Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
 
  98
  99#include <linux/uaccess.h>
 100#include <asm/system.h>
 101
 102#include <linux/kbd_kern.h>
 103#include <linux/vt_kern.h>
 104#include <linux/selection.h>
 105
 106#include <linux/kmod.h>
 107#include <linux/nsproxy.h>
 
 108
 109#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 110
 111#define TTY_PARANOIA_CHECK 1
 112#define CHECK_TTY_COUNT 1
 113
 114struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 115	.c_iflag = ICRNL | IXON,
 116	.c_oflag = OPOST | ONLCR,
 117	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 118	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 119		   ECHOCTL | ECHOKE | IEXTEN,
 120	.c_cc = INIT_C_CC,
 121	.c_ispeed = 38400,
 122	.c_ospeed = 38400
 
 123};
 124
 125EXPORT_SYMBOL(tty_std_termios);
 126
 127/* This list gets poked at by procfs and various bits of boot up code. This
 128   could do with some rationalisation such as pulling the tty proc function
 129   into this file */
 
 130
 131LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 132
 133/* Mutex to protect creating and releasing a tty. This is shared with
 134   vt.c for deeply disgusting hack reasons */
 135DEFINE_MUTEX(tty_mutex);
 136EXPORT_SYMBOL(tty_mutex);
 137
 138/* Spinlock to protect the tty->tty_files list */
 139DEFINE_SPINLOCK(tty_files_lock);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 159
 160/**
 161 *	alloc_tty_struct	-	allocate a tty object
 162 *
 163 *	Return a new empty tty structure. The data fields have not
 164 *	been initialized in any way but has been zeroed
 165 *
 166 *	Locking: none
 167 */
 168
 169struct tty_struct *alloc_tty_struct(void)
 170{
 171	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 172}
 173
 174/**
 175 *	free_tty_struct		-	free a disused tty
 176 *	@tty: tty struct to free
 177 *
 178 *	Free the write buffers, tty queue and tty memory itself.
 179 *
 180 *	Locking: none. Must be called after tty is definitely unused
 181 */
 182
 183void free_tty_struct(struct tty_struct *tty)
 184{
 185	if (tty->dev)
 186		put_device(tty->dev);
 187	kfree(tty->write_buf);
 188	tty_buffer_free_all(tty);
 189	kfree(tty);
 190}
 191
 192static inline struct tty_struct *file_tty(struct file *file)
 193{
 194	return ((struct tty_file_private *)file->private_data)->tty;
 195}
 196
 197/* Associate a new file with the tty structure */
 198int tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 
 
 
 
 
 
 
 
 
 
 206	priv->tty = tty;
 207	priv->file = file;
 208	file->private_data = priv;
 209
 210	spin_lock(&tty_files_lock);
 211	list_add(&priv->list, &tty->tty_files);
 212	spin_unlock(&tty_files_lock);
 213
 214	return 0;
 215}
 216
 217/* Delete file from its tty */
 218void tty_del_file(struct file *file)
 
 
 
 
 
 219{
 220	struct tty_file_private *priv = file->private_data;
 221
 222	spin_lock(&tty_files_lock);
 223	list_del(&priv->list);
 224	spin_unlock(&tty_files_lock);
 225	file->private_data = NULL;
 226	kfree(priv);
 227}
 228
 
 
 
 
 
 229
 230#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 
 
 
 
 231
 232/**
 233 *	tty_name	-	return tty naming
 234 *	@tty: tty structure
 235 *	@buf: buffer for output
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243char *tty_name(struct tty_struct *tty, char *buf)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		strcpy(buf, "NULL tty");
 247	else
 248		strcpy(buf, tty->name);
 249	return buf;
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 
 
 
 
 
 
 
 255			      const char *routine)
 256{
 257#ifdef TTY_PARANOIA_CHECK
 258	if (!tty) {
 259		printk(KERN_WARNING
 260			"null TTY for (%d:%d) in %s\n",
 261			imajor(inode), iminor(inode), routine);
 262		return 1;
 263	}
 264	if (tty->magic != TTY_MAGIC) {
 265		printk(KERN_WARNING
 266			"bad magic number for tty struct (%d:%d) in %s\n",
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270#endif
 271	return 0;
 272}
 273
 
 274static int check_tty_count(struct tty_struct *tty, const char *routine)
 275{
 276#ifdef CHECK_TTY_COUNT
 277	struct list_head *p;
 278	int count = 0;
 279
 280	spin_lock(&tty_files_lock);
 281	list_for_each(p, &tty->tty_files) {
 282		count++;
 283	}
 284	spin_unlock(&tty_files_lock);
 285	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 286	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 287	    tty->link && tty->link->count)
 288		count++;
 289	if (tty->count != count) {
 290		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 291				    "!= #fd's(%d) in %s\n",
 292		       tty->name, tty->count, count, routine);
 293		return count;
 
 294	}
 295#endif
 296	return 0;
 297}
 298
 299/**
 300 *	get_tty_driver		-	find device of a tty
 301 *	@dev_t: device identifier
 302 *	@index: returns the index of the tty
 303 *
 304 *	This routine returns a tty driver structure, given a device number
 305 *	and also passes back the index number.
 306 *
 307 *	Locking: caller must hold tty_mutex
 308 */
 309
 310static struct tty_driver *get_tty_driver(dev_t device, int *index)
 311{
 312	struct tty_driver *p;
 313
 314	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 315		dev_t base = MKDEV(p->major, p->minor_start);
 
 316		if (device < base || device >= base + p->num)
 317			continue;
 318		*index = device - base;
 319		return tty_driver_kref_get(p);
 320	}
 321	return NULL;
 322}
 323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 324#ifdef CONFIG_CONSOLE_POLL
 325
 326/**
 327 *	tty_find_polling_driver	-	find device of a polled tty
 328 *	@name: name string to match
 329 *	@line: pointer to resulting tty line nr
 330 *
 331 *	This routine returns a tty driver structure, given a name
 332 *	and the condition that the tty driver is capable of polled
 333 *	operation.
 334 */
 335struct tty_driver *tty_find_polling_driver(char *name, int *line)
 336{
 337	struct tty_driver *p, *res = NULL;
 338	int tty_line = 0;
 339	int len;
 340	char *str, *stp;
 341
 342	for (str = name; *str; str++)
 343		if ((*str >= '0' && *str <= '9') || *str == ',')
 344			break;
 345	if (!*str)
 346		return NULL;
 347
 348	len = str - name;
 349	tty_line = simple_strtoul(str, &str, 10);
 350
 351	mutex_lock(&tty_mutex);
 352	/* Search through the tty devices to look for a match */
 353	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 354		if (strncmp(name, p->name, len) != 0)
 355			continue;
 356		stp = str;
 357		if (*stp == ',')
 358			stp++;
 359		if (*stp == '\0')
 360			stp = NULL;
 361
 362		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 363		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 364			res = tty_driver_kref_get(p);
 365			*line = tty_line;
 366			break;
 367		}
 368	}
 369	mutex_unlock(&tty_mutex);
 370
 371	return res;
 372}
 373EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 374#endif
 375
 376/**
 377 *	tty_check_change	-	check for POSIX terminal changes
 378 *	@tty: tty to check
 379 *
 380 *	If we try to write to, or set the state of, a terminal and we're
 381 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 382 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 383 *
 384 *	Locking: ctrl_lock
 385 */
 386
 387int tty_check_change(struct tty_struct *tty)
 388{
 389	unsigned long flags;
 390	int ret = 0;
 391
 392	if (current->signal->tty != tty)
 393		return 0;
 394
 395	spin_lock_irqsave(&tty->ctrl_lock, flags);
 396
 397	if (!tty->pgrp) {
 398		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 399		goto out_unlock;
 400	}
 401	if (task_pgrp(current) == tty->pgrp)
 402		goto out_unlock;
 403	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 404	if (is_ignored(SIGTTOU))
 405		goto out;
 406	if (is_current_pgrp_orphaned()) {
 407		ret = -EIO;
 408		goto out;
 409	}
 410	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 411	set_thread_flag(TIF_SIGPENDING);
 412	ret = -ERESTARTSYS;
 413out:
 414	return ret;
 415out_unlock:
 416	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 417	return ret;
 418}
 419
 420EXPORT_SYMBOL(tty_check_change);
 421
 422static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 423				size_t count, loff_t *ppos)
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 429				 size_t count, loff_t *ppos)
 430{
 431	return -EIO;
 432}
 433
 434/* No kernel lock held - none needed ;) */
 435static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 436{
 437	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 438}
 439
 440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 441		unsigned long arg)
 442{
 443	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 444}
 445
 446static long hung_up_tty_compat_ioctl(struct file *file,
 447				     unsigned int cmd, unsigned long arg)
 448{
 449	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 450}
 451
 
 
 
 
 
 
 
 
 
 
 
 
 
 452static const struct file_operations tty_fops = {
 453	.llseek		= no_llseek,
 454	.read		= tty_read,
 455	.write		= tty_write,
 
 
 456	.poll		= tty_poll,
 457	.unlocked_ioctl	= tty_ioctl,
 458	.compat_ioctl	= tty_compat_ioctl,
 459	.open		= tty_open,
 460	.release	= tty_release,
 461	.fasync		= tty_fasync,
 
 462};
 463
 464static const struct file_operations console_fops = {
 465	.llseek		= no_llseek,
 466	.read		= tty_read,
 467	.write		= redirected_tty_write,
 
 
 468	.poll		= tty_poll,
 469	.unlocked_ioctl	= tty_ioctl,
 470	.compat_ioctl	= tty_compat_ioctl,
 471	.open		= tty_open,
 472	.release	= tty_release,
 473	.fasync		= tty_fasync,
 474};
 475
 476static const struct file_operations hung_up_tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= hung_up_tty_read,
 479	.write		= hung_up_tty_write,
 480	.poll		= hung_up_tty_poll,
 481	.unlocked_ioctl	= hung_up_tty_ioctl,
 482	.compat_ioctl	= hung_up_tty_compat_ioctl,
 483	.release	= tty_release,
 
 484};
 485
 486static DEFINE_SPINLOCK(redirect_lock);
 487static struct file *redirect;
 488
 489/**
 490 *	tty_wakeup	-	request more data
 491 *	@tty: terminal
 492 *
 493 *	Internal and external helper for wakeups of tty. This function
 494 *	informs the line discipline if present that the driver is ready
 495 *	to receive more output data.
 496 */
 497
 498void tty_wakeup(struct tty_struct *tty)
 499{
 500	struct tty_ldisc *ld;
 501
 502	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 503		ld = tty_ldisc_ref(tty);
 504		if (ld) {
 505			if (ld->ops->write_wakeup)
 506				ld->ops->write_wakeup(tty);
 507			tty_ldisc_deref(ld);
 508		}
 509	}
 510	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 511}
 512
 513EXPORT_SYMBOL_GPL(tty_wakeup);
 514
 515/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516 *	__tty_hangup		-	actual handler for hangup events
 517 *	@work: tty device
 
 518 *
 519 *	This can be called by the "eventd" kernel thread.  That is process
 520 *	synchronous but doesn't hold any locks, so we need to make sure we
 521 *	have the appropriate locks for what we're doing.
 522 *
 523 *	The hangup event clears any pending redirections onto the hung up
 524 *	device. It ensures future writes will error and it does the needed
 525 *	line discipline hangup and signal delivery. The tty object itself
 526 *	remains intact.
 527 *
 528 *	Locking:
 529 *		BTM
 530 *		  redirect lock for undoing redirection
 531 *		  file list lock for manipulating list of ttys
 532 *		  tty_ldisc_lock from called functions
 533 *		  termios_mutex resetting termios data
 534 *		  tasklist_lock to walk task list for hangup event
 535 *		    ->siglock to protect ->signal/->sighand
 536 */
 537void __tty_hangup(struct tty_struct *tty)
 538{
 539	struct file *cons_filp = NULL;
 540	struct file *filp, *f = NULL;
 541	struct task_struct *p;
 542	struct tty_file_private *priv;
 543	int    closecount = 0, n;
 544	unsigned long flags;
 545	int refs = 0;
 546
 547	if (!tty)
 548		return;
 549
 
 550
 551	spin_lock(&redirect_lock);
 552	if (redirect && file_tty(redirect) == tty) {
 553		f = redirect;
 554		redirect = NULL;
 555	}
 556	spin_unlock(&redirect_lock);
 557
 558	tty_lock();
 
 
 
 559
 560	/* some functions below drop BTM, so we need this bit */
 
 
 
 
 
 561	set_bit(TTY_HUPPING, &tty->flags);
 562
 563	/* inuse_filps is protected by the single tty lock,
 564	   this really needs to change if we want to flush the
 565	   workqueue with the lock held */
 
 566	check_tty_count(tty, "tty_hangup");
 567
 568	spin_lock(&tty_files_lock);
 569	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 570	list_for_each_entry(priv, &tty->tty_files, list) {
 571		filp = priv->file;
 572		if (filp->f_op->write == redirected_tty_write)
 573			cons_filp = filp;
 574		if (filp->f_op->write != tty_write)
 575			continue;
 576		closecount++;
 577		__tty_fasync(-1, filp, 0);	/* can't block */
 578		filp->f_op = &hung_up_tty_fops;
 579	}
 580	spin_unlock(&tty_files_lock);
 581
 582	/*
 583	 * it drops BTM and thus races with reopen
 584	 * we protect the race by TTY_HUPPING
 585	 */
 586	tty_ldisc_hangup(tty);
 587
 588	read_lock(&tasklist_lock);
 589	if (tty->session) {
 590		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 591			spin_lock_irq(&p->sighand->siglock);
 592			if (p->signal->tty == tty) {
 593				p->signal->tty = NULL;
 594				/* We defer the dereferences outside fo
 595				   the tasklist lock */
 596				refs++;
 597			}
 598			if (!p->signal->leader) {
 599				spin_unlock_irq(&p->sighand->siglock);
 600				continue;
 601			}
 602			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 603			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 604			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 605			spin_lock_irqsave(&tty->ctrl_lock, flags);
 606			if (tty->pgrp)
 607				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 608			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 609			spin_unlock_irq(&p->sighand->siglock);
 610		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 611	}
 612	read_unlock(&tasklist_lock);
 613
 614	spin_lock_irqsave(&tty->ctrl_lock, flags);
 615	clear_bit(TTY_THROTTLED, &tty->flags);
 616	clear_bit(TTY_PUSH, &tty->flags);
 617	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 618	put_pid(tty->session);
 619	put_pid(tty->pgrp);
 620	tty->session = NULL;
 621	tty->pgrp = NULL;
 622	tty->ctrl_status = 0;
 623	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 624
 625	/* Account for the p->signal references we killed */
 626	while (refs--)
 627		tty_kref_put(tty);
 628
 629	/*
 630	 * If one of the devices matches a console pointer, we
 631	 * cannot just call hangup() because that will cause
 632	 * tty->count and state->count to go out of sync.
 633	 * So we just call close() the right number of times.
 634	 */
 635	if (cons_filp) {
 636		if (tty->ops->close)
 637			for (n = 0; n < closecount; n++)
 638				tty->ops->close(tty, cons_filp);
 639	} else if (tty->ops->hangup)
 640		(tty->ops->hangup)(tty);
 641	/*
 642	 * We don't want to have driver/ldisc interactions beyond
 643	 * the ones we did here. The driver layer expects no
 644	 * calls after ->hangup() from the ldisc side. However we
 645	 * can't yet guarantee all that.
 646	 */
 647	set_bit(TTY_HUPPED, &tty->flags);
 648	clear_bit(TTY_HUPPING, &tty->flags);
 649	tty_ldisc_enable(tty);
 650
 651	tty_unlock();
 652
 653	if (f)
 654		fput(f);
 655}
 656
 657static void do_tty_hangup(struct work_struct *work)
 658{
 659	struct tty_struct *tty =
 660		container_of(work, struct tty_struct, hangup_work);
 661
 662	__tty_hangup(tty);
 663}
 664
 665/**
 666 *	tty_hangup		-	trigger a hangup event
 667 *	@tty: tty to hangup
 668 *
 669 *	A carrier loss (virtual or otherwise) has occurred on this like
 670 *	schedule a hangup sequence to run after this event.
 671 */
 672
 673void tty_hangup(struct tty_struct *tty)
 674{
 675#ifdef TTY_DEBUG_HANGUP
 676	char	buf[64];
 677	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 678#endif
 679	schedule_work(&tty->hangup_work);
 680}
 681
 682EXPORT_SYMBOL(tty_hangup);
 683
 684/**
 685 *	tty_vhangup		-	process vhangup
 686 *	@tty: tty to hangup
 687 *
 688 *	The user has asked via system call for the terminal to be hung up.
 689 *	We do this synchronously so that when the syscall returns the process
 690 *	is complete. That guarantee is necessary for security reasons.
 691 */
 692
 693void tty_vhangup(struct tty_struct *tty)
 694{
 695#ifdef TTY_DEBUG_HANGUP
 696	char	buf[64];
 697
 698	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 699#endif
 700	__tty_hangup(tty);
 701}
 702
 703EXPORT_SYMBOL(tty_vhangup);
 704
 705
 706/**
 707 *	tty_vhangup_self	-	process vhangup for own ctty
 708 *
 709 *	Perform a vhangup on the current controlling tty
 710 */
 711
 712void tty_vhangup_self(void)
 713{
 714	struct tty_struct *tty;
 715
 716	tty = get_current_tty();
 717	if (tty) {
 718		tty_vhangup(tty);
 719		tty_kref_put(tty);
 720	}
 721}
 722
 723/**
 724 *	tty_hung_up_p		-	was tty hung up
 725 *	@filp: file pointer of tty
 726 *
 727 *	Return true if the tty has been subject to a vhangup or a carrier
 728 *	loss
 
 
 
 729 */
 730
 731int tty_hung_up_p(struct file *filp)
 732{
 733	return (filp->f_op == &hung_up_tty_fops);
 734}
 735
 736EXPORT_SYMBOL(tty_hung_up_p);
 737
 738static void session_clear_tty(struct pid *session)
 739{
 740	struct task_struct *p;
 741	do_each_pid_task(session, PIDTYPE_SID, p) {
 742		proc_clear_tty(p);
 743	} while_each_pid_task(session, PIDTYPE_SID, p);
 744}
 745
 746/**
 747 *	disassociate_ctty	-	disconnect controlling tty
 748 *	@on_exit: true if exiting so need to "hang up" the session
 749 *
 750 *	This function is typically called only by the session leader, when
 751 *	it wants to disassociate itself from its controlling tty.
 752 *
 753 *	It performs the following functions:
 754 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 755 * 	(2)  Clears the tty from being controlling the session
 756 * 	(3)  Clears the controlling tty for all processes in the
 757 * 		session group.
 758 *
 759 *	The argument on_exit is set to 1 if called when a process is
 760 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 761 *
 762 *	Locking:
 763 *		BTM is taken for hysterical raisins, and held when
 764 *		  called from no_tty().
 765 *		  tty_mutex is taken to protect tty
 766 *		  ->siglock is taken to protect ->signal/->sighand
 767 *		  tasklist_lock is taken to walk process list for sessions
 768 *		    ->siglock is taken to protect ->signal/->sighand
 769 */
 770
 771void disassociate_ctty(int on_exit)
 772{
 773	struct tty_struct *tty;
 774	struct pid *tty_pgrp = NULL;
 775
 776	if (!current->signal->leader)
 777		return;
 778
 779	tty = get_current_tty();
 780	if (tty) {
 781		tty_pgrp = get_pid(tty->pgrp);
 782		if (on_exit) {
 783			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 784				tty_vhangup(tty);
 785		}
 786		tty_kref_put(tty);
 787	} else if (on_exit) {
 788		struct pid *old_pgrp;
 789		spin_lock_irq(&current->sighand->siglock);
 790		old_pgrp = current->signal->tty_old_pgrp;
 791		current->signal->tty_old_pgrp = NULL;
 792		spin_unlock_irq(&current->sighand->siglock);
 793		if (old_pgrp) {
 794			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 795			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 796			put_pid(old_pgrp);
 797		}
 798		return;
 799	}
 800	if (tty_pgrp) {
 801		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 802		if (!on_exit)
 803			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 804		put_pid(tty_pgrp);
 805	}
 806
 807	spin_lock_irq(&current->sighand->siglock);
 808	put_pid(current->signal->tty_old_pgrp);
 809	current->signal->tty_old_pgrp = NULL;
 810	spin_unlock_irq(&current->sighand->siglock);
 811
 812	tty = get_current_tty();
 813	if (tty) {
 814		unsigned long flags;
 815		spin_lock_irqsave(&tty->ctrl_lock, flags);
 816		put_pid(tty->session);
 817		put_pid(tty->pgrp);
 818		tty->session = NULL;
 819		tty->pgrp = NULL;
 820		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 821		tty_kref_put(tty);
 822	} else {
 823#ifdef TTY_DEBUG_HANGUP
 824		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 825		       " = NULL", tty);
 826#endif
 827	}
 828
 829	/* Now clear signal->tty under the lock */
 830	read_lock(&tasklist_lock);
 831	session_clear_tty(task_session(current));
 832	read_unlock(&tasklist_lock);
 833}
 
 834
 835/**
 836 *
 837 *	no_tty	- Ensure the current process does not have a controlling tty
 838 */
 839void no_tty(void)
 840{
 841	struct task_struct *tsk = current;
 842	tty_lock();
 843	disassociate_ctty(0);
 844	tty_unlock();
 845	proc_clear_tty(tsk);
 846}
 847
 848
 849/**
 850 *	stop_tty	-	propagate flow control
 851 *	@tty: tty to stop
 852 *
 853 *	Perform flow control to the driver. For PTY/TTY pairs we
 854 *	must also propagate the TIOCKPKT status. May be called
 855 *	on an already stopped device and will not re-call the driver
 856 *	method.
 857 *
 858 *	This functionality is used by both the line disciplines for
 859 *	halting incoming flow and by the driver. It may therefore be
 860 *	called from any context, may be under the tty atomic_write_lock
 861 *	but not always.
 862 *
 863 *	Locking:
 864 *		Uses the tty control lock internally
 865 */
 866
 867void stop_tty(struct tty_struct *tty)
 868{
 869	unsigned long flags;
 870	spin_lock_irqsave(&tty->ctrl_lock, flags);
 871	if (tty->stopped) {
 872		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 873		return;
 874	}
 875	tty->stopped = 1;
 876	if (tty->link && tty->link->packet) {
 877		tty->ctrl_status &= ~TIOCPKT_START;
 878		tty->ctrl_status |= TIOCPKT_STOP;
 879		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 880	}
 881	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 882	if (tty->ops->stop)
 883		(tty->ops->stop)(tty);
 884}
 885
 
 
 
 
 886EXPORT_SYMBOL(stop_tty);
 887
 
 
 
 
 
 
 
 
 
 
 888/**
 889 *	start_tty	-	propagate flow control
 890 *	@tty: tty to start
 891 *
 892 *	Start a tty that has been stopped if at all possible. Perform
 893 *	any necessary wakeups and propagate the TIOCPKT status. If this
 894 *	is the tty was previous stopped and is being started then the
 895 *	driver start method is invoked and the line discipline woken.
 896 *
 897 *	Locking:
 898 *		ctrl_lock
 899 */
 900
 901void start_tty(struct tty_struct *tty)
 902{
 903	unsigned long flags;
 904	spin_lock_irqsave(&tty->ctrl_lock, flags);
 905	if (!tty->stopped || tty->flow_stopped) {
 906		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 907		return;
 908	}
 909	tty->stopped = 0;
 910	if (tty->link && tty->link->packet) {
 911		tty->ctrl_status &= ~TIOCPKT_STOP;
 912		tty->ctrl_status |= TIOCPKT_START;
 913		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 914	}
 915	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 916	if (tty->ops->start)
 917		(tty->ops->start)(tty);
 918	/* If we have a running line discipline it may need kicking */
 919	tty_wakeup(tty);
 920}
 921
 
 
 
 
 922EXPORT_SYMBOL(start_tty);
 923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924/**
 925 *	tty_read	-	read method for tty device files
 926 *	@file: pointer to tty file
 927 *	@buf: user buffer
 928 *	@count: size of user buffer
 929 *	@ppos: unused
 930 *
 931 *	Perform the read system call function on this terminal device. Checks
 932 *	for hung up devices before calling the line discipline method.
 933 *
 934 *	Locking:
 935 *		Locks the line discipline internally while needed. Multiple
 936 *	read calls may be outstanding in parallel.
 937 */
 938
 939static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 940			loff_t *ppos)
 941{
 942	int i;
 943	struct inode *inode = file->f_path.dentry->d_inode;
 
 944	struct tty_struct *tty = file_tty(file);
 945	struct tty_ldisc *ld;
 946
 947	if (tty_paranoia_check(tty, inode, "tty_read"))
 948		return -EIO;
 949	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 950		return -EIO;
 951
 952	/* We want to wait for the line discipline to sort out in this
 953	   situation */
 
 954	ld = tty_ldisc_ref_wait(tty);
 
 
 
 955	if (ld->ops->read)
 956		i = (ld->ops->read)(tty, file, buf, count);
 957	else
 958		i = -EIO;
 959	tty_ldisc_deref(ld);
 
 960	if (i > 0)
 961		inode->i_atime = current_fs_time(inode->i_sb);
 
 962	return i;
 963}
 964
 965void tty_write_unlock(struct tty_struct *tty)
 966	__releases(&tty->atomic_write_lock)
 967{
 968	mutex_unlock(&tty->atomic_write_lock);
 969	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 970}
 971
 972int tty_write_lock(struct tty_struct *tty, int ndelay)
 973	__acquires(&tty->atomic_write_lock)
 974{
 975	if (!mutex_trylock(&tty->atomic_write_lock)) {
 976		if (ndelay)
 977			return -EAGAIN;
 978		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 979			return -ERESTARTSYS;
 980	}
 981	return 0;
 982}
 983
 984/*
 985 * Split writes up in sane blocksizes to avoid
 986 * denial-of-service type attacks
 987 */
 988static inline ssize_t do_tty_write(
 989	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 990	struct tty_struct *tty,
 991	struct file *file,
 992	const char __user *buf,
 993	size_t count)
 994{
 
 995	ssize_t ret, written = 0;
 996	unsigned int chunk;
 997
 998	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 999	if (ret < 0)
1000		return ret;
1001
1002	/*
1003	 * We chunk up writes into a temporary buffer. This
1004	 * simplifies low-level drivers immensely, since they
1005	 * don't have locking issues and user mode accesses.
1006	 *
1007	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008	 * big chunk-size..
1009	 *
1010	 * The default chunk-size is 2kB, because the NTTY
1011	 * layer has problems with bigger chunks. It will
1012	 * claim to be able to handle more characters than
1013	 * it actually does.
1014	 *
1015	 * FIXME: This can probably go away now except that 64K chunks
1016	 * are too likely to fail unless switched to vmalloc...
1017	 */
1018	chunk = 2048;
1019	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020		chunk = 65536;
1021	if (count < chunk)
1022		chunk = count;
1023
1024	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025	if (tty->write_cnt < chunk) {
1026		unsigned char *buf_chunk;
1027
1028		if (chunk < 1024)
1029			chunk = 1024;
1030
1031		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032		if (!buf_chunk) {
1033			ret = -ENOMEM;
1034			goto out;
1035		}
1036		kfree(tty->write_buf);
1037		tty->write_cnt = chunk;
1038		tty->write_buf = buf_chunk;
1039	}
1040
1041	/* Do the write .. */
1042	for (;;) {
1043		size_t size = count;
 
1044		if (size > chunk)
1045			size = chunk;
 
1046		ret = -EFAULT;
1047		if (copy_from_user(tty->write_buf, buf, size))
1048			break;
 
1049		ret = write(tty, file, tty->write_buf, size);
1050		if (ret <= 0)
1051			break;
 
1052		written += ret;
1053		buf += ret;
 
 
 
 
 
 
1054		count -= ret;
1055		if (!count)
1056			break;
1057		ret = -ERESTARTSYS;
1058		if (signal_pending(current))
1059			break;
1060		cond_resched();
1061	}
1062	if (written) {
1063		struct inode *inode = file->f_path.dentry->d_inode;
1064		inode->i_mtime = current_fs_time(inode->i_sb);
1065		ret = written;
1066	}
1067out:
1068	tty_write_unlock(tty);
1069	return ret;
1070}
1071
1072/**
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1076 *
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1080 *
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
1082 */
1083
1084void tty_write_message(struct tty_struct *tty, char *msg)
1085{
1086	if (tty) {
1087		mutex_lock(&tty->atomic_write_lock);
1088		tty_lock();
1089		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090			tty_unlock();
1091			tty->ops->write(tty, msg, strlen(msg));
1092		} else
1093			tty_unlock();
1094		tty_write_unlock(tty);
1095	}
1096	return;
1097}
1098
1099
1100/**
1101 *	tty_write		-	write method for tty device file
1102 *	@file: tty file pointer
1103 *	@buf: user data to write
1104 *	@count: bytes to write
1105 *	@ppos: unused
1106 *
1107 *	Write data to a tty device via the line discipline.
1108 *
1109 *	Locking:
1110 *		Locks the line discipline as required
1111 *		Writes to the tty driver are serialized by the atomic_write_lock
1112 *	and are then processed in chunks to the device. The line discipline
1113 *	write method will not be invoked in parallel for each device.
1114 */
1115
1116static ssize_t tty_write(struct file *file, const char __user *buf,
1117						size_t count, loff_t *ppos)
1118{
1119	struct inode *inode = file->f_path.dentry->d_inode;
1120	struct tty_struct *tty = file_tty(file);
1121 	struct tty_ldisc *ld;
1122	ssize_t ret;
1123
1124	if (tty_paranoia_check(tty, inode, "tty_write"))
 
 
1125		return -EIO;
1126	if (!tty || !tty->ops->write ||
1127		(test_bit(TTY_IO_ERROR, &tty->flags)))
1128			return -EIO;
1129	/* Short term debug to catch buggy drivers */
1130	if (tty->ops->write_room == NULL)
1131		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132			tty->driver->name);
1133	ld = tty_ldisc_ref_wait(tty);
 
 
1134	if (!ld->ops->write)
1135		ret = -EIO;
1136	else
1137		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138	tty_ldisc_deref(ld);
1139	return ret;
1140}
1141
1142ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143						size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144{
1145	struct file *p = NULL;
1146
1147	spin_lock(&redirect_lock);
1148	if (redirect) {
1149		get_file(redirect);
1150		p = redirect;
1151	}
1152	spin_unlock(&redirect_lock);
1153
 
 
 
 
1154	if (p) {
1155		ssize_t res;
1156		res = vfs_write(p, buf, count, &p->f_pos);
 
1157		fput(p);
1158		return res;
1159	}
1160	return tty_write(file, buf, count, ppos);
1161}
1162
1163static char ptychar[] = "pqrstuvwxyzabcde";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164
1165/**
1166 *	pty_line_name	-	generate name for a pty
1167 *	@driver: the tty driver in use
1168 *	@index: the minor number
1169 *	@p: output buffer of at least 6 bytes
1170 *
1171 *	Generate a name from a driver reference and write it to the output
1172 *	buffer.
1173 *
1174 *	Locking: None
1175 */
1176static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177{
 
1178	int i = index + driver->name_base;
1179	/* ->name is initialized to "ttyp", but "tty" is expected */
1180	sprintf(p, "%s%c%x",
1181		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182		ptychar[i >> 4 & 0xf], i & 0xf);
1183}
1184
1185/**
1186 *	tty_line_name	-	generate name for a tty
1187 *	@driver: the tty driver in use
1188 *	@index: the minor number
1189 *	@p: output buffer of at least 7 bytes
1190 *
1191 *	Generate a name from a driver reference and write it to the output
1192 *	buffer.
1193 *
1194 *	Locking: None
1195 */
1196static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197{
1198	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1199}
1200
1201/**
1202 *	tty_driver_lookup_tty() - find an existing tty, if any
1203 *	@driver: the driver for the tty
 
1204 *	@idx:	 the minor number
1205 *
1206 *	Return the tty, if found or ERR_PTR() otherwise.
 
1207 *
1208 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1209 *	be held until the 'fast-open' is also done. Will change once we
1210 *	have refcounting in the driver and per driver locking
1211 */
1212static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213		struct inode *inode, int idx)
1214{
1215	struct tty_struct *tty;
1216
1217	if (driver->ops->lookup)
1218		return driver->ops->lookup(driver, inode, idx);
 
 
 
 
 
1219
1220	tty = driver->ttys[idx];
 
1221	return tty;
1222}
1223
1224/**
1225 *	tty_init_termios	-  helper for termios setup
1226 *	@tty: the tty to set up
1227 *
1228 *	Initialise the termios structures for this tty. Thus runs under
1229 *	the tty_mutex currently so we can be relaxed about ordering.
1230 */
1231
1232int tty_init_termios(struct tty_struct *tty)
1233{
1234	struct ktermios *tp;
1235	int idx = tty->index;
1236
1237	tp = tty->driver->termios[idx];
1238	if (tp == NULL) {
1239		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240		if (tp == NULL)
1241			return -ENOMEM;
1242		memcpy(tp, &tty->driver->init_termios,
1243						sizeof(struct ktermios));
1244		tty->driver->termios[idx] = tp;
 
 
1245	}
1246	tty->termios = tp;
1247	tty->termios_locked = tp + 1;
1248
1249	/* Compatibility until drivers always set this */
1250	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(tty_init_termios);
1255
 
 
 
 
 
 
 
 
 
 
1256/**
1257 *	tty_driver_install_tty() - install a tty entry in the driver
1258 *	@driver: the driver for the tty
1259 *	@tty: the tty
1260 *
1261 *	Install a tty object into the driver tables. The tty->index field
1262 *	will be set by the time this is called. This method is responsible
1263 *	for ensuring any need additional structures are allocated and
1264 *	configured.
1265 *
1266 *	Locking: tty_mutex for now
1267 */
1268static int tty_driver_install_tty(struct tty_driver *driver,
1269						struct tty_struct *tty)
1270{
1271	int idx = tty->index;
1272	int ret;
1273
1274	if (driver->ops->install) {
1275		ret = driver->ops->install(driver, tty);
1276		return ret;
1277	}
1278
1279	if (tty_init_termios(tty) == 0) {
1280		tty_driver_kref_get(driver);
1281		tty->count++;
1282		driver->ttys[idx] = tty;
1283		return 0;
1284	}
1285	return -ENOMEM;
1286}
1287
1288/**
1289 *	tty_driver_remove_tty() - remove a tty from the driver tables
1290 *	@driver: the driver for the tty
1291 *	@idx:	 the minor number
1292 *
1293 *	Remvoe a tty object from the driver tables. The tty->index field
1294 *	will be set by the time this is called.
1295 *
1296 *	Locking: tty_mutex for now
1297 */
1298void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299{
1300	if (driver->ops->remove)
1301		driver->ops->remove(driver, tty);
1302	else
1303		driver->ttys[tty->index] = NULL;
1304}
1305
1306/*
1307 * 	tty_reopen()	- fast re-open of an open tty
1308 * 	@tty	- the tty to open
1309 *
1310 *	Return 0 on success, -errno on error.
 
1311 *
1312 *	Locking: tty_mutex must be held from the time the tty was found
1313 *		 till this open completes.
1314 */
1315static int tty_reopen(struct tty_struct *tty)
1316{
1317	struct tty_driver *driver = tty->driver;
 
 
1318
1319	if (test_bit(TTY_CLOSING, &tty->flags) ||
1320			test_bit(TTY_HUPPING, &tty->flags) ||
1321			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322		return -EIO;
1323
1324	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325	    driver->subtype == PTY_TYPE_MASTER) {
1326		/*
1327		 * special case for PTY masters: only one open permitted,
1328		 * and the slave side open count is incremented as well.
1329		 */
1330		if (tty->count)
1331			return -EIO;
1332
1333		tty->link->count++;
 
 
 
 
 
 
 
 
 
 
 
 
 
1334	}
1335	tty->count++;
1336	tty->driver = driver; /* N.B. why do this every time?? */
1337
1338	mutex_lock(&tty->ldisc_mutex);
1339	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340	mutex_unlock(&tty->ldisc_mutex);
1341
1342	return 0;
1343}
1344
1345/**
1346 *	tty_init_dev		-	initialise a tty device
1347 *	@driver: tty driver we are opening a device on
1348 *	@idx: device index
1349 *	@ret_tty: returned tty structure
1350 *	@first_ok: ok to open a new device (used by ptmx)
1351 *
1352 *	Prepare a tty device. This may not be a "new" clean device but
1353 *	could also be an active device. The pty drivers require special
1354 *	handling because of this.
1355 *
1356 *	Locking:
1357 *		The function is called under the tty_mutex, which
1358 *	protects us from the tty struct or driver itself going away.
1359 *
1360 *	On exit the tty device has the line discipline attached and
1361 *	a reference count of 1. If a pair was created for pty/tty use
1362 *	and the other was a pty master then it too has a reference count of 1.
1363 *
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open.  The new code protects the open with a mutex, so it's
1366 * really quite straightforward.  The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
 
 
1368 */
1369
1370struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371								int first_ok)
1372{
1373	struct tty_struct *tty;
1374	int retval;
1375
1376	/* Check if pty master is being opened multiple times */
1377	if (driver->subtype == PTY_TYPE_MASTER &&
1378		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379		return ERR_PTR(-EIO);
1380	}
1381
1382	/*
1383	 * First time open is complex, especially for PTY devices.
1384	 * This code guarantees that either everything succeeds and the
1385	 * TTY is ready for operation, or else the table slots are vacated
1386	 * and the allocated memory released.  (Except that the termios
1387	 * and locked termios may be retained.)
1388	 */
1389
1390	if (!try_module_get(driver->owner))
1391		return ERR_PTR(-ENODEV);
1392
1393	tty = alloc_tty_struct();
1394	if (!tty) {
1395		retval = -ENOMEM;
1396		goto err_module_put;
1397	}
1398	initialize_tty_struct(tty, driver, idx);
1399
 
1400	retval = tty_driver_install_tty(driver, tty);
1401	if (retval < 0)
1402		goto err_deinit_tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403
1404	/*
1405	 * Structures all installed ... call the ldisc open routines.
1406	 * If we fail here just call release_tty to clean up.  No need
1407	 * to decrement the use counts, as release_tty doesn't care.
1408	 */
1409	retval = tty_ldisc_setup(tty, tty->link);
1410	if (retval)
1411		goto err_release_tty;
 
 
1412	return tty;
1413
1414err_deinit_tty:
1415	deinitialize_tty_struct(tty);
1416	free_tty_struct(tty);
1417err_module_put:
1418	module_put(driver->owner);
1419	return ERR_PTR(retval);
1420
1421	/* call the tty release_tty routine to clean out this slot */
1422err_release_tty:
1423	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424				 "clearing slot %d\n", idx);
 
 
 
1425	release_tty(tty, idx);
1426	return ERR_PTR(retval);
1427}
1428
1429void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1430{
1431	struct ktermios *tp;
1432	int idx = tty->index;
1433	/* Kill this flag and push into drivers for locking etc */
1434	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435		/* FIXME: Locking on ->termios array */
1436		tp = tty->termios;
1437		tty->driver->termios[idx] = NULL;
1438		kfree(tp);
 
 
 
 
 
 
1439	}
 
1440}
1441EXPORT_SYMBOL(tty_free_termios);
1442
1443void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1444{
1445	tty_driver_remove_tty(tty->driver, tty);
1446	tty_free_termios(tty);
 
 
 
 
1447}
1448EXPORT_SYMBOL(tty_shutdown);
1449
1450/**
1451 *	release_one_tty		-	release tty structure memory
1452 *	@kref: kref of tty we are obliterating
1453 *
1454 *	Releases memory associated with a tty structure, and clears out the
1455 *	driver table slots. This function is called when a device is no longer
1456 *	in use. It also gets called when setup of a device fails.
1457 *
1458 *	Locking:
1459 *		tty_mutex - sometimes only
1460 *		takes the file list lock internally when working on the list
1461 *	of ttys that the driver keeps.
1462 *
1463 *	This method gets called from a work queue so that the driver private
1464 *	cleanup ops can sleep (needed for USB at least)
1465 */
1466static void release_one_tty(struct work_struct *work)
1467{
1468	struct tty_struct *tty =
1469		container_of(work, struct tty_struct, hangup_work);
1470	struct tty_driver *driver = tty->driver;
 
1471
1472	if (tty->ops->cleanup)
1473		tty->ops->cleanup(tty);
1474
1475	tty->magic = 0;
1476	tty_driver_kref_put(driver);
1477	module_put(driver->owner);
1478
1479	spin_lock(&tty_files_lock);
1480	list_del_init(&tty->tty_files);
1481	spin_unlock(&tty_files_lock);
1482
1483	put_pid(tty->pgrp);
1484	put_pid(tty->session);
1485	free_tty_struct(tty);
1486}
1487
1488static void queue_release_one_tty(struct kref *kref)
1489{
1490	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492	if (tty->ops->shutdown)
1493		tty->ops->shutdown(tty);
1494	else
1495		tty_shutdown(tty);
1496
1497	/* The hangup queue is now free so we can reuse it rather than
1498	   waste a chunk of memory for each port */
 
1499	INIT_WORK(&tty->hangup_work, release_one_tty);
1500	schedule_work(&tty->hangup_work);
1501}
1502
1503/**
1504 *	tty_kref_put		-	release a tty kref
1505 *	@tty: tty device
1506 *
1507 *	Release a reference to a tty device and if need be let the kref
1508 *	layer destruct the object for us
1509 */
1510
1511void tty_kref_put(struct tty_struct *tty)
1512{
1513	if (tty)
1514		kref_put(&tty->kref, queue_release_one_tty);
1515}
1516EXPORT_SYMBOL(tty_kref_put);
1517
1518/**
1519 *	release_tty		-	release tty structure memory
 
 
1520 *
1521 *	Release both @tty and a possible linked partner (think pty pair),
1522 *	and decrement the refcount of the backing module.
1523 *
1524 *	Locking:
1525 *		tty_mutex - sometimes only
1526 *		takes the file list lock internally when working on the list
1527 *	of ttys that the driver keeps.
1528 *		FIXME: should we require tty_mutex is held here ??
1529 *
1530 */
1531static void release_tty(struct tty_struct *tty, int idx)
1532{
1533	/* This should always be true but check for the moment */
1534	WARN_ON(tty->index != idx);
1535
 
 
 
 
 
 
1536	if (tty->link)
1537		tty_kref_put(tty->link);
 
 
 
 
 
 
1538	tty_kref_put(tty);
1539}
1540
1541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542 *	tty_release		-	vfs callback for close
1543 *	@inode: inode of tty
1544 *	@filp: file pointer for handle to tty
1545 *
1546 *	Called the last time each file handle is closed that references
1547 *	this tty. There may however be several such references.
1548 *
1549 *	Locking:
1550 *		Takes bkl. See tty_release_dev
1551 *
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
1555 *
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1558 */
1559
1560int tty_release(struct inode *inode, struct file *filp)
1561{
1562	struct tty_struct *tty = file_tty(filp);
1563	struct tty_struct *o_tty;
1564	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1565	int	devpts;
1566	int	idx;
1567	char	buf[64];
 
1568
1569	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570		return 0;
1571
1572	tty_lock();
1573	check_tty_count(tty, "tty_release_dev");
1574
1575	__tty_fasync(-1, filp, 0);
1576
1577	idx = tty->index;
1578	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579		      tty->driver->subtype == PTY_TYPE_MASTER);
1580	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581	o_tty = tty->link;
1582
1583#ifdef TTY_PARANOIA_CHECK
1584	if (idx < 0 || idx >= tty->driver->num) {
1585		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586				  "free (%s)\n", tty->name);
1587		tty_unlock();
1588		return 0;
1589	}
1590	if (!devpts) {
1591		if (tty != tty->driver->ttys[idx]) {
1592			tty_unlock();
1593			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594			       "for (%s)\n", idx, tty->name);
1595			return 0;
1596		}
1597		if (tty->termios != tty->driver->termios[idx]) {
1598			tty_unlock();
1599			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600			       "for (%s)\n",
1601			       idx, tty->name);
1602			return 0;
1603		}
1604	}
1605#endif
1606
1607#ifdef TTY_DEBUG_HANGUP
1608	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609	       tty_name(tty, buf), tty->count);
1610#endif
1611
1612#ifdef TTY_PARANOIA_CHECK
1613	if (tty->driver->other &&
1614	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615		if (o_tty != tty->driver->other->ttys[idx]) {
1616			tty_unlock();
1617			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618					  "not o_tty for (%s)\n",
1619			       idx, tty->name);
1620			return 0 ;
1621		}
1622		if (o_tty->termios != tty->driver->other->termios[idx]) {
1623			tty_unlock();
1624			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625					  "not o_termios for (%s)\n",
1626			       idx, tty->name);
1627			return 0;
1628		}
1629		if (o_tty->link != tty) {
1630			tty_unlock();
1631			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632			return 0;
1633		}
1634	}
1635#endif
1636	if (tty->ops->close)
1637		tty->ops->close(tty, filp);
1638
1639	tty_unlock();
 
 
1640	/*
1641	 * Sanity check: if tty->count is going to zero, there shouldn't be
1642	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1643	 * wait queues and kick everyone out _before_ actually starting to
1644	 * close.  This ensures that we won't block while releasing the tty
1645	 * structure.
1646	 *
1647	 * The test for the o_tty closing is necessary, since the master and
1648	 * slave sides may close in any order.  If the slave side closes out
1649	 * first, its count will be one, since the master side holds an open.
1650	 * Thus this test wouldn't be triggered at the time the slave closes,
1651	 * so we do it now.
1652	 *
1653	 * Note that it's possible for the tty to be opened again while we're
1654	 * flushing out waiters.  By recalculating the closing flags before
1655	 * each iteration we avoid any problems.
1656	 */
1657	while (1) {
1658		/* Guard against races with tty->count changes elsewhere and
1659		   opens on /dev/tty */
1660
1661		mutex_lock(&tty_mutex);
1662		tty_lock();
1663		tty_closing = tty->count <= 1;
1664		o_tty_closing = o_tty &&
1665			(o_tty->count <= (pty_master ? 1 : 0));
1666		do_sleep = 0;
1667
1668		if (tty_closing) {
1669			if (waitqueue_active(&tty->read_wait)) {
1670				wake_up_poll(&tty->read_wait, POLLIN);
1671				do_sleep++;
1672			}
1673			if (waitqueue_active(&tty->write_wait)) {
1674				wake_up_poll(&tty->write_wait, POLLOUT);
1675				do_sleep++;
1676			}
1677		}
1678		if (o_tty_closing) {
1679			if (waitqueue_active(&o_tty->read_wait)) {
1680				wake_up_poll(&o_tty->read_wait, POLLIN);
1681				do_sleep++;
1682			}
1683			if (waitqueue_active(&o_tty->write_wait)) {
1684				wake_up_poll(&o_tty->write_wait, POLLOUT);
1685				do_sleep++;
1686			}
1687		}
1688		if (!do_sleep)
1689			break;
1690
1691		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692				    "active!\n", tty_name(tty, buf));
1693		tty_unlock();
1694		mutex_unlock(&tty_mutex);
1695		schedule();
 
 
 
 
1696	}
1697
1698	/*
1699	 * The closing flags are now consistent with the open counts on
1700	 * both sides, and we've completed the last operation that could
1701	 * block, so it's safe to proceed with closing.
1702	 */
1703	if (pty_master) {
1704		if (--o_tty->count < 0) {
1705			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706					    "(%d) for %s\n",
1707			       o_tty->count, tty_name(o_tty, buf));
1708			o_tty->count = 0;
1709		}
1710	}
1711	if (--tty->count < 0) {
1712		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713		       tty->count, tty_name(tty, buf));
1714		tty->count = 0;
1715	}
1716
1717	/*
1718	 * We've decremented tty->count, so we need to remove this file
1719	 * descriptor off the tty->tty_files list; this serves two
1720	 * purposes:
1721	 *  - check_tty_count sees the correct number of file descriptors
1722	 *    associated with this tty.
1723	 *  - do_tty_hangup no longer sees this file descriptor as
1724	 *    something that needs to be handled for hangups.
1725	 */
1726	tty_del_file(filp);
1727
1728	/*
1729	 * Perform some housekeeping before deciding whether to return.
1730	 *
1731	 * Set the TTY_CLOSING flag if this was the last open.  In the
1732	 * case of a pty we may have to wait around for the other side
1733	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1734	 */
1735	if (tty_closing)
1736		set_bit(TTY_CLOSING, &tty->flags);
1737	if (o_tty_closing)
1738		set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740	/*
1741	 * If _either_ side is closing, make sure there aren't any
1742	 * processes that still think tty or o_tty is their controlling
1743	 * tty.
1744	 */
1745	if (tty_closing || o_tty_closing) {
1746		read_lock(&tasklist_lock);
1747		session_clear_tty(tty->session);
1748		if (o_tty)
1749			session_clear_tty(o_tty->session);
1750		read_unlock(&tasklist_lock);
1751	}
1752
1753	mutex_unlock(&tty_mutex);
1754
1755	/* check whether both sides are closing ... */
1756	if (!tty_closing || (o_tty && !o_tty_closing)) {
1757		tty_unlock();
1758		return 0;
1759	}
1760
1761#ifdef TTY_DEBUG_HANGUP
1762	printk(KERN_DEBUG "freeing tty structure...");
1763#endif
1764	/*
1765	 * Ask the line discipline code to release its structures
1766	 */
1767	tty_ldisc_release(tty, o_tty);
1768	/*
1769	 * The release_tty function takes care of the details of clearing
1770	 * the slots and preserving the termios structure.
1771	 */
1772	release_tty(tty, idx);
1773
1774	/* Make this pty number available for reallocation */
1775	if (devpts)
1776		devpts_kill_index(inode, idx);
1777	tty_unlock();
 
 
1778	return 0;
1779}
1780
1781/**
1782 *	tty_open		-	open a tty device
1783 *	@inode: inode of device file
1784 *	@filp: file pointer to tty
 
1785 *
1786 *	tty_open and tty_release keep up the tty count that contains the
1787 *	number of opens done on a tty. We cannot use the inode-count, as
1788 *	different inodes might point to the same tty.
1789 *
1790 *	Open-counting is needed for pty masters, as well as for keeping
1791 *	track of serial lines: DTR is dropped when the last close happens.
1792 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1793 *
1794 *	The termios state of a pty is reset on first open so that
1795 *	settings don't persist across reuse.
1796 *
1797 *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 *		 tty->count should protect the rest.
1799 *		 ->siglock protects ->signal/->sighand
1800 */
1801
1802static int tty_open(struct inode *inode, struct file *filp)
1803{
1804	struct tty_struct *tty = NULL;
1805	int noctty, retval;
1806	struct tty_driver *driver;
1807	int index;
1808	dev_t device = inode->i_rdev;
1809	unsigned saved_flags = filp->f_flags;
1810
1811	nonseekable_open(inode, filp);
1812
1813retry_open:
1814	noctty = filp->f_flags & O_NOCTTY;
1815	index  = -1;
1816	retval = 0;
1817
1818	mutex_lock(&tty_mutex);
1819	tty_lock();
 
1820
1821	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822		tty = get_current_tty();
1823		if (!tty) {
1824			tty_unlock();
1825			mutex_unlock(&tty_mutex);
1826			return -ENXIO;
1827		}
1828		driver = tty_driver_kref_get(tty->driver);
1829		index = tty->index;
1830		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831		/* noctty = 1; */
1832		/* FIXME: Should we take a driver reference ? */
1833		tty_kref_put(tty);
1834		goto got_driver;
1835	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836#ifdef CONFIG_VT
1837	if (device == MKDEV(TTY_MAJOR, 0)) {
1838		extern struct tty_driver *console_driver;
 
1839		driver = tty_driver_kref_get(console_driver);
1840		index = fg_console;
1841		noctty = 1;
1842		goto got_driver;
1843	}
1844#endif
1845	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846		struct tty_driver *console_driver = console_device(&index);
 
1847		if (console_driver) {
1848			driver = tty_driver_kref_get(console_driver);
1849			if (driver) {
1850				/* Don't let /dev/console block */
1851				filp->f_flags |= O_NONBLOCK;
1852				noctty = 1;
1853				goto got_driver;
1854			}
1855		}
1856		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857		mutex_unlock(&tty_mutex);
1858		return -ENODEV;
1859	}
1860
1861	driver = get_tty_driver(device, &index);
1862	if (!driver) {
1863		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864		mutex_unlock(&tty_mutex);
1865		return -ENODEV;
1866	}
1867got_driver:
1868	if (!tty) {
1869		/* check whether we're reopening an existing tty */
1870		tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872		if (IS_ERR(tty)) {
1873			tty_unlock();
1874			mutex_unlock(&tty_mutex);
1875			return PTR_ERR(tty);
1876		}
1877	}
1878
1879	if (tty) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880		retval = tty_reopen(tty);
1881		if (retval)
 
1882			tty = ERR_PTR(retval);
1883	} else
1884		tty = tty_init_dev(driver, index, 0);
1885
1886	mutex_unlock(&tty_mutex);
 
 
1887	tty_driver_kref_put(driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888	if (IS_ERR(tty)) {
1889		tty_unlock();
1890		return PTR_ERR(tty);
 
 
 
 
1891	}
1892
1893	retval = tty_add_file(tty, filp);
1894	if (retval) {
1895		tty_unlock();
1896		tty_release(inode, filp);
1897		return retval;
1898	}
1899
1900	check_tty_count(tty, "tty_open");
1901	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902	    tty->driver->subtype == PTY_TYPE_MASTER)
1903		noctty = 1;
1904#ifdef TTY_DEBUG_HANGUP
1905	printk(KERN_DEBUG "opening %s...", tty->name);
1906#endif
1907	if (tty->ops->open)
1908		retval = tty->ops->open(tty, filp);
1909	else
1910		retval = -ENODEV;
1911	filp->f_flags = saved_flags;
1912
1913	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914						!capable(CAP_SYS_ADMIN))
1915		retval = -EBUSY;
1916
1917	if (retval) {
1918#ifdef TTY_DEBUG_HANGUP
1919		printk(KERN_DEBUG "error %d in opening %s...", retval,
1920		       tty->name);
1921#endif
1922		tty_unlock(); /* need to call tty_release without BTM */
1923		tty_release(inode, filp);
1924		if (retval != -ERESTARTSYS)
1925			return retval;
1926
1927		if (signal_pending(current))
1928			return retval;
1929
1930		schedule();
1931		/*
1932		 * Need to reset f_op in case a hangup happened.
1933		 */
1934		tty_lock();
1935		if (filp->f_op == &hung_up_tty_fops)
1936			filp->f_op = &tty_fops;
1937		tty_unlock();
1938		goto retry_open;
1939	}
1940	tty_unlock();
1941
1942
1943	mutex_lock(&tty_mutex);
1944	tty_lock();
1945	spin_lock_irq(&current->sighand->siglock);
1946	if (!noctty &&
1947	    current->signal->leader &&
1948	    !current->signal->tty &&
1949	    tty->session == NULL)
1950		__proc_set_tty(current, tty);
1951	spin_unlock_irq(&current->sighand->siglock);
1952	tty_unlock();
1953	mutex_unlock(&tty_mutex);
1954	return 0;
1955}
1956
1957
1958
1959/**
1960 *	tty_poll	-	check tty status
1961 *	@filp: file being polled
1962 *	@wait: poll wait structures to update
1963 *
1964 *	Call the line discipline polling method to obtain the poll
1965 *	status of the device.
1966 *
1967 *	Locking: locks called line discipline but ldisc poll method
1968 *	may be re-entered freely by other callers.
1969 */
1970
1971static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972{
1973	struct tty_struct *tty = file_tty(filp);
1974	struct tty_ldisc *ld;
1975	int ret = 0;
1976
1977	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978		return 0;
1979
1980	ld = tty_ldisc_ref_wait(tty);
 
 
1981	if (ld->ops->poll)
1982		ret = (ld->ops->poll)(tty, filp, wait);
1983	tty_ldisc_deref(ld);
1984	return ret;
1985}
1986
1987static int __tty_fasync(int fd, struct file *filp, int on)
1988{
1989	struct tty_struct *tty = file_tty(filp);
1990	unsigned long flags;
1991	int retval = 0;
1992
1993	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994		goto out;
1995
1996	retval = fasync_helper(fd, filp, on, &tty->fasync);
1997	if (retval <= 0)
1998		goto out;
1999
2000	if (on) {
2001		enum pid_type type;
2002		struct pid *pid;
2003		if (!waitqueue_active(&tty->read_wait))
2004			tty->minimum_to_wake = 1;
2005		spin_lock_irqsave(&tty->ctrl_lock, flags);
2006		if (tty->pgrp) {
2007			pid = tty->pgrp;
2008			type = PIDTYPE_PGID;
2009		} else {
2010			pid = task_pid(current);
2011			type = PIDTYPE_PID;
2012		}
2013		get_pid(pid);
2014		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015		retval = __f_setown(filp, pid, type, 0);
2016		put_pid(pid);
2017		if (retval)
2018			goto out;
2019	} else {
2020		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022	}
2023	retval = 0;
2024out:
2025	return retval;
2026}
2027
2028static int tty_fasync(int fd, struct file *filp, int on)
2029{
2030	int retval;
2031	tty_lock();
2032	retval = __tty_fasync(fd, filp, on);
2033	tty_unlock();
 
 
 
 
2034	return retval;
2035}
2036
2037/**
2038 *	tiocsti			-	fake input character
2039 *	@tty: tty to fake input into
2040 *	@p: pointer to character
2041 *
2042 *	Fake input to a tty device. Does the necessary locking and
2043 *	input management.
2044 *
2045 *	FIXME: does not honour flow control ??
2046 *
2047 *	Locking:
2048 *		Called functions take tty_ldisc_lock
2049 *		current->signal->tty check is safe without locks
2050 *
2051 *	FIXME: may race normal receive processing
2052 */
2053
2054static int tiocsti(struct tty_struct *tty, char __user *p)
2055{
2056	char ch, mbz = 0;
2057	struct tty_ldisc *ld;
2058
2059	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060		return -EPERM;
2061	if (get_user(ch, p))
2062		return -EFAULT;
2063	tty_audit_tiocsti(tty, ch);
2064	ld = tty_ldisc_ref_wait(tty);
2065	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
 
 
2066	tty_ldisc_deref(ld);
2067	return 0;
2068}
2069
2070/**
2071 *	tiocgwinsz		-	implement window query ioctl
2072 *	@tty; tty
2073 *	@arg: user buffer for result
2074 *
2075 *	Copies the kernel idea of the window size into the user buffer.
2076 *
2077 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2078 *		is consistent.
2079 */
2080
2081static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082{
2083	int err;
2084
2085	mutex_lock(&tty->termios_mutex);
2086	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087	mutex_unlock(&tty->termios_mutex);
2088
2089	return err ? -EFAULT: 0;
2090}
2091
2092/**
2093 *	tty_do_resize		-	resize event
2094 *	@tty: tty being resized
2095 *	@rows: rows (character)
2096 *	@cols: cols (character)
2097 *
2098 *	Update the termios variables and send the necessary signals to
2099 *	peform a terminal resize correctly
2100 */
2101
2102int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103{
2104	struct pid *pgrp;
2105	unsigned long flags;
2106
2107	/* Lock the tty */
2108	mutex_lock(&tty->termios_mutex);
2109	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110		goto done;
2111	/* Get the PID values and reference them so we can
2112	   avoid holding the tty ctrl lock while sending signals */
2113	spin_lock_irqsave(&tty->ctrl_lock, flags);
2114	pgrp = get_pid(tty->pgrp);
2115	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
 
 
2117	if (pgrp)
2118		kill_pgrp(pgrp, SIGWINCH, 1);
2119	put_pid(pgrp);
2120
2121	tty->winsize = *ws;
2122done:
2123	mutex_unlock(&tty->termios_mutex);
2124	return 0;
2125}
 
2126
2127/**
2128 *	tiocswinsz		-	implement window size set ioctl
2129 *	@tty; tty side of tty
2130 *	@arg: user buffer for result
2131 *
2132 *	Copies the user idea of the window size to the kernel. Traditionally
2133 *	this is just advisory information but for the Linux console it
2134 *	actually has driver level meaning and triggers a VC resize.
2135 *
2136 *	Locking:
2137 *		Driver dependent. The default do_resize method takes the
2138 *	tty termios mutex and ctrl_lock. The console takes its own lock
2139 *	then calls into the default method.
2140 */
2141
2142static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143{
2144	struct winsize tmp_ws;
 
2145	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146		return -EFAULT;
2147
2148	if (tty->ops->resize)
2149		return tty->ops->resize(tty, &tmp_ws);
2150	else
2151		return tty_do_resize(tty, &tmp_ws);
2152}
2153
2154/**
2155 *	tioccons	-	allow admin to move logical console
2156 *	@file: the file to become console
2157 *
2158 *	Allow the administrator to move the redirected console device
2159 *
2160 *	Locking: uses redirect_lock to guard the redirect information
2161 */
2162
2163static int tioccons(struct file *file)
2164{
2165	if (!capable(CAP_SYS_ADMIN))
2166		return -EPERM;
2167	if (file->f_op->write == redirected_tty_write) {
2168		struct file *f;
 
2169		spin_lock(&redirect_lock);
2170		f = redirect;
2171		redirect = NULL;
2172		spin_unlock(&redirect_lock);
2173		if (f)
2174			fput(f);
2175		return 0;
2176	}
 
 
 
 
 
 
2177	spin_lock(&redirect_lock);
2178	if (redirect) {
2179		spin_unlock(&redirect_lock);
2180		return -EBUSY;
2181	}
2182	get_file(file);
2183	redirect = file;
2184	spin_unlock(&redirect_lock);
2185	return 0;
2186}
2187
2188/**
2189 *	fionbio		-	non blocking ioctl
2190 *	@file: file to set blocking value
2191 *	@p: user parameter
2192 *
2193 *	Historical tty interfaces had a blocking control ioctl before
2194 *	the generic functionality existed. This piece of history is preserved
2195 *	in the expected tty API of posix OS's.
2196 *
2197 *	Locking: none, the open file handle ensures it won't go away.
2198 */
2199
2200static int fionbio(struct file *file, int __user *p)
2201{
2202	int nonblock;
2203
2204	if (get_user(nonblock, p))
2205		return -EFAULT;
2206
2207	spin_lock(&file->f_lock);
2208	if (nonblock)
2209		file->f_flags |= O_NONBLOCK;
2210	else
2211		file->f_flags &= ~O_NONBLOCK;
2212	spin_unlock(&file->f_lock);
2213	return 0;
2214}
2215
2216/**
2217 *	tiocsctty	-	set controlling tty
2218 *	@tty: tty structure
2219 *	@arg: user argument
2220 *
2221 *	This ioctl is used to manage job control. It permits a session
2222 *	leader to set this tty as the controlling tty for the session.
2223 *
2224 *	Locking:
2225 *		Takes tty_mutex() to protect tty instance
2226 *		Takes tasklist_lock internally to walk sessions
2227 *		Takes ->siglock() when updating signal->tty
2228 */
2229
2230static int tiocsctty(struct tty_struct *tty, int arg)
2231{
2232	int ret = 0;
2233	if (current->signal->leader && (task_session(current) == tty->session))
2234		return ret;
2235
2236	mutex_lock(&tty_mutex);
2237	/*
2238	 * The process must be a session leader and
2239	 * not have a controlling tty already.
2240	 */
2241	if (!current->signal->leader || current->signal->tty) {
2242		ret = -EPERM;
2243		goto unlock;
2244	}
2245
2246	if (tty->session) {
2247		/*
2248		 * This tty is already the controlling
2249		 * tty for another session group!
2250		 */
2251		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252			/*
2253			 * Steal it away
2254			 */
2255			read_lock(&tasklist_lock);
2256			session_clear_tty(tty->session);
2257			read_unlock(&tasklist_lock);
2258		} else {
2259			ret = -EPERM;
2260			goto unlock;
2261		}
2262	}
2263	proc_set_tty(current, tty);
2264unlock:
2265	mutex_unlock(&tty_mutex);
2266	return ret;
2267}
2268
2269/**
2270 *	tty_get_pgrp	-	return a ref counted pgrp pid
2271 *	@tty: tty to read
2272 *
2273 *	Returns a refcounted instance of the pid struct for the process
2274 *	group controlling the tty.
2275 */
2276
2277struct pid *tty_get_pgrp(struct tty_struct *tty)
2278{
2279	unsigned long flags;
2280	struct pid *pgrp;
2281
2282	spin_lock_irqsave(&tty->ctrl_lock, flags);
2283	pgrp = get_pid(tty->pgrp);
2284	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286	return pgrp;
2287}
2288EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
2290/**
2291 *	tiocgpgrp		-	get process group
2292 *	@tty: tty passed by user
2293 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2294 *	@p: returned pid
2295 *
2296 *	Obtain the process group of the tty. If there is no process group
2297 *	return an error.
2298 *
2299 *	Locking: none. Reference to current->signal->tty is safe.
2300 */
2301
2302static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303{
2304	struct pid *pid;
2305	int ret;
2306	/*
2307	 * (tty == real_tty) is a cheap way of
2308	 * testing if the tty is NOT a master pty.
2309	 */
2310	if (tty == real_tty && current->signal->tty != real_tty)
2311		return -ENOTTY;
2312	pid = tty_get_pgrp(real_tty);
2313	ret =  put_user(pid_vnr(pid), p);
2314	put_pid(pid);
2315	return ret;
2316}
2317
2318/**
2319 *	tiocspgrp		-	attempt to set process group
2320 *	@tty: tty passed by user
2321 *	@real_tty: tty side device matching tty passed by user
2322 *	@p: pid pointer
2323 *
2324 *	Set the process group of the tty to the session passed. Only
2325 *	permitted where the tty session is our session.
2326 *
2327 *	Locking: RCU, ctrl lock
2328 */
2329
2330static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331{
2332	struct pid *pgrp;
2333	pid_t pgrp_nr;
2334	int retval = tty_check_change(real_tty);
2335	unsigned long flags;
2336
2337	if (retval == -EIO)
2338		return -ENOTTY;
2339	if (retval)
2340		return retval;
2341	if (!current->signal->tty ||
2342	    (current->signal->tty != real_tty) ||
2343	    (real_tty->session != task_session(current)))
2344		return -ENOTTY;
2345	if (get_user(pgrp_nr, p))
2346		return -EFAULT;
2347	if (pgrp_nr < 0)
2348		return -EINVAL;
2349	rcu_read_lock();
2350	pgrp = find_vpid(pgrp_nr);
2351	retval = -ESRCH;
2352	if (!pgrp)
2353		goto out_unlock;
2354	retval = -EPERM;
2355	if (session_of_pgrp(pgrp) != task_session(current))
2356		goto out_unlock;
2357	retval = 0;
2358	spin_lock_irqsave(&tty->ctrl_lock, flags);
2359	put_pid(real_tty->pgrp);
2360	real_tty->pgrp = get_pid(pgrp);
2361	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362out_unlock:
2363	rcu_read_unlock();
2364	return retval;
2365}
2366
2367/**
2368 *	tiocgsid		-	get session id
2369 *	@tty: tty passed by user
2370 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2371 *	@p: pointer to returned session id
2372 *
2373 *	Obtain the session id of the tty. If there is no session
2374 *	return an error.
2375 *
2376 *	Locking: none. Reference to current->signal->tty is safe.
2377 */
2378
2379static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380{
2381	/*
2382	 * (tty == real_tty) is a cheap way of
2383	 * testing if the tty is NOT a master pty.
2384	*/
2385	if (tty == real_tty && current->signal->tty != real_tty)
2386		return -ENOTTY;
2387	if (!real_tty->session)
2388		return -ENOTTY;
2389	return put_user(pid_vnr(real_tty->session), p);
2390}
2391
2392/**
2393 *	tiocsetd	-	set line discipline
2394 *	@tty: tty device
2395 *	@p: pointer to user data
2396 *
2397 *	Set the line discipline according to user request.
2398 *
2399 *	Locking: see tty_set_ldisc, this function is just a helper
 
2400 */
2401
2402static int tiocsetd(struct tty_struct *tty, int __user *p)
2403{
2404	int ldisc;
2405	int ret;
2406
2407	if (get_user(ldisc, p))
2408		return -EFAULT;
2409
2410	ret = tty_set_ldisc(tty, ldisc);
2411
2412	return ret;
2413}
2414
2415/**
2416 *	send_break	-	performed time break
2417 *	@tty: device to break on
2418 *	@duration: timeout in mS
2419 *
2420 *	Perform a timed break on hardware that lacks its own driver level
2421 *	timed break functionality.
2422 *
2423 *	Locking:
2424 *		atomic_write_lock serializes
2425 *
2426 */
2427
2428static int send_break(struct tty_struct *tty, unsigned int duration)
2429{
2430	int retval;
2431
2432	if (tty->ops->break_ctl == NULL)
2433		return 0;
2434
2435	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436		retval = tty->ops->break_ctl(tty, duration);
2437	else {
2438		/* Do the work ourselves */
2439		if (tty_write_lock(tty, 0) < 0)
2440			return -EINTR;
2441		retval = tty->ops->break_ctl(tty, -1);
2442		if (retval)
2443			goto out;
2444		if (!signal_pending(current))
2445			msleep_interruptible(duration);
2446		retval = tty->ops->break_ctl(tty, 0);
2447out:
2448		tty_write_unlock(tty);
2449		if (signal_pending(current))
2450			retval = -EINTR;
2451	}
2452	return retval;
2453}
2454
2455/**
2456 *	tty_tiocmget		-	get modem status
2457 *	@tty: tty device
2458 *	@file: user file pointer
2459 *	@p: pointer to result
2460 *
2461 *	Obtain the modem status bits from the tty driver if the feature
2462 *	is supported. Return -EINVAL if it is not available.
2463 *
2464 *	Locking: none (up to the driver)
2465 */
2466
2467static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468{
2469	int retval = -EINVAL;
2470
2471	if (tty->ops->tiocmget) {
2472		retval = tty->ops->tiocmget(tty);
2473
2474		if (retval >= 0)
2475			retval = put_user(retval, p);
2476	}
2477	return retval;
2478}
2479
2480/**
2481 *	tty_tiocmset		-	set modem status
2482 *	@tty: tty device
2483 *	@cmd: command - clear bits, set bits or set all
2484 *	@p: pointer to desired bits
2485 *
2486 *	Set the modem status bits from the tty driver if the feature
2487 *	is supported. Return -EINVAL if it is not available.
2488 *
2489 *	Locking: none (up to the driver)
2490 */
2491
2492static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493	     unsigned __user *p)
2494{
2495	int retval;
2496	unsigned int set, clear, val;
2497
2498	if (tty->ops->tiocmset == NULL)
2499		return -EINVAL;
2500
2501	retval = get_user(val, p);
2502	if (retval)
2503		return retval;
2504	set = clear = 0;
2505	switch (cmd) {
2506	case TIOCMBIS:
2507		set = val;
2508		break;
2509	case TIOCMBIC:
2510		clear = val;
2511		break;
2512	case TIOCMSET:
2513		set = val;
2514		clear = ~val;
2515		break;
2516	}
2517	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519	return tty->ops->tiocmset(tty, set, clear);
2520}
2521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2522static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523{
2524	int retval = -EINVAL;
2525	struct serial_icounter_struct icount;
2526	memset(&icount, 0, sizeof(icount));
2527	if (tty->ops->get_icount)
2528		retval = tty->ops->get_icount(tty, &icount);
2529	if (retval != 0)
2530		return retval;
 
2531	if (copy_to_user(arg, &icount, sizeof(icount)))
2532		return -EFAULT;
2533	return 0;
2534}
2535
2536struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537{
2538	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539	    tty->driver->subtype == PTY_TYPE_MASTER)
2540		tty = tty->link;
2541	return tty;
 
 
 
 
 
 
 
 
 
2542}
2543EXPORT_SYMBOL(tty_pair_get_tty);
2544
2545struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2546{
2547	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548	    tty->driver->subtype == PTY_TYPE_MASTER)
2549	    return tty;
2550	return tty->link;
2551}
2552EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554/*
2555 * Split this up, as gcc can choke on it otherwise..
2556 */
2557long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558{
2559	struct tty_struct *tty = file_tty(file);
2560	struct tty_struct *real_tty;
2561	void __user *p = (void __user *)arg;
2562	int retval;
2563	struct tty_ldisc *ld;
2564	struct inode *inode = file->f_dentry->d_inode;
2565
2566	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567		return -EINVAL;
2568
2569	real_tty = tty_pair_get_tty(tty);
2570
2571	/*
2572	 * Factor out some common prep work
2573	 */
2574	switch (cmd) {
2575	case TIOCSETD:
2576	case TIOCSBRK:
2577	case TIOCCBRK:
2578	case TCSBRK:
2579	case TCSBRKP:
2580		retval = tty_check_change(tty);
2581		if (retval)
2582			return retval;
2583		if (cmd != TIOCCBRK) {
2584			tty_wait_until_sent(tty, 0);
2585			if (signal_pending(current))
2586				return -EINTR;
2587		}
2588		break;
2589	}
2590
2591	/*
2592	 *	Now do the stuff.
2593	 */
2594	switch (cmd) {
2595	case TIOCSTI:
2596		return tiocsti(tty, p);
2597	case TIOCGWINSZ:
2598		return tiocgwinsz(real_tty, p);
2599	case TIOCSWINSZ:
2600		return tiocswinsz(real_tty, p);
2601	case TIOCCONS:
2602		return real_tty != tty ? -EINVAL : tioccons(file);
2603	case FIONBIO:
2604		return fionbio(file, p);
2605	case TIOCEXCL:
2606		set_bit(TTY_EXCLUSIVE, &tty->flags);
2607		return 0;
2608	case TIOCNXCL:
2609		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610		return 0;
2611	case TIOCNOTTY:
2612		if (current->signal->tty != tty)
2613			return -ENOTTY;
2614		no_tty();
2615		return 0;
2616	case TIOCSCTTY:
2617		return tiocsctty(tty, arg);
2618	case TIOCGPGRP:
2619		return tiocgpgrp(tty, real_tty, p);
2620	case TIOCSPGRP:
2621		return tiocspgrp(tty, real_tty, p);
2622	case TIOCGSID:
2623		return tiocgsid(tty, real_tty, p);
2624	case TIOCGETD:
2625		return put_user(tty->ldisc->ops->num, (int __user *)p);
2626	case TIOCSETD:
2627		return tiocsetd(tty, p);
2628	case TIOCVHANGUP:
2629		if (!capable(CAP_SYS_ADMIN))
2630			return -EPERM;
2631		tty_vhangup(tty);
2632		return 0;
2633	case TIOCGDEV:
2634	{
2635		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
 
2636		return put_user(ret, (unsigned int __user *)p);
2637	}
2638	/*
2639	 * Break handling
2640	 */
2641	case TIOCSBRK:	/* Turn break on, unconditionally */
2642		if (tty->ops->break_ctl)
2643			return tty->ops->break_ctl(tty, -1);
2644		return 0;
2645	case TIOCCBRK:	/* Turn break off, unconditionally */
2646		if (tty->ops->break_ctl)
2647			return tty->ops->break_ctl(tty, 0);
2648		return 0;
2649	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650		/* non-zero arg means wait for all output data
2651		 * to be sent (performed above) but don't send break.
2652		 * This is used by the tcdrain() termios function.
2653		 */
2654		if (!arg)
2655			return send_break(tty, 250);
2656		return 0;
2657	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2658		return send_break(tty, arg ? arg*100 : 250);
2659
2660	case TIOCMGET:
2661		return tty_tiocmget(tty, p);
2662	case TIOCMSET:
2663	case TIOCMBIC:
2664	case TIOCMBIS:
2665		return tty_tiocmset(tty, cmd, p);
2666	case TIOCGICOUNT:
2667		retval = tty_tiocgicount(tty, p);
2668		/* For the moment allow fall through to the old method */
2669        	if (retval != -EINVAL)
2670			return retval;
2671		break;
2672	case TCFLSH:
2673		switch (arg) {
2674		case TCIFLUSH:
2675		case TCIOFLUSH:
2676		/* flush tty buffer and allow ldisc to process ioctl */
2677			tty_buffer_flush(tty);
2678			break;
2679		}
2680		break;
 
 
 
 
 
 
 
 
 
 
 
2681	}
2682	if (tty->ops->ioctl) {
2683		retval = (tty->ops->ioctl)(tty, cmd, arg);
2684		if (retval != -ENOIOCTLCMD)
2685			return retval;
2686	}
2687	ld = tty_ldisc_ref_wait(tty);
 
 
2688	retval = -EINVAL;
2689	if (ld->ops->ioctl) {
2690		retval = ld->ops->ioctl(tty, file, cmd, arg);
2691		if (retval == -ENOIOCTLCMD)
2692			retval = -EINVAL;
2693	}
2694	tty_ldisc_deref(ld);
2695	return retval;
2696}
2697
2698#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700				unsigned long arg)
2701{
2702	struct inode *inode = file->f_dentry->d_inode;
2703	struct tty_struct *tty = file_tty(file);
2704	struct tty_ldisc *ld;
2705	int retval = -ENOIOCTLCMD;
2706
2707	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708		return -EINVAL;
2709
 
 
 
 
 
 
2710	if (tty->ops->compat_ioctl) {
2711		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712		if (retval != -ENOIOCTLCMD)
2713			return retval;
2714	}
2715
2716	ld = tty_ldisc_ref_wait(tty);
 
 
2717	if (ld->ops->compat_ioctl)
2718		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
 
 
 
2719	tty_ldisc_deref(ld);
2720
2721	return retval;
2722}
2723#endif
2724
 
 
 
 
 
 
 
2725/*
2726 * This implements the "Secure Attention Key" ---  the idea is to
2727 * prevent trojan horses by killing all processes associated with this
2728 * tty when the user hits the "Secure Attention Key".  Required for
2729 * super-paranoid applications --- see the Orange Book for more details.
2730 *
2731 * This code could be nicer; ideally it should send a HUP, wait a few
2732 * seconds, then send a INT, and then a KILL signal.  But you then
2733 * have to coordinate with the init process, since all processes associated
2734 * with the current tty must be dead before the new getty is allowed
2735 * to spawn.
2736 *
2737 * Now, if it would be correct ;-/ The current code has a nasty hole -
2738 * it doesn't catch files in flight. We may send the descriptor to ourselves
2739 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740 *
2741 * Nasty bug: do_SAK is being called in interrupt context.  This can
2742 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743 */
2744void __do_SAK(struct tty_struct *tty)
2745{
2746#ifdef TTY_SOFT_SAK
2747	tty_hangup(tty);
2748#else
2749	struct task_struct *g, *p;
2750	struct pid *session;
2751	int		i;
2752	struct file	*filp;
2753	struct fdtable *fdt;
2754
2755	if (!tty)
2756		return;
2757	session = tty->session;
 
 
 
2758
2759	tty_ldisc_flush(tty);
2760
2761	tty_driver_flush_buffer(tty);
2762
2763	read_lock(&tasklist_lock);
2764	/* Kill the entire session */
2765	do_each_pid_task(session, PIDTYPE_SID, p) {
2766		printk(KERN_NOTICE "SAK: killed process %d"
2767			" (%s): task_session(p)==tty->session\n",
2768			task_pid_nr(p), p->comm);
2769		send_sig(SIGKILL, p, 1);
2770	} while_each_pid_task(session, PIDTYPE_SID, p);
2771	/* Now kill any processes that happen to have the
2772	 * tty open.
2773	 */
2774	do_each_thread(g, p) {
2775		if (p->signal->tty == tty) {
2776			printk(KERN_NOTICE "SAK: killed process %d"
2777			    " (%s): task_session(p)==tty->session\n",
2778			    task_pid_nr(p), p->comm);
2779			send_sig(SIGKILL, p, 1);
2780			continue;
2781		}
2782		task_lock(p);
2783		if (p->files) {
2784			/*
2785			 * We don't take a ref to the file, so we must
2786			 * hold ->file_lock instead.
2787			 */
2788			spin_lock(&p->files->file_lock);
2789			fdt = files_fdtable(p->files);
2790			for (i = 0; i < fdt->max_fds; i++) {
2791				filp = fcheck_files(p->files, i);
2792				if (!filp)
2793					continue;
2794				if (filp->f_op->read == tty_read &&
2795				    file_tty(filp) == tty) {
2796					printk(KERN_NOTICE "SAK: killed process %d"
2797					    " (%s): fd#%d opened to the tty\n",
2798					    task_pid_nr(p), p->comm, i);
2799					force_sig(SIGKILL, p);
2800					break;
2801				}
2802			}
2803			spin_unlock(&p->files->file_lock);
2804		}
2805		task_unlock(p);
2806	} while_each_thread(g, p);
2807	read_unlock(&tasklist_lock);
 
2808#endif
2809}
2810
2811static void do_SAK_work(struct work_struct *work)
2812{
2813	struct tty_struct *tty =
2814		container_of(work, struct tty_struct, SAK_work);
2815	__do_SAK(tty);
2816}
2817
2818/*
2819 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821 * the values which we write to it will be identical to the values which it
2822 * already has. --akpm
2823 */
2824void do_SAK(struct tty_struct *tty)
2825{
2826	if (!tty)
2827		return;
2828	schedule_work(&tty->SAK_work);
2829}
2830
2831EXPORT_SYMBOL(do_SAK);
2832
2833static int dev_match_devt(struct device *dev, void *data)
2834{
2835	dev_t *devt = data;
2836	return dev->devt == *devt;
2837}
2838
2839/* Must put_device() after it's unused! */
2840static struct device *tty_get_device(struct tty_struct *tty)
2841{
2842	dev_t devt = tty_devnum(tty);
2843	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
 
2844}
2845
2846
2847/**
2848 *	initialize_tty_struct
2849 *	@tty: tty to initialize
2850 *
2851 *	This subroutine initializes a tty structure that has been newly
2852 *	allocated.
2853 *
2854 *	Locking: none - tty in question must not be exposed at this point
2855 */
2856
2857void initialize_tty_struct(struct tty_struct *tty,
2858		struct tty_driver *driver, int idx)
2859{
2860	memset(tty, 0, sizeof(struct tty_struct));
 
 
 
 
 
2861	kref_init(&tty->kref);
2862	tty->magic = TTY_MAGIC;
2863	tty_ldisc_init(tty);
2864	tty->session = NULL;
2865	tty->pgrp = NULL;
2866	tty->overrun_time = jiffies;
2867	tty->buf.head = tty->buf.tail = NULL;
2868	tty_buffer_init(tty);
2869	mutex_init(&tty->termios_mutex);
2870	mutex_init(&tty->ldisc_mutex);
 
 
 
2871	init_waitqueue_head(&tty->write_wait);
2872	init_waitqueue_head(&tty->read_wait);
2873	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874	mutex_init(&tty->atomic_read_lock);
2875	mutex_init(&tty->atomic_write_lock);
2876	mutex_init(&tty->output_lock);
2877	mutex_init(&tty->echo_lock);
2878	spin_lock_init(&tty->read_lock);
2879	spin_lock_init(&tty->ctrl_lock);
2880	INIT_LIST_HEAD(&tty->tty_files);
2881	INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883	tty->driver = driver;
2884	tty->ops = driver->ops;
2885	tty->index = idx;
2886	tty_line_name(driver, idx, tty->name);
2887	tty->dev = tty_get_device(tty);
2888}
2889
2890/**
2891 *	deinitialize_tty_struct
2892 *	@tty: tty to deinitialize
2893 *
2894 *	This subroutine deinitializes a tty structure that has been newly
2895 *	allocated but tty_release cannot be called on that yet.
2896 *
2897 *	Locking: none - tty in question must not be exposed at this point
2898 */
2899void deinitialize_tty_struct(struct tty_struct *tty)
2900{
2901	tty_ldisc_deinit(tty);
2902}
2903
2904/**
2905 *	tty_put_char	-	write one character to a tty
2906 *	@tty: tty
2907 *	@ch: character
2908 *
2909 *	Write one byte to the tty using the provided put_char method
2910 *	if present. Returns the number of characters successfully output.
2911 *
2912 *	Note: the specific put_char operation in the driver layer may go
2913 *	away soon. Don't call it directly, use this method
2914 */
2915
2916int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917{
2918	if (tty->ops->put_char)
2919		return tty->ops->put_char(tty, ch);
2920	return tty->ops->write(tty, &ch, 1);
2921}
2922EXPORT_SYMBOL_GPL(tty_put_char);
2923
2924struct class *tty_class;
2925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2926/**
2927 *	tty_register_device - register a tty device
2928 *	@driver: the tty driver that describes the tty device
2929 *	@index: the index in the tty driver for this tty device
2930 *	@device: a struct device that is associated with this tty device.
2931 *		This field is optional, if there is no known struct device
2932 *		for this tty device it can be set to NULL safely.
2933 *
2934 *	Returns a pointer to the struct device for this tty device
2935 *	(or ERR_PTR(-EFOO) on error).
2936 *
2937 *	This call is required to be made to register an individual tty device
2938 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2939 *	that bit is not set, this function should not be called by a tty
2940 *	driver.
2941 *
2942 *	Locking: ??
2943 */
2944
2945struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946				   struct device *device)
2947{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948	char name[64];
2949	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
2950
2951	if (index >= driver->num) {
2952		printk(KERN_ERR "Attempt to register invalid tty line number "
2953		       " (%d).\n", index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
2962	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963}
2964EXPORT_SYMBOL(tty_register_device);
2965
2966/**
2967 * 	tty_unregister_device - unregister a tty device
2968 * 	@driver: the tty driver that describes the tty device
2969 * 	@index: the index in the tty driver for this tty device
2970 *
2971 * 	If a tty device is registered with a call to tty_register_device() then
2972 *	this function must be called when the tty device is gone.
2973 *
2974 *	Locking: ??
2975 */
2976
2977void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978{
2979	device_destroy(tty_class,
2980		MKDEV(driver->major, driver->minor_start) + index);
 
 
 
 
2981}
2982EXPORT_SYMBOL(tty_unregister_device);
2983
2984struct tty_driver *alloc_tty_driver(int lines)
 
 
 
 
 
 
 
 
 
 
2985{
2986	struct tty_driver *driver;
 
 
 
 
 
2987
2988	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989	if (driver) {
2990		kref_init(&driver->kref);
2991		driver->magic = TTY_DRIVER_MAGIC;
2992		driver->num = lines;
2993		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994	}
 
2995	return driver;
 
 
 
 
 
 
 
2996}
2997EXPORT_SYMBOL(alloc_tty_driver);
2998
2999static void destruct_tty_driver(struct kref *kref)
3000{
3001	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002	int i;
3003	struct ktermios *tp;
3004	void *p;
3005
3006	if (driver->flags & TTY_DRIVER_INSTALLED) {
3007		/*
3008		 * Free the termios and termios_locked structures because
3009		 * we don't want to get memory leaks when modular tty
3010		 * drivers are removed from the kernel.
3011		 */
3012		for (i = 0; i < driver->num; i++) {
3013			tp = driver->termios[i];
3014			if (tp) {
3015				driver->termios[i] = NULL;
3016				kfree(tp);
3017			}
3018			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019				tty_unregister_device(driver, i);
3020		}
3021		p = driver->ttys;
3022		proc_tty_unregister_driver(driver);
3023		driver->ttys = NULL;
3024		driver->termios = NULL;
3025		kfree(p);
3026		cdev_del(&driver->cdev);
3027	}
 
 
 
 
3028	kfree(driver);
3029}
3030
3031void tty_driver_kref_put(struct tty_driver *driver)
3032{
3033	kref_put(&driver->kref, destruct_tty_driver);
3034}
3035EXPORT_SYMBOL(tty_driver_kref_put);
3036
3037void tty_set_operations(struct tty_driver *driver,
3038			const struct tty_operations *op)
3039{
3040	driver->ops = op;
3041};
3042EXPORT_SYMBOL(tty_set_operations);
3043
3044void put_tty_driver(struct tty_driver *d)
3045{
3046	tty_driver_kref_put(d);
3047}
3048EXPORT_SYMBOL(put_tty_driver);
3049
3050/*
3051 * Called by a tty driver to register itself.
3052 */
3053int tty_register_driver(struct tty_driver *driver)
3054{
3055	int error;
3056	int i;
3057	dev_t dev;
3058	void **p = NULL;
3059	struct device *d;
3060
3061	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063		if (!p)
3064			return -ENOMEM;
3065	}
3066
3067	if (!driver->major) {
3068		error = alloc_chrdev_region(&dev, driver->minor_start,
3069						driver->num, driver->name);
3070		if (!error) {
3071			driver->major = MAJOR(dev);
3072			driver->minor_start = MINOR(dev);
3073		}
3074	} else {
3075		dev = MKDEV(driver->major, driver->minor_start);
3076		error = register_chrdev_region(dev, driver->num, driver->name);
3077	}
3078	if (error < 0) {
3079		kfree(p);
3080		return error;
3081	}
3082
3083	if (p) {
3084		driver->ttys = (struct tty_struct **)p;
3085		driver->termios = (struct ktermios **)(p + driver->num);
3086	} else {
3087		driver->ttys = NULL;
3088		driver->termios = NULL;
3089	}
3090
3091	cdev_init(&driver->cdev, &tty_fops);
3092	driver->cdev.owner = driver->owner;
3093	error = cdev_add(&driver->cdev, dev, driver->num);
3094	if (error) {
3095		unregister_chrdev_region(dev, driver->num);
3096		driver->ttys = NULL;
3097		driver->termios = NULL;
3098		kfree(p);
3099		return error;
3100	}
3101
3102	mutex_lock(&tty_mutex);
3103	list_add(&driver->tty_drivers, &tty_drivers);
3104	mutex_unlock(&tty_mutex);
3105
3106	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107		for (i = 0; i < driver->num; i++) {
3108			d = tty_register_device(driver, i, NULL);
3109			if (IS_ERR(d)) {
3110				error = PTR_ERR(d);
3111				goto err;
3112			}
3113		}
3114	}
3115	proc_tty_register_driver(driver);
3116	driver->flags |= TTY_DRIVER_INSTALLED;
3117	return 0;
3118
3119err:
3120	for (i--; i >= 0; i--)
3121		tty_unregister_device(driver, i);
3122
3123	mutex_lock(&tty_mutex);
3124	list_del(&driver->tty_drivers);
3125	mutex_unlock(&tty_mutex);
3126
 
3127	unregister_chrdev_region(dev, driver->num);
3128	driver->ttys = NULL;
3129	driver->termios = NULL;
3130	kfree(p);
3131	return error;
3132}
3133
3134EXPORT_SYMBOL(tty_register_driver);
3135
3136/*
3137 * Called by a tty driver to unregister itself.
3138 */
3139int tty_unregister_driver(struct tty_driver *driver)
3140{
3141#if 0
3142	/* FIXME */
3143	if (driver->refcount)
3144		return -EBUSY;
3145#endif
3146	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147				driver->num);
3148	mutex_lock(&tty_mutex);
3149	list_del(&driver->tty_drivers);
3150	mutex_unlock(&tty_mutex);
3151	return 0;
3152}
3153
3154EXPORT_SYMBOL(tty_unregister_driver);
3155
3156dev_t tty_devnum(struct tty_struct *tty)
3157{
3158	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159}
3160EXPORT_SYMBOL(tty_devnum);
3161
3162void proc_clear_tty(struct task_struct *p)
3163{
3164	unsigned long flags;
3165	struct tty_struct *tty;
3166	spin_lock_irqsave(&p->sighand->siglock, flags);
3167	tty = p->signal->tty;
3168	p->signal->tty = NULL;
3169	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170	tty_kref_put(tty);
3171}
3172
3173/* Called under the sighand lock */
3174
3175static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176{
3177	if (tty) {
3178		unsigned long flags;
3179		/* We should not have a session or pgrp to put here but.... */
3180		spin_lock_irqsave(&tty->ctrl_lock, flags);
3181		put_pid(tty->session);
3182		put_pid(tty->pgrp);
3183		tty->pgrp = get_pid(task_pgrp(tsk));
3184		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185		tty->session = get_pid(task_session(tsk));
3186		if (tsk->signal->tty) {
3187			printk(KERN_DEBUG "tty not NULL!!\n");
3188			tty_kref_put(tsk->signal->tty);
3189		}
3190	}
3191	put_pid(tsk->signal->tty_old_pgrp);
3192	tsk->signal->tty = tty_kref_get(tty);
3193	tsk->signal->tty_old_pgrp = NULL;
3194}
3195
3196static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197{
3198	spin_lock_irq(&tsk->sighand->siglock);
3199	__proc_set_tty(tsk, tty);
3200	spin_unlock_irq(&tsk->sighand->siglock);
3201}
3202
3203struct tty_struct *get_current_tty(void)
3204{
3205	struct tty_struct *tty;
3206	unsigned long flags;
3207
3208	spin_lock_irqsave(&current->sighand->siglock, flags);
3209	tty = tty_kref_get(current->signal->tty);
3210	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3211	return tty;
3212}
3213EXPORT_SYMBOL_GPL(get_current_tty);
3214
3215void tty_default_fops(struct file_operations *fops)
3216{
3217	*fops = tty_fops;
3218}
3219
3220/*
3221 * Initialize the console device. This is called *early*, so
3222 * we can't necessarily depend on lots of kernel help here.
3223 * Just do some early initializations, and do the complex setup
3224 * later.
3225 */
3226void __init console_init(void)
3227{
3228	initcall_t *call;
3229
3230	/* Setup the default TTY line discipline. */
3231	tty_ldisc_begin();
3232
3233	/*
3234	 * set up the console device so that later boot sequences can
3235	 * inform about problems etc..
3236	 */
3237	call = __con_initcall_start;
3238	while (call < __con_initcall_end) {
3239		(*call)();
3240		call++;
3241	}
3242}
3243
3244static char *tty_devnode(struct device *dev, mode_t *mode)
3245{
3246	if (!mode)
3247		return NULL;
3248	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250		*mode = 0666;
3251	return NULL;
3252}
3253
3254static int __init tty_class_init(void)
3255{
3256	tty_class = class_create(THIS_MODULE, "tty");
3257	if (IS_ERR(tty_class))
3258		return PTR_ERR(tty_class);
3259	tty_class->devnode = tty_devnode;
3260	return 0;
3261}
3262
3263postcore_initcall(tty_class_init);
3264
3265/* 3/2004 jmc: why do these devices exist? */
3266static struct cdev tty_cdev, console_cdev;
3267
3268static ssize_t show_cons_active(struct device *dev,
3269				struct device_attribute *attr, char *buf)
3270{
3271	struct console *cs[16];
3272	int i = 0;
3273	struct console *c;
3274	ssize_t count = 0;
3275
3276	console_lock();
3277	for_each_console(c) {
3278		if (!c->device)
3279			continue;
3280		if (!c->write)
3281			continue;
3282		if ((c->flags & CON_ENABLED) == 0)
3283			continue;
3284		cs[i++] = c;
3285		if (i >= ARRAY_SIZE(cs))
3286			break;
3287	}
3288	while (i--)
3289		count += sprintf(buf + count, "%s%d%c",
3290				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
3291	console_unlock();
3292
3293	return count;
3294}
3295static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296
 
 
 
 
 
 
 
3297static struct device *consdev;
3298
3299void console_sysfs_notify(void)
3300{
3301	if (consdev)
3302		sysfs_notify(&consdev->kobj, NULL, "active");
3303}
3304
3305/*
3306 * Ok, now we can initialize the rest of the tty devices and can count
3307 * on memory allocations, interrupts etc..
3308 */
3309int __init tty_init(void)
3310{
 
3311	cdev_init(&tty_cdev, &tty_fops);
3312	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314		panic("Couldn't register /dev/tty driver\n");
3315	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316
3317	cdev_init(&console_cdev, &console_fops);
3318	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320		panic("Couldn't register /dev/console driver\n");
3321	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322			      "console");
 
3323	if (IS_ERR(consdev))
3324		consdev = NULL;
3325	else
3326		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327
3328#ifdef CONFIG_VT
3329	vty_init(&console_fops);
3330#endif
3331	return 0;
3332}
3333
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102
 103#include <linux/uaccess.h>
 
 104
 105#include <linux/kbd_kern.h>
 106#include <linux/vt_kern.h>
 107#include <linux/selection.h>
 108
 109#include <linux/kmod.h>
 110#include <linux/nsproxy.h>
 111#include "tty.h"
 112
 113#undef TTY_DEBUG_HANGUP
 114#ifdef TTY_DEBUG_HANGUP
 115# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 116#else
 117# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 118#endif
 119
 120#define TTY_PARANOIA_CHECK 1
 121#define CHECK_TTY_COUNT 1
 122
 123struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 124	.c_iflag = ICRNL | IXON,
 125	.c_oflag = OPOST | ONLCR,
 126	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 127	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 128		   ECHOCTL | ECHOKE | IEXTEN,
 129	.c_cc = INIT_C_CC,
 130	.c_ispeed = 38400,
 131	.c_ospeed = 38400,
 132	/* .c_line = N_TTY, */
 133};
 
 134EXPORT_SYMBOL(tty_std_termios);
 135
 136/* This list gets poked at by procfs and various bits of boot up code. This
 137 * could do with some rationalisation such as pulling the tty proc function
 138 * into this file.
 139 */
 140
 141LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 142
 143/* Mutex to protect creating and releasing a tty */
 
 144DEFINE_MUTEX(tty_mutex);
 
 145
 146static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 147static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 148static __poll_t tty_poll(struct file *, poll_table *);
 
 
 
 
 
 149static int tty_open(struct inode *, struct file *);
 
 150#ifdef CONFIG_COMPAT
 151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 152				unsigned long arg);
 153#else
 154#define tty_compat_ioctl NULL
 155#endif
 156static int __tty_fasync(int fd, struct file *filp, int on);
 157static int tty_fasync(int fd, struct file *filp, int on);
 158static void release_tty(struct tty_struct *tty, int idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 159
 160/**
 161 *	free_tty_struct		-	free a disused tty
 162 *	@tty: tty struct to free
 163 *
 164 *	Free the write buffers, tty queue and tty memory itself.
 165 *
 166 *	Locking: none. Must be called after tty is definitely unused
 167 */
 168
 169static void free_tty_struct(struct tty_struct *tty)
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kfree(tty->write_buf);
 174	tty->magic = 0xDEADDEAD;
 175	kfree(tty);
 176}
 177
 178static inline struct tty_struct *file_tty(struct file *file)
 179{
 180	return ((struct tty_file_private *)file->private_data)->tty;
 181}
 182
 183int tty_alloc_file(struct file *file)
 
 184{
 185	struct tty_file_private *priv;
 186
 187	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 188	if (!priv)
 189		return -ENOMEM;
 190
 191	file->private_data = priv;
 192
 193	return 0;
 194}
 195
 196/* Associate a new file with the tty structure */
 197void tty_add_file(struct tty_struct *tty, struct file *file)
 198{
 199	struct tty_file_private *priv = file->private_data;
 200
 201	priv->tty = tty;
 202	priv->file = file;
 
 203
 204	spin_lock(&tty->files_lock);
 205	list_add(&priv->list, &tty->tty_files);
 206	spin_unlock(&tty->files_lock);
 
 
 207}
 208
 209/*
 210 * tty_free_file - free file->private_data
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 
 
 
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 235/**
 236 *	tty_name	-	return tty naming
 237 *	@tty: tty structure
 
 238 *
 239 *	Convert a tty structure into a name. The name reflects the kernel
 240 *	naming policy and if udev is in use may not reflect user space
 241 *
 242 *	Locking: none
 243 */
 244
 245const char *tty_name(const struct tty_struct *tty)
 246{
 247	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 248		return "NULL tty";
 249	return tty->name;
 
 
 250}
 
 251EXPORT_SYMBOL(tty_name);
 252
 253const char *tty_driver_name(const struct tty_struct *tty)
 254{
 255	if (!tty || !tty->driver)
 256		return "";
 257	return tty->driver->name;
 258}
 259
 260static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 261			      const char *routine)
 262{
 263#ifdef TTY_PARANOIA_CHECK
 264	if (!tty) {
 265		pr_warn("(%d:%d): %s: NULL tty\n",
 
 266			imajor(inode), iminor(inode), routine);
 267		return 1;
 268	}
 269	if (tty->magic != TTY_MAGIC) {
 270		pr_warn("(%d:%d): %s: bad magic number\n",
 
 271			imajor(inode), iminor(inode), routine);
 272		return 1;
 273	}
 274#endif
 275	return 0;
 276}
 277
 278/* Caller must hold tty_lock */
 279static int check_tty_count(struct tty_struct *tty, const char *routine)
 280{
 281#ifdef CHECK_TTY_COUNT
 282	struct list_head *p;
 283	int count = 0, kopen_count = 0;
 284
 285	spin_lock(&tty->files_lock);
 286	list_for_each(p, &tty->tty_files) {
 287		count++;
 288	}
 289	spin_unlock(&tty->files_lock);
 290	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 291	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 292	    tty->link && tty->link->count)
 293		count++;
 294	if (tty_port_kopened(tty->port))
 295		kopen_count++;
 296	if (tty->count != (count + kopen_count)) {
 297		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 298			 routine, tty->count, count, kopen_count);
 299		return (count + kopen_count);
 300	}
 301#endif
 302	return 0;
 303}
 304
 305/**
 306 *	get_tty_driver		-	find device of a tty
 307 *	@device: device identifier
 308 *	@index: returns the index of the tty
 309 *
 310 *	This routine returns a tty driver structure, given a device number
 311 *	and also passes back the index number.
 312 *
 313 *	Locking: caller must hold tty_mutex
 314 */
 315
 316static struct tty_driver *get_tty_driver(dev_t device, int *index)
 317{
 318	struct tty_driver *p;
 319
 320	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 321		dev_t base = MKDEV(p->major, p->minor_start);
 322
 323		if (device < base || device >= base + p->num)
 324			continue;
 325		*index = device - base;
 326		return tty_driver_kref_get(p);
 327	}
 328	return NULL;
 329}
 330
 331/**
 332 *	tty_dev_name_to_number	-	return dev_t for device name
 333 *	@name: user space name of device under /dev
 334 *	@number: pointer to dev_t that this function will populate
 335 *
 336 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
 337 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
 338 *	the function returns -ENODEV.
 339 *
 340 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
 341 *		being modified while we are traversing it, and makes sure to
 342 *		release it before exiting.
 343 */
 344int tty_dev_name_to_number(const char *name, dev_t *number)
 345{
 346	struct tty_driver *p;
 347	int ret;
 348	int index, prefix_length = 0;
 349	const char *str;
 350
 351	for (str = name; *str && !isdigit(*str); str++)
 352		;
 353
 354	if (!*str)
 355		return -EINVAL;
 356
 357	ret = kstrtoint(str, 10, &index);
 358	if (ret)
 359		return ret;
 360
 361	prefix_length = str - name;
 362	mutex_lock(&tty_mutex);
 363
 364	list_for_each_entry(p, &tty_drivers, tty_drivers)
 365		if (prefix_length == strlen(p->name) && strncmp(name,
 366					p->name, prefix_length) == 0) {
 367			if (index < p->num) {
 368				*number = MKDEV(p->major, p->minor_start + index);
 369				goto out;
 370			}
 371		}
 372
 373	/* if here then driver wasn't found */
 374	ret = -ENODEV;
 375out:
 376	mutex_unlock(&tty_mutex);
 377	return ret;
 378}
 379EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 380
 381#ifdef CONFIG_CONSOLE_POLL
 382
 383/**
 384 *	tty_find_polling_driver	-	find device of a polled tty
 385 *	@name: name string to match
 386 *	@line: pointer to resulting tty line nr
 387 *
 388 *	This routine returns a tty driver structure, given a name
 389 *	and the condition that the tty driver is capable of polled
 390 *	operation.
 391 */
 392struct tty_driver *tty_find_polling_driver(char *name, int *line)
 393{
 394	struct tty_driver *p, *res = NULL;
 395	int tty_line = 0;
 396	int len;
 397	char *str, *stp;
 398
 399	for (str = name; *str; str++)
 400		if ((*str >= '0' && *str <= '9') || *str == ',')
 401			break;
 402	if (!*str)
 403		return NULL;
 404
 405	len = str - name;
 406	tty_line = simple_strtoul(str, &str, 10);
 407
 408	mutex_lock(&tty_mutex);
 409	/* Search through the tty devices to look for a match */
 410	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 411		if (!len || strncmp(name, p->name, len) != 0)
 412			continue;
 413		stp = str;
 414		if (*stp == ',')
 415			stp++;
 416		if (*stp == '\0')
 417			stp = NULL;
 418
 419		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 420		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 421			res = tty_driver_kref_get(p);
 422			*line = tty_line;
 423			break;
 424		}
 425	}
 426	mutex_unlock(&tty_mutex);
 427
 428	return res;
 429}
 430EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 431#endif
 432
 433static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434{
 435	return 0;
 436}
 437
 438static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 
 439{
 440	return -EIO;
 441}
 442
 443/* No kernel lock held - none needed ;) */
 444static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 445{
 446	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 447}
 448
 449static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 450		unsigned long arg)
 451{
 452	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 453}
 454
 455static long hung_up_tty_compat_ioctl(struct file *file,
 456				     unsigned int cmd, unsigned long arg)
 457{
 458	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 459}
 460
 461static int hung_up_tty_fasync(int fd, struct file *file, int on)
 462{
 463	return -ENOTTY;
 464}
 465
 466static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 467{
 468	struct tty_struct *tty = file_tty(file);
 469
 470	if (tty && tty->ops && tty->ops->show_fdinfo)
 471		tty->ops->show_fdinfo(tty, m);
 472}
 473
 474static const struct file_operations tty_fops = {
 475	.llseek		= no_llseek,
 476	.read_iter	= tty_read,
 477	.write_iter	= tty_write,
 478	.splice_read	= generic_file_splice_read,
 479	.splice_write	= iter_file_splice_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486	.show_fdinfo	= tty_show_fdinfo,
 487};
 488
 489static const struct file_operations console_fops = {
 490	.llseek		= no_llseek,
 491	.read_iter	= tty_read,
 492	.write_iter	= redirected_tty_write,
 493	.splice_read	= generic_file_splice_read,
 494	.splice_write	= iter_file_splice_write,
 495	.poll		= tty_poll,
 496	.unlocked_ioctl	= tty_ioctl,
 497	.compat_ioctl	= tty_compat_ioctl,
 498	.open		= tty_open,
 499	.release	= tty_release,
 500	.fasync		= tty_fasync,
 501};
 502
 503static const struct file_operations hung_up_tty_fops = {
 504	.llseek		= no_llseek,
 505	.read_iter	= hung_up_tty_read,
 506	.write_iter	= hung_up_tty_write,
 507	.poll		= hung_up_tty_poll,
 508	.unlocked_ioctl	= hung_up_tty_ioctl,
 509	.compat_ioctl	= hung_up_tty_compat_ioctl,
 510	.release	= tty_release,
 511	.fasync		= hung_up_tty_fasync,
 512};
 513
 514static DEFINE_SPINLOCK(redirect_lock);
 515static struct file *redirect;
 516
 517/**
 518 *	tty_wakeup	-	request more data
 519 *	@tty: terminal
 520 *
 521 *	Internal and external helper for wakeups of tty. This function
 522 *	informs the line discipline if present that the driver is ready
 523 *	to receive more output data.
 524 */
 525
 526void tty_wakeup(struct tty_struct *tty)
 527{
 528	struct tty_ldisc *ld;
 529
 530	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 531		ld = tty_ldisc_ref(tty);
 532		if (ld) {
 533			if (ld->ops->write_wakeup)
 534				ld->ops->write_wakeup(tty);
 535			tty_ldisc_deref(ld);
 536		}
 537	}
 538	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 539}
 
 540EXPORT_SYMBOL_GPL(tty_wakeup);
 541
 542/**
 543 *	tty_release_redirect	-	Release a redirect on a pty if present
 544 *	@tty: tty device
 545 *
 546 *	This is available to the pty code so if the master closes, if the
 547 *	slave is a redirect it can release the redirect.
 548 */
 549static struct file *tty_release_redirect(struct tty_struct *tty)
 550{
 551	struct file *f = NULL;
 552
 553	spin_lock(&redirect_lock);
 554	if (redirect && file_tty(redirect) == tty) {
 555		f = redirect;
 556		redirect = NULL;
 557	}
 558	spin_unlock(&redirect_lock);
 559
 560	return f;
 561}
 562
 563/**
 564 *	__tty_hangup		-	actual handler for hangup events
 565 *	@tty: tty device
 566 *	@exit_session: if non-zero, signal all foreground group processes
 567 *
 568 *	This can be called by a "kworker" kernel thread.  That is process
 569 *	synchronous but doesn't hold any locks, so we need to make sure we
 570 *	have the appropriate locks for what we're doing.
 571 *
 572 *	The hangup event clears any pending redirections onto the hung up
 573 *	device. It ensures future writes will error and it does the needed
 574 *	line discipline hangup and signal delivery. The tty object itself
 575 *	remains intact.
 576 *
 577 *	Locking:
 578 *		BTM
 579 *		  redirect lock for undoing redirection
 580 *		  file list lock for manipulating list of ttys
 581 *		  tty_ldiscs_lock from called functions
 582 *		  termios_rwsem resetting termios data
 583 *		  tasklist_lock to walk task list for hangup event
 584 *		    ->siglock to protect ->signal/->sighand
 585 */
 586static void __tty_hangup(struct tty_struct *tty, int exit_session)
 587{
 588	struct file *cons_filp = NULL;
 589	struct file *filp, *f;
 
 590	struct tty_file_private *priv;
 591	int    closecount = 0, n;
 592	int refs;
 
 593
 594	if (!tty)
 595		return;
 596
 597	f = tty_release_redirect(tty);
 598
 599	tty_lock(tty);
 
 
 
 
 
 600
 601	if (test_bit(TTY_HUPPED, &tty->flags)) {
 602		tty_unlock(tty);
 603		return;
 604	}
 605
 606	/*
 607	 * Some console devices aren't actually hung up for technical and
 608	 * historical reasons, which can lead to indefinite interruptible
 609	 * sleep in n_tty_read().  The following explicitly tells
 610	 * n_tty_read() to abort readers.
 611	 */
 612	set_bit(TTY_HUPPING, &tty->flags);
 613
 614	/* inuse_filps is protected by the single tty lock,
 615	 * this really needs to change if we want to flush the
 616	 * workqueue with the lock held.
 617	 */
 618	check_tty_count(tty, "tty_hangup");
 619
 620	spin_lock(&tty->files_lock);
 621	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 622	list_for_each_entry(priv, &tty->tty_files, list) {
 623		filp = priv->file;
 624		if (filp->f_op->write_iter == redirected_tty_write)
 625			cons_filp = filp;
 626		if (filp->f_op->write_iter != tty_write)
 627			continue;
 628		closecount++;
 629		__tty_fasync(-1, filp, 0);	/* can't block */
 630		filp->f_op = &hung_up_tty_fops;
 631	}
 632	spin_unlock(&tty->files_lock);
 633
 634	refs = tty_signal_session_leader(tty, exit_session);
 635	/* Account for the p->signal references we killed */
 636	while (refs--)
 637		tty_kref_put(tty);
 
 638
 639	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640
 641	spin_lock_irq(&tty->ctrl.lock);
 642	clear_bit(TTY_THROTTLED, &tty->flags);
 
 643	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 644	put_pid(tty->ctrl.session);
 645	put_pid(tty->ctrl.pgrp);
 646	tty->ctrl.session = NULL;
 647	tty->ctrl.pgrp = NULL;
 648	tty->ctrl.pktstatus = 0;
 649	spin_unlock_irq(&tty->ctrl.lock);
 
 
 
 
 650
 651	/*
 652	 * If one of the devices matches a console pointer, we
 653	 * cannot just call hangup() because that will cause
 654	 * tty->count and state->count to go out of sync.
 655	 * So we just call close() the right number of times.
 656	 */
 657	if (cons_filp) {
 658		if (tty->ops->close)
 659			for (n = 0; n < closecount; n++)
 660				tty->ops->close(tty, cons_filp);
 661	} else if (tty->ops->hangup)
 662		tty->ops->hangup(tty);
 663	/*
 664	 * We don't want to have driver/ldisc interactions beyond the ones
 665	 * we did here. The driver layer expects no calls after ->hangup()
 666	 * from the ldisc side, which is now guaranteed.
 
 667	 */
 668	set_bit(TTY_HUPPED, &tty->flags);
 669	clear_bit(TTY_HUPPING, &tty->flags);
 670	tty_unlock(tty);
 
 
 671
 672	if (f)
 673		fput(f);
 674}
 675
 676static void do_tty_hangup(struct work_struct *work)
 677{
 678	struct tty_struct *tty =
 679		container_of(work, struct tty_struct, hangup_work);
 680
 681	__tty_hangup(tty, 0);
 682}
 683
 684/**
 685 *	tty_hangup		-	trigger a hangup event
 686 *	@tty: tty to hangup
 687 *
 688 *	A carrier loss (virtual or otherwise) has occurred on this like
 689 *	schedule a hangup sequence to run after this event.
 690 */
 691
 692void tty_hangup(struct tty_struct *tty)
 693{
 694	tty_debug_hangup(tty, "hangup\n");
 
 
 
 695	schedule_work(&tty->hangup_work);
 696}
 
 697EXPORT_SYMBOL(tty_hangup);
 698
 699/**
 700 *	tty_vhangup		-	process vhangup
 701 *	@tty: tty to hangup
 702 *
 703 *	The user has asked via system call for the terminal to be hung up.
 704 *	We do this synchronously so that when the syscall returns the process
 705 *	is complete. That guarantee is necessary for security reasons.
 706 */
 707
 708void tty_vhangup(struct tty_struct *tty)
 709{
 710	tty_debug_hangup(tty, "vhangup\n");
 711	__tty_hangup(tty, 0);
 
 
 
 
 712}
 
 713EXPORT_SYMBOL(tty_vhangup);
 714
 715
 716/**
 717 *	tty_vhangup_self	-	process vhangup for own ctty
 718 *
 719 *	Perform a vhangup on the current controlling tty
 720 */
 721
 722void tty_vhangup_self(void)
 723{
 724	struct tty_struct *tty;
 725
 726	tty = get_current_tty();
 727	if (tty) {
 728		tty_vhangup(tty);
 729		tty_kref_put(tty);
 730	}
 731}
 732
 733/**
 734 *	tty_vhangup_session		-	hangup session leader exit
 735 *	@tty: tty to hangup
 736 *
 737 *	The session leader is exiting and hanging up its controlling terminal.
 738 *	Every process in the foreground process group is signalled SIGHUP.
 739 *
 740 *	We do this synchronously so that when the syscall returns the process
 741 *	is complete. That guarantee is necessary for security reasons.
 742 */
 743
 744void tty_vhangup_session(struct tty_struct *tty)
 745{
 746	tty_debug_hangup(tty, "session hangup\n");
 747	__tty_hangup(tty, 1);
 
 
 
 
 
 
 
 
 
 748}
 749
 750/**
 751 *	tty_hung_up_p		-	was tty hung up
 752 *	@filp: file pointer of tty
 
 
 
 
 
 
 
 
 
 
 
 
 753 *
 754 *	Return true if the tty has been subject to a vhangup or a carrier
 755 *	loss
 
 
 
 
 
 756 */
 757
 758int tty_hung_up_p(struct file *filp)
 759{
 760	return (filp && filp->f_op == &hung_up_tty_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761}
 762EXPORT_SYMBOL(tty_hung_up_p);
 763
 764void __stop_tty(struct tty_struct *tty)
 
 
 
 
 765{
 766	if (tty->flow.stopped)
 767		return;
 768	tty->flow.stopped = true;
 769	if (tty->ops->stop)
 770		tty->ops->stop(tty);
 771}
 772
 
 773/**
 774 *	stop_tty	-	propagate flow control
 775 *	@tty: tty to stop
 776 *
 777 *	Perform flow control to the driver. May be called
 
 778 *	on an already stopped device and will not re-call the driver
 779 *	method.
 780 *
 781 *	This functionality is used by both the line disciplines for
 782 *	halting incoming flow and by the driver. It may therefore be
 783 *	called from any context, may be under the tty atomic_write_lock
 784 *	but not always.
 785 *
 786 *	Locking:
 787 *		flow.lock
 788 */
 
 789void stop_tty(struct tty_struct *tty)
 790{
 791	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792
 793	spin_lock_irqsave(&tty->flow.lock, flags);
 794	__stop_tty(tty);
 795	spin_unlock_irqrestore(&tty->flow.lock, flags);
 796}
 797EXPORT_SYMBOL(stop_tty);
 798
 799void __start_tty(struct tty_struct *tty)
 800{
 801	if (!tty->flow.stopped || tty->flow.tco_stopped)
 802		return;
 803	tty->flow.stopped = false;
 804	if (tty->ops->start)
 805		tty->ops->start(tty);
 806	tty_wakeup(tty);
 807}
 808
 809/**
 810 *	start_tty	-	propagate flow control
 811 *	@tty: tty to start
 812 *
 813 *	Start a tty that has been stopped if at all possible. If this
 814 *	tty was previous stopped and is now being started, the driver
 815 *	start method is invoked and the line discipline woken.
 
 816 *
 817 *	Locking:
 818 *		flow.lock
 819 */
 
 820void start_tty(struct tty_struct *tty)
 821{
 822	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823
 824	spin_lock_irqsave(&tty->flow.lock, flags);
 825	__start_tty(tty);
 826	spin_unlock_irqrestore(&tty->flow.lock, flags);
 827}
 828EXPORT_SYMBOL(start_tty);
 829
 830static void tty_update_time(struct timespec64 *time)
 831{
 832	time64_t sec = ktime_get_real_seconds();
 833
 834	/*
 835	 * We only care if the two values differ in anything other than the
 836	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 837	 * the time of the tty device, otherwise it could be construded as a
 838	 * security leak to let userspace know the exact timing of the tty.
 839	 */
 840	if ((sec ^ time->tv_sec) & ~7)
 841		time->tv_sec = sec;
 842}
 843
 844/*
 845 * Iterate on the ldisc ->read() function until we've gotten all
 846 * the data the ldisc has for us.
 847 *
 848 * The "cookie" is something that the ldisc read function can fill
 849 * in to let us know that there is more data to be had.
 850 *
 851 * We promise to continue to call the ldisc until it stops returning
 852 * data or clears the cookie. The cookie may be something that the
 853 * ldisc maintains state for and needs to free.
 854 */
 855static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 856		struct file *file, struct iov_iter *to)
 857{
 858	int retval = 0;
 859	void *cookie = NULL;
 860	unsigned long offset = 0;
 861	char kernel_buf[64];
 862	size_t count = iov_iter_count(to);
 863
 864	do {
 865		int size, copied;
 866
 867		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
 868		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 869		if (!size)
 870			break;
 871
 872		if (size < 0) {
 873			/* Did we have an earlier error (ie -EFAULT)? */
 874			if (retval)
 875				break;
 876			retval = size;
 877
 878			/*
 879			 * -EOVERFLOW means we didn't have enough space
 880			 * for a whole packet, and we shouldn't return
 881			 * a partial result.
 882			 */
 883			if (retval == -EOVERFLOW)
 884				offset = 0;
 885			break;
 886		}
 887
 888		copied = copy_to_iter(kernel_buf, size, to);
 889		offset += copied;
 890		count -= copied;
 891
 892		/*
 893		 * If the user copy failed, we still need to do another ->read()
 894		 * call if we had a cookie to let the ldisc clear up.
 895		 *
 896		 * But make sure size is zeroed.
 897		 */
 898		if (unlikely(copied != size)) {
 899			count = 0;
 900			retval = -EFAULT;
 901		}
 902	} while (cookie);
 903
 904	/* We always clear tty buffer in case they contained passwords */
 905	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 906	return offset ? offset : retval;
 907}
 908
 909
 910/**
 911 *	tty_read	-	read method for tty device files
 912 *	@iocb: kernel I/O control block
 913 *	@to: destination for the data read
 
 
 914 *
 915 *	Perform the read system call function on this terminal device. Checks
 916 *	for hung up devices before calling the line discipline method.
 917 *
 918 *	Locking:
 919 *		Locks the line discipline internally while needed. Multiple
 920 *	read calls may be outstanding in parallel.
 921 */
 922
 923static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 924{
 925	int i;
 926	struct file *file = iocb->ki_filp;
 927	struct inode *inode = file_inode(file);
 928	struct tty_struct *tty = file_tty(file);
 929	struct tty_ldisc *ld;
 930
 931	if (tty_paranoia_check(tty, inode, "tty_read"))
 932		return -EIO;
 933	if (!tty || tty_io_error(tty))
 934		return -EIO;
 935
 936	/* We want to wait for the line discipline to sort out in this
 937	 * situation.
 938	 */
 939	ld = tty_ldisc_ref_wait(tty);
 940	if (!ld)
 941		return hung_up_tty_read(iocb, to);
 942	i = -EIO;
 943	if (ld->ops->read)
 944		i = iterate_tty_read(ld, tty, file, to);
 
 
 945	tty_ldisc_deref(ld);
 946
 947	if (i > 0)
 948		tty_update_time(&inode->i_atime);
 949
 950	return i;
 951}
 952
 953static void tty_write_unlock(struct tty_struct *tty)
 
 954{
 955	mutex_unlock(&tty->atomic_write_lock);
 956	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 957}
 958
 959static int tty_write_lock(struct tty_struct *tty, int ndelay)
 
 960{
 961	if (!mutex_trylock(&tty->atomic_write_lock)) {
 962		if (ndelay)
 963			return -EAGAIN;
 964		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 965			return -ERESTARTSYS;
 966	}
 967	return 0;
 968}
 969
 970/*
 971 * Split writes up in sane blocksizes to avoid
 972 * denial-of-service type attacks
 973 */
 974static inline ssize_t do_tty_write(
 975	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 976	struct tty_struct *tty,
 977	struct file *file,
 978	struct iov_iter *from)
 
 979{
 980	size_t count = iov_iter_count(from);
 981	ssize_t ret, written = 0;
 982	unsigned int chunk;
 983
 984	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 985	if (ret < 0)
 986		return ret;
 987
 988	/*
 989	 * We chunk up writes into a temporary buffer. This
 990	 * simplifies low-level drivers immensely, since they
 991	 * don't have locking issues and user mode accesses.
 992	 *
 993	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 994	 * big chunk-size..
 995	 *
 996	 * The default chunk-size is 2kB, because the NTTY
 997	 * layer has problems with bigger chunks. It will
 998	 * claim to be able to handle more characters than
 999	 * it actually does.
1000	 *
1001	 * FIXME: This can probably go away now except that 64K chunks
1002	 * are too likely to fail unless switched to vmalloc...
1003	 */
1004	chunk = 2048;
1005	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1006		chunk = 65536;
1007	if (count < chunk)
1008		chunk = count;
1009
1010	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1011	if (tty->write_cnt < chunk) {
1012		unsigned char *buf_chunk;
1013
1014		if (chunk < 1024)
1015			chunk = 1024;
1016
1017		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1018		if (!buf_chunk) {
1019			ret = -ENOMEM;
1020			goto out;
1021		}
1022		kfree(tty->write_buf);
1023		tty->write_cnt = chunk;
1024		tty->write_buf = buf_chunk;
1025	}
1026
1027	/* Do the write .. */
1028	for (;;) {
1029		size_t size = count;
1030
1031		if (size > chunk)
1032			size = chunk;
1033
1034		ret = -EFAULT;
1035		if (copy_from_iter(tty->write_buf, size, from) != size)
1036			break;
1037
1038		ret = write(tty, file, tty->write_buf, size);
1039		if (ret <= 0)
1040			break;
1041
1042		written += ret;
1043		if (ret > size)
1044			break;
1045
1046		/* FIXME! Have Al check this! */
1047		if (ret != size)
1048			iov_iter_revert(from, size-ret);
1049
1050		count -= ret;
1051		if (!count)
1052			break;
1053		ret = -ERESTARTSYS;
1054		if (signal_pending(current))
1055			break;
1056		cond_resched();
1057	}
1058	if (written) {
1059		tty_update_time(&file_inode(file)->i_mtime);
 
1060		ret = written;
1061	}
1062out:
1063	tty_write_unlock(tty);
1064	return ret;
1065}
1066
1067/**
1068 * tty_write_message - write a message to a certain tty, not just the console.
1069 * @tty: the destination tty_struct
1070 * @msg: the message to write
1071 *
1072 * This is used for messages that need to be redirected to a specific tty.
1073 * We don't put it into the syslog queue right now maybe in the future if
1074 * really needed.
1075 *
1076 * We must still hold the BTM and test the CLOSING flag for the moment.
1077 */
1078
1079void tty_write_message(struct tty_struct *tty, char *msg)
1080{
1081	if (tty) {
1082		mutex_lock(&tty->atomic_write_lock);
1083		tty_lock(tty);
1084		if (tty->ops->write && tty->count > 0)
 
1085			tty->ops->write(tty, msg, strlen(msg));
1086		tty_unlock(tty);
 
1087		tty_write_unlock(tty);
1088	}
 
1089}
1090
1091static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092{
 
1093	struct tty_struct *tty = file_tty(file);
1094	struct tty_ldisc *ld;
1095	ssize_t ret;
1096
1097	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1098		return -EIO;
1099	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1100		return -EIO;
 
 
 
1101	/* Short term debug to catch buggy drivers */
1102	if (tty->ops->write_room == NULL)
1103		tty_err(tty, "missing write_room method\n");
 
1104	ld = tty_ldisc_ref_wait(tty);
1105	if (!ld)
1106		return hung_up_tty_write(iocb, from);
1107	if (!ld->ops->write)
1108		ret = -EIO;
1109	else
1110		ret = do_tty_write(ld->ops->write, tty, file, from);
1111	tty_ldisc_deref(ld);
1112	return ret;
1113}
1114
1115/**
1116 *	tty_write		-	write method for tty device file
1117 *	@iocb: kernel I/O control block
1118 *	@from: iov_iter with data to write
1119 *
1120 *	Write data to a tty device via the line discipline.
1121 *
1122 *	Locking:
1123 *		Locks the line discipline as required
1124 *		Writes to the tty driver are serialized by the atomic_write_lock
1125 *		and are then processed in chunks to the device. The line
1126 *		discipline write method will not be invoked in parallel for
1127 *		each device.
1128 */
1129static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1130{
1131	return file_tty_write(iocb->ki_filp, iocb, from);
1132}
1133
1134ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1135{
1136	struct file *p = NULL;
1137
1138	spin_lock(&redirect_lock);
1139	if (redirect)
1140		p = get_file(redirect);
 
 
1141	spin_unlock(&redirect_lock);
1142
1143	/*
1144	 * We know the redirected tty is just another tty, we can
1145	 * call file_tty_write() directly with that file pointer.
1146	 */
1147	if (p) {
1148		ssize_t res;
1149
1150		res = file_tty_write(p, iocb, iter);
1151		fput(p);
1152		return res;
1153	}
1154	return tty_write(iocb, iter);
1155}
1156
1157/*
1158 *	tty_send_xchar	-	send priority character
1159 *
1160 *	Send a high priority character to the tty even if stopped
1161 *
1162 *	Locking: none for xchar method, write ordering for write method.
1163 */
1164
1165int tty_send_xchar(struct tty_struct *tty, char ch)
1166{
1167	bool was_stopped = tty->flow.stopped;
1168
1169	if (tty->ops->send_xchar) {
1170		down_read(&tty->termios_rwsem);
1171		tty->ops->send_xchar(tty, ch);
1172		up_read(&tty->termios_rwsem);
1173		return 0;
1174	}
1175
1176	if (tty_write_lock(tty, 0) < 0)
1177		return -ERESTARTSYS;
1178
1179	down_read(&tty->termios_rwsem);
1180	if (was_stopped)
1181		start_tty(tty);
1182	tty->ops->write(tty, &ch, 1);
1183	if (was_stopped)
1184		stop_tty(tty);
1185	up_read(&tty->termios_rwsem);
1186	tty_write_unlock(tty);
1187	return 0;
1188}
1189
1190/**
1191 *	pty_line_name	-	generate name for a pty
1192 *	@driver: the tty driver in use
1193 *	@index: the minor number
1194 *	@p: output buffer of at least 6 bytes
1195 *
1196 *	Generate a name from a driver reference and write it to the output
1197 *	buffer.
1198 *
1199 *	Locking: None
1200 */
1201static void pty_line_name(struct tty_driver *driver, int index, char *p)
1202{
1203	static const char ptychar[] = "pqrstuvwxyzabcde";
1204	int i = index + driver->name_base;
1205	/* ->name is initialized to "ttyp", but "tty" is expected */
1206	sprintf(p, "%s%c%x",
1207		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1208		ptychar[i >> 4 & 0xf], i & 0xf);
1209}
1210
1211/**
1212 *	tty_line_name	-	generate name for a tty
1213 *	@driver: the tty driver in use
1214 *	@index: the minor number
1215 *	@p: output buffer of at least 7 bytes
1216 *
1217 *	Generate a name from a driver reference and write it to the output
1218 *	buffer.
1219 *
1220 *	Locking: None
1221 */
1222static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1223{
1224	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1225		return sprintf(p, "%s", driver->name);
1226	else
1227		return sprintf(p, "%s%d", driver->name,
1228			       index + driver->name_base);
1229}
1230
1231/**
1232 *	tty_driver_lookup_tty() - find an existing tty, if any
1233 *	@driver: the driver for the tty
1234 *	@file:   file object
1235 *	@idx:	 the minor number
1236 *
1237 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1238 *	driver lookup() method returns an error.
1239 *
1240 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1241 */
1242static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1243		struct file *file, int idx)
1244{
1245	struct tty_struct *tty;
1246
1247	if (driver->ops->lookup)
1248		if (!file)
1249			tty = ERR_PTR(-EIO);
1250		else
1251			tty = driver->ops->lookup(driver, file, idx);
1252	else
1253		tty = driver->ttys[idx];
1254
1255	if (!IS_ERR(tty))
1256		tty_kref_get(tty);
1257	return tty;
1258}
1259
1260/**
1261 *	tty_init_termios	-  helper for termios setup
1262 *	@tty: the tty to set up
1263 *
1264 *	Initialise the termios structure for this tty. This runs under
1265 *	the tty_mutex currently so we can be relaxed about ordering.
1266 */
1267
1268void tty_init_termios(struct tty_struct *tty)
1269{
1270	struct ktermios *tp;
1271	int idx = tty->index;
1272
1273	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1274		tty->termios = tty->driver->init_termios;
1275	else {
1276		/* Check for lazy saved data */
1277		tp = tty->driver->termios[idx];
1278		if (tp != NULL) {
1279			tty->termios = *tp;
1280			tty->termios.c_line  = tty->driver->init_termios.c_line;
1281		} else
1282			tty->termios = tty->driver->init_termios;
1283	}
 
 
 
1284	/* Compatibility until drivers always set this */
1285	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1286	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1287}
1288EXPORT_SYMBOL_GPL(tty_init_termios);
1289
1290int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1291{
1292	tty_init_termios(tty);
1293	tty_driver_kref_get(driver);
1294	tty->count++;
1295	driver->ttys[tty->index] = tty;
1296	return 0;
1297}
1298EXPORT_SYMBOL_GPL(tty_standard_install);
1299
1300/**
1301 *	tty_driver_install_tty() - install a tty entry in the driver
1302 *	@driver: the driver for the tty
1303 *	@tty: the tty
1304 *
1305 *	Install a tty object into the driver tables. The tty->index field
1306 *	will be set by the time this is called. This method is responsible
1307 *	for ensuring any need additional structures are allocated and
1308 *	configured.
1309 *
1310 *	Locking: tty_mutex for now
1311 */
1312static int tty_driver_install_tty(struct tty_driver *driver,
1313						struct tty_struct *tty)
1314{
1315	return driver->ops->install ? driver->ops->install(driver, tty) :
1316		tty_standard_install(driver, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
1317}
1318
1319/**
1320 *	tty_driver_remove_tty() - remove a tty from the driver tables
1321 *	@driver: the driver for the tty
1322 *	@tty: tty to remove
1323 *
1324 *	Remvoe a tty object from the driver tables. The tty->index field
1325 *	will be set by the time this is called.
1326 *
1327 *	Locking: tty_mutex for now
1328 */
1329static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1330{
1331	if (driver->ops->remove)
1332		driver->ops->remove(driver, tty);
1333	else
1334		driver->ttys[tty->index] = NULL;
1335}
1336
1337/**
1338 *	tty_reopen()	- fast re-open of an open tty
1339 *	@tty: the tty to open
1340 *
1341 *	Return 0 on success, -errno on error.
1342 *	Re-opens on master ptys are not allowed and return -EIO.
1343 *
1344 *	Locking: Caller must hold tty_lock
 
1345 */
1346static int tty_reopen(struct tty_struct *tty)
1347{
1348	struct tty_driver *driver = tty->driver;
1349	struct tty_ldisc *ld;
1350	int retval = 0;
1351
1352	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1353	    driver->subtype == PTY_TYPE_MASTER)
 
1354		return -EIO;
1355
1356	if (!tty->count)
1357		return -EAGAIN;
 
 
 
 
 
 
1358
1359	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1360		return -EBUSY;
1361
1362	ld = tty_ldisc_ref_wait(tty);
1363	if (ld) {
1364		tty_ldisc_deref(ld);
1365	} else {
1366		retval = tty_ldisc_lock(tty, 5 * HZ);
1367		if (retval)
1368			return retval;
1369
1370		if (!tty->ldisc)
1371			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1372		tty_ldisc_unlock(tty);
1373	}
 
 
1374
1375	if (retval == 0)
1376		tty->count++;
 
1377
1378	return retval;
1379}
1380
1381/**
1382 *	tty_init_dev		-	initialise a tty device
1383 *	@driver: tty driver we are opening a device on
1384 *	@idx: device index
 
 
1385 *
1386 *	Prepare a tty device. This may not be a "new" clean device but
1387 *	could also be an active device. The pty drivers require special
1388 *	handling because of this.
1389 *
1390 *	Locking:
1391 *		The function is called under the tty_mutex, which
1392 *	protects us from the tty struct or driver itself going away.
1393 *
1394 *	On exit the tty device has the line discipline attached and
1395 *	a reference count of 1. If a pair was created for pty/tty use
1396 *	and the other was a pty master then it too has a reference count of 1.
1397 *
1398 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1399 * failed open.  The new code protects the open with a mutex, so it's
1400 * really quite straightforward.  The mutex locking can probably be
1401 * relaxed for the (most common) case of reopening a tty.
1402 *
1403 *	Return: returned tty structure
1404 */
1405
1406struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
 
1407{
1408	struct tty_struct *tty;
1409	int retval;
1410
 
 
 
 
 
 
1411	/*
1412	 * First time open is complex, especially for PTY devices.
1413	 * This code guarantees that either everything succeeds and the
1414	 * TTY is ready for operation, or else the table slots are vacated
1415	 * and the allocated memory released.  (Except that the termios
1416	 * may be retained.)
1417	 */
1418
1419	if (!try_module_get(driver->owner))
1420		return ERR_PTR(-ENODEV);
1421
1422	tty = alloc_tty_struct(driver, idx);
1423	if (!tty) {
1424		retval = -ENOMEM;
1425		goto err_module_put;
1426	}
 
1427
1428	tty_lock(tty);
1429	retval = tty_driver_install_tty(driver, tty);
1430	if (retval < 0)
1431		goto err_free_tty;
1432
1433	if (!tty->port)
1434		tty->port = driver->ports[idx];
1435
1436	if (WARN_RATELIMIT(!tty->port,
1437			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1438			__func__, tty->driver->name)) {
1439		retval = -EINVAL;
1440		goto err_release_lock;
1441	}
1442
1443	retval = tty_ldisc_lock(tty, 5 * HZ);
1444	if (retval)
1445		goto err_release_lock;
1446	tty->port->itty = tty;
1447
1448	/*
1449	 * Structures all installed ... call the ldisc open routines.
1450	 * If we fail here just call release_tty to clean up.  No need
1451	 * to decrement the use counts, as release_tty doesn't care.
1452	 */
1453	retval = tty_ldisc_setup(tty, tty->link);
1454	if (retval)
1455		goto err_release_tty;
1456	tty_ldisc_unlock(tty);
1457	/* Return the tty locked so that it cannot vanish under the caller */
1458	return tty;
1459
1460err_free_tty:
1461	tty_unlock(tty);
1462	free_tty_struct(tty);
1463err_module_put:
1464	module_put(driver->owner);
1465	return ERR_PTR(retval);
1466
1467	/* call the tty release_tty routine to clean out this slot */
1468err_release_tty:
1469	tty_ldisc_unlock(tty);
1470	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1471			     retval, idx);
1472err_release_lock:
1473	tty_unlock(tty);
1474	release_tty(tty, idx);
1475	return ERR_PTR(retval);
1476}
1477
1478/**
1479 * tty_save_termios() - save tty termios data in driver table
1480 * @tty: tty whose termios data to save
1481 *
1482 * Locking: Caller guarantees serialisation with tty_init_termios().
1483 */
1484void tty_save_termios(struct tty_struct *tty)
1485{
1486	struct ktermios *tp;
1487	int idx = tty->index;
1488
1489	/* If the port is going to reset then it has no termios to save */
1490	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1491		return;
1492
1493	/* Stash the termios data */
1494	tp = tty->driver->termios[idx];
1495	if (tp == NULL) {
1496		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1497		if (tp == NULL)
1498			return;
1499		tty->driver->termios[idx] = tp;
1500	}
1501	*tp = tty->termios;
1502}
1503EXPORT_SYMBOL_GPL(tty_save_termios);
1504
1505/**
1506 *	tty_flush_works		-	flush all works of a tty/pty pair
1507 *	@tty: tty device to flush works for (or either end of a pty pair)
1508 *
1509 *	Sync flush all works belonging to @tty (and the 'other' tty).
1510 */
1511static void tty_flush_works(struct tty_struct *tty)
1512{
1513	flush_work(&tty->SAK_work);
1514	flush_work(&tty->hangup_work);
1515	if (tty->link) {
1516		flush_work(&tty->link->SAK_work);
1517		flush_work(&tty->link->hangup_work);
1518	}
1519}
 
1520
1521/**
1522 *	release_one_tty		-	release tty structure memory
1523 *	@work: work of tty we are obliterating
1524 *
1525 *	Releases memory associated with a tty structure, and clears out the
1526 *	driver table slots. This function is called when a device is no longer
1527 *	in use. It also gets called when setup of a device fails.
1528 *
1529 *	Locking:
 
1530 *		takes the file list lock internally when working on the list
1531 *	of ttys that the driver keeps.
1532 *
1533 *	This method gets called from a work queue so that the driver private
1534 *	cleanup ops can sleep (needed for USB at least)
1535 */
1536static void release_one_tty(struct work_struct *work)
1537{
1538	struct tty_struct *tty =
1539		container_of(work, struct tty_struct, hangup_work);
1540	struct tty_driver *driver = tty->driver;
1541	struct module *owner = driver->owner;
1542
1543	if (tty->ops->cleanup)
1544		tty->ops->cleanup(tty);
1545
1546	tty->magic = 0;
1547	tty_driver_kref_put(driver);
1548	module_put(owner);
1549
1550	spin_lock(&tty->files_lock);
1551	list_del_init(&tty->tty_files);
1552	spin_unlock(&tty->files_lock);
1553
1554	put_pid(tty->ctrl.pgrp);
1555	put_pid(tty->ctrl.session);
1556	free_tty_struct(tty);
1557}
1558
1559static void queue_release_one_tty(struct kref *kref)
1560{
1561	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1562
 
 
 
 
 
1563	/* The hangup queue is now free so we can reuse it rather than
1564	 *  waste a chunk of memory for each port.
1565	 */
1566	INIT_WORK(&tty->hangup_work, release_one_tty);
1567	schedule_work(&tty->hangup_work);
1568}
1569
1570/**
1571 *	tty_kref_put		-	release a tty kref
1572 *	@tty: tty device
1573 *
1574 *	Release a reference to a tty device and if need be let the kref
1575 *	layer destruct the object for us
1576 */
1577
1578void tty_kref_put(struct tty_struct *tty)
1579{
1580	if (tty)
1581		kref_put(&tty->kref, queue_release_one_tty);
1582}
1583EXPORT_SYMBOL(tty_kref_put);
1584
1585/**
1586 *	release_tty		-	release tty structure memory
1587 *	@tty: tty device release
1588 *	@idx: index of the tty device release
1589 *
1590 *	Release both @tty and a possible linked partner (think pty pair),
1591 *	and decrement the refcount of the backing module.
1592 *
1593 *	Locking:
1594 *		tty_mutex
1595 *		takes the file list lock internally when working on the list
1596 *	of ttys that the driver keeps.
 
1597 *
1598 */
1599static void release_tty(struct tty_struct *tty, int idx)
1600{
1601	/* This should always be true but check for the moment */
1602	WARN_ON(tty->index != idx);
1603	WARN_ON(!mutex_is_locked(&tty_mutex));
1604	if (tty->ops->shutdown)
1605		tty->ops->shutdown(tty);
1606	tty_save_termios(tty);
1607	tty_driver_remove_tty(tty->driver, tty);
1608	if (tty->port)
1609		tty->port->itty = NULL;
1610	if (tty->link)
1611		tty->link->port->itty = NULL;
1612	if (tty->port)
1613		tty_buffer_cancel_work(tty->port);
1614	if (tty->link)
1615		tty_buffer_cancel_work(tty->link->port);
1616
1617	tty_kref_put(tty->link);
1618	tty_kref_put(tty);
1619}
1620
1621/**
1622 *	tty_release_checks - check a tty before real release
1623 *	@tty: tty to check
1624 *	@idx: index of the tty
1625 *
1626 *	Performs some paranoid checking before true release of the @tty.
1627 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1628 */
1629static int tty_release_checks(struct tty_struct *tty, int idx)
1630{
1631#ifdef TTY_PARANOIA_CHECK
1632	if (idx < 0 || idx >= tty->driver->num) {
1633		tty_debug(tty, "bad idx %d\n", idx);
1634		return -1;
1635	}
1636
1637	/* not much to check for devpts */
1638	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1639		return 0;
1640
1641	if (tty != tty->driver->ttys[idx]) {
1642		tty_debug(tty, "bad driver table[%d] = %p\n",
1643			  idx, tty->driver->ttys[idx]);
1644		return -1;
1645	}
1646	if (tty->driver->other) {
1647		struct tty_struct *o_tty = tty->link;
1648
1649		if (o_tty != tty->driver->other->ttys[idx]) {
1650			tty_debug(tty, "bad other table[%d] = %p\n",
1651				  idx, tty->driver->other->ttys[idx]);
1652			return -1;
1653		}
1654		if (o_tty->link != tty) {
1655			tty_debug(tty, "bad link = %p\n", o_tty->link);
1656			return -1;
1657		}
1658	}
1659#endif
1660	return 0;
1661}
1662
1663/**
1664 *      tty_kclose      -       closes tty opened by tty_kopen
1665 *      @tty: tty device
1666 *
1667 *      Performs the final steps to release and free a tty device. It is the
1668 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1669 *      flag on tty->port.
1670 */
1671void tty_kclose(struct tty_struct *tty)
1672{
1673	/*
1674	 * Ask the line discipline code to release its structures
1675	 */
1676	tty_ldisc_release(tty);
1677
1678	/* Wait for pending work before tty destruction commmences */
1679	tty_flush_works(tty);
1680
1681	tty_debug_hangup(tty, "freeing structure\n");
1682	/*
1683	 * The release_tty function takes care of the details of clearing
1684	 * the slots and preserving the termios structure.
1685	 */
1686	mutex_lock(&tty_mutex);
1687	tty_port_set_kopened(tty->port, 0);
1688	release_tty(tty, tty->index);
1689	mutex_unlock(&tty_mutex);
1690}
1691EXPORT_SYMBOL_GPL(tty_kclose);
1692
1693/**
1694 *	tty_release_struct	-	release a tty struct
1695 *	@tty: tty device
1696 *	@idx: index of the tty
1697 *
1698 *	Performs the final steps to release and free a tty device. It is
1699 *	roughly the reverse of tty_init_dev.
1700 */
1701void tty_release_struct(struct tty_struct *tty, int idx)
1702{
1703	/*
1704	 * Ask the line discipline code to release its structures
1705	 */
1706	tty_ldisc_release(tty);
1707
1708	/* Wait for pending work before tty destruction commmences */
1709	tty_flush_works(tty);
1710
1711	tty_debug_hangup(tty, "freeing structure\n");
1712	/*
1713	 * The release_tty function takes care of the details of clearing
1714	 * the slots and preserving the termios structure.
1715	 */
1716	mutex_lock(&tty_mutex);
1717	release_tty(tty, idx);
1718	mutex_unlock(&tty_mutex);
1719}
1720EXPORT_SYMBOL_GPL(tty_release_struct);
1721
1722/**
1723 *	tty_release		-	vfs callback for close
1724 *	@inode: inode of tty
1725 *	@filp: file pointer for handle to tty
1726 *
1727 *	Called the last time each file handle is closed that references
1728 *	this tty. There may however be several such references.
1729 *
1730 *	Locking:
1731 *		Takes bkl. See tty_release_dev
1732 *
1733 * Even releasing the tty structures is a tricky business.. We have
1734 * to be very careful that the structures are all released at the
1735 * same time, as interrupts might otherwise get the wrong pointers.
1736 *
1737 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1738 * lead to double frees or releasing memory still in use.
1739 */
1740
1741int tty_release(struct inode *inode, struct file *filp)
1742{
1743	struct tty_struct *tty = file_tty(filp);
1744	struct tty_struct *o_tty = NULL;
1745	int	do_sleep, final;
 
1746	int	idx;
1747	long	timeout = 0;
1748	int	once = 1;
1749
1750	if (tty_paranoia_check(tty, inode, __func__))
1751		return 0;
1752
1753	tty_lock(tty);
1754	check_tty_count(tty, __func__);
1755
1756	__tty_fasync(-1, filp, 0);
1757
1758	idx = tty->index;
1759	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1760	    tty->driver->subtype == PTY_TYPE_MASTER)
1761		o_tty = tty->link;
 
1762
1763	if (tty_release_checks(tty, idx)) {
1764		tty_unlock(tty);
 
 
 
1765		return 0;
1766	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767
1768	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1769
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770	if (tty->ops->close)
1771		tty->ops->close(tty, filp);
1772
1773	/* If tty is pty master, lock the slave pty (stable lock order) */
1774	tty_lock_slave(o_tty);
1775
1776	/*
1777	 * Sanity check: if tty->count is going to zero, there shouldn't be
1778	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1779	 * wait queues and kick everyone out _before_ actually starting to
1780	 * close.  This ensures that we won't block while releasing the tty
1781	 * structure.
1782	 *
1783	 * The test for the o_tty closing is necessary, since the master and
1784	 * slave sides may close in any order.  If the slave side closes out
1785	 * first, its count will be one, since the master side holds an open.
1786	 * Thus this test wouldn't be triggered at the time the slave closed,
1787	 * so we do it now.
 
 
 
 
1788	 */
1789	while (1) {
 
 
 
 
 
 
 
 
1790		do_sleep = 0;
1791
1792		if (tty->count <= 1) {
1793			if (waitqueue_active(&tty->read_wait)) {
1794				wake_up_poll(&tty->read_wait, EPOLLIN);
1795				do_sleep++;
1796			}
1797			if (waitqueue_active(&tty->write_wait)) {
1798				wake_up_poll(&tty->write_wait, EPOLLOUT);
1799				do_sleep++;
1800			}
1801		}
1802		if (o_tty && o_tty->count <= 1) {
1803			if (waitqueue_active(&o_tty->read_wait)) {
1804				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1805				do_sleep++;
1806			}
1807			if (waitqueue_active(&o_tty->write_wait)) {
1808				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1809				do_sleep++;
1810			}
1811		}
1812		if (!do_sleep)
1813			break;
1814
1815		if (once) {
1816			once = 0;
1817			tty_warn(tty, "read/write wait queue active!\n");
1818		}
1819		schedule_timeout_killable(timeout);
1820		if (timeout < 120 * HZ)
1821			timeout = 2 * timeout + 1;
1822		else
1823			timeout = MAX_SCHEDULE_TIMEOUT;
1824	}
1825
1826	if (o_tty) {
 
 
 
 
 
1827		if (--o_tty->count < 0) {
1828			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
 
1829			o_tty->count = 0;
1830		}
1831	}
1832	if (--tty->count < 0) {
1833		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1834		tty->count = 0;
1835	}
1836
1837	/*
1838	 * We've decremented tty->count, so we need to remove this file
1839	 * descriptor off the tty->tty_files list; this serves two
1840	 * purposes:
1841	 *  - check_tty_count sees the correct number of file descriptors
1842	 *    associated with this tty.
1843	 *  - do_tty_hangup no longer sees this file descriptor as
1844	 *    something that needs to be handled for hangups.
1845	 */
1846	tty_del_file(filp);
1847
1848	/*
1849	 * Perform some housekeeping before deciding whether to return.
1850	 *
 
 
 
 
 
 
 
 
 
 
1851	 * If _either_ side is closing, make sure there aren't any
1852	 * processes that still think tty or o_tty is their controlling
1853	 * tty.
1854	 */
1855	if (!tty->count) {
1856		read_lock(&tasklist_lock);
1857		session_clear_tty(tty->ctrl.session);
1858		if (o_tty)
1859			session_clear_tty(o_tty->ctrl.session);
1860		read_unlock(&tasklist_lock);
1861	}
1862
 
 
1863	/* check whether both sides are closing ... */
1864	final = !tty->count && !(o_tty && o_tty->count);
 
 
 
1865
1866	tty_unlock_slave(o_tty);
1867	tty_unlock(tty);
1868
1869	/* At this point, the tty->count == 0 should ensure a dead tty
1870	 * cannot be re-opened by a racing opener.
 
 
 
 
 
1871	 */
 
1872
1873	if (!final)
1874		return 0;
1875
1876	tty_debug_hangup(tty, "final close\n");
1877
1878	tty_release_struct(tty, idx);
1879	return 0;
1880}
1881
1882/**
1883 *	tty_open_current_tty - get locked tty of current task
1884 *	@device: device number
1885 *	@filp: file pointer to tty
1886 *	@return: locked tty of the current task iff @device is /dev/tty
1887 *
1888 *	Performs a re-open of the current task's controlling tty.
 
 
 
 
 
 
 
 
 
1889 *
1890 *	We cannot return driver and index like for the other nodes because
1891 *	devpts will not work then. It expects inodes to be from devpts FS.
 
1892 */
1893static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
 
1894{
1895	struct tty_struct *tty;
1896	int retval;
 
 
 
 
 
 
1897
1898	if (device != MKDEV(TTYAUX_MAJOR, 0))
1899		return NULL;
 
 
1900
1901	tty = get_current_tty();
1902	if (!tty)
1903		return ERR_PTR(-ENXIO);
1904
1905	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1906	/* noctty = 1; */
1907	tty_lock(tty);
1908	tty_kref_put(tty);	/* safe to drop the kref now */
1909
1910	retval = tty_reopen(tty);
1911	if (retval < 0) {
1912		tty_unlock(tty);
1913		tty = ERR_PTR(retval);
 
 
 
 
 
1914	}
1915	return tty;
1916}
1917
1918/**
1919 *	tty_lookup_driver - lookup a tty driver for a given device file
1920 *	@device: device number
1921 *	@filp: file pointer to tty
1922 *	@index: index for the device in the @return driver
1923 *	@return: driver for this inode (with increased refcount)
1924 *
1925 *	If @return is not erroneous, the caller is responsible to decrement the
1926 *	refcount by tty_driver_kref_put.
1927 *
1928 *	Locking: tty_mutex protects get_tty_driver
1929 */
1930static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931		int *index)
1932{
1933	struct tty_driver *driver = NULL;
1934
1935	switch (device) {
1936#ifdef CONFIG_VT
1937	case MKDEV(TTY_MAJOR, 0): {
1938		extern struct tty_driver *console_driver;
1939
1940		driver = tty_driver_kref_get(console_driver);
1941		*index = fg_console;
1942		break;
 
1943	}
1944#endif
1945	case MKDEV(TTYAUX_MAJOR, 1): {
1946		struct tty_driver *console_driver = console_device(index);
1947
1948		if (console_driver) {
1949			driver = tty_driver_kref_get(console_driver);
1950			if (driver && filp) {
1951				/* Don't let /dev/console block */
1952				filp->f_flags |= O_NONBLOCK;
1953				break;
 
1954			}
1955		}
1956		if (driver)
1957			tty_driver_kref_put(driver);
1958		return ERR_PTR(-ENODEV);
1959	}
1960	default:
1961		driver = get_tty_driver(device, index);
1962		if (!driver)
1963			return ERR_PTR(-ENODEV);
1964		break;
1965	}
1966	return driver;
1967}
1968
1969static struct tty_struct *tty_kopen(dev_t device, int shared)
1970{
1971	struct tty_struct *tty;
1972	struct tty_driver *driver;
1973	int index = -1;
1974
1975	mutex_lock(&tty_mutex);
1976	driver = tty_lookup_driver(device, NULL, &index);
1977	if (IS_ERR(driver)) {
1978		mutex_unlock(&tty_mutex);
1979		return ERR_CAST(driver);
1980	}
1981
1982	/* check whether we're reopening an existing tty */
1983	tty = tty_driver_lookup_tty(driver, NULL, index);
1984	if (IS_ERR(tty) || shared)
1985		goto out;
1986
1987	if (tty) {
1988		/* drop kref from tty_driver_lookup_tty() */
1989		tty_kref_put(tty);
1990		tty = ERR_PTR(-EBUSY);
1991	} else { /* tty_init_dev returns tty with the tty_lock held */
1992		tty = tty_init_dev(driver, index);
1993		if (IS_ERR(tty))
1994			goto out;
1995		tty_port_set_kopened(tty->port, 1);
1996	}
1997out:
1998	mutex_unlock(&tty_mutex);
1999	tty_driver_kref_put(driver);
2000	return tty;
2001}
2002
2003/**
2004 *	tty_kopen_exclusive	-	open a tty device for kernel
2005 *	@device: dev_t of device to open
2006 *
2007 *	Opens tty exclusively for kernel. Performs the driver lookup,
2008 *	makes sure it's not already opened and performs the first-time
2009 *	tty initialization.
2010 *
2011 *	Returns the locked initialized &tty_struct
2012 *
2013 *	Claims the global tty_mutex to serialize:
2014 *	  - concurrent first-time tty initialization
2015 *	  - concurrent tty driver removal w/ lookup
2016 *	  - concurrent tty removal from driver table
2017 */
2018struct tty_struct *tty_kopen_exclusive(dev_t device)
2019{
2020	return tty_kopen(device, 0);
2021}
2022EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2023
2024/**
2025 *	tty_kopen_shared	-	open a tty device for shared in-kernel use
2026 *	@device: dev_t of device to open
2027 *
2028 *	Opens an already existing tty for in-kernel use. Compared to
2029 *	tty_kopen_exclusive() above it doesn't ensure to be the only user.
2030 *
2031 *	Locking is identical to tty_kopen() above.
2032 */
2033struct tty_struct *tty_kopen_shared(dev_t device)
2034{
2035	return tty_kopen(device, 1);
2036}
2037EXPORT_SYMBOL_GPL(tty_kopen_shared);
2038
2039/**
2040 *	tty_open_by_driver	-	open a tty device
2041 *	@device: dev_t of device to open
2042 *	@filp: file pointer to tty
2043 *
2044 *	Performs the driver lookup, checks for a reopen, or otherwise
2045 *	performs the first-time tty initialization.
2046 *
2047 *	Returns the locked initialized or re-opened &tty_struct
2048 *
2049 *	Claims the global tty_mutex to serialize:
2050 *	  - concurrent first-time tty initialization
2051 *	  - concurrent tty driver removal w/ lookup
2052 *	  - concurrent tty removal from driver table
2053 */
2054static struct tty_struct *tty_open_by_driver(dev_t device,
2055					     struct file *filp)
2056{
2057	struct tty_struct *tty;
2058	struct tty_driver *driver = NULL;
2059	int index = -1;
2060	int retval;
2061
2062	mutex_lock(&tty_mutex);
2063	driver = tty_lookup_driver(device, filp, &index);
2064	if (IS_ERR(driver)) {
2065		mutex_unlock(&tty_mutex);
2066		return ERR_CAST(driver);
2067	}
 
 
 
 
2068
2069	/* check whether we're reopening an existing tty */
2070	tty = tty_driver_lookup_tty(driver, filp, index);
2071	if (IS_ERR(tty)) {
2072		mutex_unlock(&tty_mutex);
2073		goto out;
2074	}
2075
2076	if (tty) {
2077		if (tty_port_kopened(tty->port)) {
2078			tty_kref_put(tty);
2079			mutex_unlock(&tty_mutex);
2080			tty = ERR_PTR(-EBUSY);
2081			goto out;
2082		}
2083		mutex_unlock(&tty_mutex);
2084		retval = tty_lock_interruptible(tty);
2085		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2086		if (retval) {
2087			if (retval == -EINTR)
2088				retval = -ERESTARTSYS;
2089			tty = ERR_PTR(retval);
2090			goto out;
2091		}
2092		retval = tty_reopen(tty);
2093		if (retval < 0) {
2094			tty_unlock(tty);
2095			tty = ERR_PTR(retval);
2096		}
2097	} else { /* Returns with the tty_lock held for now */
2098		tty = tty_init_dev(driver, index);
2099		mutex_unlock(&tty_mutex);
2100	}
2101out:
2102	tty_driver_kref_put(driver);
2103	return tty;
2104}
2105
2106/**
2107 *	tty_open		-	open a tty device
2108 *	@inode: inode of device file
2109 *	@filp: file pointer to tty
2110 *
2111 *	tty_open and tty_release keep up the tty count that contains the
2112 *	number of opens done on a tty. We cannot use the inode-count, as
2113 *	different inodes might point to the same tty.
2114 *
2115 *	Open-counting is needed for pty masters, as well as for keeping
2116 *	track of serial lines: DTR is dropped when the last close happens.
2117 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2118 *
2119 *	The termios state of a pty is reset on first open so that
2120 *	settings don't persist across reuse.
2121 *
2122 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2123 *		 tty->count should protect the rest.
2124 *		 ->siglock protects ->signal/->sighand
2125 *
2126 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2127 *	tty_mutex
2128 */
2129
2130static int tty_open(struct inode *inode, struct file *filp)
2131{
2132	struct tty_struct *tty;
2133	int noctty, retval;
2134	dev_t device = inode->i_rdev;
2135	unsigned saved_flags = filp->f_flags;
2136
2137	nonseekable_open(inode, filp);
2138
2139retry_open:
2140	retval = tty_alloc_file(filp);
2141	if (retval)
2142		return -ENOMEM;
2143
2144	tty = tty_open_current_tty(device, filp);
2145	if (!tty)
2146		tty = tty_open_by_driver(device, filp);
2147
2148	if (IS_ERR(tty)) {
2149		tty_free_file(filp);
2150		retval = PTR_ERR(tty);
2151		if (retval != -EAGAIN || signal_pending(current))
2152			return retval;
2153		schedule();
2154		goto retry_open;
2155	}
2156
2157	tty_add_file(tty, filp);
2158
2159	check_tty_count(tty, __func__);
2160	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
 
 
2161
 
 
 
 
 
 
 
2162	if (tty->ops->open)
2163		retval = tty->ops->open(tty, filp);
2164	else
2165		retval = -ENODEV;
2166	filp->f_flags = saved_flags;
2167
 
 
 
 
2168	if (retval) {
2169		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2170
2171		tty_unlock(tty); /* need to call tty_release without BTM */
 
 
2172		tty_release(inode, filp);
2173		if (retval != -ERESTARTSYS)
2174			return retval;
2175
2176		if (signal_pending(current))
2177			return retval;
2178
2179		schedule();
2180		/*
2181		 * Need to reset f_op in case a hangup happened.
2182		 */
2183		if (tty_hung_up_p(filp))
 
2184			filp->f_op = &tty_fops;
 
2185		goto retry_open;
2186	}
2187	clear_bit(TTY_HUPPED, &tty->flags);
 
2188
2189	noctty = (filp->f_flags & O_NOCTTY) ||
2190		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2191		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2192		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2193		  tty->driver->subtype == PTY_TYPE_MASTER);
2194	if (!noctty)
2195		tty_open_proc_set_tty(filp, tty);
2196	tty_unlock(tty);
 
 
 
2197	return 0;
2198}
2199
2200
2201
2202/**
2203 *	tty_poll	-	check tty status
2204 *	@filp: file being polled
2205 *	@wait: poll wait structures to update
2206 *
2207 *	Call the line discipline polling method to obtain the poll
2208 *	status of the device.
2209 *
2210 *	Locking: locks called line discipline but ldisc poll method
2211 *	may be re-entered freely by other callers.
2212 */
2213
2214static __poll_t tty_poll(struct file *filp, poll_table *wait)
2215{
2216	struct tty_struct *tty = file_tty(filp);
2217	struct tty_ldisc *ld;
2218	__poll_t ret = 0;
2219
2220	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2221		return 0;
2222
2223	ld = tty_ldisc_ref_wait(tty);
2224	if (!ld)
2225		return hung_up_tty_poll(filp, wait);
2226	if (ld->ops->poll)
2227		ret = ld->ops->poll(tty, filp, wait);
2228	tty_ldisc_deref(ld);
2229	return ret;
2230}
2231
2232static int __tty_fasync(int fd, struct file *filp, int on)
2233{
2234	struct tty_struct *tty = file_tty(filp);
2235	unsigned long flags;
2236	int retval = 0;
2237
2238	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2239		goto out;
2240
2241	retval = fasync_helper(fd, filp, on, &tty->fasync);
2242	if (retval <= 0)
2243		goto out;
2244
2245	if (on) {
2246		enum pid_type type;
2247		struct pid *pid;
2248
2249		spin_lock_irqsave(&tty->ctrl.lock, flags);
2250		if (tty->ctrl.pgrp) {
2251			pid = tty->ctrl.pgrp;
 
2252			type = PIDTYPE_PGID;
2253		} else {
2254			pid = task_pid(current);
2255			type = PIDTYPE_TGID;
2256		}
2257		get_pid(pid);
2258		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2259		__f_setown(filp, pid, type, 0);
2260		put_pid(pid);
2261		retval = 0;
 
 
 
 
2262	}
 
2263out:
2264	return retval;
2265}
2266
2267static int tty_fasync(int fd, struct file *filp, int on)
2268{
2269	struct tty_struct *tty = file_tty(filp);
2270	int retval = -ENOTTY;
2271
2272	tty_lock(tty);
2273	if (!tty_hung_up_p(filp))
2274		retval = __tty_fasync(fd, filp, on);
2275	tty_unlock(tty);
2276
2277	return retval;
2278}
2279
2280/**
2281 *	tiocsti			-	fake input character
2282 *	@tty: tty to fake input into
2283 *	@p: pointer to character
2284 *
2285 *	Fake input to a tty device. Does the necessary locking and
2286 *	input management.
2287 *
2288 *	FIXME: does not honour flow control ??
2289 *
2290 *	Locking:
2291 *		Called functions take tty_ldiscs_lock
2292 *		current->signal->tty check is safe without locks
 
 
2293 */
2294
2295static int tiocsti(struct tty_struct *tty, char __user *p)
2296{
2297	char ch, mbz = 0;
2298	struct tty_ldisc *ld;
2299
2300	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2301		return -EPERM;
2302	if (get_user(ch, p))
2303		return -EFAULT;
2304	tty_audit_tiocsti(tty, ch);
2305	ld = tty_ldisc_ref_wait(tty);
2306	if (!ld)
2307		return -EIO;
2308	tty_buffer_lock_exclusive(tty->port);
2309	if (ld->ops->receive_buf)
2310		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2311	tty_buffer_unlock_exclusive(tty->port);
2312	tty_ldisc_deref(ld);
2313	return 0;
2314}
2315
2316/**
2317 *	tiocgwinsz		-	implement window query ioctl
2318 *	@tty: tty
2319 *	@arg: user buffer for result
2320 *
2321 *	Copies the kernel idea of the window size into the user buffer.
2322 *
2323 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2324 *		is consistent.
2325 */
2326
2327static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2328{
2329	int err;
2330
2331	mutex_lock(&tty->winsize_mutex);
2332	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2333	mutex_unlock(&tty->winsize_mutex);
2334
2335	return err ? -EFAULT : 0;
2336}
2337
2338/**
2339 *	tty_do_resize		-	resize event
2340 *	@tty: tty being resized
2341 *	@ws: new dimensions
 
2342 *
2343 *	Update the termios variables and send the necessary signals to
2344 *	peform a terminal resize correctly
2345 */
2346
2347int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2348{
2349	struct pid *pgrp;
 
2350
2351	/* Lock the tty */
2352	mutex_lock(&tty->winsize_mutex);
2353	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2354		goto done;
 
 
 
 
 
2355
2356	/* Signal the foreground process group */
2357	pgrp = tty_get_pgrp(tty);
2358	if (pgrp)
2359		kill_pgrp(pgrp, SIGWINCH, 1);
2360	put_pid(pgrp);
2361
2362	tty->winsize = *ws;
2363done:
2364	mutex_unlock(&tty->winsize_mutex);
2365	return 0;
2366}
2367EXPORT_SYMBOL(tty_do_resize);
2368
2369/**
2370 *	tiocswinsz		-	implement window size set ioctl
2371 *	@tty: tty side of tty
2372 *	@arg: user buffer for result
2373 *
2374 *	Copies the user idea of the window size to the kernel. Traditionally
2375 *	this is just advisory information but for the Linux console it
2376 *	actually has driver level meaning and triggers a VC resize.
2377 *
2378 *	Locking:
2379 *		Driver dependent. The default do_resize method takes the
2380 *	tty termios mutex and ctrl.lock. The console takes its own lock
2381 *	then calls into the default method.
2382 */
2383
2384static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2385{
2386	struct winsize tmp_ws;
2387
2388	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2389		return -EFAULT;
2390
2391	if (tty->ops->resize)
2392		return tty->ops->resize(tty, &tmp_ws);
2393	else
2394		return tty_do_resize(tty, &tmp_ws);
2395}
2396
2397/**
2398 *	tioccons	-	allow admin to move logical console
2399 *	@file: the file to become console
2400 *
2401 *	Allow the administrator to move the redirected console device
2402 *
2403 *	Locking: uses redirect_lock to guard the redirect information
2404 */
2405
2406static int tioccons(struct file *file)
2407{
2408	if (!capable(CAP_SYS_ADMIN))
2409		return -EPERM;
2410	if (file->f_op->write_iter == redirected_tty_write) {
2411		struct file *f;
2412
2413		spin_lock(&redirect_lock);
2414		f = redirect;
2415		redirect = NULL;
2416		spin_unlock(&redirect_lock);
2417		if (f)
2418			fput(f);
2419		return 0;
2420	}
2421	if (file->f_op->write_iter != tty_write)
2422		return -ENOTTY;
2423	if (!(file->f_mode & FMODE_WRITE))
2424		return -EBADF;
2425	if (!(file->f_mode & FMODE_CAN_WRITE))
2426		return -EINVAL;
2427	spin_lock(&redirect_lock);
2428	if (redirect) {
2429		spin_unlock(&redirect_lock);
2430		return -EBUSY;
2431	}
2432	redirect = get_file(file);
 
2433	spin_unlock(&redirect_lock);
2434	return 0;
2435}
2436
2437/**
2438 *	tiocsetd	-	set line discipline
2439 *	@tty: tty device
2440 *	@p: pointer to user data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441 *
2442 *	Set the line discipline according to user request.
 
2443 *
2444 *	Locking: see tty_set_ldisc, this function is just a helper
2445 */
2446
2447static int tiocsetd(struct tty_struct *tty, int __user *p)
2448{
2449	int disc;
2450	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2451
2452	if (get_user(disc, p))
 
 
 
 
 
 
 
 
2453		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2454
2455	ret = tty_set_ldisc(tty, disc);
 
 
 
 
 
 
 
 
 
 
2456
2457	return ret;
 
 
 
 
 
 
 
 
 
 
2458}
2459
2460/**
2461 *	tiocgetd	-	get line discipline
2462 *	@tty: tty device
2463 *	@p: pointer to user data
2464 *
2465 *	Retrieves the line discipline id directly from the ldisc.
2466 *
2467 *	Locking: waits for ldisc reference (in case the line discipline
2468 *		is changing or the tty is being hungup)
2469 */
2470
2471static int tiocgetd(struct tty_struct *tty, int __user *p)
2472{
2473	struct tty_ldisc *ld;
2474	int ret;
2475
2476	ld = tty_ldisc_ref_wait(tty);
2477	if (!ld)
2478		return -EIO;
2479	ret = put_user(ld->ops->num, p);
2480	tty_ldisc_deref(ld);
2481	return ret;
2482}
2483
2484/**
2485 *	send_break	-	performed time break
2486 *	@tty: device to break on
2487 *	@duration: timeout in mS
2488 *
2489 *	Perform a timed break on hardware that lacks its own driver level
2490 *	timed break functionality.
2491 *
2492 *	Locking:
2493 *		atomic_write_lock serializes
2494 *
2495 */
2496
2497static int send_break(struct tty_struct *tty, unsigned int duration)
2498{
2499	int retval;
2500
2501	if (tty->ops->break_ctl == NULL)
2502		return 0;
2503
2504	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2505		retval = tty->ops->break_ctl(tty, duration);
2506	else {
2507		/* Do the work ourselves */
2508		if (tty_write_lock(tty, 0) < 0)
2509			return -EINTR;
2510		retval = tty->ops->break_ctl(tty, -1);
2511		if (retval)
2512			goto out;
2513		if (!signal_pending(current))
2514			msleep_interruptible(duration);
2515		retval = tty->ops->break_ctl(tty, 0);
2516out:
2517		tty_write_unlock(tty);
2518		if (signal_pending(current))
2519			retval = -EINTR;
2520	}
2521	return retval;
2522}
2523
2524/**
2525 *	tty_tiocmget		-	get modem status
2526 *	@tty: tty device
 
2527 *	@p: pointer to result
2528 *
2529 *	Obtain the modem status bits from the tty driver if the feature
2530 *	is supported. Return -ENOTTY if it is not available.
2531 *
2532 *	Locking: none (up to the driver)
2533 */
2534
2535static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2536{
2537	int retval = -ENOTTY;
2538
2539	if (tty->ops->tiocmget) {
2540		retval = tty->ops->tiocmget(tty);
2541
2542		if (retval >= 0)
2543			retval = put_user(retval, p);
2544	}
2545	return retval;
2546}
2547
2548/**
2549 *	tty_tiocmset		-	set modem status
2550 *	@tty: tty device
2551 *	@cmd: command - clear bits, set bits or set all
2552 *	@p: pointer to desired bits
2553 *
2554 *	Set the modem status bits from the tty driver if the feature
2555 *	is supported. Return -ENOTTY if it is not available.
2556 *
2557 *	Locking: none (up to the driver)
2558 */
2559
2560static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2561	     unsigned __user *p)
2562{
2563	int retval;
2564	unsigned int set, clear, val;
2565
2566	if (tty->ops->tiocmset == NULL)
2567		return -ENOTTY;
2568
2569	retval = get_user(val, p);
2570	if (retval)
2571		return retval;
2572	set = clear = 0;
2573	switch (cmd) {
2574	case TIOCMBIS:
2575		set = val;
2576		break;
2577	case TIOCMBIC:
2578		clear = val;
2579		break;
2580	case TIOCMSET:
2581		set = val;
2582		clear = ~val;
2583		break;
2584	}
2585	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2587	return tty->ops->tiocmset(tty, set, clear);
2588}
2589
2590/**
2591 *	tty_get_icount		-	get tty statistics
2592 *	@tty: tty device
2593 *	@icount: output parameter
2594 *
2595 *	Gets a copy of the tty's icount statistics.
2596 *
2597 *	Locking: none (up to the driver)
2598 */
2599int tty_get_icount(struct tty_struct *tty,
2600		   struct serial_icounter_struct *icount)
2601{
2602	memset(icount, 0, sizeof(*icount));
2603
2604	if (tty->ops->get_icount)
2605		return tty->ops->get_icount(tty, icount);
2606	else
2607		return -ENOTTY;
2608}
2609EXPORT_SYMBOL_GPL(tty_get_icount);
2610
2611static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2612{
 
2613	struct serial_icounter_struct icount;
2614	int retval;
2615
2616	retval = tty_get_icount(tty, &icount);
2617	if (retval != 0)
2618		return retval;
2619
2620	if (copy_to_user(arg, &icount, sizeof(icount)))
2621		return -EFAULT;
2622	return 0;
2623}
2624
2625static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2626{
2627	char comm[TASK_COMM_LEN];
2628	int flags;
2629
2630	flags = ss->flags & ASYNC_DEPRECATED;
2631
2632	if (flags)
2633		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2634				__func__, get_task_comm(comm, current), flags);
2635
2636	if (!tty->ops->set_serial)
2637		return -ENOTTY;
2638
2639	return tty->ops->set_serial(tty, ss);
2640}
 
2641
2642static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2643{
2644	struct serial_struct v;
2645
2646	if (copy_from_user(&v, ss, sizeof(*ss)))
2647		return -EFAULT;
2648
2649	return tty_set_serial(tty, &v);
2650}
2651
2652static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2653{
2654	struct serial_struct v;
2655	int err;
2656
2657	memset(&v, 0, sizeof(v));
2658	if (!tty->ops->get_serial)
2659		return -ENOTTY;
2660	err = tty->ops->get_serial(tty, &v);
2661	if (!err && copy_to_user(ss, &v, sizeof(v)))
2662		err = -EFAULT;
2663	return err;
2664}
2665
2666/*
2667 * if pty, return the slave side (real_tty)
2668 * otherwise, return self
2669 */
2670static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2671{
2672	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2673	    tty->driver->subtype == PTY_TYPE_MASTER)
2674		tty = tty->link;
2675	return tty;
2676}
 
2677
2678/*
2679 * Split this up, as gcc can choke on it otherwise..
2680 */
2681long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2682{
2683	struct tty_struct *tty = file_tty(file);
2684	struct tty_struct *real_tty;
2685	void __user *p = (void __user *)arg;
2686	int retval;
2687	struct tty_ldisc *ld;
 
2688
2689	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2690		return -EINVAL;
2691
2692	real_tty = tty_pair_get_tty(tty);
2693
2694	/*
2695	 * Factor out some common prep work
2696	 */
2697	switch (cmd) {
2698	case TIOCSETD:
2699	case TIOCSBRK:
2700	case TIOCCBRK:
2701	case TCSBRK:
2702	case TCSBRKP:
2703		retval = tty_check_change(tty);
2704		if (retval)
2705			return retval;
2706		if (cmd != TIOCCBRK) {
2707			tty_wait_until_sent(tty, 0);
2708			if (signal_pending(current))
2709				return -EINTR;
2710		}
2711		break;
2712	}
2713
2714	/*
2715	 *	Now do the stuff.
2716	 */
2717	switch (cmd) {
2718	case TIOCSTI:
2719		return tiocsti(tty, p);
2720	case TIOCGWINSZ:
2721		return tiocgwinsz(real_tty, p);
2722	case TIOCSWINSZ:
2723		return tiocswinsz(real_tty, p);
2724	case TIOCCONS:
2725		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2726	case TIOCEXCL:
2727		set_bit(TTY_EXCLUSIVE, &tty->flags);
2728		return 0;
2729	case TIOCNXCL:
2730		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2731		return 0;
2732	case TIOCGEXCL:
2733	{
2734		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2735
2736		return put_user(excl, (int __user *)p);
2737	}
 
 
 
 
 
 
 
2738	case TIOCGETD:
2739		return tiocgetd(tty, p);
2740	case TIOCSETD:
2741		return tiocsetd(tty, p);
2742	case TIOCVHANGUP:
2743		if (!capable(CAP_SYS_ADMIN))
2744			return -EPERM;
2745		tty_vhangup(tty);
2746		return 0;
2747	case TIOCGDEV:
2748	{
2749		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2750
2751		return put_user(ret, (unsigned int __user *)p);
2752	}
2753	/*
2754	 * Break handling
2755	 */
2756	case TIOCSBRK:	/* Turn break on, unconditionally */
2757		if (tty->ops->break_ctl)
2758			return tty->ops->break_ctl(tty, -1);
2759		return 0;
2760	case TIOCCBRK:	/* Turn break off, unconditionally */
2761		if (tty->ops->break_ctl)
2762			return tty->ops->break_ctl(tty, 0);
2763		return 0;
2764	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2765		/* non-zero arg means wait for all output data
2766		 * to be sent (performed above) but don't send break.
2767		 * This is used by the tcdrain() termios function.
2768		 */
2769		if (!arg)
2770			return send_break(tty, 250);
2771		return 0;
2772	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2773		return send_break(tty, arg ? arg*100 : 250);
2774
2775	case TIOCMGET:
2776		return tty_tiocmget(tty, p);
2777	case TIOCMSET:
2778	case TIOCMBIC:
2779	case TIOCMBIS:
2780		return tty_tiocmset(tty, cmd, p);
2781	case TIOCGICOUNT:
2782		return tty_tiocgicount(tty, p);
 
 
 
 
2783	case TCFLSH:
2784		switch (arg) {
2785		case TCIFLUSH:
2786		case TCIOFLUSH:
2787		/* flush tty buffer and allow ldisc to process ioctl */
2788			tty_buffer_flush(tty, NULL);
2789			break;
2790		}
2791		break;
2792	case TIOCSSERIAL:
2793		return tty_tiocsserial(tty, p);
2794	case TIOCGSERIAL:
2795		return tty_tiocgserial(tty, p);
2796	case TIOCGPTPEER:
2797		/* Special because the struct file is needed */
2798		return ptm_open_peer(file, tty, (int)arg);
2799	default:
2800		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2801		if (retval != -ENOIOCTLCMD)
2802			return retval;
2803	}
2804	if (tty->ops->ioctl) {
2805		retval = tty->ops->ioctl(tty, cmd, arg);
2806		if (retval != -ENOIOCTLCMD)
2807			return retval;
2808	}
2809	ld = tty_ldisc_ref_wait(tty);
2810	if (!ld)
2811		return hung_up_tty_ioctl(file, cmd, arg);
2812	retval = -EINVAL;
2813	if (ld->ops->ioctl) {
2814		retval = ld->ops->ioctl(tty, file, cmd, arg);
2815		if (retval == -ENOIOCTLCMD)
2816			retval = -ENOTTY;
2817	}
2818	tty_ldisc_deref(ld);
2819	return retval;
2820}
2821
2822#ifdef CONFIG_COMPAT
2823
2824struct serial_struct32 {
2825	compat_int_t    type;
2826	compat_int_t    line;
2827	compat_uint_t   port;
2828	compat_int_t    irq;
2829	compat_int_t    flags;
2830	compat_int_t    xmit_fifo_size;
2831	compat_int_t    custom_divisor;
2832	compat_int_t    baud_base;
2833	unsigned short  close_delay;
2834	char    io_type;
2835	char    reserved_char;
2836	compat_int_t    hub6;
2837	unsigned short  closing_wait; /* time to wait before closing */
2838	unsigned short  closing_wait2; /* no longer used... */
2839	compat_uint_t   iomem_base;
2840	unsigned short  iomem_reg_shift;
2841	unsigned int    port_high;
2842	/* compat_ulong_t  iomap_base FIXME */
2843	compat_int_t    reserved;
2844};
2845
2846static int compat_tty_tiocsserial(struct tty_struct *tty,
2847		struct serial_struct32 __user *ss)
2848{
2849	struct serial_struct32 v32;
2850	struct serial_struct v;
2851
2852	if (copy_from_user(&v32, ss, sizeof(*ss)))
2853		return -EFAULT;
2854
2855	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2856	v.iomem_base = compat_ptr(v32.iomem_base);
2857	v.iomem_reg_shift = v32.iomem_reg_shift;
2858	v.port_high = v32.port_high;
2859	v.iomap_base = 0;
2860
2861	return tty_set_serial(tty, &v);
2862}
2863
2864static int compat_tty_tiocgserial(struct tty_struct *tty,
2865			struct serial_struct32 __user *ss)
2866{
2867	struct serial_struct32 v32;
2868	struct serial_struct v;
2869	int err;
2870
2871	memset(&v, 0, sizeof(v));
2872	memset(&v32, 0, sizeof(v32));
2873
2874	if (!tty->ops->get_serial)
2875		return -ENOTTY;
2876	err = tty->ops->get_serial(tty, &v);
2877	if (!err) {
2878		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2879		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2880			0xfffffff : ptr_to_compat(v.iomem_base);
2881		v32.iomem_reg_shift = v.iomem_reg_shift;
2882		v32.port_high = v.port_high;
2883		if (copy_to_user(ss, &v32, sizeof(v32)))
2884			err = -EFAULT;
2885	}
2886	return err;
2887}
2888static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2889				unsigned long arg)
2890{
 
2891	struct tty_struct *tty = file_tty(file);
2892	struct tty_ldisc *ld;
2893	int retval = -ENOIOCTLCMD;
2894
2895	switch (cmd) {
2896	case TIOCOUTQ:
2897	case TIOCSTI:
2898	case TIOCGWINSZ:
2899	case TIOCSWINSZ:
2900	case TIOCGEXCL:
2901	case TIOCGETD:
2902	case TIOCSETD:
2903	case TIOCGDEV:
2904	case TIOCMGET:
2905	case TIOCMSET:
2906	case TIOCMBIC:
2907	case TIOCMBIS:
2908	case TIOCGICOUNT:
2909	case TIOCGPGRP:
2910	case TIOCSPGRP:
2911	case TIOCGSID:
2912	case TIOCSERGETLSR:
2913	case TIOCGRS485:
2914	case TIOCSRS485:
2915#ifdef TIOCGETP
2916	case TIOCGETP:
2917	case TIOCSETP:
2918	case TIOCSETN:
2919#endif
2920#ifdef TIOCGETC
2921	case TIOCGETC:
2922	case TIOCSETC:
2923#endif
2924#ifdef TIOCGLTC
2925	case TIOCGLTC:
2926	case TIOCSLTC:
2927#endif
2928	case TCSETSF:
2929	case TCSETSW:
2930	case TCSETS:
2931	case TCGETS:
2932#ifdef TCGETS2
2933	case TCGETS2:
2934	case TCSETSF2:
2935	case TCSETSW2:
2936	case TCSETS2:
2937#endif
2938	case TCGETA:
2939	case TCSETAF:
2940	case TCSETAW:
2941	case TCSETA:
2942	case TIOCGLCKTRMIOS:
2943	case TIOCSLCKTRMIOS:
2944#ifdef TCGETX
2945	case TCGETX:
2946	case TCSETX:
2947	case TCSETXW:
2948	case TCSETXF:
2949#endif
2950	case TIOCGSOFTCAR:
2951	case TIOCSSOFTCAR:
2952
2953	case PPPIOCGCHAN:
2954	case PPPIOCGUNIT:
2955		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2956	case TIOCCONS:
2957	case TIOCEXCL:
2958	case TIOCNXCL:
2959	case TIOCVHANGUP:
2960	case TIOCSBRK:
2961	case TIOCCBRK:
2962	case TCSBRK:
2963	case TCSBRKP:
2964	case TCFLSH:
2965	case TIOCGPTPEER:
2966	case TIOCNOTTY:
2967	case TIOCSCTTY:
2968	case TCXONC:
2969	case TIOCMIWAIT:
2970	case TIOCSERCONFIG:
2971		return tty_ioctl(file, cmd, arg);
2972	}
2973
2974	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2975		return -EINVAL;
2976
2977	switch (cmd) {
2978	case TIOCSSERIAL:
2979		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2980	case TIOCGSERIAL:
2981		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2982	}
2983	if (tty->ops->compat_ioctl) {
2984		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2985		if (retval != -ENOIOCTLCMD)
2986			return retval;
2987	}
2988
2989	ld = tty_ldisc_ref_wait(tty);
2990	if (!ld)
2991		return hung_up_tty_compat_ioctl(file, cmd, arg);
2992	if (ld->ops->compat_ioctl)
2993		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2994	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2995		retval = ld->ops->ioctl(tty, file,
2996				(unsigned long)compat_ptr(cmd), arg);
2997	tty_ldisc_deref(ld);
2998
2999	return retval;
3000}
3001#endif
3002
3003static int this_tty(const void *t, struct file *file, unsigned fd)
3004{
3005	if (likely(file->f_op->read_iter != tty_read))
3006		return 0;
3007	return file_tty(file) != t ? 0 : fd + 1;
3008}
3009
3010/*
3011 * This implements the "Secure Attention Key" ---  the idea is to
3012 * prevent trojan horses by killing all processes associated with this
3013 * tty when the user hits the "Secure Attention Key".  Required for
3014 * super-paranoid applications --- see the Orange Book for more details.
3015 *
3016 * This code could be nicer; ideally it should send a HUP, wait a few
3017 * seconds, then send a INT, and then a KILL signal.  But you then
3018 * have to coordinate with the init process, since all processes associated
3019 * with the current tty must be dead before the new getty is allowed
3020 * to spawn.
3021 *
3022 * Now, if it would be correct ;-/ The current code has a nasty hole -
3023 * it doesn't catch files in flight. We may send the descriptor to ourselves
3024 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3025 *
3026 * Nasty bug: do_SAK is being called in interrupt context.  This can
3027 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3028 */
3029void __do_SAK(struct tty_struct *tty)
3030{
3031#ifdef TTY_SOFT_SAK
3032	tty_hangup(tty);
3033#else
3034	struct task_struct *g, *p;
3035	struct pid *session;
3036	int		i;
3037	unsigned long flags;
 
3038
3039	if (!tty)
3040		return;
3041
3042	spin_lock_irqsave(&tty->ctrl.lock, flags);
3043	session = get_pid(tty->ctrl.session);
3044	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3045
3046	tty_ldisc_flush(tty);
3047
3048	tty_driver_flush_buffer(tty);
3049
3050	read_lock(&tasklist_lock);
3051	/* Kill the entire session */
3052	do_each_pid_task(session, PIDTYPE_SID, p) {
3053		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3054			   task_pid_nr(p), p->comm);
3055		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
3056	} while_each_pid_task(session, PIDTYPE_SID, p);
3057
3058	/* Now kill any processes that happen to have the tty open */
 
3059	do_each_thread(g, p) {
3060		if (p->signal->tty == tty) {
3061			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3062				   task_pid_nr(p), p->comm);
3063			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
3064			continue;
3065		}
3066		task_lock(p);
3067		i = iterate_fd(p->files, 0, this_tty, tty);
3068		if (i != 0) {
3069			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3070				   task_pid_nr(p), p->comm, i - 1);
3071			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3072		}
3073		task_unlock(p);
3074	} while_each_thread(g, p);
3075	read_unlock(&tasklist_lock);
3076	put_pid(session);
3077#endif
3078}
3079
3080static void do_SAK_work(struct work_struct *work)
3081{
3082	struct tty_struct *tty =
3083		container_of(work, struct tty_struct, SAK_work);
3084	__do_SAK(tty);
3085}
3086
3087/*
3088 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3089 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3090 * the values which we write to it will be identical to the values which it
3091 * already has. --akpm
3092 */
3093void do_SAK(struct tty_struct *tty)
3094{
3095	if (!tty)
3096		return;
3097	schedule_work(&tty->SAK_work);
3098}
 
3099EXPORT_SYMBOL(do_SAK);
3100
 
 
 
 
 
 
3101/* Must put_device() after it's unused! */
3102static struct device *tty_get_device(struct tty_struct *tty)
3103{
3104	dev_t devt = tty_devnum(tty);
3105
3106	return class_find_device_by_devt(tty_class, devt);
3107}
3108
3109
3110/*
3111 *	alloc_tty_struct
 
3112 *
3113 *	This subroutine allocates and initializes a tty structure.
 
3114 *
3115 *	Locking: none - tty in question is not exposed at this point
3116 */
3117
3118struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
 
3119{
3120	struct tty_struct *tty;
3121
3122	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3123	if (!tty)
3124		return NULL;
3125
3126	kref_init(&tty->kref);
3127	tty->magic = TTY_MAGIC;
3128	if (tty_ldisc_init(tty)) {
3129		kfree(tty);
3130		return NULL;
3131	}
3132	tty->ctrl.session = NULL;
3133	tty->ctrl.pgrp = NULL;
3134	mutex_init(&tty->legacy_mutex);
3135	mutex_init(&tty->throttle_mutex);
3136	init_rwsem(&tty->termios_rwsem);
3137	mutex_init(&tty->winsize_mutex);
3138	init_ldsem(&tty->ldisc_sem);
3139	init_waitqueue_head(&tty->write_wait);
3140	init_waitqueue_head(&tty->read_wait);
3141	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
3142	mutex_init(&tty->atomic_write_lock);
3143	spin_lock_init(&tty->ctrl.lock);
3144	spin_lock_init(&tty->flow.lock);
3145	spin_lock_init(&tty->files_lock);
 
3146	INIT_LIST_HEAD(&tty->tty_files);
3147	INIT_WORK(&tty->SAK_work, do_SAK_work);
3148
3149	tty->driver = driver;
3150	tty->ops = driver->ops;
3151	tty->index = idx;
3152	tty_line_name(driver, idx, tty->name);
3153	tty->dev = tty_get_device(tty);
 
3154
3155	return tty;
 
 
 
 
 
 
 
 
 
 
 
3156}
3157
3158/**
3159 *	tty_put_char	-	write one character to a tty
3160 *	@tty: tty
3161 *	@ch: character
3162 *
3163 *	Write one byte to the tty using the provided put_char method
3164 *	if present. Returns the number of characters successfully output.
3165 *
3166 *	Note: the specific put_char operation in the driver layer may go
3167 *	away soon. Don't call it directly, use this method
3168 */
3169
3170int tty_put_char(struct tty_struct *tty, unsigned char ch)
3171{
3172	if (tty->ops->put_char)
3173		return tty->ops->put_char(tty, ch);
3174	return tty->ops->write(tty, &ch, 1);
3175}
3176EXPORT_SYMBOL_GPL(tty_put_char);
3177
3178struct class *tty_class;
3179
3180static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3181		unsigned int index, unsigned int count)
3182{
3183	int err;
3184
3185	/* init here, since reused cdevs cause crashes */
3186	driver->cdevs[index] = cdev_alloc();
3187	if (!driver->cdevs[index])
3188		return -ENOMEM;
3189	driver->cdevs[index]->ops = &tty_fops;
3190	driver->cdevs[index]->owner = driver->owner;
3191	err = cdev_add(driver->cdevs[index], dev, count);
3192	if (err)
3193		kobject_put(&driver->cdevs[index]->kobj);
3194	return err;
3195}
3196
3197/**
3198 *	tty_register_device - register a tty device
3199 *	@driver: the tty driver that describes the tty device
3200 *	@index: the index in the tty driver for this tty device
3201 *	@device: a struct device that is associated with this tty device.
3202 *		This field is optional, if there is no known struct device
3203 *		for this tty device it can be set to NULL safely.
3204 *
3205 *	Returns a pointer to the struct device for this tty device
3206 *	(or ERR_PTR(-EFOO) on error).
3207 *
3208 *	This call is required to be made to register an individual tty device
3209 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3210 *	that bit is not set, this function should not be called by a tty
3211 *	driver.
3212 *
3213 *	Locking: ??
3214 */
3215
3216struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3217				   struct device *device)
3218{
3219	return tty_register_device_attr(driver, index, device, NULL, NULL);
3220}
3221EXPORT_SYMBOL(tty_register_device);
3222
3223static void tty_device_create_release(struct device *dev)
3224{
3225	dev_dbg(dev, "releasing...\n");
3226	kfree(dev);
3227}
3228
3229/**
3230 *	tty_register_device_attr - register a tty device
3231 *	@driver: the tty driver that describes the tty device
3232 *	@index: the index in the tty driver for this tty device
3233 *	@device: a struct device that is associated with this tty device.
3234 *		This field is optional, if there is no known struct device
3235 *		for this tty device it can be set to NULL safely.
3236 *	@drvdata: Driver data to be set to device.
3237 *	@attr_grp: Attribute group to be set on device.
3238 *
3239 *	Returns a pointer to the struct device for this tty device
3240 *	(or ERR_PTR(-EFOO) on error).
3241 *
3242 *	This call is required to be made to register an individual tty device
3243 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3244 *	that bit is not set, this function should not be called by a tty
3245 *	driver.
3246 *
3247 *	Locking: ??
3248 */
3249struct device *tty_register_device_attr(struct tty_driver *driver,
3250				   unsigned index, struct device *device,
3251				   void *drvdata,
3252				   const struct attribute_group **attr_grp)
3253{
3254	char name[64];
3255	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3256	struct ktermios *tp;
3257	struct device *dev;
3258	int retval;
3259
3260	if (index >= driver->num) {
3261		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3262		       driver->name, index);
3263		return ERR_PTR(-EINVAL);
3264	}
3265
3266	if (driver->type == TTY_DRIVER_TYPE_PTY)
3267		pty_line_name(driver, index, name);
3268	else
3269		tty_line_name(driver, index, name);
3270
3271	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3272	if (!dev)
3273		return ERR_PTR(-ENOMEM);
3274
3275	dev->devt = devt;
3276	dev->class = tty_class;
3277	dev->parent = device;
3278	dev->release = tty_device_create_release;
3279	dev_set_name(dev, "%s", name);
3280	dev->groups = attr_grp;
3281	dev_set_drvdata(dev, drvdata);
3282
3283	dev_set_uevent_suppress(dev, 1);
3284
3285	retval = device_register(dev);
3286	if (retval)
3287		goto err_put;
3288
3289	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3290		/*
3291		 * Free any saved termios data so that the termios state is
3292		 * reset when reusing a minor number.
3293		 */
3294		tp = driver->termios[index];
3295		if (tp) {
3296			driver->termios[index] = NULL;
3297			kfree(tp);
3298		}
3299
3300		retval = tty_cdev_add(driver, devt, index, 1);
3301		if (retval)
3302			goto err_del;
3303	}
3304
3305	dev_set_uevent_suppress(dev, 0);
3306	kobject_uevent(&dev->kobj, KOBJ_ADD);
3307
3308	return dev;
3309
3310err_del:
3311	device_del(dev);
3312err_put:
3313	put_device(dev);
3314
3315	return ERR_PTR(retval);
3316}
3317EXPORT_SYMBOL_GPL(tty_register_device_attr);
3318
3319/**
3320 *	tty_unregister_device - unregister a tty device
3321 *	@driver: the tty driver that describes the tty device
3322 *	@index: the index in the tty driver for this tty device
3323 *
3324 *	If a tty device is registered with a call to tty_register_device() then
3325 *	this function must be called when the tty device is gone.
3326 *
3327 *	Locking: ??
3328 */
3329
3330void tty_unregister_device(struct tty_driver *driver, unsigned index)
3331{
3332	device_destroy(tty_class,
3333		MKDEV(driver->major, driver->minor_start) + index);
3334	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3335		cdev_del(driver->cdevs[index]);
3336		driver->cdevs[index] = NULL;
3337	}
3338}
3339EXPORT_SYMBOL(tty_unregister_device);
3340
3341/**
3342 * __tty_alloc_driver -- allocate tty driver
3343 * @lines: count of lines this driver can handle at most
3344 * @owner: module which is responsible for this driver
3345 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3346 *
3347 * This should not be called directly, some of the provided macros should be
3348 * used instead. Use IS_ERR and friends on @retval.
3349 */
3350struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3351		unsigned long flags)
3352{
3353	struct tty_driver *driver;
3354	unsigned int cdevs = 1;
3355	int err;
3356
3357	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3358		return ERR_PTR(-EINVAL);
3359
3360	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3361	if (!driver)
3362		return ERR_PTR(-ENOMEM);
3363
3364	kref_init(&driver->kref);
3365	driver->magic = TTY_DRIVER_MAGIC;
3366	driver->num = lines;
3367	driver->owner = owner;
3368	driver->flags = flags;
3369
3370	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3371		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3372				GFP_KERNEL);
3373		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3374				GFP_KERNEL);
3375		if (!driver->ttys || !driver->termios) {
3376			err = -ENOMEM;
3377			goto err_free_all;
3378		}
3379	}
3380
3381	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3382		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3383				GFP_KERNEL);
3384		if (!driver->ports) {
3385			err = -ENOMEM;
3386			goto err_free_all;
3387		}
3388		cdevs = lines;
3389	}
3390
3391	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3392	if (!driver->cdevs) {
3393		err = -ENOMEM;
3394		goto err_free_all;
3395	}
3396
3397	return driver;
3398err_free_all:
3399	kfree(driver->ports);
3400	kfree(driver->ttys);
3401	kfree(driver->termios);
3402	kfree(driver->cdevs);
3403	kfree(driver);
3404	return ERR_PTR(err);
3405}
3406EXPORT_SYMBOL(__tty_alloc_driver);
3407
3408static void destruct_tty_driver(struct kref *kref)
3409{
3410	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3411	int i;
3412	struct ktermios *tp;
 
3413
3414	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3415		for (i = 0; i < driver->num; i++) {
3416			tp = driver->termios[i];
3417			if (tp) {
3418				driver->termios[i] = NULL;
3419				kfree(tp);
3420			}
3421			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3422				tty_unregister_device(driver, i);
3423		}
 
3424		proc_tty_unregister_driver(driver);
3425		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3426			cdev_del(driver->cdevs[0]);
 
 
3427	}
3428	kfree(driver->cdevs);
3429	kfree(driver->ports);
3430	kfree(driver->termios);
3431	kfree(driver->ttys);
3432	kfree(driver);
3433}
3434
3435void tty_driver_kref_put(struct tty_driver *driver)
3436{
3437	kref_put(&driver->kref, destruct_tty_driver);
3438}
3439EXPORT_SYMBOL(tty_driver_kref_put);
3440
3441void tty_set_operations(struct tty_driver *driver,
3442			const struct tty_operations *op)
3443{
3444	driver->ops = op;
3445};
3446EXPORT_SYMBOL(tty_set_operations);
3447
3448void put_tty_driver(struct tty_driver *d)
3449{
3450	tty_driver_kref_put(d);
3451}
3452EXPORT_SYMBOL(put_tty_driver);
3453
3454/*
3455 * Called by a tty driver to register itself.
3456 */
3457int tty_register_driver(struct tty_driver *driver)
3458{
3459	int error;
3460	int i;
3461	dev_t dev;
 
3462	struct device *d;
3463
 
 
 
 
 
 
3464	if (!driver->major) {
3465		error = alloc_chrdev_region(&dev, driver->minor_start,
3466						driver->num, driver->name);
3467		if (!error) {
3468			driver->major = MAJOR(dev);
3469			driver->minor_start = MINOR(dev);
3470		}
3471	} else {
3472		dev = MKDEV(driver->major, driver->minor_start);
3473		error = register_chrdev_region(dev, driver->num, driver->name);
3474	}
3475	if (error < 0)
3476		goto err;
 
 
 
 
 
 
 
 
 
 
3477
3478	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3479		error = tty_cdev_add(driver, dev, 0, driver->num);
3480		if (error)
3481			goto err_unreg_char;
 
 
 
 
 
3482	}
3483
3484	mutex_lock(&tty_mutex);
3485	list_add(&driver->tty_drivers, &tty_drivers);
3486	mutex_unlock(&tty_mutex);
3487
3488	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3489		for (i = 0; i < driver->num; i++) {
3490			d = tty_register_device(driver, i, NULL);
3491			if (IS_ERR(d)) {
3492				error = PTR_ERR(d);
3493				goto err_unreg_devs;
3494			}
3495		}
3496	}
3497	proc_tty_register_driver(driver);
3498	driver->flags |= TTY_DRIVER_INSTALLED;
3499	return 0;
3500
3501err_unreg_devs:
3502	for (i--; i >= 0; i--)
3503		tty_unregister_device(driver, i);
3504
3505	mutex_lock(&tty_mutex);
3506	list_del(&driver->tty_drivers);
3507	mutex_unlock(&tty_mutex);
3508
3509err_unreg_char:
3510	unregister_chrdev_region(dev, driver->num);
3511err:
 
 
3512	return error;
3513}
 
3514EXPORT_SYMBOL(tty_register_driver);
3515
3516/*
3517 * Called by a tty driver to unregister itself.
3518 */
3519void tty_unregister_driver(struct tty_driver *driver)
3520{
 
 
 
 
 
3521	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3522				driver->num);
3523	mutex_lock(&tty_mutex);
3524	list_del(&driver->tty_drivers);
3525	mutex_unlock(&tty_mutex);
 
3526}
 
3527EXPORT_SYMBOL(tty_unregister_driver);
3528
3529dev_t tty_devnum(struct tty_struct *tty)
3530{
3531	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3532}
3533EXPORT_SYMBOL(tty_devnum);
3534
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3535void tty_default_fops(struct file_operations *fops)
3536{
3537	*fops = tty_fops;
3538}
3539
3540static char *tty_devnode(struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3541{
3542	if (!mode)
3543		return NULL;
3544	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3545	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3546		*mode = 0666;
3547	return NULL;
3548}
3549
3550static int __init tty_class_init(void)
3551{
3552	tty_class = class_create(THIS_MODULE, "tty");
3553	if (IS_ERR(tty_class))
3554		return PTR_ERR(tty_class);
3555	tty_class->devnode = tty_devnode;
3556	return 0;
3557}
3558
3559postcore_initcall(tty_class_init);
3560
3561/* 3/2004 jmc: why do these devices exist? */
3562static struct cdev tty_cdev, console_cdev;
3563
3564static ssize_t show_cons_active(struct device *dev,
3565				struct device_attribute *attr, char *buf)
3566{
3567	struct console *cs[16];
3568	int i = 0;
3569	struct console *c;
3570	ssize_t count = 0;
3571
3572	console_lock();
3573	for_each_console(c) {
3574		if (!c->device)
3575			continue;
3576		if (!c->write)
3577			continue;
3578		if ((c->flags & CON_ENABLED) == 0)
3579			continue;
3580		cs[i++] = c;
3581		if (i >= ARRAY_SIZE(cs))
3582			break;
3583	}
3584	while (i--) {
3585		int index = cs[i]->index;
3586		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3587
3588		/* don't resolve tty0 as some programs depend on it */
3589		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3590			count += tty_line_name(drv, index, buf + count);
3591		else
3592			count += sprintf(buf + count, "%s%d",
3593					 cs[i]->name, cs[i]->index);
3594
3595		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3596	}
3597	console_unlock();
3598
3599	return count;
3600}
3601static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3602
3603static struct attribute *cons_dev_attrs[] = {
3604	&dev_attr_active.attr,
3605	NULL
3606};
3607
3608ATTRIBUTE_GROUPS(cons_dev);
3609
3610static struct device *consdev;
3611
3612void console_sysfs_notify(void)
3613{
3614	if (consdev)
3615		sysfs_notify(&consdev->kobj, NULL, "active");
3616}
3617
3618/*
3619 * Ok, now we can initialize the rest of the tty devices and can count
3620 * on memory allocations, interrupts etc..
3621 */
3622int __init tty_init(void)
3623{
3624	tty_sysctl_init();
3625	cdev_init(&tty_cdev, &tty_fops);
3626	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3627	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3628		panic("Couldn't register /dev/tty driver\n");
3629	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3630
3631	cdev_init(&console_cdev, &console_fops);
3632	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3633	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3634		panic("Couldn't register /dev/console driver\n");
3635	consdev = device_create_with_groups(tty_class, NULL,
3636					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3637					    cons_dev_groups, "console");
3638	if (IS_ERR(consdev))
3639		consdev = NULL;
 
 
3640
3641#ifdef CONFIG_VT
3642	vty_init(&console_fops);
3643#endif
3644	return 0;
3645}
3646