Loading...
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include "isci.h"
57#include "task.h"
58#include "request.h"
59#include "scu_completion_codes.h"
60#include "scu_event_codes.h"
61#include "sas.h"
62
63static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
64 int idx)
65{
66 if (idx == 0)
67 return &ireq->tc->sgl_pair_ab;
68 else if (idx == 1)
69 return &ireq->tc->sgl_pair_cd;
70 else if (idx < 0)
71 return NULL;
72 else
73 return &ireq->sg_table[idx - 2];
74}
75
76static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
77 struct isci_request *ireq, u32 idx)
78{
79 u32 offset;
80
81 if (idx == 0) {
82 offset = (void *) &ireq->tc->sgl_pair_ab -
83 (void *) &ihost->task_context_table[0];
84 return ihost->task_context_dma + offset;
85 } else if (idx == 1) {
86 offset = (void *) &ireq->tc->sgl_pair_cd -
87 (void *) &ihost->task_context_table[0];
88 return ihost->task_context_dma + offset;
89 }
90
91 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
92}
93
94static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
95{
96 e->length = sg_dma_len(sg);
97 e->address_upper = upper_32_bits(sg_dma_address(sg));
98 e->address_lower = lower_32_bits(sg_dma_address(sg));
99 e->address_modifier = 0;
100}
101
102static void sci_request_build_sgl(struct isci_request *ireq)
103{
104 struct isci_host *ihost = ireq->isci_host;
105 struct sas_task *task = isci_request_access_task(ireq);
106 struct scatterlist *sg = NULL;
107 dma_addr_t dma_addr;
108 u32 sg_idx = 0;
109 struct scu_sgl_element_pair *scu_sg = NULL;
110 struct scu_sgl_element_pair *prev_sg = NULL;
111
112 if (task->num_scatter > 0) {
113 sg = task->scatter;
114
115 while (sg) {
116 scu_sg = to_sgl_element_pair(ireq, sg_idx);
117 init_sgl_element(&scu_sg->A, sg);
118 sg = sg_next(sg);
119 if (sg) {
120 init_sgl_element(&scu_sg->B, sg);
121 sg = sg_next(sg);
122 } else
123 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
124
125 if (prev_sg) {
126 dma_addr = to_sgl_element_pair_dma(ihost,
127 ireq,
128 sg_idx);
129
130 prev_sg->next_pair_upper =
131 upper_32_bits(dma_addr);
132 prev_sg->next_pair_lower =
133 lower_32_bits(dma_addr);
134 }
135
136 prev_sg = scu_sg;
137 sg_idx++;
138 }
139 } else { /* handle when no sg */
140 scu_sg = to_sgl_element_pair(ireq, sg_idx);
141
142 dma_addr = dma_map_single(&ihost->pdev->dev,
143 task->scatter,
144 task->total_xfer_len,
145 task->data_dir);
146
147 ireq->zero_scatter_daddr = dma_addr;
148
149 scu_sg->A.length = task->total_xfer_len;
150 scu_sg->A.address_upper = upper_32_bits(dma_addr);
151 scu_sg->A.address_lower = lower_32_bits(dma_addr);
152 }
153
154 if (scu_sg) {
155 scu_sg->next_pair_upper = 0;
156 scu_sg->next_pair_lower = 0;
157 }
158}
159
160static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
161{
162 struct ssp_cmd_iu *cmd_iu;
163 struct sas_task *task = isci_request_access_task(ireq);
164
165 cmd_iu = &ireq->ssp.cmd;
166
167 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
168 cmd_iu->add_cdb_len = 0;
169 cmd_iu->_r_a = 0;
170 cmd_iu->_r_b = 0;
171 cmd_iu->en_fburst = 0; /* unsupported */
172 cmd_iu->task_prio = task->ssp_task.task_prio;
173 cmd_iu->task_attr = task->ssp_task.task_attr;
174 cmd_iu->_r_c = 0;
175
176 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
177 sizeof(task->ssp_task.cdb) / sizeof(u32));
178}
179
180static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
181{
182 struct ssp_task_iu *task_iu;
183 struct sas_task *task = isci_request_access_task(ireq);
184 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
185
186 task_iu = &ireq->ssp.tmf;
187
188 memset(task_iu, 0, sizeof(struct ssp_task_iu));
189
190 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
191
192 task_iu->task_func = isci_tmf->tmf_code;
193 task_iu->task_tag =
194 (ireq->ttype == tmf_task) ?
195 isci_tmf->io_tag :
196 SCI_CONTROLLER_INVALID_IO_TAG;
197}
198
199/**
200 * This method is will fill in the SCU Task Context for any type of SSP request.
201 * @sci_req:
202 * @task_context:
203 *
204 */
205static void scu_ssp_reqeust_construct_task_context(
206 struct isci_request *ireq,
207 struct scu_task_context *task_context)
208{
209 dma_addr_t dma_addr;
210 struct isci_remote_device *idev;
211 struct isci_port *iport;
212
213 idev = ireq->target_device;
214 iport = idev->owning_port;
215
216 /* Fill in the TC with the its required data */
217 task_context->abort = 0;
218 task_context->priority = 0;
219 task_context->initiator_request = 1;
220 task_context->connection_rate = idev->connection_rate;
221 task_context->protocol_engine_index = ISCI_PEG;
222 task_context->logical_port_index = iport->physical_port_index;
223 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
224 task_context->valid = SCU_TASK_CONTEXT_VALID;
225 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
226
227 task_context->remote_node_index = idev->rnc.remote_node_index;
228 task_context->command_code = 0;
229
230 task_context->link_layer_control = 0;
231 task_context->do_not_dma_ssp_good_response = 1;
232 task_context->strict_ordering = 0;
233 task_context->control_frame = 0;
234 task_context->timeout_enable = 0;
235 task_context->block_guard_enable = 0;
236
237 task_context->address_modifier = 0;
238
239 /* task_context->type.ssp.tag = ireq->io_tag; */
240 task_context->task_phase = 0x01;
241
242 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
243 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
244 (iport->physical_port_index <<
245 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
246 ISCI_TAG_TCI(ireq->io_tag));
247
248 /*
249 * Copy the physical address for the command buffer to the
250 * SCU Task Context
251 */
252 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
253
254 task_context->command_iu_upper = upper_32_bits(dma_addr);
255 task_context->command_iu_lower = lower_32_bits(dma_addr);
256
257 /*
258 * Copy the physical address for the response buffer to the
259 * SCU Task Context
260 */
261 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
262
263 task_context->response_iu_upper = upper_32_bits(dma_addr);
264 task_context->response_iu_lower = lower_32_bits(dma_addr);
265}
266
267/**
268 * This method is will fill in the SCU Task Context for a SSP IO request.
269 * @sci_req:
270 *
271 */
272static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
273 enum dma_data_direction dir,
274 u32 len)
275{
276 struct scu_task_context *task_context = ireq->tc;
277
278 scu_ssp_reqeust_construct_task_context(ireq, task_context);
279
280 task_context->ssp_command_iu_length =
281 sizeof(struct ssp_cmd_iu) / sizeof(u32);
282 task_context->type.ssp.frame_type = SSP_COMMAND;
283
284 switch (dir) {
285 case DMA_FROM_DEVICE:
286 case DMA_NONE:
287 default:
288 task_context->task_type = SCU_TASK_TYPE_IOREAD;
289 break;
290 case DMA_TO_DEVICE:
291 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
292 break;
293 }
294
295 task_context->transfer_length_bytes = len;
296
297 if (task_context->transfer_length_bytes > 0)
298 sci_request_build_sgl(ireq);
299}
300
301/**
302 * This method will fill in the SCU Task Context for a SSP Task request. The
303 * following important settings are utilized: -# priority ==
304 * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
305 * ahead of other task destined for the same Remote Node. -# task_type ==
306 * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
307 * (i.e. non-raw frame) is being utilized to perform task management. -#
308 * control_frame == 1. This ensures that the proper endianess is set so
309 * that the bytes are transmitted in the right order for a task frame.
310 * @sci_req: This parameter specifies the task request object being
311 * constructed.
312 *
313 */
314static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
315{
316 struct scu_task_context *task_context = ireq->tc;
317
318 scu_ssp_reqeust_construct_task_context(ireq, task_context);
319
320 task_context->control_frame = 1;
321 task_context->priority = SCU_TASK_PRIORITY_HIGH;
322 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
323 task_context->transfer_length_bytes = 0;
324 task_context->type.ssp.frame_type = SSP_TASK;
325 task_context->ssp_command_iu_length =
326 sizeof(struct ssp_task_iu) / sizeof(u32);
327}
328
329/**
330 * This method is will fill in the SCU Task Context for any type of SATA
331 * request. This is called from the various SATA constructors.
332 * @sci_req: The general IO request object which is to be used in
333 * constructing the SCU task context.
334 * @task_context: The buffer pointer for the SCU task context which is being
335 * constructed.
336 *
337 * The general io request construction is complete. The buffer assignment for
338 * the command buffer is complete. none Revisit task context construction to
339 * determine what is common for SSP/SMP/STP task context structures.
340 */
341static void scu_sata_reqeust_construct_task_context(
342 struct isci_request *ireq,
343 struct scu_task_context *task_context)
344{
345 dma_addr_t dma_addr;
346 struct isci_remote_device *idev;
347 struct isci_port *iport;
348
349 idev = ireq->target_device;
350 iport = idev->owning_port;
351
352 /* Fill in the TC with the its required data */
353 task_context->abort = 0;
354 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
355 task_context->initiator_request = 1;
356 task_context->connection_rate = idev->connection_rate;
357 task_context->protocol_engine_index = ISCI_PEG;
358 task_context->logical_port_index = iport->physical_port_index;
359 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
360 task_context->valid = SCU_TASK_CONTEXT_VALID;
361 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
362
363 task_context->remote_node_index = idev->rnc.remote_node_index;
364 task_context->command_code = 0;
365
366 task_context->link_layer_control = 0;
367 task_context->do_not_dma_ssp_good_response = 1;
368 task_context->strict_ordering = 0;
369 task_context->control_frame = 0;
370 task_context->timeout_enable = 0;
371 task_context->block_guard_enable = 0;
372
373 task_context->address_modifier = 0;
374 task_context->task_phase = 0x01;
375
376 task_context->ssp_command_iu_length =
377 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
378
379 /* Set the first word of the H2D REG FIS */
380 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
381
382 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
383 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
384 (iport->physical_port_index <<
385 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
386 ISCI_TAG_TCI(ireq->io_tag));
387 /*
388 * Copy the physical address for the command buffer to the SCU Task
389 * Context. We must offset the command buffer by 4 bytes because the
390 * first 4 bytes are transfered in the body of the TC.
391 */
392 dma_addr = sci_io_request_get_dma_addr(ireq,
393 ((char *) &ireq->stp.cmd) +
394 sizeof(u32));
395
396 task_context->command_iu_upper = upper_32_bits(dma_addr);
397 task_context->command_iu_lower = lower_32_bits(dma_addr);
398
399 /* SATA Requests do not have a response buffer */
400 task_context->response_iu_upper = 0;
401 task_context->response_iu_lower = 0;
402}
403
404static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
405{
406 struct scu_task_context *task_context = ireq->tc;
407
408 scu_sata_reqeust_construct_task_context(ireq, task_context);
409
410 task_context->control_frame = 0;
411 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
412 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
413 task_context->type.stp.fis_type = FIS_REGH2D;
414 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
415}
416
417static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
418 bool copy_rx_frame)
419{
420 struct isci_stp_request *stp_req = &ireq->stp.req;
421
422 scu_stp_raw_request_construct_task_context(ireq);
423
424 stp_req->status = 0;
425 stp_req->sgl.offset = 0;
426 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
427
428 if (copy_rx_frame) {
429 sci_request_build_sgl(ireq);
430 stp_req->sgl.index = 0;
431 } else {
432 /* The user does not want the data copied to the SGL buffer location */
433 stp_req->sgl.index = -1;
434 }
435
436 return SCI_SUCCESS;
437}
438
439/**
440 *
441 * @sci_req: This parameter specifies the request to be constructed as an
442 * optimized request.
443 * @optimized_task_type: This parameter specifies whether the request is to be
444 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
445 * value of 1 indicates NCQ.
446 *
447 * This method will perform request construction common to all types of STP
448 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
449 * returns an indication as to whether the construction was successful.
450 */
451static void sci_stp_optimized_request_construct(struct isci_request *ireq,
452 u8 optimized_task_type,
453 u32 len,
454 enum dma_data_direction dir)
455{
456 struct scu_task_context *task_context = ireq->tc;
457
458 /* Build the STP task context structure */
459 scu_sata_reqeust_construct_task_context(ireq, task_context);
460
461 /* Copy over the SGL elements */
462 sci_request_build_sgl(ireq);
463
464 /* Copy over the number of bytes to be transfered */
465 task_context->transfer_length_bytes = len;
466
467 if (dir == DMA_TO_DEVICE) {
468 /*
469 * The difference between the DMA IN and DMA OUT request task type
470 * values are consistent with the difference between FPDMA READ
471 * and FPDMA WRITE values. Add the supplied task type parameter
472 * to this difference to set the task type properly for this
473 * DATA OUT (WRITE) case. */
474 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
475 - SCU_TASK_TYPE_DMA_IN);
476 } else {
477 /*
478 * For the DATA IN (READ) case, simply save the supplied
479 * optimized task type. */
480 task_context->task_type = optimized_task_type;
481 }
482}
483
484
485
486static enum sci_status
487sci_io_request_construct_sata(struct isci_request *ireq,
488 u32 len,
489 enum dma_data_direction dir,
490 bool copy)
491{
492 enum sci_status status = SCI_SUCCESS;
493 struct sas_task *task = isci_request_access_task(ireq);
494
495 /* check for management protocols */
496 if (ireq->ttype == tmf_task) {
497 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
498
499 if (tmf->tmf_code == isci_tmf_sata_srst_high ||
500 tmf->tmf_code == isci_tmf_sata_srst_low) {
501 scu_stp_raw_request_construct_task_context(ireq);
502 return SCI_SUCCESS;
503 } else {
504 dev_err(&ireq->owning_controller->pdev->dev,
505 "%s: Request 0x%p received un-handled SAT "
506 "management protocol 0x%x.\n",
507 __func__, ireq, tmf->tmf_code);
508
509 return SCI_FAILURE;
510 }
511 }
512
513 if (!sas_protocol_ata(task->task_proto)) {
514 dev_err(&ireq->owning_controller->pdev->dev,
515 "%s: Non-ATA protocol in SATA path: 0x%x\n",
516 __func__,
517 task->task_proto);
518 return SCI_FAILURE;
519
520 }
521
522 /* non data */
523 if (task->data_dir == DMA_NONE) {
524 scu_stp_raw_request_construct_task_context(ireq);
525 return SCI_SUCCESS;
526 }
527
528 /* NCQ */
529 if (task->ata_task.use_ncq) {
530 sci_stp_optimized_request_construct(ireq,
531 SCU_TASK_TYPE_FPDMAQ_READ,
532 len, dir);
533 return SCI_SUCCESS;
534 }
535
536 /* DMA */
537 if (task->ata_task.dma_xfer) {
538 sci_stp_optimized_request_construct(ireq,
539 SCU_TASK_TYPE_DMA_IN,
540 len, dir);
541 return SCI_SUCCESS;
542 } else /* PIO */
543 return sci_stp_pio_request_construct(ireq, copy);
544
545 return status;
546}
547
548static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
549{
550 struct sas_task *task = isci_request_access_task(ireq);
551
552 ireq->protocol = SCIC_SSP_PROTOCOL;
553
554 scu_ssp_io_request_construct_task_context(ireq,
555 task->data_dir,
556 task->total_xfer_len);
557
558 sci_io_request_build_ssp_command_iu(ireq);
559
560 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
561
562 return SCI_SUCCESS;
563}
564
565enum sci_status sci_task_request_construct_ssp(
566 struct isci_request *ireq)
567{
568 /* Construct the SSP Task SCU Task Context */
569 scu_ssp_task_request_construct_task_context(ireq);
570
571 /* Fill in the SSP Task IU */
572 sci_task_request_build_ssp_task_iu(ireq);
573
574 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
575
576 return SCI_SUCCESS;
577}
578
579static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
580{
581 enum sci_status status;
582 bool copy = false;
583 struct sas_task *task = isci_request_access_task(ireq);
584
585 ireq->protocol = SCIC_STP_PROTOCOL;
586
587 copy = (task->data_dir == DMA_NONE) ? false : true;
588
589 status = sci_io_request_construct_sata(ireq,
590 task->total_xfer_len,
591 task->data_dir,
592 copy);
593
594 if (status == SCI_SUCCESS)
595 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
596
597 return status;
598}
599
600enum sci_status sci_task_request_construct_sata(struct isci_request *ireq)
601{
602 enum sci_status status = SCI_SUCCESS;
603
604 /* check for management protocols */
605 if (ireq->ttype == tmf_task) {
606 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
607
608 if (tmf->tmf_code == isci_tmf_sata_srst_high ||
609 tmf->tmf_code == isci_tmf_sata_srst_low) {
610 scu_stp_raw_request_construct_task_context(ireq);
611 } else {
612 dev_err(&ireq->owning_controller->pdev->dev,
613 "%s: Request 0x%p received un-handled SAT "
614 "Protocol 0x%x.\n",
615 __func__, ireq, tmf->tmf_code);
616
617 return SCI_FAILURE;
618 }
619 }
620
621 if (status != SCI_SUCCESS)
622 return status;
623 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
624
625 return status;
626}
627
628/**
629 * sci_req_tx_bytes - bytes transferred when reply underruns request
630 * @sci_req: request that was terminated early
631 */
632#define SCU_TASK_CONTEXT_SRAM 0x200000
633static u32 sci_req_tx_bytes(struct isci_request *ireq)
634{
635 struct isci_host *ihost = ireq->owning_controller;
636 u32 ret_val = 0;
637
638 if (readl(&ihost->smu_registers->address_modifier) == 0) {
639 void __iomem *scu_reg_base = ihost->scu_registers;
640
641 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
642 * BAR1 is the scu_registers
643 * 0x20002C = 0x200000 + 0x2c
644 * = start of task context SRAM + offset of (type.ssp.data_offset)
645 * TCi is the io_tag of struct sci_request
646 */
647 ret_val = readl(scu_reg_base +
648 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
649 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
650 }
651
652 return ret_val;
653}
654
655enum sci_status sci_request_start(struct isci_request *ireq)
656{
657 enum sci_base_request_states state;
658 struct scu_task_context *tc = ireq->tc;
659 struct isci_host *ihost = ireq->owning_controller;
660
661 state = ireq->sm.current_state_id;
662 if (state != SCI_REQ_CONSTRUCTED) {
663 dev_warn(&ihost->pdev->dev,
664 "%s: SCIC IO Request requested to start while in wrong "
665 "state %d\n", __func__, state);
666 return SCI_FAILURE_INVALID_STATE;
667 }
668
669 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
670
671 switch (tc->protocol_type) {
672 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
673 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
674 /* SSP/SMP Frame */
675 tc->type.ssp.tag = ireq->io_tag;
676 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
677 break;
678
679 case SCU_TASK_CONTEXT_PROTOCOL_STP:
680 /* STP/SATA Frame
681 * tc->type.stp.ncq_tag = ireq->ncq_tag;
682 */
683 break;
684
685 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
686 /* / @todo When do we set no protocol type? */
687 break;
688
689 default:
690 /* This should never happen since we build the IO
691 * requests */
692 break;
693 }
694
695 /* Add to the post_context the io tag value */
696 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
697
698 /* Everything is good go ahead and change state */
699 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
700
701 return SCI_SUCCESS;
702}
703
704enum sci_status
705sci_io_request_terminate(struct isci_request *ireq)
706{
707 enum sci_base_request_states state;
708
709 state = ireq->sm.current_state_id;
710
711 switch (state) {
712 case SCI_REQ_CONSTRUCTED:
713 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
714 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
715 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
716 return SCI_SUCCESS;
717 case SCI_REQ_STARTED:
718 case SCI_REQ_TASK_WAIT_TC_COMP:
719 case SCI_REQ_SMP_WAIT_RESP:
720 case SCI_REQ_SMP_WAIT_TC_COMP:
721 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
722 case SCI_REQ_STP_UDMA_WAIT_D2H:
723 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
724 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
725 case SCI_REQ_STP_PIO_WAIT_H2D:
726 case SCI_REQ_STP_PIO_WAIT_FRAME:
727 case SCI_REQ_STP_PIO_DATA_IN:
728 case SCI_REQ_STP_PIO_DATA_OUT:
729 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
730 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
731 case SCI_REQ_STP_SOFT_RESET_WAIT_D2H:
732 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
733 return SCI_SUCCESS;
734 case SCI_REQ_TASK_WAIT_TC_RESP:
735 /* The task frame was already confirmed to have been
736 * sent by the SCU HW. Since the state machine is
737 * now only waiting for the task response itself,
738 * abort the request and complete it immediately
739 * and don't wait for the task response.
740 */
741 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
742 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
743 return SCI_SUCCESS;
744 case SCI_REQ_ABORTING:
745 /* If a request has a termination requested twice, return
746 * a failure indication, since HW confirmation of the first
747 * abort is still outstanding.
748 */
749 case SCI_REQ_COMPLETED:
750 default:
751 dev_warn(&ireq->owning_controller->pdev->dev,
752 "%s: SCIC IO Request requested to abort while in wrong "
753 "state %d\n",
754 __func__,
755 ireq->sm.current_state_id);
756 break;
757 }
758
759 return SCI_FAILURE_INVALID_STATE;
760}
761
762enum sci_status sci_request_complete(struct isci_request *ireq)
763{
764 enum sci_base_request_states state;
765 struct isci_host *ihost = ireq->owning_controller;
766
767 state = ireq->sm.current_state_id;
768 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
769 "isci: request completion from wrong state (%d)\n", state))
770 return SCI_FAILURE_INVALID_STATE;
771
772 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
773 sci_controller_release_frame(ihost,
774 ireq->saved_rx_frame_index);
775
776 /* XXX can we just stop the machine and remove the 'final' state? */
777 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
778 return SCI_SUCCESS;
779}
780
781enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
782 u32 event_code)
783{
784 enum sci_base_request_states state;
785 struct isci_host *ihost = ireq->owning_controller;
786
787 state = ireq->sm.current_state_id;
788
789 if (state != SCI_REQ_STP_PIO_DATA_IN) {
790 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %d\n",
791 __func__, event_code, state);
792
793 return SCI_FAILURE_INVALID_STATE;
794 }
795
796 switch (scu_get_event_specifier(event_code)) {
797 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
798 /* We are waiting for data and the SCU has R_ERR the data frame.
799 * Go back to waiting for the D2H Register FIS
800 */
801 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
802 return SCI_SUCCESS;
803 default:
804 dev_err(&ihost->pdev->dev,
805 "%s: pio request unexpected event %#x\n",
806 __func__, event_code);
807
808 /* TODO Should we fail the PIO request when we get an
809 * unexpected event?
810 */
811 return SCI_FAILURE;
812 }
813}
814
815/*
816 * This function copies response data for requests returning response data
817 * instead of sense data.
818 * @sci_req: This parameter specifies the request object for which to copy
819 * the response data.
820 */
821static void sci_io_request_copy_response(struct isci_request *ireq)
822{
823 void *resp_buf;
824 u32 len;
825 struct ssp_response_iu *ssp_response;
826 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
827
828 ssp_response = &ireq->ssp.rsp;
829
830 resp_buf = &isci_tmf->resp.resp_iu;
831
832 len = min_t(u32,
833 SSP_RESP_IU_MAX_SIZE,
834 be32_to_cpu(ssp_response->response_data_len));
835
836 memcpy(resp_buf, ssp_response->resp_data, len);
837}
838
839static enum sci_status
840request_started_state_tc_event(struct isci_request *ireq,
841 u32 completion_code)
842{
843 struct ssp_response_iu *resp_iu;
844 u8 datapres;
845
846 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
847 * to determine SDMA status
848 */
849 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
850 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
851 ireq->scu_status = SCU_TASK_DONE_GOOD;
852 ireq->sci_status = SCI_SUCCESS;
853 break;
854 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
855 /* There are times when the SCU hardware will return an early
856 * response because the io request specified more data than is
857 * returned by the target device (mode pages, inquiry data,
858 * etc.). We must check the response stats to see if this is
859 * truly a failed request or a good request that just got
860 * completed early.
861 */
862 struct ssp_response_iu *resp = &ireq->ssp.rsp;
863 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
864
865 sci_swab32_cpy(&ireq->ssp.rsp,
866 &ireq->ssp.rsp,
867 word_cnt);
868
869 if (resp->status == 0) {
870 ireq->scu_status = SCU_TASK_DONE_GOOD;
871 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
872 } else {
873 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
874 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
875 }
876 break;
877 }
878 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
879 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
880
881 sci_swab32_cpy(&ireq->ssp.rsp,
882 &ireq->ssp.rsp,
883 word_cnt);
884
885 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
886 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
887 break;
888 }
889
890 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
891 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
892 * guaranteed to be received before this completion status is
893 * posted?
894 */
895 resp_iu = &ireq->ssp.rsp;
896 datapres = resp_iu->datapres;
897
898 if (datapres == 1 || datapres == 2) {
899 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
900 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
901 } else {
902 ireq->scu_status = SCU_TASK_DONE_GOOD;
903 ireq->sci_status = SCI_SUCCESS;
904 }
905 break;
906 /* only stp device gets suspended. */
907 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
908 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
909 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
910 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
911 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
912 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
913 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
914 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
915 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
916 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
917 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
918 if (ireq->protocol == SCIC_STP_PROTOCOL) {
919 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
920 SCU_COMPLETION_TL_STATUS_SHIFT;
921 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
922 } else {
923 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
924 SCU_COMPLETION_TL_STATUS_SHIFT;
925 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
926 }
927 break;
928
929 /* both stp/ssp device gets suspended */
930 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
931 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
932 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
933 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
934 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
935 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
936 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
937 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
938 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
939 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
940 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
941 SCU_COMPLETION_TL_STATUS_SHIFT;
942 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
943 break;
944
945 /* neither ssp nor stp gets suspended. */
946 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
947 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
948 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
949 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
950 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
951 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
952 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
953 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
954 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
955 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
956 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
957 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
958 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
959 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
960 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
961 default:
962 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
963 SCU_COMPLETION_TL_STATUS_SHIFT;
964 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
965 break;
966 }
967
968 /*
969 * TODO: This is probably wrong for ACK/NAK timeout conditions
970 */
971
972 /* In all cases we will treat this as the completion of the IO req. */
973 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
974 return SCI_SUCCESS;
975}
976
977static enum sci_status
978request_aborting_state_tc_event(struct isci_request *ireq,
979 u32 completion_code)
980{
981 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
982 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
983 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
984 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
985 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
986 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
987 break;
988
989 default:
990 /* Unless we get some strange error wait for the task abort to complete
991 * TODO: Should there be a state change for this completion?
992 */
993 break;
994 }
995
996 return SCI_SUCCESS;
997}
998
999static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1000 u32 completion_code)
1001{
1002 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1003 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1004 ireq->scu_status = SCU_TASK_DONE_GOOD;
1005 ireq->sci_status = SCI_SUCCESS;
1006 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1007 break;
1008 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1009 /* Currently, the decision is to simply allow the task request
1010 * to timeout if the task IU wasn't received successfully.
1011 * There is a potential for receiving multiple task responses if
1012 * we decide to send the task IU again.
1013 */
1014 dev_warn(&ireq->owning_controller->pdev->dev,
1015 "%s: TaskRequest:0x%p CompletionCode:%x - "
1016 "ACK/NAK timeout\n", __func__, ireq,
1017 completion_code);
1018
1019 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1020 break;
1021 default:
1022 /*
1023 * All other completion status cause the IO to be complete.
1024 * If a NAK was received, then it is up to the user to retry
1025 * the request.
1026 */
1027 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1028 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1029 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1030 break;
1031 }
1032
1033 return SCI_SUCCESS;
1034}
1035
1036static enum sci_status
1037smp_request_await_response_tc_event(struct isci_request *ireq,
1038 u32 completion_code)
1039{
1040 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1041 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1042 /* In the AWAIT RESPONSE state, any TC completion is
1043 * unexpected. but if the TC has success status, we
1044 * complete the IO anyway.
1045 */
1046 ireq->scu_status = SCU_TASK_DONE_GOOD;
1047 ireq->sci_status = SCI_SUCCESS;
1048 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1049 break;
1050 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1051 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1052 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1053 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1054 /* These status has been seen in a specific LSI
1055 * expander, which sometimes is not able to send smp
1056 * response within 2 ms. This causes our hardware break
1057 * the connection and set TC completion with one of
1058 * these SMP_XXX_XX_ERR status. For these type of error,
1059 * we ask ihost user to retry the request.
1060 */
1061 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1062 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1063 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1064 break;
1065 default:
1066 /* All other completion status cause the IO to be complete. If a NAK
1067 * was received, then it is up to the user to retry the request
1068 */
1069 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1070 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1071 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1072 break;
1073 }
1074
1075 return SCI_SUCCESS;
1076}
1077
1078static enum sci_status
1079smp_request_await_tc_event(struct isci_request *ireq,
1080 u32 completion_code)
1081{
1082 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1083 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1084 ireq->scu_status = SCU_TASK_DONE_GOOD;
1085 ireq->sci_status = SCI_SUCCESS;
1086 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1087 break;
1088 default:
1089 /* All other completion status cause the IO to be
1090 * complete. If a NAK was received, then it is up to
1091 * the user to retry the request.
1092 */
1093 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1094 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1095 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1096 break;
1097 }
1098
1099 return SCI_SUCCESS;
1100}
1101
1102static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1103{
1104 struct scu_sgl_element *sgl;
1105 struct scu_sgl_element_pair *sgl_pair;
1106 struct isci_request *ireq = to_ireq(stp_req);
1107 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1108
1109 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1110 if (!sgl_pair)
1111 sgl = NULL;
1112 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1113 if (sgl_pair->B.address_lower == 0 &&
1114 sgl_pair->B.address_upper == 0) {
1115 sgl = NULL;
1116 } else {
1117 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1118 sgl = &sgl_pair->B;
1119 }
1120 } else {
1121 if (sgl_pair->next_pair_lower == 0 &&
1122 sgl_pair->next_pair_upper == 0) {
1123 sgl = NULL;
1124 } else {
1125 pio_sgl->index++;
1126 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1127 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1128 sgl = &sgl_pair->A;
1129 }
1130 }
1131
1132 return sgl;
1133}
1134
1135static enum sci_status
1136stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1137 u32 completion_code)
1138{
1139 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1140 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1141 ireq->scu_status = SCU_TASK_DONE_GOOD;
1142 ireq->sci_status = SCI_SUCCESS;
1143 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1144 break;
1145
1146 default:
1147 /* All other completion status cause the IO to be
1148 * complete. If a NAK was received, then it is up to
1149 * the user to retry the request.
1150 */
1151 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1152 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1153 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1154 break;
1155 }
1156
1157 return SCI_SUCCESS;
1158}
1159
1160#define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1161
1162/* transmit DATA_FIS from (current sgl + offset) for input
1163 * parameter length. current sgl and offset is alreay stored in the IO request
1164 */
1165static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1166 struct isci_request *ireq,
1167 u32 length)
1168{
1169 struct isci_stp_request *stp_req = &ireq->stp.req;
1170 struct scu_task_context *task_context = ireq->tc;
1171 struct scu_sgl_element_pair *sgl_pair;
1172 struct scu_sgl_element *current_sgl;
1173
1174 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1175 * for the data from current_sgl+offset for the input length
1176 */
1177 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1178 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1179 current_sgl = &sgl_pair->A;
1180 else
1181 current_sgl = &sgl_pair->B;
1182
1183 /* update the TC */
1184 task_context->command_iu_upper = current_sgl->address_upper;
1185 task_context->command_iu_lower = current_sgl->address_lower;
1186 task_context->transfer_length_bytes = length;
1187 task_context->type.stp.fis_type = FIS_DATA;
1188
1189 /* send the new TC out. */
1190 return sci_controller_continue_io(ireq);
1191}
1192
1193static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1194{
1195 struct isci_stp_request *stp_req = &ireq->stp.req;
1196 struct scu_sgl_element_pair *sgl_pair;
1197 struct scu_sgl_element *sgl;
1198 enum sci_status status;
1199 u32 offset;
1200 u32 len = 0;
1201
1202 offset = stp_req->sgl.offset;
1203 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1204 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1205 return SCI_FAILURE;
1206
1207 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1208 sgl = &sgl_pair->A;
1209 len = sgl_pair->A.length - offset;
1210 } else {
1211 sgl = &sgl_pair->B;
1212 len = sgl_pair->B.length - offset;
1213 }
1214
1215 if (stp_req->pio_len == 0)
1216 return SCI_SUCCESS;
1217
1218 if (stp_req->pio_len >= len) {
1219 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1220 if (status != SCI_SUCCESS)
1221 return status;
1222 stp_req->pio_len -= len;
1223
1224 /* update the current sgl, offset and save for future */
1225 sgl = pio_sgl_next(stp_req);
1226 offset = 0;
1227 } else if (stp_req->pio_len < len) {
1228 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1229
1230 /* Sgl offset will be adjusted and saved for future */
1231 offset += stp_req->pio_len;
1232 sgl->address_lower += stp_req->pio_len;
1233 stp_req->pio_len = 0;
1234 }
1235
1236 stp_req->sgl.offset = offset;
1237
1238 return status;
1239}
1240
1241/**
1242 *
1243 * @stp_request: The request that is used for the SGL processing.
1244 * @data_buffer: The buffer of data to be copied.
1245 * @length: The length of the data transfer.
1246 *
1247 * Copy the data from the buffer for the length specified to the IO reqeust SGL
1248 * specified data region. enum sci_status
1249 */
1250static enum sci_status
1251sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1252 u8 *data_buf, u32 len)
1253{
1254 struct isci_request *ireq;
1255 u8 *src_addr;
1256 int copy_len;
1257 struct sas_task *task;
1258 struct scatterlist *sg;
1259 void *kaddr;
1260 int total_len = len;
1261
1262 ireq = to_ireq(stp_req);
1263 task = isci_request_access_task(ireq);
1264 src_addr = data_buf;
1265
1266 if (task->num_scatter > 0) {
1267 sg = task->scatter;
1268
1269 while (total_len > 0) {
1270 struct page *page = sg_page(sg);
1271
1272 copy_len = min_t(int, total_len, sg_dma_len(sg));
1273 kaddr = kmap_atomic(page, KM_IRQ0);
1274 memcpy(kaddr + sg->offset, src_addr, copy_len);
1275 kunmap_atomic(kaddr, KM_IRQ0);
1276 total_len -= copy_len;
1277 src_addr += copy_len;
1278 sg = sg_next(sg);
1279 }
1280 } else {
1281 BUG_ON(task->total_xfer_len < total_len);
1282 memcpy(task->scatter, src_addr, total_len);
1283 }
1284
1285 return SCI_SUCCESS;
1286}
1287
1288/**
1289 *
1290 * @sci_req: The PIO DATA IN request that is to receive the data.
1291 * @data_buffer: The buffer to copy from.
1292 *
1293 * Copy the data buffer to the io request data region. enum sci_status
1294 */
1295static enum sci_status sci_stp_request_pio_data_in_copy_data(
1296 struct isci_stp_request *stp_req,
1297 u8 *data_buffer)
1298{
1299 enum sci_status status;
1300
1301 /*
1302 * If there is less than 1K remaining in the transfer request
1303 * copy just the data for the transfer */
1304 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1305 status = sci_stp_request_pio_data_in_copy_data_buffer(
1306 stp_req, data_buffer, stp_req->pio_len);
1307
1308 if (status == SCI_SUCCESS)
1309 stp_req->pio_len = 0;
1310 } else {
1311 /* We are transfering the whole frame so copy */
1312 status = sci_stp_request_pio_data_in_copy_data_buffer(
1313 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1314
1315 if (status == SCI_SUCCESS)
1316 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1317 }
1318
1319 return status;
1320}
1321
1322static enum sci_status
1323stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1324 u32 completion_code)
1325{
1326 enum sci_status status = SCI_SUCCESS;
1327
1328 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1329 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1330 ireq->scu_status = SCU_TASK_DONE_GOOD;
1331 ireq->sci_status = SCI_SUCCESS;
1332 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1333 break;
1334
1335 default:
1336 /* All other completion status cause the IO to be
1337 * complete. If a NAK was received, then it is up to
1338 * the user to retry the request.
1339 */
1340 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1341 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1342 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1343 break;
1344 }
1345
1346 return status;
1347}
1348
1349static enum sci_status
1350pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1351 u32 completion_code)
1352{
1353 enum sci_status status = SCI_SUCCESS;
1354 bool all_frames_transferred = false;
1355 struct isci_stp_request *stp_req = &ireq->stp.req;
1356
1357 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1358 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1359 /* Transmit data */
1360 if (stp_req->pio_len != 0) {
1361 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1362 if (status == SCI_SUCCESS) {
1363 if (stp_req->pio_len == 0)
1364 all_frames_transferred = true;
1365 }
1366 } else if (stp_req->pio_len == 0) {
1367 /*
1368 * this will happen if the all data is written at the
1369 * first time after the pio setup fis is received
1370 */
1371 all_frames_transferred = true;
1372 }
1373
1374 /* all data transferred. */
1375 if (all_frames_transferred) {
1376 /*
1377 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1378 * and wait for PIO_SETUP fis / or D2H REg fis. */
1379 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1380 }
1381 break;
1382
1383 default:
1384 /*
1385 * All other completion status cause the IO to be complete.
1386 * If a NAK was received, then it is up to the user to retry
1387 * the request.
1388 */
1389 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1390 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1391 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1392 break;
1393 }
1394
1395 return status;
1396}
1397
1398static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1399 u32 frame_index)
1400{
1401 struct isci_host *ihost = ireq->owning_controller;
1402 struct dev_to_host_fis *frame_header;
1403 enum sci_status status;
1404 u32 *frame_buffer;
1405
1406 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1407 frame_index,
1408 (void **)&frame_header);
1409
1410 if ((status == SCI_SUCCESS) &&
1411 (frame_header->fis_type == FIS_REGD2H)) {
1412 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1413 frame_index,
1414 (void **)&frame_buffer);
1415
1416 sci_controller_copy_sata_response(&ireq->stp.rsp,
1417 frame_header,
1418 frame_buffer);
1419 }
1420
1421 sci_controller_release_frame(ihost, frame_index);
1422
1423 return status;
1424}
1425
1426enum sci_status
1427sci_io_request_frame_handler(struct isci_request *ireq,
1428 u32 frame_index)
1429{
1430 struct isci_host *ihost = ireq->owning_controller;
1431 struct isci_stp_request *stp_req = &ireq->stp.req;
1432 enum sci_base_request_states state;
1433 enum sci_status status;
1434 ssize_t word_cnt;
1435
1436 state = ireq->sm.current_state_id;
1437 switch (state) {
1438 case SCI_REQ_STARTED: {
1439 struct ssp_frame_hdr ssp_hdr;
1440 void *frame_header;
1441
1442 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1443 frame_index,
1444 &frame_header);
1445
1446 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1447 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1448
1449 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1450 struct ssp_response_iu *resp_iu;
1451 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1452
1453 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1454 frame_index,
1455 (void **)&resp_iu);
1456
1457 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1458
1459 resp_iu = &ireq->ssp.rsp;
1460
1461 if (resp_iu->datapres == 0x01 ||
1462 resp_iu->datapres == 0x02) {
1463 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1464 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1465 } else {
1466 ireq->scu_status = SCU_TASK_DONE_GOOD;
1467 ireq->sci_status = SCI_SUCCESS;
1468 }
1469 } else {
1470 /* not a response frame, why did it get forwarded? */
1471 dev_err(&ihost->pdev->dev,
1472 "%s: SCIC IO Request 0x%p received unexpected "
1473 "frame %d type 0x%02x\n", __func__, ireq,
1474 frame_index, ssp_hdr.frame_type);
1475 }
1476
1477 /*
1478 * In any case we are done with this frame buffer return it to
1479 * the controller
1480 */
1481 sci_controller_release_frame(ihost, frame_index);
1482
1483 return SCI_SUCCESS;
1484 }
1485
1486 case SCI_REQ_TASK_WAIT_TC_RESP:
1487 sci_io_request_copy_response(ireq);
1488 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1489 sci_controller_release_frame(ihost, frame_index);
1490 return SCI_SUCCESS;
1491
1492 case SCI_REQ_SMP_WAIT_RESP: {
1493 struct smp_resp *rsp_hdr = &ireq->smp.rsp;
1494 void *frame_header;
1495
1496 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1497 frame_index,
1498 &frame_header);
1499
1500 /* byte swap the header. */
1501 word_cnt = SMP_RESP_HDR_SZ / sizeof(u32);
1502 sci_swab32_cpy(rsp_hdr, frame_header, word_cnt);
1503
1504 if (rsp_hdr->frame_type == SMP_RESPONSE) {
1505 void *smp_resp;
1506
1507 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1508 frame_index,
1509 &smp_resp);
1510
1511 word_cnt = (sizeof(struct smp_resp) - SMP_RESP_HDR_SZ) /
1512 sizeof(u32);
1513
1514 sci_swab32_cpy(((u8 *) rsp_hdr) + SMP_RESP_HDR_SZ,
1515 smp_resp, word_cnt);
1516
1517 ireq->scu_status = SCU_TASK_DONE_GOOD;
1518 ireq->sci_status = SCI_SUCCESS;
1519 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1520 } else {
1521 /*
1522 * This was not a response frame why did it get
1523 * forwarded?
1524 */
1525 dev_err(&ihost->pdev->dev,
1526 "%s: SCIC SMP Request 0x%p received unexpected "
1527 "frame %d type 0x%02x\n",
1528 __func__,
1529 ireq,
1530 frame_index,
1531 rsp_hdr->frame_type);
1532
1533 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1534 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1535 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1536 }
1537
1538 sci_controller_release_frame(ihost, frame_index);
1539
1540 return SCI_SUCCESS;
1541 }
1542
1543 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1544 return sci_stp_request_udma_general_frame_handler(ireq,
1545 frame_index);
1546
1547 case SCI_REQ_STP_UDMA_WAIT_D2H:
1548 /* Use the general frame handler to copy the resposne data */
1549 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1550
1551 if (status != SCI_SUCCESS)
1552 return status;
1553
1554 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1555 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1556 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1557 return SCI_SUCCESS;
1558
1559 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1560 struct dev_to_host_fis *frame_header;
1561 u32 *frame_buffer;
1562
1563 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1564 frame_index,
1565 (void **)&frame_header);
1566
1567 if (status != SCI_SUCCESS) {
1568 dev_err(&ihost->pdev->dev,
1569 "%s: SCIC IO Request 0x%p could not get frame "
1570 "header for frame index %d, status %x\n",
1571 __func__,
1572 stp_req,
1573 frame_index,
1574 status);
1575
1576 return status;
1577 }
1578
1579 switch (frame_header->fis_type) {
1580 case FIS_REGD2H:
1581 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1582 frame_index,
1583 (void **)&frame_buffer);
1584
1585 sci_controller_copy_sata_response(&ireq->stp.rsp,
1586 frame_header,
1587 frame_buffer);
1588
1589 /* The command has completed with error */
1590 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1591 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1592 break;
1593
1594 default:
1595 dev_warn(&ihost->pdev->dev,
1596 "%s: IO Request:0x%p Frame Id:%d protocol "
1597 "violation occurred\n", __func__, stp_req,
1598 frame_index);
1599
1600 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1601 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1602 break;
1603 }
1604
1605 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1606
1607 /* Frame has been decoded return it to the controller */
1608 sci_controller_release_frame(ihost, frame_index);
1609
1610 return status;
1611 }
1612
1613 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1614 struct sas_task *task = isci_request_access_task(ireq);
1615 struct dev_to_host_fis *frame_header;
1616 u32 *frame_buffer;
1617
1618 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1619 frame_index,
1620 (void **)&frame_header);
1621
1622 if (status != SCI_SUCCESS) {
1623 dev_err(&ihost->pdev->dev,
1624 "%s: SCIC IO Request 0x%p could not get frame "
1625 "header for frame index %d, status %x\n",
1626 __func__, stp_req, frame_index, status);
1627 return status;
1628 }
1629
1630 switch (frame_header->fis_type) {
1631 case FIS_PIO_SETUP:
1632 /* Get from the frame buffer the PIO Setup Data */
1633 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1634 frame_index,
1635 (void **)&frame_buffer);
1636
1637 /* Get the data from the PIO Setup The SCU Hardware
1638 * returns first word in the frame_header and the rest
1639 * of the data is in the frame buffer so we need to
1640 * back up one dword
1641 */
1642
1643 /* transfer_count: first 16bits in the 4th dword */
1644 stp_req->pio_len = frame_buffer[3] & 0xffff;
1645
1646 /* status: 4th byte in the 3rd dword */
1647 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1648
1649 sci_controller_copy_sata_response(&ireq->stp.rsp,
1650 frame_header,
1651 frame_buffer);
1652
1653 ireq->stp.rsp.status = stp_req->status;
1654
1655 /* The next state is dependent on whether the
1656 * request was PIO Data-in or Data out
1657 */
1658 if (task->data_dir == DMA_FROM_DEVICE) {
1659 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1660 } else if (task->data_dir == DMA_TO_DEVICE) {
1661 /* Transmit data */
1662 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1663 if (status != SCI_SUCCESS)
1664 break;
1665 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1666 }
1667 break;
1668
1669 case FIS_SETDEVBITS:
1670 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1671 break;
1672
1673 case FIS_REGD2H:
1674 if (frame_header->status & ATA_BUSY) {
1675 /*
1676 * Now why is the drive sending a D2H Register
1677 * FIS when it is still busy? Do nothing since
1678 * we are still in the right state.
1679 */
1680 dev_dbg(&ihost->pdev->dev,
1681 "%s: SCIC PIO Request 0x%p received "
1682 "D2H Register FIS with BSY status "
1683 "0x%x\n",
1684 __func__,
1685 stp_req,
1686 frame_header->status);
1687 break;
1688 }
1689
1690 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1691 frame_index,
1692 (void **)&frame_buffer);
1693
1694 sci_controller_copy_sata_response(&ireq->stp.req,
1695 frame_header,
1696 frame_buffer);
1697
1698 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1699 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1700 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1701 break;
1702
1703 default:
1704 /* FIXME: what do we do here? */
1705 break;
1706 }
1707
1708 /* Frame is decoded return it to the controller */
1709 sci_controller_release_frame(ihost, frame_index);
1710
1711 return status;
1712 }
1713
1714 case SCI_REQ_STP_PIO_DATA_IN: {
1715 struct dev_to_host_fis *frame_header;
1716 struct sata_fis_data *frame_buffer;
1717
1718 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1719 frame_index,
1720 (void **)&frame_header);
1721
1722 if (status != SCI_SUCCESS) {
1723 dev_err(&ihost->pdev->dev,
1724 "%s: SCIC IO Request 0x%p could not get frame "
1725 "header for frame index %d, status %x\n",
1726 __func__,
1727 stp_req,
1728 frame_index,
1729 status);
1730 return status;
1731 }
1732
1733 if (frame_header->fis_type != FIS_DATA) {
1734 dev_err(&ihost->pdev->dev,
1735 "%s: SCIC PIO Request 0x%p received frame %d "
1736 "with fis type 0x%02x when expecting a data "
1737 "fis.\n",
1738 __func__,
1739 stp_req,
1740 frame_index,
1741 frame_header->fis_type);
1742
1743 ireq->scu_status = SCU_TASK_DONE_GOOD;
1744 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
1745 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1746
1747 /* Frame is decoded return it to the controller */
1748 sci_controller_release_frame(ihost, frame_index);
1749 return status;
1750 }
1751
1752 if (stp_req->sgl.index < 0) {
1753 ireq->saved_rx_frame_index = frame_index;
1754 stp_req->pio_len = 0;
1755 } else {
1756 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1757 frame_index,
1758 (void **)&frame_buffer);
1759
1760 status = sci_stp_request_pio_data_in_copy_data(stp_req,
1761 (u8 *)frame_buffer);
1762
1763 /* Frame is decoded return it to the controller */
1764 sci_controller_release_frame(ihost, frame_index);
1765 }
1766
1767 /* Check for the end of the transfer, are there more
1768 * bytes remaining for this data transfer
1769 */
1770 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
1771 return status;
1772
1773 if ((stp_req->status & ATA_BUSY) == 0) {
1774 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1775 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1776 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1777 } else {
1778 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1779 }
1780 return status;
1781 }
1782
1783 case SCI_REQ_STP_SOFT_RESET_WAIT_D2H: {
1784 struct dev_to_host_fis *frame_header;
1785 u32 *frame_buffer;
1786
1787 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1788 frame_index,
1789 (void **)&frame_header);
1790 if (status != SCI_SUCCESS) {
1791 dev_err(&ihost->pdev->dev,
1792 "%s: SCIC IO Request 0x%p could not get frame "
1793 "header for frame index %d, status %x\n",
1794 __func__,
1795 stp_req,
1796 frame_index,
1797 status);
1798 return status;
1799 }
1800
1801 switch (frame_header->fis_type) {
1802 case FIS_REGD2H:
1803 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1804 frame_index,
1805 (void **)&frame_buffer);
1806
1807 sci_controller_copy_sata_response(&ireq->stp.rsp,
1808 frame_header,
1809 frame_buffer);
1810
1811 /* The command has completed with error */
1812 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1813 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1814 break;
1815
1816 default:
1817 dev_warn(&ihost->pdev->dev,
1818 "%s: IO Request:0x%p Frame Id:%d protocol "
1819 "violation occurred\n",
1820 __func__,
1821 stp_req,
1822 frame_index);
1823
1824 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1825 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1826 break;
1827 }
1828
1829 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1830
1831 /* Frame has been decoded return it to the controller */
1832 sci_controller_release_frame(ihost, frame_index);
1833
1834 return status;
1835 }
1836 case SCI_REQ_ABORTING:
1837 /*
1838 * TODO: Is it even possible to get an unsolicited frame in the
1839 * aborting state?
1840 */
1841 sci_controller_release_frame(ihost, frame_index);
1842 return SCI_SUCCESS;
1843
1844 default:
1845 dev_warn(&ihost->pdev->dev,
1846 "%s: SCIC IO Request given unexpected frame %x while "
1847 "in state %d\n",
1848 __func__,
1849 frame_index,
1850 state);
1851
1852 sci_controller_release_frame(ihost, frame_index);
1853 return SCI_FAILURE_INVALID_STATE;
1854 }
1855}
1856
1857static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
1858 u32 completion_code)
1859{
1860 enum sci_status status = SCI_SUCCESS;
1861
1862 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1863 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1864 ireq->scu_status = SCU_TASK_DONE_GOOD;
1865 ireq->sci_status = SCI_SUCCESS;
1866 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1867 break;
1868 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
1869 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1870 /* We must check ther response buffer to see if the D2H
1871 * Register FIS was received before we got the TC
1872 * completion.
1873 */
1874 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
1875 sci_remote_device_suspend(ireq->target_device,
1876 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
1877
1878 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1879 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1880 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1881 } else {
1882 /* If we have an error completion status for the
1883 * TC then we can expect a D2H register FIS from
1884 * the device so we must change state to wait
1885 * for it
1886 */
1887 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
1888 }
1889 break;
1890
1891 /* TODO Check to see if any of these completion status need to
1892 * wait for the device to host register fis.
1893 */
1894 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
1895 * - this comes only for B0
1896 */
1897 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN):
1898 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1899 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR):
1900 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR):
1901 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CRC_ERR):
1902 sci_remote_device_suspend(ireq->target_device,
1903 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
1904 /* Fall through to the default case */
1905 default:
1906 /* All other completion status cause the IO to be complete. */
1907 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1908 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1909 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1910 break;
1911 }
1912
1913 return status;
1914}
1915
1916static enum sci_status
1917stp_request_soft_reset_await_h2d_asserted_tc_event(struct isci_request *ireq,
1918 u32 completion_code)
1919{
1920 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1921 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1922 ireq->scu_status = SCU_TASK_DONE_GOOD;
1923 ireq->sci_status = SCI_SUCCESS;
1924 sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG);
1925 break;
1926
1927 default:
1928 /*
1929 * All other completion status cause the IO to be complete.
1930 * If a NAK was received, then it is up to the user to retry
1931 * the request.
1932 */
1933 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1934 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1935 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1936 break;
1937 }
1938
1939 return SCI_SUCCESS;
1940}
1941
1942static enum sci_status
1943stp_request_soft_reset_await_h2d_diagnostic_tc_event(struct isci_request *ireq,
1944 u32 completion_code)
1945{
1946 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1947 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1948 ireq->scu_status = SCU_TASK_DONE_GOOD;
1949 ireq->sci_status = SCI_SUCCESS;
1950 sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_D2H);
1951 break;
1952
1953 default:
1954 /* All other completion status cause the IO to be complete. If
1955 * a NAK was received, then it is up to the user to retry the
1956 * request.
1957 */
1958 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1959 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1960 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1961 break;
1962 }
1963
1964 return SCI_SUCCESS;
1965}
1966
1967enum sci_status
1968sci_io_request_tc_completion(struct isci_request *ireq,
1969 u32 completion_code)
1970{
1971 enum sci_base_request_states state;
1972 struct isci_host *ihost = ireq->owning_controller;
1973
1974 state = ireq->sm.current_state_id;
1975
1976 switch (state) {
1977 case SCI_REQ_STARTED:
1978 return request_started_state_tc_event(ireq, completion_code);
1979
1980 case SCI_REQ_TASK_WAIT_TC_COMP:
1981 return ssp_task_request_await_tc_event(ireq,
1982 completion_code);
1983
1984 case SCI_REQ_SMP_WAIT_RESP:
1985 return smp_request_await_response_tc_event(ireq,
1986 completion_code);
1987
1988 case SCI_REQ_SMP_WAIT_TC_COMP:
1989 return smp_request_await_tc_event(ireq, completion_code);
1990
1991 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1992 return stp_request_udma_await_tc_event(ireq,
1993 completion_code);
1994
1995 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
1996 return stp_request_non_data_await_h2d_tc_event(ireq,
1997 completion_code);
1998
1999 case SCI_REQ_STP_PIO_WAIT_H2D:
2000 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2001 completion_code);
2002
2003 case SCI_REQ_STP_PIO_DATA_OUT:
2004 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2005
2006 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
2007 return stp_request_soft_reset_await_h2d_asserted_tc_event(ireq,
2008 completion_code);
2009
2010 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
2011 return stp_request_soft_reset_await_h2d_diagnostic_tc_event(ireq,
2012 completion_code);
2013
2014 case SCI_REQ_ABORTING:
2015 return request_aborting_state_tc_event(ireq,
2016 completion_code);
2017
2018 default:
2019 dev_warn(&ihost->pdev->dev,
2020 "%s: SCIC IO Request given task completion "
2021 "notification %x while in wrong state %d\n",
2022 __func__,
2023 completion_code,
2024 state);
2025 return SCI_FAILURE_INVALID_STATE;
2026 }
2027}
2028
2029/**
2030 * isci_request_process_response_iu() - This function sets the status and
2031 * response iu, in the task struct, from the request object for the upper
2032 * layer driver.
2033 * @sas_task: This parameter is the task struct from the upper layer driver.
2034 * @resp_iu: This parameter points to the response iu of the completed request.
2035 * @dev: This parameter specifies the linux device struct.
2036 *
2037 * none.
2038 */
2039static void isci_request_process_response_iu(
2040 struct sas_task *task,
2041 struct ssp_response_iu *resp_iu,
2042 struct device *dev)
2043{
2044 dev_dbg(dev,
2045 "%s: resp_iu = %p "
2046 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2047 "resp_iu->response_data_len = %x, "
2048 "resp_iu->sense_data_len = %x\nrepsonse data: ",
2049 __func__,
2050 resp_iu,
2051 resp_iu->status,
2052 resp_iu->datapres,
2053 resp_iu->response_data_len,
2054 resp_iu->sense_data_len);
2055
2056 task->task_status.stat = resp_iu->status;
2057
2058 /* libsas updates the task status fields based on the response iu. */
2059 sas_ssp_task_response(dev, task, resp_iu);
2060}
2061
2062/**
2063 * isci_request_set_open_reject_status() - This function prepares the I/O
2064 * completion for OPEN_REJECT conditions.
2065 * @request: This parameter is the completed isci_request object.
2066 * @response_ptr: This parameter specifies the service response for the I/O.
2067 * @status_ptr: This parameter specifies the exec status for the I/O.
2068 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2069 * the LLDD with respect to completing this request or forcing an abort
2070 * condition on the I/O.
2071 * @open_rej_reason: This parameter specifies the encoded reason for the
2072 * abandon-class reject.
2073 *
2074 * none.
2075 */
2076static void isci_request_set_open_reject_status(
2077 struct isci_request *request,
2078 struct sas_task *task,
2079 enum service_response *response_ptr,
2080 enum exec_status *status_ptr,
2081 enum isci_completion_selection *complete_to_host_ptr,
2082 enum sas_open_rej_reason open_rej_reason)
2083{
2084 /* Task in the target is done. */
2085 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2086 *response_ptr = SAS_TASK_UNDELIVERED;
2087 *status_ptr = SAS_OPEN_REJECT;
2088 *complete_to_host_ptr = isci_perform_normal_io_completion;
2089 task->task_status.open_rej_reason = open_rej_reason;
2090}
2091
2092/**
2093 * isci_request_handle_controller_specific_errors() - This function decodes
2094 * controller-specific I/O completion error conditions.
2095 * @request: This parameter is the completed isci_request object.
2096 * @response_ptr: This parameter specifies the service response for the I/O.
2097 * @status_ptr: This parameter specifies the exec status for the I/O.
2098 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2099 * the LLDD with respect to completing this request or forcing an abort
2100 * condition on the I/O.
2101 *
2102 * none.
2103 */
2104static void isci_request_handle_controller_specific_errors(
2105 struct isci_remote_device *idev,
2106 struct isci_request *request,
2107 struct sas_task *task,
2108 enum service_response *response_ptr,
2109 enum exec_status *status_ptr,
2110 enum isci_completion_selection *complete_to_host_ptr)
2111{
2112 unsigned int cstatus;
2113
2114 cstatus = request->scu_status;
2115
2116 dev_dbg(&request->isci_host->pdev->dev,
2117 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2118 "- controller status = 0x%x\n",
2119 __func__, request, cstatus);
2120
2121 /* Decode the controller-specific errors; most
2122 * important is to recognize those conditions in which
2123 * the target may still have a task outstanding that
2124 * must be aborted.
2125 *
2126 * Note that there are SCU completion codes being
2127 * named in the decode below for which SCIC has already
2128 * done work to handle them in a way other than as
2129 * a controller-specific completion code; these are left
2130 * in the decode below for completeness sake.
2131 */
2132 switch (cstatus) {
2133 case SCU_TASK_DONE_DMASETUP_DIRERR:
2134 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2135 case SCU_TASK_DONE_XFERCNT_ERR:
2136 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2137 if (task->task_proto == SAS_PROTOCOL_SMP) {
2138 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2139 *response_ptr = SAS_TASK_COMPLETE;
2140
2141 /* See if the device has been/is being stopped. Note
2142 * that we ignore the quiesce state, since we are
2143 * concerned about the actual device state.
2144 */
2145 if (!idev)
2146 *status_ptr = SAS_DEVICE_UNKNOWN;
2147 else
2148 *status_ptr = SAS_ABORTED_TASK;
2149
2150 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2151
2152 *complete_to_host_ptr =
2153 isci_perform_normal_io_completion;
2154 } else {
2155 /* Task in the target is not done. */
2156 *response_ptr = SAS_TASK_UNDELIVERED;
2157
2158 if (!idev)
2159 *status_ptr = SAS_DEVICE_UNKNOWN;
2160 else
2161 *status_ptr = SAM_STAT_TASK_ABORTED;
2162
2163 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2164
2165 *complete_to_host_ptr =
2166 isci_perform_error_io_completion;
2167 }
2168
2169 break;
2170
2171 case SCU_TASK_DONE_CRC_ERR:
2172 case SCU_TASK_DONE_NAK_CMD_ERR:
2173 case SCU_TASK_DONE_EXCESS_DATA:
2174 case SCU_TASK_DONE_UNEXP_FIS:
2175 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2176 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2177 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2178 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2179 /* These are conditions in which the target
2180 * has completed the task, so that no cleanup
2181 * is necessary.
2182 */
2183 *response_ptr = SAS_TASK_COMPLETE;
2184
2185 /* See if the device has been/is being stopped. Note
2186 * that we ignore the quiesce state, since we are
2187 * concerned about the actual device state.
2188 */
2189 if (!idev)
2190 *status_ptr = SAS_DEVICE_UNKNOWN;
2191 else
2192 *status_ptr = SAS_ABORTED_TASK;
2193
2194 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2195
2196 *complete_to_host_ptr = isci_perform_normal_io_completion;
2197 break;
2198
2199
2200 /* Note that the only open reject completion codes seen here will be
2201 * abandon-class codes; all others are automatically retried in the SCU.
2202 */
2203 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2204
2205 isci_request_set_open_reject_status(
2206 request, task, response_ptr, status_ptr,
2207 complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
2208 break;
2209
2210 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2211
2212 /* Note - the return of AB0 will change when
2213 * libsas implements detection of zone violations.
2214 */
2215 isci_request_set_open_reject_status(
2216 request, task, response_ptr, status_ptr,
2217 complete_to_host_ptr, SAS_OREJ_RESV_AB0);
2218 break;
2219
2220 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2221
2222 isci_request_set_open_reject_status(
2223 request, task, response_ptr, status_ptr,
2224 complete_to_host_ptr, SAS_OREJ_RESV_AB1);
2225 break;
2226
2227 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2228
2229 isci_request_set_open_reject_status(
2230 request, task, response_ptr, status_ptr,
2231 complete_to_host_ptr, SAS_OREJ_RESV_AB2);
2232 break;
2233
2234 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2235
2236 isci_request_set_open_reject_status(
2237 request, task, response_ptr, status_ptr,
2238 complete_to_host_ptr, SAS_OREJ_RESV_AB3);
2239 break;
2240
2241 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2242
2243 isci_request_set_open_reject_status(
2244 request, task, response_ptr, status_ptr,
2245 complete_to_host_ptr, SAS_OREJ_BAD_DEST);
2246 break;
2247
2248 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2249
2250 isci_request_set_open_reject_status(
2251 request, task, response_ptr, status_ptr,
2252 complete_to_host_ptr, SAS_OREJ_STP_NORES);
2253 break;
2254
2255 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2256
2257 isci_request_set_open_reject_status(
2258 request, task, response_ptr, status_ptr,
2259 complete_to_host_ptr, SAS_OREJ_EPROTO);
2260 break;
2261
2262 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2263
2264 isci_request_set_open_reject_status(
2265 request, task, response_ptr, status_ptr,
2266 complete_to_host_ptr, SAS_OREJ_CONN_RATE);
2267 break;
2268
2269 case SCU_TASK_DONE_LL_R_ERR:
2270 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2271 case SCU_TASK_DONE_LL_PERR:
2272 case SCU_TASK_DONE_LL_SY_TERM:
2273 /* Also SCU_TASK_DONE_NAK_ERR:*/
2274 case SCU_TASK_DONE_LL_LF_TERM:
2275 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2276 case SCU_TASK_DONE_LL_ABORT_ERR:
2277 case SCU_TASK_DONE_SEQ_INV_TYPE:
2278 /* Also SCU_TASK_DONE_UNEXP_XR: */
2279 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2280 case SCU_TASK_DONE_INV_FIS_LEN:
2281 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2282 case SCU_TASK_DONE_SDMA_ERR:
2283 case SCU_TASK_DONE_OFFSET_ERR:
2284 case SCU_TASK_DONE_MAX_PLD_ERR:
2285 case SCU_TASK_DONE_LF_ERR:
2286 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2287 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2288 case SCU_TASK_DONE_UNEXP_DATA:
2289 case SCU_TASK_DONE_UNEXP_SDBFIS:
2290 case SCU_TASK_DONE_REG_ERR:
2291 case SCU_TASK_DONE_SDB_ERR:
2292 case SCU_TASK_DONE_TASK_ABORT:
2293 default:
2294 /* Task in the target is not done. */
2295 *response_ptr = SAS_TASK_UNDELIVERED;
2296 *status_ptr = SAM_STAT_TASK_ABORTED;
2297
2298 if (task->task_proto == SAS_PROTOCOL_SMP) {
2299 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2300
2301 *complete_to_host_ptr = isci_perform_normal_io_completion;
2302 } else {
2303 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2304
2305 *complete_to_host_ptr = isci_perform_error_io_completion;
2306 }
2307 break;
2308 }
2309}
2310
2311/**
2312 * isci_task_save_for_upper_layer_completion() - This function saves the
2313 * request for later completion to the upper layer driver.
2314 * @host: This parameter is a pointer to the host on which the the request
2315 * should be queued (either as an error or success).
2316 * @request: This parameter is the completed request.
2317 * @response: This parameter is the response code for the completed task.
2318 * @status: This parameter is the status code for the completed task.
2319 *
2320 * none.
2321 */
2322static void isci_task_save_for_upper_layer_completion(
2323 struct isci_host *host,
2324 struct isci_request *request,
2325 enum service_response response,
2326 enum exec_status status,
2327 enum isci_completion_selection task_notification_selection)
2328{
2329 struct sas_task *task = isci_request_access_task(request);
2330
2331 task_notification_selection
2332 = isci_task_set_completion_status(task, response, status,
2333 task_notification_selection);
2334
2335 /* Tasks aborted specifically by a call to the lldd_abort_task
2336 * function should not be completed to the host in the regular path.
2337 */
2338 switch (task_notification_selection) {
2339
2340 case isci_perform_normal_io_completion:
2341
2342 /* Normal notification (task_done) */
2343 dev_dbg(&host->pdev->dev,
2344 "%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
2345 __func__,
2346 task,
2347 task->task_status.resp, response,
2348 task->task_status.stat, status);
2349 /* Add to the completed list. */
2350 list_add(&request->completed_node,
2351 &host->requests_to_complete);
2352
2353 /* Take the request off the device's pending request list. */
2354 list_del_init(&request->dev_node);
2355 break;
2356
2357 case isci_perform_aborted_io_completion:
2358 /* No notification to libsas because this request is
2359 * already in the abort path.
2360 */
2361 dev_dbg(&host->pdev->dev,
2362 "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
2363 __func__,
2364 task,
2365 task->task_status.resp, response,
2366 task->task_status.stat, status);
2367
2368 /* Wake up whatever process was waiting for this
2369 * request to complete.
2370 */
2371 WARN_ON(request->io_request_completion == NULL);
2372
2373 if (request->io_request_completion != NULL) {
2374
2375 /* Signal whoever is waiting that this
2376 * request is complete.
2377 */
2378 complete(request->io_request_completion);
2379 }
2380 break;
2381
2382 case isci_perform_error_io_completion:
2383 /* Use sas_task_abort */
2384 dev_dbg(&host->pdev->dev,
2385 "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
2386 __func__,
2387 task,
2388 task->task_status.resp, response,
2389 task->task_status.stat, status);
2390 /* Add to the aborted list. */
2391 list_add(&request->completed_node,
2392 &host->requests_to_errorback);
2393 break;
2394
2395 default:
2396 dev_dbg(&host->pdev->dev,
2397 "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
2398 __func__,
2399 task,
2400 task->task_status.resp, response,
2401 task->task_status.stat, status);
2402
2403 /* Add to the error to libsas list. */
2404 list_add(&request->completed_node,
2405 &host->requests_to_errorback);
2406 break;
2407 }
2408}
2409
2410static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2411{
2412 struct task_status_struct *ts = &task->task_status;
2413 struct ata_task_resp *resp = (void *)&ts->buf[0];
2414
2415 resp->frame_len = sizeof(*fis);
2416 memcpy(resp->ending_fis, fis, sizeof(*fis));
2417 ts->buf_valid_size = sizeof(*resp);
2418
2419 /* If the device fault bit is set in the status register, then
2420 * set the sense data and return.
2421 */
2422 if (fis->status & ATA_DF)
2423 ts->stat = SAS_PROTO_RESPONSE;
2424 else
2425 ts->stat = SAM_STAT_GOOD;
2426
2427 ts->resp = SAS_TASK_COMPLETE;
2428}
2429
2430static void isci_request_io_request_complete(struct isci_host *ihost,
2431 struct isci_request *request,
2432 enum sci_io_status completion_status)
2433{
2434 struct sas_task *task = isci_request_access_task(request);
2435 struct ssp_response_iu *resp_iu;
2436 unsigned long task_flags;
2437 struct isci_remote_device *idev = isci_lookup_device(task->dev);
2438 enum service_response response = SAS_TASK_UNDELIVERED;
2439 enum exec_status status = SAS_ABORTED_TASK;
2440 enum isci_request_status request_status;
2441 enum isci_completion_selection complete_to_host
2442 = isci_perform_normal_io_completion;
2443
2444 dev_dbg(&ihost->pdev->dev,
2445 "%s: request = %p, task = %p,\n"
2446 "task->data_dir = %d completion_status = 0x%x\n",
2447 __func__,
2448 request,
2449 task,
2450 task->data_dir,
2451 completion_status);
2452
2453 spin_lock(&request->state_lock);
2454 request_status = request->status;
2455
2456 /* Decode the request status. Note that if the request has been
2457 * aborted by a task management function, we don't care
2458 * what the status is.
2459 */
2460 switch (request_status) {
2461
2462 case aborted:
2463 /* "aborted" indicates that the request was aborted by a task
2464 * management function, since once a task management request is
2465 * perfomed by the device, the request only completes because
2466 * of the subsequent driver terminate.
2467 *
2468 * Aborted also means an external thread is explicitly managing
2469 * this request, so that we do not complete it up the stack.
2470 *
2471 * The target is still there (since the TMF was successful).
2472 */
2473 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2474 response = SAS_TASK_COMPLETE;
2475
2476 /* See if the device has been/is being stopped. Note
2477 * that we ignore the quiesce state, since we are
2478 * concerned about the actual device state.
2479 */
2480 if (!idev)
2481 status = SAS_DEVICE_UNKNOWN;
2482 else
2483 status = SAS_ABORTED_TASK;
2484
2485 complete_to_host = isci_perform_aborted_io_completion;
2486 /* This was an aborted request. */
2487
2488 spin_unlock(&request->state_lock);
2489 break;
2490
2491 case aborting:
2492 /* aborting means that the task management function tried and
2493 * failed to abort the request. We need to note the request
2494 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
2495 * target as down.
2496 *
2497 * Aborting also means an external thread is explicitly managing
2498 * this request, so that we do not complete it up the stack.
2499 */
2500 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2501 response = SAS_TASK_UNDELIVERED;
2502
2503 if (!idev)
2504 /* The device has been /is being stopped. Note that
2505 * we ignore the quiesce state, since we are
2506 * concerned about the actual device state.
2507 */
2508 status = SAS_DEVICE_UNKNOWN;
2509 else
2510 status = SAS_PHY_DOWN;
2511
2512 complete_to_host = isci_perform_aborted_io_completion;
2513
2514 /* This was an aborted request. */
2515
2516 spin_unlock(&request->state_lock);
2517 break;
2518
2519 case terminating:
2520
2521 /* This was an terminated request. This happens when
2522 * the I/O is being terminated because of an action on
2523 * the device (reset, tear down, etc.), and the I/O needs
2524 * to be completed up the stack.
2525 */
2526 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2527 response = SAS_TASK_UNDELIVERED;
2528
2529 /* See if the device has been/is being stopped. Note
2530 * that we ignore the quiesce state, since we are
2531 * concerned about the actual device state.
2532 */
2533 if (!idev)
2534 status = SAS_DEVICE_UNKNOWN;
2535 else
2536 status = SAS_ABORTED_TASK;
2537
2538 complete_to_host = isci_perform_aborted_io_completion;
2539
2540 /* This was a terminated request. */
2541
2542 spin_unlock(&request->state_lock);
2543 break;
2544
2545 case dead:
2546 /* This was a terminated request that timed-out during the
2547 * termination process. There is no task to complete to
2548 * libsas.
2549 */
2550 complete_to_host = isci_perform_normal_io_completion;
2551 spin_unlock(&request->state_lock);
2552 break;
2553
2554 default:
2555
2556 /* The request is done from an SCU HW perspective. */
2557 request->status = completed;
2558
2559 spin_unlock(&request->state_lock);
2560
2561 /* This is an active request being completed from the core. */
2562 switch (completion_status) {
2563
2564 case SCI_IO_FAILURE_RESPONSE_VALID:
2565 dev_dbg(&ihost->pdev->dev,
2566 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2567 __func__,
2568 request,
2569 task);
2570
2571 if (sas_protocol_ata(task->task_proto)) {
2572 isci_process_stp_response(task, &request->stp.rsp);
2573 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2574
2575 /* crack the iu response buffer. */
2576 resp_iu = &request->ssp.rsp;
2577 isci_request_process_response_iu(task, resp_iu,
2578 &ihost->pdev->dev);
2579
2580 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2581
2582 dev_err(&ihost->pdev->dev,
2583 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2584 "SAS_PROTOCOL_SMP protocol\n",
2585 __func__);
2586
2587 } else
2588 dev_err(&ihost->pdev->dev,
2589 "%s: unknown protocol\n", __func__);
2590
2591 /* use the task status set in the task struct by the
2592 * isci_request_process_response_iu call.
2593 */
2594 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2595 response = task->task_status.resp;
2596 status = task->task_status.stat;
2597 break;
2598
2599 case SCI_IO_SUCCESS:
2600 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2601
2602 response = SAS_TASK_COMPLETE;
2603 status = SAM_STAT_GOOD;
2604 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2605
2606 if (task->task_proto == SAS_PROTOCOL_SMP) {
2607 void *rsp = &request->smp.rsp;
2608
2609 dev_dbg(&ihost->pdev->dev,
2610 "%s: SMP protocol completion\n",
2611 __func__);
2612
2613 sg_copy_from_buffer(
2614 &task->smp_task.smp_resp, 1,
2615 rsp, sizeof(struct smp_resp));
2616 } else if (completion_status
2617 == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2618
2619 /* This was an SSP / STP / SATA transfer.
2620 * There is a possibility that less data than
2621 * the maximum was transferred.
2622 */
2623 u32 transferred_length = sci_req_tx_bytes(request);
2624
2625 task->task_status.residual
2626 = task->total_xfer_len - transferred_length;
2627
2628 /* If there were residual bytes, call this an
2629 * underrun.
2630 */
2631 if (task->task_status.residual != 0)
2632 status = SAS_DATA_UNDERRUN;
2633
2634 dev_dbg(&ihost->pdev->dev,
2635 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2636 __func__,
2637 status);
2638
2639 } else
2640 dev_dbg(&ihost->pdev->dev,
2641 "%s: SCI_IO_SUCCESS\n",
2642 __func__);
2643
2644 break;
2645
2646 case SCI_IO_FAILURE_TERMINATED:
2647 dev_dbg(&ihost->pdev->dev,
2648 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2649 __func__,
2650 request,
2651 task);
2652
2653 /* The request was terminated explicitly. No handling
2654 * is needed in the SCSI error handler path.
2655 */
2656 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2657 response = SAS_TASK_UNDELIVERED;
2658
2659 /* See if the device has been/is being stopped. Note
2660 * that we ignore the quiesce state, since we are
2661 * concerned about the actual device state.
2662 */
2663 if (!idev)
2664 status = SAS_DEVICE_UNKNOWN;
2665 else
2666 status = SAS_ABORTED_TASK;
2667
2668 complete_to_host = isci_perform_normal_io_completion;
2669 break;
2670
2671 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2672
2673 isci_request_handle_controller_specific_errors(
2674 idev, request, task, &response, &status,
2675 &complete_to_host);
2676
2677 break;
2678
2679 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2680 /* This is a special case, in that the I/O completion
2681 * is telling us that the device needs a reset.
2682 * In order for the device reset condition to be
2683 * noticed, the I/O has to be handled in the error
2684 * handler. Set the reset flag and cause the
2685 * SCSI error thread to be scheduled.
2686 */
2687 spin_lock_irqsave(&task->task_state_lock, task_flags);
2688 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2689 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2690
2691 /* Fail the I/O. */
2692 response = SAS_TASK_UNDELIVERED;
2693 status = SAM_STAT_TASK_ABORTED;
2694
2695 complete_to_host = isci_perform_error_io_completion;
2696 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2697 break;
2698
2699 case SCI_FAILURE_RETRY_REQUIRED:
2700
2701 /* Fail the I/O so it can be retried. */
2702 response = SAS_TASK_UNDELIVERED;
2703 if (!idev)
2704 status = SAS_DEVICE_UNKNOWN;
2705 else
2706 status = SAS_ABORTED_TASK;
2707
2708 complete_to_host = isci_perform_normal_io_completion;
2709 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2710 break;
2711
2712
2713 default:
2714 /* Catch any otherwise unhandled error codes here. */
2715 dev_dbg(&ihost->pdev->dev,
2716 "%s: invalid completion code: 0x%x - "
2717 "isci_request = %p\n",
2718 __func__, completion_status, request);
2719
2720 response = SAS_TASK_UNDELIVERED;
2721
2722 /* See if the device has been/is being stopped. Note
2723 * that we ignore the quiesce state, since we are
2724 * concerned about the actual device state.
2725 */
2726 if (!idev)
2727 status = SAS_DEVICE_UNKNOWN;
2728 else
2729 status = SAS_ABORTED_TASK;
2730
2731 if (SAS_PROTOCOL_SMP == task->task_proto) {
2732 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2733 complete_to_host = isci_perform_normal_io_completion;
2734 } else {
2735 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2736 complete_to_host = isci_perform_error_io_completion;
2737 }
2738 break;
2739 }
2740 break;
2741 }
2742
2743 switch (task->task_proto) {
2744 case SAS_PROTOCOL_SSP:
2745 if (task->data_dir == DMA_NONE)
2746 break;
2747 if (task->num_scatter == 0)
2748 /* 0 indicates a single dma address */
2749 dma_unmap_single(&ihost->pdev->dev,
2750 request->zero_scatter_daddr,
2751 task->total_xfer_len, task->data_dir);
2752 else /* unmap the sgl dma addresses */
2753 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2754 request->num_sg_entries, task->data_dir);
2755 break;
2756 case SAS_PROTOCOL_SMP: {
2757 struct scatterlist *sg = &task->smp_task.smp_req;
2758 struct smp_req *smp_req;
2759 void *kaddr;
2760
2761 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2762
2763 /* need to swab it back in case the command buffer is re-used */
2764 kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
2765 smp_req = kaddr + sg->offset;
2766 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2767 kunmap_atomic(kaddr, KM_IRQ0);
2768 break;
2769 }
2770 default:
2771 break;
2772 }
2773
2774 /* Put the completed request on the correct list */
2775 isci_task_save_for_upper_layer_completion(ihost, request, response,
2776 status, complete_to_host
2777 );
2778
2779 /* complete the io request to the core. */
2780 sci_controller_complete_io(ihost, request->target_device, request);
2781 isci_put_device(idev);
2782
2783 /* set terminated handle so it cannot be completed or
2784 * terminated again, and to cause any calls into abort
2785 * task to recognize the already completed case.
2786 */
2787 set_bit(IREQ_TERMINATED, &request->flags);
2788}
2789
2790static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2791{
2792 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2793 struct domain_device *dev = ireq->target_device->domain_dev;
2794 struct sas_task *task;
2795
2796 /* XXX as hch said always creating an internal sas_task for tmf
2797 * requests would simplify the driver
2798 */
2799 task = ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL;
2800
2801 /* all unaccelerated request types (non ssp or ncq) handled with
2802 * substates
2803 */
2804 if (!task && dev->dev_type == SAS_END_DEV) {
2805 sci_change_state(sm, SCI_REQ_TASK_WAIT_TC_COMP);
2806 } else if (!task &&
2807 (isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_high ||
2808 isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_low)) {
2809 sci_change_state(sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED);
2810 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2811 sci_change_state(sm, SCI_REQ_SMP_WAIT_RESP);
2812 } else if (task && sas_protocol_ata(task->task_proto) &&
2813 !task->ata_task.use_ncq) {
2814 u32 state;
2815
2816 if (task->data_dir == DMA_NONE)
2817 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2818 else if (task->ata_task.dma_xfer)
2819 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2820 else /* PIO */
2821 state = SCI_REQ_STP_PIO_WAIT_H2D;
2822
2823 sci_change_state(sm, state);
2824 }
2825}
2826
2827static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2828{
2829 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2830 struct isci_host *ihost = ireq->owning_controller;
2831
2832 /* Tell the SCI_USER that the IO request is complete */
2833 if (!test_bit(IREQ_TMF, &ireq->flags))
2834 isci_request_io_request_complete(ihost, ireq,
2835 ireq->sci_status);
2836 else
2837 isci_task_request_complete(ihost, ireq, ireq->sci_status);
2838}
2839
2840static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
2841{
2842 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2843
2844 /* Setting the abort bit in the Task Context is required by the silicon. */
2845 ireq->tc->abort = 1;
2846}
2847
2848static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
2849{
2850 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2851
2852 ireq->target_device->working_request = ireq;
2853}
2854
2855static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
2856{
2857 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2858
2859 ireq->target_device->working_request = ireq;
2860}
2861
2862static void sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter(struct sci_base_state_machine *sm)
2863{
2864 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2865
2866 ireq->target_device->working_request = ireq;
2867}
2868
2869static void sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter(struct sci_base_state_machine *sm)
2870{
2871 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2872 struct scu_task_context *tc = ireq->tc;
2873 struct host_to_dev_fis *h2d_fis;
2874 enum sci_status status;
2875
2876 /* Clear the SRST bit */
2877 h2d_fis = &ireq->stp.cmd;
2878 h2d_fis->control = 0;
2879
2880 /* Clear the TC control bit */
2881 tc->control_frame = 0;
2882
2883 status = sci_controller_continue_io(ireq);
2884 WARN_ONCE(status != SCI_SUCCESS, "isci: continue io failure\n");
2885}
2886
2887static const struct sci_base_state sci_request_state_table[] = {
2888 [SCI_REQ_INIT] = { },
2889 [SCI_REQ_CONSTRUCTED] = { },
2890 [SCI_REQ_STARTED] = {
2891 .enter_state = sci_request_started_state_enter,
2892 },
2893 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
2894 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
2895 },
2896 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
2897 [SCI_REQ_STP_PIO_WAIT_H2D] = {
2898 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
2899 },
2900 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
2901 [SCI_REQ_STP_PIO_DATA_IN] = { },
2902 [SCI_REQ_STP_PIO_DATA_OUT] = { },
2903 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
2904 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
2905 [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED] = {
2906 .enter_state = sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter,
2907 },
2908 [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG] = {
2909 .enter_state = sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter,
2910 },
2911 [SCI_REQ_STP_SOFT_RESET_WAIT_D2H] = { },
2912 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
2913 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
2914 [SCI_REQ_SMP_WAIT_RESP] = { },
2915 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
2916 [SCI_REQ_COMPLETED] = {
2917 .enter_state = sci_request_completed_state_enter,
2918 },
2919 [SCI_REQ_ABORTING] = {
2920 .enter_state = sci_request_aborting_state_enter,
2921 },
2922 [SCI_REQ_FINAL] = { },
2923};
2924
2925static void
2926sci_general_request_construct(struct isci_host *ihost,
2927 struct isci_remote_device *idev,
2928 struct isci_request *ireq)
2929{
2930 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
2931
2932 ireq->target_device = idev;
2933 ireq->protocol = SCIC_NO_PROTOCOL;
2934 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
2935
2936 ireq->sci_status = SCI_SUCCESS;
2937 ireq->scu_status = 0;
2938 ireq->post_context = 0xFFFFFFFF;
2939}
2940
2941static enum sci_status
2942sci_io_request_construct(struct isci_host *ihost,
2943 struct isci_remote_device *idev,
2944 struct isci_request *ireq)
2945{
2946 struct domain_device *dev = idev->domain_dev;
2947 enum sci_status status = SCI_SUCCESS;
2948
2949 /* Build the common part of the request */
2950 sci_general_request_construct(ihost, idev, ireq);
2951
2952 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
2953 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
2954
2955 if (dev->dev_type == SAS_END_DEV)
2956 /* pass */;
2957 else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
2958 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
2959 else if (dev_is_expander(dev))
2960 /* pass */;
2961 else
2962 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2963
2964 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
2965
2966 return status;
2967}
2968
2969enum sci_status sci_task_request_construct(struct isci_host *ihost,
2970 struct isci_remote_device *idev,
2971 u16 io_tag, struct isci_request *ireq)
2972{
2973 struct domain_device *dev = idev->domain_dev;
2974 enum sci_status status = SCI_SUCCESS;
2975
2976 /* Build the common part of the request */
2977 sci_general_request_construct(ihost, idev, ireq);
2978
2979 if (dev->dev_type == SAS_END_DEV ||
2980 dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
2981 set_bit(IREQ_TMF, &ireq->flags);
2982 memset(ireq->tc, 0, sizeof(struct scu_task_context));
2983 } else
2984 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2985
2986 return status;
2987}
2988
2989static enum sci_status isci_request_ssp_request_construct(
2990 struct isci_request *request)
2991{
2992 enum sci_status status;
2993
2994 dev_dbg(&request->isci_host->pdev->dev,
2995 "%s: request = %p\n",
2996 __func__,
2997 request);
2998 status = sci_io_request_construct_basic_ssp(request);
2999 return status;
3000}
3001
3002static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3003{
3004 struct sas_task *task = isci_request_access_task(ireq);
3005 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3006 struct ata_queued_cmd *qc = task->uldd_task;
3007 enum sci_status status;
3008
3009 dev_dbg(&ireq->isci_host->pdev->dev,
3010 "%s: ireq = %p\n",
3011 __func__,
3012 ireq);
3013
3014 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3015 if (!task->ata_task.device_control_reg_update)
3016 fis->flags |= 0x80;
3017 fis->flags &= 0xF0;
3018
3019 status = sci_io_request_construct_basic_sata(ireq);
3020
3021 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3022 qc->tf.command == ATA_CMD_FPDMA_READ)) {
3023 fis->sector_count = qc->tag << 3;
3024 ireq->tc->type.stp.ncq_tag = qc->tag;
3025 }
3026
3027 return status;
3028}
3029
3030static enum sci_status
3031sci_io_request_construct_smp(struct device *dev,
3032 struct isci_request *ireq,
3033 struct sas_task *task)
3034{
3035 struct scatterlist *sg = &task->smp_task.smp_req;
3036 struct isci_remote_device *idev;
3037 struct scu_task_context *task_context;
3038 struct isci_port *iport;
3039 struct smp_req *smp_req;
3040 void *kaddr;
3041 u8 req_len;
3042 u32 cmd;
3043
3044 kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
3045 smp_req = kaddr + sg->offset;
3046 /*
3047 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3048 * functions under SAS 2.0, a zero request length really indicates
3049 * a non-zero default length.
3050 */
3051 if (smp_req->req_len == 0) {
3052 switch (smp_req->func) {
3053 case SMP_DISCOVER:
3054 case SMP_REPORT_PHY_ERR_LOG:
3055 case SMP_REPORT_PHY_SATA:
3056 case SMP_REPORT_ROUTE_INFO:
3057 smp_req->req_len = 2;
3058 break;
3059 case SMP_CONF_ROUTE_INFO:
3060 case SMP_PHY_CONTROL:
3061 case SMP_PHY_TEST_FUNCTION:
3062 smp_req->req_len = 9;
3063 break;
3064 /* Default - zero is a valid default for 2.0. */
3065 }
3066 }
3067 req_len = smp_req->req_len;
3068 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3069 cmd = *(u32 *) smp_req;
3070 kunmap_atomic(kaddr, KM_IRQ0);
3071
3072 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3073 return SCI_FAILURE;
3074
3075 ireq->protocol = SCIC_SMP_PROTOCOL;
3076
3077 /* byte swap the smp request. */
3078
3079 task_context = ireq->tc;
3080
3081 idev = ireq->target_device;
3082 iport = idev->owning_port;
3083
3084 /*
3085 * Fill in the TC with the its required data
3086 * 00h
3087 */
3088 task_context->priority = 0;
3089 task_context->initiator_request = 1;
3090 task_context->connection_rate = idev->connection_rate;
3091 task_context->protocol_engine_index = ISCI_PEG;
3092 task_context->logical_port_index = iport->physical_port_index;
3093 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3094 task_context->abort = 0;
3095 task_context->valid = SCU_TASK_CONTEXT_VALID;
3096 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3097
3098 /* 04h */
3099 task_context->remote_node_index = idev->rnc.remote_node_index;
3100 task_context->command_code = 0;
3101 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3102
3103 /* 08h */
3104 task_context->link_layer_control = 0;
3105 task_context->do_not_dma_ssp_good_response = 1;
3106 task_context->strict_ordering = 0;
3107 task_context->control_frame = 1;
3108 task_context->timeout_enable = 0;
3109 task_context->block_guard_enable = 0;
3110
3111 /* 0ch */
3112 task_context->address_modifier = 0;
3113
3114 /* 10h */
3115 task_context->ssp_command_iu_length = req_len;
3116
3117 /* 14h */
3118 task_context->transfer_length_bytes = 0;
3119
3120 /*
3121 * 18h ~ 30h, protocol specific
3122 * since commandIU has been build by framework at this point, we just
3123 * copy the frist DWord from command IU to this location. */
3124 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3125
3126 /*
3127 * 40h
3128 * "For SMP you could program it to zero. We would prefer that way
3129 * so that done code will be consistent." - Venki
3130 */
3131 task_context->task_phase = 0;
3132
3133 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3134 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3135 (iport->physical_port_index <<
3136 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3137 ISCI_TAG_TCI(ireq->io_tag));
3138 /*
3139 * Copy the physical address for the command buffer to the SCU Task
3140 * Context command buffer should not contain command header.
3141 */
3142 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3143 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3144
3145 /* SMP response comes as UF, so no need to set response IU address. */
3146 task_context->response_iu_upper = 0;
3147 task_context->response_iu_lower = 0;
3148
3149 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3150
3151 return SCI_SUCCESS;
3152}
3153
3154/*
3155 * isci_smp_request_build() - This function builds the smp request.
3156 * @ireq: This parameter points to the isci_request allocated in the
3157 * request construct function.
3158 *
3159 * SCI_SUCCESS on successfull completion, or specific failure code.
3160 */
3161static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3162{
3163 struct sas_task *task = isci_request_access_task(ireq);
3164 struct device *dev = &ireq->isci_host->pdev->dev;
3165 enum sci_status status = SCI_FAILURE;
3166
3167 status = sci_io_request_construct_smp(dev, ireq, task);
3168 if (status != SCI_SUCCESS)
3169 dev_dbg(&ireq->isci_host->pdev->dev,
3170 "%s: failed with status = %d\n",
3171 __func__,
3172 status);
3173
3174 return status;
3175}
3176
3177/**
3178 * isci_io_request_build() - This function builds the io request object.
3179 * @ihost: This parameter specifies the ISCI host object
3180 * @request: This parameter points to the isci_request object allocated in the
3181 * request construct function.
3182 * @sci_device: This parameter is the handle for the sci core's remote device
3183 * object that is the destination for this request.
3184 *
3185 * SCI_SUCCESS on successfull completion, or specific failure code.
3186 */
3187static enum sci_status isci_io_request_build(struct isci_host *ihost,
3188 struct isci_request *request,
3189 struct isci_remote_device *idev)
3190{
3191 enum sci_status status = SCI_SUCCESS;
3192 struct sas_task *task = isci_request_access_task(request);
3193
3194 dev_dbg(&ihost->pdev->dev,
3195 "%s: idev = 0x%p; request = %p, "
3196 "num_scatter = %d\n",
3197 __func__,
3198 idev,
3199 request,
3200 task->num_scatter);
3201
3202 /* map the sgl addresses, if present.
3203 * libata does the mapping for sata devices
3204 * before we get the request.
3205 */
3206 if (task->num_scatter &&
3207 !sas_protocol_ata(task->task_proto) &&
3208 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3209
3210 request->num_sg_entries = dma_map_sg(
3211 &ihost->pdev->dev,
3212 task->scatter,
3213 task->num_scatter,
3214 task->data_dir
3215 );
3216
3217 if (request->num_sg_entries == 0)
3218 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3219 }
3220
3221 status = sci_io_request_construct(ihost, idev, request);
3222
3223 if (status != SCI_SUCCESS) {
3224 dev_dbg(&ihost->pdev->dev,
3225 "%s: failed request construct\n",
3226 __func__);
3227 return SCI_FAILURE;
3228 }
3229
3230 switch (task->task_proto) {
3231 case SAS_PROTOCOL_SMP:
3232 status = isci_smp_request_build(request);
3233 break;
3234 case SAS_PROTOCOL_SSP:
3235 status = isci_request_ssp_request_construct(request);
3236 break;
3237 case SAS_PROTOCOL_SATA:
3238 case SAS_PROTOCOL_STP:
3239 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3240 status = isci_request_stp_request_construct(request);
3241 break;
3242 default:
3243 dev_dbg(&ihost->pdev->dev,
3244 "%s: unknown protocol\n", __func__);
3245 return SCI_FAILURE;
3246 }
3247
3248 return SCI_SUCCESS;
3249}
3250
3251static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3252{
3253 struct isci_request *ireq;
3254
3255 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3256 ireq->io_tag = tag;
3257 ireq->io_request_completion = NULL;
3258 ireq->flags = 0;
3259 ireq->num_sg_entries = 0;
3260 INIT_LIST_HEAD(&ireq->completed_node);
3261 INIT_LIST_HEAD(&ireq->dev_node);
3262 isci_request_change_state(ireq, allocated);
3263
3264 return ireq;
3265}
3266
3267static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3268 struct sas_task *task,
3269 u16 tag)
3270{
3271 struct isci_request *ireq;
3272
3273 ireq = isci_request_from_tag(ihost, tag);
3274 ireq->ttype_ptr.io_task_ptr = task;
3275 ireq->ttype = io_task;
3276 task->lldd_task = ireq;
3277
3278 return ireq;
3279}
3280
3281struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3282 struct isci_tmf *isci_tmf,
3283 u16 tag)
3284{
3285 struct isci_request *ireq;
3286
3287 ireq = isci_request_from_tag(ihost, tag);
3288 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3289 ireq->ttype = tmf_task;
3290
3291 return ireq;
3292}
3293
3294int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3295 struct sas_task *task, u16 tag)
3296{
3297 enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3298 struct isci_request *ireq;
3299 unsigned long flags;
3300 int ret = 0;
3301
3302 /* do common allocation and init of request object. */
3303 ireq = isci_io_request_from_tag(ihost, task, tag);
3304
3305 status = isci_io_request_build(ihost, ireq, idev);
3306 if (status != SCI_SUCCESS) {
3307 dev_dbg(&ihost->pdev->dev,
3308 "%s: request_construct failed - status = 0x%x\n",
3309 __func__,
3310 status);
3311 return status;
3312 }
3313
3314 spin_lock_irqsave(&ihost->scic_lock, flags);
3315
3316 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3317
3318 if (isci_task_is_ncq_recovery(task)) {
3319
3320 /* The device is in an NCQ recovery state. Issue the
3321 * request on the task side. Note that it will
3322 * complete on the I/O request side because the
3323 * request was built that way (ie.
3324 * ireq->is_task_management_request is false).
3325 */
3326 status = sci_controller_start_task(ihost,
3327 idev,
3328 ireq);
3329 } else {
3330 status = SCI_FAILURE;
3331 }
3332 } else {
3333 /* send the request, let the core assign the IO TAG. */
3334 status = sci_controller_start_io(ihost, idev,
3335 ireq);
3336 }
3337
3338 if (status != SCI_SUCCESS &&
3339 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3340 dev_dbg(&ihost->pdev->dev,
3341 "%s: failed request start (0x%x)\n",
3342 __func__, status);
3343 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3344 return status;
3345 }
3346
3347 /* Either I/O started OK, or the core has signaled that
3348 * the device needs a target reset.
3349 *
3350 * In either case, hold onto the I/O for later.
3351 *
3352 * Update it's status and add it to the list in the
3353 * remote device object.
3354 */
3355 list_add(&ireq->dev_node, &idev->reqs_in_process);
3356
3357 if (status == SCI_SUCCESS) {
3358 isci_request_change_state(ireq, started);
3359 } else {
3360 /* The request did not really start in the
3361 * hardware, so clear the request handle
3362 * here so no terminations will be done.
3363 */
3364 set_bit(IREQ_TERMINATED, &ireq->flags);
3365 isci_request_change_state(ireq, completed);
3366 }
3367 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3368
3369 if (status ==
3370 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3371 /* Signal libsas that we need the SCSI error
3372 * handler thread to work on this I/O and that
3373 * we want a device reset.
3374 */
3375 spin_lock_irqsave(&task->task_state_lock, flags);
3376 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3377 spin_unlock_irqrestore(&task->task_state_lock, flags);
3378
3379 /* Cause this task to be scheduled in the SCSI error
3380 * handler thread.
3381 */
3382 isci_execpath_callback(ihost, task,
3383 sas_task_abort);
3384
3385 /* Change the status, since we are holding
3386 * the I/O until it is managed by the SCSI
3387 * error handler.
3388 */
3389 status = SCI_SUCCESS;
3390 }
3391
3392 return ret;
3393}
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include <scsi/scsi_cmnd.h>
57#include "isci.h"
58#include "task.h"
59#include "request.h"
60#include "scu_completion_codes.h"
61#include "scu_event_codes.h"
62#include "sas.h"
63
64#undef C
65#define C(a) (#a)
66const char *req_state_name(enum sci_base_request_states state)
67{
68 static const char * const strings[] = REQUEST_STATES;
69
70 return strings[state];
71}
72#undef C
73
74static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75 int idx)
76{
77 if (idx == 0)
78 return &ireq->tc->sgl_pair_ab;
79 else if (idx == 1)
80 return &ireq->tc->sgl_pair_cd;
81 else if (idx < 0)
82 return NULL;
83 else
84 return &ireq->sg_table[idx - 2];
85}
86
87static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88 struct isci_request *ireq, u32 idx)
89{
90 u32 offset;
91
92 if (idx == 0) {
93 offset = (void *) &ireq->tc->sgl_pair_ab -
94 (void *) &ihost->task_context_table[0];
95 return ihost->tc_dma + offset;
96 } else if (idx == 1) {
97 offset = (void *) &ireq->tc->sgl_pair_cd -
98 (void *) &ihost->task_context_table[0];
99 return ihost->tc_dma + offset;
100 }
101
102 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
103}
104
105static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
106{
107 e->length = sg_dma_len(sg);
108 e->address_upper = upper_32_bits(sg_dma_address(sg));
109 e->address_lower = lower_32_bits(sg_dma_address(sg));
110 e->address_modifier = 0;
111}
112
113static void sci_request_build_sgl(struct isci_request *ireq)
114{
115 struct isci_host *ihost = ireq->isci_host;
116 struct sas_task *task = isci_request_access_task(ireq);
117 struct scatterlist *sg = NULL;
118 dma_addr_t dma_addr;
119 u32 sg_idx = 0;
120 struct scu_sgl_element_pair *scu_sg = NULL;
121 struct scu_sgl_element_pair *prev_sg = NULL;
122
123 if (task->num_scatter > 0) {
124 sg = task->scatter;
125
126 while (sg) {
127 scu_sg = to_sgl_element_pair(ireq, sg_idx);
128 init_sgl_element(&scu_sg->A, sg);
129 sg = sg_next(sg);
130 if (sg) {
131 init_sgl_element(&scu_sg->B, sg);
132 sg = sg_next(sg);
133 } else
134 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
135
136 if (prev_sg) {
137 dma_addr = to_sgl_element_pair_dma(ihost,
138 ireq,
139 sg_idx);
140
141 prev_sg->next_pair_upper =
142 upper_32_bits(dma_addr);
143 prev_sg->next_pair_lower =
144 lower_32_bits(dma_addr);
145 }
146
147 prev_sg = scu_sg;
148 sg_idx++;
149 }
150 } else { /* handle when no sg */
151 scu_sg = to_sgl_element_pair(ireq, sg_idx);
152
153 dma_addr = dma_map_single(&ihost->pdev->dev,
154 task->scatter,
155 task->total_xfer_len,
156 task->data_dir);
157
158 ireq->zero_scatter_daddr = dma_addr;
159
160 scu_sg->A.length = task->total_xfer_len;
161 scu_sg->A.address_upper = upper_32_bits(dma_addr);
162 scu_sg->A.address_lower = lower_32_bits(dma_addr);
163 }
164
165 if (scu_sg) {
166 scu_sg->next_pair_upper = 0;
167 scu_sg->next_pair_lower = 0;
168 }
169}
170
171static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
172{
173 struct ssp_cmd_iu *cmd_iu;
174 struct sas_task *task = isci_request_access_task(ireq);
175
176 cmd_iu = &ireq->ssp.cmd;
177
178 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179 cmd_iu->add_cdb_len = 0;
180 cmd_iu->_r_a = 0;
181 cmd_iu->_r_b = 0;
182 cmd_iu->en_fburst = 0; /* unsupported */
183 cmd_iu->task_prio = task->ssp_task.task_prio;
184 cmd_iu->task_attr = task->ssp_task.task_attr;
185 cmd_iu->_r_c = 0;
186
187 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
188 (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
189}
190
191static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
192{
193 struct ssp_task_iu *task_iu;
194 struct sas_task *task = isci_request_access_task(ireq);
195 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
196
197 task_iu = &ireq->ssp.tmf;
198
199 memset(task_iu, 0, sizeof(struct ssp_task_iu));
200
201 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
202
203 task_iu->task_func = isci_tmf->tmf_code;
204 task_iu->task_tag =
205 (test_bit(IREQ_TMF, &ireq->flags)) ?
206 isci_tmf->io_tag :
207 SCI_CONTROLLER_INVALID_IO_TAG;
208}
209
210/*
211 * This method is will fill in the SCU Task Context for any type of SSP request.
212 */
213static void scu_ssp_request_construct_task_context(
214 struct isci_request *ireq,
215 struct scu_task_context *task_context)
216{
217 dma_addr_t dma_addr;
218 struct isci_remote_device *idev;
219 struct isci_port *iport;
220
221 idev = ireq->target_device;
222 iport = idev->owning_port;
223
224 /* Fill in the TC with its required data */
225 task_context->abort = 0;
226 task_context->priority = 0;
227 task_context->initiator_request = 1;
228 task_context->connection_rate = idev->connection_rate;
229 task_context->protocol_engine_index = ISCI_PEG;
230 task_context->logical_port_index = iport->physical_port_index;
231 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
232 task_context->valid = SCU_TASK_CONTEXT_VALID;
233 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
234
235 task_context->remote_node_index = idev->rnc.remote_node_index;
236 task_context->command_code = 0;
237
238 task_context->link_layer_control = 0;
239 task_context->do_not_dma_ssp_good_response = 1;
240 task_context->strict_ordering = 0;
241 task_context->control_frame = 0;
242 task_context->timeout_enable = 0;
243 task_context->block_guard_enable = 0;
244
245 task_context->address_modifier = 0;
246
247 /* task_context->type.ssp.tag = ireq->io_tag; */
248 task_context->task_phase = 0x01;
249
250 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
251 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
252 (iport->physical_port_index <<
253 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
254 ISCI_TAG_TCI(ireq->io_tag));
255
256 /*
257 * Copy the physical address for the command buffer to the
258 * SCU Task Context
259 */
260 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
261
262 task_context->command_iu_upper = upper_32_bits(dma_addr);
263 task_context->command_iu_lower = lower_32_bits(dma_addr);
264
265 /*
266 * Copy the physical address for the response buffer to the
267 * SCU Task Context
268 */
269 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
270
271 task_context->response_iu_upper = upper_32_bits(dma_addr);
272 task_context->response_iu_lower = lower_32_bits(dma_addr);
273}
274
275static u8 scu_bg_blk_size(struct scsi_device *sdp)
276{
277 switch (sdp->sector_size) {
278 case 512:
279 return 0;
280 case 1024:
281 return 1;
282 case 4096:
283 return 3;
284 default:
285 return 0xff;
286 }
287}
288
289static u32 scu_dif_bytes(u32 len, u32 sector_size)
290{
291 return (len >> ilog2(sector_size)) * 8;
292}
293
294static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
295{
296 struct scu_task_context *tc = ireq->tc;
297 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
298 u8 blk_sz = scu_bg_blk_size(scmd->device);
299
300 tc->block_guard_enable = 1;
301 tc->blk_prot_en = 1;
302 tc->blk_sz = blk_sz;
303 /* DIF write insert */
304 tc->blk_prot_func = 0x2;
305
306 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
307 scmd->device->sector_size);
308
309 /* always init to 0, used by hw */
310 tc->interm_crc_val = 0;
311
312 tc->init_crc_seed = 0;
313 tc->app_tag_verify = 0;
314 tc->app_tag_gen = 0;
315 tc->ref_tag_seed_verify = 0;
316
317 /* always init to same as bg_blk_sz */
318 tc->UD_bytes_immed_val = scmd->device->sector_size;
319
320 tc->reserved_DC_0 = 0;
321
322 /* always init to 8 */
323 tc->DIF_bytes_immed_val = 8;
324
325 tc->reserved_DC_1 = 0;
326 tc->bgc_blk_sz = scmd->device->sector_size;
327 tc->reserved_E0_0 = 0;
328 tc->app_tag_gen_mask = 0;
329
330 /** setup block guard control **/
331 tc->bgctl = 0;
332
333 /* DIF write insert */
334 tc->bgctl_f.op = 0x2;
335
336 tc->app_tag_verify_mask = 0;
337
338 /* must init to 0 for hw */
339 tc->blk_guard_err = 0;
340
341 tc->reserved_E8_0 = 0;
342
343 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
344 tc->ref_tag_seed_gen = scsi_get_lba(scmd) & 0xffffffff;
345 else if (type & SCSI_PROT_DIF_TYPE3)
346 tc->ref_tag_seed_gen = 0;
347}
348
349static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
350{
351 struct scu_task_context *tc = ireq->tc;
352 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
353 u8 blk_sz = scu_bg_blk_size(scmd->device);
354
355 tc->block_guard_enable = 1;
356 tc->blk_prot_en = 1;
357 tc->blk_sz = blk_sz;
358 /* DIF read strip */
359 tc->blk_prot_func = 0x1;
360
361 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
362 scmd->device->sector_size);
363
364 /* always init to 0, used by hw */
365 tc->interm_crc_val = 0;
366
367 tc->init_crc_seed = 0;
368 tc->app_tag_verify = 0;
369 tc->app_tag_gen = 0;
370
371 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
372 tc->ref_tag_seed_verify = scsi_get_lba(scmd) & 0xffffffff;
373 else if (type & SCSI_PROT_DIF_TYPE3)
374 tc->ref_tag_seed_verify = 0;
375
376 /* always init to same as bg_blk_sz */
377 tc->UD_bytes_immed_val = scmd->device->sector_size;
378
379 tc->reserved_DC_0 = 0;
380
381 /* always init to 8 */
382 tc->DIF_bytes_immed_val = 8;
383
384 tc->reserved_DC_1 = 0;
385 tc->bgc_blk_sz = scmd->device->sector_size;
386 tc->reserved_E0_0 = 0;
387 tc->app_tag_gen_mask = 0;
388
389 /** setup block guard control **/
390 tc->bgctl = 0;
391
392 /* DIF read strip */
393 tc->bgctl_f.crc_verify = 1;
394 tc->bgctl_f.op = 0x1;
395 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
396 tc->bgctl_f.ref_tag_chk = 1;
397 tc->bgctl_f.app_f_detect = 1;
398 } else if (type & SCSI_PROT_DIF_TYPE3)
399 tc->bgctl_f.app_ref_f_detect = 1;
400
401 tc->app_tag_verify_mask = 0;
402
403 /* must init to 0 for hw */
404 tc->blk_guard_err = 0;
405
406 tc->reserved_E8_0 = 0;
407 tc->ref_tag_seed_gen = 0;
408}
409
410/*
411 * This method is will fill in the SCU Task Context for a SSP IO request.
412 */
413static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
414 enum dma_data_direction dir,
415 u32 len)
416{
417 struct scu_task_context *task_context = ireq->tc;
418 struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
419 struct scsi_cmnd *scmd = sas_task->uldd_task;
420 u8 prot_type = scsi_get_prot_type(scmd);
421 u8 prot_op = scsi_get_prot_op(scmd);
422
423 scu_ssp_request_construct_task_context(ireq, task_context);
424
425 task_context->ssp_command_iu_length =
426 sizeof(struct ssp_cmd_iu) / sizeof(u32);
427 task_context->type.ssp.frame_type = SSP_COMMAND;
428
429 switch (dir) {
430 case DMA_FROM_DEVICE:
431 case DMA_NONE:
432 default:
433 task_context->task_type = SCU_TASK_TYPE_IOREAD;
434 break;
435 case DMA_TO_DEVICE:
436 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
437 break;
438 }
439
440 task_context->transfer_length_bytes = len;
441
442 if (task_context->transfer_length_bytes > 0)
443 sci_request_build_sgl(ireq);
444
445 if (prot_type != SCSI_PROT_DIF_TYPE0) {
446 if (prot_op == SCSI_PROT_READ_STRIP)
447 scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
448 else if (prot_op == SCSI_PROT_WRITE_INSERT)
449 scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
450 }
451}
452
453/**
454 * scu_ssp_task_request_construct_task_context() - This method will fill in
455 * the SCU Task Context for a SSP Task request. The following important
456 * settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH. This
457 * ensures that the task request is issued ahead of other task destined
458 * for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD. This
459 * simply indicates that a normal request type (i.e. non-raw frame) is
460 * being utilized to perform task management. -#control_frame == 1. This
461 * ensures that the proper endianness is set so that the bytes are
462 * transmitted in the right order for a task frame.
463 * @ireq: This parameter specifies the task request object being constructed.
464 */
465static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
466{
467 struct scu_task_context *task_context = ireq->tc;
468
469 scu_ssp_request_construct_task_context(ireq, task_context);
470
471 task_context->control_frame = 1;
472 task_context->priority = SCU_TASK_PRIORITY_HIGH;
473 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
474 task_context->transfer_length_bytes = 0;
475 task_context->type.ssp.frame_type = SSP_TASK;
476 task_context->ssp_command_iu_length =
477 sizeof(struct ssp_task_iu) / sizeof(u32);
478}
479
480/**
481 * scu_sata_request_construct_task_context()
482 * This method is will fill in the SCU Task Context for any type of SATA
483 * request. This is called from the various SATA constructors.
484 * @ireq: The general IO request object which is to be used in
485 * constructing the SCU task context.
486 * @task_context: The buffer pointer for the SCU task context which is being
487 * constructed.
488 *
489 * The general io request construction is complete. The buffer assignment for
490 * the command buffer is complete. none Revisit task context construction to
491 * determine what is common for SSP/SMP/STP task context structures.
492 */
493static void scu_sata_request_construct_task_context(
494 struct isci_request *ireq,
495 struct scu_task_context *task_context)
496{
497 dma_addr_t dma_addr;
498 struct isci_remote_device *idev;
499 struct isci_port *iport;
500
501 idev = ireq->target_device;
502 iport = idev->owning_port;
503
504 /* Fill in the TC with its required data */
505 task_context->abort = 0;
506 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
507 task_context->initiator_request = 1;
508 task_context->connection_rate = idev->connection_rate;
509 task_context->protocol_engine_index = ISCI_PEG;
510 task_context->logical_port_index = iport->physical_port_index;
511 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
512 task_context->valid = SCU_TASK_CONTEXT_VALID;
513 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
514
515 task_context->remote_node_index = idev->rnc.remote_node_index;
516 task_context->command_code = 0;
517
518 task_context->link_layer_control = 0;
519 task_context->do_not_dma_ssp_good_response = 1;
520 task_context->strict_ordering = 0;
521 task_context->control_frame = 0;
522 task_context->timeout_enable = 0;
523 task_context->block_guard_enable = 0;
524
525 task_context->address_modifier = 0;
526 task_context->task_phase = 0x01;
527
528 task_context->ssp_command_iu_length =
529 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
530
531 /* Set the first word of the H2D REG FIS */
532 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
533
534 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
535 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
536 (iport->physical_port_index <<
537 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
538 ISCI_TAG_TCI(ireq->io_tag));
539 /*
540 * Copy the physical address for the command buffer to the SCU Task
541 * Context. We must offset the command buffer by 4 bytes because the
542 * first 4 bytes are transfered in the body of the TC.
543 */
544 dma_addr = sci_io_request_get_dma_addr(ireq,
545 ((char *) &ireq->stp.cmd) +
546 sizeof(u32));
547
548 task_context->command_iu_upper = upper_32_bits(dma_addr);
549 task_context->command_iu_lower = lower_32_bits(dma_addr);
550
551 /* SATA Requests do not have a response buffer */
552 task_context->response_iu_upper = 0;
553 task_context->response_iu_lower = 0;
554}
555
556static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
557{
558 struct scu_task_context *task_context = ireq->tc;
559
560 scu_sata_request_construct_task_context(ireq, task_context);
561
562 task_context->control_frame = 0;
563 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
564 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
565 task_context->type.stp.fis_type = FIS_REGH2D;
566 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
567}
568
569static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
570 bool copy_rx_frame)
571{
572 struct isci_stp_request *stp_req = &ireq->stp.req;
573
574 scu_stp_raw_request_construct_task_context(ireq);
575
576 stp_req->status = 0;
577 stp_req->sgl.offset = 0;
578 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
579
580 if (copy_rx_frame) {
581 sci_request_build_sgl(ireq);
582 stp_req->sgl.index = 0;
583 } else {
584 /* The user does not want the data copied to the SGL buffer location */
585 stp_req->sgl.index = -1;
586 }
587
588 return SCI_SUCCESS;
589}
590
591/*
592 * sci_stp_optimized_request_construct()
593 * @ireq: This parameter specifies the request to be constructed as an
594 * optimized request.
595 * @optimized_task_type: This parameter specifies whether the request is to be
596 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
597 * value of 1 indicates NCQ.
598 *
599 * This method will perform request construction common to all types of STP
600 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
601 * returns an indication as to whether the construction was successful.
602 */
603static void sci_stp_optimized_request_construct(struct isci_request *ireq,
604 u8 optimized_task_type,
605 u32 len,
606 enum dma_data_direction dir)
607{
608 struct scu_task_context *task_context = ireq->tc;
609
610 /* Build the STP task context structure */
611 scu_sata_request_construct_task_context(ireq, task_context);
612
613 /* Copy over the SGL elements */
614 sci_request_build_sgl(ireq);
615
616 /* Copy over the number of bytes to be transfered */
617 task_context->transfer_length_bytes = len;
618
619 if (dir == DMA_TO_DEVICE) {
620 /*
621 * The difference between the DMA IN and DMA OUT request task type
622 * values are consistent with the difference between FPDMA READ
623 * and FPDMA WRITE values. Add the supplied task type parameter
624 * to this difference to set the task type properly for this
625 * DATA OUT (WRITE) case. */
626 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
627 - SCU_TASK_TYPE_DMA_IN);
628 } else {
629 /*
630 * For the DATA IN (READ) case, simply save the supplied
631 * optimized task type. */
632 task_context->task_type = optimized_task_type;
633 }
634}
635
636static void sci_atapi_construct(struct isci_request *ireq)
637{
638 struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
639 struct sas_task *task;
640
641 /* To simplify the implementation we take advantage of the
642 * silicon's partial acceleration of atapi protocol (dma data
643 * transfers), so we promote all commands to dma protocol. This
644 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
645 */
646 h2d_fis->features |= ATAPI_PKT_DMA;
647
648 scu_stp_raw_request_construct_task_context(ireq);
649
650 task = isci_request_access_task(ireq);
651 if (task->data_dir == DMA_NONE)
652 task->total_xfer_len = 0;
653
654 /* clear the response so we can detect arrivial of an
655 * unsolicited h2d fis
656 */
657 ireq->stp.rsp.fis_type = 0;
658}
659
660static enum sci_status
661sci_io_request_construct_sata(struct isci_request *ireq,
662 u32 len,
663 enum dma_data_direction dir,
664 bool copy)
665{
666 enum sci_status status = SCI_SUCCESS;
667 struct sas_task *task = isci_request_access_task(ireq);
668 struct domain_device *dev = ireq->target_device->domain_dev;
669
670 /* check for management protocols */
671 if (test_bit(IREQ_TMF, &ireq->flags)) {
672 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
673
674 dev_err(&ireq->owning_controller->pdev->dev,
675 "%s: Request 0x%p received un-handled SAT "
676 "management protocol 0x%x.\n",
677 __func__, ireq, tmf->tmf_code);
678
679 return SCI_FAILURE;
680 }
681
682 if (!sas_protocol_ata(task->task_proto)) {
683 dev_err(&ireq->owning_controller->pdev->dev,
684 "%s: Non-ATA protocol in SATA path: 0x%x\n",
685 __func__,
686 task->task_proto);
687 return SCI_FAILURE;
688
689 }
690
691 /* ATAPI */
692 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
693 task->ata_task.fis.command == ATA_CMD_PACKET) {
694 sci_atapi_construct(ireq);
695 return SCI_SUCCESS;
696 }
697
698 /* non data */
699 if (task->data_dir == DMA_NONE) {
700 scu_stp_raw_request_construct_task_context(ireq);
701 return SCI_SUCCESS;
702 }
703
704 /* NCQ */
705 if (task->ata_task.use_ncq) {
706 sci_stp_optimized_request_construct(ireq,
707 SCU_TASK_TYPE_FPDMAQ_READ,
708 len, dir);
709 return SCI_SUCCESS;
710 }
711
712 /* DMA */
713 if (task->ata_task.dma_xfer) {
714 sci_stp_optimized_request_construct(ireq,
715 SCU_TASK_TYPE_DMA_IN,
716 len, dir);
717 return SCI_SUCCESS;
718 } else /* PIO */
719 return sci_stp_pio_request_construct(ireq, copy);
720
721 return status;
722}
723
724static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
725{
726 struct sas_task *task = isci_request_access_task(ireq);
727
728 ireq->protocol = SAS_PROTOCOL_SSP;
729
730 scu_ssp_io_request_construct_task_context(ireq,
731 task->data_dir,
732 task->total_xfer_len);
733
734 sci_io_request_build_ssp_command_iu(ireq);
735
736 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
737
738 return SCI_SUCCESS;
739}
740
741enum sci_status sci_task_request_construct_ssp(
742 struct isci_request *ireq)
743{
744 /* Construct the SSP Task SCU Task Context */
745 scu_ssp_task_request_construct_task_context(ireq);
746
747 /* Fill in the SSP Task IU */
748 sci_task_request_build_ssp_task_iu(ireq);
749
750 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
751
752 return SCI_SUCCESS;
753}
754
755static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
756{
757 enum sci_status status;
758 bool copy = false;
759 struct sas_task *task = isci_request_access_task(ireq);
760
761 ireq->protocol = SAS_PROTOCOL_STP;
762
763 copy = (task->data_dir == DMA_NONE) ? false : true;
764
765 status = sci_io_request_construct_sata(ireq,
766 task->total_xfer_len,
767 task->data_dir,
768 copy);
769
770 if (status == SCI_SUCCESS)
771 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
772
773 return status;
774}
775
776#define SCU_TASK_CONTEXT_SRAM 0x200000
777/**
778 * sci_req_tx_bytes - bytes transferred when reply underruns request
779 * @ireq: request that was terminated early
780 */
781static u32 sci_req_tx_bytes(struct isci_request *ireq)
782{
783 struct isci_host *ihost = ireq->owning_controller;
784 u32 ret_val = 0;
785
786 if (readl(&ihost->smu_registers->address_modifier) == 0) {
787 void __iomem *scu_reg_base = ihost->scu_registers;
788
789 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
790 * BAR1 is the scu_registers
791 * 0x20002C = 0x200000 + 0x2c
792 * = start of task context SRAM + offset of (type.ssp.data_offset)
793 * TCi is the io_tag of struct sci_request
794 */
795 ret_val = readl(scu_reg_base +
796 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
797 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
798 }
799
800 return ret_val;
801}
802
803enum sci_status sci_request_start(struct isci_request *ireq)
804{
805 enum sci_base_request_states state;
806 struct scu_task_context *tc = ireq->tc;
807 struct isci_host *ihost = ireq->owning_controller;
808
809 state = ireq->sm.current_state_id;
810 if (state != SCI_REQ_CONSTRUCTED) {
811 dev_warn(&ihost->pdev->dev,
812 "%s: SCIC IO Request requested to start while in wrong "
813 "state %d\n", __func__, state);
814 return SCI_FAILURE_INVALID_STATE;
815 }
816
817 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
818
819 switch (tc->protocol_type) {
820 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
821 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
822 /* SSP/SMP Frame */
823 tc->type.ssp.tag = ireq->io_tag;
824 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
825 break;
826
827 case SCU_TASK_CONTEXT_PROTOCOL_STP:
828 /* STP/SATA Frame
829 * tc->type.stp.ncq_tag = ireq->ncq_tag;
830 */
831 break;
832
833 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
834 /* / @todo When do we set no protocol type? */
835 break;
836
837 default:
838 /* This should never happen since we build the IO
839 * requests */
840 break;
841 }
842
843 /* Add to the post_context the io tag value */
844 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
845
846 /* Everything is good go ahead and change state */
847 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
848
849 return SCI_SUCCESS;
850}
851
852enum sci_status
853sci_io_request_terminate(struct isci_request *ireq)
854{
855 enum sci_base_request_states state;
856
857 state = ireq->sm.current_state_id;
858
859 switch (state) {
860 case SCI_REQ_CONSTRUCTED:
861 /* Set to make sure no HW terminate posting is done: */
862 set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
863 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
864 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
865 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
866 return SCI_SUCCESS;
867 case SCI_REQ_STARTED:
868 case SCI_REQ_TASK_WAIT_TC_COMP:
869 case SCI_REQ_SMP_WAIT_RESP:
870 case SCI_REQ_SMP_WAIT_TC_COMP:
871 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
872 case SCI_REQ_STP_UDMA_WAIT_D2H:
873 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
874 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
875 case SCI_REQ_STP_PIO_WAIT_H2D:
876 case SCI_REQ_STP_PIO_WAIT_FRAME:
877 case SCI_REQ_STP_PIO_DATA_IN:
878 case SCI_REQ_STP_PIO_DATA_OUT:
879 case SCI_REQ_ATAPI_WAIT_H2D:
880 case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
881 case SCI_REQ_ATAPI_WAIT_D2H:
882 case SCI_REQ_ATAPI_WAIT_TC_COMP:
883 /* Fall through and change state to ABORTING... */
884 case SCI_REQ_TASK_WAIT_TC_RESP:
885 /* The task frame was already confirmed to have been
886 * sent by the SCU HW. Since the state machine is
887 * now only waiting for the task response itself,
888 * abort the request and complete it immediately
889 * and don't wait for the task response.
890 */
891 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
892 fallthrough; /* and handle like ABORTING */
893 case SCI_REQ_ABORTING:
894 if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
895 set_bit(IREQ_PENDING_ABORT, &ireq->flags);
896 else
897 clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
898 /* If the request is only waiting on the remote device
899 * suspension, return SUCCESS so the caller will wait too.
900 */
901 return SCI_SUCCESS;
902 case SCI_REQ_COMPLETED:
903 default:
904 dev_warn(&ireq->owning_controller->pdev->dev,
905 "%s: SCIC IO Request requested to abort while in wrong "
906 "state %d\n", __func__, ireq->sm.current_state_id);
907 break;
908 }
909
910 return SCI_FAILURE_INVALID_STATE;
911}
912
913enum sci_status sci_request_complete(struct isci_request *ireq)
914{
915 enum sci_base_request_states state;
916 struct isci_host *ihost = ireq->owning_controller;
917
918 state = ireq->sm.current_state_id;
919 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
920 "isci: request completion from wrong state (%s)\n",
921 req_state_name(state)))
922 return SCI_FAILURE_INVALID_STATE;
923
924 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
925 sci_controller_release_frame(ihost,
926 ireq->saved_rx_frame_index);
927
928 /* XXX can we just stop the machine and remove the 'final' state? */
929 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
930 return SCI_SUCCESS;
931}
932
933enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
934 u32 event_code)
935{
936 enum sci_base_request_states state;
937 struct isci_host *ihost = ireq->owning_controller;
938
939 state = ireq->sm.current_state_id;
940
941 if (state != SCI_REQ_STP_PIO_DATA_IN) {
942 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
943 __func__, event_code, req_state_name(state));
944
945 return SCI_FAILURE_INVALID_STATE;
946 }
947
948 switch (scu_get_event_specifier(event_code)) {
949 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
950 /* We are waiting for data and the SCU has R_ERR the data frame.
951 * Go back to waiting for the D2H Register FIS
952 */
953 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
954 return SCI_SUCCESS;
955 default:
956 dev_err(&ihost->pdev->dev,
957 "%s: pio request unexpected event %#x\n",
958 __func__, event_code);
959
960 /* TODO Should we fail the PIO request when we get an
961 * unexpected event?
962 */
963 return SCI_FAILURE;
964 }
965}
966
967/*
968 * This function copies response data for requests returning response data
969 * instead of sense data.
970 * @sci_req: This parameter specifies the request object for which to copy
971 * the response data.
972 */
973static void sci_io_request_copy_response(struct isci_request *ireq)
974{
975 void *resp_buf;
976 u32 len;
977 struct ssp_response_iu *ssp_response;
978 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
979
980 ssp_response = &ireq->ssp.rsp;
981
982 resp_buf = &isci_tmf->resp.resp_iu;
983
984 len = min_t(u32,
985 SSP_RESP_IU_MAX_SIZE,
986 be32_to_cpu(ssp_response->response_data_len));
987
988 memcpy(resp_buf, ssp_response->resp_data, len);
989}
990
991static enum sci_status
992request_started_state_tc_event(struct isci_request *ireq,
993 u32 completion_code)
994{
995 struct ssp_response_iu *resp_iu;
996 u8 datapres;
997
998 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
999 * to determine SDMA status
1000 */
1001 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1002 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1003 ireq->scu_status = SCU_TASK_DONE_GOOD;
1004 ireq->sci_status = SCI_SUCCESS;
1005 break;
1006 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1007 /* There are times when the SCU hardware will return an early
1008 * response because the io request specified more data than is
1009 * returned by the target device (mode pages, inquiry data,
1010 * etc.). We must check the response stats to see if this is
1011 * truly a failed request or a good request that just got
1012 * completed early.
1013 */
1014 struct ssp_response_iu *resp = &ireq->ssp.rsp;
1015 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1016
1017 sci_swab32_cpy(&ireq->ssp.rsp,
1018 &ireq->ssp.rsp,
1019 word_cnt);
1020
1021 if (resp->status == 0) {
1022 ireq->scu_status = SCU_TASK_DONE_GOOD;
1023 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1024 } else {
1025 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1026 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1027 }
1028 break;
1029 }
1030 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1031 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1032
1033 sci_swab32_cpy(&ireq->ssp.rsp,
1034 &ireq->ssp.rsp,
1035 word_cnt);
1036
1037 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1038 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1039 break;
1040 }
1041
1042 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1043 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1044 * guaranteed to be received before this completion status is
1045 * posted?
1046 */
1047 resp_iu = &ireq->ssp.rsp;
1048 datapres = resp_iu->datapres;
1049
1050 if (datapres == 1 || datapres == 2) {
1051 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1052 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1053 } else {
1054 ireq->scu_status = SCU_TASK_DONE_GOOD;
1055 ireq->sci_status = SCI_SUCCESS;
1056 }
1057 break;
1058 /* only stp device gets suspended. */
1059 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1060 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1061 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1062 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1063 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1068 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1069 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1070 if (ireq->protocol == SAS_PROTOCOL_STP) {
1071 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1072 SCU_COMPLETION_TL_STATUS_SHIFT;
1073 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1074 } else {
1075 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1076 SCU_COMPLETION_TL_STATUS_SHIFT;
1077 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1078 }
1079 break;
1080
1081 /* both stp/ssp device gets suspended */
1082 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1083 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1084 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1085 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1086 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1090 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1091 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1092 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1093 SCU_COMPLETION_TL_STATUS_SHIFT;
1094 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1095 break;
1096
1097 /* neither ssp nor stp gets suspended. */
1098 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1099 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1100 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1102 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1111 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1112 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1113 default:
1114 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1115 SCU_COMPLETION_TL_STATUS_SHIFT;
1116 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1117 break;
1118 }
1119
1120 /*
1121 * TODO: This is probably wrong for ACK/NAK timeout conditions
1122 */
1123
1124 /* In all cases we will treat this as the completion of the IO req. */
1125 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1126 return SCI_SUCCESS;
1127}
1128
1129static enum sci_status
1130request_aborting_state_tc_event(struct isci_request *ireq,
1131 u32 completion_code)
1132{
1133 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1134 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1135 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1136 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1137 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1138 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1139 break;
1140
1141 default:
1142 /* Unless we get some strange error wait for the task abort to complete
1143 * TODO: Should there be a state change for this completion?
1144 */
1145 break;
1146 }
1147
1148 return SCI_SUCCESS;
1149}
1150
1151static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1152 u32 completion_code)
1153{
1154 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1155 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1156 ireq->scu_status = SCU_TASK_DONE_GOOD;
1157 ireq->sci_status = SCI_SUCCESS;
1158 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1159 break;
1160 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1161 /* Currently, the decision is to simply allow the task request
1162 * to timeout if the task IU wasn't received successfully.
1163 * There is a potential for receiving multiple task responses if
1164 * we decide to send the task IU again.
1165 */
1166 dev_warn(&ireq->owning_controller->pdev->dev,
1167 "%s: TaskRequest:0x%p CompletionCode:%x - "
1168 "ACK/NAK timeout\n", __func__, ireq,
1169 completion_code);
1170
1171 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1172 break;
1173 default:
1174 /*
1175 * All other completion status cause the IO to be complete.
1176 * If a NAK was received, then it is up to the user to retry
1177 * the request.
1178 */
1179 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1180 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1181 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1182 break;
1183 }
1184
1185 return SCI_SUCCESS;
1186}
1187
1188static enum sci_status
1189smp_request_await_response_tc_event(struct isci_request *ireq,
1190 u32 completion_code)
1191{
1192 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1193 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1194 /* In the AWAIT RESPONSE state, any TC completion is
1195 * unexpected. but if the TC has success status, we
1196 * complete the IO anyway.
1197 */
1198 ireq->scu_status = SCU_TASK_DONE_GOOD;
1199 ireq->sci_status = SCI_SUCCESS;
1200 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1201 break;
1202 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1203 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1204 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1205 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1206 /* These status has been seen in a specific LSI
1207 * expander, which sometimes is not able to send smp
1208 * response within 2 ms. This causes our hardware break
1209 * the connection and set TC completion with one of
1210 * these SMP_XXX_XX_ERR status. For these type of error,
1211 * we ask ihost user to retry the request.
1212 */
1213 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1214 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1215 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1216 break;
1217 default:
1218 /* All other completion status cause the IO to be complete. If a NAK
1219 * was received, then it is up to the user to retry the request
1220 */
1221 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1222 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1223 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1224 break;
1225 }
1226
1227 return SCI_SUCCESS;
1228}
1229
1230static enum sci_status
1231smp_request_await_tc_event(struct isci_request *ireq,
1232 u32 completion_code)
1233{
1234 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1235 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1236 ireq->scu_status = SCU_TASK_DONE_GOOD;
1237 ireq->sci_status = SCI_SUCCESS;
1238 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1239 break;
1240 default:
1241 /* All other completion status cause the IO to be
1242 * complete. If a NAK was received, then it is up to
1243 * the user to retry the request.
1244 */
1245 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1246 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1247 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1248 break;
1249 }
1250
1251 return SCI_SUCCESS;
1252}
1253
1254static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1255{
1256 struct scu_sgl_element *sgl;
1257 struct scu_sgl_element_pair *sgl_pair;
1258 struct isci_request *ireq = to_ireq(stp_req);
1259 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1260
1261 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1262 if (!sgl_pair)
1263 sgl = NULL;
1264 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1265 if (sgl_pair->B.address_lower == 0 &&
1266 sgl_pair->B.address_upper == 0) {
1267 sgl = NULL;
1268 } else {
1269 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1270 sgl = &sgl_pair->B;
1271 }
1272 } else {
1273 if (sgl_pair->next_pair_lower == 0 &&
1274 sgl_pair->next_pair_upper == 0) {
1275 sgl = NULL;
1276 } else {
1277 pio_sgl->index++;
1278 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1279 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1280 sgl = &sgl_pair->A;
1281 }
1282 }
1283
1284 return sgl;
1285}
1286
1287static enum sci_status
1288stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1289 u32 completion_code)
1290{
1291 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1292 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1293 ireq->scu_status = SCU_TASK_DONE_GOOD;
1294 ireq->sci_status = SCI_SUCCESS;
1295 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1296 break;
1297
1298 default:
1299 /* All other completion status cause the IO to be
1300 * complete. If a NAK was received, then it is up to
1301 * the user to retry the request.
1302 */
1303 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1304 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1305 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1306 break;
1307 }
1308
1309 return SCI_SUCCESS;
1310}
1311
1312#define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1313
1314/* transmit DATA_FIS from (current sgl + offset) for input
1315 * parameter length. current sgl and offset is alreay stored in the IO request
1316 */
1317static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1318 struct isci_request *ireq,
1319 u32 length)
1320{
1321 struct isci_stp_request *stp_req = &ireq->stp.req;
1322 struct scu_task_context *task_context = ireq->tc;
1323 struct scu_sgl_element_pair *sgl_pair;
1324 struct scu_sgl_element *current_sgl;
1325
1326 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1327 * for the data from current_sgl+offset for the input length
1328 */
1329 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1330 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1331 current_sgl = &sgl_pair->A;
1332 else
1333 current_sgl = &sgl_pair->B;
1334
1335 /* update the TC */
1336 task_context->command_iu_upper = current_sgl->address_upper;
1337 task_context->command_iu_lower = current_sgl->address_lower;
1338 task_context->transfer_length_bytes = length;
1339 task_context->type.stp.fis_type = FIS_DATA;
1340
1341 /* send the new TC out. */
1342 return sci_controller_continue_io(ireq);
1343}
1344
1345static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1346{
1347 struct isci_stp_request *stp_req = &ireq->stp.req;
1348 struct scu_sgl_element_pair *sgl_pair;
1349 enum sci_status status = SCI_SUCCESS;
1350 struct scu_sgl_element *sgl;
1351 u32 offset;
1352 u32 len = 0;
1353
1354 offset = stp_req->sgl.offset;
1355 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1356 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1357 return SCI_FAILURE;
1358
1359 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1360 sgl = &sgl_pair->A;
1361 len = sgl_pair->A.length - offset;
1362 } else {
1363 sgl = &sgl_pair->B;
1364 len = sgl_pair->B.length - offset;
1365 }
1366
1367 if (stp_req->pio_len == 0)
1368 return SCI_SUCCESS;
1369
1370 if (stp_req->pio_len >= len) {
1371 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1372 if (status != SCI_SUCCESS)
1373 return status;
1374 stp_req->pio_len -= len;
1375
1376 /* update the current sgl, offset and save for future */
1377 sgl = pio_sgl_next(stp_req);
1378 offset = 0;
1379 } else if (stp_req->pio_len < len) {
1380 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1381
1382 /* Sgl offset will be adjusted and saved for future */
1383 offset += stp_req->pio_len;
1384 sgl->address_lower += stp_req->pio_len;
1385 stp_req->pio_len = 0;
1386 }
1387
1388 stp_req->sgl.offset = offset;
1389
1390 return status;
1391}
1392
1393/**
1394 * sci_stp_request_pio_data_in_copy_data_buffer()
1395 * @stp_req: The request that is used for the SGL processing.
1396 * @data_buf: The buffer of data to be copied.
1397 * @len: The length of the data transfer.
1398 *
1399 * Copy the data from the buffer for the length specified to the IO request SGL
1400 * specified data region. enum sci_status
1401 */
1402static enum sci_status
1403sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1404 u8 *data_buf, u32 len)
1405{
1406 struct isci_request *ireq;
1407 u8 *src_addr;
1408 int copy_len;
1409 struct sas_task *task;
1410 struct scatterlist *sg;
1411 void *kaddr;
1412 int total_len = len;
1413
1414 ireq = to_ireq(stp_req);
1415 task = isci_request_access_task(ireq);
1416 src_addr = data_buf;
1417
1418 if (task->num_scatter > 0) {
1419 sg = task->scatter;
1420
1421 while (total_len > 0) {
1422 struct page *page = sg_page(sg);
1423
1424 copy_len = min_t(int, total_len, sg_dma_len(sg));
1425 kaddr = kmap_atomic(page);
1426 memcpy(kaddr + sg->offset, src_addr, copy_len);
1427 kunmap_atomic(kaddr);
1428 total_len -= copy_len;
1429 src_addr += copy_len;
1430 sg = sg_next(sg);
1431 }
1432 } else {
1433 BUG_ON(task->total_xfer_len < total_len);
1434 memcpy(task->scatter, src_addr, total_len);
1435 }
1436
1437 return SCI_SUCCESS;
1438}
1439
1440/**
1441 * sci_stp_request_pio_data_in_copy_data()
1442 * @stp_req: The PIO DATA IN request that is to receive the data.
1443 * @data_buffer: The buffer to copy from.
1444 *
1445 * Copy the data buffer to the io request data region. enum sci_status
1446 */
1447static enum sci_status sci_stp_request_pio_data_in_copy_data(
1448 struct isci_stp_request *stp_req,
1449 u8 *data_buffer)
1450{
1451 enum sci_status status;
1452
1453 /*
1454 * If there is less than 1K remaining in the transfer request
1455 * copy just the data for the transfer */
1456 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1457 status = sci_stp_request_pio_data_in_copy_data_buffer(
1458 stp_req, data_buffer, stp_req->pio_len);
1459
1460 if (status == SCI_SUCCESS)
1461 stp_req->pio_len = 0;
1462 } else {
1463 /* We are transfering the whole frame so copy */
1464 status = sci_stp_request_pio_data_in_copy_data_buffer(
1465 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1466
1467 if (status == SCI_SUCCESS)
1468 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1469 }
1470
1471 return status;
1472}
1473
1474static enum sci_status
1475stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1476 u32 completion_code)
1477{
1478 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1479 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1480 ireq->scu_status = SCU_TASK_DONE_GOOD;
1481 ireq->sci_status = SCI_SUCCESS;
1482 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1483 break;
1484
1485 default:
1486 /* All other completion status cause the IO to be
1487 * complete. If a NAK was received, then it is up to
1488 * the user to retry the request.
1489 */
1490 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1491 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1492 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1493 break;
1494 }
1495
1496 return SCI_SUCCESS;
1497}
1498
1499static enum sci_status
1500pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1501 u32 completion_code)
1502{
1503 enum sci_status status = SCI_SUCCESS;
1504 bool all_frames_transferred = false;
1505 struct isci_stp_request *stp_req = &ireq->stp.req;
1506
1507 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1508 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1509 /* Transmit data */
1510 if (stp_req->pio_len != 0) {
1511 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1512 if (status == SCI_SUCCESS) {
1513 if (stp_req->pio_len == 0)
1514 all_frames_transferred = true;
1515 }
1516 } else if (stp_req->pio_len == 0) {
1517 /*
1518 * this will happen if the all data is written at the
1519 * first time after the pio setup fis is received
1520 */
1521 all_frames_transferred = true;
1522 }
1523
1524 /* all data transferred. */
1525 if (all_frames_transferred) {
1526 /*
1527 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1528 * and wait for PIO_SETUP fis / or D2H REg fis. */
1529 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1530 }
1531 break;
1532
1533 default:
1534 /*
1535 * All other completion status cause the IO to be complete.
1536 * If a NAK was received, then it is up to the user to retry
1537 * the request.
1538 */
1539 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1540 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1541 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1542 break;
1543 }
1544
1545 return status;
1546}
1547
1548static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1549 u32 frame_index)
1550{
1551 struct isci_host *ihost = ireq->owning_controller;
1552 struct dev_to_host_fis *frame_header;
1553 enum sci_status status;
1554 u32 *frame_buffer;
1555
1556 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1557 frame_index,
1558 (void **)&frame_header);
1559
1560 if ((status == SCI_SUCCESS) &&
1561 (frame_header->fis_type == FIS_REGD2H)) {
1562 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1563 frame_index,
1564 (void **)&frame_buffer);
1565
1566 sci_controller_copy_sata_response(&ireq->stp.rsp,
1567 frame_header,
1568 frame_buffer);
1569 }
1570
1571 sci_controller_release_frame(ihost, frame_index);
1572
1573 return status;
1574}
1575
1576static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1577 u32 frame_index)
1578{
1579 struct isci_host *ihost = ireq->owning_controller;
1580 enum sci_status status;
1581 struct dev_to_host_fis *frame_header;
1582 u32 *frame_buffer;
1583
1584 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1585 frame_index,
1586 (void **)&frame_header);
1587
1588 if (status != SCI_SUCCESS)
1589 return status;
1590
1591 if (frame_header->fis_type != FIS_REGD2H) {
1592 dev_err(&ireq->isci_host->pdev->dev,
1593 "%s ERROR: invalid fis type 0x%X\n",
1594 __func__, frame_header->fis_type);
1595 return SCI_FAILURE;
1596 }
1597
1598 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1599 frame_index,
1600 (void **)&frame_buffer);
1601
1602 sci_controller_copy_sata_response(&ireq->stp.rsp,
1603 (u32 *)frame_header,
1604 frame_buffer);
1605
1606 /* Frame has been decoded return it to the controller */
1607 sci_controller_release_frame(ihost, frame_index);
1608
1609 return status;
1610}
1611
1612static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1613 u32 frame_index)
1614{
1615 struct sas_task *task = isci_request_access_task(ireq);
1616 enum sci_status status;
1617
1618 status = process_unsolicited_fis(ireq, frame_index);
1619
1620 if (status == SCI_SUCCESS) {
1621 if (ireq->stp.rsp.status & ATA_ERR)
1622 status = SCI_FAILURE_IO_RESPONSE_VALID;
1623 } else {
1624 status = SCI_FAILURE_IO_RESPONSE_VALID;
1625 }
1626
1627 if (status != SCI_SUCCESS) {
1628 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1629 ireq->sci_status = status;
1630 } else {
1631 ireq->scu_status = SCU_TASK_DONE_GOOD;
1632 ireq->sci_status = SCI_SUCCESS;
1633 }
1634
1635 /* the d2h ufi is the end of non-data commands */
1636 if (task->data_dir == DMA_NONE)
1637 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1638
1639 return status;
1640}
1641
1642static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1643{
1644 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1645 void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1646 struct scu_task_context *task_context = ireq->tc;
1647
1648 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1649 * type. The TC for previous Packet fis was already there, we only need to
1650 * change the H2D fis content.
1651 */
1652 memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1653 memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1654 memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1655 task_context->type.stp.fis_type = FIS_DATA;
1656 task_context->transfer_length_bytes = dev->cdb_len;
1657}
1658
1659static void scu_atapi_construct_task_context(struct isci_request *ireq)
1660{
1661 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1662 struct sas_task *task = isci_request_access_task(ireq);
1663 struct scu_task_context *task_context = ireq->tc;
1664 int cdb_len = dev->cdb_len;
1665
1666 /* reference: SSTL 1.13.4.2
1667 * task_type, sata_direction
1668 */
1669 if (task->data_dir == DMA_TO_DEVICE) {
1670 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1671 task_context->sata_direction = 0;
1672 } else {
1673 /* todo: for NO_DATA command, we need to send out raw frame. */
1674 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1675 task_context->sata_direction = 1;
1676 }
1677
1678 memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1679 task_context->type.stp.fis_type = FIS_DATA;
1680
1681 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1682 memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1683 task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1684
1685 /* task phase is set to TX_CMD */
1686 task_context->task_phase = 0x1;
1687
1688 /* retry counter */
1689 task_context->stp_retry_count = 0;
1690
1691 /* data transfer size. */
1692 task_context->transfer_length_bytes = task->total_xfer_len;
1693
1694 /* setup sgl */
1695 sci_request_build_sgl(ireq);
1696}
1697
1698enum sci_status
1699sci_io_request_frame_handler(struct isci_request *ireq,
1700 u32 frame_index)
1701{
1702 struct isci_host *ihost = ireq->owning_controller;
1703 struct isci_stp_request *stp_req = &ireq->stp.req;
1704 enum sci_base_request_states state;
1705 enum sci_status status;
1706 ssize_t word_cnt;
1707
1708 state = ireq->sm.current_state_id;
1709 switch (state) {
1710 case SCI_REQ_STARTED: {
1711 struct ssp_frame_hdr ssp_hdr;
1712 void *frame_header;
1713
1714 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1715 frame_index,
1716 &frame_header);
1717
1718 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1719 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1720
1721 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1722 struct ssp_response_iu *resp_iu;
1723 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1724
1725 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1726 frame_index,
1727 (void **)&resp_iu);
1728
1729 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1730
1731 resp_iu = &ireq->ssp.rsp;
1732
1733 if (resp_iu->datapres == 0x01 ||
1734 resp_iu->datapres == 0x02) {
1735 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1736 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1737 } else {
1738 ireq->scu_status = SCU_TASK_DONE_GOOD;
1739 ireq->sci_status = SCI_SUCCESS;
1740 }
1741 } else {
1742 /* not a response frame, why did it get forwarded? */
1743 dev_err(&ihost->pdev->dev,
1744 "%s: SCIC IO Request 0x%p received unexpected "
1745 "frame %d type 0x%02x\n", __func__, ireq,
1746 frame_index, ssp_hdr.frame_type);
1747 }
1748
1749 /*
1750 * In any case we are done with this frame buffer return it to
1751 * the controller
1752 */
1753 sci_controller_release_frame(ihost, frame_index);
1754
1755 return SCI_SUCCESS;
1756 }
1757
1758 case SCI_REQ_TASK_WAIT_TC_RESP:
1759 sci_io_request_copy_response(ireq);
1760 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1761 sci_controller_release_frame(ihost, frame_index);
1762 return SCI_SUCCESS;
1763
1764 case SCI_REQ_SMP_WAIT_RESP: {
1765 struct sas_task *task = isci_request_access_task(ireq);
1766 struct scatterlist *sg = &task->smp_task.smp_resp;
1767 void *frame_header, *kaddr;
1768 u8 *rsp;
1769
1770 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1771 frame_index,
1772 &frame_header);
1773 kaddr = kmap_atomic(sg_page(sg));
1774 rsp = kaddr + sg->offset;
1775 sci_swab32_cpy(rsp, frame_header, 1);
1776
1777 if (rsp[0] == SMP_RESPONSE) {
1778 void *smp_resp;
1779
1780 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1781 frame_index,
1782 &smp_resp);
1783
1784 word_cnt = (sg->length/4)-1;
1785 if (word_cnt > 0)
1786 word_cnt = min_t(unsigned int, word_cnt,
1787 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1788 sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1789
1790 ireq->scu_status = SCU_TASK_DONE_GOOD;
1791 ireq->sci_status = SCI_SUCCESS;
1792 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1793 } else {
1794 /*
1795 * This was not a response frame why did it get
1796 * forwarded?
1797 */
1798 dev_err(&ihost->pdev->dev,
1799 "%s: SCIC SMP Request 0x%p received unexpected "
1800 "frame %d type 0x%02x\n",
1801 __func__,
1802 ireq,
1803 frame_index,
1804 rsp[0]);
1805
1806 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1807 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1808 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1809 }
1810 kunmap_atomic(kaddr);
1811
1812 sci_controller_release_frame(ihost, frame_index);
1813
1814 return SCI_SUCCESS;
1815 }
1816
1817 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1818 return sci_stp_request_udma_general_frame_handler(ireq,
1819 frame_index);
1820
1821 case SCI_REQ_STP_UDMA_WAIT_D2H:
1822 /* Use the general frame handler to copy the resposne data */
1823 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1824
1825 if (status != SCI_SUCCESS)
1826 return status;
1827
1828 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1829 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1830 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1831 return SCI_SUCCESS;
1832
1833 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1834 struct dev_to_host_fis *frame_header;
1835 u32 *frame_buffer;
1836
1837 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1838 frame_index,
1839 (void **)&frame_header);
1840
1841 if (status != SCI_SUCCESS) {
1842 dev_err(&ihost->pdev->dev,
1843 "%s: SCIC IO Request 0x%p could not get frame "
1844 "header for frame index %d, status %x\n",
1845 __func__,
1846 stp_req,
1847 frame_index,
1848 status);
1849
1850 return status;
1851 }
1852
1853 switch (frame_header->fis_type) {
1854 case FIS_REGD2H:
1855 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1856 frame_index,
1857 (void **)&frame_buffer);
1858
1859 sci_controller_copy_sata_response(&ireq->stp.rsp,
1860 frame_header,
1861 frame_buffer);
1862
1863 /* The command has completed with error */
1864 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1865 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1866 break;
1867
1868 default:
1869 dev_warn(&ihost->pdev->dev,
1870 "%s: IO Request:0x%p Frame Id:%d protocol "
1871 "violation occurred\n", __func__, stp_req,
1872 frame_index);
1873
1874 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1875 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1876 break;
1877 }
1878
1879 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1880
1881 /* Frame has been decoded return it to the controller */
1882 sci_controller_release_frame(ihost, frame_index);
1883
1884 return status;
1885 }
1886
1887 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1888 struct sas_task *task = isci_request_access_task(ireq);
1889 struct dev_to_host_fis *frame_header;
1890 u32 *frame_buffer;
1891
1892 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1893 frame_index,
1894 (void **)&frame_header);
1895
1896 if (status != SCI_SUCCESS) {
1897 dev_err(&ihost->pdev->dev,
1898 "%s: SCIC IO Request 0x%p could not get frame "
1899 "header for frame index %d, status %x\n",
1900 __func__, stp_req, frame_index, status);
1901 return status;
1902 }
1903
1904 switch (frame_header->fis_type) {
1905 case FIS_PIO_SETUP:
1906 /* Get from the frame buffer the PIO Setup Data */
1907 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1908 frame_index,
1909 (void **)&frame_buffer);
1910
1911 /* Get the data from the PIO Setup The SCU Hardware
1912 * returns first word in the frame_header and the rest
1913 * of the data is in the frame buffer so we need to
1914 * back up one dword
1915 */
1916
1917 /* transfer_count: first 16bits in the 4th dword */
1918 stp_req->pio_len = frame_buffer[3] & 0xffff;
1919
1920 /* status: 4th byte in the 3rd dword */
1921 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1922
1923 sci_controller_copy_sata_response(&ireq->stp.rsp,
1924 frame_header,
1925 frame_buffer);
1926
1927 ireq->stp.rsp.status = stp_req->status;
1928
1929 /* The next state is dependent on whether the
1930 * request was PIO Data-in or Data out
1931 */
1932 if (task->data_dir == DMA_FROM_DEVICE) {
1933 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1934 } else if (task->data_dir == DMA_TO_DEVICE) {
1935 /* Transmit data */
1936 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1937 if (status != SCI_SUCCESS)
1938 break;
1939 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1940 }
1941 break;
1942
1943 case FIS_SETDEVBITS:
1944 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1945 break;
1946
1947 case FIS_REGD2H:
1948 if (frame_header->status & ATA_BUSY) {
1949 /*
1950 * Now why is the drive sending a D2H Register
1951 * FIS when it is still busy? Do nothing since
1952 * we are still in the right state.
1953 */
1954 dev_dbg(&ihost->pdev->dev,
1955 "%s: SCIC PIO Request 0x%p received "
1956 "D2H Register FIS with BSY status "
1957 "0x%x\n",
1958 __func__,
1959 stp_req,
1960 frame_header->status);
1961 break;
1962 }
1963
1964 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1965 frame_index,
1966 (void **)&frame_buffer);
1967
1968 sci_controller_copy_sata_response(&ireq->stp.rsp,
1969 frame_header,
1970 frame_buffer);
1971
1972 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1973 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1974 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1975 break;
1976
1977 default:
1978 /* FIXME: what do we do here? */
1979 break;
1980 }
1981
1982 /* Frame is decoded return it to the controller */
1983 sci_controller_release_frame(ihost, frame_index);
1984
1985 return status;
1986 }
1987
1988 case SCI_REQ_STP_PIO_DATA_IN: {
1989 struct dev_to_host_fis *frame_header;
1990 struct sata_fis_data *frame_buffer;
1991
1992 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1993 frame_index,
1994 (void **)&frame_header);
1995
1996 if (status != SCI_SUCCESS) {
1997 dev_err(&ihost->pdev->dev,
1998 "%s: SCIC IO Request 0x%p could not get frame "
1999 "header for frame index %d, status %x\n",
2000 __func__,
2001 stp_req,
2002 frame_index,
2003 status);
2004 return status;
2005 }
2006
2007 if (frame_header->fis_type != FIS_DATA) {
2008 dev_err(&ihost->pdev->dev,
2009 "%s: SCIC PIO Request 0x%p received frame %d "
2010 "with fis type 0x%02x when expecting a data "
2011 "fis.\n",
2012 __func__,
2013 stp_req,
2014 frame_index,
2015 frame_header->fis_type);
2016
2017 ireq->scu_status = SCU_TASK_DONE_GOOD;
2018 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2019 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2020
2021 /* Frame is decoded return it to the controller */
2022 sci_controller_release_frame(ihost, frame_index);
2023 return status;
2024 }
2025
2026 if (stp_req->sgl.index < 0) {
2027 ireq->saved_rx_frame_index = frame_index;
2028 stp_req->pio_len = 0;
2029 } else {
2030 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2031 frame_index,
2032 (void **)&frame_buffer);
2033
2034 status = sci_stp_request_pio_data_in_copy_data(stp_req,
2035 (u8 *)frame_buffer);
2036
2037 /* Frame is decoded return it to the controller */
2038 sci_controller_release_frame(ihost, frame_index);
2039 }
2040
2041 /* Check for the end of the transfer, are there more
2042 * bytes remaining for this data transfer
2043 */
2044 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2045 return status;
2046
2047 if ((stp_req->status & ATA_BUSY) == 0) {
2048 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2049 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2050 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2051 } else {
2052 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2053 }
2054 return status;
2055 }
2056
2057 case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2058 struct sas_task *task = isci_request_access_task(ireq);
2059
2060 sci_controller_release_frame(ihost, frame_index);
2061 ireq->target_device->working_request = ireq;
2062 if (task->data_dir == DMA_NONE) {
2063 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2064 scu_atapi_reconstruct_raw_frame_task_context(ireq);
2065 } else {
2066 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2067 scu_atapi_construct_task_context(ireq);
2068 }
2069
2070 sci_controller_continue_io(ireq);
2071 return SCI_SUCCESS;
2072 }
2073 case SCI_REQ_ATAPI_WAIT_D2H:
2074 return atapi_d2h_reg_frame_handler(ireq, frame_index);
2075 case SCI_REQ_ABORTING:
2076 /*
2077 * TODO: Is it even possible to get an unsolicited frame in the
2078 * aborting state?
2079 */
2080 sci_controller_release_frame(ihost, frame_index);
2081 return SCI_SUCCESS;
2082
2083 default:
2084 dev_warn(&ihost->pdev->dev,
2085 "%s: SCIC IO Request given unexpected frame %x while "
2086 "in state %d\n",
2087 __func__,
2088 frame_index,
2089 state);
2090
2091 sci_controller_release_frame(ihost, frame_index);
2092 return SCI_FAILURE_INVALID_STATE;
2093 }
2094}
2095
2096static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2097 u32 completion_code)
2098{
2099 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2100 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2101 ireq->scu_status = SCU_TASK_DONE_GOOD;
2102 ireq->sci_status = SCI_SUCCESS;
2103 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2104 break;
2105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2107 /* We must check ther response buffer to see if the D2H
2108 * Register FIS was received before we got the TC
2109 * completion.
2110 */
2111 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2112 sci_remote_device_suspend(ireq->target_device,
2113 SCI_SW_SUSPEND_NORMAL);
2114
2115 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2116 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2117 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2118 } else {
2119 /* If we have an error completion status for the
2120 * TC then we can expect a D2H register FIS from
2121 * the device so we must change state to wait
2122 * for it
2123 */
2124 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2125 }
2126 break;
2127
2128 /* TODO Check to see if any of these completion status need to
2129 * wait for the device to host register fis.
2130 */
2131 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2132 * - this comes only for B0
2133 */
2134 default:
2135 /* All other completion status cause the IO to be complete. */
2136 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2137 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2138 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2139 break;
2140 }
2141
2142 return SCI_SUCCESS;
2143}
2144
2145static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2146 enum sci_base_request_states next)
2147{
2148 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2149 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2150 ireq->scu_status = SCU_TASK_DONE_GOOD;
2151 ireq->sci_status = SCI_SUCCESS;
2152 sci_change_state(&ireq->sm, next);
2153 break;
2154 default:
2155 /* All other completion status cause the IO to be complete.
2156 * If a NAK was received, then it is up to the user to retry
2157 * the request.
2158 */
2159 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2160 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2161
2162 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2163 break;
2164 }
2165
2166 return SCI_SUCCESS;
2167}
2168
2169static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2170 u32 completion_code)
2171{
2172 struct isci_remote_device *idev = ireq->target_device;
2173 struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2174 enum sci_status status = SCI_SUCCESS;
2175
2176 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2177 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2178 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2179 break;
2180
2181 case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2182 u16 len = sci_req_tx_bytes(ireq);
2183
2184 /* likely non-error data underrrun, workaround missing
2185 * d2h frame from the controller
2186 */
2187 if (d2h->fis_type != FIS_REGD2H) {
2188 d2h->fis_type = FIS_REGD2H;
2189 d2h->flags = (1 << 6);
2190 d2h->status = 0x50;
2191 d2h->error = 0;
2192 d2h->lbal = 0;
2193 d2h->byte_count_low = len & 0xff;
2194 d2h->byte_count_high = len >> 8;
2195 d2h->device = 0xa0;
2196 d2h->lbal_exp = 0;
2197 d2h->lbam_exp = 0;
2198 d2h->lbah_exp = 0;
2199 d2h->_r_a = 0;
2200 d2h->sector_count = 0x3;
2201 d2h->sector_count_exp = 0;
2202 d2h->_r_b = 0;
2203 d2h->_r_c = 0;
2204 d2h->_r_d = 0;
2205 }
2206
2207 ireq->scu_status = SCU_TASK_DONE_GOOD;
2208 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2209 status = ireq->sci_status;
2210
2211 /* the hw will have suspended the rnc, so complete the
2212 * request upon pending resume
2213 */
2214 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2215 break;
2216 }
2217 case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2218 /* In this case, there is no UF coming after.
2219 * compelte the IO now.
2220 */
2221 ireq->scu_status = SCU_TASK_DONE_GOOD;
2222 ireq->sci_status = SCI_SUCCESS;
2223 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2224 break;
2225
2226 default:
2227 if (d2h->fis_type == FIS_REGD2H) {
2228 /* UF received change the device state to ATAPI_ERROR */
2229 status = ireq->sci_status;
2230 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2231 } else {
2232 /* If receiving any non-success TC status, no UF
2233 * received yet, then an UF for the status fis
2234 * is coming after (XXX: suspect this is
2235 * actually a protocol error or a bug like the
2236 * DONE_UNEXP_FIS case)
2237 */
2238 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2239 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2240
2241 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2242 }
2243 break;
2244 }
2245
2246 return status;
2247}
2248
2249static int sci_request_smp_completion_status_is_tx_suspend(
2250 unsigned int completion_status)
2251{
2252 switch (completion_status) {
2253 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2254 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2255 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2256 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2257 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2258 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2259 return 1;
2260 }
2261 return 0;
2262}
2263
2264static int sci_request_smp_completion_status_is_tx_rx_suspend(
2265 unsigned int completion_status)
2266{
2267 return 0; /* There are no Tx/Rx SMP suspend conditions. */
2268}
2269
2270static int sci_request_ssp_completion_status_is_tx_suspend(
2271 unsigned int completion_status)
2272{
2273 switch (completion_status) {
2274 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2275 case SCU_TASK_DONE_LF_ERR:
2276 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2277 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2278 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2279 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2280 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2281 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2282 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2283 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2284 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2285 return 1;
2286 }
2287 return 0;
2288}
2289
2290static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2291 unsigned int completion_status)
2292{
2293 return 0; /* There are no Tx/Rx SSP suspend conditions. */
2294}
2295
2296static int sci_request_stpsata_completion_status_is_tx_suspend(
2297 unsigned int completion_status)
2298{
2299 switch (completion_status) {
2300 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2301 case SCU_TASK_DONE_LL_R_ERR:
2302 case SCU_TASK_DONE_LL_PERR:
2303 case SCU_TASK_DONE_REG_ERR:
2304 case SCU_TASK_DONE_SDB_ERR:
2305 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2306 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2307 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2308 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2309 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2310 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2311 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2312 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2313 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2314 return 1;
2315 }
2316 return 0;
2317}
2318
2319
2320static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2321 unsigned int completion_status)
2322{
2323 switch (completion_status) {
2324 case SCU_TASK_DONE_LF_ERR:
2325 case SCU_TASK_DONE_LL_SY_TERM:
2326 case SCU_TASK_DONE_LL_LF_TERM:
2327 case SCU_TASK_DONE_BREAK_RCVD:
2328 case SCU_TASK_DONE_INV_FIS_LEN:
2329 case SCU_TASK_DONE_UNEXP_FIS:
2330 case SCU_TASK_DONE_UNEXP_SDBFIS:
2331 case SCU_TASK_DONE_MAX_PLD_ERR:
2332 return 1;
2333 }
2334 return 0;
2335}
2336
2337static void sci_request_handle_suspending_completions(
2338 struct isci_request *ireq,
2339 u32 completion_code)
2340{
2341 int is_tx = 0;
2342 int is_tx_rx = 0;
2343
2344 switch (ireq->protocol) {
2345 case SAS_PROTOCOL_SMP:
2346 is_tx = sci_request_smp_completion_status_is_tx_suspend(
2347 completion_code);
2348 is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2349 completion_code);
2350 break;
2351 case SAS_PROTOCOL_SSP:
2352 is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2353 completion_code);
2354 is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2355 completion_code);
2356 break;
2357 case SAS_PROTOCOL_STP:
2358 is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2359 completion_code);
2360 is_tx_rx =
2361 sci_request_stpsata_completion_status_is_tx_rx_suspend(
2362 completion_code);
2363 break;
2364 default:
2365 dev_warn(&ireq->isci_host->pdev->dev,
2366 "%s: request %p has no valid protocol\n",
2367 __func__, ireq);
2368 break;
2369 }
2370 if (is_tx || is_tx_rx) {
2371 BUG_ON(is_tx && is_tx_rx);
2372
2373 sci_remote_node_context_suspend(
2374 &ireq->target_device->rnc,
2375 SCI_HW_SUSPEND,
2376 (is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2377 : SCU_EVENT_TL_RNC_SUSPEND_TX);
2378 }
2379}
2380
2381enum sci_status
2382sci_io_request_tc_completion(struct isci_request *ireq,
2383 u32 completion_code)
2384{
2385 enum sci_base_request_states state;
2386 struct isci_host *ihost = ireq->owning_controller;
2387
2388 state = ireq->sm.current_state_id;
2389
2390 /* Decode those completions that signal upcoming suspension events. */
2391 sci_request_handle_suspending_completions(
2392 ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2393
2394 switch (state) {
2395 case SCI_REQ_STARTED:
2396 return request_started_state_tc_event(ireq, completion_code);
2397
2398 case SCI_REQ_TASK_WAIT_TC_COMP:
2399 return ssp_task_request_await_tc_event(ireq,
2400 completion_code);
2401
2402 case SCI_REQ_SMP_WAIT_RESP:
2403 return smp_request_await_response_tc_event(ireq,
2404 completion_code);
2405
2406 case SCI_REQ_SMP_WAIT_TC_COMP:
2407 return smp_request_await_tc_event(ireq, completion_code);
2408
2409 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2410 return stp_request_udma_await_tc_event(ireq,
2411 completion_code);
2412
2413 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2414 return stp_request_non_data_await_h2d_tc_event(ireq,
2415 completion_code);
2416
2417 case SCI_REQ_STP_PIO_WAIT_H2D:
2418 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2419 completion_code);
2420
2421 case SCI_REQ_STP_PIO_DATA_OUT:
2422 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2423
2424 case SCI_REQ_ABORTING:
2425 return request_aborting_state_tc_event(ireq,
2426 completion_code);
2427
2428 case SCI_REQ_ATAPI_WAIT_H2D:
2429 return atapi_raw_completion(ireq, completion_code,
2430 SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2431
2432 case SCI_REQ_ATAPI_WAIT_TC_COMP:
2433 return atapi_raw_completion(ireq, completion_code,
2434 SCI_REQ_ATAPI_WAIT_D2H);
2435
2436 case SCI_REQ_ATAPI_WAIT_D2H:
2437 return atapi_data_tc_completion_handler(ireq, completion_code);
2438
2439 default:
2440 dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2441 __func__, completion_code, req_state_name(state));
2442 return SCI_FAILURE_INVALID_STATE;
2443 }
2444}
2445
2446/**
2447 * isci_request_process_response_iu() - This function sets the status and
2448 * response iu, in the task struct, from the request object for the upper
2449 * layer driver.
2450 * @task: This parameter is the task struct from the upper layer driver.
2451 * @resp_iu: This parameter points to the response iu of the completed request.
2452 * @dev: This parameter specifies the linux device struct.
2453 *
2454 * none.
2455 */
2456static void isci_request_process_response_iu(
2457 struct sas_task *task,
2458 struct ssp_response_iu *resp_iu,
2459 struct device *dev)
2460{
2461 dev_dbg(dev,
2462 "%s: resp_iu = %p "
2463 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2464 "resp_iu->response_data_len = %x, "
2465 "resp_iu->sense_data_len = %x\nresponse data: ",
2466 __func__,
2467 resp_iu,
2468 resp_iu->status,
2469 resp_iu->datapres,
2470 resp_iu->response_data_len,
2471 resp_iu->sense_data_len);
2472
2473 task->task_status.stat = resp_iu->status;
2474
2475 /* libsas updates the task status fields based on the response iu. */
2476 sas_ssp_task_response(dev, task, resp_iu);
2477}
2478
2479/**
2480 * isci_request_set_open_reject_status() - This function prepares the I/O
2481 * completion for OPEN_REJECT conditions.
2482 * @request: This parameter is the completed isci_request object.
2483 * @task: This parameter is the task struct from the upper layer driver.
2484 * @response_ptr: This parameter specifies the service response for the I/O.
2485 * @status_ptr: This parameter specifies the exec status for the I/O.
2486 * @open_rej_reason: This parameter specifies the encoded reason for the
2487 * abandon-class reject.
2488 *
2489 * none.
2490 */
2491static void isci_request_set_open_reject_status(
2492 struct isci_request *request,
2493 struct sas_task *task,
2494 enum service_response *response_ptr,
2495 enum exec_status *status_ptr,
2496 enum sas_open_rej_reason open_rej_reason)
2497{
2498 /* Task in the target is done. */
2499 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2500 *response_ptr = SAS_TASK_UNDELIVERED;
2501 *status_ptr = SAS_OPEN_REJECT;
2502 task->task_status.open_rej_reason = open_rej_reason;
2503}
2504
2505/**
2506 * isci_request_handle_controller_specific_errors() - This function decodes
2507 * controller-specific I/O completion error conditions.
2508 * @idev: Remote device
2509 * @request: This parameter is the completed isci_request object.
2510 * @task: This parameter is the task struct from the upper layer driver.
2511 * @response_ptr: This parameter specifies the service response for the I/O.
2512 * @status_ptr: This parameter specifies the exec status for the I/O.
2513 *
2514 * none.
2515 */
2516static void isci_request_handle_controller_specific_errors(
2517 struct isci_remote_device *idev,
2518 struct isci_request *request,
2519 struct sas_task *task,
2520 enum service_response *response_ptr,
2521 enum exec_status *status_ptr)
2522{
2523 unsigned int cstatus;
2524
2525 cstatus = request->scu_status;
2526
2527 dev_dbg(&request->isci_host->pdev->dev,
2528 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2529 "- controller status = 0x%x\n",
2530 __func__, request, cstatus);
2531
2532 /* Decode the controller-specific errors; most
2533 * important is to recognize those conditions in which
2534 * the target may still have a task outstanding that
2535 * must be aborted.
2536 *
2537 * Note that there are SCU completion codes being
2538 * named in the decode below for which SCIC has already
2539 * done work to handle them in a way other than as
2540 * a controller-specific completion code; these are left
2541 * in the decode below for completeness sake.
2542 */
2543 switch (cstatus) {
2544 case SCU_TASK_DONE_DMASETUP_DIRERR:
2545 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2546 case SCU_TASK_DONE_XFERCNT_ERR:
2547 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2548 if (task->task_proto == SAS_PROTOCOL_SMP) {
2549 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2550 *response_ptr = SAS_TASK_COMPLETE;
2551
2552 /* See if the device has been/is being stopped. Note
2553 * that we ignore the quiesce state, since we are
2554 * concerned about the actual device state.
2555 */
2556 if (!idev)
2557 *status_ptr = SAS_DEVICE_UNKNOWN;
2558 else
2559 *status_ptr = SAS_ABORTED_TASK;
2560
2561 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2562 } else {
2563 /* Task in the target is not done. */
2564 *response_ptr = SAS_TASK_UNDELIVERED;
2565
2566 if (!idev)
2567 *status_ptr = SAS_DEVICE_UNKNOWN;
2568 else
2569 *status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2570
2571 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2572 }
2573
2574 break;
2575
2576 case SCU_TASK_DONE_CRC_ERR:
2577 case SCU_TASK_DONE_NAK_CMD_ERR:
2578 case SCU_TASK_DONE_EXCESS_DATA:
2579 case SCU_TASK_DONE_UNEXP_FIS:
2580 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2581 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2582 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2583 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2584 /* These are conditions in which the target
2585 * has completed the task, so that no cleanup
2586 * is necessary.
2587 */
2588 *response_ptr = SAS_TASK_COMPLETE;
2589
2590 /* See if the device has been/is being stopped. Note
2591 * that we ignore the quiesce state, since we are
2592 * concerned about the actual device state.
2593 */
2594 if (!idev)
2595 *status_ptr = SAS_DEVICE_UNKNOWN;
2596 else
2597 *status_ptr = SAS_ABORTED_TASK;
2598
2599 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2600 break;
2601
2602
2603 /* Note that the only open reject completion codes seen here will be
2604 * abandon-class codes; all others are automatically retried in the SCU.
2605 */
2606 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2607
2608 isci_request_set_open_reject_status(
2609 request, task, response_ptr, status_ptr,
2610 SAS_OREJ_WRONG_DEST);
2611 break;
2612
2613 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2614
2615 /* Note - the return of AB0 will change when
2616 * libsas implements detection of zone violations.
2617 */
2618 isci_request_set_open_reject_status(
2619 request, task, response_ptr, status_ptr,
2620 SAS_OREJ_RESV_AB0);
2621 break;
2622
2623 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2624
2625 isci_request_set_open_reject_status(
2626 request, task, response_ptr, status_ptr,
2627 SAS_OREJ_RESV_AB1);
2628 break;
2629
2630 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2631
2632 isci_request_set_open_reject_status(
2633 request, task, response_ptr, status_ptr,
2634 SAS_OREJ_RESV_AB2);
2635 break;
2636
2637 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2638
2639 isci_request_set_open_reject_status(
2640 request, task, response_ptr, status_ptr,
2641 SAS_OREJ_RESV_AB3);
2642 break;
2643
2644 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2645
2646 isci_request_set_open_reject_status(
2647 request, task, response_ptr, status_ptr,
2648 SAS_OREJ_BAD_DEST);
2649 break;
2650
2651 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2652
2653 isci_request_set_open_reject_status(
2654 request, task, response_ptr, status_ptr,
2655 SAS_OREJ_STP_NORES);
2656 break;
2657
2658 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2659
2660 isci_request_set_open_reject_status(
2661 request, task, response_ptr, status_ptr,
2662 SAS_OREJ_EPROTO);
2663 break;
2664
2665 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2666
2667 isci_request_set_open_reject_status(
2668 request, task, response_ptr, status_ptr,
2669 SAS_OREJ_CONN_RATE);
2670 break;
2671
2672 case SCU_TASK_DONE_LL_R_ERR:
2673 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2674 case SCU_TASK_DONE_LL_PERR:
2675 case SCU_TASK_DONE_LL_SY_TERM:
2676 /* Also SCU_TASK_DONE_NAK_ERR:*/
2677 case SCU_TASK_DONE_LL_LF_TERM:
2678 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2679 case SCU_TASK_DONE_LL_ABORT_ERR:
2680 case SCU_TASK_DONE_SEQ_INV_TYPE:
2681 /* Also SCU_TASK_DONE_UNEXP_XR: */
2682 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2683 case SCU_TASK_DONE_INV_FIS_LEN:
2684 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2685 case SCU_TASK_DONE_SDMA_ERR:
2686 case SCU_TASK_DONE_OFFSET_ERR:
2687 case SCU_TASK_DONE_MAX_PLD_ERR:
2688 case SCU_TASK_DONE_LF_ERR:
2689 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2690 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2691 case SCU_TASK_DONE_UNEXP_DATA:
2692 case SCU_TASK_DONE_UNEXP_SDBFIS:
2693 case SCU_TASK_DONE_REG_ERR:
2694 case SCU_TASK_DONE_SDB_ERR:
2695 case SCU_TASK_DONE_TASK_ABORT:
2696 default:
2697 /* Task in the target is not done. */
2698 *response_ptr = SAS_TASK_UNDELIVERED;
2699 *status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2700
2701 if (task->task_proto == SAS_PROTOCOL_SMP)
2702 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2703 else
2704 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2705 break;
2706 }
2707}
2708
2709static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2710{
2711 struct task_status_struct *ts = &task->task_status;
2712 struct ata_task_resp *resp = (void *)&ts->buf[0];
2713
2714 resp->frame_len = sizeof(*fis);
2715 memcpy(resp->ending_fis, fis, sizeof(*fis));
2716 ts->buf_valid_size = sizeof(*resp);
2717
2718 /* If an error is flagged let libata decode the fis */
2719 if (ac_err_mask(fis->status))
2720 ts->stat = SAS_PROTO_RESPONSE;
2721 else
2722 ts->stat = SAS_SAM_STAT_GOOD;
2723
2724 ts->resp = SAS_TASK_COMPLETE;
2725}
2726
2727static void isci_request_io_request_complete(struct isci_host *ihost,
2728 struct isci_request *request,
2729 enum sci_io_status completion_status)
2730{
2731 struct sas_task *task = isci_request_access_task(request);
2732 struct ssp_response_iu *resp_iu;
2733 unsigned long task_flags;
2734 struct isci_remote_device *idev = request->target_device;
2735 enum service_response response = SAS_TASK_UNDELIVERED;
2736 enum exec_status status = SAS_ABORTED_TASK;
2737
2738 dev_dbg(&ihost->pdev->dev,
2739 "%s: request = %p, task = %p, "
2740 "task->data_dir = %d completion_status = 0x%x\n",
2741 __func__, request, task, task->data_dir, completion_status);
2742
2743 /* The request is done from an SCU HW perspective. */
2744
2745 /* This is an active request being completed from the core. */
2746 switch (completion_status) {
2747
2748 case SCI_IO_FAILURE_RESPONSE_VALID:
2749 dev_dbg(&ihost->pdev->dev,
2750 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2751 __func__, request, task);
2752
2753 if (sas_protocol_ata(task->task_proto)) {
2754 isci_process_stp_response(task, &request->stp.rsp);
2755 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2756
2757 /* crack the iu response buffer. */
2758 resp_iu = &request->ssp.rsp;
2759 isci_request_process_response_iu(task, resp_iu,
2760 &ihost->pdev->dev);
2761
2762 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2763
2764 dev_err(&ihost->pdev->dev,
2765 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2766 "SAS_PROTOCOL_SMP protocol\n",
2767 __func__);
2768
2769 } else
2770 dev_err(&ihost->pdev->dev,
2771 "%s: unknown protocol\n", __func__);
2772
2773 /* use the task status set in the task struct by the
2774 * isci_request_process_response_iu call.
2775 */
2776 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2777 response = task->task_status.resp;
2778 status = task->task_status.stat;
2779 break;
2780
2781 case SCI_IO_SUCCESS:
2782 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2783
2784 response = SAS_TASK_COMPLETE;
2785 status = SAS_SAM_STAT_GOOD;
2786 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2787
2788 if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2789
2790 /* This was an SSP / STP / SATA transfer.
2791 * There is a possibility that less data than
2792 * the maximum was transferred.
2793 */
2794 u32 transferred_length = sci_req_tx_bytes(request);
2795
2796 task->task_status.residual
2797 = task->total_xfer_len - transferred_length;
2798
2799 /* If there were residual bytes, call this an
2800 * underrun.
2801 */
2802 if (task->task_status.residual != 0)
2803 status = SAS_DATA_UNDERRUN;
2804
2805 dev_dbg(&ihost->pdev->dev,
2806 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2807 __func__, status);
2808
2809 } else
2810 dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2811 __func__);
2812 break;
2813
2814 case SCI_IO_FAILURE_TERMINATED:
2815
2816 dev_dbg(&ihost->pdev->dev,
2817 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2818 __func__, request, task);
2819
2820 /* The request was terminated explicitly. */
2821 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2822 response = SAS_TASK_UNDELIVERED;
2823
2824 /* See if the device has been/is being stopped. Note
2825 * that we ignore the quiesce state, since we are
2826 * concerned about the actual device state.
2827 */
2828 if (!idev)
2829 status = SAS_DEVICE_UNKNOWN;
2830 else
2831 status = SAS_ABORTED_TASK;
2832 break;
2833
2834 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2835
2836 isci_request_handle_controller_specific_errors(idev, request,
2837 task, &response,
2838 &status);
2839 break;
2840
2841 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2842 /* This is a special case, in that the I/O completion
2843 * is telling us that the device needs a reset.
2844 * In order for the device reset condition to be
2845 * noticed, the I/O has to be handled in the error
2846 * handler. Set the reset flag and cause the
2847 * SCSI error thread to be scheduled.
2848 */
2849 spin_lock_irqsave(&task->task_state_lock, task_flags);
2850 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2851 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2852
2853 /* Fail the I/O. */
2854 response = SAS_TASK_UNDELIVERED;
2855 status = SAS_SAM_STAT_TASK_ABORTED;
2856
2857 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2858 break;
2859
2860 case SCI_FAILURE_RETRY_REQUIRED:
2861
2862 /* Fail the I/O so it can be retried. */
2863 response = SAS_TASK_UNDELIVERED;
2864 if (!idev)
2865 status = SAS_DEVICE_UNKNOWN;
2866 else
2867 status = SAS_ABORTED_TASK;
2868
2869 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2870 break;
2871
2872
2873 default:
2874 /* Catch any otherwise unhandled error codes here. */
2875 dev_dbg(&ihost->pdev->dev,
2876 "%s: invalid completion code: 0x%x - "
2877 "isci_request = %p\n",
2878 __func__, completion_status, request);
2879
2880 response = SAS_TASK_UNDELIVERED;
2881
2882 /* See if the device has been/is being stopped. Note
2883 * that we ignore the quiesce state, since we are
2884 * concerned about the actual device state.
2885 */
2886 if (!idev)
2887 status = SAS_DEVICE_UNKNOWN;
2888 else
2889 status = SAS_ABORTED_TASK;
2890
2891 if (SAS_PROTOCOL_SMP == task->task_proto)
2892 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2893 else
2894 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2895 break;
2896 }
2897
2898 switch (task->task_proto) {
2899 case SAS_PROTOCOL_SSP:
2900 if (task->data_dir == DMA_NONE)
2901 break;
2902 if (task->num_scatter == 0)
2903 /* 0 indicates a single dma address */
2904 dma_unmap_single(&ihost->pdev->dev,
2905 request->zero_scatter_daddr,
2906 task->total_xfer_len, task->data_dir);
2907 else /* unmap the sgl dma addresses */
2908 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2909 request->num_sg_entries, task->data_dir);
2910 break;
2911 case SAS_PROTOCOL_SMP: {
2912 struct scatterlist *sg = &task->smp_task.smp_req;
2913 struct smp_req *smp_req;
2914 void *kaddr;
2915
2916 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2917
2918 /* need to swab it back in case the command buffer is re-used */
2919 kaddr = kmap_atomic(sg_page(sg));
2920 smp_req = kaddr + sg->offset;
2921 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2922 kunmap_atomic(kaddr);
2923 break;
2924 }
2925 default:
2926 break;
2927 }
2928
2929 spin_lock_irqsave(&task->task_state_lock, task_flags);
2930
2931 task->task_status.resp = response;
2932 task->task_status.stat = status;
2933
2934 if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2935 /* Normal notification (task_done) */
2936 task->task_state_flags |= SAS_TASK_STATE_DONE;
2937 task->task_state_flags &= ~(SAS_TASK_AT_INITIATOR |
2938 SAS_TASK_STATE_PENDING);
2939 }
2940 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2941
2942 /* complete the io request to the core. */
2943 sci_controller_complete_io(ihost, request->target_device, request);
2944
2945 /* set terminated handle so it cannot be completed or
2946 * terminated again, and to cause any calls into abort
2947 * task to recognize the already completed case.
2948 */
2949 set_bit(IREQ_TERMINATED, &request->flags);
2950
2951 ireq_done(ihost, request, task);
2952}
2953
2954static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2955{
2956 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2957 struct domain_device *dev = ireq->target_device->domain_dev;
2958 enum sci_base_request_states state;
2959 struct sas_task *task;
2960
2961 /* XXX as hch said always creating an internal sas_task for tmf
2962 * requests would simplify the driver
2963 */
2964 task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2965
2966 /* all unaccelerated request types (non ssp or ncq) handled with
2967 * substates
2968 */
2969 if (!task && dev->dev_type == SAS_END_DEVICE) {
2970 state = SCI_REQ_TASK_WAIT_TC_COMP;
2971 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2972 state = SCI_REQ_SMP_WAIT_RESP;
2973 } else if (task && sas_protocol_ata(task->task_proto) &&
2974 !task->ata_task.use_ncq) {
2975 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2976 task->ata_task.fis.command == ATA_CMD_PACKET) {
2977 state = SCI_REQ_ATAPI_WAIT_H2D;
2978 } else if (task->data_dir == DMA_NONE) {
2979 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2980 } else if (task->ata_task.dma_xfer) {
2981 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2982 } else /* PIO */ {
2983 state = SCI_REQ_STP_PIO_WAIT_H2D;
2984 }
2985 } else {
2986 /* SSP or NCQ are fully accelerated, no substates */
2987 return;
2988 }
2989 sci_change_state(sm, state);
2990}
2991
2992static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2993{
2994 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2995 struct isci_host *ihost = ireq->owning_controller;
2996
2997 /* Tell the SCI_USER that the IO request is complete */
2998 if (!test_bit(IREQ_TMF, &ireq->flags))
2999 isci_request_io_request_complete(ihost, ireq,
3000 ireq->sci_status);
3001 else
3002 isci_task_request_complete(ihost, ireq, ireq->sci_status);
3003}
3004
3005static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3006{
3007 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3008
3009 /* Setting the abort bit in the Task Context is required by the silicon. */
3010 ireq->tc->abort = 1;
3011}
3012
3013static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3014{
3015 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3016
3017 ireq->target_device->working_request = ireq;
3018}
3019
3020static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3021{
3022 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3023
3024 ireq->target_device->working_request = ireq;
3025}
3026
3027static const struct sci_base_state sci_request_state_table[] = {
3028 [SCI_REQ_INIT] = { },
3029 [SCI_REQ_CONSTRUCTED] = { },
3030 [SCI_REQ_STARTED] = {
3031 .enter_state = sci_request_started_state_enter,
3032 },
3033 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3034 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3035 },
3036 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3037 [SCI_REQ_STP_PIO_WAIT_H2D] = {
3038 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3039 },
3040 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3041 [SCI_REQ_STP_PIO_DATA_IN] = { },
3042 [SCI_REQ_STP_PIO_DATA_OUT] = { },
3043 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3044 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3045 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
3046 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
3047 [SCI_REQ_SMP_WAIT_RESP] = { },
3048 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
3049 [SCI_REQ_ATAPI_WAIT_H2D] = { },
3050 [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3051 [SCI_REQ_ATAPI_WAIT_D2H] = { },
3052 [SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3053 [SCI_REQ_COMPLETED] = {
3054 .enter_state = sci_request_completed_state_enter,
3055 },
3056 [SCI_REQ_ABORTING] = {
3057 .enter_state = sci_request_aborting_state_enter,
3058 },
3059 [SCI_REQ_FINAL] = { },
3060};
3061
3062static void
3063sci_general_request_construct(struct isci_host *ihost,
3064 struct isci_remote_device *idev,
3065 struct isci_request *ireq)
3066{
3067 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3068
3069 ireq->target_device = idev;
3070 ireq->protocol = SAS_PROTOCOL_NONE;
3071 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3072
3073 ireq->sci_status = SCI_SUCCESS;
3074 ireq->scu_status = 0;
3075 ireq->post_context = 0xFFFFFFFF;
3076}
3077
3078static enum sci_status
3079sci_io_request_construct(struct isci_host *ihost,
3080 struct isci_remote_device *idev,
3081 struct isci_request *ireq)
3082{
3083 struct domain_device *dev = idev->domain_dev;
3084 enum sci_status status = SCI_SUCCESS;
3085
3086 /* Build the common part of the request */
3087 sci_general_request_construct(ihost, idev, ireq);
3088
3089 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3090 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3091
3092 if (dev->dev_type == SAS_END_DEVICE)
3093 /* pass */;
3094 else if (dev_is_sata(dev))
3095 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3096 else if (dev_is_expander(dev->dev_type))
3097 /* pass */;
3098 else
3099 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3100
3101 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3102
3103 return status;
3104}
3105
3106enum sci_status sci_task_request_construct(struct isci_host *ihost,
3107 struct isci_remote_device *idev,
3108 u16 io_tag, struct isci_request *ireq)
3109{
3110 struct domain_device *dev = idev->domain_dev;
3111 enum sci_status status = SCI_SUCCESS;
3112
3113 /* Build the common part of the request */
3114 sci_general_request_construct(ihost, idev, ireq);
3115
3116 if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3117 set_bit(IREQ_TMF, &ireq->flags);
3118 memset(ireq->tc, 0, sizeof(struct scu_task_context));
3119
3120 /* Set the protocol indicator. */
3121 if (dev_is_sata(dev))
3122 ireq->protocol = SAS_PROTOCOL_STP;
3123 else
3124 ireq->protocol = SAS_PROTOCOL_SSP;
3125 } else
3126 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3127
3128 return status;
3129}
3130
3131static enum sci_status isci_request_ssp_request_construct(
3132 struct isci_request *request)
3133{
3134 enum sci_status status;
3135
3136 dev_dbg(&request->isci_host->pdev->dev,
3137 "%s: request = %p\n",
3138 __func__,
3139 request);
3140 status = sci_io_request_construct_basic_ssp(request);
3141 return status;
3142}
3143
3144static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3145{
3146 struct sas_task *task = isci_request_access_task(ireq);
3147 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3148 struct ata_queued_cmd *qc = task->uldd_task;
3149 enum sci_status status;
3150
3151 dev_dbg(&ireq->isci_host->pdev->dev,
3152 "%s: ireq = %p\n",
3153 __func__,
3154 ireq);
3155
3156 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3157 if (!task->ata_task.device_control_reg_update)
3158 fis->flags |= 0x80;
3159 fis->flags &= 0xF0;
3160
3161 status = sci_io_request_construct_basic_sata(ireq);
3162
3163 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3164 qc->tf.command == ATA_CMD_FPDMA_READ ||
3165 qc->tf.command == ATA_CMD_FPDMA_RECV ||
3166 qc->tf.command == ATA_CMD_FPDMA_SEND ||
3167 qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3168 fis->sector_count = qc->tag << 3;
3169 ireq->tc->type.stp.ncq_tag = qc->tag;
3170 }
3171
3172 return status;
3173}
3174
3175static enum sci_status
3176sci_io_request_construct_smp(struct device *dev,
3177 struct isci_request *ireq,
3178 struct sas_task *task)
3179{
3180 struct scatterlist *sg = &task->smp_task.smp_req;
3181 struct isci_remote_device *idev;
3182 struct scu_task_context *task_context;
3183 struct isci_port *iport;
3184 struct smp_req *smp_req;
3185 void *kaddr;
3186 u8 req_len;
3187 u32 cmd;
3188
3189 kaddr = kmap_atomic(sg_page(sg));
3190 smp_req = kaddr + sg->offset;
3191 /*
3192 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3193 * functions under SAS 2.0, a zero request length really indicates
3194 * a non-zero default length.
3195 */
3196 if (smp_req->req_len == 0) {
3197 switch (smp_req->func) {
3198 case SMP_DISCOVER:
3199 case SMP_REPORT_PHY_ERR_LOG:
3200 case SMP_REPORT_PHY_SATA:
3201 case SMP_REPORT_ROUTE_INFO:
3202 smp_req->req_len = 2;
3203 break;
3204 case SMP_CONF_ROUTE_INFO:
3205 case SMP_PHY_CONTROL:
3206 case SMP_PHY_TEST_FUNCTION:
3207 smp_req->req_len = 9;
3208 break;
3209 /* Default - zero is a valid default for 2.0. */
3210 }
3211 }
3212 req_len = smp_req->req_len;
3213 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3214 cmd = *(u32 *) smp_req;
3215 kunmap_atomic(kaddr);
3216
3217 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3218 return SCI_FAILURE;
3219
3220 ireq->protocol = SAS_PROTOCOL_SMP;
3221
3222 /* byte swap the smp request. */
3223
3224 task_context = ireq->tc;
3225
3226 idev = ireq->target_device;
3227 iport = idev->owning_port;
3228
3229 /*
3230 * Fill in the TC with its required data
3231 * 00h
3232 */
3233 task_context->priority = 0;
3234 task_context->initiator_request = 1;
3235 task_context->connection_rate = idev->connection_rate;
3236 task_context->protocol_engine_index = ISCI_PEG;
3237 task_context->logical_port_index = iport->physical_port_index;
3238 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3239 task_context->abort = 0;
3240 task_context->valid = SCU_TASK_CONTEXT_VALID;
3241 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3242
3243 /* 04h */
3244 task_context->remote_node_index = idev->rnc.remote_node_index;
3245 task_context->command_code = 0;
3246 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3247
3248 /* 08h */
3249 task_context->link_layer_control = 0;
3250 task_context->do_not_dma_ssp_good_response = 1;
3251 task_context->strict_ordering = 0;
3252 task_context->control_frame = 1;
3253 task_context->timeout_enable = 0;
3254 task_context->block_guard_enable = 0;
3255
3256 /* 0ch */
3257 task_context->address_modifier = 0;
3258
3259 /* 10h */
3260 task_context->ssp_command_iu_length = req_len;
3261
3262 /* 14h */
3263 task_context->transfer_length_bytes = 0;
3264
3265 /*
3266 * 18h ~ 30h, protocol specific
3267 * since commandIU has been build by framework at this point, we just
3268 * copy the frist DWord from command IU to this location. */
3269 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3270
3271 /*
3272 * 40h
3273 * "For SMP you could program it to zero. We would prefer that way
3274 * so that done code will be consistent." - Venki
3275 */
3276 task_context->task_phase = 0;
3277
3278 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3279 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3280 (iport->physical_port_index <<
3281 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3282 ISCI_TAG_TCI(ireq->io_tag));
3283 /*
3284 * Copy the physical address for the command buffer to the SCU Task
3285 * Context command buffer should not contain command header.
3286 */
3287 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3288 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3289
3290 /* SMP response comes as UF, so no need to set response IU address. */
3291 task_context->response_iu_upper = 0;
3292 task_context->response_iu_lower = 0;
3293
3294 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3295
3296 return SCI_SUCCESS;
3297}
3298
3299/*
3300 * isci_smp_request_build() - This function builds the smp request.
3301 * @ireq: This parameter points to the isci_request allocated in the
3302 * request construct function.
3303 *
3304 * SCI_SUCCESS on successfull completion, or specific failure code.
3305 */
3306static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3307{
3308 struct sas_task *task = isci_request_access_task(ireq);
3309 struct device *dev = &ireq->isci_host->pdev->dev;
3310 enum sci_status status = SCI_FAILURE;
3311
3312 status = sci_io_request_construct_smp(dev, ireq, task);
3313 if (status != SCI_SUCCESS)
3314 dev_dbg(&ireq->isci_host->pdev->dev,
3315 "%s: failed with status = %d\n",
3316 __func__,
3317 status);
3318
3319 return status;
3320}
3321
3322/**
3323 * isci_io_request_build() - This function builds the io request object.
3324 * @ihost: This parameter specifies the ISCI host object
3325 * @request: This parameter points to the isci_request object allocated in the
3326 * request construct function.
3327 * @idev: This parameter is the handle for the sci core's remote device
3328 * object that is the destination for this request.
3329 *
3330 * SCI_SUCCESS on successfull completion, or specific failure code.
3331 */
3332static enum sci_status isci_io_request_build(struct isci_host *ihost,
3333 struct isci_request *request,
3334 struct isci_remote_device *idev)
3335{
3336 enum sci_status status = SCI_SUCCESS;
3337 struct sas_task *task = isci_request_access_task(request);
3338
3339 dev_dbg(&ihost->pdev->dev,
3340 "%s: idev = 0x%p; request = %p, "
3341 "num_scatter = %d\n",
3342 __func__,
3343 idev,
3344 request,
3345 task->num_scatter);
3346
3347 /* map the sgl addresses, if present.
3348 * libata does the mapping for sata devices
3349 * before we get the request.
3350 */
3351 if (task->num_scatter &&
3352 !sas_protocol_ata(task->task_proto) &&
3353 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3354
3355 request->num_sg_entries = dma_map_sg(
3356 &ihost->pdev->dev,
3357 task->scatter,
3358 task->num_scatter,
3359 task->data_dir
3360 );
3361
3362 if (request->num_sg_entries == 0)
3363 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3364 }
3365
3366 status = sci_io_request_construct(ihost, idev, request);
3367
3368 if (status != SCI_SUCCESS) {
3369 dev_dbg(&ihost->pdev->dev,
3370 "%s: failed request construct\n",
3371 __func__);
3372 return SCI_FAILURE;
3373 }
3374
3375 switch (task->task_proto) {
3376 case SAS_PROTOCOL_SMP:
3377 status = isci_smp_request_build(request);
3378 break;
3379 case SAS_PROTOCOL_SSP:
3380 status = isci_request_ssp_request_construct(request);
3381 break;
3382 case SAS_PROTOCOL_SATA:
3383 case SAS_PROTOCOL_STP:
3384 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3385 status = isci_request_stp_request_construct(request);
3386 break;
3387 default:
3388 dev_dbg(&ihost->pdev->dev,
3389 "%s: unknown protocol\n", __func__);
3390 return SCI_FAILURE;
3391 }
3392
3393 return SCI_SUCCESS;
3394}
3395
3396static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3397{
3398 struct isci_request *ireq;
3399
3400 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3401 ireq->io_tag = tag;
3402 ireq->io_request_completion = NULL;
3403 ireq->flags = 0;
3404 ireq->num_sg_entries = 0;
3405
3406 return ireq;
3407}
3408
3409static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3410 struct sas_task *task,
3411 u16 tag)
3412{
3413 struct isci_request *ireq;
3414
3415 ireq = isci_request_from_tag(ihost, tag);
3416 ireq->ttype_ptr.io_task_ptr = task;
3417 clear_bit(IREQ_TMF, &ireq->flags);
3418 task->lldd_task = ireq;
3419
3420 return ireq;
3421}
3422
3423struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3424 struct isci_tmf *isci_tmf,
3425 u16 tag)
3426{
3427 struct isci_request *ireq;
3428
3429 ireq = isci_request_from_tag(ihost, tag);
3430 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3431 set_bit(IREQ_TMF, &ireq->flags);
3432
3433 return ireq;
3434}
3435
3436int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3437 struct sas_task *task, u16 tag)
3438{
3439 enum sci_status status;
3440 struct isci_request *ireq;
3441 unsigned long flags;
3442 int ret = 0;
3443
3444 /* do common allocation and init of request object. */
3445 ireq = isci_io_request_from_tag(ihost, task, tag);
3446
3447 status = isci_io_request_build(ihost, ireq, idev);
3448 if (status != SCI_SUCCESS) {
3449 dev_dbg(&ihost->pdev->dev,
3450 "%s: request_construct failed - status = 0x%x\n",
3451 __func__,
3452 status);
3453 return status;
3454 }
3455
3456 spin_lock_irqsave(&ihost->scic_lock, flags);
3457
3458 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3459
3460 if (isci_task_is_ncq_recovery(task)) {
3461
3462 /* The device is in an NCQ recovery state. Issue the
3463 * request on the task side. Note that it will
3464 * complete on the I/O request side because the
3465 * request was built that way (ie.
3466 * ireq->is_task_management_request is false).
3467 */
3468 status = sci_controller_start_task(ihost,
3469 idev,
3470 ireq);
3471 } else {
3472 status = SCI_FAILURE;
3473 }
3474 } else {
3475 /* send the request, let the core assign the IO TAG. */
3476 status = sci_controller_start_io(ihost, idev,
3477 ireq);
3478 }
3479
3480 if (status != SCI_SUCCESS &&
3481 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3482 dev_dbg(&ihost->pdev->dev,
3483 "%s: failed request start (0x%x)\n",
3484 __func__, status);
3485 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3486 return status;
3487 }
3488 /* Either I/O started OK, or the core has signaled that
3489 * the device needs a target reset.
3490 */
3491 if (status != SCI_SUCCESS) {
3492 /* The request did not really start in the
3493 * hardware, so clear the request handle
3494 * here so no terminations will be done.
3495 */
3496 set_bit(IREQ_TERMINATED, &ireq->flags);
3497 }
3498 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3499
3500 if (status ==
3501 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3502 /* Signal libsas that we need the SCSI error
3503 * handler thread to work on this I/O and that
3504 * we want a device reset.
3505 */
3506 spin_lock_irqsave(&task->task_state_lock, flags);
3507 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3508 spin_unlock_irqrestore(&task->task_state_lock, flags);
3509
3510 /* Cause this task to be scheduled in the SCSI error
3511 * handler thread.
3512 */
3513 sas_task_abort(task);
3514
3515 /* Change the status, since we are holding
3516 * the I/O until it is managed by the SCSI
3517 * error handler.
3518 */
3519 status = SCI_SUCCESS;
3520 }
3521
3522 return ret;
3523}