Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55
 
  56#include "isci.h"
  57#include "task.h"
  58#include "request.h"
  59#include "scu_completion_codes.h"
  60#include "scu_event_codes.h"
  61#include "sas.h"
  62
 
 
 
 
 
 
 
 
 
 
  63static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
  64							int idx)
  65{
  66	if (idx == 0)
  67		return &ireq->tc->sgl_pair_ab;
  68	else if (idx == 1)
  69		return &ireq->tc->sgl_pair_cd;
  70	else if (idx < 0)
  71		return NULL;
  72	else
  73		return &ireq->sg_table[idx - 2];
  74}
  75
  76static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
  77					  struct isci_request *ireq, u32 idx)
  78{
  79	u32 offset;
  80
  81	if (idx == 0) {
  82		offset = (void *) &ireq->tc->sgl_pair_ab -
  83			 (void *) &ihost->task_context_table[0];
  84		return ihost->task_context_dma + offset;
  85	} else if (idx == 1) {
  86		offset = (void *) &ireq->tc->sgl_pair_cd -
  87			 (void *) &ihost->task_context_table[0];
  88		return ihost->task_context_dma + offset;
  89	}
  90
  91	return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
  92}
  93
  94static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
  95{
  96	e->length = sg_dma_len(sg);
  97	e->address_upper = upper_32_bits(sg_dma_address(sg));
  98	e->address_lower = lower_32_bits(sg_dma_address(sg));
  99	e->address_modifier = 0;
 100}
 101
 102static void sci_request_build_sgl(struct isci_request *ireq)
 103{
 104	struct isci_host *ihost = ireq->isci_host;
 105	struct sas_task *task = isci_request_access_task(ireq);
 106	struct scatterlist *sg = NULL;
 107	dma_addr_t dma_addr;
 108	u32 sg_idx = 0;
 109	struct scu_sgl_element_pair *scu_sg   = NULL;
 110	struct scu_sgl_element_pair *prev_sg  = NULL;
 111
 112	if (task->num_scatter > 0) {
 113		sg = task->scatter;
 114
 115		while (sg) {
 116			scu_sg = to_sgl_element_pair(ireq, sg_idx);
 117			init_sgl_element(&scu_sg->A, sg);
 118			sg = sg_next(sg);
 119			if (sg) {
 120				init_sgl_element(&scu_sg->B, sg);
 121				sg = sg_next(sg);
 122			} else
 123				memset(&scu_sg->B, 0, sizeof(scu_sg->B));
 124
 125			if (prev_sg) {
 126				dma_addr = to_sgl_element_pair_dma(ihost,
 127								   ireq,
 128								   sg_idx);
 129
 130				prev_sg->next_pair_upper =
 131					upper_32_bits(dma_addr);
 132				prev_sg->next_pair_lower =
 133					lower_32_bits(dma_addr);
 134			}
 135
 136			prev_sg = scu_sg;
 137			sg_idx++;
 138		}
 139	} else {	/* handle when no sg */
 140		scu_sg = to_sgl_element_pair(ireq, sg_idx);
 141
 142		dma_addr = dma_map_single(&ihost->pdev->dev,
 143					  task->scatter,
 144					  task->total_xfer_len,
 145					  task->data_dir);
 146
 147		ireq->zero_scatter_daddr = dma_addr;
 148
 149		scu_sg->A.length = task->total_xfer_len;
 150		scu_sg->A.address_upper = upper_32_bits(dma_addr);
 151		scu_sg->A.address_lower = lower_32_bits(dma_addr);
 152	}
 153
 154	if (scu_sg) {
 155		scu_sg->next_pair_upper = 0;
 156		scu_sg->next_pair_lower = 0;
 157	}
 158}
 159
 160static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
 161{
 162	struct ssp_cmd_iu *cmd_iu;
 163	struct sas_task *task = isci_request_access_task(ireq);
 164
 165	cmd_iu = &ireq->ssp.cmd;
 166
 167	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
 168	cmd_iu->add_cdb_len = 0;
 169	cmd_iu->_r_a = 0;
 170	cmd_iu->_r_b = 0;
 171	cmd_iu->en_fburst = 0; /* unsupported */
 172	cmd_iu->task_prio = task->ssp_task.task_prio;
 173	cmd_iu->task_attr = task->ssp_task.task_attr;
 174	cmd_iu->_r_c = 0;
 175
 176	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
 177		       sizeof(task->ssp_task.cdb) / sizeof(u32));
 178}
 179
 180static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
 181{
 182	struct ssp_task_iu *task_iu;
 183	struct sas_task *task = isci_request_access_task(ireq);
 184	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
 185
 186	task_iu = &ireq->ssp.tmf;
 187
 188	memset(task_iu, 0, sizeof(struct ssp_task_iu));
 189
 190	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
 191
 192	task_iu->task_func = isci_tmf->tmf_code;
 193	task_iu->task_tag =
 194		(ireq->ttype == tmf_task) ?
 195		isci_tmf->io_tag :
 196		SCI_CONTROLLER_INVALID_IO_TAG;
 197}
 198
 199/**
 200 * This method is will fill in the SCU Task Context for any type of SSP request.
 201 * @sci_req:
 202 * @task_context:
 203 *
 204 */
 205static void scu_ssp_reqeust_construct_task_context(
 206	struct isci_request *ireq,
 207	struct scu_task_context *task_context)
 208{
 209	dma_addr_t dma_addr;
 210	struct isci_remote_device *idev;
 211	struct isci_port *iport;
 212
 213	idev = ireq->target_device;
 214	iport = idev->owning_port;
 215
 216	/* Fill in the TC with the its required data */
 217	task_context->abort = 0;
 218	task_context->priority = 0;
 219	task_context->initiator_request = 1;
 220	task_context->connection_rate = idev->connection_rate;
 221	task_context->protocol_engine_index = ISCI_PEG;
 222	task_context->logical_port_index = iport->physical_port_index;
 223	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
 224	task_context->valid = SCU_TASK_CONTEXT_VALID;
 225	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
 226
 227	task_context->remote_node_index = idev->rnc.remote_node_index;
 228	task_context->command_code = 0;
 229
 230	task_context->link_layer_control = 0;
 231	task_context->do_not_dma_ssp_good_response = 1;
 232	task_context->strict_ordering = 0;
 233	task_context->control_frame = 0;
 234	task_context->timeout_enable = 0;
 235	task_context->block_guard_enable = 0;
 236
 237	task_context->address_modifier = 0;
 238
 239	/* task_context->type.ssp.tag = ireq->io_tag; */
 240	task_context->task_phase = 0x01;
 241
 242	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
 243			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
 244			      (iport->physical_port_index <<
 245			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
 246			      ISCI_TAG_TCI(ireq->io_tag));
 247
 248	/*
 249	 * Copy the physical address for the command buffer to the
 250	 * SCU Task Context
 251	 */
 252	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
 253
 254	task_context->command_iu_upper = upper_32_bits(dma_addr);
 255	task_context->command_iu_lower = lower_32_bits(dma_addr);
 256
 257	/*
 258	 * Copy the physical address for the response buffer to the
 259	 * SCU Task Context
 260	 */
 261	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
 262
 263	task_context->response_iu_upper = upper_32_bits(dma_addr);
 264	task_context->response_iu_lower = lower_32_bits(dma_addr);
 265}
 266
 267/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268 * This method is will fill in the SCU Task Context for a SSP IO request.
 269 * @sci_req:
 270 *
 271 */
 272static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
 273						      enum dma_data_direction dir,
 274						      u32 len)
 275{
 276	struct scu_task_context *task_context = ireq->tc;
 
 
 
 
 277
 278	scu_ssp_reqeust_construct_task_context(ireq, task_context);
 279
 280	task_context->ssp_command_iu_length =
 281		sizeof(struct ssp_cmd_iu) / sizeof(u32);
 282	task_context->type.ssp.frame_type = SSP_COMMAND;
 283
 284	switch (dir) {
 285	case DMA_FROM_DEVICE:
 286	case DMA_NONE:
 287	default:
 288		task_context->task_type = SCU_TASK_TYPE_IOREAD;
 289		break;
 290	case DMA_TO_DEVICE:
 291		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
 292		break;
 293	}
 294
 295	task_context->transfer_length_bytes = len;
 296
 297	if (task_context->transfer_length_bytes > 0)
 298		sci_request_build_sgl(ireq);
 
 
 
 
 
 
 
 299}
 300
 301/**
 302 * This method will fill in the SCU Task Context for a SSP Task request.  The
 303 *    following important settings are utilized: -# priority ==
 304 *    SCU_TASK_PRIORITY_HIGH.  This ensures that the task request is issued
 305 *    ahead of other task destined for the same Remote Node. -# task_type ==
 306 *    SCU_TASK_TYPE_IOREAD.  This simply indicates that a normal request type
 307 *    (i.e. non-raw frame) is being utilized to perform task management. -#
 308 *    control_frame == 1.  This ensures that the proper endianess is set so
 309 *    that the bytes are transmitted in the right order for a task frame.
 310 * @sci_req: This parameter specifies the task request object being
 311 *    constructed.
 312 *
 313 */
 314static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
 315{
 316	struct scu_task_context *task_context = ireq->tc;
 317
 318	scu_ssp_reqeust_construct_task_context(ireq, task_context);
 319
 320	task_context->control_frame                = 1;
 321	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
 322	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
 323	task_context->transfer_length_bytes        = 0;
 324	task_context->type.ssp.frame_type          = SSP_TASK;
 325	task_context->ssp_command_iu_length =
 326		sizeof(struct ssp_task_iu) / sizeof(u32);
 327}
 328
 329/**
 
 330 * This method is will fill in the SCU Task Context for any type of SATA
 331 *    request.  This is called from the various SATA constructors.
 332 * @sci_req: The general IO request object which is to be used in
 333 *    constructing the SCU task context.
 334 * @task_context: The buffer pointer for the SCU task context which is being
 335 *    constructed.
 336 *
 337 * The general io request construction is complete. The buffer assignment for
 338 * the command buffer is complete. none Revisit task context construction to
 339 * determine what is common for SSP/SMP/STP task context structures.
 340 */
 341static void scu_sata_reqeust_construct_task_context(
 342	struct isci_request *ireq,
 343	struct scu_task_context *task_context)
 344{
 345	dma_addr_t dma_addr;
 346	struct isci_remote_device *idev;
 347	struct isci_port *iport;
 348
 349	idev = ireq->target_device;
 350	iport = idev->owning_port;
 351
 352	/* Fill in the TC with the its required data */
 353	task_context->abort = 0;
 354	task_context->priority = SCU_TASK_PRIORITY_NORMAL;
 355	task_context->initiator_request = 1;
 356	task_context->connection_rate = idev->connection_rate;
 357	task_context->protocol_engine_index = ISCI_PEG;
 358	task_context->logical_port_index = iport->physical_port_index;
 359	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
 360	task_context->valid = SCU_TASK_CONTEXT_VALID;
 361	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
 362
 363	task_context->remote_node_index = idev->rnc.remote_node_index;
 364	task_context->command_code = 0;
 365
 366	task_context->link_layer_control = 0;
 367	task_context->do_not_dma_ssp_good_response = 1;
 368	task_context->strict_ordering = 0;
 369	task_context->control_frame = 0;
 370	task_context->timeout_enable = 0;
 371	task_context->block_guard_enable = 0;
 372
 373	task_context->address_modifier = 0;
 374	task_context->task_phase = 0x01;
 375
 376	task_context->ssp_command_iu_length =
 377		(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
 378
 379	/* Set the first word of the H2D REG FIS */
 380	task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
 381
 382	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
 383			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
 384			      (iport->physical_port_index <<
 385			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
 386			      ISCI_TAG_TCI(ireq->io_tag));
 387	/*
 388	 * Copy the physical address for the command buffer to the SCU Task
 389	 * Context. We must offset the command buffer by 4 bytes because the
 390	 * first 4 bytes are transfered in the body of the TC.
 391	 */
 392	dma_addr = sci_io_request_get_dma_addr(ireq,
 393						((char *) &ireq->stp.cmd) +
 394						sizeof(u32));
 395
 396	task_context->command_iu_upper = upper_32_bits(dma_addr);
 397	task_context->command_iu_lower = lower_32_bits(dma_addr);
 398
 399	/* SATA Requests do not have a response buffer */
 400	task_context->response_iu_upper = 0;
 401	task_context->response_iu_lower = 0;
 402}
 403
 404static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
 405{
 406	struct scu_task_context *task_context = ireq->tc;
 407
 408	scu_sata_reqeust_construct_task_context(ireq, task_context);
 409
 410	task_context->control_frame         = 0;
 411	task_context->priority              = SCU_TASK_PRIORITY_NORMAL;
 412	task_context->task_type             = SCU_TASK_TYPE_SATA_RAW_FRAME;
 413	task_context->type.stp.fis_type     = FIS_REGH2D;
 414	task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
 415}
 416
 417static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
 418							  bool copy_rx_frame)
 419{
 420	struct isci_stp_request *stp_req = &ireq->stp.req;
 421
 422	scu_stp_raw_request_construct_task_context(ireq);
 423
 424	stp_req->status = 0;
 425	stp_req->sgl.offset = 0;
 426	stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
 427
 428	if (copy_rx_frame) {
 429		sci_request_build_sgl(ireq);
 430		stp_req->sgl.index = 0;
 431	} else {
 432		/* The user does not want the data copied to the SGL buffer location */
 433		stp_req->sgl.index = -1;
 434	}
 435
 436	return SCI_SUCCESS;
 437}
 438
 439/**
 440 *
 441 * @sci_req: This parameter specifies the request to be constructed as an
 442 *    optimized request.
 443 * @optimized_task_type: This parameter specifies whether the request is to be
 444 *    an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
 445 *    value of 1 indicates NCQ.
 446 *
 447 * This method will perform request construction common to all types of STP
 448 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
 449 * returns an indication as to whether the construction was successful.
 450 */
 451static void sci_stp_optimized_request_construct(struct isci_request *ireq,
 452						     u8 optimized_task_type,
 453						     u32 len,
 454						     enum dma_data_direction dir)
 455{
 456	struct scu_task_context *task_context = ireq->tc;
 457
 458	/* Build the STP task context structure */
 459	scu_sata_reqeust_construct_task_context(ireq, task_context);
 460
 461	/* Copy over the SGL elements */
 462	sci_request_build_sgl(ireq);
 463
 464	/* Copy over the number of bytes to be transfered */
 465	task_context->transfer_length_bytes = len;
 466
 467	if (dir == DMA_TO_DEVICE) {
 468		/*
 469		 * The difference between the DMA IN and DMA OUT request task type
 470		 * values are consistent with the difference between FPDMA READ
 471		 * and FPDMA WRITE values.  Add the supplied task type parameter
 472		 * to this difference to set the task type properly for this
 473		 * DATA OUT (WRITE) case. */
 474		task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
 475								 - SCU_TASK_TYPE_DMA_IN);
 476	} else {
 477		/*
 478		 * For the DATA IN (READ) case, simply save the supplied
 479		 * optimized task type. */
 480		task_context->task_type = optimized_task_type;
 481	}
 482}
 483
 
 
 
 
 484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485
 486static enum sci_status
 487sci_io_request_construct_sata(struct isci_request *ireq,
 488			       u32 len,
 489			       enum dma_data_direction dir,
 490			       bool copy)
 491{
 492	enum sci_status status = SCI_SUCCESS;
 493	struct sas_task *task = isci_request_access_task(ireq);
 
 494
 495	/* check for management protocols */
 496	if (ireq->ttype == tmf_task) {
 497		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
 498
 499		if (tmf->tmf_code == isci_tmf_sata_srst_high ||
 500		    tmf->tmf_code == isci_tmf_sata_srst_low) {
 501			scu_stp_raw_request_construct_task_context(ireq);
 502			return SCI_SUCCESS;
 503		} else {
 504			dev_err(&ireq->owning_controller->pdev->dev,
 505				"%s: Request 0x%p received un-handled SAT "
 506				"management protocol 0x%x.\n",
 507				__func__, ireq, tmf->tmf_code);
 508
 509			return SCI_FAILURE;
 510		}
 511	}
 512
 513	if (!sas_protocol_ata(task->task_proto)) {
 514		dev_err(&ireq->owning_controller->pdev->dev,
 515			"%s: Non-ATA protocol in SATA path: 0x%x\n",
 516			__func__,
 517			task->task_proto);
 518		return SCI_FAILURE;
 519
 520	}
 521
 
 
 
 
 
 
 
 522	/* non data */
 523	if (task->data_dir == DMA_NONE) {
 524		scu_stp_raw_request_construct_task_context(ireq);
 525		return SCI_SUCCESS;
 526	}
 527
 528	/* NCQ */
 529	if (task->ata_task.use_ncq) {
 530		sci_stp_optimized_request_construct(ireq,
 531							 SCU_TASK_TYPE_FPDMAQ_READ,
 532							 len, dir);
 533		return SCI_SUCCESS;
 534	}
 535
 536	/* DMA */
 537	if (task->ata_task.dma_xfer) {
 538		sci_stp_optimized_request_construct(ireq,
 539							 SCU_TASK_TYPE_DMA_IN,
 540							 len, dir);
 541		return SCI_SUCCESS;
 542	} else /* PIO */
 543		return sci_stp_pio_request_construct(ireq, copy);
 544
 545	return status;
 546}
 547
 548static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
 549{
 550	struct sas_task *task = isci_request_access_task(ireq);
 551
 552	ireq->protocol = SCIC_SSP_PROTOCOL;
 553
 554	scu_ssp_io_request_construct_task_context(ireq,
 555						  task->data_dir,
 556						  task->total_xfer_len);
 557
 558	sci_io_request_build_ssp_command_iu(ireq);
 559
 560	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 561
 562	return SCI_SUCCESS;
 563}
 564
 565enum sci_status sci_task_request_construct_ssp(
 566	struct isci_request *ireq)
 567{
 568	/* Construct the SSP Task SCU Task Context */
 569	scu_ssp_task_request_construct_task_context(ireq);
 570
 571	/* Fill in the SSP Task IU */
 572	sci_task_request_build_ssp_task_iu(ireq);
 573
 574	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 575
 576	return SCI_SUCCESS;
 577}
 578
 579static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
 580{
 581	enum sci_status status;
 582	bool copy = false;
 583	struct sas_task *task = isci_request_access_task(ireq);
 584
 585	ireq->protocol = SCIC_STP_PROTOCOL;
 586
 587	copy = (task->data_dir == DMA_NONE) ? false : true;
 588
 589	status = sci_io_request_construct_sata(ireq,
 590						task->total_xfer_len,
 591						task->data_dir,
 592						copy);
 593
 594	if (status == SCI_SUCCESS)
 595		sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 596
 597	return status;
 598}
 599
 600enum sci_status sci_task_request_construct_sata(struct isci_request *ireq)
 601{
 602	enum sci_status status = SCI_SUCCESS;
 603
 604	/* check for management protocols */
 605	if (ireq->ttype == tmf_task) {
 606		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
 607
 608		if (tmf->tmf_code == isci_tmf_sata_srst_high ||
 609		    tmf->tmf_code == isci_tmf_sata_srst_low) {
 610			scu_stp_raw_request_construct_task_context(ireq);
 611		} else {
 612			dev_err(&ireq->owning_controller->pdev->dev,
 613				"%s: Request 0x%p received un-handled SAT "
 614				"Protocol 0x%x.\n",
 615				__func__, ireq, tmf->tmf_code);
 616
 617			return SCI_FAILURE;
 618		}
 619	}
 620
 621	if (status != SCI_SUCCESS)
 622		return status;
 623	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 624
 625	return status;
 626}
 627
 628/**
 629 * sci_req_tx_bytes - bytes transferred when reply underruns request
 630 * @sci_req: request that was terminated early
 631 */
 632#define SCU_TASK_CONTEXT_SRAM 0x200000
 633static u32 sci_req_tx_bytes(struct isci_request *ireq)
 634{
 635	struct isci_host *ihost = ireq->owning_controller;
 636	u32 ret_val = 0;
 637
 638	if (readl(&ihost->smu_registers->address_modifier) == 0) {
 639		void __iomem *scu_reg_base = ihost->scu_registers;
 640
 641		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
 642		 *   BAR1 is the scu_registers
 643		 *   0x20002C = 0x200000 + 0x2c
 644		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
 645		 *   TCi is the io_tag of struct sci_request
 646		 */
 647		ret_val = readl(scu_reg_base +
 648				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
 649				((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
 650	}
 651
 652	return ret_val;
 653}
 654
 655enum sci_status sci_request_start(struct isci_request *ireq)
 656{
 657	enum sci_base_request_states state;
 658	struct scu_task_context *tc = ireq->tc;
 659	struct isci_host *ihost = ireq->owning_controller;
 660
 661	state = ireq->sm.current_state_id;
 662	if (state != SCI_REQ_CONSTRUCTED) {
 663		dev_warn(&ihost->pdev->dev,
 664			"%s: SCIC IO Request requested to start while in wrong "
 665			 "state %d\n", __func__, state);
 666		return SCI_FAILURE_INVALID_STATE;
 667	}
 668
 669	tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
 670
 671	switch (tc->protocol_type) {
 672	case SCU_TASK_CONTEXT_PROTOCOL_SMP:
 673	case SCU_TASK_CONTEXT_PROTOCOL_SSP:
 674		/* SSP/SMP Frame */
 675		tc->type.ssp.tag = ireq->io_tag;
 676		tc->type.ssp.target_port_transfer_tag = 0xFFFF;
 677		break;
 678
 679	case SCU_TASK_CONTEXT_PROTOCOL_STP:
 680		/* STP/SATA Frame
 681		 * tc->type.stp.ncq_tag = ireq->ncq_tag;
 682		 */
 683		break;
 684
 685	case SCU_TASK_CONTEXT_PROTOCOL_NONE:
 686		/* / @todo When do we set no protocol type? */
 687		break;
 688
 689	default:
 690		/* This should never happen since we build the IO
 691		 * requests */
 692		break;
 693	}
 694
 695	/* Add to the post_context the io tag value */
 696	ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
 697
 698	/* Everything is good go ahead and change state */
 699	sci_change_state(&ireq->sm, SCI_REQ_STARTED);
 700
 701	return SCI_SUCCESS;
 702}
 703
 704enum sci_status
 705sci_io_request_terminate(struct isci_request *ireq)
 706{
 707	enum sci_base_request_states state;
 708
 709	state = ireq->sm.current_state_id;
 710
 711	switch (state) {
 712	case SCI_REQ_CONSTRUCTED:
 
 
 713		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
 714		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
 715		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
 716		return SCI_SUCCESS;
 717	case SCI_REQ_STARTED:
 718	case SCI_REQ_TASK_WAIT_TC_COMP:
 719	case SCI_REQ_SMP_WAIT_RESP:
 720	case SCI_REQ_SMP_WAIT_TC_COMP:
 721	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
 722	case SCI_REQ_STP_UDMA_WAIT_D2H:
 723	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
 724	case SCI_REQ_STP_NON_DATA_WAIT_D2H:
 725	case SCI_REQ_STP_PIO_WAIT_H2D:
 726	case SCI_REQ_STP_PIO_WAIT_FRAME:
 727	case SCI_REQ_STP_PIO_DATA_IN:
 728	case SCI_REQ_STP_PIO_DATA_OUT:
 729	case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
 730	case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
 731	case SCI_REQ_STP_SOFT_RESET_WAIT_D2H:
 732		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
 733		return SCI_SUCCESS;
 734	case SCI_REQ_TASK_WAIT_TC_RESP:
 735		/* The task frame was already confirmed to have been
 736		 * sent by the SCU HW.  Since the state machine is
 737		 * now only waiting for the task response itself,
 738		 * abort the request and complete it immediately
 739		 * and don't wait for the task response.
 740		 */
 741		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
 742		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
 743		return SCI_SUCCESS;
 744	case SCI_REQ_ABORTING:
 745		/* If a request has a termination requested twice, return
 746		 * a failure indication, since HW confirmation of the first
 747		 * abort is still outstanding.
 
 
 
 748		 */
 
 749	case SCI_REQ_COMPLETED:
 750	default:
 751		dev_warn(&ireq->owning_controller->pdev->dev,
 752			 "%s: SCIC IO Request requested to abort while in wrong "
 753			 "state %d\n",
 754			 __func__,
 755			 ireq->sm.current_state_id);
 756		break;
 757	}
 758
 759	return SCI_FAILURE_INVALID_STATE;
 760}
 761
 762enum sci_status sci_request_complete(struct isci_request *ireq)
 763{
 764	enum sci_base_request_states state;
 765	struct isci_host *ihost = ireq->owning_controller;
 766
 767	state = ireq->sm.current_state_id;
 768	if (WARN_ONCE(state != SCI_REQ_COMPLETED,
 769		      "isci: request completion from wrong state (%d)\n", state))
 
 770		return SCI_FAILURE_INVALID_STATE;
 771
 772	if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
 773		sci_controller_release_frame(ihost,
 774						  ireq->saved_rx_frame_index);
 775
 776	/* XXX can we just stop the machine and remove the 'final' state? */
 777	sci_change_state(&ireq->sm, SCI_REQ_FINAL);
 778	return SCI_SUCCESS;
 779}
 780
 781enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
 782						  u32 event_code)
 783{
 784	enum sci_base_request_states state;
 785	struct isci_host *ihost = ireq->owning_controller;
 786
 787	state = ireq->sm.current_state_id;
 788
 789	if (state != SCI_REQ_STP_PIO_DATA_IN) {
 790		dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %d\n",
 791			 __func__, event_code, state);
 792
 793		return SCI_FAILURE_INVALID_STATE;
 794	}
 795
 796	switch (scu_get_event_specifier(event_code)) {
 797	case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
 798		/* We are waiting for data and the SCU has R_ERR the data frame.
 799		 * Go back to waiting for the D2H Register FIS
 800		 */
 801		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
 802		return SCI_SUCCESS;
 803	default:
 804		dev_err(&ihost->pdev->dev,
 805			"%s: pio request unexpected event %#x\n",
 806			__func__, event_code);
 807
 808		/* TODO Should we fail the PIO request when we get an
 809		 * unexpected event?
 810		 */
 811		return SCI_FAILURE;
 812	}
 813}
 814
 815/*
 816 * This function copies response data for requests returning response data
 817 *    instead of sense data.
 818 * @sci_req: This parameter specifies the request object for which to copy
 819 *    the response data.
 820 */
 821static void sci_io_request_copy_response(struct isci_request *ireq)
 822{
 823	void *resp_buf;
 824	u32 len;
 825	struct ssp_response_iu *ssp_response;
 826	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
 827
 828	ssp_response = &ireq->ssp.rsp;
 829
 830	resp_buf = &isci_tmf->resp.resp_iu;
 831
 832	len = min_t(u32,
 833		    SSP_RESP_IU_MAX_SIZE,
 834		    be32_to_cpu(ssp_response->response_data_len));
 835
 836	memcpy(resp_buf, ssp_response->resp_data, len);
 837}
 838
 839static enum sci_status
 840request_started_state_tc_event(struct isci_request *ireq,
 841			       u32 completion_code)
 842{
 843	struct ssp_response_iu *resp_iu;
 844	u8 datapres;
 845
 846	/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
 847	 * to determine SDMA status
 848	 */
 849	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
 850	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
 851		ireq->scu_status = SCU_TASK_DONE_GOOD;
 852		ireq->sci_status = SCI_SUCCESS;
 853		break;
 854	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
 855		/* There are times when the SCU hardware will return an early
 856		 * response because the io request specified more data than is
 857		 * returned by the target device (mode pages, inquiry data,
 858		 * etc.).  We must check the response stats to see if this is
 859		 * truly a failed request or a good request that just got
 860		 * completed early.
 861		 */
 862		struct ssp_response_iu *resp = &ireq->ssp.rsp;
 863		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
 864
 865		sci_swab32_cpy(&ireq->ssp.rsp,
 866			       &ireq->ssp.rsp,
 867			       word_cnt);
 868
 869		if (resp->status == 0) {
 870			ireq->scu_status = SCU_TASK_DONE_GOOD;
 871			ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
 872		} else {
 873			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
 874			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
 875		}
 876		break;
 877	}
 878	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
 879		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
 880
 881		sci_swab32_cpy(&ireq->ssp.rsp,
 882			       &ireq->ssp.rsp,
 883			       word_cnt);
 884
 885		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
 886		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
 887		break;
 888	}
 889
 890	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
 891		/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
 892		 * guaranteed to be received before this completion status is
 893		 * posted?
 894		 */
 895		resp_iu = &ireq->ssp.rsp;
 896		datapres = resp_iu->datapres;
 897
 898		if (datapres == 1 || datapres == 2) {
 
 899			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
 900			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
 901		} else {
 902			ireq->scu_status = SCU_TASK_DONE_GOOD;
 903			ireq->sci_status = SCI_SUCCESS;
 904		}
 905		break;
 906	/* only stp device gets suspended. */
 907	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
 908	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
 909	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
 910	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
 911	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
 912	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
 913	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
 914	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
 915	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
 916	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
 917	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
 918		if (ireq->protocol == SCIC_STP_PROTOCOL) {
 919			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
 920					   SCU_COMPLETION_TL_STATUS_SHIFT;
 921			ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
 922		} else {
 923			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
 924					   SCU_COMPLETION_TL_STATUS_SHIFT;
 925			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
 926		}
 927		break;
 928
 929	/* both stp/ssp device gets suspended */
 930	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
 931	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
 932	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
 933	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
 934	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
 935	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
 936	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
 937	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
 938	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
 939	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
 940		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
 941				   SCU_COMPLETION_TL_STATUS_SHIFT;
 942		ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
 943		break;
 944
 945	/* neither ssp nor stp gets suspended. */
 946	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
 947	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
 948	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
 949	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
 950	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
 951	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
 952	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
 953	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
 954	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
 955	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
 956	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
 957	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
 958	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
 959	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
 960	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
 961	default:
 962		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
 963				   SCU_COMPLETION_TL_STATUS_SHIFT;
 964		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
 965		break;
 966	}
 967
 968	/*
 969	 * TODO: This is probably wrong for ACK/NAK timeout conditions
 970	 */
 971
 972	/* In all cases we will treat this as the completion of the IO req. */
 973	sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
 974	return SCI_SUCCESS;
 975}
 976
 977static enum sci_status
 978request_aborting_state_tc_event(struct isci_request *ireq,
 979				u32 completion_code)
 980{
 981	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
 982	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
 983	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
 984		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
 985		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
 986		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
 987		break;
 988
 989	default:
 990		/* Unless we get some strange error wait for the task abort to complete
 991		 * TODO: Should there be a state change for this completion?
 992		 */
 993		break;
 994	}
 995
 996	return SCI_SUCCESS;
 997}
 998
 999static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1000						       u32 completion_code)
1001{
1002	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1003	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1004		ireq->scu_status = SCU_TASK_DONE_GOOD;
1005		ireq->sci_status = SCI_SUCCESS;
1006		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1007		break;
1008	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1009		/* Currently, the decision is to simply allow the task request
1010		 * to timeout if the task IU wasn't received successfully.
1011		 * There is a potential for receiving multiple task responses if
1012		 * we decide to send the task IU again.
1013		 */
1014		dev_warn(&ireq->owning_controller->pdev->dev,
1015			 "%s: TaskRequest:0x%p CompletionCode:%x - "
1016			 "ACK/NAK timeout\n", __func__, ireq,
1017			 completion_code);
1018
1019		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1020		break;
1021	default:
1022		/*
1023		 * All other completion status cause the IO to be complete.
1024		 * If a NAK was received, then it is up to the user to retry
1025		 * the request.
1026		 */
1027		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1028		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1029		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1030		break;
1031	}
1032
1033	return SCI_SUCCESS;
1034}
1035
1036static enum sci_status
1037smp_request_await_response_tc_event(struct isci_request *ireq,
1038				    u32 completion_code)
1039{
1040	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1041	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1042		/* In the AWAIT RESPONSE state, any TC completion is
1043		 * unexpected.  but if the TC has success status, we
1044		 * complete the IO anyway.
1045		 */
1046		ireq->scu_status = SCU_TASK_DONE_GOOD;
1047		ireq->sci_status = SCI_SUCCESS;
1048		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1049		break;
1050	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1051	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1052	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1053	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1054		/* These status has been seen in a specific LSI
1055		 * expander, which sometimes is not able to send smp
1056		 * response within 2 ms. This causes our hardware break
1057		 * the connection and set TC completion with one of
1058		 * these SMP_XXX_XX_ERR status. For these type of error,
1059		 * we ask ihost user to retry the request.
1060		 */
1061		ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1062		ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1063		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1064		break;
1065	default:
1066		/* All other completion status cause the IO to be complete.  If a NAK
1067		 * was received, then it is up to the user to retry the request
1068		 */
1069		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1070		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1071		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1072		break;
1073	}
1074
1075	return SCI_SUCCESS;
1076}
1077
1078static enum sci_status
1079smp_request_await_tc_event(struct isci_request *ireq,
1080			   u32 completion_code)
1081{
1082	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1083	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1084		ireq->scu_status = SCU_TASK_DONE_GOOD;
1085		ireq->sci_status = SCI_SUCCESS;
1086		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1087		break;
1088	default:
1089		/* All other completion status cause the IO to be
1090		 * complete.  If a NAK was received, then it is up to
1091		 * the user to retry the request.
1092		 */
1093		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1094		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1095		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1096		break;
1097	}
1098
1099	return SCI_SUCCESS;
1100}
1101
1102static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1103{
1104	struct scu_sgl_element *sgl;
1105	struct scu_sgl_element_pair *sgl_pair;
1106	struct isci_request *ireq = to_ireq(stp_req);
1107	struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1108
1109	sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1110	if (!sgl_pair)
1111		sgl = NULL;
1112	else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1113		if (sgl_pair->B.address_lower == 0 &&
1114		    sgl_pair->B.address_upper == 0) {
1115			sgl = NULL;
1116		} else {
1117			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1118			sgl = &sgl_pair->B;
1119		}
1120	} else {
1121		if (sgl_pair->next_pair_lower == 0 &&
1122		    sgl_pair->next_pair_upper == 0) {
1123			sgl = NULL;
1124		} else {
1125			pio_sgl->index++;
1126			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1127			sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1128			sgl = &sgl_pair->A;
1129		}
1130	}
1131
1132	return sgl;
1133}
1134
1135static enum sci_status
1136stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1137					u32 completion_code)
1138{
1139	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1140	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1141		ireq->scu_status = SCU_TASK_DONE_GOOD;
1142		ireq->sci_status = SCI_SUCCESS;
1143		sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1144		break;
1145
1146	default:
1147		/* All other completion status cause the IO to be
1148		 * complete.  If a NAK was received, then it is up to
1149		 * the user to retry the request.
1150		 */
1151		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1152		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1153		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1154		break;
1155	}
1156
1157	return SCI_SUCCESS;
1158}
1159
1160#define SCU_MAX_FRAME_BUFFER_SIZE  0x400  /* 1K is the maximum SCU frame data payload */
1161
1162/* transmit DATA_FIS from (current sgl + offset) for input
1163 * parameter length. current sgl and offset is alreay stored in the IO request
1164 */
1165static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1166	struct isci_request *ireq,
1167	u32 length)
1168{
1169	struct isci_stp_request *stp_req = &ireq->stp.req;
1170	struct scu_task_context *task_context = ireq->tc;
1171	struct scu_sgl_element_pair *sgl_pair;
1172	struct scu_sgl_element *current_sgl;
1173
1174	/* Recycle the TC and reconstruct it for sending out DATA FIS containing
1175	 * for the data from current_sgl+offset for the input length
1176	 */
1177	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1178	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1179		current_sgl = &sgl_pair->A;
1180	else
1181		current_sgl = &sgl_pair->B;
1182
1183	/* update the TC */
1184	task_context->command_iu_upper = current_sgl->address_upper;
1185	task_context->command_iu_lower = current_sgl->address_lower;
1186	task_context->transfer_length_bytes = length;
1187	task_context->type.stp.fis_type = FIS_DATA;
1188
1189	/* send the new TC out. */
1190	return sci_controller_continue_io(ireq);
1191}
1192
1193static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1194{
1195	struct isci_stp_request *stp_req = &ireq->stp.req;
1196	struct scu_sgl_element_pair *sgl_pair;
 
1197	struct scu_sgl_element *sgl;
1198	enum sci_status status;
1199	u32 offset;
1200	u32 len = 0;
1201
1202	offset = stp_req->sgl.offset;
1203	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1204	if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1205		return SCI_FAILURE;
1206
1207	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1208		sgl = &sgl_pair->A;
1209		len = sgl_pair->A.length - offset;
1210	} else {
1211		sgl = &sgl_pair->B;
1212		len = sgl_pair->B.length - offset;
1213	}
1214
1215	if (stp_req->pio_len == 0)
1216		return SCI_SUCCESS;
1217
1218	if (stp_req->pio_len >= len) {
1219		status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1220		if (status != SCI_SUCCESS)
1221			return status;
1222		stp_req->pio_len -= len;
1223
1224		/* update the current sgl, offset and save for future */
1225		sgl = pio_sgl_next(stp_req);
1226		offset = 0;
1227	} else if (stp_req->pio_len < len) {
1228		sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1229
1230		/* Sgl offset will be adjusted and saved for future */
1231		offset += stp_req->pio_len;
1232		sgl->address_lower += stp_req->pio_len;
1233		stp_req->pio_len = 0;
1234	}
1235
1236	stp_req->sgl.offset = offset;
1237
1238	return status;
1239}
1240
1241/**
 
 
 
 
1242 *
1243 * @stp_request: The request that is used for the SGL processing.
1244 * @data_buffer: The buffer of data to be copied.
1245 * @length: The length of the data transfer.
1246 *
1247 * Copy the data from the buffer for the length specified to the IO reqeust SGL
1248 * specified data region. enum sci_status
1249 */
1250static enum sci_status
1251sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1252						  u8 *data_buf, u32 len)
1253{
1254	struct isci_request *ireq;
1255	u8 *src_addr;
1256	int copy_len;
1257	struct sas_task *task;
1258	struct scatterlist *sg;
1259	void *kaddr;
1260	int total_len = len;
1261
1262	ireq = to_ireq(stp_req);
1263	task = isci_request_access_task(ireq);
1264	src_addr = data_buf;
1265
1266	if (task->num_scatter > 0) {
1267		sg = task->scatter;
1268
1269		while (total_len > 0) {
1270			struct page *page = sg_page(sg);
1271
1272			copy_len = min_t(int, total_len, sg_dma_len(sg));
1273			kaddr = kmap_atomic(page, KM_IRQ0);
1274			memcpy(kaddr + sg->offset, src_addr, copy_len);
1275			kunmap_atomic(kaddr, KM_IRQ0);
1276			total_len -= copy_len;
1277			src_addr += copy_len;
1278			sg = sg_next(sg);
1279		}
1280	} else {
1281		BUG_ON(task->total_xfer_len < total_len);
1282		memcpy(task->scatter, src_addr, total_len);
1283	}
1284
1285	return SCI_SUCCESS;
1286}
1287
1288/**
1289 *
1290 * @sci_req: The PIO DATA IN request that is to receive the data.
1291 * @data_buffer: The buffer to copy from.
1292 *
1293 * Copy the data buffer to the io request data region. enum sci_status
1294 */
1295static enum sci_status sci_stp_request_pio_data_in_copy_data(
1296	struct isci_stp_request *stp_req,
1297	u8 *data_buffer)
1298{
1299	enum sci_status status;
1300
1301	/*
1302	 * If there is less than 1K remaining in the transfer request
1303	 * copy just the data for the transfer */
1304	if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1305		status = sci_stp_request_pio_data_in_copy_data_buffer(
1306			stp_req, data_buffer, stp_req->pio_len);
1307
1308		if (status == SCI_SUCCESS)
1309			stp_req->pio_len = 0;
1310	} else {
1311		/* We are transfering the whole frame so copy */
1312		status = sci_stp_request_pio_data_in_copy_data_buffer(
1313			stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1314
1315		if (status == SCI_SUCCESS)
1316			stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1317	}
1318
1319	return status;
1320}
1321
1322static enum sci_status
1323stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1324					      u32 completion_code)
1325{
1326	enum sci_status status = SCI_SUCCESS;
1327
1328	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1329	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1330		ireq->scu_status = SCU_TASK_DONE_GOOD;
1331		ireq->sci_status = SCI_SUCCESS;
1332		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1333		break;
1334
1335	default:
1336		/* All other completion status cause the IO to be
1337		 * complete.  If a NAK was received, then it is up to
1338		 * the user to retry the request.
1339		 */
1340		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1341		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1342		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1343		break;
1344	}
1345
1346	return status;
1347}
1348
1349static enum sci_status
1350pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1351			      u32 completion_code)
1352{
1353	enum sci_status status = SCI_SUCCESS;
1354	bool all_frames_transferred = false;
1355	struct isci_stp_request *stp_req = &ireq->stp.req;
1356
1357	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1358	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1359		/* Transmit data */
1360		if (stp_req->pio_len != 0) {
1361			status = sci_stp_request_pio_data_out_transmit_data(ireq);
1362			if (status == SCI_SUCCESS) {
1363				if (stp_req->pio_len == 0)
1364					all_frames_transferred = true;
1365			}
1366		} else if (stp_req->pio_len == 0) {
1367			/*
1368			 * this will happen if the all data is written at the
1369			 * first time after the pio setup fis is received
1370			 */
1371			all_frames_transferred  = true;
1372		}
1373
1374		/* all data transferred. */
1375		if (all_frames_transferred) {
1376			/*
1377			 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1378			 * and wait for PIO_SETUP fis / or D2H REg fis. */
1379			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1380		}
1381		break;
1382
1383	default:
1384		/*
1385		 * All other completion status cause the IO to be complete.
1386		 * If a NAK was received, then it is up to the user to retry
1387		 * the request.
1388		 */
1389		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1390		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1391		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1392		break;
1393	}
1394
1395	return status;
1396}
1397
1398static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1399								       u32 frame_index)
1400{
1401	struct isci_host *ihost = ireq->owning_controller;
1402	struct dev_to_host_fis *frame_header;
1403	enum sci_status status;
1404	u32 *frame_buffer;
1405
1406	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1407							       frame_index,
1408							       (void **)&frame_header);
1409
1410	if ((status == SCI_SUCCESS) &&
1411	    (frame_header->fis_type == FIS_REGD2H)) {
1412		sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1413							      frame_index,
1414							      (void **)&frame_buffer);
1415
1416		sci_controller_copy_sata_response(&ireq->stp.rsp,
1417						       frame_header,
1418						       frame_buffer);
1419	}
1420
1421	sci_controller_release_frame(ihost, frame_index);
1422
1423	return status;
1424}
1425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426enum sci_status
1427sci_io_request_frame_handler(struct isci_request *ireq,
1428				  u32 frame_index)
1429{
1430	struct isci_host *ihost = ireq->owning_controller;
1431	struct isci_stp_request *stp_req = &ireq->stp.req;
1432	enum sci_base_request_states state;
1433	enum sci_status status;
1434	ssize_t word_cnt;
1435
1436	state = ireq->sm.current_state_id;
1437	switch (state)  {
1438	case SCI_REQ_STARTED: {
1439		struct ssp_frame_hdr ssp_hdr;
1440		void *frame_header;
1441
1442		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1443							      frame_index,
1444							      &frame_header);
1445
1446		word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1447		sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1448
1449		if (ssp_hdr.frame_type == SSP_RESPONSE) {
1450			struct ssp_response_iu *resp_iu;
1451			ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1452
1453			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1454								      frame_index,
1455								      (void **)&resp_iu);
1456
1457			sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1458
1459			resp_iu = &ireq->ssp.rsp;
1460
1461			if (resp_iu->datapres == 0x01 ||
1462			    resp_iu->datapres == 0x02) {
1463				ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1464				ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1465			} else {
1466				ireq->scu_status = SCU_TASK_DONE_GOOD;
1467				ireq->sci_status = SCI_SUCCESS;
1468			}
1469		} else {
1470			/* not a response frame, why did it get forwarded? */
1471			dev_err(&ihost->pdev->dev,
1472				"%s: SCIC IO Request 0x%p received unexpected "
1473				"frame %d type 0x%02x\n", __func__, ireq,
1474				frame_index, ssp_hdr.frame_type);
1475		}
1476
1477		/*
1478		 * In any case we are done with this frame buffer return it to
1479		 * the controller
1480		 */
1481		sci_controller_release_frame(ihost, frame_index);
1482
1483		return SCI_SUCCESS;
1484	}
1485
1486	case SCI_REQ_TASK_WAIT_TC_RESP:
1487		sci_io_request_copy_response(ireq);
1488		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1489		sci_controller_release_frame(ihost, frame_index);
1490		return SCI_SUCCESS;
1491
1492	case SCI_REQ_SMP_WAIT_RESP: {
1493		struct smp_resp *rsp_hdr = &ireq->smp.rsp;
1494		void *frame_header;
 
 
1495
1496		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1497							      frame_index,
1498							      &frame_header);
 
 
 
1499
1500		/* byte swap the header. */
1501		word_cnt = SMP_RESP_HDR_SZ / sizeof(u32);
1502		sci_swab32_cpy(rsp_hdr, frame_header, word_cnt);
1503
1504		if (rsp_hdr->frame_type == SMP_RESPONSE) {
1505			void *smp_resp;
1506
1507			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1508								      frame_index,
1509								      &smp_resp);
1510
1511			word_cnt = (sizeof(struct smp_resp) - SMP_RESP_HDR_SZ) /
1512				sizeof(u32);
1513
1514			sci_swab32_cpy(((u8 *) rsp_hdr) + SMP_RESP_HDR_SZ,
1515				       smp_resp, word_cnt);
1516
1517			ireq->scu_status = SCU_TASK_DONE_GOOD;
1518			ireq->sci_status = SCI_SUCCESS;
1519			sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1520		} else {
1521			/*
1522			 * This was not a response frame why did it get
1523			 * forwarded?
1524			 */
1525			dev_err(&ihost->pdev->dev,
1526				"%s: SCIC SMP Request 0x%p received unexpected "
1527				"frame %d type 0x%02x\n",
1528				__func__,
1529				ireq,
1530				frame_index,
1531				rsp_hdr->frame_type);
1532
1533			ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1534			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1535			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1536		}
 
1537
1538		sci_controller_release_frame(ihost, frame_index);
1539
1540		return SCI_SUCCESS;
1541	}
1542
1543	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1544		return sci_stp_request_udma_general_frame_handler(ireq,
1545								       frame_index);
1546
1547	case SCI_REQ_STP_UDMA_WAIT_D2H:
1548		/* Use the general frame handler to copy the resposne data */
1549		status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1550
1551		if (status != SCI_SUCCESS)
1552			return status;
1553
1554		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1555		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1556		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1557		return SCI_SUCCESS;
1558
1559	case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1560		struct dev_to_host_fis *frame_header;
1561		u32 *frame_buffer;
1562
1563		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1564								       frame_index,
1565								       (void **)&frame_header);
1566
1567		if (status != SCI_SUCCESS) {
1568			dev_err(&ihost->pdev->dev,
1569				"%s: SCIC IO Request 0x%p could not get frame "
1570				"header for frame index %d, status %x\n",
1571				__func__,
1572				stp_req,
1573				frame_index,
1574				status);
1575
1576			return status;
1577		}
1578
1579		switch (frame_header->fis_type) {
1580		case FIS_REGD2H:
1581			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1582								      frame_index,
1583								      (void **)&frame_buffer);
1584
1585			sci_controller_copy_sata_response(&ireq->stp.rsp,
1586							       frame_header,
1587							       frame_buffer);
1588
1589			/* The command has completed with error */
1590			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1591			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1592			break;
1593
1594		default:
1595			dev_warn(&ihost->pdev->dev,
1596				 "%s: IO Request:0x%p Frame Id:%d protocol "
1597				  "violation occurred\n", __func__, stp_req,
1598				  frame_index);
1599
1600			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1601			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1602			break;
1603		}
1604
1605		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1606
1607		/* Frame has been decoded return it to the controller */
1608		sci_controller_release_frame(ihost, frame_index);
1609
1610		return status;
1611	}
1612
1613	case SCI_REQ_STP_PIO_WAIT_FRAME: {
1614		struct sas_task *task = isci_request_access_task(ireq);
1615		struct dev_to_host_fis *frame_header;
1616		u32 *frame_buffer;
1617
1618		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1619								       frame_index,
1620								       (void **)&frame_header);
1621
1622		if (status != SCI_SUCCESS) {
1623			dev_err(&ihost->pdev->dev,
1624				"%s: SCIC IO Request 0x%p could not get frame "
1625				"header for frame index %d, status %x\n",
1626				__func__, stp_req, frame_index, status);
1627			return status;
1628		}
1629
1630		switch (frame_header->fis_type) {
1631		case FIS_PIO_SETUP:
1632			/* Get from the frame buffer the PIO Setup Data */
1633			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1634								      frame_index,
1635								      (void **)&frame_buffer);
1636
1637			/* Get the data from the PIO Setup The SCU Hardware
1638			 * returns first word in the frame_header and the rest
1639			 * of the data is in the frame buffer so we need to
1640			 * back up one dword
1641			 */
1642
1643			/* transfer_count: first 16bits in the 4th dword */
1644			stp_req->pio_len = frame_buffer[3] & 0xffff;
1645
1646			/* status: 4th byte in the 3rd dword */
1647			stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1648
1649			sci_controller_copy_sata_response(&ireq->stp.rsp,
1650							       frame_header,
1651							       frame_buffer);
1652
1653			ireq->stp.rsp.status = stp_req->status;
1654
1655			/* The next state is dependent on whether the
1656			 * request was PIO Data-in or Data out
1657			 */
1658			if (task->data_dir == DMA_FROM_DEVICE) {
1659				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1660			} else if (task->data_dir == DMA_TO_DEVICE) {
1661				/* Transmit data */
1662				status = sci_stp_request_pio_data_out_transmit_data(ireq);
1663				if (status != SCI_SUCCESS)
1664					break;
1665				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1666			}
1667			break;
1668
1669		case FIS_SETDEVBITS:
1670			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1671			break;
1672
1673		case FIS_REGD2H:
1674			if (frame_header->status & ATA_BUSY) {
1675				/*
1676				 * Now why is the drive sending a D2H Register
1677				 * FIS when it is still busy?  Do nothing since
1678				 * we are still in the right state.
1679				 */
1680				dev_dbg(&ihost->pdev->dev,
1681					"%s: SCIC PIO Request 0x%p received "
1682					"D2H Register FIS with BSY status "
1683					"0x%x\n",
1684					__func__,
1685					stp_req,
1686					frame_header->status);
1687				break;
1688			}
1689
1690			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1691								      frame_index,
1692								      (void **)&frame_buffer);
1693
1694			sci_controller_copy_sata_response(&ireq->stp.req,
1695							       frame_header,
1696							       frame_buffer);
1697
1698			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1699			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1700			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1701			break;
1702
1703		default:
1704			/* FIXME: what do we do here? */
1705			break;
1706		}
1707
1708		/* Frame is decoded return it to the controller */
1709		sci_controller_release_frame(ihost, frame_index);
1710
1711		return status;
1712	}
1713
1714	case SCI_REQ_STP_PIO_DATA_IN: {
1715		struct dev_to_host_fis *frame_header;
1716		struct sata_fis_data *frame_buffer;
1717
1718		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1719								       frame_index,
1720								       (void **)&frame_header);
1721
1722		if (status != SCI_SUCCESS) {
1723			dev_err(&ihost->pdev->dev,
1724				"%s: SCIC IO Request 0x%p could not get frame "
1725				"header for frame index %d, status %x\n",
1726				__func__,
1727				stp_req,
1728				frame_index,
1729				status);
1730			return status;
1731		}
1732
1733		if (frame_header->fis_type != FIS_DATA) {
1734			dev_err(&ihost->pdev->dev,
1735				"%s: SCIC PIO Request 0x%p received frame %d "
1736				"with fis type 0x%02x when expecting a data "
1737				"fis.\n",
1738				__func__,
1739				stp_req,
1740				frame_index,
1741				frame_header->fis_type);
1742
1743			ireq->scu_status = SCU_TASK_DONE_GOOD;
1744			ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
1745			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1746
1747			/* Frame is decoded return it to the controller */
1748			sci_controller_release_frame(ihost, frame_index);
1749			return status;
1750		}
1751
1752		if (stp_req->sgl.index < 0) {
1753			ireq->saved_rx_frame_index = frame_index;
1754			stp_req->pio_len = 0;
1755		} else {
1756			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1757								      frame_index,
1758								      (void **)&frame_buffer);
1759
1760			status = sci_stp_request_pio_data_in_copy_data(stp_req,
1761									    (u8 *)frame_buffer);
1762
1763			/* Frame is decoded return it to the controller */
1764			sci_controller_release_frame(ihost, frame_index);
1765		}
1766
1767		/* Check for the end of the transfer, are there more
1768		 * bytes remaining for this data transfer
1769		 */
1770		if (status != SCI_SUCCESS || stp_req->pio_len != 0)
1771			return status;
1772
1773		if ((stp_req->status & ATA_BUSY) == 0) {
1774			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1775			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1776			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1777		} else {
1778			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1779		}
1780		return status;
1781	}
1782
1783	case SCI_REQ_STP_SOFT_RESET_WAIT_D2H: {
1784		struct dev_to_host_fis *frame_header;
1785		u32 *frame_buffer;
1786
1787		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1788								       frame_index,
1789								       (void **)&frame_header);
1790		if (status != SCI_SUCCESS) {
1791			dev_err(&ihost->pdev->dev,
1792				"%s: SCIC IO Request 0x%p could not get frame "
1793				"header for frame index %d, status %x\n",
1794				__func__,
1795				stp_req,
1796				frame_index,
1797				status);
1798			return status;
1799		}
1800
1801		switch (frame_header->fis_type) {
1802		case FIS_REGD2H:
1803			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1804								      frame_index,
1805								      (void **)&frame_buffer);
1806
1807			sci_controller_copy_sata_response(&ireq->stp.rsp,
1808							       frame_header,
1809							       frame_buffer);
1810
1811			/* The command has completed with error */
1812			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1813			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1814			break;
1815
1816		default:
1817			dev_warn(&ihost->pdev->dev,
1818				 "%s: IO Request:0x%p Frame Id:%d protocol "
1819				 "violation occurred\n",
1820				 __func__,
1821				 stp_req,
1822				 frame_index);
1823
1824			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1825			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1826			break;
1827		}
1828
1829		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1830
1831		/* Frame has been decoded return it to the controller */
1832		sci_controller_release_frame(ihost, frame_index);
 
 
 
 
 
 
 
 
1833
1834		return status;
 
1835	}
 
 
1836	case SCI_REQ_ABORTING:
1837		/*
1838		 * TODO: Is it even possible to get an unsolicited frame in the
1839		 * aborting state?
1840		 */
1841		sci_controller_release_frame(ihost, frame_index);
1842		return SCI_SUCCESS;
1843
1844	default:
1845		dev_warn(&ihost->pdev->dev,
1846			 "%s: SCIC IO Request given unexpected frame %x while "
1847			 "in state %d\n",
1848			 __func__,
1849			 frame_index,
1850			 state);
1851
1852		sci_controller_release_frame(ihost, frame_index);
1853		return SCI_FAILURE_INVALID_STATE;
1854	}
1855}
1856
1857static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
1858						       u32 completion_code)
1859{
1860	enum sci_status status = SCI_SUCCESS;
1861
1862	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1863	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1864		ireq->scu_status = SCU_TASK_DONE_GOOD;
1865		ireq->sci_status = SCI_SUCCESS;
1866		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1867		break;
1868	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
1869	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1870		/* We must check ther response buffer to see if the D2H
1871		 * Register FIS was received before we got the TC
1872		 * completion.
1873		 */
1874		if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
1875			sci_remote_device_suspend(ireq->target_device,
1876				SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
1877
1878			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1879			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1880			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1881		} else {
1882			/* If we have an error completion status for the
1883			 * TC then we can expect a D2H register FIS from
1884			 * the device so we must change state to wait
1885			 * for it
1886			 */
1887			sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
1888		}
1889		break;
1890
1891	/* TODO Check to see if any of these completion status need to
1892	 * wait for the device to host register fis.
1893	 */
1894	/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
1895	 * - this comes only for B0
1896	 */
1897	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN):
1898	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1899	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR):
1900	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR):
1901	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CRC_ERR):
1902		sci_remote_device_suspend(ireq->target_device,
1903			SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
1904	/* Fall through to the default case */
1905	default:
1906		/* All other completion status cause the IO to be complete. */
1907		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1908		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1909		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1910		break;
1911	}
1912
1913	return status;
1914}
1915
1916static enum sci_status
1917stp_request_soft_reset_await_h2d_asserted_tc_event(struct isci_request *ireq,
1918						   u32 completion_code)
1919{
1920	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1921	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1922		ireq->scu_status = SCU_TASK_DONE_GOOD;
1923		ireq->sci_status = SCI_SUCCESS;
1924		sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG);
1925		break;
1926
1927	default:
1928		/*
1929		 * All other completion status cause the IO to be complete.
1930		 * If a NAK was received, then it is up to the user to retry
1931		 * the request.
1932		 */
1933		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1934		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
 
1935		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1936		break;
1937	}
1938
1939	return SCI_SUCCESS;
1940}
1941
1942static enum sci_status
1943stp_request_soft_reset_await_h2d_diagnostic_tc_event(struct isci_request *ireq,
1944						     u32 completion_code)
1945{
 
 
 
 
1946	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1947	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1948		ireq->scu_status = SCU_TASK_DONE_GOOD;
1949		ireq->sci_status = SCI_SUCCESS;
1950		sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_D2H);
1951		break;
1952
1953	default:
1954		/* All other completion status cause the IO to be complete.  If
1955		 * a NAK was received, then it is up to the user to retry the
1956		 * request.
1957		 */
1958		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1959		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1960		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
 
 
 
 
 
 
 
 
 
1961		break;
1962	}
1963
1964	return SCI_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1965}
1966
1967enum sci_status
1968sci_io_request_tc_completion(struct isci_request *ireq,
1969				  u32 completion_code)
1970{
1971	enum sci_base_request_states state;
1972	struct isci_host *ihost = ireq->owning_controller;
1973
1974	state = ireq->sm.current_state_id;
1975
 
 
 
 
1976	switch (state) {
1977	case SCI_REQ_STARTED:
1978		return request_started_state_tc_event(ireq, completion_code);
1979
1980	case SCI_REQ_TASK_WAIT_TC_COMP:
1981		return ssp_task_request_await_tc_event(ireq,
1982						       completion_code);
1983
1984	case SCI_REQ_SMP_WAIT_RESP:
1985		return smp_request_await_response_tc_event(ireq,
1986							   completion_code);
1987
1988	case SCI_REQ_SMP_WAIT_TC_COMP:
1989		return smp_request_await_tc_event(ireq, completion_code);
1990
1991	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1992		return stp_request_udma_await_tc_event(ireq,
1993						       completion_code);
1994
1995	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
1996		return stp_request_non_data_await_h2d_tc_event(ireq,
1997							       completion_code);
1998
1999	case SCI_REQ_STP_PIO_WAIT_H2D:
2000		return stp_request_pio_await_h2d_completion_tc_event(ireq,
2001								     completion_code);
2002
2003	case SCI_REQ_STP_PIO_DATA_OUT:
2004		return pio_data_out_tx_done_tc_event(ireq, completion_code);
2005
2006	case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
2007		return stp_request_soft_reset_await_h2d_asserted_tc_event(ireq,
2008									  completion_code);
2009
2010	case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
2011		return stp_request_soft_reset_await_h2d_diagnostic_tc_event(ireq,
2012									    completion_code);
2013
2014	case SCI_REQ_ABORTING:
2015		return request_aborting_state_tc_event(ireq,
2016						       completion_code);
2017
 
 
 
 
 
 
 
 
 
 
 
2018	default:
2019		dev_warn(&ihost->pdev->dev,
2020			 "%s: SCIC IO Request given task completion "
2021			 "notification %x while in wrong state %d\n",
2022			 __func__,
2023			 completion_code,
2024			 state);
2025		return SCI_FAILURE_INVALID_STATE;
2026	}
2027}
2028
2029/**
2030 * isci_request_process_response_iu() - This function sets the status and
2031 *    response iu, in the task struct, from the request object for the upper
2032 *    layer driver.
2033 * @sas_task: This parameter is the task struct from the upper layer driver.
2034 * @resp_iu: This parameter points to the response iu of the completed request.
2035 * @dev: This parameter specifies the linux device struct.
2036 *
2037 * none.
2038 */
2039static void isci_request_process_response_iu(
2040	struct sas_task *task,
2041	struct ssp_response_iu *resp_iu,
2042	struct device *dev)
2043{
2044	dev_dbg(dev,
2045		"%s: resp_iu = %p "
2046		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2047		"resp_iu->response_data_len = %x, "
2048		"resp_iu->sense_data_len = %x\nrepsonse data: ",
2049		__func__,
2050		resp_iu,
2051		resp_iu->status,
2052		resp_iu->datapres,
2053		resp_iu->response_data_len,
2054		resp_iu->sense_data_len);
2055
2056	task->task_status.stat = resp_iu->status;
2057
2058	/* libsas updates the task status fields based on the response iu. */
2059	sas_ssp_task_response(dev, task, resp_iu);
2060}
2061
2062/**
2063 * isci_request_set_open_reject_status() - This function prepares the I/O
2064 *    completion for OPEN_REJECT conditions.
2065 * @request: This parameter is the completed isci_request object.
 
2066 * @response_ptr: This parameter specifies the service response for the I/O.
2067 * @status_ptr: This parameter specifies the exec status for the I/O.
2068 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2069 *    the LLDD with respect to completing this request or forcing an abort
2070 *    condition on the I/O.
2071 * @open_rej_reason: This parameter specifies the encoded reason for the
2072 *    abandon-class reject.
2073 *
2074 * none.
2075 */
2076static void isci_request_set_open_reject_status(
2077	struct isci_request *request,
2078	struct sas_task *task,
2079	enum service_response *response_ptr,
2080	enum exec_status *status_ptr,
2081	enum isci_completion_selection *complete_to_host_ptr,
2082	enum sas_open_rej_reason open_rej_reason)
2083{
2084	/* Task in the target is done. */
2085	set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2086	*response_ptr                     = SAS_TASK_UNDELIVERED;
2087	*status_ptr                       = SAS_OPEN_REJECT;
2088	*complete_to_host_ptr             = isci_perform_normal_io_completion;
2089	task->task_status.open_rej_reason = open_rej_reason;
2090}
2091
2092/**
2093 * isci_request_handle_controller_specific_errors() - This function decodes
2094 *    controller-specific I/O completion error conditions.
 
2095 * @request: This parameter is the completed isci_request object.
 
2096 * @response_ptr: This parameter specifies the service response for the I/O.
2097 * @status_ptr: This parameter specifies the exec status for the I/O.
2098 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2099 *    the LLDD with respect to completing this request or forcing an abort
2100 *    condition on the I/O.
2101 *
2102 * none.
2103 */
2104static void isci_request_handle_controller_specific_errors(
2105	struct isci_remote_device *idev,
2106	struct isci_request *request,
2107	struct sas_task *task,
2108	enum service_response *response_ptr,
2109	enum exec_status *status_ptr,
2110	enum isci_completion_selection *complete_to_host_ptr)
2111{
2112	unsigned int cstatus;
2113
2114	cstatus = request->scu_status;
2115
2116	dev_dbg(&request->isci_host->pdev->dev,
2117		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2118		"- controller status = 0x%x\n",
2119		__func__, request, cstatus);
2120
2121	/* Decode the controller-specific errors; most
2122	 * important is to recognize those conditions in which
2123	 * the target may still have a task outstanding that
2124	 * must be aborted.
2125	 *
2126	 * Note that there are SCU completion codes being
2127	 * named in the decode below for which SCIC has already
2128	 * done work to handle them in a way other than as
2129	 * a controller-specific completion code; these are left
2130	 * in the decode below for completeness sake.
2131	 */
2132	switch (cstatus) {
2133	case SCU_TASK_DONE_DMASETUP_DIRERR:
2134	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2135	case SCU_TASK_DONE_XFERCNT_ERR:
2136		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2137		if (task->task_proto == SAS_PROTOCOL_SMP) {
2138			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2139			*response_ptr = SAS_TASK_COMPLETE;
2140
2141			/* See if the device has been/is being stopped. Note
2142			 * that we ignore the quiesce state, since we are
2143			 * concerned about the actual device state.
2144			 */
2145			if (!idev)
2146				*status_ptr = SAS_DEVICE_UNKNOWN;
2147			else
2148				*status_ptr = SAS_ABORTED_TASK;
2149
2150			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2151
2152			*complete_to_host_ptr =
2153				isci_perform_normal_io_completion;
2154		} else {
2155			/* Task in the target is not done. */
2156			*response_ptr = SAS_TASK_UNDELIVERED;
2157
2158			if (!idev)
2159				*status_ptr = SAS_DEVICE_UNKNOWN;
2160			else
2161				*status_ptr = SAM_STAT_TASK_ABORTED;
2162
2163			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2164
2165			*complete_to_host_ptr =
2166				isci_perform_error_io_completion;
2167		}
2168
2169		break;
2170
2171	case SCU_TASK_DONE_CRC_ERR:
2172	case SCU_TASK_DONE_NAK_CMD_ERR:
2173	case SCU_TASK_DONE_EXCESS_DATA:
2174	case SCU_TASK_DONE_UNEXP_FIS:
2175	/* Also SCU_TASK_DONE_UNEXP_RESP: */
2176	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
2177	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
2178	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
2179		/* These are conditions in which the target
2180		 * has completed the task, so that no cleanup
2181		 * is necessary.
2182		 */
2183		*response_ptr = SAS_TASK_COMPLETE;
2184
2185		/* See if the device has been/is being stopped. Note
2186		 * that we ignore the quiesce state, since we are
2187		 * concerned about the actual device state.
2188		 */
2189		if (!idev)
2190			*status_ptr = SAS_DEVICE_UNKNOWN;
2191		else
2192			*status_ptr = SAS_ABORTED_TASK;
2193
2194		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2195
2196		*complete_to_host_ptr = isci_perform_normal_io_completion;
2197		break;
2198
2199
2200	/* Note that the only open reject completion codes seen here will be
2201	 * abandon-class codes; all others are automatically retried in the SCU.
2202	 */
2203	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2204
2205		isci_request_set_open_reject_status(
2206			request, task, response_ptr, status_ptr,
2207			complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
2208		break;
2209
2210	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2211
2212		/* Note - the return of AB0 will change when
2213		 * libsas implements detection of zone violations.
2214		 */
2215		isci_request_set_open_reject_status(
2216			request, task, response_ptr, status_ptr,
2217			complete_to_host_ptr, SAS_OREJ_RESV_AB0);
2218		break;
2219
2220	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2221
2222		isci_request_set_open_reject_status(
2223			request, task, response_ptr, status_ptr,
2224			complete_to_host_ptr, SAS_OREJ_RESV_AB1);
2225		break;
2226
2227	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2228
2229		isci_request_set_open_reject_status(
2230			request, task, response_ptr, status_ptr,
2231			complete_to_host_ptr, SAS_OREJ_RESV_AB2);
2232		break;
2233
2234	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2235
2236		isci_request_set_open_reject_status(
2237			request, task, response_ptr, status_ptr,
2238			complete_to_host_ptr, SAS_OREJ_RESV_AB3);
2239		break;
2240
2241	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2242
2243		isci_request_set_open_reject_status(
2244			request, task, response_ptr, status_ptr,
2245			complete_to_host_ptr, SAS_OREJ_BAD_DEST);
2246		break;
2247
2248	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2249
2250		isci_request_set_open_reject_status(
2251			request, task, response_ptr, status_ptr,
2252			complete_to_host_ptr, SAS_OREJ_STP_NORES);
2253		break;
2254
2255	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2256
2257		isci_request_set_open_reject_status(
2258			request, task, response_ptr, status_ptr,
2259			complete_to_host_ptr, SAS_OREJ_EPROTO);
2260		break;
2261
2262	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2263
2264		isci_request_set_open_reject_status(
2265			request, task, response_ptr, status_ptr,
2266			complete_to_host_ptr, SAS_OREJ_CONN_RATE);
2267		break;
2268
2269	case SCU_TASK_DONE_LL_R_ERR:
2270	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
2271	case SCU_TASK_DONE_LL_PERR:
2272	case SCU_TASK_DONE_LL_SY_TERM:
2273	/* Also SCU_TASK_DONE_NAK_ERR:*/
2274	case SCU_TASK_DONE_LL_LF_TERM:
2275	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2276	case SCU_TASK_DONE_LL_ABORT_ERR:
2277	case SCU_TASK_DONE_SEQ_INV_TYPE:
2278	/* Also SCU_TASK_DONE_UNEXP_XR: */
2279	case SCU_TASK_DONE_XR_IU_LEN_ERR:
2280	case SCU_TASK_DONE_INV_FIS_LEN:
2281	/* Also SCU_TASK_DONE_XR_WD_LEN: */
2282	case SCU_TASK_DONE_SDMA_ERR:
2283	case SCU_TASK_DONE_OFFSET_ERR:
2284	case SCU_TASK_DONE_MAX_PLD_ERR:
2285	case SCU_TASK_DONE_LF_ERR:
2286	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
2287	case SCU_TASK_DONE_SMP_LL_RX_ERR:
2288	case SCU_TASK_DONE_UNEXP_DATA:
2289	case SCU_TASK_DONE_UNEXP_SDBFIS:
2290	case SCU_TASK_DONE_REG_ERR:
2291	case SCU_TASK_DONE_SDB_ERR:
2292	case SCU_TASK_DONE_TASK_ABORT:
2293	default:
2294		/* Task in the target is not done. */
2295		*response_ptr = SAS_TASK_UNDELIVERED;
2296		*status_ptr = SAM_STAT_TASK_ABORTED;
2297
2298		if (task->task_proto == SAS_PROTOCOL_SMP) {
2299			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2300
2301			*complete_to_host_ptr = isci_perform_normal_io_completion;
2302		} else {
2303			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2304
2305			*complete_to_host_ptr = isci_perform_error_io_completion;
2306		}
2307		break;
2308	}
2309}
2310
2311/**
2312 * isci_task_save_for_upper_layer_completion() - This function saves the
2313 *    request for later completion to the upper layer driver.
2314 * @host: This parameter is a pointer to the host on which the the request
2315 *    should be queued (either as an error or success).
2316 * @request: This parameter is the completed request.
2317 * @response: This parameter is the response code for the completed task.
2318 * @status: This parameter is the status code for the completed task.
2319 *
2320 * none.
2321 */
2322static void isci_task_save_for_upper_layer_completion(
2323	struct isci_host *host,
2324	struct isci_request *request,
2325	enum service_response response,
2326	enum exec_status status,
2327	enum isci_completion_selection task_notification_selection)
2328{
2329	struct sas_task *task = isci_request_access_task(request);
2330
2331	task_notification_selection
2332		= isci_task_set_completion_status(task, response, status,
2333						  task_notification_selection);
2334
2335	/* Tasks aborted specifically by a call to the lldd_abort_task
2336	 * function should not be completed to the host in the regular path.
2337	 */
2338	switch (task_notification_selection) {
2339
2340	case isci_perform_normal_io_completion:
2341
2342		/* Normal notification (task_done) */
2343		dev_dbg(&host->pdev->dev,
2344			"%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
2345			__func__,
2346			task,
2347			task->task_status.resp, response,
2348			task->task_status.stat, status);
2349		/* Add to the completed list. */
2350		list_add(&request->completed_node,
2351			 &host->requests_to_complete);
2352
2353		/* Take the request off the device's pending request list. */
2354		list_del_init(&request->dev_node);
2355		break;
2356
2357	case isci_perform_aborted_io_completion:
2358		/* No notification to libsas because this request is
2359		 * already in the abort path.
2360		 */
2361		dev_dbg(&host->pdev->dev,
2362			 "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
2363			 __func__,
2364			 task,
2365			 task->task_status.resp, response,
2366			 task->task_status.stat, status);
2367
2368		/* Wake up whatever process was waiting for this
2369		 * request to complete.
2370		 */
2371		WARN_ON(request->io_request_completion == NULL);
2372
2373		if (request->io_request_completion != NULL) {
2374
2375			/* Signal whoever is waiting that this
2376			* request is complete.
2377			*/
2378			complete(request->io_request_completion);
2379		}
2380		break;
2381
2382	case isci_perform_error_io_completion:
2383		/* Use sas_task_abort */
2384		dev_dbg(&host->pdev->dev,
2385			 "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
2386			 __func__,
2387			 task,
2388			 task->task_status.resp, response,
2389			 task->task_status.stat, status);
2390		/* Add to the aborted list. */
2391		list_add(&request->completed_node,
2392			 &host->requests_to_errorback);
2393		break;
2394
2395	default:
2396		dev_dbg(&host->pdev->dev,
2397			 "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
2398			 __func__,
2399			 task,
2400			 task->task_status.resp, response,
2401			 task->task_status.stat, status);
2402
2403		/* Add to the error to libsas list. */
2404		list_add(&request->completed_node,
2405			 &host->requests_to_errorback);
2406		break;
2407	}
2408}
2409
2410static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2411{
2412	struct task_status_struct *ts = &task->task_status;
2413	struct ata_task_resp *resp = (void *)&ts->buf[0];
2414
2415	resp->frame_len = sizeof(*fis);
2416	memcpy(resp->ending_fis, fis, sizeof(*fis));
2417	ts->buf_valid_size = sizeof(*resp);
2418
2419	/* If the device fault bit is set in the status register, then
2420	 * set the sense data and return.
2421	 */
2422	if (fis->status & ATA_DF)
2423		ts->stat = SAS_PROTO_RESPONSE;
2424	else
2425		ts->stat = SAM_STAT_GOOD;
2426
2427	ts->resp = SAS_TASK_COMPLETE;
2428}
2429
2430static void isci_request_io_request_complete(struct isci_host *ihost,
2431					     struct isci_request *request,
2432					     enum sci_io_status completion_status)
2433{
2434	struct sas_task *task = isci_request_access_task(request);
2435	struct ssp_response_iu *resp_iu;
2436	unsigned long task_flags;
2437	struct isci_remote_device *idev = isci_lookup_device(task->dev);
2438	enum service_response response       = SAS_TASK_UNDELIVERED;
2439	enum exec_status status         = SAS_ABORTED_TASK;
2440	enum isci_request_status request_status;
2441	enum isci_completion_selection complete_to_host
2442		= isci_perform_normal_io_completion;
2443
2444	dev_dbg(&ihost->pdev->dev,
2445		"%s: request = %p, task = %p,\n"
2446		"task->data_dir = %d completion_status = 0x%x\n",
2447		__func__,
2448		request,
2449		task,
2450		task->data_dir,
2451		completion_status);
2452
2453	spin_lock(&request->state_lock);
2454	request_status = request->status;
2455
2456	/* Decode the request status.  Note that if the request has been
2457	 * aborted by a task management function, we don't care
2458	 * what the status is.
2459	 */
2460	switch (request_status) {
2461
2462	case aborted:
2463		/* "aborted" indicates that the request was aborted by a task
2464		 * management function, since once a task management request is
2465		 * perfomed by the device, the request only completes because
2466		 * of the subsequent driver terminate.
2467		 *
2468		 * Aborted also means an external thread is explicitly managing
2469		 * this request, so that we do not complete it up the stack.
2470		 *
2471		 * The target is still there (since the TMF was successful).
2472		 */
2473		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2474		response = SAS_TASK_COMPLETE;
2475
2476		/* See if the device has been/is being stopped. Note
2477		 * that we ignore the quiesce state, since we are
2478		 * concerned about the actual device state.
2479		 */
2480		if (!idev)
2481			status = SAS_DEVICE_UNKNOWN;
2482		else
2483			status = SAS_ABORTED_TASK;
2484
2485		complete_to_host = isci_perform_aborted_io_completion;
2486		/* This was an aborted request. */
2487
2488		spin_unlock(&request->state_lock);
2489		break;
 
 
2490
2491	case aborting:
2492		/* aborting means that the task management function tried and
2493		 * failed to abort the request. We need to note the request
2494		 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
2495		 * target as down.
2496		 *
2497		 * Aborting also means an external thread is explicitly managing
2498		 * this request, so that we do not complete it up the stack.
2499		 */
2500		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2501		response = SAS_TASK_UNDELIVERED;
2502
2503		if (!idev)
2504			/* The device has been /is being stopped. Note that
2505			 * we ignore the quiesce state, since we are
2506			 * concerned about the actual device state.
2507			 */
2508			status = SAS_DEVICE_UNKNOWN;
2509		else
2510			status = SAS_PHY_DOWN;
2511
2512		complete_to_host = isci_perform_aborted_io_completion;
 
 
 
2513
2514		/* This was an aborted request. */
 
 
2515
2516		spin_unlock(&request->state_lock);
 
 
 
 
 
2517		break;
2518
2519	case terminating:
 
2520
2521		/* This was an terminated request.  This happens when
2522		 * the I/O is being terminated because of an action on
2523		 * the device (reset, tear down, etc.), and the I/O needs
2524		 * to be completed up the stack.
2525		 */
2526		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2527		response = SAS_TASK_UNDELIVERED;
2528
2529		/* See if the device has been/is being stopped. Note
2530		 * that we ignore the quiesce state, since we are
2531		 * concerned about the actual device state.
2532		 */
2533		if (!idev)
2534			status = SAS_DEVICE_UNKNOWN;
2535		else
2536			status = SAS_ABORTED_TASK;
2537
2538		complete_to_host = isci_perform_aborted_io_completion;
2539
2540		/* This was a terminated request. */
2541
2542		spin_unlock(&request->state_lock);
2543		break;
2544
2545	case dead:
2546		/* This was a terminated request that timed-out during the
2547		 * termination process.  There is no task to complete to
2548		 * libsas.
2549		 */
2550		complete_to_host = isci_perform_normal_io_completion;
2551		spin_unlock(&request->state_lock);
2552		break;
2553
2554	default:
2555
2556		/* The request is done from an SCU HW perspective. */
2557		request->status = completed;
 
 
 
2558
2559		spin_unlock(&request->state_lock);
 
2560
2561		/* This is an active request being completed from the core. */
2562		switch (completion_status) {
 
 
 
2563
2564		case SCI_IO_FAILURE_RESPONSE_VALID:
2565			dev_dbg(&ihost->pdev->dev,
2566				"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2567				__func__,
2568				request,
2569				task);
2570
2571			if (sas_protocol_ata(task->task_proto)) {
2572				isci_process_stp_response(task, &request->stp.rsp);
2573			} else if (SAS_PROTOCOL_SSP == task->task_proto) {
2574
2575				/* crack the iu response buffer. */
2576				resp_iu = &request->ssp.rsp;
2577				isci_request_process_response_iu(task, resp_iu,
2578								 &ihost->pdev->dev);
2579
2580			} else if (SAS_PROTOCOL_SMP == task->task_proto) {
2581
2582				dev_err(&ihost->pdev->dev,
2583					"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2584					"SAS_PROTOCOL_SMP protocol\n",
2585					__func__);
2586
2587			} else
2588				dev_err(&ihost->pdev->dev,
2589					"%s: unknown protocol\n", __func__);
2590
2591			/* use the task status set in the task struct by the
2592			 * isci_request_process_response_iu call.
2593			 */
2594			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2595			response = task->task_status.resp;
2596			status = task->task_status.stat;
2597			break;
 
 
2598
2599		case SCI_IO_SUCCESS:
2600		case SCI_IO_SUCCESS_IO_DONE_EARLY:
2601
2602			response = SAS_TASK_COMPLETE;
2603			status   = SAM_STAT_GOOD;
2604			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
2605
2606			if (task->task_proto == SAS_PROTOCOL_SMP) {
2607				void *rsp = &request->smp.rsp;
 
2608
2609				dev_dbg(&ihost->pdev->dev,
2610					"%s: SMP protocol completion\n",
2611					__func__);
2612
2613				sg_copy_from_buffer(
2614					&task->smp_task.smp_resp, 1,
2615					rsp, sizeof(struct smp_resp));
2616			} else if (completion_status
2617				   == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2618
2619				/* This was an SSP / STP / SATA transfer.
2620				 * There is a possibility that less data than
2621				 * the maximum was transferred.
2622				 */
2623				u32 transferred_length = sci_req_tx_bytes(request);
2624
2625				task->task_status.residual
2626					= task->total_xfer_len - transferred_length;
 
 
 
 
2627
2628				/* If there were residual bytes, call this an
2629				 * underrun.
2630				 */
2631				if (task->task_status.residual != 0)
2632					status = SAS_DATA_UNDERRUN;
2633
2634				dev_dbg(&ihost->pdev->dev,
2635					"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2636					__func__,
2637					status);
2638
2639			} else
2640				dev_dbg(&ihost->pdev->dev,
2641					"%s: SCI_IO_SUCCESS\n",
2642					__func__);
 
 
2643
2644			break;
2645
2646		case SCI_IO_FAILURE_TERMINATED:
2647			dev_dbg(&ihost->pdev->dev,
2648				"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2649				__func__,
2650				request,
2651				task);
 
 
2652
2653			/* The request was terminated explicitly.  No handling
2654			 * is needed in the SCSI error handler path.
2655			 */
2656			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2657			response = SAS_TASK_UNDELIVERED;
2658
2659			/* See if the device has been/is being stopped. Note
2660			 * that we ignore the quiesce state, since we are
2661			 * concerned about the actual device state.
2662			 */
2663			if (!idev)
2664				status = SAS_DEVICE_UNKNOWN;
2665			else
2666				status = SAS_ABORTED_TASK;
2667
2668			complete_to_host = isci_perform_normal_io_completion;
2669			break;
2670
2671		case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2672
2673			isci_request_handle_controller_specific_errors(
2674				idev, request, task, &response, &status,
2675				&complete_to_host);
2676
2677			break;
2678
2679		case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2680			/* This is a special case, in that the I/O completion
2681			 * is telling us that the device needs a reset.
2682			 * In order for the device reset condition to be
2683			 * noticed, the I/O has to be handled in the error
2684			 * handler.  Set the reset flag and cause the
2685			 * SCSI error thread to be scheduled.
2686			 */
2687			spin_lock_irqsave(&task->task_state_lock, task_flags);
2688			task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2689			spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2690
2691			/* Fail the I/O. */
2692			response = SAS_TASK_UNDELIVERED;
2693			status = SAM_STAT_TASK_ABORTED;
2694
2695			complete_to_host = isci_perform_error_io_completion;
2696			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2697			break;
2698
2699		case SCI_FAILURE_RETRY_REQUIRED:
2700
2701			/* Fail the I/O so it can be retried. */
2702			response = SAS_TASK_UNDELIVERED;
2703			if (!idev)
2704				status = SAS_DEVICE_UNKNOWN;
2705			else
2706				status = SAS_ABORTED_TASK;
2707
2708			complete_to_host = isci_perform_normal_io_completion;
2709			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2710			break;
2711
2712
2713		default:
2714			/* Catch any otherwise unhandled error codes here. */
2715			dev_dbg(&ihost->pdev->dev,
2716				 "%s: invalid completion code: 0x%x - "
2717				 "isci_request = %p\n",
2718				 __func__, completion_status, request);
2719
2720			response = SAS_TASK_UNDELIVERED;
2721
2722			/* See if the device has been/is being stopped. Note
2723			 * that we ignore the quiesce state, since we are
2724			 * concerned about the actual device state.
2725			 */
2726			if (!idev)
2727				status = SAS_DEVICE_UNKNOWN;
2728			else
2729				status = SAS_ABORTED_TASK;
2730
2731			if (SAS_PROTOCOL_SMP == task->task_proto) {
2732				set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2733				complete_to_host = isci_perform_normal_io_completion;
2734			} else {
2735				clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2736				complete_to_host = isci_perform_error_io_completion;
2737			}
2738			break;
2739		}
2740		break;
2741	}
2742
2743	switch (task->task_proto) {
2744	case SAS_PROTOCOL_SSP:
2745		if (task->data_dir == DMA_NONE)
2746			break;
2747		if (task->num_scatter == 0)
2748			/* 0 indicates a single dma address */
2749			dma_unmap_single(&ihost->pdev->dev,
2750					 request->zero_scatter_daddr,
2751					 task->total_xfer_len, task->data_dir);
2752		else  /* unmap the sgl dma addresses */
2753			dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2754				     request->num_sg_entries, task->data_dir);
2755		break;
2756	case SAS_PROTOCOL_SMP: {
2757		struct scatterlist *sg = &task->smp_task.smp_req;
2758		struct smp_req *smp_req;
2759		void *kaddr;
2760
2761		dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2762
2763		/* need to swab it back in case the command buffer is re-used */
2764		kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
2765		smp_req = kaddr + sg->offset;
2766		sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2767		kunmap_atomic(kaddr, KM_IRQ0);
2768		break;
2769	}
2770	default:
2771		break;
2772	}
2773
2774	/* Put the completed request on the correct list */
2775	isci_task_save_for_upper_layer_completion(ihost, request, response,
2776						  status, complete_to_host
2777						  );
 
 
 
 
 
 
 
2778
2779	/* complete the io request to the core. */
2780	sci_controller_complete_io(ihost, request->target_device, request);
2781	isci_put_device(idev);
2782
2783	/* set terminated handle so it cannot be completed or
2784	 * terminated again, and to cause any calls into abort
2785	 * task to recognize the already completed case.
2786	 */
2787	set_bit(IREQ_TERMINATED, &request->flags);
 
 
2788}
2789
2790static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2791{
2792	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2793	struct domain_device *dev = ireq->target_device->domain_dev;
 
2794	struct sas_task *task;
2795
2796	/* XXX as hch said always creating an internal sas_task for tmf
2797	 * requests would simplify the driver
2798	 */
2799	task = ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL;
2800
2801	/* all unaccelerated request types (non ssp or ncq) handled with
2802	 * substates
2803	 */
2804	if (!task && dev->dev_type == SAS_END_DEV) {
2805		sci_change_state(sm, SCI_REQ_TASK_WAIT_TC_COMP);
2806	} else if (!task &&
2807		   (isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_high ||
2808		    isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_low)) {
2809		sci_change_state(sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED);
2810	} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2811		sci_change_state(sm, SCI_REQ_SMP_WAIT_RESP);
2812	} else if (task && sas_protocol_ata(task->task_proto) &&
2813		   !task->ata_task.use_ncq) {
2814		u32 state;
2815
2816		if (task->data_dir == DMA_NONE)
 
2817			state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2818		else if (task->ata_task.dma_xfer)
2819			state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2820		else /* PIO */
2821			state = SCI_REQ_STP_PIO_WAIT_H2D;
2822
2823		sci_change_state(sm, state);
 
 
2824	}
 
2825}
2826
2827static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2828{
2829	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2830	struct isci_host *ihost = ireq->owning_controller;
2831
2832	/* Tell the SCI_USER that the IO request is complete */
2833	if (!test_bit(IREQ_TMF, &ireq->flags))
2834		isci_request_io_request_complete(ihost, ireq,
2835						 ireq->sci_status);
2836	else
2837		isci_task_request_complete(ihost, ireq, ireq->sci_status);
2838}
2839
2840static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
2841{
2842	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2843
2844	/* Setting the abort bit in the Task Context is required by the silicon. */
2845	ireq->tc->abort = 1;
2846}
2847
2848static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
2849{
2850	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2851
2852	ireq->target_device->working_request = ireq;
2853}
2854
2855static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
2856{
2857	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2858
2859	ireq->target_device->working_request = ireq;
2860}
2861
2862static void sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter(struct sci_base_state_machine *sm)
2863{
2864	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2865
2866	ireq->target_device->working_request = ireq;
2867}
2868
2869static void sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter(struct sci_base_state_machine *sm)
2870{
2871	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2872	struct scu_task_context *tc = ireq->tc;
2873	struct host_to_dev_fis *h2d_fis;
2874	enum sci_status status;
2875
2876	/* Clear the SRST bit */
2877	h2d_fis = &ireq->stp.cmd;
2878	h2d_fis->control = 0;
2879
2880	/* Clear the TC control bit */
2881	tc->control_frame = 0;
2882
2883	status = sci_controller_continue_io(ireq);
2884	WARN_ONCE(status != SCI_SUCCESS, "isci: continue io failure\n");
2885}
2886
2887static const struct sci_base_state sci_request_state_table[] = {
2888	[SCI_REQ_INIT] = { },
2889	[SCI_REQ_CONSTRUCTED] = { },
2890	[SCI_REQ_STARTED] = {
2891		.enter_state = sci_request_started_state_enter,
2892	},
2893	[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
2894		.enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
2895	},
2896	[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
2897	[SCI_REQ_STP_PIO_WAIT_H2D] = {
2898		.enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
2899	},
2900	[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
2901	[SCI_REQ_STP_PIO_DATA_IN] = { },
2902	[SCI_REQ_STP_PIO_DATA_OUT] = { },
2903	[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
2904	[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
2905	[SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED] = {
2906		.enter_state = sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter,
2907	},
2908	[SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG] = {
2909		.enter_state = sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter,
2910	},
2911	[SCI_REQ_STP_SOFT_RESET_WAIT_D2H] = { },
2912	[SCI_REQ_TASK_WAIT_TC_COMP] = { },
2913	[SCI_REQ_TASK_WAIT_TC_RESP] = { },
2914	[SCI_REQ_SMP_WAIT_RESP] = { },
2915	[SCI_REQ_SMP_WAIT_TC_COMP] = { },
 
 
 
 
2916	[SCI_REQ_COMPLETED] = {
2917		.enter_state = sci_request_completed_state_enter,
2918	},
2919	[SCI_REQ_ABORTING] = {
2920		.enter_state = sci_request_aborting_state_enter,
2921	},
2922	[SCI_REQ_FINAL] = { },
2923};
2924
2925static void
2926sci_general_request_construct(struct isci_host *ihost,
2927				   struct isci_remote_device *idev,
2928				   struct isci_request *ireq)
2929{
2930	sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
2931
2932	ireq->target_device = idev;
2933	ireq->protocol = SCIC_NO_PROTOCOL;
2934	ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
2935
2936	ireq->sci_status   = SCI_SUCCESS;
2937	ireq->scu_status   = 0;
2938	ireq->post_context = 0xFFFFFFFF;
2939}
2940
2941static enum sci_status
2942sci_io_request_construct(struct isci_host *ihost,
2943			  struct isci_remote_device *idev,
2944			  struct isci_request *ireq)
2945{
2946	struct domain_device *dev = idev->domain_dev;
2947	enum sci_status status = SCI_SUCCESS;
2948
2949	/* Build the common part of the request */
2950	sci_general_request_construct(ihost, idev, ireq);
2951
2952	if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
2953		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
2954
2955	if (dev->dev_type == SAS_END_DEV)
2956		/* pass */;
2957	else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
2958		memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
2959	else if (dev_is_expander(dev))
2960		/* pass */;
2961	else
2962		return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2963
2964	memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
2965
2966	return status;
2967}
2968
2969enum sci_status sci_task_request_construct(struct isci_host *ihost,
2970					    struct isci_remote_device *idev,
2971					    u16 io_tag, struct isci_request *ireq)
2972{
2973	struct domain_device *dev = idev->domain_dev;
2974	enum sci_status status = SCI_SUCCESS;
2975
2976	/* Build the common part of the request */
2977	sci_general_request_construct(ihost, idev, ireq);
2978
2979	if (dev->dev_type == SAS_END_DEV ||
2980	    dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
2981		set_bit(IREQ_TMF, &ireq->flags);
2982		memset(ireq->tc, 0, sizeof(struct scu_task_context));
 
 
 
 
 
 
2983	} else
2984		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2985
2986	return status;
2987}
2988
2989static enum sci_status isci_request_ssp_request_construct(
2990	struct isci_request *request)
2991{
2992	enum sci_status status;
2993
2994	dev_dbg(&request->isci_host->pdev->dev,
2995		"%s: request = %p\n",
2996		__func__,
2997		request);
2998	status = sci_io_request_construct_basic_ssp(request);
2999	return status;
3000}
3001
3002static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3003{
3004	struct sas_task *task = isci_request_access_task(ireq);
3005	struct host_to_dev_fis *fis = &ireq->stp.cmd;
3006	struct ata_queued_cmd *qc = task->uldd_task;
3007	enum sci_status status;
3008
3009	dev_dbg(&ireq->isci_host->pdev->dev,
3010		"%s: ireq = %p\n",
3011		__func__,
3012		ireq);
3013
3014	memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3015	if (!task->ata_task.device_control_reg_update)
3016		fis->flags |= 0x80;
3017	fis->flags &= 0xF0;
3018
3019	status = sci_io_request_construct_basic_sata(ireq);
3020
3021	if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3022		   qc->tf.command == ATA_CMD_FPDMA_READ)) {
 
 
 
3023		fis->sector_count = qc->tag << 3;
3024		ireq->tc->type.stp.ncq_tag = qc->tag;
3025	}
3026
3027	return status;
3028}
3029
3030static enum sci_status
3031sci_io_request_construct_smp(struct device *dev,
3032			      struct isci_request *ireq,
3033			      struct sas_task *task)
3034{
3035	struct scatterlist *sg = &task->smp_task.smp_req;
3036	struct isci_remote_device *idev;
3037	struct scu_task_context *task_context;
3038	struct isci_port *iport;
3039	struct smp_req *smp_req;
3040	void *kaddr;
3041	u8 req_len;
3042	u32 cmd;
3043
3044	kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
3045	smp_req = kaddr + sg->offset;
3046	/*
3047	 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3048	 * functions under SAS 2.0, a zero request length really indicates
3049	 * a non-zero default length.
3050	 */
3051	if (smp_req->req_len == 0) {
3052		switch (smp_req->func) {
3053		case SMP_DISCOVER:
3054		case SMP_REPORT_PHY_ERR_LOG:
3055		case SMP_REPORT_PHY_SATA:
3056		case SMP_REPORT_ROUTE_INFO:
3057			smp_req->req_len = 2;
3058			break;
3059		case SMP_CONF_ROUTE_INFO:
3060		case SMP_PHY_CONTROL:
3061		case SMP_PHY_TEST_FUNCTION:
3062			smp_req->req_len = 9;
3063			break;
3064			/* Default - zero is a valid default for 2.0. */
3065		}
3066	}
3067	req_len = smp_req->req_len;
3068	sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3069	cmd = *(u32 *) smp_req;
3070	kunmap_atomic(kaddr, KM_IRQ0);
3071
3072	if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3073		return SCI_FAILURE;
3074
3075	ireq->protocol = SCIC_SMP_PROTOCOL;
3076
3077	/* byte swap the smp request. */
3078
3079	task_context = ireq->tc;
3080
3081	idev = ireq->target_device;
3082	iport = idev->owning_port;
3083
3084	/*
3085	 * Fill in the TC with the its required data
3086	 * 00h
3087	 */
3088	task_context->priority = 0;
3089	task_context->initiator_request = 1;
3090	task_context->connection_rate = idev->connection_rate;
3091	task_context->protocol_engine_index = ISCI_PEG;
3092	task_context->logical_port_index = iport->physical_port_index;
3093	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3094	task_context->abort = 0;
3095	task_context->valid = SCU_TASK_CONTEXT_VALID;
3096	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3097
3098	/* 04h */
3099	task_context->remote_node_index = idev->rnc.remote_node_index;
3100	task_context->command_code = 0;
3101	task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3102
3103	/* 08h */
3104	task_context->link_layer_control = 0;
3105	task_context->do_not_dma_ssp_good_response = 1;
3106	task_context->strict_ordering = 0;
3107	task_context->control_frame = 1;
3108	task_context->timeout_enable = 0;
3109	task_context->block_guard_enable = 0;
3110
3111	/* 0ch */
3112	task_context->address_modifier = 0;
3113
3114	/* 10h */
3115	task_context->ssp_command_iu_length = req_len;
3116
3117	/* 14h */
3118	task_context->transfer_length_bytes = 0;
3119
3120	/*
3121	 * 18h ~ 30h, protocol specific
3122	 * since commandIU has been build by framework at this point, we just
3123	 * copy the frist DWord from command IU to this location. */
3124	memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3125
3126	/*
3127	 * 40h
3128	 * "For SMP you could program it to zero. We would prefer that way
3129	 * so that done code will be consistent." - Venki
3130	 */
3131	task_context->task_phase = 0;
3132
3133	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3134			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3135			       (iport->physical_port_index <<
3136				SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3137			      ISCI_TAG_TCI(ireq->io_tag));
3138	/*
3139	 * Copy the physical address for the command buffer to the SCU Task
3140	 * Context command buffer should not contain command header.
3141	 */
3142	task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3143	task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3144
3145	/* SMP response comes as UF, so no need to set response IU address. */
3146	task_context->response_iu_upper = 0;
3147	task_context->response_iu_lower = 0;
3148
3149	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3150
3151	return SCI_SUCCESS;
3152}
3153
3154/*
3155 * isci_smp_request_build() - This function builds the smp request.
3156 * @ireq: This parameter points to the isci_request allocated in the
3157 *    request construct function.
3158 *
3159 * SCI_SUCCESS on successfull completion, or specific failure code.
3160 */
3161static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3162{
3163	struct sas_task *task = isci_request_access_task(ireq);
3164	struct device *dev = &ireq->isci_host->pdev->dev;
3165	enum sci_status status = SCI_FAILURE;
3166
3167	status = sci_io_request_construct_smp(dev, ireq, task);
3168	if (status != SCI_SUCCESS)
3169		dev_dbg(&ireq->isci_host->pdev->dev,
3170			 "%s: failed with status = %d\n",
3171			 __func__,
3172			 status);
3173
3174	return status;
3175}
3176
3177/**
3178 * isci_io_request_build() - This function builds the io request object.
3179 * @ihost: This parameter specifies the ISCI host object
3180 * @request: This parameter points to the isci_request object allocated in the
3181 *    request construct function.
3182 * @sci_device: This parameter is the handle for the sci core's remote device
3183 *    object that is the destination for this request.
3184 *
3185 * SCI_SUCCESS on successfull completion, or specific failure code.
3186 */
3187static enum sci_status isci_io_request_build(struct isci_host *ihost,
3188					     struct isci_request *request,
3189					     struct isci_remote_device *idev)
3190{
3191	enum sci_status status = SCI_SUCCESS;
3192	struct sas_task *task = isci_request_access_task(request);
3193
3194	dev_dbg(&ihost->pdev->dev,
3195		"%s: idev = 0x%p; request = %p, "
3196		"num_scatter = %d\n",
3197		__func__,
3198		idev,
3199		request,
3200		task->num_scatter);
3201
3202	/* map the sgl addresses, if present.
3203	 * libata does the mapping for sata devices
3204	 * before we get the request.
3205	 */
3206	if (task->num_scatter &&
3207	    !sas_protocol_ata(task->task_proto) &&
3208	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
3209
3210		request->num_sg_entries = dma_map_sg(
3211			&ihost->pdev->dev,
3212			task->scatter,
3213			task->num_scatter,
3214			task->data_dir
3215			);
3216
3217		if (request->num_sg_entries == 0)
3218			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3219	}
3220
3221	status = sci_io_request_construct(ihost, idev, request);
3222
3223	if (status != SCI_SUCCESS) {
3224		dev_dbg(&ihost->pdev->dev,
3225			 "%s: failed request construct\n",
3226			 __func__);
3227		return SCI_FAILURE;
3228	}
3229
3230	switch (task->task_proto) {
3231	case SAS_PROTOCOL_SMP:
3232		status = isci_smp_request_build(request);
3233		break;
3234	case SAS_PROTOCOL_SSP:
3235		status = isci_request_ssp_request_construct(request);
3236		break;
3237	case SAS_PROTOCOL_SATA:
3238	case SAS_PROTOCOL_STP:
3239	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3240		status = isci_request_stp_request_construct(request);
3241		break;
3242	default:
3243		dev_dbg(&ihost->pdev->dev,
3244			 "%s: unknown protocol\n", __func__);
3245		return SCI_FAILURE;
3246	}
3247
3248	return SCI_SUCCESS;
3249}
3250
3251static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3252{
3253	struct isci_request *ireq;
3254
3255	ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3256	ireq->io_tag = tag;
3257	ireq->io_request_completion = NULL;
3258	ireq->flags = 0;
3259	ireq->num_sg_entries = 0;
3260	INIT_LIST_HEAD(&ireq->completed_node);
3261	INIT_LIST_HEAD(&ireq->dev_node);
3262	isci_request_change_state(ireq, allocated);
3263
3264	return ireq;
3265}
3266
3267static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3268						     struct sas_task *task,
3269						     u16 tag)
3270{
3271	struct isci_request *ireq;
3272
3273	ireq = isci_request_from_tag(ihost, tag);
3274	ireq->ttype_ptr.io_task_ptr = task;
3275	ireq->ttype = io_task;
3276	task->lldd_task = ireq;
3277
3278	return ireq;
3279}
3280
3281struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3282					       struct isci_tmf *isci_tmf,
3283					       u16 tag)
3284{
3285	struct isci_request *ireq;
3286
3287	ireq = isci_request_from_tag(ihost, tag);
3288	ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3289	ireq->ttype = tmf_task;
3290
3291	return ireq;
3292}
3293
3294int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3295			 struct sas_task *task, u16 tag)
3296{
3297	enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3298	struct isci_request *ireq;
3299	unsigned long flags;
3300	int ret = 0;
3301
3302	/* do common allocation and init of request object. */
3303	ireq = isci_io_request_from_tag(ihost, task, tag);
3304
3305	status = isci_io_request_build(ihost, ireq, idev);
3306	if (status != SCI_SUCCESS) {
3307		dev_dbg(&ihost->pdev->dev,
3308			 "%s: request_construct failed - status = 0x%x\n",
3309			 __func__,
3310			 status);
3311		return status;
3312	}
3313
3314	spin_lock_irqsave(&ihost->scic_lock, flags);
3315
3316	if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3317
3318		if (isci_task_is_ncq_recovery(task)) {
3319
3320			/* The device is in an NCQ recovery state.  Issue the
3321			 * request on the task side.  Note that it will
3322			 * complete on the I/O request side because the
3323			 * request was built that way (ie.
3324			 * ireq->is_task_management_request is false).
3325			 */
3326			status = sci_controller_start_task(ihost,
3327							    idev,
3328							    ireq);
3329		} else {
3330			status = SCI_FAILURE;
3331		}
3332	} else {
3333		/* send the request, let the core assign the IO TAG.	*/
3334		status = sci_controller_start_io(ihost, idev,
3335						  ireq);
3336	}
3337
3338	if (status != SCI_SUCCESS &&
3339	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3340		dev_dbg(&ihost->pdev->dev,
3341			 "%s: failed request start (0x%x)\n",
3342			 __func__, status);
3343		spin_unlock_irqrestore(&ihost->scic_lock, flags);
3344		return status;
3345	}
3346
3347	/* Either I/O started OK, or the core has signaled that
3348	 * the device needs a target reset.
3349	 *
3350	 * In either case, hold onto the I/O for later.
3351	 *
3352	 * Update it's status and add it to the list in the
3353	 * remote device object.
3354	 */
3355	list_add(&ireq->dev_node, &idev->reqs_in_process);
3356
3357	if (status == SCI_SUCCESS) {
3358		isci_request_change_state(ireq, started);
3359	} else {
3360		/* The request did not really start in the
3361		 * hardware, so clear the request handle
3362		 * here so no terminations will be done.
3363		 */
3364		set_bit(IREQ_TERMINATED, &ireq->flags);
3365		isci_request_change_state(ireq, completed);
3366	}
3367	spin_unlock_irqrestore(&ihost->scic_lock, flags);
3368
3369	if (status ==
3370	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3371		/* Signal libsas that we need the SCSI error
3372		 * handler thread to work on this I/O and that
3373		 * we want a device reset.
3374		 */
3375		spin_lock_irqsave(&task->task_state_lock, flags);
3376		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3377		spin_unlock_irqrestore(&task->task_state_lock, flags);
3378
3379		/* Cause this task to be scheduled in the SCSI error
3380		 * handler thread.
3381		 */
3382		isci_execpath_callback(ihost, task,
3383				       sas_task_abort);
3384
3385		/* Change the status, since we are holding
3386		 * the I/O until it is managed by the SCSI
3387		 * error handler.
3388		 */
3389		status = SCI_SUCCESS;
3390	}
3391
3392	return ret;
3393}
v6.9.4
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55
  56#include <scsi/scsi_cmnd.h>
  57#include "isci.h"
  58#include "task.h"
  59#include "request.h"
  60#include "scu_completion_codes.h"
  61#include "scu_event_codes.h"
  62#include "sas.h"
  63
  64#undef C
  65#define C(a) (#a)
  66const char *req_state_name(enum sci_base_request_states state)
  67{
  68	static const char * const strings[] = REQUEST_STATES;
  69
  70	return strings[state];
  71}
  72#undef C
  73
  74static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
  75							int idx)
  76{
  77	if (idx == 0)
  78		return &ireq->tc->sgl_pair_ab;
  79	else if (idx == 1)
  80		return &ireq->tc->sgl_pair_cd;
  81	else if (idx < 0)
  82		return NULL;
  83	else
  84		return &ireq->sg_table[idx - 2];
  85}
  86
  87static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
  88					  struct isci_request *ireq, u32 idx)
  89{
  90	u32 offset;
  91
  92	if (idx == 0) {
  93		offset = (void *) &ireq->tc->sgl_pair_ab -
  94			 (void *) &ihost->task_context_table[0];
  95		return ihost->tc_dma + offset;
  96	} else if (idx == 1) {
  97		offset = (void *) &ireq->tc->sgl_pair_cd -
  98			 (void *) &ihost->task_context_table[0];
  99		return ihost->tc_dma + offset;
 100	}
 101
 102	return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
 103}
 104
 105static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
 106{
 107	e->length = sg_dma_len(sg);
 108	e->address_upper = upper_32_bits(sg_dma_address(sg));
 109	e->address_lower = lower_32_bits(sg_dma_address(sg));
 110	e->address_modifier = 0;
 111}
 112
 113static void sci_request_build_sgl(struct isci_request *ireq)
 114{
 115	struct isci_host *ihost = ireq->isci_host;
 116	struct sas_task *task = isci_request_access_task(ireq);
 117	struct scatterlist *sg = NULL;
 118	dma_addr_t dma_addr;
 119	u32 sg_idx = 0;
 120	struct scu_sgl_element_pair *scu_sg   = NULL;
 121	struct scu_sgl_element_pair *prev_sg  = NULL;
 122
 123	if (task->num_scatter > 0) {
 124		sg = task->scatter;
 125
 126		while (sg) {
 127			scu_sg = to_sgl_element_pair(ireq, sg_idx);
 128			init_sgl_element(&scu_sg->A, sg);
 129			sg = sg_next(sg);
 130			if (sg) {
 131				init_sgl_element(&scu_sg->B, sg);
 132				sg = sg_next(sg);
 133			} else
 134				memset(&scu_sg->B, 0, sizeof(scu_sg->B));
 135
 136			if (prev_sg) {
 137				dma_addr = to_sgl_element_pair_dma(ihost,
 138								   ireq,
 139								   sg_idx);
 140
 141				prev_sg->next_pair_upper =
 142					upper_32_bits(dma_addr);
 143				prev_sg->next_pair_lower =
 144					lower_32_bits(dma_addr);
 145			}
 146
 147			prev_sg = scu_sg;
 148			sg_idx++;
 149		}
 150	} else {	/* handle when no sg */
 151		scu_sg = to_sgl_element_pair(ireq, sg_idx);
 152
 153		dma_addr = dma_map_single(&ihost->pdev->dev,
 154					  task->scatter,
 155					  task->total_xfer_len,
 156					  task->data_dir);
 157
 158		ireq->zero_scatter_daddr = dma_addr;
 159
 160		scu_sg->A.length = task->total_xfer_len;
 161		scu_sg->A.address_upper = upper_32_bits(dma_addr);
 162		scu_sg->A.address_lower = lower_32_bits(dma_addr);
 163	}
 164
 165	if (scu_sg) {
 166		scu_sg->next_pair_upper = 0;
 167		scu_sg->next_pair_lower = 0;
 168	}
 169}
 170
 171static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
 172{
 173	struct ssp_cmd_iu *cmd_iu;
 174	struct sas_task *task = isci_request_access_task(ireq);
 175
 176	cmd_iu = &ireq->ssp.cmd;
 177
 178	memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
 179	cmd_iu->add_cdb_len = 0;
 180	cmd_iu->_r_a = 0;
 181	cmd_iu->_r_b = 0;
 182	cmd_iu->en_fburst = 0; /* unsupported */
 183	cmd_iu->task_prio = 0;
 184	cmd_iu->task_attr = task->ssp_task.task_attr;
 185	cmd_iu->_r_c = 0;
 186
 187	sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
 188		       (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
 189}
 190
 191static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
 192{
 193	struct ssp_task_iu *task_iu;
 194	struct sas_task *task = isci_request_access_task(ireq);
 195	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
 196
 197	task_iu = &ireq->ssp.tmf;
 198
 199	memset(task_iu, 0, sizeof(struct ssp_task_iu));
 200
 201	memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
 202
 203	task_iu->task_func = isci_tmf->tmf_code;
 204	task_iu->task_tag =
 205		(test_bit(IREQ_TMF, &ireq->flags)) ?
 206		isci_tmf->io_tag :
 207		SCI_CONTROLLER_INVALID_IO_TAG;
 208}
 209
 210/*
 211 * This method is will fill in the SCU Task Context for any type of SSP request.
 
 
 
 212 */
 213static void scu_ssp_request_construct_task_context(
 214	struct isci_request *ireq,
 215	struct scu_task_context *task_context)
 216{
 217	dma_addr_t dma_addr;
 218	struct isci_remote_device *idev;
 219	struct isci_port *iport;
 220
 221	idev = ireq->target_device;
 222	iport = idev->owning_port;
 223
 224	/* Fill in the TC with its required data */
 225	task_context->abort = 0;
 226	task_context->priority = 0;
 227	task_context->initiator_request = 1;
 228	task_context->connection_rate = idev->connection_rate;
 229	task_context->protocol_engine_index = ISCI_PEG;
 230	task_context->logical_port_index = iport->physical_port_index;
 231	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
 232	task_context->valid = SCU_TASK_CONTEXT_VALID;
 233	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
 234
 235	task_context->remote_node_index = idev->rnc.remote_node_index;
 236	task_context->command_code = 0;
 237
 238	task_context->link_layer_control = 0;
 239	task_context->do_not_dma_ssp_good_response = 1;
 240	task_context->strict_ordering = 0;
 241	task_context->control_frame = 0;
 242	task_context->timeout_enable = 0;
 243	task_context->block_guard_enable = 0;
 244
 245	task_context->address_modifier = 0;
 246
 247	/* task_context->type.ssp.tag = ireq->io_tag; */
 248	task_context->task_phase = 0x01;
 249
 250	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
 251			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
 252			      (iport->physical_port_index <<
 253			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
 254			      ISCI_TAG_TCI(ireq->io_tag));
 255
 256	/*
 257	 * Copy the physical address for the command buffer to the
 258	 * SCU Task Context
 259	 */
 260	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
 261
 262	task_context->command_iu_upper = upper_32_bits(dma_addr);
 263	task_context->command_iu_lower = lower_32_bits(dma_addr);
 264
 265	/*
 266	 * Copy the physical address for the response buffer to the
 267	 * SCU Task Context
 268	 */
 269	dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
 270
 271	task_context->response_iu_upper = upper_32_bits(dma_addr);
 272	task_context->response_iu_lower = lower_32_bits(dma_addr);
 273}
 274
 275static u8 scu_bg_blk_size(struct scsi_device *sdp)
 276{
 277	switch (sdp->sector_size) {
 278	case 512:
 279		return 0;
 280	case 1024:
 281		return 1;
 282	case 4096:
 283		return 3;
 284	default:
 285		return 0xff;
 286	}
 287}
 288
 289static u32 scu_dif_bytes(u32 len, u32 sector_size)
 290{
 291	return (len >> ilog2(sector_size)) * 8;
 292}
 293
 294static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
 295{
 296	struct scu_task_context *tc = ireq->tc;
 297	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
 298	u8 blk_sz = scu_bg_blk_size(scmd->device);
 299
 300	tc->block_guard_enable = 1;
 301	tc->blk_prot_en = 1;
 302	tc->blk_sz = blk_sz;
 303	/* DIF write insert */
 304	tc->blk_prot_func = 0x2;
 305
 306	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
 307						   scmd->device->sector_size);
 308
 309	/* always init to 0, used by hw */
 310	tc->interm_crc_val = 0;
 311
 312	tc->init_crc_seed = 0;
 313	tc->app_tag_verify = 0;
 314	tc->app_tag_gen = 0;
 315	tc->ref_tag_seed_verify = 0;
 316
 317	/* always init to same as bg_blk_sz */
 318	tc->UD_bytes_immed_val = scmd->device->sector_size;
 319
 320	tc->reserved_DC_0 = 0;
 321
 322	/* always init to 8 */
 323	tc->DIF_bytes_immed_val = 8;
 324
 325	tc->reserved_DC_1 = 0;
 326	tc->bgc_blk_sz = scmd->device->sector_size;
 327	tc->reserved_E0_0 = 0;
 328	tc->app_tag_gen_mask = 0;
 329
 330	/** setup block guard control **/
 331	tc->bgctl = 0;
 332
 333	/* DIF write insert */
 334	tc->bgctl_f.op = 0x2;
 335
 336	tc->app_tag_verify_mask = 0;
 337
 338	/* must init to 0 for hw */
 339	tc->blk_guard_err = 0;
 340
 341	tc->reserved_E8_0 = 0;
 342
 343	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
 344		tc->ref_tag_seed_gen = scsi_prot_ref_tag(scmd);
 345	else if (type & SCSI_PROT_DIF_TYPE3)
 346		tc->ref_tag_seed_gen = 0;
 347}
 348
 349static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
 350{
 351	struct scu_task_context *tc = ireq->tc;
 352	struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
 353	u8 blk_sz = scu_bg_blk_size(scmd->device);
 354
 355	tc->block_guard_enable = 1;
 356	tc->blk_prot_en = 1;
 357	tc->blk_sz = blk_sz;
 358	/* DIF read strip */
 359	tc->blk_prot_func = 0x1;
 360
 361	tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
 362						   scmd->device->sector_size);
 363
 364	/* always init to 0, used by hw */
 365	tc->interm_crc_val = 0;
 366
 367	tc->init_crc_seed = 0;
 368	tc->app_tag_verify = 0;
 369	tc->app_tag_gen = 0;
 370
 371	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
 372		tc->ref_tag_seed_verify = scsi_prot_ref_tag(scmd);
 373	else if (type & SCSI_PROT_DIF_TYPE3)
 374		tc->ref_tag_seed_verify = 0;
 375
 376	/* always init to same as bg_blk_sz */
 377	tc->UD_bytes_immed_val = scmd->device->sector_size;
 378
 379	tc->reserved_DC_0 = 0;
 380
 381	/* always init to 8 */
 382	tc->DIF_bytes_immed_val = 8;
 383
 384	tc->reserved_DC_1 = 0;
 385	tc->bgc_blk_sz = scmd->device->sector_size;
 386	tc->reserved_E0_0 = 0;
 387	tc->app_tag_gen_mask = 0;
 388
 389	/** setup block guard control **/
 390	tc->bgctl = 0;
 391
 392	/* DIF read strip */
 393	tc->bgctl_f.crc_verify = 1;
 394	tc->bgctl_f.op = 0x1;
 395	if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
 396		tc->bgctl_f.ref_tag_chk = 1;
 397		tc->bgctl_f.app_f_detect = 1;
 398	} else if (type & SCSI_PROT_DIF_TYPE3)
 399		tc->bgctl_f.app_ref_f_detect = 1;
 400
 401	tc->app_tag_verify_mask = 0;
 402
 403	/* must init to 0 for hw */
 404	tc->blk_guard_err = 0;
 405
 406	tc->reserved_E8_0 = 0;
 407	tc->ref_tag_seed_gen = 0;
 408}
 409
 410/*
 411 * This method is will fill in the SCU Task Context for a SSP IO request.
 
 
 412 */
 413static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
 414						      enum dma_data_direction dir,
 415						      u32 len)
 416{
 417	struct scu_task_context *task_context = ireq->tc;
 418	struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
 419	struct scsi_cmnd *scmd = sas_task->uldd_task;
 420	u8 prot_type = scsi_get_prot_type(scmd);
 421	u8 prot_op = scsi_get_prot_op(scmd);
 422
 423	scu_ssp_request_construct_task_context(ireq, task_context);
 424
 425	task_context->ssp_command_iu_length =
 426		sizeof(struct ssp_cmd_iu) / sizeof(u32);
 427	task_context->type.ssp.frame_type = SSP_COMMAND;
 428
 429	switch (dir) {
 430	case DMA_FROM_DEVICE:
 431	case DMA_NONE:
 432	default:
 433		task_context->task_type = SCU_TASK_TYPE_IOREAD;
 434		break;
 435	case DMA_TO_DEVICE:
 436		task_context->task_type = SCU_TASK_TYPE_IOWRITE;
 437		break;
 438	}
 439
 440	task_context->transfer_length_bytes = len;
 441
 442	if (task_context->transfer_length_bytes > 0)
 443		sci_request_build_sgl(ireq);
 444
 445	if (prot_type != SCSI_PROT_DIF_TYPE0) {
 446		if (prot_op == SCSI_PROT_READ_STRIP)
 447			scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
 448		else if (prot_op == SCSI_PROT_WRITE_INSERT)
 449			scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
 450	}
 451}
 452
 453/**
 454 * scu_ssp_task_request_construct_task_context() - This method will fill in
 455 *    the SCU Task Context for a SSP Task request.  The following important
 456 *    settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH.  This
 457 *    ensures that the task request is issued ahead of other task destined
 458 *    for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD.  This
 459 *    simply indicates that a normal request type (i.e. non-raw frame) is
 460 *    being utilized to perform task management. -#control_frame == 1.  This
 461 *    ensures that the proper endianness is set so that the bytes are
 462 *    transmitted in the right order for a task frame.
 463 * @ireq: This parameter specifies the task request object being constructed.
 
 464 */
 465static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
 466{
 467	struct scu_task_context *task_context = ireq->tc;
 468
 469	scu_ssp_request_construct_task_context(ireq, task_context);
 470
 471	task_context->control_frame                = 1;
 472	task_context->priority                     = SCU_TASK_PRIORITY_HIGH;
 473	task_context->task_type                    = SCU_TASK_TYPE_RAW_FRAME;
 474	task_context->transfer_length_bytes        = 0;
 475	task_context->type.ssp.frame_type          = SSP_TASK;
 476	task_context->ssp_command_iu_length =
 477		sizeof(struct ssp_task_iu) / sizeof(u32);
 478}
 479
 480/**
 481 * scu_sata_request_construct_task_context()
 482 * This method is will fill in the SCU Task Context for any type of SATA
 483 *    request.  This is called from the various SATA constructors.
 484 * @ireq: The general IO request object which is to be used in
 485 *    constructing the SCU task context.
 486 * @task_context: The buffer pointer for the SCU task context which is being
 487 *    constructed.
 488 *
 489 * The general io request construction is complete. The buffer assignment for
 490 * the command buffer is complete. none Revisit task context construction to
 491 * determine what is common for SSP/SMP/STP task context structures.
 492 */
 493static void scu_sata_request_construct_task_context(
 494	struct isci_request *ireq,
 495	struct scu_task_context *task_context)
 496{
 497	dma_addr_t dma_addr;
 498	struct isci_remote_device *idev;
 499	struct isci_port *iport;
 500
 501	idev = ireq->target_device;
 502	iport = idev->owning_port;
 503
 504	/* Fill in the TC with its required data */
 505	task_context->abort = 0;
 506	task_context->priority = SCU_TASK_PRIORITY_NORMAL;
 507	task_context->initiator_request = 1;
 508	task_context->connection_rate = idev->connection_rate;
 509	task_context->protocol_engine_index = ISCI_PEG;
 510	task_context->logical_port_index = iport->physical_port_index;
 511	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
 512	task_context->valid = SCU_TASK_CONTEXT_VALID;
 513	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
 514
 515	task_context->remote_node_index = idev->rnc.remote_node_index;
 516	task_context->command_code = 0;
 517
 518	task_context->link_layer_control = 0;
 519	task_context->do_not_dma_ssp_good_response = 1;
 520	task_context->strict_ordering = 0;
 521	task_context->control_frame = 0;
 522	task_context->timeout_enable = 0;
 523	task_context->block_guard_enable = 0;
 524
 525	task_context->address_modifier = 0;
 526	task_context->task_phase = 0x01;
 527
 528	task_context->ssp_command_iu_length =
 529		(sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
 530
 531	/* Set the first word of the H2D REG FIS */
 532	task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
 533
 534	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
 535			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
 536			      (iport->physical_port_index <<
 537			       SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
 538			      ISCI_TAG_TCI(ireq->io_tag));
 539	/*
 540	 * Copy the physical address for the command buffer to the SCU Task
 541	 * Context. We must offset the command buffer by 4 bytes because the
 542	 * first 4 bytes are transfered in the body of the TC.
 543	 */
 544	dma_addr = sci_io_request_get_dma_addr(ireq,
 545						((char *) &ireq->stp.cmd) +
 546						sizeof(u32));
 547
 548	task_context->command_iu_upper = upper_32_bits(dma_addr);
 549	task_context->command_iu_lower = lower_32_bits(dma_addr);
 550
 551	/* SATA Requests do not have a response buffer */
 552	task_context->response_iu_upper = 0;
 553	task_context->response_iu_lower = 0;
 554}
 555
 556static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
 557{
 558	struct scu_task_context *task_context = ireq->tc;
 559
 560	scu_sata_request_construct_task_context(ireq, task_context);
 561
 562	task_context->control_frame         = 0;
 563	task_context->priority              = SCU_TASK_PRIORITY_NORMAL;
 564	task_context->task_type             = SCU_TASK_TYPE_SATA_RAW_FRAME;
 565	task_context->type.stp.fis_type     = FIS_REGH2D;
 566	task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
 567}
 568
 569static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
 570							  bool copy_rx_frame)
 571{
 572	struct isci_stp_request *stp_req = &ireq->stp.req;
 573
 574	scu_stp_raw_request_construct_task_context(ireq);
 575
 576	stp_req->status = 0;
 577	stp_req->sgl.offset = 0;
 578	stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
 579
 580	if (copy_rx_frame) {
 581		sci_request_build_sgl(ireq);
 582		stp_req->sgl.index = 0;
 583	} else {
 584		/* The user does not want the data copied to the SGL buffer location */
 585		stp_req->sgl.index = -1;
 586	}
 587
 588	return SCI_SUCCESS;
 589}
 590
 591/*
 592 * sci_stp_optimized_request_construct()
 593 * @ireq: This parameter specifies the request to be constructed as an
 594 *    optimized request.
 595 * @optimized_task_type: This parameter specifies whether the request is to be
 596 *    an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
 597 *    value of 1 indicates NCQ.
 598 *
 599 * This method will perform request construction common to all types of STP
 600 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
 601 * returns an indication as to whether the construction was successful.
 602 */
 603static void sci_stp_optimized_request_construct(struct isci_request *ireq,
 604						     u8 optimized_task_type,
 605						     u32 len,
 606						     enum dma_data_direction dir)
 607{
 608	struct scu_task_context *task_context = ireq->tc;
 609
 610	/* Build the STP task context structure */
 611	scu_sata_request_construct_task_context(ireq, task_context);
 612
 613	/* Copy over the SGL elements */
 614	sci_request_build_sgl(ireq);
 615
 616	/* Copy over the number of bytes to be transfered */
 617	task_context->transfer_length_bytes = len;
 618
 619	if (dir == DMA_TO_DEVICE) {
 620		/*
 621		 * The difference between the DMA IN and DMA OUT request task type
 622		 * values are consistent with the difference between FPDMA READ
 623		 * and FPDMA WRITE values.  Add the supplied task type parameter
 624		 * to this difference to set the task type properly for this
 625		 * DATA OUT (WRITE) case. */
 626		task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
 627								 - SCU_TASK_TYPE_DMA_IN);
 628	} else {
 629		/*
 630		 * For the DATA IN (READ) case, simply save the supplied
 631		 * optimized task type. */
 632		task_context->task_type = optimized_task_type;
 633	}
 634}
 635
 636static void sci_atapi_construct(struct isci_request *ireq)
 637{
 638	struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
 639	struct sas_task *task;
 640
 641	/* To simplify the implementation we take advantage of the
 642	 * silicon's partial acceleration of atapi protocol (dma data
 643	 * transfers), so we promote all commands to dma protocol.  This
 644	 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
 645	 */
 646	h2d_fis->features |= ATAPI_PKT_DMA;
 647
 648	scu_stp_raw_request_construct_task_context(ireq);
 649
 650	task = isci_request_access_task(ireq);
 651	if (task->data_dir == DMA_NONE)
 652		task->total_xfer_len = 0;
 653
 654	/* clear the response so we can detect arrivial of an
 655	 * unsolicited h2d fis
 656	 */
 657	ireq->stp.rsp.fis_type = 0;
 658}
 659
 660static enum sci_status
 661sci_io_request_construct_sata(struct isci_request *ireq,
 662			       u32 len,
 663			       enum dma_data_direction dir,
 664			       bool copy)
 665{
 666	enum sci_status status = SCI_SUCCESS;
 667	struct sas_task *task = isci_request_access_task(ireq);
 668	struct domain_device *dev = ireq->target_device->domain_dev;
 669
 670	/* check for management protocols */
 671	if (test_bit(IREQ_TMF, &ireq->flags)) {
 672		struct isci_tmf *tmf = isci_request_access_tmf(ireq);
 673
 674		dev_err(&ireq->owning_controller->pdev->dev,
 675			"%s: Request 0x%p received un-handled SAT "
 676			"management protocol 0x%x.\n",
 677			__func__, ireq, tmf->tmf_code);
 
 
 
 
 
 678
 679		return SCI_FAILURE;
 
 680	}
 681
 682	if (!sas_protocol_ata(task->task_proto)) {
 683		dev_err(&ireq->owning_controller->pdev->dev,
 684			"%s: Non-ATA protocol in SATA path: 0x%x\n",
 685			__func__,
 686			task->task_proto);
 687		return SCI_FAILURE;
 688
 689	}
 690
 691	/* ATAPI */
 692	if (dev->sata_dev.class == ATA_DEV_ATAPI &&
 693	    task->ata_task.fis.command == ATA_CMD_PACKET) {
 694		sci_atapi_construct(ireq);
 695		return SCI_SUCCESS;
 696	}
 697
 698	/* non data */
 699	if (task->data_dir == DMA_NONE) {
 700		scu_stp_raw_request_construct_task_context(ireq);
 701		return SCI_SUCCESS;
 702	}
 703
 704	/* NCQ */
 705	if (task->ata_task.use_ncq) {
 706		sci_stp_optimized_request_construct(ireq,
 707							 SCU_TASK_TYPE_FPDMAQ_READ,
 708							 len, dir);
 709		return SCI_SUCCESS;
 710	}
 711
 712	/* DMA */
 713	if (task->ata_task.dma_xfer) {
 714		sci_stp_optimized_request_construct(ireq,
 715							 SCU_TASK_TYPE_DMA_IN,
 716							 len, dir);
 717		return SCI_SUCCESS;
 718	} else /* PIO */
 719		return sci_stp_pio_request_construct(ireq, copy);
 720
 721	return status;
 722}
 723
 724static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
 725{
 726	struct sas_task *task = isci_request_access_task(ireq);
 727
 728	ireq->protocol = SAS_PROTOCOL_SSP;
 729
 730	scu_ssp_io_request_construct_task_context(ireq,
 731						  task->data_dir,
 732						  task->total_xfer_len);
 733
 734	sci_io_request_build_ssp_command_iu(ireq);
 735
 736	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 737
 738	return SCI_SUCCESS;
 739}
 740
 741void sci_task_request_construct_ssp(struct isci_request *ireq)
 
 742{
 743	/* Construct the SSP Task SCU Task Context */
 744	scu_ssp_task_request_construct_task_context(ireq);
 745
 746	/* Fill in the SSP Task IU */
 747	sci_task_request_build_ssp_task_iu(ireq);
 748
 749	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 
 
 750}
 751
 752static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
 753{
 754	enum sci_status status;
 755	bool copy = false;
 756	struct sas_task *task = isci_request_access_task(ireq);
 757
 758	ireq->protocol = SAS_PROTOCOL_STP;
 759
 760	copy = (task->data_dir == DMA_NONE) ? false : true;
 761
 762	status = sci_io_request_construct_sata(ireq,
 763						task->total_xfer_len,
 764						task->data_dir,
 765						copy);
 766
 767	if (status == SCI_SUCCESS)
 768		sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
 769
 770	return status;
 771}
 772
 773#define SCU_TASK_CONTEXT_SRAM 0x200000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774/**
 775 * sci_req_tx_bytes - bytes transferred when reply underruns request
 776 * @ireq: request that was terminated early
 777 */
 
 778static u32 sci_req_tx_bytes(struct isci_request *ireq)
 779{
 780	struct isci_host *ihost = ireq->owning_controller;
 781	u32 ret_val = 0;
 782
 783	if (readl(&ihost->smu_registers->address_modifier) == 0) {
 784		void __iomem *scu_reg_base = ihost->scu_registers;
 785
 786		/* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
 787		 *   BAR1 is the scu_registers
 788		 *   0x20002C = 0x200000 + 0x2c
 789		 *            = start of task context SRAM + offset of (type.ssp.data_offset)
 790		 *   TCi is the io_tag of struct sci_request
 791		 */
 792		ret_val = readl(scu_reg_base +
 793				(SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
 794				((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
 795	}
 796
 797	return ret_val;
 798}
 799
 800enum sci_status sci_request_start(struct isci_request *ireq)
 801{
 802	enum sci_base_request_states state;
 803	struct scu_task_context *tc = ireq->tc;
 804	struct isci_host *ihost = ireq->owning_controller;
 805
 806	state = ireq->sm.current_state_id;
 807	if (state != SCI_REQ_CONSTRUCTED) {
 808		dev_warn(&ihost->pdev->dev,
 809			"%s: SCIC IO Request requested to start while in wrong "
 810			 "state %d\n", __func__, state);
 811		return SCI_FAILURE_INVALID_STATE;
 812	}
 813
 814	tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
 815
 816	switch (tc->protocol_type) {
 817	case SCU_TASK_CONTEXT_PROTOCOL_SMP:
 818	case SCU_TASK_CONTEXT_PROTOCOL_SSP:
 819		/* SSP/SMP Frame */
 820		tc->type.ssp.tag = ireq->io_tag;
 821		tc->type.ssp.target_port_transfer_tag = 0xFFFF;
 822		break;
 823
 824	case SCU_TASK_CONTEXT_PROTOCOL_STP:
 825		/* STP/SATA Frame
 826		 * tc->type.stp.ncq_tag = ireq->ncq_tag;
 827		 */
 828		break;
 829
 830	case SCU_TASK_CONTEXT_PROTOCOL_NONE:
 831		/* / @todo When do we set no protocol type? */
 832		break;
 833
 834	default:
 835		/* This should never happen since we build the IO
 836		 * requests */
 837		break;
 838	}
 839
 840	/* Add to the post_context the io tag value */
 841	ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
 842
 843	/* Everything is good go ahead and change state */
 844	sci_change_state(&ireq->sm, SCI_REQ_STARTED);
 845
 846	return SCI_SUCCESS;
 847}
 848
 849enum sci_status
 850sci_io_request_terminate(struct isci_request *ireq)
 851{
 852	enum sci_base_request_states state;
 853
 854	state = ireq->sm.current_state_id;
 855
 856	switch (state) {
 857	case SCI_REQ_CONSTRUCTED:
 858		/* Set to make sure no HW terminate posting is done: */
 859		set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
 860		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
 861		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
 862		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
 863		return SCI_SUCCESS;
 864	case SCI_REQ_STARTED:
 865	case SCI_REQ_TASK_WAIT_TC_COMP:
 866	case SCI_REQ_SMP_WAIT_RESP:
 867	case SCI_REQ_SMP_WAIT_TC_COMP:
 868	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
 869	case SCI_REQ_STP_UDMA_WAIT_D2H:
 870	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
 871	case SCI_REQ_STP_NON_DATA_WAIT_D2H:
 872	case SCI_REQ_STP_PIO_WAIT_H2D:
 873	case SCI_REQ_STP_PIO_WAIT_FRAME:
 874	case SCI_REQ_STP_PIO_DATA_IN:
 875	case SCI_REQ_STP_PIO_DATA_OUT:
 876	case SCI_REQ_ATAPI_WAIT_H2D:
 877	case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
 878	case SCI_REQ_ATAPI_WAIT_D2H:
 879	case SCI_REQ_ATAPI_WAIT_TC_COMP:
 880		/* Fall through and change state to ABORTING... */
 881	case SCI_REQ_TASK_WAIT_TC_RESP:
 882		/* The task frame was already confirmed to have been
 883		 * sent by the SCU HW.  Since the state machine is
 884		 * now only waiting for the task response itself,
 885		 * abort the request and complete it immediately
 886		 * and don't wait for the task response.
 887		 */
 888		sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
 889		fallthrough;	/* and handle like ABORTING */
 
 890	case SCI_REQ_ABORTING:
 891		if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
 892			set_bit(IREQ_PENDING_ABORT, &ireq->flags);
 893		else
 894			clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
 895		/* If the request is only waiting on the remote device
 896		 * suspension, return SUCCESS so the caller will wait too.
 897		 */
 898		return SCI_SUCCESS;
 899	case SCI_REQ_COMPLETED:
 900	default:
 901		dev_warn(&ireq->owning_controller->pdev->dev,
 902			 "%s: SCIC IO Request requested to abort while in wrong "
 903			 "state %d\n", __func__, ireq->sm.current_state_id);
 
 
 904		break;
 905	}
 906
 907	return SCI_FAILURE_INVALID_STATE;
 908}
 909
 910enum sci_status sci_request_complete(struct isci_request *ireq)
 911{
 912	enum sci_base_request_states state;
 913	struct isci_host *ihost = ireq->owning_controller;
 914
 915	state = ireq->sm.current_state_id;
 916	if (WARN_ONCE(state != SCI_REQ_COMPLETED,
 917		      "isci: request completion from wrong state (%s)\n",
 918		      req_state_name(state)))
 919		return SCI_FAILURE_INVALID_STATE;
 920
 921	if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
 922		sci_controller_release_frame(ihost,
 923						  ireq->saved_rx_frame_index);
 924
 925	/* XXX can we just stop the machine and remove the 'final' state? */
 926	sci_change_state(&ireq->sm, SCI_REQ_FINAL);
 927	return SCI_SUCCESS;
 928}
 929
 930enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
 931						  u32 event_code)
 932{
 933	enum sci_base_request_states state;
 934	struct isci_host *ihost = ireq->owning_controller;
 935
 936	state = ireq->sm.current_state_id;
 937
 938	if (state != SCI_REQ_STP_PIO_DATA_IN) {
 939		dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
 940			 __func__, event_code, req_state_name(state));
 941
 942		return SCI_FAILURE_INVALID_STATE;
 943	}
 944
 945	switch (scu_get_event_specifier(event_code)) {
 946	case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
 947		/* We are waiting for data and the SCU has R_ERR the data frame.
 948		 * Go back to waiting for the D2H Register FIS
 949		 */
 950		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
 951		return SCI_SUCCESS;
 952	default:
 953		dev_err(&ihost->pdev->dev,
 954			"%s: pio request unexpected event %#x\n",
 955			__func__, event_code);
 956
 957		/* TODO Should we fail the PIO request when we get an
 958		 * unexpected event?
 959		 */
 960		return SCI_FAILURE;
 961	}
 962}
 963
 964/*
 965 * This function copies response data for requests returning response data
 966 *    instead of sense data.
 967 * @sci_req: This parameter specifies the request object for which to copy
 968 *    the response data.
 969 */
 970static void sci_io_request_copy_response(struct isci_request *ireq)
 971{
 972	void *resp_buf;
 973	u32 len;
 974	struct ssp_response_iu *ssp_response;
 975	struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
 976
 977	ssp_response = &ireq->ssp.rsp;
 978
 979	resp_buf = &isci_tmf->resp.resp_iu;
 980
 981	len = min_t(u32,
 982		    SSP_RESP_IU_MAX_SIZE,
 983		    be32_to_cpu(ssp_response->response_data_len));
 984
 985	memcpy(resp_buf, ssp_response->resp_data, len);
 986}
 987
 988static enum sci_status
 989request_started_state_tc_event(struct isci_request *ireq,
 990			       u32 completion_code)
 991{
 992	struct ssp_response_iu *resp_iu;
 993	u8 datapres;
 994
 995	/* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
 996	 * to determine SDMA status
 997	 */
 998	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
 999	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1000		ireq->scu_status = SCU_TASK_DONE_GOOD;
1001		ireq->sci_status = SCI_SUCCESS;
1002		break;
1003	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1004		/* There are times when the SCU hardware will return an early
1005		 * response because the io request specified more data than is
1006		 * returned by the target device (mode pages, inquiry data,
1007		 * etc.).  We must check the response stats to see if this is
1008		 * truly a failed request or a good request that just got
1009		 * completed early.
1010		 */
1011		struct ssp_response_iu *resp = &ireq->ssp.rsp;
1012		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1013
1014		sci_swab32_cpy(&ireq->ssp.rsp,
1015			       &ireq->ssp.rsp,
1016			       word_cnt);
1017
1018		if (resp->status == 0) {
1019			ireq->scu_status = SCU_TASK_DONE_GOOD;
1020			ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1021		} else {
1022			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1023			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1024		}
1025		break;
1026	}
1027	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1028		ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1029
1030		sci_swab32_cpy(&ireq->ssp.rsp,
1031			       &ireq->ssp.rsp,
1032			       word_cnt);
1033
1034		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1035		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1036		break;
1037	}
1038
1039	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1040		/* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1041		 * guaranteed to be received before this completion status is
1042		 * posted?
1043		 */
1044		resp_iu = &ireq->ssp.rsp;
1045		datapres = resp_iu->datapres;
1046
1047		if (datapres == SAS_DATAPRES_RESPONSE_DATA ||
1048		    datapres == SAS_DATAPRES_SENSE_DATA) {
1049			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1050			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1051		} else {
1052			ireq->scu_status = SCU_TASK_DONE_GOOD;
1053			ireq->sci_status = SCI_SUCCESS;
1054		}
1055		break;
1056	/* only stp device gets suspended. */
1057	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1058	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1059	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1060	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1061	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1062	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1063	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1064	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1065	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1066	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1067	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1068		if (ireq->protocol == SAS_PROTOCOL_STP) {
1069			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1070					   SCU_COMPLETION_TL_STATUS_SHIFT;
1071			ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1072		} else {
1073			ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1074					   SCU_COMPLETION_TL_STATUS_SHIFT;
1075			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1076		}
1077		break;
1078
1079	/* both stp/ssp device gets suspended */
1080	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1081	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1082	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1083	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1084	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1085	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1086	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1087	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1088	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1089	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1090		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1091				   SCU_COMPLETION_TL_STATUS_SHIFT;
1092		ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1093		break;
1094
1095	/* neither ssp nor stp gets suspended. */
1096	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1097	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1098	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1099	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1100	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1101	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1102	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1103	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1104	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1105	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1106	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1107	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1108	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1109	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1110	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1111	default:
1112		ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1113				   SCU_COMPLETION_TL_STATUS_SHIFT;
1114		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1115		break;
1116	}
1117
1118	/*
1119	 * TODO: This is probably wrong for ACK/NAK timeout conditions
1120	 */
1121
1122	/* In all cases we will treat this as the completion of the IO req. */
1123	sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1124	return SCI_SUCCESS;
1125}
1126
1127static enum sci_status
1128request_aborting_state_tc_event(struct isci_request *ireq,
1129				u32 completion_code)
1130{
1131	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1132	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1133	case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1134		ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1135		ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1136		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1137		break;
1138
1139	default:
1140		/* Unless we get some strange error wait for the task abort to complete
1141		 * TODO: Should there be a state change for this completion?
1142		 */
1143		break;
1144	}
1145
1146	return SCI_SUCCESS;
1147}
1148
1149static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1150						       u32 completion_code)
1151{
1152	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1153	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1154		ireq->scu_status = SCU_TASK_DONE_GOOD;
1155		ireq->sci_status = SCI_SUCCESS;
1156		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1157		break;
1158	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1159		/* Currently, the decision is to simply allow the task request
1160		 * to timeout if the task IU wasn't received successfully.
1161		 * There is a potential for receiving multiple task responses if
1162		 * we decide to send the task IU again.
1163		 */
1164		dev_warn(&ireq->owning_controller->pdev->dev,
1165			 "%s: TaskRequest:0x%p CompletionCode:%x - "
1166			 "ACK/NAK timeout\n", __func__, ireq,
1167			 completion_code);
1168
1169		sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1170		break;
1171	default:
1172		/*
1173		 * All other completion status cause the IO to be complete.
1174		 * If a NAK was received, then it is up to the user to retry
1175		 * the request.
1176		 */
1177		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1178		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1179		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1180		break;
1181	}
1182
1183	return SCI_SUCCESS;
1184}
1185
1186static enum sci_status
1187smp_request_await_response_tc_event(struct isci_request *ireq,
1188				    u32 completion_code)
1189{
1190	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1191	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1192		/* In the AWAIT RESPONSE state, any TC completion is
1193		 * unexpected.  but if the TC has success status, we
1194		 * complete the IO anyway.
1195		 */
1196		ireq->scu_status = SCU_TASK_DONE_GOOD;
1197		ireq->sci_status = SCI_SUCCESS;
1198		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1199		break;
1200	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1201	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1202	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1203	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1204		/* These status has been seen in a specific LSI
1205		 * expander, which sometimes is not able to send smp
1206		 * response within 2 ms. This causes our hardware break
1207		 * the connection and set TC completion with one of
1208		 * these SMP_XXX_XX_ERR status. For these type of error,
1209		 * we ask ihost user to retry the request.
1210		 */
1211		ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1212		ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1213		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1214		break;
1215	default:
1216		/* All other completion status cause the IO to be complete.  If a NAK
1217		 * was received, then it is up to the user to retry the request
1218		 */
1219		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1220		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1221		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1222		break;
1223	}
1224
1225	return SCI_SUCCESS;
1226}
1227
1228static enum sci_status
1229smp_request_await_tc_event(struct isci_request *ireq,
1230			   u32 completion_code)
1231{
1232	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1233	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1234		ireq->scu_status = SCU_TASK_DONE_GOOD;
1235		ireq->sci_status = SCI_SUCCESS;
1236		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1237		break;
1238	default:
1239		/* All other completion status cause the IO to be
1240		 * complete.  If a NAK was received, then it is up to
1241		 * the user to retry the request.
1242		 */
1243		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1244		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1245		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1246		break;
1247	}
1248
1249	return SCI_SUCCESS;
1250}
1251
1252static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1253{
1254	struct scu_sgl_element *sgl;
1255	struct scu_sgl_element_pair *sgl_pair;
1256	struct isci_request *ireq = to_ireq(stp_req);
1257	struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1258
1259	sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1260	if (!sgl_pair)
1261		sgl = NULL;
1262	else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1263		if (sgl_pair->B.address_lower == 0 &&
1264		    sgl_pair->B.address_upper == 0) {
1265			sgl = NULL;
1266		} else {
1267			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1268			sgl = &sgl_pair->B;
1269		}
1270	} else {
1271		if (sgl_pair->next_pair_lower == 0 &&
1272		    sgl_pair->next_pair_upper == 0) {
1273			sgl = NULL;
1274		} else {
1275			pio_sgl->index++;
1276			pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1277			sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1278			sgl = &sgl_pair->A;
1279		}
1280	}
1281
1282	return sgl;
1283}
1284
1285static enum sci_status
1286stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1287					u32 completion_code)
1288{
1289	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1290	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1291		ireq->scu_status = SCU_TASK_DONE_GOOD;
1292		ireq->sci_status = SCI_SUCCESS;
1293		sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1294		break;
1295
1296	default:
1297		/* All other completion status cause the IO to be
1298		 * complete.  If a NAK was received, then it is up to
1299		 * the user to retry the request.
1300		 */
1301		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1302		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1303		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1304		break;
1305	}
1306
1307	return SCI_SUCCESS;
1308}
1309
1310#define SCU_MAX_FRAME_BUFFER_SIZE  0x400  /* 1K is the maximum SCU frame data payload */
1311
1312/* transmit DATA_FIS from (current sgl + offset) for input
1313 * parameter length. current sgl and offset is alreay stored in the IO request
1314 */
1315static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1316	struct isci_request *ireq,
1317	u32 length)
1318{
1319	struct isci_stp_request *stp_req = &ireq->stp.req;
1320	struct scu_task_context *task_context = ireq->tc;
1321	struct scu_sgl_element_pair *sgl_pair;
1322	struct scu_sgl_element *current_sgl;
1323
1324	/* Recycle the TC and reconstruct it for sending out DATA FIS containing
1325	 * for the data from current_sgl+offset for the input length
1326	 */
1327	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1328	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1329		current_sgl = &sgl_pair->A;
1330	else
1331		current_sgl = &sgl_pair->B;
1332
1333	/* update the TC */
1334	task_context->command_iu_upper = current_sgl->address_upper;
1335	task_context->command_iu_lower = current_sgl->address_lower;
1336	task_context->transfer_length_bytes = length;
1337	task_context->type.stp.fis_type = FIS_DATA;
1338
1339	/* send the new TC out. */
1340	return sci_controller_continue_io(ireq);
1341}
1342
1343static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1344{
1345	struct isci_stp_request *stp_req = &ireq->stp.req;
1346	struct scu_sgl_element_pair *sgl_pair;
1347	enum sci_status status = SCI_SUCCESS;
1348	struct scu_sgl_element *sgl;
 
1349	u32 offset;
1350	u32 len = 0;
1351
1352	offset = stp_req->sgl.offset;
1353	sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1354	if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1355		return SCI_FAILURE;
1356
1357	if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1358		sgl = &sgl_pair->A;
1359		len = sgl_pair->A.length - offset;
1360	} else {
1361		sgl = &sgl_pair->B;
1362		len = sgl_pair->B.length - offset;
1363	}
1364
1365	if (stp_req->pio_len == 0)
1366		return SCI_SUCCESS;
1367
1368	if (stp_req->pio_len >= len) {
1369		status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1370		if (status != SCI_SUCCESS)
1371			return status;
1372		stp_req->pio_len -= len;
1373
1374		/* update the current sgl, offset and save for future */
1375		sgl = pio_sgl_next(stp_req);
1376		offset = 0;
1377	} else if (stp_req->pio_len < len) {
1378		sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1379
1380		/* Sgl offset will be adjusted and saved for future */
1381		offset += stp_req->pio_len;
1382		sgl->address_lower += stp_req->pio_len;
1383		stp_req->pio_len = 0;
1384	}
1385
1386	stp_req->sgl.offset = offset;
1387
1388	return status;
1389}
1390
1391/**
1392 * sci_stp_request_pio_data_in_copy_data_buffer()
1393 * @stp_req: The request that is used for the SGL processing.
1394 * @data_buf: The buffer of data to be copied.
1395 * @len: The length of the data transfer.
1396 *
1397 * Copy the data from the buffer for the length specified to the IO request SGL
 
 
 
 
1398 * specified data region. enum sci_status
1399 */
1400static enum sci_status
1401sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1402					     u8 *data_buf, u32 len)
1403{
1404	struct isci_request *ireq;
1405	u8 *src_addr;
1406	int copy_len;
1407	struct sas_task *task;
1408	struct scatterlist *sg;
1409	void *kaddr;
1410	int total_len = len;
1411
1412	ireq = to_ireq(stp_req);
1413	task = isci_request_access_task(ireq);
1414	src_addr = data_buf;
1415
1416	if (task->num_scatter > 0) {
1417		sg = task->scatter;
1418
1419		while (total_len > 0) {
1420			struct page *page = sg_page(sg);
1421
1422			copy_len = min_t(int, total_len, sg_dma_len(sg));
1423			kaddr = kmap_atomic(page);
1424			memcpy(kaddr + sg->offset, src_addr, copy_len);
1425			kunmap_atomic(kaddr);
1426			total_len -= copy_len;
1427			src_addr += copy_len;
1428			sg = sg_next(sg);
1429		}
1430	} else {
1431		BUG_ON(task->total_xfer_len < total_len);
1432		memcpy(task->scatter, src_addr, total_len);
1433	}
1434
1435	return SCI_SUCCESS;
1436}
1437
1438/**
1439 * sci_stp_request_pio_data_in_copy_data()
1440 * @stp_req: The PIO DATA IN request that is to receive the data.
1441 * @data_buffer: The buffer to copy from.
1442 *
1443 * Copy the data buffer to the io request data region. enum sci_status
1444 */
1445static enum sci_status sci_stp_request_pio_data_in_copy_data(
1446	struct isci_stp_request *stp_req,
1447	u8 *data_buffer)
1448{
1449	enum sci_status status;
1450
1451	/*
1452	 * If there is less than 1K remaining in the transfer request
1453	 * copy just the data for the transfer */
1454	if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1455		status = sci_stp_request_pio_data_in_copy_data_buffer(
1456			stp_req, data_buffer, stp_req->pio_len);
1457
1458		if (status == SCI_SUCCESS)
1459			stp_req->pio_len = 0;
1460	} else {
1461		/* We are transfering the whole frame so copy */
1462		status = sci_stp_request_pio_data_in_copy_data_buffer(
1463			stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1464
1465		if (status == SCI_SUCCESS)
1466			stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1467	}
1468
1469	return status;
1470}
1471
1472static enum sci_status
1473stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1474					      u32 completion_code)
1475{
 
 
1476	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1477	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1478		ireq->scu_status = SCU_TASK_DONE_GOOD;
1479		ireq->sci_status = SCI_SUCCESS;
1480		sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1481		break;
1482
1483	default:
1484		/* All other completion status cause the IO to be
1485		 * complete.  If a NAK was received, then it is up to
1486		 * the user to retry the request.
1487		 */
1488		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1489		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1490		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1491		break;
1492	}
1493
1494	return SCI_SUCCESS;
1495}
1496
1497static enum sci_status
1498pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1499			      u32 completion_code)
1500{
1501	enum sci_status status = SCI_SUCCESS;
1502	bool all_frames_transferred = false;
1503	struct isci_stp_request *stp_req = &ireq->stp.req;
1504
1505	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1506	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1507		/* Transmit data */
1508		if (stp_req->pio_len != 0) {
1509			status = sci_stp_request_pio_data_out_transmit_data(ireq);
1510			if (status == SCI_SUCCESS) {
1511				if (stp_req->pio_len == 0)
1512					all_frames_transferred = true;
1513			}
1514		} else if (stp_req->pio_len == 0) {
1515			/*
1516			 * this will happen if the all data is written at the
1517			 * first time after the pio setup fis is received
1518			 */
1519			all_frames_transferred  = true;
1520		}
1521
1522		/* all data transferred. */
1523		if (all_frames_transferred) {
1524			/*
1525			 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1526			 * and wait for PIO_SETUP fis / or D2H REg fis. */
1527			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1528		}
1529		break;
1530
1531	default:
1532		/*
1533		 * All other completion status cause the IO to be complete.
1534		 * If a NAK was received, then it is up to the user to retry
1535		 * the request.
1536		 */
1537		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1538		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1539		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1540		break;
1541	}
1542
1543	return status;
1544}
1545
1546static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1547								       u32 frame_index)
1548{
1549	struct isci_host *ihost = ireq->owning_controller;
1550	struct dev_to_host_fis *frame_header;
1551	enum sci_status status;
1552	u32 *frame_buffer;
1553
1554	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1555							       frame_index,
1556							       (void **)&frame_header);
1557
1558	if ((status == SCI_SUCCESS) &&
1559	    (frame_header->fis_type == FIS_REGD2H)) {
1560		sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1561							      frame_index,
1562							      (void **)&frame_buffer);
1563
1564		sci_controller_copy_sata_response(&ireq->stp.rsp,
1565						       frame_header,
1566						       frame_buffer);
1567	}
1568
1569	sci_controller_release_frame(ihost, frame_index);
1570
1571	return status;
1572}
1573
1574static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1575					       u32 frame_index)
1576{
1577	struct isci_host *ihost = ireq->owning_controller;
1578	enum sci_status status;
1579	struct dev_to_host_fis *frame_header;
1580	u32 *frame_buffer;
1581
1582	status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1583							  frame_index,
1584							  (void **)&frame_header);
1585
1586	if (status != SCI_SUCCESS)
1587		return status;
1588
1589	if (frame_header->fis_type != FIS_REGD2H) {
1590		dev_err(&ireq->isci_host->pdev->dev,
1591			"%s ERROR: invalid fis type 0x%X\n",
1592			__func__, frame_header->fis_type);
1593		return SCI_FAILURE;
1594	}
1595
1596	sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1597						 frame_index,
1598						 (void **)&frame_buffer);
1599
1600	sci_controller_copy_sata_response(&ireq->stp.rsp,
1601					  (u32 *)frame_header,
1602					  frame_buffer);
1603
1604	/* Frame has been decoded return it to the controller */
1605	sci_controller_release_frame(ihost, frame_index);
1606
1607	return status;
1608}
1609
1610static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1611						   u32 frame_index)
1612{
1613	struct sas_task *task = isci_request_access_task(ireq);
1614	enum sci_status status;
1615
1616	status = process_unsolicited_fis(ireq, frame_index);
1617
1618	if (status == SCI_SUCCESS) {
1619		if (ireq->stp.rsp.status & ATA_ERR)
1620			status = SCI_FAILURE_IO_RESPONSE_VALID;
1621	} else {
1622		status = SCI_FAILURE_IO_RESPONSE_VALID;
1623	}
1624
1625	if (status != SCI_SUCCESS) {
1626		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1627		ireq->sci_status = status;
1628	} else {
1629		ireq->scu_status = SCU_TASK_DONE_GOOD;
1630		ireq->sci_status = SCI_SUCCESS;
1631	}
1632
1633	/* the d2h ufi is the end of non-data commands */
1634	if (task->data_dir == DMA_NONE)
1635		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1636
1637	return status;
1638}
1639
1640static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1641{
1642	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1643	void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1644	struct scu_task_context *task_context = ireq->tc;
1645
1646	/* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1647	 * type. The TC for previous Packet fis was already there, we only need to
1648	 * change the H2D fis content.
1649	 */
1650	memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1651	memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1652	memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1653	task_context->type.stp.fis_type = FIS_DATA;
1654	task_context->transfer_length_bytes = dev->cdb_len;
1655}
1656
1657static void scu_atapi_construct_task_context(struct isci_request *ireq)
1658{
1659	struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1660	struct sas_task *task = isci_request_access_task(ireq);
1661	struct scu_task_context *task_context = ireq->tc;
1662	int cdb_len = dev->cdb_len;
1663
1664	/* reference: SSTL 1.13.4.2
1665	 * task_type, sata_direction
1666	 */
1667	if (task->data_dir == DMA_TO_DEVICE) {
1668		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1669		task_context->sata_direction = 0;
1670	} else {
1671		/* todo: for NO_DATA command, we need to send out raw frame. */
1672		task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1673		task_context->sata_direction = 1;
1674	}
1675
1676	memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1677	task_context->type.stp.fis_type = FIS_DATA;
1678
1679	memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1680	memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1681	task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1682
1683	/* task phase is set to TX_CMD */
1684	task_context->task_phase = 0x1;
1685
1686	/* retry counter */
1687	task_context->stp_retry_count = 0;
1688
1689	/* data transfer size. */
1690	task_context->transfer_length_bytes = task->total_xfer_len;
1691
1692	/* setup sgl */
1693	sci_request_build_sgl(ireq);
1694}
1695
1696enum sci_status
1697sci_io_request_frame_handler(struct isci_request *ireq,
1698				  u32 frame_index)
1699{
1700	struct isci_host *ihost = ireq->owning_controller;
1701	struct isci_stp_request *stp_req = &ireq->stp.req;
1702	enum sci_base_request_states state;
1703	enum sci_status status;
1704	ssize_t word_cnt;
1705
1706	state = ireq->sm.current_state_id;
1707	switch (state)  {
1708	case SCI_REQ_STARTED: {
1709		struct ssp_frame_hdr ssp_hdr;
1710		void *frame_header;
1711
1712		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1713							      frame_index,
1714							      &frame_header);
1715
1716		word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1717		sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1718
1719		if (ssp_hdr.frame_type == SSP_RESPONSE) {
1720			struct ssp_response_iu *resp_iu;
1721			ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1722
1723			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1724								      frame_index,
1725								      (void **)&resp_iu);
1726
1727			sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1728
1729			resp_iu = &ireq->ssp.rsp;
1730
1731			if (resp_iu->datapres == SAS_DATAPRES_RESPONSE_DATA ||
1732			    resp_iu->datapres == SAS_DATAPRES_SENSE_DATA) {
1733				ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1734				ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1735			} else {
1736				ireq->scu_status = SCU_TASK_DONE_GOOD;
1737				ireq->sci_status = SCI_SUCCESS;
1738			}
1739		} else {
1740			/* not a response frame, why did it get forwarded? */
1741			dev_err(&ihost->pdev->dev,
1742				"%s: SCIC IO Request 0x%p received unexpected "
1743				"frame %d type 0x%02x\n", __func__, ireq,
1744				frame_index, ssp_hdr.frame_type);
1745		}
1746
1747		/*
1748		 * In any case we are done with this frame buffer return it to
1749		 * the controller
1750		 */
1751		sci_controller_release_frame(ihost, frame_index);
1752
1753		return SCI_SUCCESS;
1754	}
1755
1756	case SCI_REQ_TASK_WAIT_TC_RESP:
1757		sci_io_request_copy_response(ireq);
1758		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1759		sci_controller_release_frame(ihost, frame_index);
1760		return SCI_SUCCESS;
1761
1762	case SCI_REQ_SMP_WAIT_RESP: {
1763		struct sas_task *task = isci_request_access_task(ireq);
1764		struct scatterlist *sg = &task->smp_task.smp_resp;
1765		void *frame_header, *kaddr;
1766		u8 *rsp;
1767
1768		sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1769							 frame_index,
1770							 &frame_header);
1771		kaddr = kmap_atomic(sg_page(sg));
1772		rsp = kaddr + sg->offset;
1773		sci_swab32_cpy(rsp, frame_header, 1);
1774
1775		if (rsp[0] == SMP_RESPONSE) {
 
 
 
 
1776			void *smp_resp;
1777
1778			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1779								 frame_index,
1780								 &smp_resp);
1781
1782			word_cnt = (sg->length/4)-1;
1783			if (word_cnt > 0)
1784				word_cnt = min_t(unsigned int, word_cnt,
1785						 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1786			sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1787
1788			ireq->scu_status = SCU_TASK_DONE_GOOD;
1789			ireq->sci_status = SCI_SUCCESS;
1790			sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1791		} else {
1792			/*
1793			 * This was not a response frame why did it get
1794			 * forwarded?
1795			 */
1796			dev_err(&ihost->pdev->dev,
1797				"%s: SCIC SMP Request 0x%p received unexpected "
1798				"frame %d type 0x%02x\n",
1799				__func__,
1800				ireq,
1801				frame_index,
1802				rsp[0]);
1803
1804			ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1805			ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1806			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1807		}
1808		kunmap_atomic(kaddr);
1809
1810		sci_controller_release_frame(ihost, frame_index);
1811
1812		return SCI_SUCCESS;
1813	}
1814
1815	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1816		return sci_stp_request_udma_general_frame_handler(ireq,
1817								       frame_index);
1818
1819	case SCI_REQ_STP_UDMA_WAIT_D2H:
1820		/* Use the general frame handler to copy the resposne data */
1821		status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1822
1823		if (status != SCI_SUCCESS)
1824			return status;
1825
1826		ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1827		ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1828		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1829		return SCI_SUCCESS;
1830
1831	case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1832		struct dev_to_host_fis *frame_header;
1833		u32 *frame_buffer;
1834
1835		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1836								       frame_index,
1837								       (void **)&frame_header);
1838
1839		if (status != SCI_SUCCESS) {
1840			dev_err(&ihost->pdev->dev,
1841				"%s: SCIC IO Request 0x%p could not get frame "
1842				"header for frame index %d, status %x\n",
1843				__func__,
1844				stp_req,
1845				frame_index,
1846				status);
1847
1848			return status;
1849		}
1850
1851		switch (frame_header->fis_type) {
1852		case FIS_REGD2H:
1853			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1854								      frame_index,
1855								      (void **)&frame_buffer);
1856
1857			sci_controller_copy_sata_response(&ireq->stp.rsp,
1858							       frame_header,
1859							       frame_buffer);
1860
1861			/* The command has completed with error */
1862			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1863			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1864			break;
1865
1866		default:
1867			dev_warn(&ihost->pdev->dev,
1868				 "%s: IO Request:0x%p Frame Id:%d protocol "
1869				  "violation occurred\n", __func__, stp_req,
1870				  frame_index);
1871
1872			ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1873			ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1874			break;
1875		}
1876
1877		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1878
1879		/* Frame has been decoded return it to the controller */
1880		sci_controller_release_frame(ihost, frame_index);
1881
1882		return status;
1883	}
1884
1885	case SCI_REQ_STP_PIO_WAIT_FRAME: {
1886		struct sas_task *task = isci_request_access_task(ireq);
1887		struct dev_to_host_fis *frame_header;
1888		u32 *frame_buffer;
1889
1890		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1891								       frame_index,
1892								       (void **)&frame_header);
1893
1894		if (status != SCI_SUCCESS) {
1895			dev_err(&ihost->pdev->dev,
1896				"%s: SCIC IO Request 0x%p could not get frame "
1897				"header for frame index %d, status %x\n",
1898				__func__, stp_req, frame_index, status);
1899			return status;
1900		}
1901
1902		switch (frame_header->fis_type) {
1903		case FIS_PIO_SETUP:
1904			/* Get from the frame buffer the PIO Setup Data */
1905			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1906								      frame_index,
1907								      (void **)&frame_buffer);
1908
1909			/* Get the data from the PIO Setup The SCU Hardware
1910			 * returns first word in the frame_header and the rest
1911			 * of the data is in the frame buffer so we need to
1912			 * back up one dword
1913			 */
1914
1915			/* transfer_count: first 16bits in the 4th dword */
1916			stp_req->pio_len = frame_buffer[3] & 0xffff;
1917
1918			/* status: 4th byte in the 3rd dword */
1919			stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1920
1921			sci_controller_copy_sata_response(&ireq->stp.rsp,
1922							       frame_header,
1923							       frame_buffer);
1924
1925			ireq->stp.rsp.status = stp_req->status;
1926
1927			/* The next state is dependent on whether the
1928			 * request was PIO Data-in or Data out
1929			 */
1930			if (task->data_dir == DMA_FROM_DEVICE) {
1931				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1932			} else if (task->data_dir == DMA_TO_DEVICE) {
1933				/* Transmit data */
1934				status = sci_stp_request_pio_data_out_transmit_data(ireq);
1935				if (status != SCI_SUCCESS)
1936					break;
1937				sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1938			}
1939			break;
1940
1941		case FIS_SETDEVBITS:
1942			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1943			break;
1944
1945		case FIS_REGD2H:
1946			if (frame_header->status & ATA_BUSY) {
1947				/*
1948				 * Now why is the drive sending a D2H Register
1949				 * FIS when it is still busy?  Do nothing since
1950				 * we are still in the right state.
1951				 */
1952				dev_dbg(&ihost->pdev->dev,
1953					"%s: SCIC PIO Request 0x%p received "
1954					"D2H Register FIS with BSY status "
1955					"0x%x\n",
1956					__func__,
1957					stp_req,
1958					frame_header->status);
1959				break;
1960			}
1961
1962			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1963								      frame_index,
1964								      (void **)&frame_buffer);
1965
1966			sci_controller_copy_sata_response(&ireq->stp.rsp,
1967							       frame_header,
1968							       frame_buffer);
1969
1970			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1971			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1972			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1973			break;
1974
1975		default:
1976			/* FIXME: what do we do here? */
1977			break;
1978		}
1979
1980		/* Frame is decoded return it to the controller */
1981		sci_controller_release_frame(ihost, frame_index);
1982
1983		return status;
1984	}
1985
1986	case SCI_REQ_STP_PIO_DATA_IN: {
1987		struct dev_to_host_fis *frame_header;
1988		struct sata_fis_data *frame_buffer;
1989
1990		status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1991								       frame_index,
1992								       (void **)&frame_header);
1993
1994		if (status != SCI_SUCCESS) {
1995			dev_err(&ihost->pdev->dev,
1996				"%s: SCIC IO Request 0x%p could not get frame "
1997				"header for frame index %d, status %x\n",
1998				__func__,
1999				stp_req,
2000				frame_index,
2001				status);
2002			return status;
2003		}
2004
2005		if (frame_header->fis_type != FIS_DATA) {
2006			dev_err(&ihost->pdev->dev,
2007				"%s: SCIC PIO Request 0x%p received frame %d "
2008				"with fis type 0x%02x when expecting a data "
2009				"fis.\n",
2010				__func__,
2011				stp_req,
2012				frame_index,
2013				frame_header->fis_type);
2014
2015			ireq->scu_status = SCU_TASK_DONE_GOOD;
2016			ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2017			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2018
2019			/* Frame is decoded return it to the controller */
2020			sci_controller_release_frame(ihost, frame_index);
2021			return status;
2022		}
2023
2024		if (stp_req->sgl.index < 0) {
2025			ireq->saved_rx_frame_index = frame_index;
2026			stp_req->pio_len = 0;
2027		} else {
2028			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2029								      frame_index,
2030								      (void **)&frame_buffer);
2031
2032			status = sci_stp_request_pio_data_in_copy_data(stp_req,
2033									    (u8 *)frame_buffer);
2034
2035			/* Frame is decoded return it to the controller */
2036			sci_controller_release_frame(ihost, frame_index);
2037		}
2038
2039		/* Check for the end of the transfer, are there more
2040		 * bytes remaining for this data transfer
2041		 */
2042		if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2043			return status;
2044
2045		if ((stp_req->status & ATA_BUSY) == 0) {
2046			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2047			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2048			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2049		} else {
2050			sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2051		}
2052		return status;
2053	}
2054
2055	case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2056		struct sas_task *task = isci_request_access_task(ireq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057
 
2058		sci_controller_release_frame(ihost, frame_index);
2059		ireq->target_device->working_request = ireq;
2060		if (task->data_dir == DMA_NONE) {
2061			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2062			scu_atapi_reconstruct_raw_frame_task_context(ireq);
2063		} else {
2064			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2065			scu_atapi_construct_task_context(ireq);
2066		}
2067
2068		sci_controller_continue_io(ireq);
2069		return SCI_SUCCESS;
2070	}
2071	case SCI_REQ_ATAPI_WAIT_D2H:
2072		return atapi_d2h_reg_frame_handler(ireq, frame_index);
2073	case SCI_REQ_ABORTING:
2074		/*
2075		 * TODO: Is it even possible to get an unsolicited frame in the
2076		 * aborting state?
2077		 */
2078		sci_controller_release_frame(ihost, frame_index);
2079		return SCI_SUCCESS;
2080
2081	default:
2082		dev_warn(&ihost->pdev->dev,
2083			 "%s: SCIC IO Request given unexpected frame %x while "
2084			 "in state %d\n",
2085			 __func__,
2086			 frame_index,
2087			 state);
2088
2089		sci_controller_release_frame(ihost, frame_index);
2090		return SCI_FAILURE_INVALID_STATE;
2091	}
2092}
2093
2094static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2095						       u32 completion_code)
2096{
 
 
2097	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2098	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2099		ireq->scu_status = SCU_TASK_DONE_GOOD;
2100		ireq->sci_status = SCI_SUCCESS;
2101		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2102		break;
2103	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2104	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2105		/* We must check ther response buffer to see if the D2H
2106		 * Register FIS was received before we got the TC
2107		 * completion.
2108		 */
2109		if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2110			sci_remote_device_suspend(ireq->target_device,
2111						  SCI_SW_SUSPEND_NORMAL);
2112
2113			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2114			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2115			sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2116		} else {
2117			/* If we have an error completion status for the
2118			 * TC then we can expect a D2H register FIS from
2119			 * the device so we must change state to wait
2120			 * for it
2121			 */
2122			sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2123		}
2124		break;
2125
2126	/* TODO Check to see if any of these completion status need to
2127	 * wait for the device to host register fis.
2128	 */
2129	/* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2130	 * - this comes only for B0
2131	 */
 
 
 
 
 
 
 
 
2132	default:
2133		/* All other completion status cause the IO to be complete. */
2134		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2135		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2136		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2137		break;
2138	}
2139
2140	return SCI_SUCCESS;
2141}
2142
2143static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2144						  enum sci_base_request_states next)
 
2145{
2146	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2147	case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2148		ireq->scu_status = SCU_TASK_DONE_GOOD;
2149		ireq->sci_status = SCI_SUCCESS;
2150		sci_change_state(&ireq->sm, next);
2151		break;
 
2152	default:
2153		/* All other completion status cause the IO to be complete.
 
2154		 * If a NAK was received, then it is up to the user to retry
2155		 * the request.
2156		 */
2157		ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2158		ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2159
2160		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2161		break;
2162	}
2163
2164	return SCI_SUCCESS;
2165}
2166
2167static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2168							u32 completion_code)
 
2169{
2170	struct isci_remote_device *idev = ireq->target_device;
2171	struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2172	enum sci_status status = SCI_SUCCESS;
2173
2174	switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2175	case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2176		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2177		break;
2178
2179	case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2180		u16 len = sci_req_tx_bytes(ireq);
2181
2182		/* likely non-error data underrun, workaround missing
2183		 * d2h frame from the controller
2184		 */
2185		if (d2h->fis_type != FIS_REGD2H) {
2186			d2h->fis_type = FIS_REGD2H;
2187			d2h->flags = (1 << 6);
2188			d2h->status = 0x50;
2189			d2h->error = 0;
2190			d2h->lbal = 0;
2191			d2h->byte_count_low = len & 0xff;
2192			d2h->byte_count_high = len >> 8;
2193			d2h->device = 0xa0;
2194			d2h->lbal_exp = 0;
2195			d2h->lbam_exp = 0;
2196			d2h->lbah_exp = 0;
2197			d2h->_r_a = 0;
2198			d2h->sector_count = 0x3;
2199			d2h->sector_count_exp = 0;
2200			d2h->_r_b = 0;
2201			d2h->_r_c = 0;
2202			d2h->_r_d = 0;
2203		}
2204
2205		ireq->scu_status = SCU_TASK_DONE_GOOD;
2206		ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2207		status = ireq->sci_status;
2208
2209		/* the hw will have suspended the rnc, so complete the
2210		 * request upon pending resume
2211		 */
2212		sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2213		break;
2214	}
2215	case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2216		/* In this case, there is no UF coming after.
2217		 * compelte the IO now.
2218		 */
2219		ireq->scu_status = SCU_TASK_DONE_GOOD;
2220		ireq->sci_status = SCI_SUCCESS;
2221		sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2222		break;
2223
2224	default:
2225		if (d2h->fis_type == FIS_REGD2H) {
2226			/* UF received change the device state to ATAPI_ERROR */
2227			status = ireq->sci_status;
2228			sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2229		} else {
2230			/* If receiving any non-success TC status, no UF
2231			 * received yet, then an UF for the status fis
2232			 * is coming after (XXX: suspect this is
2233			 * actually a protocol error or a bug like the
2234			 * DONE_UNEXP_FIS case)
2235			 */
2236			ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2237			ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2238
2239			sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2240		}
2241		break;
2242	}
2243
2244	return status;
2245}
2246
2247static int sci_request_smp_completion_status_is_tx_suspend(
2248	unsigned int completion_status)
2249{
2250	switch (completion_status) {
2251	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2252	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2253	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2254	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2255	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2256	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2257		return 1;
2258	}
2259	return 0;
2260}
2261
2262static int sci_request_smp_completion_status_is_tx_rx_suspend(
2263	unsigned int completion_status)
2264{
2265	return 0; /* There are no Tx/Rx SMP suspend conditions. */
2266}
2267
2268static int sci_request_ssp_completion_status_is_tx_suspend(
2269	unsigned int completion_status)
2270{
2271	switch (completion_status) {
2272	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2273	case SCU_TASK_DONE_LF_ERR:
2274	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2275	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2276	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2277	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2278	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2279	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2280	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2281	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2282	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2283		return 1;
2284	}
2285	return 0;
2286}
2287
2288static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2289	unsigned int completion_status)
2290{
2291	return 0; /* There are no Tx/Rx SSP suspend conditions. */
2292}
2293
2294static int sci_request_stpsata_completion_status_is_tx_suspend(
2295	unsigned int completion_status)
2296{
2297	switch (completion_status) {
2298	case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2299	case SCU_TASK_DONE_LL_R_ERR:
2300	case SCU_TASK_DONE_LL_PERR:
2301	case SCU_TASK_DONE_REG_ERR:
2302	case SCU_TASK_DONE_SDB_ERR:
2303	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2304	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2305	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2306	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2307	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2308	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2309	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2310	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2311	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2312		return 1;
2313	}
2314	return 0;
2315}
2316
2317
2318static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2319	unsigned int completion_status)
2320{
2321	switch (completion_status) {
2322	case SCU_TASK_DONE_LF_ERR:
2323	case SCU_TASK_DONE_LL_SY_TERM:
2324	case SCU_TASK_DONE_LL_LF_TERM:
2325	case SCU_TASK_DONE_BREAK_RCVD:
2326	case SCU_TASK_DONE_INV_FIS_LEN:
2327	case SCU_TASK_DONE_UNEXP_FIS:
2328	case SCU_TASK_DONE_UNEXP_SDBFIS:
2329	case SCU_TASK_DONE_MAX_PLD_ERR:
2330		return 1;
2331	}
2332	return 0;
2333}
2334
2335static void sci_request_handle_suspending_completions(
2336	struct isci_request *ireq,
2337	u32 completion_code)
2338{
2339	int is_tx = 0;
2340	int is_tx_rx = 0;
2341
2342	switch (ireq->protocol) {
2343	case SAS_PROTOCOL_SMP:
2344		is_tx = sci_request_smp_completion_status_is_tx_suspend(
2345			completion_code);
2346		is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2347			completion_code);
2348		break;
2349	case SAS_PROTOCOL_SSP:
2350		is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2351			completion_code);
2352		is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2353			completion_code);
2354		break;
2355	case SAS_PROTOCOL_STP:
2356		is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2357			completion_code);
2358		is_tx_rx =
2359			sci_request_stpsata_completion_status_is_tx_rx_suspend(
2360				completion_code);
2361		break;
2362	default:
2363		dev_warn(&ireq->isci_host->pdev->dev,
2364			 "%s: request %p has no valid protocol\n",
2365			 __func__, ireq);
2366		break;
2367	}
2368	if (is_tx || is_tx_rx) {
2369		BUG_ON(is_tx && is_tx_rx);
2370
2371		sci_remote_node_context_suspend(
2372			&ireq->target_device->rnc,
2373			SCI_HW_SUSPEND,
2374			(is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2375				   : SCU_EVENT_TL_RNC_SUSPEND_TX);
2376	}
2377}
2378
2379enum sci_status
2380sci_io_request_tc_completion(struct isci_request *ireq,
2381			     u32 completion_code)
2382{
2383	enum sci_base_request_states state;
2384	struct isci_host *ihost = ireq->owning_controller;
2385
2386	state = ireq->sm.current_state_id;
2387
2388	/* Decode those completions that signal upcoming suspension events. */
2389	sci_request_handle_suspending_completions(
2390		ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2391
2392	switch (state) {
2393	case SCI_REQ_STARTED:
2394		return request_started_state_tc_event(ireq, completion_code);
2395
2396	case SCI_REQ_TASK_WAIT_TC_COMP:
2397		return ssp_task_request_await_tc_event(ireq,
2398						       completion_code);
2399
2400	case SCI_REQ_SMP_WAIT_RESP:
2401		return smp_request_await_response_tc_event(ireq,
2402							   completion_code);
2403
2404	case SCI_REQ_SMP_WAIT_TC_COMP:
2405		return smp_request_await_tc_event(ireq, completion_code);
2406
2407	case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2408		return stp_request_udma_await_tc_event(ireq,
2409						       completion_code);
2410
2411	case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2412		return stp_request_non_data_await_h2d_tc_event(ireq,
2413							       completion_code);
2414
2415	case SCI_REQ_STP_PIO_WAIT_H2D:
2416		return stp_request_pio_await_h2d_completion_tc_event(ireq,
2417								     completion_code);
2418
2419	case SCI_REQ_STP_PIO_DATA_OUT:
2420		return pio_data_out_tx_done_tc_event(ireq, completion_code);
2421
 
 
 
 
 
 
 
 
2422	case SCI_REQ_ABORTING:
2423		return request_aborting_state_tc_event(ireq,
2424						       completion_code);
2425
2426	case SCI_REQ_ATAPI_WAIT_H2D:
2427		return atapi_raw_completion(ireq, completion_code,
2428					    SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2429
2430	case SCI_REQ_ATAPI_WAIT_TC_COMP:
2431		return atapi_raw_completion(ireq, completion_code,
2432					    SCI_REQ_ATAPI_WAIT_D2H);
2433
2434	case SCI_REQ_ATAPI_WAIT_D2H:
2435		return atapi_data_tc_completion_handler(ireq, completion_code);
2436
2437	default:
2438		dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2439			 __func__, completion_code, req_state_name(state));
 
 
 
 
2440		return SCI_FAILURE_INVALID_STATE;
2441	}
2442}
2443
2444/**
2445 * isci_request_process_response_iu() - This function sets the status and
2446 *    response iu, in the task struct, from the request object for the upper
2447 *    layer driver.
2448 * @task: This parameter is the task struct from the upper layer driver.
2449 * @resp_iu: This parameter points to the response iu of the completed request.
2450 * @dev: This parameter specifies the linux device struct.
2451 *
2452 * none.
2453 */
2454static void isci_request_process_response_iu(
2455	struct sas_task *task,
2456	struct ssp_response_iu *resp_iu,
2457	struct device *dev)
2458{
2459	dev_dbg(dev,
2460		"%s: resp_iu = %p "
2461		"resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2462		"resp_iu->response_data_len = %x, "
2463		"resp_iu->sense_data_len = %x\nresponse data: ",
2464		__func__,
2465		resp_iu,
2466		resp_iu->status,
2467		resp_iu->datapres,
2468		resp_iu->response_data_len,
2469		resp_iu->sense_data_len);
2470
2471	task->task_status.stat = resp_iu->status;
2472
2473	/* libsas updates the task status fields based on the response iu. */
2474	sas_ssp_task_response(dev, task, resp_iu);
2475}
2476
2477/**
2478 * isci_request_set_open_reject_status() - This function prepares the I/O
2479 *    completion for OPEN_REJECT conditions.
2480 * @request: This parameter is the completed isci_request object.
2481 * @task: This parameter is the task struct from the upper layer driver.
2482 * @response_ptr: This parameter specifies the service response for the I/O.
2483 * @status_ptr: This parameter specifies the exec status for the I/O.
 
 
 
2484 * @open_rej_reason: This parameter specifies the encoded reason for the
2485 *    abandon-class reject.
2486 *
2487 * none.
2488 */
2489static void isci_request_set_open_reject_status(
2490	struct isci_request *request,
2491	struct sas_task *task,
2492	enum service_response *response_ptr,
2493	enum exec_status *status_ptr,
 
2494	enum sas_open_rej_reason open_rej_reason)
2495{
2496	/* Task in the target is done. */
2497	set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2498	*response_ptr                     = SAS_TASK_UNDELIVERED;
2499	*status_ptr                       = SAS_OPEN_REJECT;
 
2500	task->task_status.open_rej_reason = open_rej_reason;
2501}
2502
2503/**
2504 * isci_request_handle_controller_specific_errors() - This function decodes
2505 *    controller-specific I/O completion error conditions.
2506 * @idev: Remote device
2507 * @request: This parameter is the completed isci_request object.
2508 * @task: This parameter is the task struct from the upper layer driver.
2509 * @response_ptr: This parameter specifies the service response for the I/O.
2510 * @status_ptr: This parameter specifies the exec status for the I/O.
 
 
 
2511 *
2512 * none.
2513 */
2514static void isci_request_handle_controller_specific_errors(
2515	struct isci_remote_device *idev,
2516	struct isci_request *request,
2517	struct sas_task *task,
2518	enum service_response *response_ptr,
2519	enum exec_status *status_ptr)
 
2520{
2521	unsigned int cstatus;
2522
2523	cstatus = request->scu_status;
2524
2525	dev_dbg(&request->isci_host->pdev->dev,
2526		"%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2527		"- controller status = 0x%x\n",
2528		__func__, request, cstatus);
2529
2530	/* Decode the controller-specific errors; most
2531	 * important is to recognize those conditions in which
2532	 * the target may still have a task outstanding that
2533	 * must be aborted.
2534	 *
2535	 * Note that there are SCU completion codes being
2536	 * named in the decode below for which SCIC has already
2537	 * done work to handle them in a way other than as
2538	 * a controller-specific completion code; these are left
2539	 * in the decode below for completeness sake.
2540	 */
2541	switch (cstatus) {
2542	case SCU_TASK_DONE_DMASETUP_DIRERR:
2543	/* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2544	case SCU_TASK_DONE_XFERCNT_ERR:
2545		/* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2546		if (task->task_proto == SAS_PROTOCOL_SMP) {
2547			/* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2548			*response_ptr = SAS_TASK_COMPLETE;
2549
2550			/* See if the device has been/is being stopped. Note
2551			 * that we ignore the quiesce state, since we are
2552			 * concerned about the actual device state.
2553			 */
2554			if (!idev)
2555				*status_ptr = SAS_DEVICE_UNKNOWN;
2556			else
2557				*status_ptr = SAS_ABORTED_TASK;
2558
2559			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
 
 
 
2560		} else {
2561			/* Task in the target is not done. */
2562			*response_ptr = SAS_TASK_UNDELIVERED;
2563
2564			if (!idev)
2565				*status_ptr = SAS_DEVICE_UNKNOWN;
2566			else
2567				*status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2568
2569			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
 
 
 
2570		}
2571
2572		break;
2573
2574	case SCU_TASK_DONE_CRC_ERR:
2575	case SCU_TASK_DONE_NAK_CMD_ERR:
2576	case SCU_TASK_DONE_EXCESS_DATA:
2577	case SCU_TASK_DONE_UNEXP_FIS:
2578	/* Also SCU_TASK_DONE_UNEXP_RESP: */
2579	case SCU_TASK_DONE_VIIT_ENTRY_NV:       /* TODO - conditions? */
2580	case SCU_TASK_DONE_IIT_ENTRY_NV:        /* TODO - conditions? */
2581	case SCU_TASK_DONE_RNCNV_OUTBOUND:      /* TODO - conditions? */
2582		/* These are conditions in which the target
2583		 * has completed the task, so that no cleanup
2584		 * is necessary.
2585		 */
2586		*response_ptr = SAS_TASK_COMPLETE;
2587
2588		/* See if the device has been/is being stopped. Note
2589		 * that we ignore the quiesce state, since we are
2590		 * concerned about the actual device state.
2591		 */
2592		if (!idev)
2593			*status_ptr = SAS_DEVICE_UNKNOWN;
2594		else
2595			*status_ptr = SAS_ABORTED_TASK;
2596
2597		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
 
 
2598		break;
2599
2600
2601	/* Note that the only open reject completion codes seen here will be
2602	 * abandon-class codes; all others are automatically retried in the SCU.
2603	 */
2604	case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2605
2606		isci_request_set_open_reject_status(
2607			request, task, response_ptr, status_ptr,
2608			SAS_OREJ_WRONG_DEST);
2609		break;
2610
2611	case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2612
2613		/* Note - the return of AB0 will change when
2614		 * libsas implements detection of zone violations.
2615		 */
2616		isci_request_set_open_reject_status(
2617			request, task, response_ptr, status_ptr,
2618			SAS_OREJ_RESV_AB0);
2619		break;
2620
2621	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2622
2623		isci_request_set_open_reject_status(
2624			request, task, response_ptr, status_ptr,
2625			SAS_OREJ_RESV_AB1);
2626		break;
2627
2628	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2629
2630		isci_request_set_open_reject_status(
2631			request, task, response_ptr, status_ptr,
2632			SAS_OREJ_RESV_AB2);
2633		break;
2634
2635	case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2636
2637		isci_request_set_open_reject_status(
2638			request, task, response_ptr, status_ptr,
2639			SAS_OREJ_RESV_AB3);
2640		break;
2641
2642	case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2643
2644		isci_request_set_open_reject_status(
2645			request, task, response_ptr, status_ptr,
2646			SAS_OREJ_BAD_DEST);
2647		break;
2648
2649	case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2650
2651		isci_request_set_open_reject_status(
2652			request, task, response_ptr, status_ptr,
2653			SAS_OREJ_STP_NORES);
2654		break;
2655
2656	case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2657
2658		isci_request_set_open_reject_status(
2659			request, task, response_ptr, status_ptr,
2660			SAS_OREJ_EPROTO);
2661		break;
2662
2663	case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2664
2665		isci_request_set_open_reject_status(
2666			request, task, response_ptr, status_ptr,
2667			SAS_OREJ_CONN_RATE);
2668		break;
2669
2670	case SCU_TASK_DONE_LL_R_ERR:
2671	/* Also SCU_TASK_DONE_ACK_NAK_TO: */
2672	case SCU_TASK_DONE_LL_PERR:
2673	case SCU_TASK_DONE_LL_SY_TERM:
2674	/* Also SCU_TASK_DONE_NAK_ERR:*/
2675	case SCU_TASK_DONE_LL_LF_TERM:
2676	/* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2677	case SCU_TASK_DONE_LL_ABORT_ERR:
2678	case SCU_TASK_DONE_SEQ_INV_TYPE:
2679	/* Also SCU_TASK_DONE_UNEXP_XR: */
2680	case SCU_TASK_DONE_XR_IU_LEN_ERR:
2681	case SCU_TASK_DONE_INV_FIS_LEN:
2682	/* Also SCU_TASK_DONE_XR_WD_LEN: */
2683	case SCU_TASK_DONE_SDMA_ERR:
2684	case SCU_TASK_DONE_OFFSET_ERR:
2685	case SCU_TASK_DONE_MAX_PLD_ERR:
2686	case SCU_TASK_DONE_LF_ERR:
2687	case SCU_TASK_DONE_SMP_RESP_TO_ERR:  /* Escalate to dev reset? */
2688	case SCU_TASK_DONE_SMP_LL_RX_ERR:
2689	case SCU_TASK_DONE_UNEXP_DATA:
2690	case SCU_TASK_DONE_UNEXP_SDBFIS:
2691	case SCU_TASK_DONE_REG_ERR:
2692	case SCU_TASK_DONE_SDB_ERR:
2693	case SCU_TASK_DONE_TASK_ABORT:
2694	default:
2695		/* Task in the target is not done. */
2696		*response_ptr = SAS_TASK_UNDELIVERED;
2697		*status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2698
2699		if (task->task_proto == SAS_PROTOCOL_SMP)
2700			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2701		else
 
 
2702			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2703		break;
2704	}
2705}
2706
2707static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2708{
2709	struct task_status_struct *ts = &task->task_status;
2710	struct ata_task_resp *resp = (void *)&ts->buf[0];
2711
2712	resp->frame_len = sizeof(*fis);
2713	memcpy(resp->ending_fis, fis, sizeof(*fis));
2714	ts->buf_valid_size = sizeof(*resp);
2715
2716	/* If an error is flagged let libata decode the fis */
2717	if (ac_err_mask(fis->status))
 
 
2718		ts->stat = SAS_PROTO_RESPONSE;
2719	else
2720		ts->stat = SAS_SAM_STAT_GOOD;
2721
2722	ts->resp = SAS_TASK_COMPLETE;
2723}
2724
2725static void isci_request_io_request_complete(struct isci_host *ihost,
2726					     struct isci_request *request,
2727					     enum sci_io_status completion_status)
2728{
2729	struct sas_task *task = isci_request_access_task(request);
2730	struct ssp_response_iu *resp_iu;
2731	unsigned long task_flags;
2732	struct isci_remote_device *idev = request->target_device;
2733	enum service_response response = SAS_TASK_UNDELIVERED;
2734	enum exec_status status = SAS_ABORTED_TASK;
 
 
 
2735
2736	dev_dbg(&ihost->pdev->dev,
2737		"%s: request = %p, task = %p, "
2738		"task->data_dir = %d completion_status = 0x%x\n",
2739		__func__, request, task, task->data_dir, completion_status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2740
2741	/* The request is done from an SCU HW perspective. */
 
 
 
 
 
 
 
2742
2743	/* This is an active request being completed from the core. */
2744	switch (completion_status) {
2745
2746	case SCI_IO_FAILURE_RESPONSE_VALID:
2747		dev_dbg(&ihost->pdev->dev,
2748			"%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2749			__func__, request, task);
2750
2751		if (sas_protocol_ata(task->task_proto)) {
2752			isci_process_stp_response(task, &request->stp.rsp);
2753		} else if (SAS_PROTOCOL_SSP == task->task_proto) {
2754
2755			/* crack the iu response buffer. */
2756			resp_iu = &request->ssp.rsp;
2757			isci_request_process_response_iu(task, resp_iu,
2758							 &ihost->pdev->dev);
 
 
 
2759
2760		} else if (SAS_PROTOCOL_SMP == task->task_proto) {
 
 
 
 
 
 
 
2761
2762			dev_err(&ihost->pdev->dev,
2763				"%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2764					"SAS_PROTOCOL_SMP protocol\n",
2765				__func__);
2766
2767		} else
2768			dev_err(&ihost->pdev->dev,
2769				"%s: unknown protocol\n", __func__);
2770
2771		/* use the task status set in the task struct by the
2772		* isci_request_process_response_iu call.
2773		*/
2774		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2775		response = task->task_status.resp;
2776		status = task->task_status.stat;
2777		break;
2778
2779	case SCI_IO_SUCCESS:
2780	case SCI_IO_SUCCESS_IO_DONE_EARLY:
2781
2782		response = SAS_TASK_COMPLETE;
2783		status   = SAS_SAM_STAT_GOOD;
 
 
 
2784		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2785
2786		if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2787
2788			/* This was an SSP / STP / SATA transfer.
2789			* There is a possibility that less data than
2790			* the maximum was transferred.
2791			*/
2792			u32 transferred_length = sci_req_tx_bytes(request);
2793
2794			task->task_status.residual
2795				= task->total_xfer_len - transferred_length;
2796
2797			/* If there were residual bytes, call this an
2798			* underrun.
2799			*/
2800			if (task->task_status.residual != 0)
2801				status = SAS_DATA_UNDERRUN;
2802
 
2803			dev_dbg(&ihost->pdev->dev,
2804				"%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2805				__func__, status);
 
 
2806
2807		} else
2808			dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2809				__func__);
2810		break;
 
 
 
 
2811
2812	case SCI_IO_FAILURE_TERMINATED:
2813
2814		dev_dbg(&ihost->pdev->dev,
2815			"%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2816			__func__, request, task);
 
2817
2818		/* The request was terminated explicitly. */
2819		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2820		response = SAS_TASK_UNDELIVERED;
2821
2822		/* See if the device has been/is being stopped. Note
2823		* that we ignore the quiesce state, since we are
2824		* concerned about the actual device state.
2825		*/
2826		if (!idev)
2827			status = SAS_DEVICE_UNKNOWN;
2828		else
2829			status = SAS_ABORTED_TASK;
2830		break;
2831
2832	case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
 
2833
2834		isci_request_handle_controller_specific_errors(idev, request,
2835							       task, &response,
2836							       &status);
2837		break;
2838
2839	case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2840		/* This is a special case, in that the I/O completion
2841		* is telling us that the device needs a reset.
2842		* In order for the device reset condition to be
2843		* noticed, the I/O has to be handled in the error
2844		* handler.  Set the reset flag and cause the
2845		* SCSI error thread to be scheduled.
2846		*/
2847		spin_lock_irqsave(&task->task_state_lock, task_flags);
2848		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2849		spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2850
2851		/* Fail the I/O. */
2852		response = SAS_TASK_UNDELIVERED;
2853		status = SAS_SAM_STAT_TASK_ABORTED;
2854
2855		clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2856		break;
 
2857
2858	case SCI_FAILURE_RETRY_REQUIRED:
 
 
 
 
 
 
 
 
 
 
2859
2860		/* Fail the I/O so it can be retried. */
2861		response = SAS_TASK_UNDELIVERED;
2862		if (!idev)
2863			status = SAS_DEVICE_UNKNOWN;
2864		else
2865			status = SAS_ABORTED_TASK;
2866
2867		set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2868		break;
 
 
 
2869
 
 
 
 
2870
2871	default:
2872		/* Catch any otherwise unhandled error codes here. */
2873		dev_dbg(&ihost->pdev->dev,
2874			"%s: invalid completion code: 0x%x - "
2875				"isci_request = %p\n",
2876			__func__, completion_status, request);
2877
2878		response = SAS_TASK_UNDELIVERED;
2879
2880		/* See if the device has been/is being stopped. Note
2881		* that we ignore the quiesce state, since we are
2882		* concerned about the actual device state.
2883		*/
2884		if (!idev)
2885			status = SAS_DEVICE_UNKNOWN;
2886		else
2887			status = SAS_ABORTED_TASK;
2888
2889		if (SAS_PROTOCOL_SMP == task->task_proto)
 
 
2890			set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2891		else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2892			clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2893		break;
2894	}
2895
2896	switch (task->task_proto) {
2897	case SAS_PROTOCOL_SSP:
2898		if (task->data_dir == DMA_NONE)
2899			break;
2900		if (task->num_scatter == 0)
2901			/* 0 indicates a single dma address */
2902			dma_unmap_single(&ihost->pdev->dev,
2903					 request->zero_scatter_daddr,
2904					 task->total_xfer_len, task->data_dir);
2905		else  /* unmap the sgl dma addresses */
2906			dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2907				     request->num_sg_entries, task->data_dir);
2908		break;
2909	case SAS_PROTOCOL_SMP: {
2910		struct scatterlist *sg = &task->smp_task.smp_req;
2911		struct smp_req *smp_req;
2912		void *kaddr;
2913
2914		dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2915
2916		/* need to swab it back in case the command buffer is re-used */
2917		kaddr = kmap_atomic(sg_page(sg));
2918		smp_req = kaddr + sg->offset;
2919		sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2920		kunmap_atomic(kaddr);
2921		break;
2922	}
2923	default:
2924		break;
2925	}
2926
2927	spin_lock_irqsave(&task->task_state_lock, task_flags);
2928
2929	task->task_status.resp = response;
2930	task->task_status.stat = status;
2931
2932	if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2933		/* Normal notification (task_done) */
2934		task->task_state_flags |= SAS_TASK_STATE_DONE;
2935		task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2936	}
2937	spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2938
2939	/* complete the io request to the core. */
2940	sci_controller_complete_io(ihost, request->target_device, request);
 
2941
2942	/* set terminated handle so it cannot be completed or
2943	 * terminated again, and to cause any calls into abort
2944	 * task to recognize the already completed case.
2945	 */
2946	set_bit(IREQ_TERMINATED, &request->flags);
2947
2948	ireq_done(ihost, request, task);
2949}
2950
2951static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2952{
2953	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2954	struct domain_device *dev = ireq->target_device->domain_dev;
2955	enum sci_base_request_states state;
2956	struct sas_task *task;
2957
2958	/* XXX as hch said always creating an internal sas_task for tmf
2959	 * requests would simplify the driver
2960	 */
2961	task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2962
2963	/* all unaccelerated request types (non ssp or ncq) handled with
2964	 * substates
2965	 */
2966	if (!task && dev->dev_type == SAS_END_DEVICE) {
2967		state = SCI_REQ_TASK_WAIT_TC_COMP;
 
 
 
 
2968	} else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2969		state = SCI_REQ_SMP_WAIT_RESP;
2970	} else if (task && sas_protocol_ata(task->task_proto) &&
2971		   !task->ata_task.use_ncq) {
2972		if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2973			task->ata_task.fis.command == ATA_CMD_PACKET) {
2974			state = SCI_REQ_ATAPI_WAIT_H2D;
2975		} else if (task->data_dir == DMA_NONE) {
2976			state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2977		} else if (task->ata_task.dma_xfer) {
2978			state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2979		} else /* PIO */ {
2980			state = SCI_REQ_STP_PIO_WAIT_H2D;
2981		}
2982	} else {
2983		/* SSP or NCQ are fully accelerated, no substates */
2984		return;
2985	}
2986	sci_change_state(sm, state);
2987}
2988
2989static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2990{
2991	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2992	struct isci_host *ihost = ireq->owning_controller;
2993
2994	/* Tell the SCI_USER that the IO request is complete */
2995	if (!test_bit(IREQ_TMF, &ireq->flags))
2996		isci_request_io_request_complete(ihost, ireq,
2997						 ireq->sci_status);
2998	else
2999		isci_task_request_complete(ihost, ireq, ireq->sci_status);
3000}
3001
3002static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3003{
3004	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3005
3006	/* Setting the abort bit in the Task Context is required by the silicon. */
3007	ireq->tc->abort = 1;
3008}
3009
3010static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3011{
3012	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3013
3014	ireq->target_device->working_request = ireq;
3015}
3016
3017static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3018{
3019	struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3020
3021	ireq->target_device->working_request = ireq;
3022}
3023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3024static const struct sci_base_state sci_request_state_table[] = {
3025	[SCI_REQ_INIT] = { },
3026	[SCI_REQ_CONSTRUCTED] = { },
3027	[SCI_REQ_STARTED] = {
3028		.enter_state = sci_request_started_state_enter,
3029	},
3030	[SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3031		.enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3032	},
3033	[SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3034	[SCI_REQ_STP_PIO_WAIT_H2D] = {
3035		.enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3036	},
3037	[SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3038	[SCI_REQ_STP_PIO_DATA_IN] = { },
3039	[SCI_REQ_STP_PIO_DATA_OUT] = { },
3040	[SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3041	[SCI_REQ_STP_UDMA_WAIT_D2H] = { },
 
 
 
 
 
 
 
3042	[SCI_REQ_TASK_WAIT_TC_COMP] = { },
3043	[SCI_REQ_TASK_WAIT_TC_RESP] = { },
3044	[SCI_REQ_SMP_WAIT_RESP] = { },
3045	[SCI_REQ_SMP_WAIT_TC_COMP] = { },
3046	[SCI_REQ_ATAPI_WAIT_H2D] = { },
3047	[SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3048	[SCI_REQ_ATAPI_WAIT_D2H] = { },
3049	[SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3050	[SCI_REQ_COMPLETED] = {
3051		.enter_state = sci_request_completed_state_enter,
3052	},
3053	[SCI_REQ_ABORTING] = {
3054		.enter_state = sci_request_aborting_state_enter,
3055	},
3056	[SCI_REQ_FINAL] = { },
3057};
3058
3059static void
3060sci_general_request_construct(struct isci_host *ihost,
3061				   struct isci_remote_device *idev,
3062				   struct isci_request *ireq)
3063{
3064	sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3065
3066	ireq->target_device = idev;
3067	ireq->protocol = SAS_PROTOCOL_NONE;
3068	ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3069
3070	ireq->sci_status   = SCI_SUCCESS;
3071	ireq->scu_status   = 0;
3072	ireq->post_context = 0xFFFFFFFF;
3073}
3074
3075static enum sci_status
3076sci_io_request_construct(struct isci_host *ihost,
3077			  struct isci_remote_device *idev,
3078			  struct isci_request *ireq)
3079{
3080	struct domain_device *dev = idev->domain_dev;
3081	enum sci_status status = SCI_SUCCESS;
3082
3083	/* Build the common part of the request */
3084	sci_general_request_construct(ihost, idev, ireq);
3085
3086	if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3087		return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3088
3089	if (dev->dev_type == SAS_END_DEVICE)
3090		/* pass */;
3091	else if (dev_is_sata(dev))
3092		memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3093	else if (dev_is_expander(dev->dev_type))
3094		/* pass */;
3095	else
3096		return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3097
3098	memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3099
3100	return status;
3101}
3102
3103enum sci_status sci_task_request_construct(struct isci_host *ihost,
3104					    struct isci_remote_device *idev,
3105					    u16 io_tag, struct isci_request *ireq)
3106{
3107	struct domain_device *dev = idev->domain_dev;
3108	enum sci_status status = SCI_SUCCESS;
3109
3110	/* Build the common part of the request */
3111	sci_general_request_construct(ihost, idev, ireq);
3112
3113	if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
 
3114		set_bit(IREQ_TMF, &ireq->flags);
3115		memset(ireq->tc, 0, sizeof(struct scu_task_context));
3116
3117		/* Set the protocol indicator. */
3118		if (dev_is_sata(dev))
3119			ireq->protocol = SAS_PROTOCOL_STP;
3120		else
3121			ireq->protocol = SAS_PROTOCOL_SSP;
3122	} else
3123		status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3124
3125	return status;
3126}
3127
3128static enum sci_status isci_request_ssp_request_construct(
3129	struct isci_request *request)
3130{
3131	enum sci_status status;
3132
3133	dev_dbg(&request->isci_host->pdev->dev,
3134		"%s: request = %p\n",
3135		__func__,
3136		request);
3137	status = sci_io_request_construct_basic_ssp(request);
3138	return status;
3139}
3140
3141static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3142{
3143	struct sas_task *task = isci_request_access_task(ireq);
3144	struct host_to_dev_fis *fis = &ireq->stp.cmd;
3145	struct ata_queued_cmd *qc = task->uldd_task;
3146	enum sci_status status;
3147
3148	dev_dbg(&ireq->isci_host->pdev->dev,
3149		"%s: ireq = %p\n",
3150		__func__,
3151		ireq);
3152
3153	memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3154	if (!task->ata_task.device_control_reg_update)
3155		fis->flags |= 0x80;
3156	fis->flags &= 0xF0;
3157
3158	status = sci_io_request_construct_basic_sata(ireq);
3159
3160	if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3161		   qc->tf.command == ATA_CMD_FPDMA_READ ||
3162		   qc->tf.command == ATA_CMD_FPDMA_RECV ||
3163		   qc->tf.command == ATA_CMD_FPDMA_SEND ||
3164		   qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3165		fis->sector_count = qc->tag << 3;
3166		ireq->tc->type.stp.ncq_tag = qc->tag;
3167	}
3168
3169	return status;
3170}
3171
3172static enum sci_status
3173sci_io_request_construct_smp(struct device *dev,
3174			      struct isci_request *ireq,
3175			      struct sas_task *task)
3176{
3177	struct scatterlist *sg = &task->smp_task.smp_req;
3178	struct isci_remote_device *idev;
3179	struct scu_task_context *task_context;
3180	struct isci_port *iport;
3181	struct smp_req *smp_req;
3182	void *kaddr;
3183	u8 req_len;
3184	u32 cmd;
3185
3186	kaddr = kmap_atomic(sg_page(sg));
3187	smp_req = kaddr + sg->offset;
3188	/*
3189	 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3190	 * functions under SAS 2.0, a zero request length really indicates
3191	 * a non-zero default length.
3192	 */
3193	if (smp_req->req_len == 0) {
3194		switch (smp_req->func) {
3195		case SMP_DISCOVER:
3196		case SMP_REPORT_PHY_ERR_LOG:
3197		case SMP_REPORT_PHY_SATA:
3198		case SMP_REPORT_ROUTE_INFO:
3199			smp_req->req_len = 2;
3200			break;
3201		case SMP_CONF_ROUTE_INFO:
3202		case SMP_PHY_CONTROL:
3203		case SMP_PHY_TEST_FUNCTION:
3204			smp_req->req_len = 9;
3205			break;
3206			/* Default - zero is a valid default for 2.0. */
3207		}
3208	}
3209	req_len = smp_req->req_len;
3210	sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3211	cmd = *(u32 *) smp_req;
3212	kunmap_atomic(kaddr);
3213
3214	if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3215		return SCI_FAILURE;
3216
3217	ireq->protocol = SAS_PROTOCOL_SMP;
3218
3219	/* byte swap the smp request. */
3220
3221	task_context = ireq->tc;
3222
3223	idev = ireq->target_device;
3224	iport = idev->owning_port;
3225
3226	/*
3227	 * Fill in the TC with its required data
3228	 * 00h
3229	 */
3230	task_context->priority = 0;
3231	task_context->initiator_request = 1;
3232	task_context->connection_rate = idev->connection_rate;
3233	task_context->protocol_engine_index = ISCI_PEG;
3234	task_context->logical_port_index = iport->physical_port_index;
3235	task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3236	task_context->abort = 0;
3237	task_context->valid = SCU_TASK_CONTEXT_VALID;
3238	task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3239
3240	/* 04h */
3241	task_context->remote_node_index = idev->rnc.remote_node_index;
3242	task_context->command_code = 0;
3243	task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3244
3245	/* 08h */
3246	task_context->link_layer_control = 0;
3247	task_context->do_not_dma_ssp_good_response = 1;
3248	task_context->strict_ordering = 0;
3249	task_context->control_frame = 1;
3250	task_context->timeout_enable = 0;
3251	task_context->block_guard_enable = 0;
3252
3253	/* 0ch */
3254	task_context->address_modifier = 0;
3255
3256	/* 10h */
3257	task_context->ssp_command_iu_length = req_len;
3258
3259	/* 14h */
3260	task_context->transfer_length_bytes = 0;
3261
3262	/*
3263	 * 18h ~ 30h, protocol specific
3264	 * since commandIU has been build by framework at this point, we just
3265	 * copy the frist DWord from command IU to this location. */
3266	memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3267
3268	/*
3269	 * 40h
3270	 * "For SMP you could program it to zero. We would prefer that way
3271	 * so that done code will be consistent." - Venki
3272	 */
3273	task_context->task_phase = 0;
3274
3275	ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3276			      (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3277			       (iport->physical_port_index <<
3278				SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3279			      ISCI_TAG_TCI(ireq->io_tag));
3280	/*
3281	 * Copy the physical address for the command buffer to the SCU Task
3282	 * Context command buffer should not contain command header.
3283	 */
3284	task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3285	task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3286
3287	/* SMP response comes as UF, so no need to set response IU address. */
3288	task_context->response_iu_upper = 0;
3289	task_context->response_iu_lower = 0;
3290
3291	sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3292
3293	return SCI_SUCCESS;
3294}
3295
3296/*
3297 * isci_smp_request_build() - This function builds the smp request.
3298 * @ireq: This parameter points to the isci_request allocated in the
3299 *    request construct function.
3300 *
3301 * SCI_SUCCESS on successfull completion, or specific failure code.
3302 */
3303static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3304{
3305	struct sas_task *task = isci_request_access_task(ireq);
3306	struct device *dev = &ireq->isci_host->pdev->dev;
3307	enum sci_status status = SCI_FAILURE;
3308
3309	status = sci_io_request_construct_smp(dev, ireq, task);
3310	if (status != SCI_SUCCESS)
3311		dev_dbg(&ireq->isci_host->pdev->dev,
3312			 "%s: failed with status = %d\n",
3313			 __func__,
3314			 status);
3315
3316	return status;
3317}
3318
3319/**
3320 * isci_io_request_build() - This function builds the io request object.
3321 * @ihost: This parameter specifies the ISCI host object
3322 * @request: This parameter points to the isci_request object allocated in the
3323 *    request construct function.
3324 * @idev: This parameter is the handle for the sci core's remote device
3325 *    object that is the destination for this request.
3326 *
3327 * SCI_SUCCESS on successfull completion, or specific failure code.
3328 */
3329static enum sci_status isci_io_request_build(struct isci_host *ihost,
3330					     struct isci_request *request,
3331					     struct isci_remote_device *idev)
3332{
3333	enum sci_status status = SCI_SUCCESS;
3334	struct sas_task *task = isci_request_access_task(request);
3335
3336	dev_dbg(&ihost->pdev->dev,
3337		"%s: idev = 0x%p; request = %p, "
3338		"num_scatter = %d\n",
3339		__func__,
3340		idev,
3341		request,
3342		task->num_scatter);
3343
3344	/* map the sgl addresses, if present.
3345	 * libata does the mapping for sata devices
3346	 * before we get the request.
3347	 */
3348	if (task->num_scatter &&
3349	    !sas_protocol_ata(task->task_proto) &&
3350	    !(SAS_PROTOCOL_SMP & task->task_proto)) {
3351
3352		request->num_sg_entries = dma_map_sg(
3353			&ihost->pdev->dev,
3354			task->scatter,
3355			task->num_scatter,
3356			task->data_dir
3357			);
3358
3359		if (request->num_sg_entries == 0)
3360			return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3361	}
3362
3363	status = sci_io_request_construct(ihost, idev, request);
3364
3365	if (status != SCI_SUCCESS) {
3366		dev_dbg(&ihost->pdev->dev,
3367			 "%s: failed request construct\n",
3368			 __func__);
3369		return SCI_FAILURE;
3370	}
3371
3372	switch (task->task_proto) {
3373	case SAS_PROTOCOL_SMP:
3374		status = isci_smp_request_build(request);
3375		break;
3376	case SAS_PROTOCOL_SSP:
3377		status = isci_request_ssp_request_construct(request);
3378		break;
3379	case SAS_PROTOCOL_SATA:
3380	case SAS_PROTOCOL_STP:
3381	case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3382		status = isci_request_stp_request_construct(request);
3383		break;
3384	default:
3385		dev_dbg(&ihost->pdev->dev,
3386			 "%s: unknown protocol\n", __func__);
3387		return SCI_FAILURE;
3388	}
3389
3390	return status;
3391}
3392
3393static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3394{
3395	struct isci_request *ireq;
3396
3397	ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3398	ireq->io_tag = tag;
3399	ireq->io_request_completion = NULL;
3400	ireq->flags = 0;
3401	ireq->num_sg_entries = 0;
 
 
 
3402
3403	return ireq;
3404}
3405
3406struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3407					      struct sas_task *task,
3408					      u16 tag)
3409{
3410	struct isci_request *ireq;
3411
3412	ireq = isci_request_from_tag(ihost, tag);
3413	ireq->ttype_ptr.io_task_ptr = task;
3414	clear_bit(IREQ_TMF, &ireq->flags);
3415	task->lldd_task = ireq;
3416
3417	return ireq;
3418}
3419
3420struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3421					       struct isci_tmf *isci_tmf,
3422					       u16 tag)
3423{
3424	struct isci_request *ireq;
3425
3426	ireq = isci_request_from_tag(ihost, tag);
3427	ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3428	set_bit(IREQ_TMF, &ireq->flags);
3429
3430	return ireq;
3431}
3432
3433int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3434			 struct sas_task *task, struct isci_request *ireq)
3435{
3436	enum sci_status status;
 
3437	unsigned long flags;
3438	int ret = 0;
3439
 
 
 
3440	status = isci_io_request_build(ihost, ireq, idev);
3441	if (status != SCI_SUCCESS) {
3442		dev_dbg(&ihost->pdev->dev,
3443			 "%s: request_construct failed - status = 0x%x\n",
3444			 __func__,
3445			 status);
3446		return status;
3447	}
3448
3449	spin_lock_irqsave(&ihost->scic_lock, flags);
3450
3451	if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3452
3453		if (isci_task_is_ncq_recovery(task)) {
3454
3455			/* The device is in an NCQ recovery state.  Issue the
3456			 * request on the task side.  Note that it will
3457			 * complete on the I/O request side because the
3458			 * request was built that way (ie.
3459			 * ireq->is_task_management_request is false).
3460			 */
3461			status = sci_controller_start_task(ihost,
3462							    idev,
3463							    ireq);
3464		} else {
3465			status = SCI_FAILURE;
3466		}
3467	} else {
3468		/* send the request, let the core assign the IO TAG.	*/
3469		status = sci_controller_start_io(ihost, idev,
3470						  ireq);
3471	}
3472
3473	if (status != SCI_SUCCESS &&
3474	    status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3475		dev_dbg(&ihost->pdev->dev,
3476			 "%s: failed request start (0x%x)\n",
3477			 __func__, status);
3478		spin_unlock_irqrestore(&ihost->scic_lock, flags);
3479		return status;
3480	}
 
3481	/* Either I/O started OK, or the core has signaled that
3482	 * the device needs a target reset.
 
 
 
 
 
3483	 */
3484	if (status != SCI_SUCCESS) {
 
 
 
 
3485		/* The request did not really start in the
3486		 * hardware, so clear the request handle
3487		 * here so no terminations will be done.
3488		 */
3489		set_bit(IREQ_TERMINATED, &ireq->flags);
 
3490	}
3491	spin_unlock_irqrestore(&ihost->scic_lock, flags);
3492
3493	if (status ==
3494	    SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3495		/* Signal libsas that we need the SCSI error
3496		 * handler thread to work on this I/O and that
3497		 * we want a device reset.
3498		 */
3499		spin_lock_irqsave(&task->task_state_lock, flags);
3500		task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3501		spin_unlock_irqrestore(&task->task_state_lock, flags);
3502
3503		/* Cause this task to be scheduled in the SCSI error
3504		 * handler thread.
3505		 */
3506		sas_task_abort(task);
 
3507
3508		/* Change the status, since we are holding
3509		 * the I/O until it is managed by the SCSI
3510		 * error handler.
3511		 */
3512		status = SCI_SUCCESS;
3513	}
3514
3515	return ret;
3516}