS_CHANNELS];
 689	u32 doeptsiz[MAX_EPS_CHANNELS];
 690	u32 doepdma[MAX_EPS_CHANNELS];
 691	u32 dtxfsiz[MAX_EPS_CHANNELS];
 692	bool valid;
 693};
 694
 695/**
 696 * struct dwc2_hregs_backup - Holds host registers state before
 697 * entering partial power down
 698 * @hcfg:		Backup of HCFG register
 699 * @haintmsk:		Backup of HAINTMSK register
 700 * @hcintmsk:		Backup of HCINTMSK register
 701 * @hptr0:		Backup of HPTR0 register
 702 * @hfir:		Backup of HFIR register
 703 * @hptxfsiz:		Backup of HPTXFSIZ register
 704 */
 705struct dwc2_hregs_backup {
 706	u32 hcfg;
 707	u32 haintmsk;
 708	u32 hcintmsk[MAX_EPS_CHANNELS];
 709	u32 hprt0;
 710	u32 hfir;
 711	u32 hptxfsiz;
 712	bool valid;
 713};
 714
 715/*
 716 * Constants related to high speed periodic scheduling
 717 *
 718 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 719 * reservation point of view it's assumed that the schedule goes right back to
 720 * the beginning after the end of the schedule.
 721 *
 722 * What does that mean for scheduling things with a long interval?  It means
 723 * we'll reserve time for them in every possible microframe that they could
 724 * ever be scheduled in.  ...but we'll still only actually schedule them as
 725 * often as they were requested.
 726 *
 727 * We keep our schedule in a "bitmap" structure.  This simplifies having
 728 * to keep track of and merge intervals: we just let the bitmap code do most
 729 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 730 *
 731 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 732 * supposed to schedule for periodic transfers).  That's according to spec.
 733 *
 734 * Note that though we only schedule 80% of each microframe, the bitmap that we
 735 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 736 * space for each uFrame).
 737 *
 738 * Requirements:
 739 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 740 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 741 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 742 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 743 */
 744#define DWC2_US_PER_UFRAME		125
 745#define DWC2_HS_PERIODIC_US_PER_UFRAME	100
 746
 747#define DWC2_HS_SCHEDULE_UFRAMES	8
 748#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
 749					 DWC2_HS_PERIODIC_US_PER_UFRAME)
 750
 751/*
 752 * Constants related to low speed scheduling
 753 *
 754 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 755 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 756 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 757 * transfers.
 758 *
 759 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 760 * we only schedule 1 frame it means that we'll need to reserve a time every
 761 * frame even for things that only transfer very rarely, so something that runs
 762 * every 2048 frames will get time reserved in every frame.  Our low speed
 763 * schedule can be longer and we'll be able to handle more overlap, but that
 764 * will come at increased memory cost and increased time to schedule.
 765 *
 766 * Note: one other advantage of a short low speed schedule is that if we mess
 767 * up and miss scheduling we can jump in and use any of the slots that we
 768 * happened to reserve.
 769 *
 770 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 771 * the schedule.  There will be one schedule per TT.
 772 *
 773 * Requirements:
 774 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 775 */
 776#define DWC2_US_PER_SLICE	25
 777#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
 778
 779#define DWC2_ROUND_US_TO_SLICE(us) \
 780				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
 781				 DWC2_US_PER_SLICE)
 782
 783#define DWC2_LS_PERIODIC_US_PER_FRAME \
 784				900
 785#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
 786				(DWC2_LS_PERIODIC_US_PER_FRAME / \
 787				 DWC2_US_PER_SLICE)
 788
 789#define DWC2_LS_SCHEDULE_FRAMES	1
 790#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
 791				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
 792
 793/**
 794 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 795 * and periodic schedules
 796 *
 797 * These are common for both host and peripheral modes:
 798 *
 799 * @dev:                The struct device pointer
 800 * @regs:		Pointer to controller regs
 801 * @hw_params:          Parameters that were autodetected from the
 802 *                      hardware registers
 803 * @core_params:	Parameters that define how the core should be configured
 804 * @op_state:           The operational State, during transitions (a_host=>
 805 *                      a_peripheral and b_device=>b_host) this may not match
 806 *                      the core, but allows the software to determine
 807 *                      transitions
 808 * @dr_mode:            Requested mode of operation, one of following:
 809 *                      - USB_DR_MODE_PERIPHERAL
 810 *                      - USB_DR_MODE_HOST
 811 *                      - USB_DR_MODE_OTG
 812 * @hcd_enabled		Host mode sub-driver initialization indicator.
 813 * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
 814 * @ll_hw_enabled	Status of low-level hardware resources.
 815 * @hibernated:		True if core is hibernated
 816 * @phy:                The otg phy transceiver structure for phy control.
 817 * @uphy:               The otg phy transceiver structure for old USB phy
 818 *                      control.
 819 * @plat:               The platform specific configuration data. This can be
 820 *                      removed once all SoCs support usb transceiver.
 821 * @supplies:           Definition of USB power supplies
 822 * @vbus_supply:        Regulator supplying vbus.
 823 * @phyif:              PHY interface width
 824 * @lock:		Spinlock that protects all the driver data structures
 825 * @priv:		Stores a pointer to the struct usb_hcd
 826 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 827 *                      transfer are in process of being queued
 828 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 829 *                      with an I2C interface
 830 * @wq_otg:             Workqueue object used for handling of some interrupts
 831 * @wf_otg:             Work object for handling Connector ID Status Change
 832 *                      interrupt
 833 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 834 * @lx_state:           Lx state of connected device
 835 * @gregs_backup: Backup of global registers during suspend
 836 * @dregs_backup: Backup of device registers during suspend
 837 * @hregs_backup: Backup of host registers during suspend
 838 *
 839 * These are for host mode:
 840 *
 841 * @flags:              Flags for handling root port state changes
 842 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 843 *                      Transfers associated with these QHs are not currently
 844 *                      assigned to a host channel.
 845 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 846 *                      Transfers associated with these QHs are currently
 847 *                      assigned to a host channel.
 848 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 849 *                      non-periodic schedule
 850 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 851 *                      list of QHs for periodic transfers that are _not_
 852 *                      scheduled for the next frame. Each QH in the list has an
 853 *                      interval counter that determines when it needs to be
 854 *                      scheduled for execution. This scheduling mechanism
 855 *                      allows only a simple calculation for periodic bandwidth
 856 *                      used (i.e. must assume that all periodic transfers may
 857 *                      need to execute in the same frame). However, it greatly
 858 *                      simplifies scheduling and should be sufficient for the
 859 *                      vast majority of OTG hosts, which need to connect to a
 860 *                      small number of peripherals at one time. Items move from
 861 *                      this list to periodic_sched_ready when the QH interval
 862 *                      counter is 0 at SOF.
 863 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 864 *                      the next frame, but have not yet been assigned to host
 865 *                      channels. Items move from this list to
 866 *                      periodic_sched_assigned as host channels become
 867 *                      available during the current frame.
 868 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 869 *                      frame that are assigned to host channels. Items move
 870 *                      from this list to periodic_sched_queued as the
 871 *                      transactions for the QH are queued to the DWC_otg
 872 *                      controller.
 873 * @periodic_sched_queued: List of periodic QHs that have been queued for
 874 *                      execution. Items move from this list to either
 875 *                      periodic_sched_inactive or periodic_sched_ready when the
 876 *                      channel associated with the transfer is released. If the
 877 *                      interval for the QH is 1, the item moves to
 878 *                      periodic_sched_ready because it must be rescheduled for
 879 *                      the next frame. Otherwise, the item moves to
 880 *                      periodic_sched_inactive.
 881 * @split_order:        List keeping track of channels doing splits, in order.
 882 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 883 *                      This value is in microseconds per (micro)frame. The
 884 *                      assumption is that all periodic transfers may occur in
 885 *                      the same (micro)frame.
 886 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 887 *                      host is in high speed mode; low speed schedules are
 888 *                      stored elsewhere since we need one per TT.
 889 * @frame_number:       Frame number read from the core at SOF. The value ranges
 890 *                      from 0 to HFNUM_MAX_FRNUM.
 891 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 892 *                      SOF enable/disable.
 893 * @free_hc_list:       Free host channels in the controller. This is a list of
 894 *                      struct dwc2_host_chan items.
 895 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 896 *                      Currently assuming that there is a dedicated host
 897 *                      channel for each periodic transaction and at least one
 898 *                      host channel is available for non-periodic transactions.
 899 * @non_periodic_channels: Number of host channels assigned to non-periodic
 900 *                      transfers
 901 * @available_host_channels Number of host channels available for the microframe
 902 *                      scheduler to use
 903 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 904 *                      Allows accessing a host channel descriptor given the
 905 *                      host channel number. This is useful in interrupt
 906 *                      handlers.
 907 * @status_buf:         Buffer used for data received during the status phase of
 908 *                      a control transfer.
 909 * @status_buf_dma:     DMA address for status_buf
 910 * @start_work:         Delayed work for handling host A-cable connection
 911 * @reset_work:         Delayed work for handling a port reset
 912 * @otg_port:           OTG port number
 913 * @frame_list:         Frame list
 914 * @frame_list_dma:     Frame list DMA address
 915 * @frame_list_sz:      Frame list size
 916 * @desc_gen_cache:     Kmem cache for generic descriptors
 917 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
 918 *
 919 * These are for peripheral mode:
 920 *
 921 * @driver:             USB gadget driver
 922 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
 923 * @num_of_eps:         Number of available EPs (excluding EP0)
 924 * @debug_root:         Root directrory for debugfs.
 925 * @debug_file:         Main status file for debugfs.
 926 * @debug_testmode:     Testmode status file for debugfs.
 927 * @debug_fifo:         FIFO status file for debugfs.
 928 * @ep0_reply:          Request used for ep0 reply.
 929 * @ep0_buff:           Buffer for EP0 reply data, if needed.
 930 * @ctrl_buff:          Buffer for EP0 control requests.
 931 * @ctrl_req:           Request for EP0 control packets.
 932 * @ep0_state:          EP0 control transfers state
 933 * @test_mode:          USB test mode requested by the host
 934 * @remote_wakeup_allowed: True if device is allowed to wake-up host by
 935 *                      remote-wakeup signalling
 936 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
 937 * @setup_desc:		EP0 setup stage desc chain pointer
 938 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
 939 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
 940 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
 941 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
 942 * @eps:                The endpoints being supplied to the gadget framework
 943 */
 944struct dwc2_hsotg {
 945	struct device *dev;
 946	void __iomem *regs;
 947	/** Params detected from hardware */
 948	struct dwc2_hw_params hw_params;
 949	/** Params to actually use */
 950	struct dwc2_core_params params;
 951	enum usb_otg_state op_state;
 952	enum usb_dr_mode dr_mode;
 953	unsigned int hcd_enabled:1;
 954	unsigned int gadget_enabled:1;
 955	unsigned int ll_hw_enabled:1;
 956	unsigned int hibernated:1;
 957
 958	struct phy *phy;
 959	struct usb_phy *uphy;
 960	struct dwc2_hsotg_plat *plat;
 961	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
 962	struct regulator *vbus_supply;
 963	u32 phyif;
 964
 965	spinlock_t lock;
 966	void *priv;
 967	int     irq;
 968	struct clk *clk;
 969	struct reset_control *reset;
 970	struct reset_control *reset_ecc;
 971
 972	unsigned int queuing_high_bandwidth:1;
 973	unsigned int srp_success:1;
 974
 975	struct workqueue_struct *wq_otg;
 976	struct work_struct wf_otg;
 977	struct timer_list wkp_timer;
 978	enum dwc2_lx_state lx_state;
 979	struct dwc2_gregs_backup gr_backup;
 980	struct dwc2_dregs_backup dr_backup;
 981	struct dwc2_hregs_backup hr_backup;
 982
 983	struct dentry *debug_root;
 984	struct debugfs_regset32 *regset;
 985
 986	/* DWC OTG HW Release versions */
 987#define DWC2_CORE_REV_2_71a	0x4f54271a
 988#define DWC2_CORE_REV_2_72a     0x4f54272a
 989#define DWC2_CORE_REV_2_80a	0x4f54280a
 990#define DWC2_CORE_REV_2_90a	0x4f54290a
 991#define DWC2_CORE_REV_2_91a	0x4f54291a
 992#define DWC2_CORE_REV_2_92a	0x4f54292a
 993#define DWC2_CORE_REV_2_94a	0x4f54294a
 994#define DWC2_CORE_REV_3_00a	0x4f54300a
 995#define DWC2_CORE_REV_3_10a	0x4f54310a
 996#define DWC2_CORE_REV_4_00a	0x4f54400a
 997#define DWC2_FS_IOT_REV_1_00a	0x5531100a
 998#define DWC2_HS_IOT_REV_1_00a	0x5532100a
 999
1000	/* DWC OTG HW Core ID */
1001#define DWC2_OTG_ID		0x4f540000
1002#define DWC2_FS_IOT_ID		0x55310000
1003#define DWC2_HS_IOT_ID		0x55320000
1004
1005#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1006	union dwc2_hcd_internal_flags {
1007		u32 d32;
1008		struct {
1009			unsigned port_connect_status_change:1;
1010			unsigned port_connect_status:1;
1011			unsigned port_reset_change:1;
1012			unsigned port_enable_change:1;
1013			unsigned port_suspend_change:1;
1014			unsigned port_over_current_change:1;
1015			unsigned port_l1_change:1;
1016			unsigned reserved:25;
1017		} b;
1018	} flags;
1019
1020	struct list_head non_periodic_sched_inactive;
1021	struct list_head non_periodic_sched_waiting;
1022	struct list_head non_periodic_sched_active;
1023	struct list_head *non_periodic_qh_ptr;
1024	struct list_head periodic_sched_inactive;
1025	struct list_head periodic_sched_ready;
1026	struct list_head periodic_sched_assigned;
1027	struct list_head periodic_sched_queued;
1028	struct list_head split_order;
1029	u16 periodic_usecs;
1030	unsigned long hs_periodic_bitmap[
1031		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1032	u16 frame_number;
1033	u16 periodic_qh_count;
1034	bool bus_suspended;
1035	bool new_connection;
1036
1037	u16 last_frame_num;
1038
1039#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1040#define FRAME_NUM_ARRAY_SIZE 1000
1041	u16 *frame_num_array;
1042	u16 *last_frame_num_array;
1043	int frame_num_idx;
1044	int dumped_frame_num_array;
1045#endif
1046
1047	struct list_head free_hc_list;
1048	int periodic_channels;
1049	int non_periodic_channels;
1050	int available_host_channels;
1051	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1052	u8 *status_buf;
1053	dma_addr_t status_buf_dma;
1054#define DWC2_HCD_STATUS_BUF_SIZE 64
1055
1056	struct delayed_work start_work;
1057	struct delayed_work reset_work;
1058	u8 otg_port;
1059	u32 *frame_list;
1060	dma_addr_t frame_list_dma;
1061	u32 frame_list_sz;
1062	struct kmem_cache *desc_gen_cache;
1063	struct kmem_cache *desc_hsisoc_cache;
1064
1065#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1066
1067#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1068	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1069	/* Gadget structures */
1070	struct usb_gadget_driver *driver;
1071	int fifo_mem;
1072	unsigned int dedicated_fifos:1;
1073	unsigned char num_of_eps;
1074	u32 fifo_map;
1075
1076	struct usb_request *ep0_reply;
1077	struct usb_request *ctrl_req;
1078	void *ep0_buff;
1079	void *ctrl_buff;
1080	enum dwc2_ep0_state ep0_state;
1081	u8 test_mode;
1082
1083	dma_addr_t setup_desc_dma[2];
1084	struct dwc2_dma_desc *setup_desc[2];
1085	dma_addr_t ctrl_in_desc_dma;
1086	struct dwc2_dma_desc *ctrl_in_desc;
1087	dma_addr_t ctrl_out_desc_dma;
1088	struct dwc2_dma_desc *ctrl_out_desc;
1089
1090	struct usb_gadget gadget;
1091	unsigned int enabled:1;
1092	unsigned int connected:1;
1093	unsigned int remote_wakeup_allowed:1;
1094	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1095	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1096#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1097};
1098
1099/* Reasons for halting a host channel */
1100enum dwc2_halt_status {
1101	DWC2_HC_XFER_NO_HALT_STATUS,
1102	DWC2_HC_XFER_COMPLETE,
1103	DWC2_HC_XFER_URB_COMPLETE,
1104	DWC2_HC_XFER_ACK,
1105	DWC2_HC_XFER_NAK,
1106	DWC2_HC_XFER_NYET,
1107	DWC2_HC_XFER_STALL,
1108	DWC2_HC_XFER_XACT_ERR,
1109	DWC2_HC_XFER_FRAME_OVERRUN,
1110	DWC2_HC_XFER_BABBLE_ERR,
1111	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1112	DWC2_HC_XFER_AHB_ERR,
1113	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1114	DWC2_HC_XFER_URB_DEQUEUE,
1115};
1116
1117/* Core version information */
1118static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1119{
1120	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1121}
1122
1123static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1124{
1125	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1126}
1127
1128static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1129{
1130	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1131}
1132
1133/*
1134 * The following functions support initialization of the core driver component
1135 * and the DWC_otg controller
1136 */
1137int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1138int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1139int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, bool restore);
1140int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1141int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1142		int reset, int is_host);
1143
1144void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1145void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1146
1147bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1148
1149/*
1150 * Common core Functions.
1151 * The following functions support managing the DWC_otg controller in either
1152 * device or host mode.
1153 */
1154void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1155void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1156void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1157
1158void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1159void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1160
1161void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1162			     int is_host);
1163int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1164int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1165
1166void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1167
1168/* This function should be called on every hardware interrupt. */
1169irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1170
1171/* The device ID match table */
1172extern const struct of_device_id dwc2_of_match_table[];
1173
1174int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1175int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1176
1177/* Common polling functions */
1178int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1179			    u32 timeout);
1180int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1181			      u32 timeout);
1182/* Parameters */
1183int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1184int dwc2_init_params(struct dwc2_hsotg *hsotg);
1185
1186/*
1187 * The following functions check the controller's OTG operation mode
1188 * capability (GHWCFG2.OTG_MODE).
1189 *
1190 * These functions can be used before the internal hsotg->hw_params
1191 * are read in and cached so they always read directly from the
1192 * GHWCFG2 register.
1193 */
1194unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1195bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1196bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1197bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1198
1199/*
1200 * Returns the mode of operation, host or device
1201 */
1202static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1203{
1204	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1205}
1206
1207static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1208{
1209	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1210}
1211
1212/*
1213 * Dump core registers and SPRAM
1214 */
1215void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1216void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1217void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1218
1219/* Gadget defines */
1220#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1221	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1222int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1223int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1224int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1225int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1226void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1227				       bool reset);
1228void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1229void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1230int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1231#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1232int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1233int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1234int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1235int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1236				 int rem_wakeup, int reset);
1237int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1238int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1239int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1240void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1241#else
1242static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1243{ return 0; }
1244static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1245{ return 0; }
1246static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1247{ return 0; }
1248static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1249{ return 0; }
1250static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1251						     bool reset) {}
1252static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1253static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1254static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1255					   int testmode)
1256{ return 0; }
1257#define dwc2_is_device_connected(hsotg) (0)
1258static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1259{ return 0; }
1260static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1261						int remote_wakeup)
1262{ return 0; }
1263static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1264{ return 0; }
1265static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1266					       int rem_wakeup, int reset)
1267{ return 0; }
1268static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1269{ return 0; }
1270static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1271{ return 0; }
1272static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1273{ return 0; }
1274static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1275#endif
1276
1277#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1278int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1279int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1280void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1281void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1282void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1283int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1284int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1285int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1286int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1287int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1288			       int rem_wakeup, int reset);
1289#else
1290static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1291{ return 0; }
1292static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1293						   int us)
1294{ return 0; }
1295static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1296static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1297static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1298static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1299static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1300{ return 0; }
1301static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1302{ return 0; }
1303static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1304{ return 0; }
1305static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1306{ return 0; }
1307static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1308{ return 0; }
1309static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1310					     int rem_wakeup, int reset)
1311{ return 0; }
1312
1313#endif
1314
1315#endif /* __DWC2_CORE_H__ */