Loading...
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include "isci.h"
57#include "task.h"
58#include "request.h"
59#include "scu_completion_codes.h"
60#include "scu_event_codes.h"
61#include "sas.h"
62
63static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
64 int idx)
65{
66 if (idx == 0)
67 return &ireq->tc->sgl_pair_ab;
68 else if (idx == 1)
69 return &ireq->tc->sgl_pair_cd;
70 else if (idx < 0)
71 return NULL;
72 else
73 return &ireq->sg_table[idx - 2];
74}
75
76static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
77 struct isci_request *ireq, u32 idx)
78{
79 u32 offset;
80
81 if (idx == 0) {
82 offset = (void *) &ireq->tc->sgl_pair_ab -
83 (void *) &ihost->task_context_table[0];
84 return ihost->task_context_dma + offset;
85 } else if (idx == 1) {
86 offset = (void *) &ireq->tc->sgl_pair_cd -
87 (void *) &ihost->task_context_table[0];
88 return ihost->task_context_dma + offset;
89 }
90
91 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
92}
93
94static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
95{
96 e->length = sg_dma_len(sg);
97 e->address_upper = upper_32_bits(sg_dma_address(sg));
98 e->address_lower = lower_32_bits(sg_dma_address(sg));
99 e->address_modifier = 0;
100}
101
102static void sci_request_build_sgl(struct isci_request *ireq)
103{
104 struct isci_host *ihost = ireq->isci_host;
105 struct sas_task *task = isci_request_access_task(ireq);
106 struct scatterlist *sg = NULL;
107 dma_addr_t dma_addr;
108 u32 sg_idx = 0;
109 struct scu_sgl_element_pair *scu_sg = NULL;
110 struct scu_sgl_element_pair *prev_sg = NULL;
111
112 if (task->num_scatter > 0) {
113 sg = task->scatter;
114
115 while (sg) {
116 scu_sg = to_sgl_element_pair(ireq, sg_idx);
117 init_sgl_element(&scu_sg->A, sg);
118 sg = sg_next(sg);
119 if (sg) {
120 init_sgl_element(&scu_sg->B, sg);
121 sg = sg_next(sg);
122 } else
123 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
124
125 if (prev_sg) {
126 dma_addr = to_sgl_element_pair_dma(ihost,
127 ireq,
128 sg_idx);
129
130 prev_sg->next_pair_upper =
131 upper_32_bits(dma_addr);
132 prev_sg->next_pair_lower =
133 lower_32_bits(dma_addr);
134 }
135
136 prev_sg = scu_sg;
137 sg_idx++;
138 }
139 } else { /* handle when no sg */
140 scu_sg = to_sgl_element_pair(ireq, sg_idx);
141
142 dma_addr = dma_map_single(&ihost->pdev->dev,
143 task->scatter,
144 task->total_xfer_len,
145 task->data_dir);
146
147 ireq->zero_scatter_daddr = dma_addr;
148
149 scu_sg->A.length = task->total_xfer_len;
150 scu_sg->A.address_upper = upper_32_bits(dma_addr);
151 scu_sg->A.address_lower = lower_32_bits(dma_addr);
152 }
153
154 if (scu_sg) {
155 scu_sg->next_pair_upper = 0;
156 scu_sg->next_pair_lower = 0;
157 }
158}
159
160static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
161{
162 struct ssp_cmd_iu *cmd_iu;
163 struct sas_task *task = isci_request_access_task(ireq);
164
165 cmd_iu = &ireq->ssp.cmd;
166
167 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
168 cmd_iu->add_cdb_len = 0;
169 cmd_iu->_r_a = 0;
170 cmd_iu->_r_b = 0;
171 cmd_iu->en_fburst = 0; /* unsupported */
172 cmd_iu->task_prio = task->ssp_task.task_prio;
173 cmd_iu->task_attr = task->ssp_task.task_attr;
174 cmd_iu->_r_c = 0;
175
176 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
177 sizeof(task->ssp_task.cdb) / sizeof(u32));
178}
179
180static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
181{
182 struct ssp_task_iu *task_iu;
183 struct sas_task *task = isci_request_access_task(ireq);
184 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
185
186 task_iu = &ireq->ssp.tmf;
187
188 memset(task_iu, 0, sizeof(struct ssp_task_iu));
189
190 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
191
192 task_iu->task_func = isci_tmf->tmf_code;
193 task_iu->task_tag =
194 (ireq->ttype == tmf_task) ?
195 isci_tmf->io_tag :
196 SCI_CONTROLLER_INVALID_IO_TAG;
197}
198
199/**
200 * This method is will fill in the SCU Task Context for any type of SSP request.
201 * @sci_req:
202 * @task_context:
203 *
204 */
205static void scu_ssp_reqeust_construct_task_context(
206 struct isci_request *ireq,
207 struct scu_task_context *task_context)
208{
209 dma_addr_t dma_addr;
210 struct isci_remote_device *idev;
211 struct isci_port *iport;
212
213 idev = ireq->target_device;
214 iport = idev->owning_port;
215
216 /* Fill in the TC with the its required data */
217 task_context->abort = 0;
218 task_context->priority = 0;
219 task_context->initiator_request = 1;
220 task_context->connection_rate = idev->connection_rate;
221 task_context->protocol_engine_index = ISCI_PEG;
222 task_context->logical_port_index = iport->physical_port_index;
223 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
224 task_context->valid = SCU_TASK_CONTEXT_VALID;
225 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
226
227 task_context->remote_node_index = idev->rnc.remote_node_index;
228 task_context->command_code = 0;
229
230 task_context->link_layer_control = 0;
231 task_context->do_not_dma_ssp_good_response = 1;
232 task_context->strict_ordering = 0;
233 task_context->control_frame = 0;
234 task_context->timeout_enable = 0;
235 task_context->block_guard_enable = 0;
236
237 task_context->address_modifier = 0;
238
239 /* task_context->type.ssp.tag = ireq->io_tag; */
240 task_context->task_phase = 0x01;
241
242 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
243 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
244 (iport->physical_port_index <<
245 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
246 ISCI_TAG_TCI(ireq->io_tag));
247
248 /*
249 * Copy the physical address for the command buffer to the
250 * SCU Task Context
251 */
252 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
253
254 task_context->command_iu_upper = upper_32_bits(dma_addr);
255 task_context->command_iu_lower = lower_32_bits(dma_addr);
256
257 /*
258 * Copy the physical address for the response buffer to the
259 * SCU Task Context
260 */
261 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
262
263 task_context->response_iu_upper = upper_32_bits(dma_addr);
264 task_context->response_iu_lower = lower_32_bits(dma_addr);
265}
266
267/**
268 * This method is will fill in the SCU Task Context for a SSP IO request.
269 * @sci_req:
270 *
271 */
272static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
273 enum dma_data_direction dir,
274 u32 len)
275{
276 struct scu_task_context *task_context = ireq->tc;
277
278 scu_ssp_reqeust_construct_task_context(ireq, task_context);
279
280 task_context->ssp_command_iu_length =
281 sizeof(struct ssp_cmd_iu) / sizeof(u32);
282 task_context->type.ssp.frame_type = SSP_COMMAND;
283
284 switch (dir) {
285 case DMA_FROM_DEVICE:
286 case DMA_NONE:
287 default:
288 task_context->task_type = SCU_TASK_TYPE_IOREAD;
289 break;
290 case DMA_TO_DEVICE:
291 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
292 break;
293 }
294
295 task_context->transfer_length_bytes = len;
296
297 if (task_context->transfer_length_bytes > 0)
298 sci_request_build_sgl(ireq);
299}
300
301/**
302 * This method will fill in the SCU Task Context for a SSP Task request. The
303 * following important settings are utilized: -# priority ==
304 * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
305 * ahead of other task destined for the same Remote Node. -# task_type ==
306 * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
307 * (i.e. non-raw frame) is being utilized to perform task management. -#
308 * control_frame == 1. This ensures that the proper endianess is set so
309 * that the bytes are transmitted in the right order for a task frame.
310 * @sci_req: This parameter specifies the task request object being
311 * constructed.
312 *
313 */
314static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
315{
316 struct scu_task_context *task_context = ireq->tc;
317
318 scu_ssp_reqeust_construct_task_context(ireq, task_context);
319
320 task_context->control_frame = 1;
321 task_context->priority = SCU_TASK_PRIORITY_HIGH;
322 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
323 task_context->transfer_length_bytes = 0;
324 task_context->type.ssp.frame_type = SSP_TASK;
325 task_context->ssp_command_iu_length =
326 sizeof(struct ssp_task_iu) / sizeof(u32);
327}
328
329/**
330 * This method is will fill in the SCU Task Context for any type of SATA
331 * request. This is called from the various SATA constructors.
332 * @sci_req: The general IO request object which is to be used in
333 * constructing the SCU task context.
334 * @task_context: The buffer pointer for the SCU task context which is being
335 * constructed.
336 *
337 * The general io request construction is complete. The buffer assignment for
338 * the command buffer is complete. none Revisit task context construction to
339 * determine what is common for SSP/SMP/STP task context structures.
340 */
341static void scu_sata_reqeust_construct_task_context(
342 struct isci_request *ireq,
343 struct scu_task_context *task_context)
344{
345 dma_addr_t dma_addr;
346 struct isci_remote_device *idev;
347 struct isci_port *iport;
348
349 idev = ireq->target_device;
350 iport = idev->owning_port;
351
352 /* Fill in the TC with the its required data */
353 task_context->abort = 0;
354 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
355 task_context->initiator_request = 1;
356 task_context->connection_rate = idev->connection_rate;
357 task_context->protocol_engine_index = ISCI_PEG;
358 task_context->logical_port_index = iport->physical_port_index;
359 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
360 task_context->valid = SCU_TASK_CONTEXT_VALID;
361 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
362
363 task_context->remote_node_index = idev->rnc.remote_node_index;
364 task_context->command_code = 0;
365
366 task_context->link_layer_control = 0;
367 task_context->do_not_dma_ssp_good_response = 1;
368 task_context->strict_ordering = 0;
369 task_context->control_frame = 0;
370 task_context->timeout_enable = 0;
371 task_context->block_guard_enable = 0;
372
373 task_context->address_modifier = 0;
374 task_context->task_phase = 0x01;
375
376 task_context->ssp_command_iu_length =
377 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
378
379 /* Set the first word of the H2D REG FIS */
380 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
381
382 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
383 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
384 (iport->physical_port_index <<
385 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
386 ISCI_TAG_TCI(ireq->io_tag));
387 /*
388 * Copy the physical address for the command buffer to the SCU Task
389 * Context. We must offset the command buffer by 4 bytes because the
390 * first 4 bytes are transfered in the body of the TC.
391 */
392 dma_addr = sci_io_request_get_dma_addr(ireq,
393 ((char *) &ireq->stp.cmd) +
394 sizeof(u32));
395
396 task_context->command_iu_upper = upper_32_bits(dma_addr);
397 task_context->command_iu_lower = lower_32_bits(dma_addr);
398
399 /* SATA Requests do not have a response buffer */
400 task_context->response_iu_upper = 0;
401 task_context->response_iu_lower = 0;
402}
403
404static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
405{
406 struct scu_task_context *task_context = ireq->tc;
407
408 scu_sata_reqeust_construct_task_context(ireq, task_context);
409
410 task_context->control_frame = 0;
411 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
412 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
413 task_context->type.stp.fis_type = FIS_REGH2D;
414 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
415}
416
417static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
418 bool copy_rx_frame)
419{
420 struct isci_stp_request *stp_req = &ireq->stp.req;
421
422 scu_stp_raw_request_construct_task_context(ireq);
423
424 stp_req->status = 0;
425 stp_req->sgl.offset = 0;
426 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
427
428 if (copy_rx_frame) {
429 sci_request_build_sgl(ireq);
430 stp_req->sgl.index = 0;
431 } else {
432 /* The user does not want the data copied to the SGL buffer location */
433 stp_req->sgl.index = -1;
434 }
435
436 return SCI_SUCCESS;
437}
438
439/**
440 *
441 * @sci_req: This parameter specifies the request to be constructed as an
442 * optimized request.
443 * @optimized_task_type: This parameter specifies whether the request is to be
444 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
445 * value of 1 indicates NCQ.
446 *
447 * This method will perform request construction common to all types of STP
448 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
449 * returns an indication as to whether the construction was successful.
450 */
451static void sci_stp_optimized_request_construct(struct isci_request *ireq,
452 u8 optimized_task_type,
453 u32 len,
454 enum dma_data_direction dir)
455{
456 struct scu_task_context *task_context = ireq->tc;
457
458 /* Build the STP task context structure */
459 scu_sata_reqeust_construct_task_context(ireq, task_context);
460
461 /* Copy over the SGL elements */
462 sci_request_build_sgl(ireq);
463
464 /* Copy over the number of bytes to be transfered */
465 task_context->transfer_length_bytes = len;
466
467 if (dir == DMA_TO_DEVICE) {
468 /*
469 * The difference between the DMA IN and DMA OUT request task type
470 * values are consistent with the difference between FPDMA READ
471 * and FPDMA WRITE values. Add the supplied task type parameter
472 * to this difference to set the task type properly for this
473 * DATA OUT (WRITE) case. */
474 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
475 - SCU_TASK_TYPE_DMA_IN);
476 } else {
477 /*
478 * For the DATA IN (READ) case, simply save the supplied
479 * optimized task type. */
480 task_context->task_type = optimized_task_type;
481 }
482}
483
484
485
486static enum sci_status
487sci_io_request_construct_sata(struct isci_request *ireq,
488 u32 len,
489 enum dma_data_direction dir,
490 bool copy)
491{
492 enum sci_status status = SCI_SUCCESS;
493 struct sas_task *task = isci_request_access_task(ireq);
494
495 /* check for management protocols */
496 if (ireq->ttype == tmf_task) {
497 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
498
499 if (tmf->tmf_code == isci_tmf_sata_srst_high ||
500 tmf->tmf_code == isci_tmf_sata_srst_low) {
501 scu_stp_raw_request_construct_task_context(ireq);
502 return SCI_SUCCESS;
503 } else {
504 dev_err(&ireq->owning_controller->pdev->dev,
505 "%s: Request 0x%p received un-handled SAT "
506 "management protocol 0x%x.\n",
507 __func__, ireq, tmf->tmf_code);
508
509 return SCI_FAILURE;
510 }
511 }
512
513 if (!sas_protocol_ata(task->task_proto)) {
514 dev_err(&ireq->owning_controller->pdev->dev,
515 "%s: Non-ATA protocol in SATA path: 0x%x\n",
516 __func__,
517 task->task_proto);
518 return SCI_FAILURE;
519
520 }
521
522 /* non data */
523 if (task->data_dir == DMA_NONE) {
524 scu_stp_raw_request_construct_task_context(ireq);
525 return SCI_SUCCESS;
526 }
527
528 /* NCQ */
529 if (task->ata_task.use_ncq) {
530 sci_stp_optimized_request_construct(ireq,
531 SCU_TASK_TYPE_FPDMAQ_READ,
532 len, dir);
533 return SCI_SUCCESS;
534 }
535
536 /* DMA */
537 if (task->ata_task.dma_xfer) {
538 sci_stp_optimized_request_construct(ireq,
539 SCU_TASK_TYPE_DMA_IN,
540 len, dir);
541 return SCI_SUCCESS;
542 } else /* PIO */
543 return sci_stp_pio_request_construct(ireq, copy);
544
545 return status;
546}
547
548static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
549{
550 struct sas_task *task = isci_request_access_task(ireq);
551
552 ireq->protocol = SCIC_SSP_PROTOCOL;
553
554 scu_ssp_io_request_construct_task_context(ireq,
555 task->data_dir,
556 task->total_xfer_len);
557
558 sci_io_request_build_ssp_command_iu(ireq);
559
560 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
561
562 return SCI_SUCCESS;
563}
564
565enum sci_status sci_task_request_construct_ssp(
566 struct isci_request *ireq)
567{
568 /* Construct the SSP Task SCU Task Context */
569 scu_ssp_task_request_construct_task_context(ireq);
570
571 /* Fill in the SSP Task IU */
572 sci_task_request_build_ssp_task_iu(ireq);
573
574 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
575
576 return SCI_SUCCESS;
577}
578
579static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
580{
581 enum sci_status status;
582 bool copy = false;
583 struct sas_task *task = isci_request_access_task(ireq);
584
585 ireq->protocol = SCIC_STP_PROTOCOL;
586
587 copy = (task->data_dir == DMA_NONE) ? false : true;
588
589 status = sci_io_request_construct_sata(ireq,
590 task->total_xfer_len,
591 task->data_dir,
592 copy);
593
594 if (status == SCI_SUCCESS)
595 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
596
597 return status;
598}
599
600enum sci_status sci_task_request_construct_sata(struct isci_request *ireq)
601{
602 enum sci_status status = SCI_SUCCESS;
603
604 /* check for management protocols */
605 if (ireq->ttype == tmf_task) {
606 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
607
608 if (tmf->tmf_code == isci_tmf_sata_srst_high ||
609 tmf->tmf_code == isci_tmf_sata_srst_low) {
610 scu_stp_raw_request_construct_task_context(ireq);
611 } else {
612 dev_err(&ireq->owning_controller->pdev->dev,
613 "%s: Request 0x%p received un-handled SAT "
614 "Protocol 0x%x.\n",
615 __func__, ireq, tmf->tmf_code);
616
617 return SCI_FAILURE;
618 }
619 }
620
621 if (status != SCI_SUCCESS)
622 return status;
623 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
624
625 return status;
626}
627
628/**
629 * sci_req_tx_bytes - bytes transferred when reply underruns request
630 * @sci_req: request that was terminated early
631 */
632#define SCU_TASK_CONTEXT_SRAM 0x200000
633static u32 sci_req_tx_bytes(struct isci_request *ireq)
634{
635 struct isci_host *ihost = ireq->owning_controller;
636 u32 ret_val = 0;
637
638 if (readl(&ihost->smu_registers->address_modifier) == 0) {
639 void __iomem *scu_reg_base = ihost->scu_registers;
640
641 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
642 * BAR1 is the scu_registers
643 * 0x20002C = 0x200000 + 0x2c
644 * = start of task context SRAM + offset of (type.ssp.data_offset)
645 * TCi is the io_tag of struct sci_request
646 */
647 ret_val = readl(scu_reg_base +
648 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
649 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
650 }
651
652 return ret_val;
653}
654
655enum sci_status sci_request_start(struct isci_request *ireq)
656{
657 enum sci_base_request_states state;
658 struct scu_task_context *tc = ireq->tc;
659 struct isci_host *ihost = ireq->owning_controller;
660
661 state = ireq->sm.current_state_id;
662 if (state != SCI_REQ_CONSTRUCTED) {
663 dev_warn(&ihost->pdev->dev,
664 "%s: SCIC IO Request requested to start while in wrong "
665 "state %d\n", __func__, state);
666 return SCI_FAILURE_INVALID_STATE;
667 }
668
669 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
670
671 switch (tc->protocol_type) {
672 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
673 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
674 /* SSP/SMP Frame */
675 tc->type.ssp.tag = ireq->io_tag;
676 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
677 break;
678
679 case SCU_TASK_CONTEXT_PROTOCOL_STP:
680 /* STP/SATA Frame
681 * tc->type.stp.ncq_tag = ireq->ncq_tag;
682 */
683 break;
684
685 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
686 /* / @todo When do we set no protocol type? */
687 break;
688
689 default:
690 /* This should never happen since we build the IO
691 * requests */
692 break;
693 }
694
695 /* Add to the post_context the io tag value */
696 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
697
698 /* Everything is good go ahead and change state */
699 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
700
701 return SCI_SUCCESS;
702}
703
704enum sci_status
705sci_io_request_terminate(struct isci_request *ireq)
706{
707 enum sci_base_request_states state;
708
709 state = ireq->sm.current_state_id;
710
711 switch (state) {
712 case SCI_REQ_CONSTRUCTED:
713 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
714 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
715 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
716 return SCI_SUCCESS;
717 case SCI_REQ_STARTED:
718 case SCI_REQ_TASK_WAIT_TC_COMP:
719 case SCI_REQ_SMP_WAIT_RESP:
720 case SCI_REQ_SMP_WAIT_TC_COMP:
721 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
722 case SCI_REQ_STP_UDMA_WAIT_D2H:
723 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
724 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
725 case SCI_REQ_STP_PIO_WAIT_H2D:
726 case SCI_REQ_STP_PIO_WAIT_FRAME:
727 case SCI_REQ_STP_PIO_DATA_IN:
728 case SCI_REQ_STP_PIO_DATA_OUT:
729 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
730 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
731 case SCI_REQ_STP_SOFT_RESET_WAIT_D2H:
732 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
733 return SCI_SUCCESS;
734 case SCI_REQ_TASK_WAIT_TC_RESP:
735 /* The task frame was already confirmed to have been
736 * sent by the SCU HW. Since the state machine is
737 * now only waiting for the task response itself,
738 * abort the request and complete it immediately
739 * and don't wait for the task response.
740 */
741 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
742 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
743 return SCI_SUCCESS;
744 case SCI_REQ_ABORTING:
745 /* If a request has a termination requested twice, return
746 * a failure indication, since HW confirmation of the first
747 * abort is still outstanding.
748 */
749 case SCI_REQ_COMPLETED:
750 default:
751 dev_warn(&ireq->owning_controller->pdev->dev,
752 "%s: SCIC IO Request requested to abort while in wrong "
753 "state %d\n",
754 __func__,
755 ireq->sm.current_state_id);
756 break;
757 }
758
759 return SCI_FAILURE_INVALID_STATE;
760}
761
762enum sci_status sci_request_complete(struct isci_request *ireq)
763{
764 enum sci_base_request_states state;
765 struct isci_host *ihost = ireq->owning_controller;
766
767 state = ireq->sm.current_state_id;
768 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
769 "isci: request completion from wrong state (%d)\n", state))
770 return SCI_FAILURE_INVALID_STATE;
771
772 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
773 sci_controller_release_frame(ihost,
774 ireq->saved_rx_frame_index);
775
776 /* XXX can we just stop the machine and remove the 'final' state? */
777 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
778 return SCI_SUCCESS;
779}
780
781enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
782 u32 event_code)
783{
784 enum sci_base_request_states state;
785 struct isci_host *ihost = ireq->owning_controller;
786
787 state = ireq->sm.current_state_id;
788
789 if (state != SCI_REQ_STP_PIO_DATA_IN) {
790 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %d\n",
791 __func__, event_code, state);
792
793 return SCI_FAILURE_INVALID_STATE;
794 }
795
796 switch (scu_get_event_specifier(event_code)) {
797 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
798 /* We are waiting for data and the SCU has R_ERR the data frame.
799 * Go back to waiting for the D2H Register FIS
800 */
801 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
802 return SCI_SUCCESS;
803 default:
804 dev_err(&ihost->pdev->dev,
805 "%s: pio request unexpected event %#x\n",
806 __func__, event_code);
807
808 /* TODO Should we fail the PIO request when we get an
809 * unexpected event?
810 */
811 return SCI_FAILURE;
812 }
813}
814
815/*
816 * This function copies response data for requests returning response data
817 * instead of sense data.
818 * @sci_req: This parameter specifies the request object for which to copy
819 * the response data.
820 */
821static void sci_io_request_copy_response(struct isci_request *ireq)
822{
823 void *resp_buf;
824 u32 len;
825 struct ssp_response_iu *ssp_response;
826 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
827
828 ssp_response = &ireq->ssp.rsp;
829
830 resp_buf = &isci_tmf->resp.resp_iu;
831
832 len = min_t(u32,
833 SSP_RESP_IU_MAX_SIZE,
834 be32_to_cpu(ssp_response->response_data_len));
835
836 memcpy(resp_buf, ssp_response->resp_data, len);
837}
838
839static enum sci_status
840request_started_state_tc_event(struct isci_request *ireq,
841 u32 completion_code)
842{
843 struct ssp_response_iu *resp_iu;
844 u8 datapres;
845
846 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
847 * to determine SDMA status
848 */
849 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
850 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
851 ireq->scu_status = SCU_TASK_DONE_GOOD;
852 ireq->sci_status = SCI_SUCCESS;
853 break;
854 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
855 /* There are times when the SCU hardware will return an early
856 * response because the io request specified more data than is
857 * returned by the target device (mode pages, inquiry data,
858 * etc.). We must check the response stats to see if this is
859 * truly a failed request or a good request that just got
860 * completed early.
861 */
862 struct ssp_response_iu *resp = &ireq->ssp.rsp;
863 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
864
865 sci_swab32_cpy(&ireq->ssp.rsp,
866 &ireq->ssp.rsp,
867 word_cnt);
868
869 if (resp->status == 0) {
870 ireq->scu_status = SCU_TASK_DONE_GOOD;
871 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
872 } else {
873 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
874 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
875 }
876 break;
877 }
878 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
879 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
880
881 sci_swab32_cpy(&ireq->ssp.rsp,
882 &ireq->ssp.rsp,
883 word_cnt);
884
885 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
886 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
887 break;
888 }
889
890 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
891 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
892 * guaranteed to be received before this completion status is
893 * posted?
894 */
895 resp_iu = &ireq->ssp.rsp;
896 datapres = resp_iu->datapres;
897
898 if (datapres == 1 || datapres == 2) {
899 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
900 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
901 } else {
902 ireq->scu_status = SCU_TASK_DONE_GOOD;
903 ireq->sci_status = SCI_SUCCESS;
904 }
905 break;
906 /* only stp device gets suspended. */
907 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
908 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
909 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
910 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
911 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
912 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
913 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
914 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
915 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
916 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
917 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
918 if (ireq->protocol == SCIC_STP_PROTOCOL) {
919 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
920 SCU_COMPLETION_TL_STATUS_SHIFT;
921 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
922 } else {
923 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
924 SCU_COMPLETION_TL_STATUS_SHIFT;
925 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
926 }
927 break;
928
929 /* both stp/ssp device gets suspended */
930 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
931 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
932 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
933 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
934 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
935 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
936 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
937 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
938 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
939 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
940 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
941 SCU_COMPLETION_TL_STATUS_SHIFT;
942 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
943 break;
944
945 /* neither ssp nor stp gets suspended. */
946 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
947 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
948 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
949 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
950 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
951 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
952 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
953 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
954 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
955 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
956 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
957 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
958 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
959 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
960 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
961 default:
962 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
963 SCU_COMPLETION_TL_STATUS_SHIFT;
964 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
965 break;
966 }
967
968 /*
969 * TODO: This is probably wrong for ACK/NAK timeout conditions
970 */
971
972 /* In all cases we will treat this as the completion of the IO req. */
973 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
974 return SCI_SUCCESS;
975}
976
977static enum sci_status
978request_aborting_state_tc_event(struct isci_request *ireq,
979 u32 completion_code)
980{
981 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
982 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
983 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
984 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
985 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
986 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
987 break;
988
989 default:
990 /* Unless we get some strange error wait for the task abort to complete
991 * TODO: Should there be a state change for this completion?
992 */
993 break;
994 }
995
996 return SCI_SUCCESS;
997}
998
999static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1000 u32 completion_code)
1001{
1002 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1003 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1004 ireq->scu_status = SCU_TASK_DONE_GOOD;
1005 ireq->sci_status = SCI_SUCCESS;
1006 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1007 break;
1008 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1009 /* Currently, the decision is to simply allow the task request
1010 * to timeout if the task IU wasn't received successfully.
1011 * There is a potential for receiving multiple task responses if
1012 * we decide to send the task IU again.
1013 */
1014 dev_warn(&ireq->owning_controller->pdev->dev,
1015 "%s: TaskRequest:0x%p CompletionCode:%x - "
1016 "ACK/NAK timeout\n", __func__, ireq,
1017 completion_code);
1018
1019 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1020 break;
1021 default:
1022 /*
1023 * All other completion status cause the IO to be complete.
1024 * If a NAK was received, then it is up to the user to retry
1025 * the request.
1026 */
1027 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1028 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1029 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1030 break;
1031 }
1032
1033 return SCI_SUCCESS;
1034}
1035
1036static enum sci_status
1037smp_request_await_response_tc_event(struct isci_request *ireq,
1038 u32 completion_code)
1039{
1040 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1041 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1042 /* In the AWAIT RESPONSE state, any TC completion is
1043 * unexpected. but if the TC has success status, we
1044 * complete the IO anyway.
1045 */
1046 ireq->scu_status = SCU_TASK_DONE_GOOD;
1047 ireq->sci_status = SCI_SUCCESS;
1048 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1049 break;
1050 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1051 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1052 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1053 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1054 /* These status has been seen in a specific LSI
1055 * expander, which sometimes is not able to send smp
1056 * response within 2 ms. This causes our hardware break
1057 * the connection and set TC completion with one of
1058 * these SMP_XXX_XX_ERR status. For these type of error,
1059 * we ask ihost user to retry the request.
1060 */
1061 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1062 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1063 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1064 break;
1065 default:
1066 /* All other completion status cause the IO to be complete. If a NAK
1067 * was received, then it is up to the user to retry the request
1068 */
1069 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1070 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1071 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1072 break;
1073 }
1074
1075 return SCI_SUCCESS;
1076}
1077
1078static enum sci_status
1079smp_request_await_tc_event(struct isci_request *ireq,
1080 u32 completion_code)
1081{
1082 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1083 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1084 ireq->scu_status = SCU_TASK_DONE_GOOD;
1085 ireq->sci_status = SCI_SUCCESS;
1086 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1087 break;
1088 default:
1089 /* All other completion status cause the IO to be
1090 * complete. If a NAK was received, then it is up to
1091 * the user to retry the request.
1092 */
1093 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1094 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1095 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1096 break;
1097 }
1098
1099 return SCI_SUCCESS;
1100}
1101
1102static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1103{
1104 struct scu_sgl_element *sgl;
1105 struct scu_sgl_element_pair *sgl_pair;
1106 struct isci_request *ireq = to_ireq(stp_req);
1107 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1108
1109 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1110 if (!sgl_pair)
1111 sgl = NULL;
1112 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1113 if (sgl_pair->B.address_lower == 0 &&
1114 sgl_pair->B.address_upper == 0) {
1115 sgl = NULL;
1116 } else {
1117 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1118 sgl = &sgl_pair->B;
1119 }
1120 } else {
1121 if (sgl_pair->next_pair_lower == 0 &&
1122 sgl_pair->next_pair_upper == 0) {
1123 sgl = NULL;
1124 } else {
1125 pio_sgl->index++;
1126 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1127 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1128 sgl = &sgl_pair->A;
1129 }
1130 }
1131
1132 return sgl;
1133}
1134
1135static enum sci_status
1136stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1137 u32 completion_code)
1138{
1139 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1140 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1141 ireq->scu_status = SCU_TASK_DONE_GOOD;
1142 ireq->sci_status = SCI_SUCCESS;
1143 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1144 break;
1145
1146 default:
1147 /* All other completion status cause the IO to be
1148 * complete. If a NAK was received, then it is up to
1149 * the user to retry the request.
1150 */
1151 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1152 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1153 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1154 break;
1155 }
1156
1157 return SCI_SUCCESS;
1158}
1159
1160#define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1161
1162/* transmit DATA_FIS from (current sgl + offset) for input
1163 * parameter length. current sgl and offset is alreay stored in the IO request
1164 */
1165static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1166 struct isci_request *ireq,
1167 u32 length)
1168{
1169 struct isci_stp_request *stp_req = &ireq->stp.req;
1170 struct scu_task_context *task_context = ireq->tc;
1171 struct scu_sgl_element_pair *sgl_pair;
1172 struct scu_sgl_element *current_sgl;
1173
1174 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1175 * for the data from current_sgl+offset for the input length
1176 */
1177 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1178 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1179 current_sgl = &sgl_pair->A;
1180 else
1181 current_sgl = &sgl_pair->B;
1182
1183 /* update the TC */
1184 task_context->command_iu_upper = current_sgl->address_upper;
1185 task_context->command_iu_lower = current_sgl->address_lower;
1186 task_context->transfer_length_bytes = length;
1187 task_context->type.stp.fis_type = FIS_DATA;
1188
1189 /* send the new TC out. */
1190 return sci_controller_continue_io(ireq);
1191}
1192
1193static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1194{
1195 struct isci_stp_request *stp_req = &ireq->stp.req;
1196 struct scu_sgl_element_pair *sgl_pair;
1197 struct scu_sgl_element *sgl;
1198 enum sci_status status;
1199 u32 offset;
1200 u32 len = 0;
1201
1202 offset = stp_req->sgl.offset;
1203 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1204 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1205 return SCI_FAILURE;
1206
1207 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1208 sgl = &sgl_pair->A;
1209 len = sgl_pair->A.length - offset;
1210 } else {
1211 sgl = &sgl_pair->B;
1212 len = sgl_pair->B.length - offset;
1213 }
1214
1215 if (stp_req->pio_len == 0)
1216 return SCI_SUCCESS;
1217
1218 if (stp_req->pio_len >= len) {
1219 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1220 if (status != SCI_SUCCESS)
1221 return status;
1222 stp_req->pio_len -= len;
1223
1224 /* update the current sgl, offset and save for future */
1225 sgl = pio_sgl_next(stp_req);
1226 offset = 0;
1227 } else if (stp_req->pio_len < len) {
1228 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1229
1230 /* Sgl offset will be adjusted and saved for future */
1231 offset += stp_req->pio_len;
1232 sgl->address_lower += stp_req->pio_len;
1233 stp_req->pio_len = 0;
1234 }
1235
1236 stp_req->sgl.offset = offset;
1237
1238 return status;
1239}
1240
1241/**
1242 *
1243 * @stp_request: The request that is used for the SGL processing.
1244 * @data_buffer: The buffer of data to be copied.
1245 * @length: The length of the data transfer.
1246 *
1247 * Copy the data from the buffer for the length specified to the IO reqeust SGL
1248 * specified data region. enum sci_status
1249 */
1250static enum sci_status
1251sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1252 u8 *data_buf, u32 len)
1253{
1254 struct isci_request *ireq;
1255 u8 *src_addr;
1256 int copy_len;
1257 struct sas_task *task;
1258 struct scatterlist *sg;
1259 void *kaddr;
1260 int total_len = len;
1261
1262 ireq = to_ireq(stp_req);
1263 task = isci_request_access_task(ireq);
1264 src_addr = data_buf;
1265
1266 if (task->num_scatter > 0) {
1267 sg = task->scatter;
1268
1269 while (total_len > 0) {
1270 struct page *page = sg_page(sg);
1271
1272 copy_len = min_t(int, total_len, sg_dma_len(sg));
1273 kaddr = kmap_atomic(page, KM_IRQ0);
1274 memcpy(kaddr + sg->offset, src_addr, copy_len);
1275 kunmap_atomic(kaddr, KM_IRQ0);
1276 total_len -= copy_len;
1277 src_addr += copy_len;
1278 sg = sg_next(sg);
1279 }
1280 } else {
1281 BUG_ON(task->total_xfer_len < total_len);
1282 memcpy(task->scatter, src_addr, total_len);
1283 }
1284
1285 return SCI_SUCCESS;
1286}
1287
1288/**
1289 *
1290 * @sci_req: The PIO DATA IN request that is to receive the data.
1291 * @data_buffer: The buffer to copy from.
1292 *
1293 * Copy the data buffer to the io request data region. enum sci_status
1294 */
1295static enum sci_status sci_stp_request_pio_data_in_copy_data(
1296 struct isci_stp_request *stp_req,
1297 u8 *data_buffer)
1298{
1299 enum sci_status status;
1300
1301 /*
1302 * If there is less than 1K remaining in the transfer request
1303 * copy just the data for the transfer */
1304 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1305 status = sci_stp_request_pio_data_in_copy_data_buffer(
1306 stp_req, data_buffer, stp_req->pio_len);
1307
1308 if (status == SCI_SUCCESS)
1309 stp_req->pio_len = 0;
1310 } else {
1311 /* We are transfering the whole frame so copy */
1312 status = sci_stp_request_pio_data_in_copy_data_buffer(
1313 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1314
1315 if (status == SCI_SUCCESS)
1316 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1317 }
1318
1319 return status;
1320}
1321
1322static enum sci_status
1323stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1324 u32 completion_code)
1325{
1326 enum sci_status status = SCI_SUCCESS;
1327
1328 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1329 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1330 ireq->scu_status = SCU_TASK_DONE_GOOD;
1331 ireq->sci_status = SCI_SUCCESS;
1332 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1333 break;
1334
1335 default:
1336 /* All other completion status cause the IO to be
1337 * complete. If a NAK was received, then it is up to
1338 * the user to retry the request.
1339 */
1340 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1341 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1342 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1343 break;
1344 }
1345
1346 return status;
1347}
1348
1349static enum sci_status
1350pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1351 u32 completion_code)
1352{
1353 enum sci_status status = SCI_SUCCESS;
1354 bool all_frames_transferred = false;
1355 struct isci_stp_request *stp_req = &ireq->stp.req;
1356
1357 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1358 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1359 /* Transmit data */
1360 if (stp_req->pio_len != 0) {
1361 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1362 if (status == SCI_SUCCESS) {
1363 if (stp_req->pio_len == 0)
1364 all_frames_transferred = true;
1365 }
1366 } else if (stp_req->pio_len == 0) {
1367 /*
1368 * this will happen if the all data is written at the
1369 * first time after the pio setup fis is received
1370 */
1371 all_frames_transferred = true;
1372 }
1373
1374 /* all data transferred. */
1375 if (all_frames_transferred) {
1376 /*
1377 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1378 * and wait for PIO_SETUP fis / or D2H REg fis. */
1379 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1380 }
1381 break;
1382
1383 default:
1384 /*
1385 * All other completion status cause the IO to be complete.
1386 * If a NAK was received, then it is up to the user to retry
1387 * the request.
1388 */
1389 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1390 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1391 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1392 break;
1393 }
1394
1395 return status;
1396}
1397
1398static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1399 u32 frame_index)
1400{
1401 struct isci_host *ihost = ireq->owning_controller;
1402 struct dev_to_host_fis *frame_header;
1403 enum sci_status status;
1404 u32 *frame_buffer;
1405
1406 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1407 frame_index,
1408 (void **)&frame_header);
1409
1410 if ((status == SCI_SUCCESS) &&
1411 (frame_header->fis_type == FIS_REGD2H)) {
1412 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1413 frame_index,
1414 (void **)&frame_buffer);
1415
1416 sci_controller_copy_sata_response(&ireq->stp.rsp,
1417 frame_header,
1418 frame_buffer);
1419 }
1420
1421 sci_controller_release_frame(ihost, frame_index);
1422
1423 return status;
1424}
1425
1426enum sci_status
1427sci_io_request_frame_handler(struct isci_request *ireq,
1428 u32 frame_index)
1429{
1430 struct isci_host *ihost = ireq->owning_controller;
1431 struct isci_stp_request *stp_req = &ireq->stp.req;
1432 enum sci_base_request_states state;
1433 enum sci_status status;
1434 ssize_t word_cnt;
1435
1436 state = ireq->sm.current_state_id;
1437 switch (state) {
1438 case SCI_REQ_STARTED: {
1439 struct ssp_frame_hdr ssp_hdr;
1440 void *frame_header;
1441
1442 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1443 frame_index,
1444 &frame_header);
1445
1446 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1447 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1448
1449 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1450 struct ssp_response_iu *resp_iu;
1451 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1452
1453 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1454 frame_index,
1455 (void **)&resp_iu);
1456
1457 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1458
1459 resp_iu = &ireq->ssp.rsp;
1460
1461 if (resp_iu->datapres == 0x01 ||
1462 resp_iu->datapres == 0x02) {
1463 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1464 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1465 } else {
1466 ireq->scu_status = SCU_TASK_DONE_GOOD;
1467 ireq->sci_status = SCI_SUCCESS;
1468 }
1469 } else {
1470 /* not a response frame, why did it get forwarded? */
1471 dev_err(&ihost->pdev->dev,
1472 "%s: SCIC IO Request 0x%p received unexpected "
1473 "frame %d type 0x%02x\n", __func__, ireq,
1474 frame_index, ssp_hdr.frame_type);
1475 }
1476
1477 /*
1478 * In any case we are done with this frame buffer return it to
1479 * the controller
1480 */
1481 sci_controller_release_frame(ihost, frame_index);
1482
1483 return SCI_SUCCESS;
1484 }
1485
1486 case SCI_REQ_TASK_WAIT_TC_RESP:
1487 sci_io_request_copy_response(ireq);
1488 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1489 sci_controller_release_frame(ihost, frame_index);
1490 return SCI_SUCCESS;
1491
1492 case SCI_REQ_SMP_WAIT_RESP: {
1493 struct smp_resp *rsp_hdr = &ireq->smp.rsp;
1494 void *frame_header;
1495
1496 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1497 frame_index,
1498 &frame_header);
1499
1500 /* byte swap the header. */
1501 word_cnt = SMP_RESP_HDR_SZ / sizeof(u32);
1502 sci_swab32_cpy(rsp_hdr, frame_header, word_cnt);
1503
1504 if (rsp_hdr->frame_type == SMP_RESPONSE) {
1505 void *smp_resp;
1506
1507 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1508 frame_index,
1509 &smp_resp);
1510
1511 word_cnt = (sizeof(struct smp_resp) - SMP_RESP_HDR_SZ) /
1512 sizeof(u32);
1513
1514 sci_swab32_cpy(((u8 *) rsp_hdr) + SMP_RESP_HDR_SZ,
1515 smp_resp, word_cnt);
1516
1517 ireq->scu_status = SCU_TASK_DONE_GOOD;
1518 ireq->sci_status = SCI_SUCCESS;
1519 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1520 } else {
1521 /*
1522 * This was not a response frame why did it get
1523 * forwarded?
1524 */
1525 dev_err(&ihost->pdev->dev,
1526 "%s: SCIC SMP Request 0x%p received unexpected "
1527 "frame %d type 0x%02x\n",
1528 __func__,
1529 ireq,
1530 frame_index,
1531 rsp_hdr->frame_type);
1532
1533 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1534 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1535 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1536 }
1537
1538 sci_controller_release_frame(ihost, frame_index);
1539
1540 return SCI_SUCCESS;
1541 }
1542
1543 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1544 return sci_stp_request_udma_general_frame_handler(ireq,
1545 frame_index);
1546
1547 case SCI_REQ_STP_UDMA_WAIT_D2H:
1548 /* Use the general frame handler to copy the resposne data */
1549 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1550
1551 if (status != SCI_SUCCESS)
1552 return status;
1553
1554 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1555 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1556 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1557 return SCI_SUCCESS;
1558
1559 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1560 struct dev_to_host_fis *frame_header;
1561 u32 *frame_buffer;
1562
1563 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1564 frame_index,
1565 (void **)&frame_header);
1566
1567 if (status != SCI_SUCCESS) {
1568 dev_err(&ihost->pdev->dev,
1569 "%s: SCIC IO Request 0x%p could not get frame "
1570 "header for frame index %d, status %x\n",
1571 __func__,
1572 stp_req,
1573 frame_index,
1574 status);
1575
1576 return status;
1577 }
1578
1579 switch (frame_header->fis_type) {
1580 case FIS_REGD2H:
1581 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1582 frame_index,
1583 (void **)&frame_buffer);
1584
1585 sci_controller_copy_sata_response(&ireq->stp.rsp,
1586 frame_header,
1587 frame_buffer);
1588
1589 /* The command has completed with error */
1590 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1591 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1592 break;
1593
1594 default:
1595 dev_warn(&ihost->pdev->dev,
1596 "%s: IO Request:0x%p Frame Id:%d protocol "
1597 "violation occurred\n", __func__, stp_req,
1598 frame_index);
1599
1600 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1601 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1602 break;
1603 }
1604
1605 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1606
1607 /* Frame has been decoded return it to the controller */
1608 sci_controller_release_frame(ihost, frame_index);
1609
1610 return status;
1611 }
1612
1613 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1614 struct sas_task *task = isci_request_access_task(ireq);
1615 struct dev_to_host_fis *frame_header;
1616 u32 *frame_buffer;
1617
1618 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1619 frame_index,
1620 (void **)&frame_header);
1621
1622 if (status != SCI_SUCCESS) {
1623 dev_err(&ihost->pdev->dev,
1624 "%s: SCIC IO Request 0x%p could not get frame "
1625 "header for frame index %d, status %x\n",
1626 __func__, stp_req, frame_index, status);
1627 return status;
1628 }
1629
1630 switch (frame_header->fis_type) {
1631 case FIS_PIO_SETUP:
1632 /* Get from the frame buffer the PIO Setup Data */
1633 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1634 frame_index,
1635 (void **)&frame_buffer);
1636
1637 /* Get the data from the PIO Setup The SCU Hardware
1638 * returns first word in the frame_header and the rest
1639 * of the data is in the frame buffer so we need to
1640 * back up one dword
1641 */
1642
1643 /* transfer_count: first 16bits in the 4th dword */
1644 stp_req->pio_len = frame_buffer[3] & 0xffff;
1645
1646 /* status: 4th byte in the 3rd dword */
1647 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1648
1649 sci_controller_copy_sata_response(&ireq->stp.rsp,
1650 frame_header,
1651 frame_buffer);
1652
1653 ireq->stp.rsp.status = stp_req->status;
1654
1655 /* The next state is dependent on whether the
1656 * request was PIO Data-in or Data out
1657 */
1658 if (task->data_dir == DMA_FROM_DEVICE) {
1659 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1660 } else if (task->data_dir == DMA_TO_DEVICE) {
1661 /* Transmit data */
1662 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1663 if (status != SCI_SUCCESS)
1664 break;
1665 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1666 }
1667 break;
1668
1669 case FIS_SETDEVBITS:
1670 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1671 break;
1672
1673 case FIS_REGD2H:
1674 if (frame_header->status & ATA_BUSY) {
1675 /*
1676 * Now why is the drive sending a D2H Register
1677 * FIS when it is still busy? Do nothing since
1678 * we are still in the right state.
1679 */
1680 dev_dbg(&ihost->pdev->dev,
1681 "%s: SCIC PIO Request 0x%p received "
1682 "D2H Register FIS with BSY status "
1683 "0x%x\n",
1684 __func__,
1685 stp_req,
1686 frame_header->status);
1687 break;
1688 }
1689
1690 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1691 frame_index,
1692 (void **)&frame_buffer);
1693
1694 sci_controller_copy_sata_response(&ireq->stp.req,
1695 frame_header,
1696 frame_buffer);
1697
1698 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1699 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1700 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1701 break;
1702
1703 default:
1704 /* FIXME: what do we do here? */
1705 break;
1706 }
1707
1708 /* Frame is decoded return it to the controller */
1709 sci_controller_release_frame(ihost, frame_index);
1710
1711 return status;
1712 }
1713
1714 case SCI_REQ_STP_PIO_DATA_IN: {
1715 struct dev_to_host_fis *frame_header;
1716 struct sata_fis_data *frame_buffer;
1717
1718 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1719 frame_index,
1720 (void **)&frame_header);
1721
1722 if (status != SCI_SUCCESS) {
1723 dev_err(&ihost->pdev->dev,
1724 "%s: SCIC IO Request 0x%p could not get frame "
1725 "header for frame index %d, status %x\n",
1726 __func__,
1727 stp_req,
1728 frame_index,
1729 status);
1730 return status;
1731 }
1732
1733 if (frame_header->fis_type != FIS_DATA) {
1734 dev_err(&ihost->pdev->dev,
1735 "%s: SCIC PIO Request 0x%p received frame %d "
1736 "with fis type 0x%02x when expecting a data "
1737 "fis.\n",
1738 __func__,
1739 stp_req,
1740 frame_index,
1741 frame_header->fis_type);
1742
1743 ireq->scu_status = SCU_TASK_DONE_GOOD;
1744 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
1745 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1746
1747 /* Frame is decoded return it to the controller */
1748 sci_controller_release_frame(ihost, frame_index);
1749 return status;
1750 }
1751
1752 if (stp_req->sgl.index < 0) {
1753 ireq->saved_rx_frame_index = frame_index;
1754 stp_req->pio_len = 0;
1755 } else {
1756 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1757 frame_index,
1758 (void **)&frame_buffer);
1759
1760 status = sci_stp_request_pio_data_in_copy_data(stp_req,
1761 (u8 *)frame_buffer);
1762
1763 /* Frame is decoded return it to the controller */
1764 sci_controller_release_frame(ihost, frame_index);
1765 }
1766
1767 /* Check for the end of the transfer, are there more
1768 * bytes remaining for this data transfer
1769 */
1770 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
1771 return status;
1772
1773 if ((stp_req->status & ATA_BUSY) == 0) {
1774 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1775 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1776 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1777 } else {
1778 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1779 }
1780 return status;
1781 }
1782
1783 case SCI_REQ_STP_SOFT_RESET_WAIT_D2H: {
1784 struct dev_to_host_fis *frame_header;
1785 u32 *frame_buffer;
1786
1787 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1788 frame_index,
1789 (void **)&frame_header);
1790 if (status != SCI_SUCCESS) {
1791 dev_err(&ihost->pdev->dev,
1792 "%s: SCIC IO Request 0x%p could not get frame "
1793 "header for frame index %d, status %x\n",
1794 __func__,
1795 stp_req,
1796 frame_index,
1797 status);
1798 return status;
1799 }
1800
1801 switch (frame_header->fis_type) {
1802 case FIS_REGD2H:
1803 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1804 frame_index,
1805 (void **)&frame_buffer);
1806
1807 sci_controller_copy_sata_response(&ireq->stp.rsp,
1808 frame_header,
1809 frame_buffer);
1810
1811 /* The command has completed with error */
1812 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1813 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1814 break;
1815
1816 default:
1817 dev_warn(&ihost->pdev->dev,
1818 "%s: IO Request:0x%p Frame Id:%d protocol "
1819 "violation occurred\n",
1820 __func__,
1821 stp_req,
1822 frame_index);
1823
1824 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1825 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1826 break;
1827 }
1828
1829 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1830
1831 /* Frame has been decoded return it to the controller */
1832 sci_controller_release_frame(ihost, frame_index);
1833
1834 return status;
1835 }
1836 case SCI_REQ_ABORTING:
1837 /*
1838 * TODO: Is it even possible to get an unsolicited frame in the
1839 * aborting state?
1840 */
1841 sci_controller_release_frame(ihost, frame_index);
1842 return SCI_SUCCESS;
1843
1844 default:
1845 dev_warn(&ihost->pdev->dev,
1846 "%s: SCIC IO Request given unexpected frame %x while "
1847 "in state %d\n",
1848 __func__,
1849 frame_index,
1850 state);
1851
1852 sci_controller_release_frame(ihost, frame_index);
1853 return SCI_FAILURE_INVALID_STATE;
1854 }
1855}
1856
1857static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
1858 u32 completion_code)
1859{
1860 enum sci_status status = SCI_SUCCESS;
1861
1862 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1863 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1864 ireq->scu_status = SCU_TASK_DONE_GOOD;
1865 ireq->sci_status = SCI_SUCCESS;
1866 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1867 break;
1868 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
1869 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1870 /* We must check ther response buffer to see if the D2H
1871 * Register FIS was received before we got the TC
1872 * completion.
1873 */
1874 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
1875 sci_remote_device_suspend(ireq->target_device,
1876 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
1877
1878 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1879 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1880 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1881 } else {
1882 /* If we have an error completion status for the
1883 * TC then we can expect a D2H register FIS from
1884 * the device so we must change state to wait
1885 * for it
1886 */
1887 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
1888 }
1889 break;
1890
1891 /* TODO Check to see if any of these completion status need to
1892 * wait for the device to host register fis.
1893 */
1894 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
1895 * - this comes only for B0
1896 */
1897 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN):
1898 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1899 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR):
1900 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR):
1901 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CRC_ERR):
1902 sci_remote_device_suspend(ireq->target_device,
1903 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
1904 /* Fall through to the default case */
1905 default:
1906 /* All other completion status cause the IO to be complete. */
1907 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1908 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1909 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1910 break;
1911 }
1912
1913 return status;
1914}
1915
1916static enum sci_status
1917stp_request_soft_reset_await_h2d_asserted_tc_event(struct isci_request *ireq,
1918 u32 completion_code)
1919{
1920 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1921 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1922 ireq->scu_status = SCU_TASK_DONE_GOOD;
1923 ireq->sci_status = SCI_SUCCESS;
1924 sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG);
1925 break;
1926
1927 default:
1928 /*
1929 * All other completion status cause the IO to be complete.
1930 * If a NAK was received, then it is up to the user to retry
1931 * the request.
1932 */
1933 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1934 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1935 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1936 break;
1937 }
1938
1939 return SCI_SUCCESS;
1940}
1941
1942static enum sci_status
1943stp_request_soft_reset_await_h2d_diagnostic_tc_event(struct isci_request *ireq,
1944 u32 completion_code)
1945{
1946 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1947 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1948 ireq->scu_status = SCU_TASK_DONE_GOOD;
1949 ireq->sci_status = SCI_SUCCESS;
1950 sci_change_state(&ireq->sm, SCI_REQ_STP_SOFT_RESET_WAIT_D2H);
1951 break;
1952
1953 default:
1954 /* All other completion status cause the IO to be complete. If
1955 * a NAK was received, then it is up to the user to retry the
1956 * request.
1957 */
1958 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1959 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1960 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1961 break;
1962 }
1963
1964 return SCI_SUCCESS;
1965}
1966
1967enum sci_status
1968sci_io_request_tc_completion(struct isci_request *ireq,
1969 u32 completion_code)
1970{
1971 enum sci_base_request_states state;
1972 struct isci_host *ihost = ireq->owning_controller;
1973
1974 state = ireq->sm.current_state_id;
1975
1976 switch (state) {
1977 case SCI_REQ_STARTED:
1978 return request_started_state_tc_event(ireq, completion_code);
1979
1980 case SCI_REQ_TASK_WAIT_TC_COMP:
1981 return ssp_task_request_await_tc_event(ireq,
1982 completion_code);
1983
1984 case SCI_REQ_SMP_WAIT_RESP:
1985 return smp_request_await_response_tc_event(ireq,
1986 completion_code);
1987
1988 case SCI_REQ_SMP_WAIT_TC_COMP:
1989 return smp_request_await_tc_event(ireq, completion_code);
1990
1991 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1992 return stp_request_udma_await_tc_event(ireq,
1993 completion_code);
1994
1995 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
1996 return stp_request_non_data_await_h2d_tc_event(ireq,
1997 completion_code);
1998
1999 case SCI_REQ_STP_PIO_WAIT_H2D:
2000 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2001 completion_code);
2002
2003 case SCI_REQ_STP_PIO_DATA_OUT:
2004 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2005
2006 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED:
2007 return stp_request_soft_reset_await_h2d_asserted_tc_event(ireq,
2008 completion_code);
2009
2010 case SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG:
2011 return stp_request_soft_reset_await_h2d_diagnostic_tc_event(ireq,
2012 completion_code);
2013
2014 case SCI_REQ_ABORTING:
2015 return request_aborting_state_tc_event(ireq,
2016 completion_code);
2017
2018 default:
2019 dev_warn(&ihost->pdev->dev,
2020 "%s: SCIC IO Request given task completion "
2021 "notification %x while in wrong state %d\n",
2022 __func__,
2023 completion_code,
2024 state);
2025 return SCI_FAILURE_INVALID_STATE;
2026 }
2027}
2028
2029/**
2030 * isci_request_process_response_iu() - This function sets the status and
2031 * response iu, in the task struct, from the request object for the upper
2032 * layer driver.
2033 * @sas_task: This parameter is the task struct from the upper layer driver.
2034 * @resp_iu: This parameter points to the response iu of the completed request.
2035 * @dev: This parameter specifies the linux device struct.
2036 *
2037 * none.
2038 */
2039static void isci_request_process_response_iu(
2040 struct sas_task *task,
2041 struct ssp_response_iu *resp_iu,
2042 struct device *dev)
2043{
2044 dev_dbg(dev,
2045 "%s: resp_iu = %p "
2046 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2047 "resp_iu->response_data_len = %x, "
2048 "resp_iu->sense_data_len = %x\nrepsonse data: ",
2049 __func__,
2050 resp_iu,
2051 resp_iu->status,
2052 resp_iu->datapres,
2053 resp_iu->response_data_len,
2054 resp_iu->sense_data_len);
2055
2056 task->task_status.stat = resp_iu->status;
2057
2058 /* libsas updates the task status fields based on the response iu. */
2059 sas_ssp_task_response(dev, task, resp_iu);
2060}
2061
2062/**
2063 * isci_request_set_open_reject_status() - This function prepares the I/O
2064 * completion for OPEN_REJECT conditions.
2065 * @request: This parameter is the completed isci_request object.
2066 * @response_ptr: This parameter specifies the service response for the I/O.
2067 * @status_ptr: This parameter specifies the exec status for the I/O.
2068 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2069 * the LLDD with respect to completing this request or forcing an abort
2070 * condition on the I/O.
2071 * @open_rej_reason: This parameter specifies the encoded reason for the
2072 * abandon-class reject.
2073 *
2074 * none.
2075 */
2076static void isci_request_set_open_reject_status(
2077 struct isci_request *request,
2078 struct sas_task *task,
2079 enum service_response *response_ptr,
2080 enum exec_status *status_ptr,
2081 enum isci_completion_selection *complete_to_host_ptr,
2082 enum sas_open_rej_reason open_rej_reason)
2083{
2084 /* Task in the target is done. */
2085 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2086 *response_ptr = SAS_TASK_UNDELIVERED;
2087 *status_ptr = SAS_OPEN_REJECT;
2088 *complete_to_host_ptr = isci_perform_normal_io_completion;
2089 task->task_status.open_rej_reason = open_rej_reason;
2090}
2091
2092/**
2093 * isci_request_handle_controller_specific_errors() - This function decodes
2094 * controller-specific I/O completion error conditions.
2095 * @request: This parameter is the completed isci_request object.
2096 * @response_ptr: This parameter specifies the service response for the I/O.
2097 * @status_ptr: This parameter specifies the exec status for the I/O.
2098 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2099 * the LLDD with respect to completing this request or forcing an abort
2100 * condition on the I/O.
2101 *
2102 * none.
2103 */
2104static void isci_request_handle_controller_specific_errors(
2105 struct isci_remote_device *idev,
2106 struct isci_request *request,
2107 struct sas_task *task,
2108 enum service_response *response_ptr,
2109 enum exec_status *status_ptr,
2110 enum isci_completion_selection *complete_to_host_ptr)
2111{
2112 unsigned int cstatus;
2113
2114 cstatus = request->scu_status;
2115
2116 dev_dbg(&request->isci_host->pdev->dev,
2117 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2118 "- controller status = 0x%x\n",
2119 __func__, request, cstatus);
2120
2121 /* Decode the controller-specific errors; most
2122 * important is to recognize those conditions in which
2123 * the target may still have a task outstanding that
2124 * must be aborted.
2125 *
2126 * Note that there are SCU completion codes being
2127 * named in the decode below for which SCIC has already
2128 * done work to handle them in a way other than as
2129 * a controller-specific completion code; these are left
2130 * in the decode below for completeness sake.
2131 */
2132 switch (cstatus) {
2133 case SCU_TASK_DONE_DMASETUP_DIRERR:
2134 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2135 case SCU_TASK_DONE_XFERCNT_ERR:
2136 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2137 if (task->task_proto == SAS_PROTOCOL_SMP) {
2138 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2139 *response_ptr = SAS_TASK_COMPLETE;
2140
2141 /* See if the device has been/is being stopped. Note
2142 * that we ignore the quiesce state, since we are
2143 * concerned about the actual device state.
2144 */
2145 if (!idev)
2146 *status_ptr = SAS_DEVICE_UNKNOWN;
2147 else
2148 *status_ptr = SAS_ABORTED_TASK;
2149
2150 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2151
2152 *complete_to_host_ptr =
2153 isci_perform_normal_io_completion;
2154 } else {
2155 /* Task in the target is not done. */
2156 *response_ptr = SAS_TASK_UNDELIVERED;
2157
2158 if (!idev)
2159 *status_ptr = SAS_DEVICE_UNKNOWN;
2160 else
2161 *status_ptr = SAM_STAT_TASK_ABORTED;
2162
2163 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2164
2165 *complete_to_host_ptr =
2166 isci_perform_error_io_completion;
2167 }
2168
2169 break;
2170
2171 case SCU_TASK_DONE_CRC_ERR:
2172 case SCU_TASK_DONE_NAK_CMD_ERR:
2173 case SCU_TASK_DONE_EXCESS_DATA:
2174 case SCU_TASK_DONE_UNEXP_FIS:
2175 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2176 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2177 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2178 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2179 /* These are conditions in which the target
2180 * has completed the task, so that no cleanup
2181 * is necessary.
2182 */
2183 *response_ptr = SAS_TASK_COMPLETE;
2184
2185 /* See if the device has been/is being stopped. Note
2186 * that we ignore the quiesce state, since we are
2187 * concerned about the actual device state.
2188 */
2189 if (!idev)
2190 *status_ptr = SAS_DEVICE_UNKNOWN;
2191 else
2192 *status_ptr = SAS_ABORTED_TASK;
2193
2194 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2195
2196 *complete_to_host_ptr = isci_perform_normal_io_completion;
2197 break;
2198
2199
2200 /* Note that the only open reject completion codes seen here will be
2201 * abandon-class codes; all others are automatically retried in the SCU.
2202 */
2203 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2204
2205 isci_request_set_open_reject_status(
2206 request, task, response_ptr, status_ptr,
2207 complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
2208 break;
2209
2210 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2211
2212 /* Note - the return of AB0 will change when
2213 * libsas implements detection of zone violations.
2214 */
2215 isci_request_set_open_reject_status(
2216 request, task, response_ptr, status_ptr,
2217 complete_to_host_ptr, SAS_OREJ_RESV_AB0);
2218 break;
2219
2220 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2221
2222 isci_request_set_open_reject_status(
2223 request, task, response_ptr, status_ptr,
2224 complete_to_host_ptr, SAS_OREJ_RESV_AB1);
2225 break;
2226
2227 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2228
2229 isci_request_set_open_reject_status(
2230 request, task, response_ptr, status_ptr,
2231 complete_to_host_ptr, SAS_OREJ_RESV_AB2);
2232 break;
2233
2234 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2235
2236 isci_request_set_open_reject_status(
2237 request, task, response_ptr, status_ptr,
2238 complete_to_host_ptr, SAS_OREJ_RESV_AB3);
2239 break;
2240
2241 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2242
2243 isci_request_set_open_reject_status(
2244 request, task, response_ptr, status_ptr,
2245 complete_to_host_ptr, SAS_OREJ_BAD_DEST);
2246 break;
2247
2248 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2249
2250 isci_request_set_open_reject_status(
2251 request, task, response_ptr, status_ptr,
2252 complete_to_host_ptr, SAS_OREJ_STP_NORES);
2253 break;
2254
2255 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2256
2257 isci_request_set_open_reject_status(
2258 request, task, response_ptr, status_ptr,
2259 complete_to_host_ptr, SAS_OREJ_EPROTO);
2260 break;
2261
2262 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2263
2264 isci_request_set_open_reject_status(
2265 request, task, response_ptr, status_ptr,
2266 complete_to_host_ptr, SAS_OREJ_CONN_RATE);
2267 break;
2268
2269 case SCU_TASK_DONE_LL_R_ERR:
2270 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2271 case SCU_TASK_DONE_LL_PERR:
2272 case SCU_TASK_DONE_LL_SY_TERM:
2273 /* Also SCU_TASK_DONE_NAK_ERR:*/
2274 case SCU_TASK_DONE_LL_LF_TERM:
2275 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2276 case SCU_TASK_DONE_LL_ABORT_ERR:
2277 case SCU_TASK_DONE_SEQ_INV_TYPE:
2278 /* Also SCU_TASK_DONE_UNEXP_XR: */
2279 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2280 case SCU_TASK_DONE_INV_FIS_LEN:
2281 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2282 case SCU_TASK_DONE_SDMA_ERR:
2283 case SCU_TASK_DONE_OFFSET_ERR:
2284 case SCU_TASK_DONE_MAX_PLD_ERR:
2285 case SCU_TASK_DONE_LF_ERR:
2286 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2287 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2288 case SCU_TASK_DONE_UNEXP_DATA:
2289 case SCU_TASK_DONE_UNEXP_SDBFIS:
2290 case SCU_TASK_DONE_REG_ERR:
2291 case SCU_TASK_DONE_SDB_ERR:
2292 case SCU_TASK_DONE_TASK_ABORT:
2293 default:
2294 /* Task in the target is not done. */
2295 *response_ptr = SAS_TASK_UNDELIVERED;
2296 *status_ptr = SAM_STAT_TASK_ABORTED;
2297
2298 if (task->task_proto == SAS_PROTOCOL_SMP) {
2299 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2300
2301 *complete_to_host_ptr = isci_perform_normal_io_completion;
2302 } else {
2303 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2304
2305 *complete_to_host_ptr = isci_perform_error_io_completion;
2306 }
2307 break;
2308 }
2309}
2310
2311/**
2312 * isci_task_save_for_upper_layer_completion() - This function saves the
2313 * request for later completion to the upper layer driver.
2314 * @host: This parameter is a pointer to the host on which the the request
2315 * should be queued (either as an error or success).
2316 * @request: This parameter is the completed request.
2317 * @response: This parameter is the response code for the completed task.
2318 * @status: This parameter is the status code for the completed task.
2319 *
2320 * none.
2321 */
2322static void isci_task_save_for_upper_layer_completion(
2323 struct isci_host *host,
2324 struct isci_request *request,
2325 enum service_response response,
2326 enum exec_status status,
2327 enum isci_completion_selection task_notification_selection)
2328{
2329 struct sas_task *task = isci_request_access_task(request);
2330
2331 task_notification_selection
2332 = isci_task_set_completion_status(task, response, status,
2333 task_notification_selection);
2334
2335 /* Tasks aborted specifically by a call to the lldd_abort_task
2336 * function should not be completed to the host in the regular path.
2337 */
2338 switch (task_notification_selection) {
2339
2340 case isci_perform_normal_io_completion:
2341
2342 /* Normal notification (task_done) */
2343 dev_dbg(&host->pdev->dev,
2344 "%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n",
2345 __func__,
2346 task,
2347 task->task_status.resp, response,
2348 task->task_status.stat, status);
2349 /* Add to the completed list. */
2350 list_add(&request->completed_node,
2351 &host->requests_to_complete);
2352
2353 /* Take the request off the device's pending request list. */
2354 list_del_init(&request->dev_node);
2355 break;
2356
2357 case isci_perform_aborted_io_completion:
2358 /* No notification to libsas because this request is
2359 * already in the abort path.
2360 */
2361 dev_dbg(&host->pdev->dev,
2362 "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n",
2363 __func__,
2364 task,
2365 task->task_status.resp, response,
2366 task->task_status.stat, status);
2367
2368 /* Wake up whatever process was waiting for this
2369 * request to complete.
2370 */
2371 WARN_ON(request->io_request_completion == NULL);
2372
2373 if (request->io_request_completion != NULL) {
2374
2375 /* Signal whoever is waiting that this
2376 * request is complete.
2377 */
2378 complete(request->io_request_completion);
2379 }
2380 break;
2381
2382 case isci_perform_error_io_completion:
2383 /* Use sas_task_abort */
2384 dev_dbg(&host->pdev->dev,
2385 "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n",
2386 __func__,
2387 task,
2388 task->task_status.resp, response,
2389 task->task_status.stat, status);
2390 /* Add to the aborted list. */
2391 list_add(&request->completed_node,
2392 &host->requests_to_errorback);
2393 break;
2394
2395 default:
2396 dev_dbg(&host->pdev->dev,
2397 "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n",
2398 __func__,
2399 task,
2400 task->task_status.resp, response,
2401 task->task_status.stat, status);
2402
2403 /* Add to the error to libsas list. */
2404 list_add(&request->completed_node,
2405 &host->requests_to_errorback);
2406 break;
2407 }
2408}
2409
2410static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2411{
2412 struct task_status_struct *ts = &task->task_status;
2413 struct ata_task_resp *resp = (void *)&ts->buf[0];
2414
2415 resp->frame_len = sizeof(*fis);
2416 memcpy(resp->ending_fis, fis, sizeof(*fis));
2417 ts->buf_valid_size = sizeof(*resp);
2418
2419 /* If the device fault bit is set in the status register, then
2420 * set the sense data and return.
2421 */
2422 if (fis->status & ATA_DF)
2423 ts->stat = SAS_PROTO_RESPONSE;
2424 else
2425 ts->stat = SAM_STAT_GOOD;
2426
2427 ts->resp = SAS_TASK_COMPLETE;
2428}
2429
2430static void isci_request_io_request_complete(struct isci_host *ihost,
2431 struct isci_request *request,
2432 enum sci_io_status completion_status)
2433{
2434 struct sas_task *task = isci_request_access_task(request);
2435 struct ssp_response_iu *resp_iu;
2436 unsigned long task_flags;
2437 struct isci_remote_device *idev = isci_lookup_device(task->dev);
2438 enum service_response response = SAS_TASK_UNDELIVERED;
2439 enum exec_status status = SAS_ABORTED_TASK;
2440 enum isci_request_status request_status;
2441 enum isci_completion_selection complete_to_host
2442 = isci_perform_normal_io_completion;
2443
2444 dev_dbg(&ihost->pdev->dev,
2445 "%s: request = %p, task = %p,\n"
2446 "task->data_dir = %d completion_status = 0x%x\n",
2447 __func__,
2448 request,
2449 task,
2450 task->data_dir,
2451 completion_status);
2452
2453 spin_lock(&request->state_lock);
2454 request_status = request->status;
2455
2456 /* Decode the request status. Note that if the request has been
2457 * aborted by a task management function, we don't care
2458 * what the status is.
2459 */
2460 switch (request_status) {
2461
2462 case aborted:
2463 /* "aborted" indicates that the request was aborted by a task
2464 * management function, since once a task management request is
2465 * perfomed by the device, the request only completes because
2466 * of the subsequent driver terminate.
2467 *
2468 * Aborted also means an external thread is explicitly managing
2469 * this request, so that we do not complete it up the stack.
2470 *
2471 * The target is still there (since the TMF was successful).
2472 */
2473 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2474 response = SAS_TASK_COMPLETE;
2475
2476 /* See if the device has been/is being stopped. Note
2477 * that we ignore the quiesce state, since we are
2478 * concerned about the actual device state.
2479 */
2480 if (!idev)
2481 status = SAS_DEVICE_UNKNOWN;
2482 else
2483 status = SAS_ABORTED_TASK;
2484
2485 complete_to_host = isci_perform_aborted_io_completion;
2486 /* This was an aborted request. */
2487
2488 spin_unlock(&request->state_lock);
2489 break;
2490
2491 case aborting:
2492 /* aborting means that the task management function tried and
2493 * failed to abort the request. We need to note the request
2494 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
2495 * target as down.
2496 *
2497 * Aborting also means an external thread is explicitly managing
2498 * this request, so that we do not complete it up the stack.
2499 */
2500 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2501 response = SAS_TASK_UNDELIVERED;
2502
2503 if (!idev)
2504 /* The device has been /is being stopped. Note that
2505 * we ignore the quiesce state, since we are
2506 * concerned about the actual device state.
2507 */
2508 status = SAS_DEVICE_UNKNOWN;
2509 else
2510 status = SAS_PHY_DOWN;
2511
2512 complete_to_host = isci_perform_aborted_io_completion;
2513
2514 /* This was an aborted request. */
2515
2516 spin_unlock(&request->state_lock);
2517 break;
2518
2519 case terminating:
2520
2521 /* This was an terminated request. This happens when
2522 * the I/O is being terminated because of an action on
2523 * the device (reset, tear down, etc.), and the I/O needs
2524 * to be completed up the stack.
2525 */
2526 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2527 response = SAS_TASK_UNDELIVERED;
2528
2529 /* See if the device has been/is being stopped. Note
2530 * that we ignore the quiesce state, since we are
2531 * concerned about the actual device state.
2532 */
2533 if (!idev)
2534 status = SAS_DEVICE_UNKNOWN;
2535 else
2536 status = SAS_ABORTED_TASK;
2537
2538 complete_to_host = isci_perform_aborted_io_completion;
2539
2540 /* This was a terminated request. */
2541
2542 spin_unlock(&request->state_lock);
2543 break;
2544
2545 case dead:
2546 /* This was a terminated request that timed-out during the
2547 * termination process. There is no task to complete to
2548 * libsas.
2549 */
2550 complete_to_host = isci_perform_normal_io_completion;
2551 spin_unlock(&request->state_lock);
2552 break;
2553
2554 default:
2555
2556 /* The request is done from an SCU HW perspective. */
2557 request->status = completed;
2558
2559 spin_unlock(&request->state_lock);
2560
2561 /* This is an active request being completed from the core. */
2562 switch (completion_status) {
2563
2564 case SCI_IO_FAILURE_RESPONSE_VALID:
2565 dev_dbg(&ihost->pdev->dev,
2566 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2567 __func__,
2568 request,
2569 task);
2570
2571 if (sas_protocol_ata(task->task_proto)) {
2572 isci_process_stp_response(task, &request->stp.rsp);
2573 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2574
2575 /* crack the iu response buffer. */
2576 resp_iu = &request->ssp.rsp;
2577 isci_request_process_response_iu(task, resp_iu,
2578 &ihost->pdev->dev);
2579
2580 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2581
2582 dev_err(&ihost->pdev->dev,
2583 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2584 "SAS_PROTOCOL_SMP protocol\n",
2585 __func__);
2586
2587 } else
2588 dev_err(&ihost->pdev->dev,
2589 "%s: unknown protocol\n", __func__);
2590
2591 /* use the task status set in the task struct by the
2592 * isci_request_process_response_iu call.
2593 */
2594 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2595 response = task->task_status.resp;
2596 status = task->task_status.stat;
2597 break;
2598
2599 case SCI_IO_SUCCESS:
2600 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2601
2602 response = SAS_TASK_COMPLETE;
2603 status = SAM_STAT_GOOD;
2604 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2605
2606 if (task->task_proto == SAS_PROTOCOL_SMP) {
2607 void *rsp = &request->smp.rsp;
2608
2609 dev_dbg(&ihost->pdev->dev,
2610 "%s: SMP protocol completion\n",
2611 __func__);
2612
2613 sg_copy_from_buffer(
2614 &task->smp_task.smp_resp, 1,
2615 rsp, sizeof(struct smp_resp));
2616 } else if (completion_status
2617 == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2618
2619 /* This was an SSP / STP / SATA transfer.
2620 * There is a possibility that less data than
2621 * the maximum was transferred.
2622 */
2623 u32 transferred_length = sci_req_tx_bytes(request);
2624
2625 task->task_status.residual
2626 = task->total_xfer_len - transferred_length;
2627
2628 /* If there were residual bytes, call this an
2629 * underrun.
2630 */
2631 if (task->task_status.residual != 0)
2632 status = SAS_DATA_UNDERRUN;
2633
2634 dev_dbg(&ihost->pdev->dev,
2635 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2636 __func__,
2637 status);
2638
2639 } else
2640 dev_dbg(&ihost->pdev->dev,
2641 "%s: SCI_IO_SUCCESS\n",
2642 __func__);
2643
2644 break;
2645
2646 case SCI_IO_FAILURE_TERMINATED:
2647 dev_dbg(&ihost->pdev->dev,
2648 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2649 __func__,
2650 request,
2651 task);
2652
2653 /* The request was terminated explicitly. No handling
2654 * is needed in the SCSI error handler path.
2655 */
2656 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2657 response = SAS_TASK_UNDELIVERED;
2658
2659 /* See if the device has been/is being stopped. Note
2660 * that we ignore the quiesce state, since we are
2661 * concerned about the actual device state.
2662 */
2663 if (!idev)
2664 status = SAS_DEVICE_UNKNOWN;
2665 else
2666 status = SAS_ABORTED_TASK;
2667
2668 complete_to_host = isci_perform_normal_io_completion;
2669 break;
2670
2671 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2672
2673 isci_request_handle_controller_specific_errors(
2674 idev, request, task, &response, &status,
2675 &complete_to_host);
2676
2677 break;
2678
2679 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2680 /* This is a special case, in that the I/O completion
2681 * is telling us that the device needs a reset.
2682 * In order for the device reset condition to be
2683 * noticed, the I/O has to be handled in the error
2684 * handler. Set the reset flag and cause the
2685 * SCSI error thread to be scheduled.
2686 */
2687 spin_lock_irqsave(&task->task_state_lock, task_flags);
2688 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2689 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2690
2691 /* Fail the I/O. */
2692 response = SAS_TASK_UNDELIVERED;
2693 status = SAM_STAT_TASK_ABORTED;
2694
2695 complete_to_host = isci_perform_error_io_completion;
2696 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2697 break;
2698
2699 case SCI_FAILURE_RETRY_REQUIRED:
2700
2701 /* Fail the I/O so it can be retried. */
2702 response = SAS_TASK_UNDELIVERED;
2703 if (!idev)
2704 status = SAS_DEVICE_UNKNOWN;
2705 else
2706 status = SAS_ABORTED_TASK;
2707
2708 complete_to_host = isci_perform_normal_io_completion;
2709 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2710 break;
2711
2712
2713 default:
2714 /* Catch any otherwise unhandled error codes here. */
2715 dev_dbg(&ihost->pdev->dev,
2716 "%s: invalid completion code: 0x%x - "
2717 "isci_request = %p\n",
2718 __func__, completion_status, request);
2719
2720 response = SAS_TASK_UNDELIVERED;
2721
2722 /* See if the device has been/is being stopped. Note
2723 * that we ignore the quiesce state, since we are
2724 * concerned about the actual device state.
2725 */
2726 if (!idev)
2727 status = SAS_DEVICE_UNKNOWN;
2728 else
2729 status = SAS_ABORTED_TASK;
2730
2731 if (SAS_PROTOCOL_SMP == task->task_proto) {
2732 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2733 complete_to_host = isci_perform_normal_io_completion;
2734 } else {
2735 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2736 complete_to_host = isci_perform_error_io_completion;
2737 }
2738 break;
2739 }
2740 break;
2741 }
2742
2743 switch (task->task_proto) {
2744 case SAS_PROTOCOL_SSP:
2745 if (task->data_dir == DMA_NONE)
2746 break;
2747 if (task->num_scatter == 0)
2748 /* 0 indicates a single dma address */
2749 dma_unmap_single(&ihost->pdev->dev,
2750 request->zero_scatter_daddr,
2751 task->total_xfer_len, task->data_dir);
2752 else /* unmap the sgl dma addresses */
2753 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2754 request->num_sg_entries, task->data_dir);
2755 break;
2756 case SAS_PROTOCOL_SMP: {
2757 struct scatterlist *sg = &task->smp_task.smp_req;
2758 struct smp_req *smp_req;
2759 void *kaddr;
2760
2761 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2762
2763 /* need to swab it back in case the command buffer is re-used */
2764 kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
2765 smp_req = kaddr + sg->offset;
2766 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2767 kunmap_atomic(kaddr, KM_IRQ0);
2768 break;
2769 }
2770 default:
2771 break;
2772 }
2773
2774 /* Put the completed request on the correct list */
2775 isci_task_save_for_upper_layer_completion(ihost, request, response,
2776 status, complete_to_host
2777 );
2778
2779 /* complete the io request to the core. */
2780 sci_controller_complete_io(ihost, request->target_device, request);
2781 isci_put_device(idev);
2782
2783 /* set terminated handle so it cannot be completed or
2784 * terminated again, and to cause any calls into abort
2785 * task to recognize the already completed case.
2786 */
2787 set_bit(IREQ_TERMINATED, &request->flags);
2788}
2789
2790static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2791{
2792 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2793 struct domain_device *dev = ireq->target_device->domain_dev;
2794 struct sas_task *task;
2795
2796 /* XXX as hch said always creating an internal sas_task for tmf
2797 * requests would simplify the driver
2798 */
2799 task = ireq->ttype == io_task ? isci_request_access_task(ireq) : NULL;
2800
2801 /* all unaccelerated request types (non ssp or ncq) handled with
2802 * substates
2803 */
2804 if (!task && dev->dev_type == SAS_END_DEV) {
2805 sci_change_state(sm, SCI_REQ_TASK_WAIT_TC_COMP);
2806 } else if (!task &&
2807 (isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_high ||
2808 isci_request_access_tmf(ireq)->tmf_code == isci_tmf_sata_srst_low)) {
2809 sci_change_state(sm, SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED);
2810 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2811 sci_change_state(sm, SCI_REQ_SMP_WAIT_RESP);
2812 } else if (task && sas_protocol_ata(task->task_proto) &&
2813 !task->ata_task.use_ncq) {
2814 u32 state;
2815
2816 if (task->data_dir == DMA_NONE)
2817 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2818 else if (task->ata_task.dma_xfer)
2819 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2820 else /* PIO */
2821 state = SCI_REQ_STP_PIO_WAIT_H2D;
2822
2823 sci_change_state(sm, state);
2824 }
2825}
2826
2827static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2828{
2829 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2830 struct isci_host *ihost = ireq->owning_controller;
2831
2832 /* Tell the SCI_USER that the IO request is complete */
2833 if (!test_bit(IREQ_TMF, &ireq->flags))
2834 isci_request_io_request_complete(ihost, ireq,
2835 ireq->sci_status);
2836 else
2837 isci_task_request_complete(ihost, ireq, ireq->sci_status);
2838}
2839
2840static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
2841{
2842 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2843
2844 /* Setting the abort bit in the Task Context is required by the silicon. */
2845 ireq->tc->abort = 1;
2846}
2847
2848static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
2849{
2850 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2851
2852 ireq->target_device->working_request = ireq;
2853}
2854
2855static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
2856{
2857 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2858
2859 ireq->target_device->working_request = ireq;
2860}
2861
2862static void sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter(struct sci_base_state_machine *sm)
2863{
2864 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2865
2866 ireq->target_device->working_request = ireq;
2867}
2868
2869static void sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter(struct sci_base_state_machine *sm)
2870{
2871 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2872 struct scu_task_context *tc = ireq->tc;
2873 struct host_to_dev_fis *h2d_fis;
2874 enum sci_status status;
2875
2876 /* Clear the SRST bit */
2877 h2d_fis = &ireq->stp.cmd;
2878 h2d_fis->control = 0;
2879
2880 /* Clear the TC control bit */
2881 tc->control_frame = 0;
2882
2883 status = sci_controller_continue_io(ireq);
2884 WARN_ONCE(status != SCI_SUCCESS, "isci: continue io failure\n");
2885}
2886
2887static const struct sci_base_state sci_request_state_table[] = {
2888 [SCI_REQ_INIT] = { },
2889 [SCI_REQ_CONSTRUCTED] = { },
2890 [SCI_REQ_STARTED] = {
2891 .enter_state = sci_request_started_state_enter,
2892 },
2893 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
2894 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
2895 },
2896 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
2897 [SCI_REQ_STP_PIO_WAIT_H2D] = {
2898 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
2899 },
2900 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
2901 [SCI_REQ_STP_PIO_DATA_IN] = { },
2902 [SCI_REQ_STP_PIO_DATA_OUT] = { },
2903 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
2904 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
2905 [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_ASSERTED] = {
2906 .enter_state = sci_stp_request_started_soft_reset_await_h2d_asserted_completion_enter,
2907 },
2908 [SCI_REQ_STP_SOFT_RESET_WAIT_H2D_DIAG] = {
2909 .enter_state = sci_stp_request_started_soft_reset_await_h2d_diagnostic_completion_enter,
2910 },
2911 [SCI_REQ_STP_SOFT_RESET_WAIT_D2H] = { },
2912 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
2913 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
2914 [SCI_REQ_SMP_WAIT_RESP] = { },
2915 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
2916 [SCI_REQ_COMPLETED] = {
2917 .enter_state = sci_request_completed_state_enter,
2918 },
2919 [SCI_REQ_ABORTING] = {
2920 .enter_state = sci_request_aborting_state_enter,
2921 },
2922 [SCI_REQ_FINAL] = { },
2923};
2924
2925static void
2926sci_general_request_construct(struct isci_host *ihost,
2927 struct isci_remote_device *idev,
2928 struct isci_request *ireq)
2929{
2930 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
2931
2932 ireq->target_device = idev;
2933 ireq->protocol = SCIC_NO_PROTOCOL;
2934 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
2935
2936 ireq->sci_status = SCI_SUCCESS;
2937 ireq->scu_status = 0;
2938 ireq->post_context = 0xFFFFFFFF;
2939}
2940
2941static enum sci_status
2942sci_io_request_construct(struct isci_host *ihost,
2943 struct isci_remote_device *idev,
2944 struct isci_request *ireq)
2945{
2946 struct domain_device *dev = idev->domain_dev;
2947 enum sci_status status = SCI_SUCCESS;
2948
2949 /* Build the common part of the request */
2950 sci_general_request_construct(ihost, idev, ireq);
2951
2952 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
2953 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
2954
2955 if (dev->dev_type == SAS_END_DEV)
2956 /* pass */;
2957 else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
2958 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
2959 else if (dev_is_expander(dev))
2960 /* pass */;
2961 else
2962 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2963
2964 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
2965
2966 return status;
2967}
2968
2969enum sci_status sci_task_request_construct(struct isci_host *ihost,
2970 struct isci_remote_device *idev,
2971 u16 io_tag, struct isci_request *ireq)
2972{
2973 struct domain_device *dev = idev->domain_dev;
2974 enum sci_status status = SCI_SUCCESS;
2975
2976 /* Build the common part of the request */
2977 sci_general_request_construct(ihost, idev, ireq);
2978
2979 if (dev->dev_type == SAS_END_DEV ||
2980 dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
2981 set_bit(IREQ_TMF, &ireq->flags);
2982 memset(ireq->tc, 0, sizeof(struct scu_task_context));
2983 } else
2984 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
2985
2986 return status;
2987}
2988
2989static enum sci_status isci_request_ssp_request_construct(
2990 struct isci_request *request)
2991{
2992 enum sci_status status;
2993
2994 dev_dbg(&request->isci_host->pdev->dev,
2995 "%s: request = %p\n",
2996 __func__,
2997 request);
2998 status = sci_io_request_construct_basic_ssp(request);
2999 return status;
3000}
3001
3002static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3003{
3004 struct sas_task *task = isci_request_access_task(ireq);
3005 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3006 struct ata_queued_cmd *qc = task->uldd_task;
3007 enum sci_status status;
3008
3009 dev_dbg(&ireq->isci_host->pdev->dev,
3010 "%s: ireq = %p\n",
3011 __func__,
3012 ireq);
3013
3014 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3015 if (!task->ata_task.device_control_reg_update)
3016 fis->flags |= 0x80;
3017 fis->flags &= 0xF0;
3018
3019 status = sci_io_request_construct_basic_sata(ireq);
3020
3021 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3022 qc->tf.command == ATA_CMD_FPDMA_READ)) {
3023 fis->sector_count = qc->tag << 3;
3024 ireq->tc->type.stp.ncq_tag = qc->tag;
3025 }
3026
3027 return status;
3028}
3029
3030static enum sci_status
3031sci_io_request_construct_smp(struct device *dev,
3032 struct isci_request *ireq,
3033 struct sas_task *task)
3034{
3035 struct scatterlist *sg = &task->smp_task.smp_req;
3036 struct isci_remote_device *idev;
3037 struct scu_task_context *task_context;
3038 struct isci_port *iport;
3039 struct smp_req *smp_req;
3040 void *kaddr;
3041 u8 req_len;
3042 u32 cmd;
3043
3044 kaddr = kmap_atomic(sg_page(sg), KM_IRQ0);
3045 smp_req = kaddr + sg->offset;
3046 /*
3047 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3048 * functions under SAS 2.0, a zero request length really indicates
3049 * a non-zero default length.
3050 */
3051 if (smp_req->req_len == 0) {
3052 switch (smp_req->func) {
3053 case SMP_DISCOVER:
3054 case SMP_REPORT_PHY_ERR_LOG:
3055 case SMP_REPORT_PHY_SATA:
3056 case SMP_REPORT_ROUTE_INFO:
3057 smp_req->req_len = 2;
3058 break;
3059 case SMP_CONF_ROUTE_INFO:
3060 case SMP_PHY_CONTROL:
3061 case SMP_PHY_TEST_FUNCTION:
3062 smp_req->req_len = 9;
3063 break;
3064 /* Default - zero is a valid default for 2.0. */
3065 }
3066 }
3067 req_len = smp_req->req_len;
3068 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3069 cmd = *(u32 *) smp_req;
3070 kunmap_atomic(kaddr, KM_IRQ0);
3071
3072 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3073 return SCI_FAILURE;
3074
3075 ireq->protocol = SCIC_SMP_PROTOCOL;
3076
3077 /* byte swap the smp request. */
3078
3079 task_context = ireq->tc;
3080
3081 idev = ireq->target_device;
3082 iport = idev->owning_port;
3083
3084 /*
3085 * Fill in the TC with the its required data
3086 * 00h
3087 */
3088 task_context->priority = 0;
3089 task_context->initiator_request = 1;
3090 task_context->connection_rate = idev->connection_rate;
3091 task_context->protocol_engine_index = ISCI_PEG;
3092 task_context->logical_port_index = iport->physical_port_index;
3093 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3094 task_context->abort = 0;
3095 task_context->valid = SCU_TASK_CONTEXT_VALID;
3096 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3097
3098 /* 04h */
3099 task_context->remote_node_index = idev->rnc.remote_node_index;
3100 task_context->command_code = 0;
3101 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3102
3103 /* 08h */
3104 task_context->link_layer_control = 0;
3105 task_context->do_not_dma_ssp_good_response = 1;
3106 task_context->strict_ordering = 0;
3107 task_context->control_frame = 1;
3108 task_context->timeout_enable = 0;
3109 task_context->block_guard_enable = 0;
3110
3111 /* 0ch */
3112 task_context->address_modifier = 0;
3113
3114 /* 10h */
3115 task_context->ssp_command_iu_length = req_len;
3116
3117 /* 14h */
3118 task_context->transfer_length_bytes = 0;
3119
3120 /*
3121 * 18h ~ 30h, protocol specific
3122 * since commandIU has been build by framework at this point, we just
3123 * copy the frist DWord from command IU to this location. */
3124 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3125
3126 /*
3127 * 40h
3128 * "For SMP you could program it to zero. We would prefer that way
3129 * so that done code will be consistent." - Venki
3130 */
3131 task_context->task_phase = 0;
3132
3133 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3134 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3135 (iport->physical_port_index <<
3136 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3137 ISCI_TAG_TCI(ireq->io_tag));
3138 /*
3139 * Copy the physical address for the command buffer to the SCU Task
3140 * Context command buffer should not contain command header.
3141 */
3142 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3143 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3144
3145 /* SMP response comes as UF, so no need to set response IU address. */
3146 task_context->response_iu_upper = 0;
3147 task_context->response_iu_lower = 0;
3148
3149 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3150
3151 return SCI_SUCCESS;
3152}
3153
3154/*
3155 * isci_smp_request_build() - This function builds the smp request.
3156 * @ireq: This parameter points to the isci_request allocated in the
3157 * request construct function.
3158 *
3159 * SCI_SUCCESS on successfull completion, or specific failure code.
3160 */
3161static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3162{
3163 struct sas_task *task = isci_request_access_task(ireq);
3164 struct device *dev = &ireq->isci_host->pdev->dev;
3165 enum sci_status status = SCI_FAILURE;
3166
3167 status = sci_io_request_construct_smp(dev, ireq, task);
3168 if (status != SCI_SUCCESS)
3169 dev_dbg(&ireq->isci_host->pdev->dev,
3170 "%s: failed with status = %d\n",
3171 __func__,
3172 status);
3173
3174 return status;
3175}
3176
3177/**
3178 * isci_io_request_build() - This function builds the io request object.
3179 * @ihost: This parameter specifies the ISCI host object
3180 * @request: This parameter points to the isci_request object allocated in the
3181 * request construct function.
3182 * @sci_device: This parameter is the handle for the sci core's remote device
3183 * object that is the destination for this request.
3184 *
3185 * SCI_SUCCESS on successfull completion, or specific failure code.
3186 */
3187static enum sci_status isci_io_request_build(struct isci_host *ihost,
3188 struct isci_request *request,
3189 struct isci_remote_device *idev)
3190{
3191 enum sci_status status = SCI_SUCCESS;
3192 struct sas_task *task = isci_request_access_task(request);
3193
3194 dev_dbg(&ihost->pdev->dev,
3195 "%s: idev = 0x%p; request = %p, "
3196 "num_scatter = %d\n",
3197 __func__,
3198 idev,
3199 request,
3200 task->num_scatter);
3201
3202 /* map the sgl addresses, if present.
3203 * libata does the mapping for sata devices
3204 * before we get the request.
3205 */
3206 if (task->num_scatter &&
3207 !sas_protocol_ata(task->task_proto) &&
3208 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3209
3210 request->num_sg_entries = dma_map_sg(
3211 &ihost->pdev->dev,
3212 task->scatter,
3213 task->num_scatter,
3214 task->data_dir
3215 );
3216
3217 if (request->num_sg_entries == 0)
3218 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3219 }
3220
3221 status = sci_io_request_construct(ihost, idev, request);
3222
3223 if (status != SCI_SUCCESS) {
3224 dev_dbg(&ihost->pdev->dev,
3225 "%s: failed request construct\n",
3226 __func__);
3227 return SCI_FAILURE;
3228 }
3229
3230 switch (task->task_proto) {
3231 case SAS_PROTOCOL_SMP:
3232 status = isci_smp_request_build(request);
3233 break;
3234 case SAS_PROTOCOL_SSP:
3235 status = isci_request_ssp_request_construct(request);
3236 break;
3237 case SAS_PROTOCOL_SATA:
3238 case SAS_PROTOCOL_STP:
3239 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3240 status = isci_request_stp_request_construct(request);
3241 break;
3242 default:
3243 dev_dbg(&ihost->pdev->dev,
3244 "%s: unknown protocol\n", __func__);
3245 return SCI_FAILURE;
3246 }
3247
3248 return SCI_SUCCESS;
3249}
3250
3251static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3252{
3253 struct isci_request *ireq;
3254
3255 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3256 ireq->io_tag = tag;
3257 ireq->io_request_completion = NULL;
3258 ireq->flags = 0;
3259 ireq->num_sg_entries = 0;
3260 INIT_LIST_HEAD(&ireq->completed_node);
3261 INIT_LIST_HEAD(&ireq->dev_node);
3262 isci_request_change_state(ireq, allocated);
3263
3264 return ireq;
3265}
3266
3267static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3268 struct sas_task *task,
3269 u16 tag)
3270{
3271 struct isci_request *ireq;
3272
3273 ireq = isci_request_from_tag(ihost, tag);
3274 ireq->ttype_ptr.io_task_ptr = task;
3275 ireq->ttype = io_task;
3276 task->lldd_task = ireq;
3277
3278 return ireq;
3279}
3280
3281struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3282 struct isci_tmf *isci_tmf,
3283 u16 tag)
3284{
3285 struct isci_request *ireq;
3286
3287 ireq = isci_request_from_tag(ihost, tag);
3288 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3289 ireq->ttype = tmf_task;
3290
3291 return ireq;
3292}
3293
3294int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3295 struct sas_task *task, u16 tag)
3296{
3297 enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3298 struct isci_request *ireq;
3299 unsigned long flags;
3300 int ret = 0;
3301
3302 /* do common allocation and init of request object. */
3303 ireq = isci_io_request_from_tag(ihost, task, tag);
3304
3305 status = isci_io_request_build(ihost, ireq, idev);
3306 if (status != SCI_SUCCESS) {
3307 dev_dbg(&ihost->pdev->dev,
3308 "%s: request_construct failed - status = 0x%x\n",
3309 __func__,
3310 status);
3311 return status;
3312 }
3313
3314 spin_lock_irqsave(&ihost->scic_lock, flags);
3315
3316 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3317
3318 if (isci_task_is_ncq_recovery(task)) {
3319
3320 /* The device is in an NCQ recovery state. Issue the
3321 * request on the task side. Note that it will
3322 * complete on the I/O request side because the
3323 * request was built that way (ie.
3324 * ireq->is_task_management_request is false).
3325 */
3326 status = sci_controller_start_task(ihost,
3327 idev,
3328 ireq);
3329 } else {
3330 status = SCI_FAILURE;
3331 }
3332 } else {
3333 /* send the request, let the core assign the IO TAG. */
3334 status = sci_controller_start_io(ihost, idev,
3335 ireq);
3336 }
3337
3338 if (status != SCI_SUCCESS &&
3339 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3340 dev_dbg(&ihost->pdev->dev,
3341 "%s: failed request start (0x%x)\n",
3342 __func__, status);
3343 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3344 return status;
3345 }
3346
3347 /* Either I/O started OK, or the core has signaled that
3348 * the device needs a target reset.
3349 *
3350 * In either case, hold onto the I/O for later.
3351 *
3352 * Update it's status and add it to the list in the
3353 * remote device object.
3354 */
3355 list_add(&ireq->dev_node, &idev->reqs_in_process);
3356
3357 if (status == SCI_SUCCESS) {
3358 isci_request_change_state(ireq, started);
3359 } else {
3360 /* The request did not really start in the
3361 * hardware, so clear the request handle
3362 * here so no terminations will be done.
3363 */
3364 set_bit(IREQ_TERMINATED, &ireq->flags);
3365 isci_request_change_state(ireq, completed);
3366 }
3367 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3368
3369 if (status ==
3370 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3371 /* Signal libsas that we need the SCSI error
3372 * handler thread to work on this I/O and that
3373 * we want a device reset.
3374 */
3375 spin_lock_irqsave(&task->task_state_lock, flags);
3376 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3377 spin_unlock_irqrestore(&task->task_state_lock, flags);
3378
3379 /* Cause this task to be scheduled in the SCSI error
3380 * handler thread.
3381 */
3382 isci_execpath_callback(ihost, task,
3383 sas_task_abort);
3384
3385 /* Change the status, since we are holding
3386 * the I/O until it is managed by the SCSI
3387 * error handler.
3388 */
3389 status = SCI_SUCCESS;
3390 }
3391
3392 return ret;
3393}
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include <scsi/scsi_cmnd.h>
57#include "isci.h"
58#include "task.h"
59#include "request.h"
60#include "scu_completion_codes.h"
61#include "scu_event_codes.h"
62#include "sas.h"
63
64#undef C
65#define C(a) (#a)
66const char *req_state_name(enum sci_base_request_states state)
67{
68 static const char * const strings[] = REQUEST_STATES;
69
70 return strings[state];
71}
72#undef C
73
74static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75 int idx)
76{
77 if (idx == 0)
78 return &ireq->tc->sgl_pair_ab;
79 else if (idx == 1)
80 return &ireq->tc->sgl_pair_cd;
81 else if (idx < 0)
82 return NULL;
83 else
84 return &ireq->sg_table[idx - 2];
85}
86
87static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88 struct isci_request *ireq, u32 idx)
89{
90 u32 offset;
91
92 if (idx == 0) {
93 offset = (void *) &ireq->tc->sgl_pair_ab -
94 (void *) &ihost->task_context_table[0];
95 return ihost->tc_dma + offset;
96 } else if (idx == 1) {
97 offset = (void *) &ireq->tc->sgl_pair_cd -
98 (void *) &ihost->task_context_table[0];
99 return ihost->tc_dma + offset;
100 }
101
102 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
103}
104
105static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
106{
107 e->length = sg_dma_len(sg);
108 e->address_upper = upper_32_bits(sg_dma_address(sg));
109 e->address_lower = lower_32_bits(sg_dma_address(sg));
110 e->address_modifier = 0;
111}
112
113static void sci_request_build_sgl(struct isci_request *ireq)
114{
115 struct isci_host *ihost = ireq->isci_host;
116 struct sas_task *task = isci_request_access_task(ireq);
117 struct scatterlist *sg = NULL;
118 dma_addr_t dma_addr;
119 u32 sg_idx = 0;
120 struct scu_sgl_element_pair *scu_sg = NULL;
121 struct scu_sgl_element_pair *prev_sg = NULL;
122
123 if (task->num_scatter > 0) {
124 sg = task->scatter;
125
126 while (sg) {
127 scu_sg = to_sgl_element_pair(ireq, sg_idx);
128 init_sgl_element(&scu_sg->A, sg);
129 sg = sg_next(sg);
130 if (sg) {
131 init_sgl_element(&scu_sg->B, sg);
132 sg = sg_next(sg);
133 } else
134 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
135
136 if (prev_sg) {
137 dma_addr = to_sgl_element_pair_dma(ihost,
138 ireq,
139 sg_idx);
140
141 prev_sg->next_pair_upper =
142 upper_32_bits(dma_addr);
143 prev_sg->next_pair_lower =
144 lower_32_bits(dma_addr);
145 }
146
147 prev_sg = scu_sg;
148 sg_idx++;
149 }
150 } else { /* handle when no sg */
151 scu_sg = to_sgl_element_pair(ireq, sg_idx);
152
153 dma_addr = dma_map_single(&ihost->pdev->dev,
154 task->scatter,
155 task->total_xfer_len,
156 task->data_dir);
157
158 ireq->zero_scatter_daddr = dma_addr;
159
160 scu_sg->A.length = task->total_xfer_len;
161 scu_sg->A.address_upper = upper_32_bits(dma_addr);
162 scu_sg->A.address_lower = lower_32_bits(dma_addr);
163 }
164
165 if (scu_sg) {
166 scu_sg->next_pair_upper = 0;
167 scu_sg->next_pair_lower = 0;
168 }
169}
170
171static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
172{
173 struct ssp_cmd_iu *cmd_iu;
174 struct sas_task *task = isci_request_access_task(ireq);
175
176 cmd_iu = &ireq->ssp.cmd;
177
178 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179 cmd_iu->add_cdb_len = 0;
180 cmd_iu->_r_a = 0;
181 cmd_iu->_r_b = 0;
182 cmd_iu->en_fburst = 0; /* unsupported */
183 cmd_iu->task_prio = 0;
184 cmd_iu->task_attr = task->ssp_task.task_attr;
185 cmd_iu->_r_c = 0;
186
187 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cmd->cmnd,
188 (task->ssp_task.cmd->cmd_len+3) / sizeof(u32));
189}
190
191static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
192{
193 struct ssp_task_iu *task_iu;
194 struct sas_task *task = isci_request_access_task(ireq);
195 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
196
197 task_iu = &ireq->ssp.tmf;
198
199 memset(task_iu, 0, sizeof(struct ssp_task_iu));
200
201 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
202
203 task_iu->task_func = isci_tmf->tmf_code;
204 task_iu->task_tag =
205 (test_bit(IREQ_TMF, &ireq->flags)) ?
206 isci_tmf->io_tag :
207 SCI_CONTROLLER_INVALID_IO_TAG;
208}
209
210/*
211 * This method is will fill in the SCU Task Context for any type of SSP request.
212 */
213static void scu_ssp_request_construct_task_context(
214 struct isci_request *ireq,
215 struct scu_task_context *task_context)
216{
217 dma_addr_t dma_addr;
218 struct isci_remote_device *idev;
219 struct isci_port *iport;
220
221 idev = ireq->target_device;
222 iport = idev->owning_port;
223
224 /* Fill in the TC with its required data */
225 task_context->abort = 0;
226 task_context->priority = 0;
227 task_context->initiator_request = 1;
228 task_context->connection_rate = idev->connection_rate;
229 task_context->protocol_engine_index = ISCI_PEG;
230 task_context->logical_port_index = iport->physical_port_index;
231 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
232 task_context->valid = SCU_TASK_CONTEXT_VALID;
233 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
234
235 task_context->remote_node_index = idev->rnc.remote_node_index;
236 task_context->command_code = 0;
237
238 task_context->link_layer_control = 0;
239 task_context->do_not_dma_ssp_good_response = 1;
240 task_context->strict_ordering = 0;
241 task_context->control_frame = 0;
242 task_context->timeout_enable = 0;
243 task_context->block_guard_enable = 0;
244
245 task_context->address_modifier = 0;
246
247 /* task_context->type.ssp.tag = ireq->io_tag; */
248 task_context->task_phase = 0x01;
249
250 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
251 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
252 (iport->physical_port_index <<
253 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
254 ISCI_TAG_TCI(ireq->io_tag));
255
256 /*
257 * Copy the physical address for the command buffer to the
258 * SCU Task Context
259 */
260 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
261
262 task_context->command_iu_upper = upper_32_bits(dma_addr);
263 task_context->command_iu_lower = lower_32_bits(dma_addr);
264
265 /*
266 * Copy the physical address for the response buffer to the
267 * SCU Task Context
268 */
269 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
270
271 task_context->response_iu_upper = upper_32_bits(dma_addr);
272 task_context->response_iu_lower = lower_32_bits(dma_addr);
273}
274
275static u8 scu_bg_blk_size(struct scsi_device *sdp)
276{
277 switch (sdp->sector_size) {
278 case 512:
279 return 0;
280 case 1024:
281 return 1;
282 case 4096:
283 return 3;
284 default:
285 return 0xff;
286 }
287}
288
289static u32 scu_dif_bytes(u32 len, u32 sector_size)
290{
291 return (len >> ilog2(sector_size)) * 8;
292}
293
294static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
295{
296 struct scu_task_context *tc = ireq->tc;
297 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
298 u8 blk_sz = scu_bg_blk_size(scmd->device);
299
300 tc->block_guard_enable = 1;
301 tc->blk_prot_en = 1;
302 tc->blk_sz = blk_sz;
303 /* DIF write insert */
304 tc->blk_prot_func = 0x2;
305
306 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
307 scmd->device->sector_size);
308
309 /* always init to 0, used by hw */
310 tc->interm_crc_val = 0;
311
312 tc->init_crc_seed = 0;
313 tc->app_tag_verify = 0;
314 tc->app_tag_gen = 0;
315 tc->ref_tag_seed_verify = 0;
316
317 /* always init to same as bg_blk_sz */
318 tc->UD_bytes_immed_val = scmd->device->sector_size;
319
320 tc->reserved_DC_0 = 0;
321
322 /* always init to 8 */
323 tc->DIF_bytes_immed_val = 8;
324
325 tc->reserved_DC_1 = 0;
326 tc->bgc_blk_sz = scmd->device->sector_size;
327 tc->reserved_E0_0 = 0;
328 tc->app_tag_gen_mask = 0;
329
330 /** setup block guard control **/
331 tc->bgctl = 0;
332
333 /* DIF write insert */
334 tc->bgctl_f.op = 0x2;
335
336 tc->app_tag_verify_mask = 0;
337
338 /* must init to 0 for hw */
339 tc->blk_guard_err = 0;
340
341 tc->reserved_E8_0 = 0;
342
343 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
344 tc->ref_tag_seed_gen = scsi_prot_ref_tag(scmd);
345 else if (type & SCSI_PROT_DIF_TYPE3)
346 tc->ref_tag_seed_gen = 0;
347}
348
349static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
350{
351 struct scu_task_context *tc = ireq->tc;
352 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
353 u8 blk_sz = scu_bg_blk_size(scmd->device);
354
355 tc->block_guard_enable = 1;
356 tc->blk_prot_en = 1;
357 tc->blk_sz = blk_sz;
358 /* DIF read strip */
359 tc->blk_prot_func = 0x1;
360
361 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
362 scmd->device->sector_size);
363
364 /* always init to 0, used by hw */
365 tc->interm_crc_val = 0;
366
367 tc->init_crc_seed = 0;
368 tc->app_tag_verify = 0;
369 tc->app_tag_gen = 0;
370
371 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
372 tc->ref_tag_seed_verify = scsi_prot_ref_tag(scmd);
373 else if (type & SCSI_PROT_DIF_TYPE3)
374 tc->ref_tag_seed_verify = 0;
375
376 /* always init to same as bg_blk_sz */
377 tc->UD_bytes_immed_val = scmd->device->sector_size;
378
379 tc->reserved_DC_0 = 0;
380
381 /* always init to 8 */
382 tc->DIF_bytes_immed_val = 8;
383
384 tc->reserved_DC_1 = 0;
385 tc->bgc_blk_sz = scmd->device->sector_size;
386 tc->reserved_E0_0 = 0;
387 tc->app_tag_gen_mask = 0;
388
389 /** setup block guard control **/
390 tc->bgctl = 0;
391
392 /* DIF read strip */
393 tc->bgctl_f.crc_verify = 1;
394 tc->bgctl_f.op = 0x1;
395 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
396 tc->bgctl_f.ref_tag_chk = 1;
397 tc->bgctl_f.app_f_detect = 1;
398 } else if (type & SCSI_PROT_DIF_TYPE3)
399 tc->bgctl_f.app_ref_f_detect = 1;
400
401 tc->app_tag_verify_mask = 0;
402
403 /* must init to 0 for hw */
404 tc->blk_guard_err = 0;
405
406 tc->reserved_E8_0 = 0;
407 tc->ref_tag_seed_gen = 0;
408}
409
410/*
411 * This method is will fill in the SCU Task Context for a SSP IO request.
412 */
413static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
414 enum dma_data_direction dir,
415 u32 len)
416{
417 struct scu_task_context *task_context = ireq->tc;
418 struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
419 struct scsi_cmnd *scmd = sas_task->uldd_task;
420 u8 prot_type = scsi_get_prot_type(scmd);
421 u8 prot_op = scsi_get_prot_op(scmd);
422
423 scu_ssp_request_construct_task_context(ireq, task_context);
424
425 task_context->ssp_command_iu_length =
426 sizeof(struct ssp_cmd_iu) / sizeof(u32);
427 task_context->type.ssp.frame_type = SSP_COMMAND;
428
429 switch (dir) {
430 case DMA_FROM_DEVICE:
431 case DMA_NONE:
432 default:
433 task_context->task_type = SCU_TASK_TYPE_IOREAD;
434 break;
435 case DMA_TO_DEVICE:
436 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
437 break;
438 }
439
440 task_context->transfer_length_bytes = len;
441
442 if (task_context->transfer_length_bytes > 0)
443 sci_request_build_sgl(ireq);
444
445 if (prot_type != SCSI_PROT_DIF_TYPE0) {
446 if (prot_op == SCSI_PROT_READ_STRIP)
447 scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
448 else if (prot_op == SCSI_PROT_WRITE_INSERT)
449 scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
450 }
451}
452
453/**
454 * scu_ssp_task_request_construct_task_context() - This method will fill in
455 * the SCU Task Context for a SSP Task request. The following important
456 * settings are utilized: -# priority == SCU_TASK_PRIORITY_HIGH. This
457 * ensures that the task request is issued ahead of other task destined
458 * for the same Remote Node. -# task_type == SCU_TASK_TYPE_IOREAD. This
459 * simply indicates that a normal request type (i.e. non-raw frame) is
460 * being utilized to perform task management. -#control_frame == 1. This
461 * ensures that the proper endianness is set so that the bytes are
462 * transmitted in the right order for a task frame.
463 * @ireq: This parameter specifies the task request object being constructed.
464 */
465static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
466{
467 struct scu_task_context *task_context = ireq->tc;
468
469 scu_ssp_request_construct_task_context(ireq, task_context);
470
471 task_context->control_frame = 1;
472 task_context->priority = SCU_TASK_PRIORITY_HIGH;
473 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
474 task_context->transfer_length_bytes = 0;
475 task_context->type.ssp.frame_type = SSP_TASK;
476 task_context->ssp_command_iu_length =
477 sizeof(struct ssp_task_iu) / sizeof(u32);
478}
479
480/**
481 * scu_sata_request_construct_task_context()
482 * This method is will fill in the SCU Task Context for any type of SATA
483 * request. This is called from the various SATA constructors.
484 * @ireq: The general IO request object which is to be used in
485 * constructing the SCU task context.
486 * @task_context: The buffer pointer for the SCU task context which is being
487 * constructed.
488 *
489 * The general io request construction is complete. The buffer assignment for
490 * the command buffer is complete. none Revisit task context construction to
491 * determine what is common for SSP/SMP/STP task context structures.
492 */
493static void scu_sata_request_construct_task_context(
494 struct isci_request *ireq,
495 struct scu_task_context *task_context)
496{
497 dma_addr_t dma_addr;
498 struct isci_remote_device *idev;
499 struct isci_port *iport;
500
501 idev = ireq->target_device;
502 iport = idev->owning_port;
503
504 /* Fill in the TC with its required data */
505 task_context->abort = 0;
506 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
507 task_context->initiator_request = 1;
508 task_context->connection_rate = idev->connection_rate;
509 task_context->protocol_engine_index = ISCI_PEG;
510 task_context->logical_port_index = iport->physical_port_index;
511 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
512 task_context->valid = SCU_TASK_CONTEXT_VALID;
513 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
514
515 task_context->remote_node_index = idev->rnc.remote_node_index;
516 task_context->command_code = 0;
517
518 task_context->link_layer_control = 0;
519 task_context->do_not_dma_ssp_good_response = 1;
520 task_context->strict_ordering = 0;
521 task_context->control_frame = 0;
522 task_context->timeout_enable = 0;
523 task_context->block_guard_enable = 0;
524
525 task_context->address_modifier = 0;
526 task_context->task_phase = 0x01;
527
528 task_context->ssp_command_iu_length =
529 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
530
531 /* Set the first word of the H2D REG FIS */
532 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
533
534 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
535 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
536 (iport->physical_port_index <<
537 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
538 ISCI_TAG_TCI(ireq->io_tag));
539 /*
540 * Copy the physical address for the command buffer to the SCU Task
541 * Context. We must offset the command buffer by 4 bytes because the
542 * first 4 bytes are transfered in the body of the TC.
543 */
544 dma_addr = sci_io_request_get_dma_addr(ireq,
545 ((char *) &ireq->stp.cmd) +
546 sizeof(u32));
547
548 task_context->command_iu_upper = upper_32_bits(dma_addr);
549 task_context->command_iu_lower = lower_32_bits(dma_addr);
550
551 /* SATA Requests do not have a response buffer */
552 task_context->response_iu_upper = 0;
553 task_context->response_iu_lower = 0;
554}
555
556static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
557{
558 struct scu_task_context *task_context = ireq->tc;
559
560 scu_sata_request_construct_task_context(ireq, task_context);
561
562 task_context->control_frame = 0;
563 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
564 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
565 task_context->type.stp.fis_type = FIS_REGH2D;
566 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
567}
568
569static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
570 bool copy_rx_frame)
571{
572 struct isci_stp_request *stp_req = &ireq->stp.req;
573
574 scu_stp_raw_request_construct_task_context(ireq);
575
576 stp_req->status = 0;
577 stp_req->sgl.offset = 0;
578 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
579
580 if (copy_rx_frame) {
581 sci_request_build_sgl(ireq);
582 stp_req->sgl.index = 0;
583 } else {
584 /* The user does not want the data copied to the SGL buffer location */
585 stp_req->sgl.index = -1;
586 }
587
588 return SCI_SUCCESS;
589}
590
591/*
592 * sci_stp_optimized_request_construct()
593 * @ireq: This parameter specifies the request to be constructed as an
594 * optimized request.
595 * @optimized_task_type: This parameter specifies whether the request is to be
596 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
597 * value of 1 indicates NCQ.
598 *
599 * This method will perform request construction common to all types of STP
600 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
601 * returns an indication as to whether the construction was successful.
602 */
603static void sci_stp_optimized_request_construct(struct isci_request *ireq,
604 u8 optimized_task_type,
605 u32 len,
606 enum dma_data_direction dir)
607{
608 struct scu_task_context *task_context = ireq->tc;
609
610 /* Build the STP task context structure */
611 scu_sata_request_construct_task_context(ireq, task_context);
612
613 /* Copy over the SGL elements */
614 sci_request_build_sgl(ireq);
615
616 /* Copy over the number of bytes to be transfered */
617 task_context->transfer_length_bytes = len;
618
619 if (dir == DMA_TO_DEVICE) {
620 /*
621 * The difference between the DMA IN and DMA OUT request task type
622 * values are consistent with the difference between FPDMA READ
623 * and FPDMA WRITE values. Add the supplied task type parameter
624 * to this difference to set the task type properly for this
625 * DATA OUT (WRITE) case. */
626 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
627 - SCU_TASK_TYPE_DMA_IN);
628 } else {
629 /*
630 * For the DATA IN (READ) case, simply save the supplied
631 * optimized task type. */
632 task_context->task_type = optimized_task_type;
633 }
634}
635
636static void sci_atapi_construct(struct isci_request *ireq)
637{
638 struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
639 struct sas_task *task;
640
641 /* To simplify the implementation we take advantage of the
642 * silicon's partial acceleration of atapi protocol (dma data
643 * transfers), so we promote all commands to dma protocol. This
644 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
645 */
646 h2d_fis->features |= ATAPI_PKT_DMA;
647
648 scu_stp_raw_request_construct_task_context(ireq);
649
650 task = isci_request_access_task(ireq);
651 if (task->data_dir == DMA_NONE)
652 task->total_xfer_len = 0;
653
654 /* clear the response so we can detect arrivial of an
655 * unsolicited h2d fis
656 */
657 ireq->stp.rsp.fis_type = 0;
658}
659
660static enum sci_status
661sci_io_request_construct_sata(struct isci_request *ireq,
662 u32 len,
663 enum dma_data_direction dir,
664 bool copy)
665{
666 enum sci_status status = SCI_SUCCESS;
667 struct sas_task *task = isci_request_access_task(ireq);
668 struct domain_device *dev = ireq->target_device->domain_dev;
669
670 /* check for management protocols */
671 if (test_bit(IREQ_TMF, &ireq->flags)) {
672 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
673
674 dev_err(&ireq->owning_controller->pdev->dev,
675 "%s: Request 0x%p received un-handled SAT "
676 "management protocol 0x%x.\n",
677 __func__, ireq, tmf->tmf_code);
678
679 return SCI_FAILURE;
680 }
681
682 if (!sas_protocol_ata(task->task_proto)) {
683 dev_err(&ireq->owning_controller->pdev->dev,
684 "%s: Non-ATA protocol in SATA path: 0x%x\n",
685 __func__,
686 task->task_proto);
687 return SCI_FAILURE;
688
689 }
690
691 /* ATAPI */
692 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
693 task->ata_task.fis.command == ATA_CMD_PACKET) {
694 sci_atapi_construct(ireq);
695 return SCI_SUCCESS;
696 }
697
698 /* non data */
699 if (task->data_dir == DMA_NONE) {
700 scu_stp_raw_request_construct_task_context(ireq);
701 return SCI_SUCCESS;
702 }
703
704 /* NCQ */
705 if (task->ata_task.use_ncq) {
706 sci_stp_optimized_request_construct(ireq,
707 SCU_TASK_TYPE_FPDMAQ_READ,
708 len, dir);
709 return SCI_SUCCESS;
710 }
711
712 /* DMA */
713 if (task->ata_task.dma_xfer) {
714 sci_stp_optimized_request_construct(ireq,
715 SCU_TASK_TYPE_DMA_IN,
716 len, dir);
717 return SCI_SUCCESS;
718 } else /* PIO */
719 return sci_stp_pio_request_construct(ireq, copy);
720
721 return status;
722}
723
724static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
725{
726 struct sas_task *task = isci_request_access_task(ireq);
727
728 ireq->protocol = SAS_PROTOCOL_SSP;
729
730 scu_ssp_io_request_construct_task_context(ireq,
731 task->data_dir,
732 task->total_xfer_len);
733
734 sci_io_request_build_ssp_command_iu(ireq);
735
736 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
737
738 return SCI_SUCCESS;
739}
740
741void sci_task_request_construct_ssp(struct isci_request *ireq)
742{
743 /* Construct the SSP Task SCU Task Context */
744 scu_ssp_task_request_construct_task_context(ireq);
745
746 /* Fill in the SSP Task IU */
747 sci_task_request_build_ssp_task_iu(ireq);
748
749 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
750}
751
752static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
753{
754 enum sci_status status;
755 bool copy = false;
756 struct sas_task *task = isci_request_access_task(ireq);
757
758 ireq->protocol = SAS_PROTOCOL_STP;
759
760 copy = (task->data_dir == DMA_NONE) ? false : true;
761
762 status = sci_io_request_construct_sata(ireq,
763 task->total_xfer_len,
764 task->data_dir,
765 copy);
766
767 if (status == SCI_SUCCESS)
768 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
769
770 return status;
771}
772
773#define SCU_TASK_CONTEXT_SRAM 0x200000
774/**
775 * sci_req_tx_bytes - bytes transferred when reply underruns request
776 * @ireq: request that was terminated early
777 */
778static u32 sci_req_tx_bytes(struct isci_request *ireq)
779{
780 struct isci_host *ihost = ireq->owning_controller;
781 u32 ret_val = 0;
782
783 if (readl(&ihost->smu_registers->address_modifier) == 0) {
784 void __iomem *scu_reg_base = ihost->scu_registers;
785
786 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
787 * BAR1 is the scu_registers
788 * 0x20002C = 0x200000 + 0x2c
789 * = start of task context SRAM + offset of (type.ssp.data_offset)
790 * TCi is the io_tag of struct sci_request
791 */
792 ret_val = readl(scu_reg_base +
793 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
794 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
795 }
796
797 return ret_val;
798}
799
800enum sci_status sci_request_start(struct isci_request *ireq)
801{
802 enum sci_base_request_states state;
803 struct scu_task_context *tc = ireq->tc;
804 struct isci_host *ihost = ireq->owning_controller;
805
806 state = ireq->sm.current_state_id;
807 if (state != SCI_REQ_CONSTRUCTED) {
808 dev_warn(&ihost->pdev->dev,
809 "%s: SCIC IO Request requested to start while in wrong "
810 "state %d\n", __func__, state);
811 return SCI_FAILURE_INVALID_STATE;
812 }
813
814 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
815
816 switch (tc->protocol_type) {
817 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
818 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
819 /* SSP/SMP Frame */
820 tc->type.ssp.tag = ireq->io_tag;
821 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
822 break;
823
824 case SCU_TASK_CONTEXT_PROTOCOL_STP:
825 /* STP/SATA Frame
826 * tc->type.stp.ncq_tag = ireq->ncq_tag;
827 */
828 break;
829
830 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
831 /* / @todo When do we set no protocol type? */
832 break;
833
834 default:
835 /* This should never happen since we build the IO
836 * requests */
837 break;
838 }
839
840 /* Add to the post_context the io tag value */
841 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
842
843 /* Everything is good go ahead and change state */
844 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
845
846 return SCI_SUCCESS;
847}
848
849enum sci_status
850sci_io_request_terminate(struct isci_request *ireq)
851{
852 enum sci_base_request_states state;
853
854 state = ireq->sm.current_state_id;
855
856 switch (state) {
857 case SCI_REQ_CONSTRUCTED:
858 /* Set to make sure no HW terminate posting is done: */
859 set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags);
860 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
861 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
862 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
863 return SCI_SUCCESS;
864 case SCI_REQ_STARTED:
865 case SCI_REQ_TASK_WAIT_TC_COMP:
866 case SCI_REQ_SMP_WAIT_RESP:
867 case SCI_REQ_SMP_WAIT_TC_COMP:
868 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
869 case SCI_REQ_STP_UDMA_WAIT_D2H:
870 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
871 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
872 case SCI_REQ_STP_PIO_WAIT_H2D:
873 case SCI_REQ_STP_PIO_WAIT_FRAME:
874 case SCI_REQ_STP_PIO_DATA_IN:
875 case SCI_REQ_STP_PIO_DATA_OUT:
876 case SCI_REQ_ATAPI_WAIT_H2D:
877 case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
878 case SCI_REQ_ATAPI_WAIT_D2H:
879 case SCI_REQ_ATAPI_WAIT_TC_COMP:
880 /* Fall through and change state to ABORTING... */
881 case SCI_REQ_TASK_WAIT_TC_RESP:
882 /* The task frame was already confirmed to have been
883 * sent by the SCU HW. Since the state machine is
884 * now only waiting for the task response itself,
885 * abort the request and complete it immediately
886 * and don't wait for the task response.
887 */
888 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
889 fallthrough; /* and handle like ABORTING */
890 case SCI_REQ_ABORTING:
891 if (!isci_remote_device_is_safe_to_abort(ireq->target_device))
892 set_bit(IREQ_PENDING_ABORT, &ireq->flags);
893 else
894 clear_bit(IREQ_PENDING_ABORT, &ireq->flags);
895 /* If the request is only waiting on the remote device
896 * suspension, return SUCCESS so the caller will wait too.
897 */
898 return SCI_SUCCESS;
899 case SCI_REQ_COMPLETED:
900 default:
901 dev_warn(&ireq->owning_controller->pdev->dev,
902 "%s: SCIC IO Request requested to abort while in wrong "
903 "state %d\n", __func__, ireq->sm.current_state_id);
904 break;
905 }
906
907 return SCI_FAILURE_INVALID_STATE;
908}
909
910enum sci_status sci_request_complete(struct isci_request *ireq)
911{
912 enum sci_base_request_states state;
913 struct isci_host *ihost = ireq->owning_controller;
914
915 state = ireq->sm.current_state_id;
916 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
917 "isci: request completion from wrong state (%s)\n",
918 req_state_name(state)))
919 return SCI_FAILURE_INVALID_STATE;
920
921 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
922 sci_controller_release_frame(ihost,
923 ireq->saved_rx_frame_index);
924
925 /* XXX can we just stop the machine and remove the 'final' state? */
926 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
927 return SCI_SUCCESS;
928}
929
930enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
931 u32 event_code)
932{
933 enum sci_base_request_states state;
934 struct isci_host *ihost = ireq->owning_controller;
935
936 state = ireq->sm.current_state_id;
937
938 if (state != SCI_REQ_STP_PIO_DATA_IN) {
939 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
940 __func__, event_code, req_state_name(state));
941
942 return SCI_FAILURE_INVALID_STATE;
943 }
944
945 switch (scu_get_event_specifier(event_code)) {
946 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
947 /* We are waiting for data and the SCU has R_ERR the data frame.
948 * Go back to waiting for the D2H Register FIS
949 */
950 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
951 return SCI_SUCCESS;
952 default:
953 dev_err(&ihost->pdev->dev,
954 "%s: pio request unexpected event %#x\n",
955 __func__, event_code);
956
957 /* TODO Should we fail the PIO request when we get an
958 * unexpected event?
959 */
960 return SCI_FAILURE;
961 }
962}
963
964/*
965 * This function copies response data for requests returning response data
966 * instead of sense data.
967 * @sci_req: This parameter specifies the request object for which to copy
968 * the response data.
969 */
970static void sci_io_request_copy_response(struct isci_request *ireq)
971{
972 void *resp_buf;
973 u32 len;
974 struct ssp_response_iu *ssp_response;
975 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
976
977 ssp_response = &ireq->ssp.rsp;
978
979 resp_buf = &isci_tmf->resp.resp_iu;
980
981 len = min_t(u32,
982 SSP_RESP_IU_MAX_SIZE,
983 be32_to_cpu(ssp_response->response_data_len));
984
985 memcpy(resp_buf, ssp_response->resp_data, len);
986}
987
988static enum sci_status
989request_started_state_tc_event(struct isci_request *ireq,
990 u32 completion_code)
991{
992 struct ssp_response_iu *resp_iu;
993 u8 datapres;
994
995 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
996 * to determine SDMA status
997 */
998 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
999 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1000 ireq->scu_status = SCU_TASK_DONE_GOOD;
1001 ireq->sci_status = SCI_SUCCESS;
1002 break;
1003 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1004 /* There are times when the SCU hardware will return an early
1005 * response because the io request specified more data than is
1006 * returned by the target device (mode pages, inquiry data,
1007 * etc.). We must check the response stats to see if this is
1008 * truly a failed request or a good request that just got
1009 * completed early.
1010 */
1011 struct ssp_response_iu *resp = &ireq->ssp.rsp;
1012 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1013
1014 sci_swab32_cpy(&ireq->ssp.rsp,
1015 &ireq->ssp.rsp,
1016 word_cnt);
1017
1018 if (resp->status == 0) {
1019 ireq->scu_status = SCU_TASK_DONE_GOOD;
1020 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1021 } else {
1022 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1023 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1024 }
1025 break;
1026 }
1027 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1028 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1029
1030 sci_swab32_cpy(&ireq->ssp.rsp,
1031 &ireq->ssp.rsp,
1032 word_cnt);
1033
1034 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1035 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1036 break;
1037 }
1038
1039 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1040 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1041 * guaranteed to be received before this completion status is
1042 * posted?
1043 */
1044 resp_iu = &ireq->ssp.rsp;
1045 datapres = resp_iu->datapres;
1046
1047 if (datapres == SAS_DATAPRES_RESPONSE_DATA ||
1048 datapres == SAS_DATAPRES_SENSE_DATA) {
1049 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1050 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1051 } else {
1052 ireq->scu_status = SCU_TASK_DONE_GOOD;
1053 ireq->sci_status = SCI_SUCCESS;
1054 }
1055 break;
1056 /* only stp device gets suspended. */
1057 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1058 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1059 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1060 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1061 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1062 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1063 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1068 if (ireq->protocol == SAS_PROTOCOL_STP) {
1069 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1070 SCU_COMPLETION_TL_STATUS_SHIFT;
1071 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1072 } else {
1073 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1074 SCU_COMPLETION_TL_STATUS_SHIFT;
1075 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1076 }
1077 break;
1078
1079 /* both stp/ssp device gets suspended */
1080 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1081 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1082 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1083 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1084 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1085 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1086 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1090 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1091 SCU_COMPLETION_TL_STATUS_SHIFT;
1092 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1093 break;
1094
1095 /* neither ssp nor stp gets suspended. */
1096 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1097 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1098 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1099 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1100 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1102 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1111 default:
1112 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1113 SCU_COMPLETION_TL_STATUS_SHIFT;
1114 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1115 break;
1116 }
1117
1118 /*
1119 * TODO: This is probably wrong for ACK/NAK timeout conditions
1120 */
1121
1122 /* In all cases we will treat this as the completion of the IO req. */
1123 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1124 return SCI_SUCCESS;
1125}
1126
1127static enum sci_status
1128request_aborting_state_tc_event(struct isci_request *ireq,
1129 u32 completion_code)
1130{
1131 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1132 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1133 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1134 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1135 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1136 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1137 break;
1138
1139 default:
1140 /* Unless we get some strange error wait for the task abort to complete
1141 * TODO: Should there be a state change for this completion?
1142 */
1143 break;
1144 }
1145
1146 return SCI_SUCCESS;
1147}
1148
1149static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1150 u32 completion_code)
1151{
1152 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1153 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1154 ireq->scu_status = SCU_TASK_DONE_GOOD;
1155 ireq->sci_status = SCI_SUCCESS;
1156 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1157 break;
1158 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1159 /* Currently, the decision is to simply allow the task request
1160 * to timeout if the task IU wasn't received successfully.
1161 * There is a potential for receiving multiple task responses if
1162 * we decide to send the task IU again.
1163 */
1164 dev_warn(&ireq->owning_controller->pdev->dev,
1165 "%s: TaskRequest:0x%p CompletionCode:%x - "
1166 "ACK/NAK timeout\n", __func__, ireq,
1167 completion_code);
1168
1169 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1170 break;
1171 default:
1172 /*
1173 * All other completion status cause the IO to be complete.
1174 * If a NAK was received, then it is up to the user to retry
1175 * the request.
1176 */
1177 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1178 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1179 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1180 break;
1181 }
1182
1183 return SCI_SUCCESS;
1184}
1185
1186static enum sci_status
1187smp_request_await_response_tc_event(struct isci_request *ireq,
1188 u32 completion_code)
1189{
1190 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1191 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1192 /* In the AWAIT RESPONSE state, any TC completion is
1193 * unexpected. but if the TC has success status, we
1194 * complete the IO anyway.
1195 */
1196 ireq->scu_status = SCU_TASK_DONE_GOOD;
1197 ireq->sci_status = SCI_SUCCESS;
1198 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1199 break;
1200 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1201 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1202 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1203 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1204 /* These status has been seen in a specific LSI
1205 * expander, which sometimes is not able to send smp
1206 * response within 2 ms. This causes our hardware break
1207 * the connection and set TC completion with one of
1208 * these SMP_XXX_XX_ERR status. For these type of error,
1209 * we ask ihost user to retry the request.
1210 */
1211 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1212 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1213 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1214 break;
1215 default:
1216 /* All other completion status cause the IO to be complete. If a NAK
1217 * was received, then it is up to the user to retry the request
1218 */
1219 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1220 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1221 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1222 break;
1223 }
1224
1225 return SCI_SUCCESS;
1226}
1227
1228static enum sci_status
1229smp_request_await_tc_event(struct isci_request *ireq,
1230 u32 completion_code)
1231{
1232 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1233 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1234 ireq->scu_status = SCU_TASK_DONE_GOOD;
1235 ireq->sci_status = SCI_SUCCESS;
1236 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1237 break;
1238 default:
1239 /* All other completion status cause the IO to be
1240 * complete. If a NAK was received, then it is up to
1241 * the user to retry the request.
1242 */
1243 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1244 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1245 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1246 break;
1247 }
1248
1249 return SCI_SUCCESS;
1250}
1251
1252static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1253{
1254 struct scu_sgl_element *sgl;
1255 struct scu_sgl_element_pair *sgl_pair;
1256 struct isci_request *ireq = to_ireq(stp_req);
1257 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1258
1259 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1260 if (!sgl_pair)
1261 sgl = NULL;
1262 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1263 if (sgl_pair->B.address_lower == 0 &&
1264 sgl_pair->B.address_upper == 0) {
1265 sgl = NULL;
1266 } else {
1267 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1268 sgl = &sgl_pair->B;
1269 }
1270 } else {
1271 if (sgl_pair->next_pair_lower == 0 &&
1272 sgl_pair->next_pair_upper == 0) {
1273 sgl = NULL;
1274 } else {
1275 pio_sgl->index++;
1276 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1277 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1278 sgl = &sgl_pair->A;
1279 }
1280 }
1281
1282 return sgl;
1283}
1284
1285static enum sci_status
1286stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1287 u32 completion_code)
1288{
1289 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1290 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1291 ireq->scu_status = SCU_TASK_DONE_GOOD;
1292 ireq->sci_status = SCI_SUCCESS;
1293 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1294 break;
1295
1296 default:
1297 /* All other completion status cause the IO to be
1298 * complete. If a NAK was received, then it is up to
1299 * the user to retry the request.
1300 */
1301 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1302 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1303 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1304 break;
1305 }
1306
1307 return SCI_SUCCESS;
1308}
1309
1310#define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1311
1312/* transmit DATA_FIS from (current sgl + offset) for input
1313 * parameter length. current sgl and offset is alreay stored in the IO request
1314 */
1315static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1316 struct isci_request *ireq,
1317 u32 length)
1318{
1319 struct isci_stp_request *stp_req = &ireq->stp.req;
1320 struct scu_task_context *task_context = ireq->tc;
1321 struct scu_sgl_element_pair *sgl_pair;
1322 struct scu_sgl_element *current_sgl;
1323
1324 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1325 * for the data from current_sgl+offset for the input length
1326 */
1327 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1328 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1329 current_sgl = &sgl_pair->A;
1330 else
1331 current_sgl = &sgl_pair->B;
1332
1333 /* update the TC */
1334 task_context->command_iu_upper = current_sgl->address_upper;
1335 task_context->command_iu_lower = current_sgl->address_lower;
1336 task_context->transfer_length_bytes = length;
1337 task_context->type.stp.fis_type = FIS_DATA;
1338
1339 /* send the new TC out. */
1340 return sci_controller_continue_io(ireq);
1341}
1342
1343static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1344{
1345 struct isci_stp_request *stp_req = &ireq->stp.req;
1346 struct scu_sgl_element_pair *sgl_pair;
1347 enum sci_status status = SCI_SUCCESS;
1348 struct scu_sgl_element *sgl;
1349 u32 offset;
1350 u32 len = 0;
1351
1352 offset = stp_req->sgl.offset;
1353 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1354 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1355 return SCI_FAILURE;
1356
1357 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1358 sgl = &sgl_pair->A;
1359 len = sgl_pair->A.length - offset;
1360 } else {
1361 sgl = &sgl_pair->B;
1362 len = sgl_pair->B.length - offset;
1363 }
1364
1365 if (stp_req->pio_len == 0)
1366 return SCI_SUCCESS;
1367
1368 if (stp_req->pio_len >= len) {
1369 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1370 if (status != SCI_SUCCESS)
1371 return status;
1372 stp_req->pio_len -= len;
1373
1374 /* update the current sgl, offset and save for future */
1375 sgl = pio_sgl_next(stp_req);
1376 offset = 0;
1377 } else if (stp_req->pio_len < len) {
1378 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1379
1380 /* Sgl offset will be adjusted and saved for future */
1381 offset += stp_req->pio_len;
1382 sgl->address_lower += stp_req->pio_len;
1383 stp_req->pio_len = 0;
1384 }
1385
1386 stp_req->sgl.offset = offset;
1387
1388 return status;
1389}
1390
1391/**
1392 * sci_stp_request_pio_data_in_copy_data_buffer()
1393 * @stp_req: The request that is used for the SGL processing.
1394 * @data_buf: The buffer of data to be copied.
1395 * @len: The length of the data transfer.
1396 *
1397 * Copy the data from the buffer for the length specified to the IO request SGL
1398 * specified data region. enum sci_status
1399 */
1400static enum sci_status
1401sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1402 u8 *data_buf, u32 len)
1403{
1404 struct isci_request *ireq;
1405 u8 *src_addr;
1406 int copy_len;
1407 struct sas_task *task;
1408 struct scatterlist *sg;
1409 void *kaddr;
1410 int total_len = len;
1411
1412 ireq = to_ireq(stp_req);
1413 task = isci_request_access_task(ireq);
1414 src_addr = data_buf;
1415
1416 if (task->num_scatter > 0) {
1417 sg = task->scatter;
1418
1419 while (total_len > 0) {
1420 struct page *page = sg_page(sg);
1421
1422 copy_len = min_t(int, total_len, sg_dma_len(sg));
1423 kaddr = kmap_atomic(page);
1424 memcpy(kaddr + sg->offset, src_addr, copy_len);
1425 kunmap_atomic(kaddr);
1426 total_len -= copy_len;
1427 src_addr += copy_len;
1428 sg = sg_next(sg);
1429 }
1430 } else {
1431 BUG_ON(task->total_xfer_len < total_len);
1432 memcpy(task->scatter, src_addr, total_len);
1433 }
1434
1435 return SCI_SUCCESS;
1436}
1437
1438/**
1439 * sci_stp_request_pio_data_in_copy_data()
1440 * @stp_req: The PIO DATA IN request that is to receive the data.
1441 * @data_buffer: The buffer to copy from.
1442 *
1443 * Copy the data buffer to the io request data region. enum sci_status
1444 */
1445static enum sci_status sci_stp_request_pio_data_in_copy_data(
1446 struct isci_stp_request *stp_req,
1447 u8 *data_buffer)
1448{
1449 enum sci_status status;
1450
1451 /*
1452 * If there is less than 1K remaining in the transfer request
1453 * copy just the data for the transfer */
1454 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1455 status = sci_stp_request_pio_data_in_copy_data_buffer(
1456 stp_req, data_buffer, stp_req->pio_len);
1457
1458 if (status == SCI_SUCCESS)
1459 stp_req->pio_len = 0;
1460 } else {
1461 /* We are transfering the whole frame so copy */
1462 status = sci_stp_request_pio_data_in_copy_data_buffer(
1463 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1464
1465 if (status == SCI_SUCCESS)
1466 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1467 }
1468
1469 return status;
1470}
1471
1472static enum sci_status
1473stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1474 u32 completion_code)
1475{
1476 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1477 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1478 ireq->scu_status = SCU_TASK_DONE_GOOD;
1479 ireq->sci_status = SCI_SUCCESS;
1480 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1481 break;
1482
1483 default:
1484 /* All other completion status cause the IO to be
1485 * complete. If a NAK was received, then it is up to
1486 * the user to retry the request.
1487 */
1488 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1489 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1490 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1491 break;
1492 }
1493
1494 return SCI_SUCCESS;
1495}
1496
1497static enum sci_status
1498pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1499 u32 completion_code)
1500{
1501 enum sci_status status = SCI_SUCCESS;
1502 bool all_frames_transferred = false;
1503 struct isci_stp_request *stp_req = &ireq->stp.req;
1504
1505 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1506 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1507 /* Transmit data */
1508 if (stp_req->pio_len != 0) {
1509 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1510 if (status == SCI_SUCCESS) {
1511 if (stp_req->pio_len == 0)
1512 all_frames_transferred = true;
1513 }
1514 } else if (stp_req->pio_len == 0) {
1515 /*
1516 * this will happen if the all data is written at the
1517 * first time after the pio setup fis is received
1518 */
1519 all_frames_transferred = true;
1520 }
1521
1522 /* all data transferred. */
1523 if (all_frames_transferred) {
1524 /*
1525 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1526 * and wait for PIO_SETUP fis / or D2H REg fis. */
1527 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1528 }
1529 break;
1530
1531 default:
1532 /*
1533 * All other completion status cause the IO to be complete.
1534 * If a NAK was received, then it is up to the user to retry
1535 * the request.
1536 */
1537 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1538 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1539 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1540 break;
1541 }
1542
1543 return status;
1544}
1545
1546static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1547 u32 frame_index)
1548{
1549 struct isci_host *ihost = ireq->owning_controller;
1550 struct dev_to_host_fis *frame_header;
1551 enum sci_status status;
1552 u32 *frame_buffer;
1553
1554 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1555 frame_index,
1556 (void **)&frame_header);
1557
1558 if ((status == SCI_SUCCESS) &&
1559 (frame_header->fis_type == FIS_REGD2H)) {
1560 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1561 frame_index,
1562 (void **)&frame_buffer);
1563
1564 sci_controller_copy_sata_response(&ireq->stp.rsp,
1565 frame_header,
1566 frame_buffer);
1567 }
1568
1569 sci_controller_release_frame(ihost, frame_index);
1570
1571 return status;
1572}
1573
1574static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1575 u32 frame_index)
1576{
1577 struct isci_host *ihost = ireq->owning_controller;
1578 enum sci_status status;
1579 struct dev_to_host_fis *frame_header;
1580 u32 *frame_buffer;
1581
1582 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1583 frame_index,
1584 (void **)&frame_header);
1585
1586 if (status != SCI_SUCCESS)
1587 return status;
1588
1589 if (frame_header->fis_type != FIS_REGD2H) {
1590 dev_err(&ireq->isci_host->pdev->dev,
1591 "%s ERROR: invalid fis type 0x%X\n",
1592 __func__, frame_header->fis_type);
1593 return SCI_FAILURE;
1594 }
1595
1596 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1597 frame_index,
1598 (void **)&frame_buffer);
1599
1600 sci_controller_copy_sata_response(&ireq->stp.rsp,
1601 (u32 *)frame_header,
1602 frame_buffer);
1603
1604 /* Frame has been decoded return it to the controller */
1605 sci_controller_release_frame(ihost, frame_index);
1606
1607 return status;
1608}
1609
1610static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1611 u32 frame_index)
1612{
1613 struct sas_task *task = isci_request_access_task(ireq);
1614 enum sci_status status;
1615
1616 status = process_unsolicited_fis(ireq, frame_index);
1617
1618 if (status == SCI_SUCCESS) {
1619 if (ireq->stp.rsp.status & ATA_ERR)
1620 status = SCI_FAILURE_IO_RESPONSE_VALID;
1621 } else {
1622 status = SCI_FAILURE_IO_RESPONSE_VALID;
1623 }
1624
1625 if (status != SCI_SUCCESS) {
1626 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1627 ireq->sci_status = status;
1628 } else {
1629 ireq->scu_status = SCU_TASK_DONE_GOOD;
1630 ireq->sci_status = SCI_SUCCESS;
1631 }
1632
1633 /* the d2h ufi is the end of non-data commands */
1634 if (task->data_dir == DMA_NONE)
1635 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1636
1637 return status;
1638}
1639
1640static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1641{
1642 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1643 void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1644 struct scu_task_context *task_context = ireq->tc;
1645
1646 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1647 * type. The TC for previous Packet fis was already there, we only need to
1648 * change the H2D fis content.
1649 */
1650 memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1651 memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1652 memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1653 task_context->type.stp.fis_type = FIS_DATA;
1654 task_context->transfer_length_bytes = dev->cdb_len;
1655}
1656
1657static void scu_atapi_construct_task_context(struct isci_request *ireq)
1658{
1659 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1660 struct sas_task *task = isci_request_access_task(ireq);
1661 struct scu_task_context *task_context = ireq->tc;
1662 int cdb_len = dev->cdb_len;
1663
1664 /* reference: SSTL 1.13.4.2
1665 * task_type, sata_direction
1666 */
1667 if (task->data_dir == DMA_TO_DEVICE) {
1668 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1669 task_context->sata_direction = 0;
1670 } else {
1671 /* todo: for NO_DATA command, we need to send out raw frame. */
1672 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1673 task_context->sata_direction = 1;
1674 }
1675
1676 memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1677 task_context->type.stp.fis_type = FIS_DATA;
1678
1679 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1680 memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1681 task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1682
1683 /* task phase is set to TX_CMD */
1684 task_context->task_phase = 0x1;
1685
1686 /* retry counter */
1687 task_context->stp_retry_count = 0;
1688
1689 /* data transfer size. */
1690 task_context->transfer_length_bytes = task->total_xfer_len;
1691
1692 /* setup sgl */
1693 sci_request_build_sgl(ireq);
1694}
1695
1696enum sci_status
1697sci_io_request_frame_handler(struct isci_request *ireq,
1698 u32 frame_index)
1699{
1700 struct isci_host *ihost = ireq->owning_controller;
1701 struct isci_stp_request *stp_req = &ireq->stp.req;
1702 enum sci_base_request_states state;
1703 enum sci_status status;
1704 ssize_t word_cnt;
1705
1706 state = ireq->sm.current_state_id;
1707 switch (state) {
1708 case SCI_REQ_STARTED: {
1709 struct ssp_frame_hdr ssp_hdr;
1710 void *frame_header;
1711
1712 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1713 frame_index,
1714 &frame_header);
1715
1716 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1717 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1718
1719 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1720 struct ssp_response_iu *resp_iu;
1721 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1722
1723 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1724 frame_index,
1725 (void **)&resp_iu);
1726
1727 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1728
1729 resp_iu = &ireq->ssp.rsp;
1730
1731 if (resp_iu->datapres == SAS_DATAPRES_RESPONSE_DATA ||
1732 resp_iu->datapres == SAS_DATAPRES_SENSE_DATA) {
1733 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1734 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1735 } else {
1736 ireq->scu_status = SCU_TASK_DONE_GOOD;
1737 ireq->sci_status = SCI_SUCCESS;
1738 }
1739 } else {
1740 /* not a response frame, why did it get forwarded? */
1741 dev_err(&ihost->pdev->dev,
1742 "%s: SCIC IO Request 0x%p received unexpected "
1743 "frame %d type 0x%02x\n", __func__, ireq,
1744 frame_index, ssp_hdr.frame_type);
1745 }
1746
1747 /*
1748 * In any case we are done with this frame buffer return it to
1749 * the controller
1750 */
1751 sci_controller_release_frame(ihost, frame_index);
1752
1753 return SCI_SUCCESS;
1754 }
1755
1756 case SCI_REQ_TASK_WAIT_TC_RESP:
1757 sci_io_request_copy_response(ireq);
1758 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1759 sci_controller_release_frame(ihost, frame_index);
1760 return SCI_SUCCESS;
1761
1762 case SCI_REQ_SMP_WAIT_RESP: {
1763 struct sas_task *task = isci_request_access_task(ireq);
1764 struct scatterlist *sg = &task->smp_task.smp_resp;
1765 void *frame_header, *kaddr;
1766 u8 *rsp;
1767
1768 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1769 frame_index,
1770 &frame_header);
1771 kaddr = kmap_atomic(sg_page(sg));
1772 rsp = kaddr + sg->offset;
1773 sci_swab32_cpy(rsp, frame_header, 1);
1774
1775 if (rsp[0] == SMP_RESPONSE) {
1776 void *smp_resp;
1777
1778 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1779 frame_index,
1780 &smp_resp);
1781
1782 word_cnt = (sg->length/4)-1;
1783 if (word_cnt > 0)
1784 word_cnt = min_t(unsigned int, word_cnt,
1785 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1786 sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1787
1788 ireq->scu_status = SCU_TASK_DONE_GOOD;
1789 ireq->sci_status = SCI_SUCCESS;
1790 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1791 } else {
1792 /*
1793 * This was not a response frame why did it get
1794 * forwarded?
1795 */
1796 dev_err(&ihost->pdev->dev,
1797 "%s: SCIC SMP Request 0x%p received unexpected "
1798 "frame %d type 0x%02x\n",
1799 __func__,
1800 ireq,
1801 frame_index,
1802 rsp[0]);
1803
1804 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1805 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1806 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1807 }
1808 kunmap_atomic(kaddr);
1809
1810 sci_controller_release_frame(ihost, frame_index);
1811
1812 return SCI_SUCCESS;
1813 }
1814
1815 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1816 return sci_stp_request_udma_general_frame_handler(ireq,
1817 frame_index);
1818
1819 case SCI_REQ_STP_UDMA_WAIT_D2H:
1820 /* Use the general frame handler to copy the resposne data */
1821 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1822
1823 if (status != SCI_SUCCESS)
1824 return status;
1825
1826 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1827 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1828 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1829 return SCI_SUCCESS;
1830
1831 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1832 struct dev_to_host_fis *frame_header;
1833 u32 *frame_buffer;
1834
1835 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1836 frame_index,
1837 (void **)&frame_header);
1838
1839 if (status != SCI_SUCCESS) {
1840 dev_err(&ihost->pdev->dev,
1841 "%s: SCIC IO Request 0x%p could not get frame "
1842 "header for frame index %d, status %x\n",
1843 __func__,
1844 stp_req,
1845 frame_index,
1846 status);
1847
1848 return status;
1849 }
1850
1851 switch (frame_header->fis_type) {
1852 case FIS_REGD2H:
1853 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1854 frame_index,
1855 (void **)&frame_buffer);
1856
1857 sci_controller_copy_sata_response(&ireq->stp.rsp,
1858 frame_header,
1859 frame_buffer);
1860
1861 /* The command has completed with error */
1862 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1863 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1864 break;
1865
1866 default:
1867 dev_warn(&ihost->pdev->dev,
1868 "%s: IO Request:0x%p Frame Id:%d protocol "
1869 "violation occurred\n", __func__, stp_req,
1870 frame_index);
1871
1872 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1873 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1874 break;
1875 }
1876
1877 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1878
1879 /* Frame has been decoded return it to the controller */
1880 sci_controller_release_frame(ihost, frame_index);
1881
1882 return status;
1883 }
1884
1885 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1886 struct sas_task *task = isci_request_access_task(ireq);
1887 struct dev_to_host_fis *frame_header;
1888 u32 *frame_buffer;
1889
1890 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1891 frame_index,
1892 (void **)&frame_header);
1893
1894 if (status != SCI_SUCCESS) {
1895 dev_err(&ihost->pdev->dev,
1896 "%s: SCIC IO Request 0x%p could not get frame "
1897 "header for frame index %d, status %x\n",
1898 __func__, stp_req, frame_index, status);
1899 return status;
1900 }
1901
1902 switch (frame_header->fis_type) {
1903 case FIS_PIO_SETUP:
1904 /* Get from the frame buffer the PIO Setup Data */
1905 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1906 frame_index,
1907 (void **)&frame_buffer);
1908
1909 /* Get the data from the PIO Setup The SCU Hardware
1910 * returns first word in the frame_header and the rest
1911 * of the data is in the frame buffer so we need to
1912 * back up one dword
1913 */
1914
1915 /* transfer_count: first 16bits in the 4th dword */
1916 stp_req->pio_len = frame_buffer[3] & 0xffff;
1917
1918 /* status: 4th byte in the 3rd dword */
1919 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1920
1921 sci_controller_copy_sata_response(&ireq->stp.rsp,
1922 frame_header,
1923 frame_buffer);
1924
1925 ireq->stp.rsp.status = stp_req->status;
1926
1927 /* The next state is dependent on whether the
1928 * request was PIO Data-in or Data out
1929 */
1930 if (task->data_dir == DMA_FROM_DEVICE) {
1931 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1932 } else if (task->data_dir == DMA_TO_DEVICE) {
1933 /* Transmit data */
1934 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1935 if (status != SCI_SUCCESS)
1936 break;
1937 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1938 }
1939 break;
1940
1941 case FIS_SETDEVBITS:
1942 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1943 break;
1944
1945 case FIS_REGD2H:
1946 if (frame_header->status & ATA_BUSY) {
1947 /*
1948 * Now why is the drive sending a D2H Register
1949 * FIS when it is still busy? Do nothing since
1950 * we are still in the right state.
1951 */
1952 dev_dbg(&ihost->pdev->dev,
1953 "%s: SCIC PIO Request 0x%p received "
1954 "D2H Register FIS with BSY status "
1955 "0x%x\n",
1956 __func__,
1957 stp_req,
1958 frame_header->status);
1959 break;
1960 }
1961
1962 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1963 frame_index,
1964 (void **)&frame_buffer);
1965
1966 sci_controller_copy_sata_response(&ireq->stp.rsp,
1967 frame_header,
1968 frame_buffer);
1969
1970 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1971 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1972 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1973 break;
1974
1975 default:
1976 /* FIXME: what do we do here? */
1977 break;
1978 }
1979
1980 /* Frame is decoded return it to the controller */
1981 sci_controller_release_frame(ihost, frame_index);
1982
1983 return status;
1984 }
1985
1986 case SCI_REQ_STP_PIO_DATA_IN: {
1987 struct dev_to_host_fis *frame_header;
1988 struct sata_fis_data *frame_buffer;
1989
1990 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1991 frame_index,
1992 (void **)&frame_header);
1993
1994 if (status != SCI_SUCCESS) {
1995 dev_err(&ihost->pdev->dev,
1996 "%s: SCIC IO Request 0x%p could not get frame "
1997 "header for frame index %d, status %x\n",
1998 __func__,
1999 stp_req,
2000 frame_index,
2001 status);
2002 return status;
2003 }
2004
2005 if (frame_header->fis_type != FIS_DATA) {
2006 dev_err(&ihost->pdev->dev,
2007 "%s: SCIC PIO Request 0x%p received frame %d "
2008 "with fis type 0x%02x when expecting a data "
2009 "fis.\n",
2010 __func__,
2011 stp_req,
2012 frame_index,
2013 frame_header->fis_type);
2014
2015 ireq->scu_status = SCU_TASK_DONE_GOOD;
2016 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2017 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2018
2019 /* Frame is decoded return it to the controller */
2020 sci_controller_release_frame(ihost, frame_index);
2021 return status;
2022 }
2023
2024 if (stp_req->sgl.index < 0) {
2025 ireq->saved_rx_frame_index = frame_index;
2026 stp_req->pio_len = 0;
2027 } else {
2028 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2029 frame_index,
2030 (void **)&frame_buffer);
2031
2032 status = sci_stp_request_pio_data_in_copy_data(stp_req,
2033 (u8 *)frame_buffer);
2034
2035 /* Frame is decoded return it to the controller */
2036 sci_controller_release_frame(ihost, frame_index);
2037 }
2038
2039 /* Check for the end of the transfer, are there more
2040 * bytes remaining for this data transfer
2041 */
2042 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2043 return status;
2044
2045 if ((stp_req->status & ATA_BUSY) == 0) {
2046 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2047 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2048 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2049 } else {
2050 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2051 }
2052 return status;
2053 }
2054
2055 case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2056 struct sas_task *task = isci_request_access_task(ireq);
2057
2058 sci_controller_release_frame(ihost, frame_index);
2059 ireq->target_device->working_request = ireq;
2060 if (task->data_dir == DMA_NONE) {
2061 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2062 scu_atapi_reconstruct_raw_frame_task_context(ireq);
2063 } else {
2064 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2065 scu_atapi_construct_task_context(ireq);
2066 }
2067
2068 sci_controller_continue_io(ireq);
2069 return SCI_SUCCESS;
2070 }
2071 case SCI_REQ_ATAPI_WAIT_D2H:
2072 return atapi_d2h_reg_frame_handler(ireq, frame_index);
2073 case SCI_REQ_ABORTING:
2074 /*
2075 * TODO: Is it even possible to get an unsolicited frame in the
2076 * aborting state?
2077 */
2078 sci_controller_release_frame(ihost, frame_index);
2079 return SCI_SUCCESS;
2080
2081 default:
2082 dev_warn(&ihost->pdev->dev,
2083 "%s: SCIC IO Request given unexpected frame %x while "
2084 "in state %d\n",
2085 __func__,
2086 frame_index,
2087 state);
2088
2089 sci_controller_release_frame(ihost, frame_index);
2090 return SCI_FAILURE_INVALID_STATE;
2091 }
2092}
2093
2094static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2095 u32 completion_code)
2096{
2097 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2098 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2099 ireq->scu_status = SCU_TASK_DONE_GOOD;
2100 ireq->sci_status = SCI_SUCCESS;
2101 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2102 break;
2103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2105 /* We must check ther response buffer to see if the D2H
2106 * Register FIS was received before we got the TC
2107 * completion.
2108 */
2109 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2110 sci_remote_device_suspend(ireq->target_device,
2111 SCI_SW_SUSPEND_NORMAL);
2112
2113 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2114 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2115 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2116 } else {
2117 /* If we have an error completion status for the
2118 * TC then we can expect a D2H register FIS from
2119 * the device so we must change state to wait
2120 * for it
2121 */
2122 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2123 }
2124 break;
2125
2126 /* TODO Check to see if any of these completion status need to
2127 * wait for the device to host register fis.
2128 */
2129 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2130 * - this comes only for B0
2131 */
2132 default:
2133 /* All other completion status cause the IO to be complete. */
2134 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2135 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2136 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2137 break;
2138 }
2139
2140 return SCI_SUCCESS;
2141}
2142
2143static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2144 enum sci_base_request_states next)
2145{
2146 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2147 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2148 ireq->scu_status = SCU_TASK_DONE_GOOD;
2149 ireq->sci_status = SCI_SUCCESS;
2150 sci_change_state(&ireq->sm, next);
2151 break;
2152 default:
2153 /* All other completion status cause the IO to be complete.
2154 * If a NAK was received, then it is up to the user to retry
2155 * the request.
2156 */
2157 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2158 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2159
2160 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2161 break;
2162 }
2163
2164 return SCI_SUCCESS;
2165}
2166
2167static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2168 u32 completion_code)
2169{
2170 struct isci_remote_device *idev = ireq->target_device;
2171 struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2172 enum sci_status status = SCI_SUCCESS;
2173
2174 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2175 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2176 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2177 break;
2178
2179 case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2180 u16 len = sci_req_tx_bytes(ireq);
2181
2182 /* likely non-error data underrun, workaround missing
2183 * d2h frame from the controller
2184 */
2185 if (d2h->fis_type != FIS_REGD2H) {
2186 d2h->fis_type = FIS_REGD2H;
2187 d2h->flags = (1 << 6);
2188 d2h->status = 0x50;
2189 d2h->error = 0;
2190 d2h->lbal = 0;
2191 d2h->byte_count_low = len & 0xff;
2192 d2h->byte_count_high = len >> 8;
2193 d2h->device = 0xa0;
2194 d2h->lbal_exp = 0;
2195 d2h->lbam_exp = 0;
2196 d2h->lbah_exp = 0;
2197 d2h->_r_a = 0;
2198 d2h->sector_count = 0x3;
2199 d2h->sector_count_exp = 0;
2200 d2h->_r_b = 0;
2201 d2h->_r_c = 0;
2202 d2h->_r_d = 0;
2203 }
2204
2205 ireq->scu_status = SCU_TASK_DONE_GOOD;
2206 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2207 status = ireq->sci_status;
2208
2209 /* the hw will have suspended the rnc, so complete the
2210 * request upon pending resume
2211 */
2212 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2213 break;
2214 }
2215 case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2216 /* In this case, there is no UF coming after.
2217 * compelte the IO now.
2218 */
2219 ireq->scu_status = SCU_TASK_DONE_GOOD;
2220 ireq->sci_status = SCI_SUCCESS;
2221 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2222 break;
2223
2224 default:
2225 if (d2h->fis_type == FIS_REGD2H) {
2226 /* UF received change the device state to ATAPI_ERROR */
2227 status = ireq->sci_status;
2228 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2229 } else {
2230 /* If receiving any non-success TC status, no UF
2231 * received yet, then an UF for the status fis
2232 * is coming after (XXX: suspect this is
2233 * actually a protocol error or a bug like the
2234 * DONE_UNEXP_FIS case)
2235 */
2236 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2237 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2238
2239 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2240 }
2241 break;
2242 }
2243
2244 return status;
2245}
2246
2247static int sci_request_smp_completion_status_is_tx_suspend(
2248 unsigned int completion_status)
2249{
2250 switch (completion_status) {
2251 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2252 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2253 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2254 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2255 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2256 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2257 return 1;
2258 }
2259 return 0;
2260}
2261
2262static int sci_request_smp_completion_status_is_tx_rx_suspend(
2263 unsigned int completion_status)
2264{
2265 return 0; /* There are no Tx/Rx SMP suspend conditions. */
2266}
2267
2268static int sci_request_ssp_completion_status_is_tx_suspend(
2269 unsigned int completion_status)
2270{
2271 switch (completion_status) {
2272 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2273 case SCU_TASK_DONE_LF_ERR:
2274 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2275 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2276 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2277 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2278 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2279 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2280 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2281 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2282 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2283 return 1;
2284 }
2285 return 0;
2286}
2287
2288static int sci_request_ssp_completion_status_is_tx_rx_suspend(
2289 unsigned int completion_status)
2290{
2291 return 0; /* There are no Tx/Rx SSP suspend conditions. */
2292}
2293
2294static int sci_request_stpsata_completion_status_is_tx_suspend(
2295 unsigned int completion_status)
2296{
2297 switch (completion_status) {
2298 case SCU_TASK_DONE_TX_RAW_CMD_ERR:
2299 case SCU_TASK_DONE_LL_R_ERR:
2300 case SCU_TASK_DONE_LL_PERR:
2301 case SCU_TASK_DONE_REG_ERR:
2302 case SCU_TASK_DONE_SDB_ERR:
2303 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2304 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2305 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2306 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2307 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2308 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2309 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2310 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2311 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2312 return 1;
2313 }
2314 return 0;
2315}
2316
2317
2318static int sci_request_stpsata_completion_status_is_tx_rx_suspend(
2319 unsigned int completion_status)
2320{
2321 switch (completion_status) {
2322 case SCU_TASK_DONE_LF_ERR:
2323 case SCU_TASK_DONE_LL_SY_TERM:
2324 case SCU_TASK_DONE_LL_LF_TERM:
2325 case SCU_TASK_DONE_BREAK_RCVD:
2326 case SCU_TASK_DONE_INV_FIS_LEN:
2327 case SCU_TASK_DONE_UNEXP_FIS:
2328 case SCU_TASK_DONE_UNEXP_SDBFIS:
2329 case SCU_TASK_DONE_MAX_PLD_ERR:
2330 return 1;
2331 }
2332 return 0;
2333}
2334
2335static void sci_request_handle_suspending_completions(
2336 struct isci_request *ireq,
2337 u32 completion_code)
2338{
2339 int is_tx = 0;
2340 int is_tx_rx = 0;
2341
2342 switch (ireq->protocol) {
2343 case SAS_PROTOCOL_SMP:
2344 is_tx = sci_request_smp_completion_status_is_tx_suspend(
2345 completion_code);
2346 is_tx_rx = sci_request_smp_completion_status_is_tx_rx_suspend(
2347 completion_code);
2348 break;
2349 case SAS_PROTOCOL_SSP:
2350 is_tx = sci_request_ssp_completion_status_is_tx_suspend(
2351 completion_code);
2352 is_tx_rx = sci_request_ssp_completion_status_is_tx_rx_suspend(
2353 completion_code);
2354 break;
2355 case SAS_PROTOCOL_STP:
2356 is_tx = sci_request_stpsata_completion_status_is_tx_suspend(
2357 completion_code);
2358 is_tx_rx =
2359 sci_request_stpsata_completion_status_is_tx_rx_suspend(
2360 completion_code);
2361 break;
2362 default:
2363 dev_warn(&ireq->isci_host->pdev->dev,
2364 "%s: request %p has no valid protocol\n",
2365 __func__, ireq);
2366 break;
2367 }
2368 if (is_tx || is_tx_rx) {
2369 BUG_ON(is_tx && is_tx_rx);
2370
2371 sci_remote_node_context_suspend(
2372 &ireq->target_device->rnc,
2373 SCI_HW_SUSPEND,
2374 (is_tx_rx) ? SCU_EVENT_TL_RNC_SUSPEND_TX_RX
2375 : SCU_EVENT_TL_RNC_SUSPEND_TX);
2376 }
2377}
2378
2379enum sci_status
2380sci_io_request_tc_completion(struct isci_request *ireq,
2381 u32 completion_code)
2382{
2383 enum sci_base_request_states state;
2384 struct isci_host *ihost = ireq->owning_controller;
2385
2386 state = ireq->sm.current_state_id;
2387
2388 /* Decode those completions that signal upcoming suspension events. */
2389 sci_request_handle_suspending_completions(
2390 ireq, SCU_GET_COMPLETION_TL_STATUS(completion_code));
2391
2392 switch (state) {
2393 case SCI_REQ_STARTED:
2394 return request_started_state_tc_event(ireq, completion_code);
2395
2396 case SCI_REQ_TASK_WAIT_TC_COMP:
2397 return ssp_task_request_await_tc_event(ireq,
2398 completion_code);
2399
2400 case SCI_REQ_SMP_WAIT_RESP:
2401 return smp_request_await_response_tc_event(ireq,
2402 completion_code);
2403
2404 case SCI_REQ_SMP_WAIT_TC_COMP:
2405 return smp_request_await_tc_event(ireq, completion_code);
2406
2407 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2408 return stp_request_udma_await_tc_event(ireq,
2409 completion_code);
2410
2411 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2412 return stp_request_non_data_await_h2d_tc_event(ireq,
2413 completion_code);
2414
2415 case SCI_REQ_STP_PIO_WAIT_H2D:
2416 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2417 completion_code);
2418
2419 case SCI_REQ_STP_PIO_DATA_OUT:
2420 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2421
2422 case SCI_REQ_ABORTING:
2423 return request_aborting_state_tc_event(ireq,
2424 completion_code);
2425
2426 case SCI_REQ_ATAPI_WAIT_H2D:
2427 return atapi_raw_completion(ireq, completion_code,
2428 SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2429
2430 case SCI_REQ_ATAPI_WAIT_TC_COMP:
2431 return atapi_raw_completion(ireq, completion_code,
2432 SCI_REQ_ATAPI_WAIT_D2H);
2433
2434 case SCI_REQ_ATAPI_WAIT_D2H:
2435 return atapi_data_tc_completion_handler(ireq, completion_code);
2436
2437 default:
2438 dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2439 __func__, completion_code, req_state_name(state));
2440 return SCI_FAILURE_INVALID_STATE;
2441 }
2442}
2443
2444/**
2445 * isci_request_process_response_iu() - This function sets the status and
2446 * response iu, in the task struct, from the request object for the upper
2447 * layer driver.
2448 * @task: This parameter is the task struct from the upper layer driver.
2449 * @resp_iu: This parameter points to the response iu of the completed request.
2450 * @dev: This parameter specifies the linux device struct.
2451 *
2452 * none.
2453 */
2454static void isci_request_process_response_iu(
2455 struct sas_task *task,
2456 struct ssp_response_iu *resp_iu,
2457 struct device *dev)
2458{
2459 dev_dbg(dev,
2460 "%s: resp_iu = %p "
2461 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2462 "resp_iu->response_data_len = %x, "
2463 "resp_iu->sense_data_len = %x\nresponse data: ",
2464 __func__,
2465 resp_iu,
2466 resp_iu->status,
2467 resp_iu->datapres,
2468 resp_iu->response_data_len,
2469 resp_iu->sense_data_len);
2470
2471 task->task_status.stat = resp_iu->status;
2472
2473 /* libsas updates the task status fields based on the response iu. */
2474 sas_ssp_task_response(dev, task, resp_iu);
2475}
2476
2477/**
2478 * isci_request_set_open_reject_status() - This function prepares the I/O
2479 * completion for OPEN_REJECT conditions.
2480 * @request: This parameter is the completed isci_request object.
2481 * @task: This parameter is the task struct from the upper layer driver.
2482 * @response_ptr: This parameter specifies the service response for the I/O.
2483 * @status_ptr: This parameter specifies the exec status for the I/O.
2484 * @open_rej_reason: This parameter specifies the encoded reason for the
2485 * abandon-class reject.
2486 *
2487 * none.
2488 */
2489static void isci_request_set_open_reject_status(
2490 struct isci_request *request,
2491 struct sas_task *task,
2492 enum service_response *response_ptr,
2493 enum exec_status *status_ptr,
2494 enum sas_open_rej_reason open_rej_reason)
2495{
2496 /* Task in the target is done. */
2497 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2498 *response_ptr = SAS_TASK_UNDELIVERED;
2499 *status_ptr = SAS_OPEN_REJECT;
2500 task->task_status.open_rej_reason = open_rej_reason;
2501}
2502
2503/**
2504 * isci_request_handle_controller_specific_errors() - This function decodes
2505 * controller-specific I/O completion error conditions.
2506 * @idev: Remote device
2507 * @request: This parameter is the completed isci_request object.
2508 * @task: This parameter is the task struct from the upper layer driver.
2509 * @response_ptr: This parameter specifies the service response for the I/O.
2510 * @status_ptr: This parameter specifies the exec status for the I/O.
2511 *
2512 * none.
2513 */
2514static void isci_request_handle_controller_specific_errors(
2515 struct isci_remote_device *idev,
2516 struct isci_request *request,
2517 struct sas_task *task,
2518 enum service_response *response_ptr,
2519 enum exec_status *status_ptr)
2520{
2521 unsigned int cstatus;
2522
2523 cstatus = request->scu_status;
2524
2525 dev_dbg(&request->isci_host->pdev->dev,
2526 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2527 "- controller status = 0x%x\n",
2528 __func__, request, cstatus);
2529
2530 /* Decode the controller-specific errors; most
2531 * important is to recognize those conditions in which
2532 * the target may still have a task outstanding that
2533 * must be aborted.
2534 *
2535 * Note that there are SCU completion codes being
2536 * named in the decode below for which SCIC has already
2537 * done work to handle them in a way other than as
2538 * a controller-specific completion code; these are left
2539 * in the decode below for completeness sake.
2540 */
2541 switch (cstatus) {
2542 case SCU_TASK_DONE_DMASETUP_DIRERR:
2543 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2544 case SCU_TASK_DONE_XFERCNT_ERR:
2545 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2546 if (task->task_proto == SAS_PROTOCOL_SMP) {
2547 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2548 *response_ptr = SAS_TASK_COMPLETE;
2549
2550 /* See if the device has been/is being stopped. Note
2551 * that we ignore the quiesce state, since we are
2552 * concerned about the actual device state.
2553 */
2554 if (!idev)
2555 *status_ptr = SAS_DEVICE_UNKNOWN;
2556 else
2557 *status_ptr = SAS_ABORTED_TASK;
2558
2559 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2560 } else {
2561 /* Task in the target is not done. */
2562 *response_ptr = SAS_TASK_UNDELIVERED;
2563
2564 if (!idev)
2565 *status_ptr = SAS_DEVICE_UNKNOWN;
2566 else
2567 *status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2568
2569 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2570 }
2571
2572 break;
2573
2574 case SCU_TASK_DONE_CRC_ERR:
2575 case SCU_TASK_DONE_NAK_CMD_ERR:
2576 case SCU_TASK_DONE_EXCESS_DATA:
2577 case SCU_TASK_DONE_UNEXP_FIS:
2578 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2579 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2580 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2581 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2582 /* These are conditions in which the target
2583 * has completed the task, so that no cleanup
2584 * is necessary.
2585 */
2586 *response_ptr = SAS_TASK_COMPLETE;
2587
2588 /* See if the device has been/is being stopped. Note
2589 * that we ignore the quiesce state, since we are
2590 * concerned about the actual device state.
2591 */
2592 if (!idev)
2593 *status_ptr = SAS_DEVICE_UNKNOWN;
2594 else
2595 *status_ptr = SAS_ABORTED_TASK;
2596
2597 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2598 break;
2599
2600
2601 /* Note that the only open reject completion codes seen here will be
2602 * abandon-class codes; all others are automatically retried in the SCU.
2603 */
2604 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2605
2606 isci_request_set_open_reject_status(
2607 request, task, response_ptr, status_ptr,
2608 SAS_OREJ_WRONG_DEST);
2609 break;
2610
2611 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2612
2613 /* Note - the return of AB0 will change when
2614 * libsas implements detection of zone violations.
2615 */
2616 isci_request_set_open_reject_status(
2617 request, task, response_ptr, status_ptr,
2618 SAS_OREJ_RESV_AB0);
2619 break;
2620
2621 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2622
2623 isci_request_set_open_reject_status(
2624 request, task, response_ptr, status_ptr,
2625 SAS_OREJ_RESV_AB1);
2626 break;
2627
2628 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2629
2630 isci_request_set_open_reject_status(
2631 request, task, response_ptr, status_ptr,
2632 SAS_OREJ_RESV_AB2);
2633 break;
2634
2635 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2636
2637 isci_request_set_open_reject_status(
2638 request, task, response_ptr, status_ptr,
2639 SAS_OREJ_RESV_AB3);
2640 break;
2641
2642 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2643
2644 isci_request_set_open_reject_status(
2645 request, task, response_ptr, status_ptr,
2646 SAS_OREJ_BAD_DEST);
2647 break;
2648
2649 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2650
2651 isci_request_set_open_reject_status(
2652 request, task, response_ptr, status_ptr,
2653 SAS_OREJ_STP_NORES);
2654 break;
2655
2656 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2657
2658 isci_request_set_open_reject_status(
2659 request, task, response_ptr, status_ptr,
2660 SAS_OREJ_EPROTO);
2661 break;
2662
2663 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2664
2665 isci_request_set_open_reject_status(
2666 request, task, response_ptr, status_ptr,
2667 SAS_OREJ_CONN_RATE);
2668 break;
2669
2670 case SCU_TASK_DONE_LL_R_ERR:
2671 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2672 case SCU_TASK_DONE_LL_PERR:
2673 case SCU_TASK_DONE_LL_SY_TERM:
2674 /* Also SCU_TASK_DONE_NAK_ERR:*/
2675 case SCU_TASK_DONE_LL_LF_TERM:
2676 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2677 case SCU_TASK_DONE_LL_ABORT_ERR:
2678 case SCU_TASK_DONE_SEQ_INV_TYPE:
2679 /* Also SCU_TASK_DONE_UNEXP_XR: */
2680 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2681 case SCU_TASK_DONE_INV_FIS_LEN:
2682 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2683 case SCU_TASK_DONE_SDMA_ERR:
2684 case SCU_TASK_DONE_OFFSET_ERR:
2685 case SCU_TASK_DONE_MAX_PLD_ERR:
2686 case SCU_TASK_DONE_LF_ERR:
2687 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2688 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2689 case SCU_TASK_DONE_UNEXP_DATA:
2690 case SCU_TASK_DONE_UNEXP_SDBFIS:
2691 case SCU_TASK_DONE_REG_ERR:
2692 case SCU_TASK_DONE_SDB_ERR:
2693 case SCU_TASK_DONE_TASK_ABORT:
2694 default:
2695 /* Task in the target is not done. */
2696 *response_ptr = SAS_TASK_UNDELIVERED;
2697 *status_ptr = SAS_SAM_STAT_TASK_ABORTED;
2698
2699 if (task->task_proto == SAS_PROTOCOL_SMP)
2700 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2701 else
2702 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2703 break;
2704 }
2705}
2706
2707static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2708{
2709 struct task_status_struct *ts = &task->task_status;
2710 struct ata_task_resp *resp = (void *)&ts->buf[0];
2711
2712 resp->frame_len = sizeof(*fis);
2713 memcpy(resp->ending_fis, fis, sizeof(*fis));
2714 ts->buf_valid_size = sizeof(*resp);
2715
2716 /* If an error is flagged let libata decode the fis */
2717 if (ac_err_mask(fis->status))
2718 ts->stat = SAS_PROTO_RESPONSE;
2719 else
2720 ts->stat = SAS_SAM_STAT_GOOD;
2721
2722 ts->resp = SAS_TASK_COMPLETE;
2723}
2724
2725static void isci_request_io_request_complete(struct isci_host *ihost,
2726 struct isci_request *request,
2727 enum sci_io_status completion_status)
2728{
2729 struct sas_task *task = isci_request_access_task(request);
2730 struct ssp_response_iu *resp_iu;
2731 unsigned long task_flags;
2732 struct isci_remote_device *idev = request->target_device;
2733 enum service_response response = SAS_TASK_UNDELIVERED;
2734 enum exec_status status = SAS_ABORTED_TASK;
2735
2736 dev_dbg(&ihost->pdev->dev,
2737 "%s: request = %p, task = %p, "
2738 "task->data_dir = %d completion_status = 0x%x\n",
2739 __func__, request, task, task->data_dir, completion_status);
2740
2741 /* The request is done from an SCU HW perspective. */
2742
2743 /* This is an active request being completed from the core. */
2744 switch (completion_status) {
2745
2746 case SCI_IO_FAILURE_RESPONSE_VALID:
2747 dev_dbg(&ihost->pdev->dev,
2748 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2749 __func__, request, task);
2750
2751 if (sas_protocol_ata(task->task_proto)) {
2752 isci_process_stp_response(task, &request->stp.rsp);
2753 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2754
2755 /* crack the iu response buffer. */
2756 resp_iu = &request->ssp.rsp;
2757 isci_request_process_response_iu(task, resp_iu,
2758 &ihost->pdev->dev);
2759
2760 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2761
2762 dev_err(&ihost->pdev->dev,
2763 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2764 "SAS_PROTOCOL_SMP protocol\n",
2765 __func__);
2766
2767 } else
2768 dev_err(&ihost->pdev->dev,
2769 "%s: unknown protocol\n", __func__);
2770
2771 /* use the task status set in the task struct by the
2772 * isci_request_process_response_iu call.
2773 */
2774 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2775 response = task->task_status.resp;
2776 status = task->task_status.stat;
2777 break;
2778
2779 case SCI_IO_SUCCESS:
2780 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2781
2782 response = SAS_TASK_COMPLETE;
2783 status = SAS_SAM_STAT_GOOD;
2784 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2785
2786 if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2787
2788 /* This was an SSP / STP / SATA transfer.
2789 * There is a possibility that less data than
2790 * the maximum was transferred.
2791 */
2792 u32 transferred_length = sci_req_tx_bytes(request);
2793
2794 task->task_status.residual
2795 = task->total_xfer_len - transferred_length;
2796
2797 /* If there were residual bytes, call this an
2798 * underrun.
2799 */
2800 if (task->task_status.residual != 0)
2801 status = SAS_DATA_UNDERRUN;
2802
2803 dev_dbg(&ihost->pdev->dev,
2804 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2805 __func__, status);
2806
2807 } else
2808 dev_dbg(&ihost->pdev->dev, "%s: SCI_IO_SUCCESS\n",
2809 __func__);
2810 break;
2811
2812 case SCI_IO_FAILURE_TERMINATED:
2813
2814 dev_dbg(&ihost->pdev->dev,
2815 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2816 __func__, request, task);
2817
2818 /* The request was terminated explicitly. */
2819 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2820 response = SAS_TASK_UNDELIVERED;
2821
2822 /* See if the device has been/is being stopped. Note
2823 * that we ignore the quiesce state, since we are
2824 * concerned about the actual device state.
2825 */
2826 if (!idev)
2827 status = SAS_DEVICE_UNKNOWN;
2828 else
2829 status = SAS_ABORTED_TASK;
2830 break;
2831
2832 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2833
2834 isci_request_handle_controller_specific_errors(idev, request,
2835 task, &response,
2836 &status);
2837 break;
2838
2839 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2840 /* This is a special case, in that the I/O completion
2841 * is telling us that the device needs a reset.
2842 * In order for the device reset condition to be
2843 * noticed, the I/O has to be handled in the error
2844 * handler. Set the reset flag and cause the
2845 * SCSI error thread to be scheduled.
2846 */
2847 spin_lock_irqsave(&task->task_state_lock, task_flags);
2848 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2849 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2850
2851 /* Fail the I/O. */
2852 response = SAS_TASK_UNDELIVERED;
2853 status = SAS_SAM_STAT_TASK_ABORTED;
2854
2855 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2856 break;
2857
2858 case SCI_FAILURE_RETRY_REQUIRED:
2859
2860 /* Fail the I/O so it can be retried. */
2861 response = SAS_TASK_UNDELIVERED;
2862 if (!idev)
2863 status = SAS_DEVICE_UNKNOWN;
2864 else
2865 status = SAS_ABORTED_TASK;
2866
2867 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2868 break;
2869
2870
2871 default:
2872 /* Catch any otherwise unhandled error codes here. */
2873 dev_dbg(&ihost->pdev->dev,
2874 "%s: invalid completion code: 0x%x - "
2875 "isci_request = %p\n",
2876 __func__, completion_status, request);
2877
2878 response = SAS_TASK_UNDELIVERED;
2879
2880 /* See if the device has been/is being stopped. Note
2881 * that we ignore the quiesce state, since we are
2882 * concerned about the actual device state.
2883 */
2884 if (!idev)
2885 status = SAS_DEVICE_UNKNOWN;
2886 else
2887 status = SAS_ABORTED_TASK;
2888
2889 if (SAS_PROTOCOL_SMP == task->task_proto)
2890 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2891 else
2892 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2893 break;
2894 }
2895
2896 switch (task->task_proto) {
2897 case SAS_PROTOCOL_SSP:
2898 if (task->data_dir == DMA_NONE)
2899 break;
2900 if (task->num_scatter == 0)
2901 /* 0 indicates a single dma address */
2902 dma_unmap_single(&ihost->pdev->dev,
2903 request->zero_scatter_daddr,
2904 task->total_xfer_len, task->data_dir);
2905 else /* unmap the sgl dma addresses */
2906 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
2907 request->num_sg_entries, task->data_dir);
2908 break;
2909 case SAS_PROTOCOL_SMP: {
2910 struct scatterlist *sg = &task->smp_task.smp_req;
2911 struct smp_req *smp_req;
2912 void *kaddr;
2913
2914 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
2915
2916 /* need to swab it back in case the command buffer is re-used */
2917 kaddr = kmap_atomic(sg_page(sg));
2918 smp_req = kaddr + sg->offset;
2919 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
2920 kunmap_atomic(kaddr);
2921 break;
2922 }
2923 default:
2924 break;
2925 }
2926
2927 spin_lock_irqsave(&task->task_state_lock, task_flags);
2928
2929 task->task_status.resp = response;
2930 task->task_status.stat = status;
2931
2932 if (test_bit(IREQ_COMPLETE_IN_TARGET, &request->flags)) {
2933 /* Normal notification (task_done) */
2934 task->task_state_flags |= SAS_TASK_STATE_DONE;
2935 task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
2936 }
2937 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2938
2939 /* complete the io request to the core. */
2940 sci_controller_complete_io(ihost, request->target_device, request);
2941
2942 /* set terminated handle so it cannot be completed or
2943 * terminated again, and to cause any calls into abort
2944 * task to recognize the already completed case.
2945 */
2946 set_bit(IREQ_TERMINATED, &request->flags);
2947
2948 ireq_done(ihost, request, task);
2949}
2950
2951static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
2952{
2953 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2954 struct domain_device *dev = ireq->target_device->domain_dev;
2955 enum sci_base_request_states state;
2956 struct sas_task *task;
2957
2958 /* XXX as hch said always creating an internal sas_task for tmf
2959 * requests would simplify the driver
2960 */
2961 task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
2962
2963 /* all unaccelerated request types (non ssp or ncq) handled with
2964 * substates
2965 */
2966 if (!task && dev->dev_type == SAS_END_DEVICE) {
2967 state = SCI_REQ_TASK_WAIT_TC_COMP;
2968 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
2969 state = SCI_REQ_SMP_WAIT_RESP;
2970 } else if (task && sas_protocol_ata(task->task_proto) &&
2971 !task->ata_task.use_ncq) {
2972 if (dev->sata_dev.class == ATA_DEV_ATAPI &&
2973 task->ata_task.fis.command == ATA_CMD_PACKET) {
2974 state = SCI_REQ_ATAPI_WAIT_H2D;
2975 } else if (task->data_dir == DMA_NONE) {
2976 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
2977 } else if (task->ata_task.dma_xfer) {
2978 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
2979 } else /* PIO */ {
2980 state = SCI_REQ_STP_PIO_WAIT_H2D;
2981 }
2982 } else {
2983 /* SSP or NCQ are fully accelerated, no substates */
2984 return;
2985 }
2986 sci_change_state(sm, state);
2987}
2988
2989static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
2990{
2991 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
2992 struct isci_host *ihost = ireq->owning_controller;
2993
2994 /* Tell the SCI_USER that the IO request is complete */
2995 if (!test_bit(IREQ_TMF, &ireq->flags))
2996 isci_request_io_request_complete(ihost, ireq,
2997 ireq->sci_status);
2998 else
2999 isci_task_request_complete(ihost, ireq, ireq->sci_status);
3000}
3001
3002static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3003{
3004 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3005
3006 /* Setting the abort bit in the Task Context is required by the silicon. */
3007 ireq->tc->abort = 1;
3008}
3009
3010static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3011{
3012 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3013
3014 ireq->target_device->working_request = ireq;
3015}
3016
3017static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3018{
3019 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3020
3021 ireq->target_device->working_request = ireq;
3022}
3023
3024static const struct sci_base_state sci_request_state_table[] = {
3025 [SCI_REQ_INIT] = { },
3026 [SCI_REQ_CONSTRUCTED] = { },
3027 [SCI_REQ_STARTED] = {
3028 .enter_state = sci_request_started_state_enter,
3029 },
3030 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3031 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3032 },
3033 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3034 [SCI_REQ_STP_PIO_WAIT_H2D] = {
3035 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3036 },
3037 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3038 [SCI_REQ_STP_PIO_DATA_IN] = { },
3039 [SCI_REQ_STP_PIO_DATA_OUT] = { },
3040 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3041 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3042 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
3043 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
3044 [SCI_REQ_SMP_WAIT_RESP] = { },
3045 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
3046 [SCI_REQ_ATAPI_WAIT_H2D] = { },
3047 [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3048 [SCI_REQ_ATAPI_WAIT_D2H] = { },
3049 [SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3050 [SCI_REQ_COMPLETED] = {
3051 .enter_state = sci_request_completed_state_enter,
3052 },
3053 [SCI_REQ_ABORTING] = {
3054 .enter_state = sci_request_aborting_state_enter,
3055 },
3056 [SCI_REQ_FINAL] = { },
3057};
3058
3059static void
3060sci_general_request_construct(struct isci_host *ihost,
3061 struct isci_remote_device *idev,
3062 struct isci_request *ireq)
3063{
3064 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3065
3066 ireq->target_device = idev;
3067 ireq->protocol = SAS_PROTOCOL_NONE;
3068 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3069
3070 ireq->sci_status = SCI_SUCCESS;
3071 ireq->scu_status = 0;
3072 ireq->post_context = 0xFFFFFFFF;
3073}
3074
3075static enum sci_status
3076sci_io_request_construct(struct isci_host *ihost,
3077 struct isci_remote_device *idev,
3078 struct isci_request *ireq)
3079{
3080 struct domain_device *dev = idev->domain_dev;
3081 enum sci_status status = SCI_SUCCESS;
3082
3083 /* Build the common part of the request */
3084 sci_general_request_construct(ihost, idev, ireq);
3085
3086 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3087 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3088
3089 if (dev->dev_type == SAS_END_DEVICE)
3090 /* pass */;
3091 else if (dev_is_sata(dev))
3092 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3093 else if (dev_is_expander(dev->dev_type))
3094 /* pass */;
3095 else
3096 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3097
3098 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3099
3100 return status;
3101}
3102
3103enum sci_status sci_task_request_construct(struct isci_host *ihost,
3104 struct isci_remote_device *idev,
3105 u16 io_tag, struct isci_request *ireq)
3106{
3107 struct domain_device *dev = idev->domain_dev;
3108 enum sci_status status = SCI_SUCCESS;
3109
3110 /* Build the common part of the request */
3111 sci_general_request_construct(ihost, idev, ireq);
3112
3113 if (dev->dev_type == SAS_END_DEVICE || dev_is_sata(dev)) {
3114 set_bit(IREQ_TMF, &ireq->flags);
3115 memset(ireq->tc, 0, sizeof(struct scu_task_context));
3116
3117 /* Set the protocol indicator. */
3118 if (dev_is_sata(dev))
3119 ireq->protocol = SAS_PROTOCOL_STP;
3120 else
3121 ireq->protocol = SAS_PROTOCOL_SSP;
3122 } else
3123 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3124
3125 return status;
3126}
3127
3128static enum sci_status isci_request_ssp_request_construct(
3129 struct isci_request *request)
3130{
3131 enum sci_status status;
3132
3133 dev_dbg(&request->isci_host->pdev->dev,
3134 "%s: request = %p\n",
3135 __func__,
3136 request);
3137 status = sci_io_request_construct_basic_ssp(request);
3138 return status;
3139}
3140
3141static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3142{
3143 struct sas_task *task = isci_request_access_task(ireq);
3144 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3145 struct ata_queued_cmd *qc = task->uldd_task;
3146 enum sci_status status;
3147
3148 dev_dbg(&ireq->isci_host->pdev->dev,
3149 "%s: ireq = %p\n",
3150 __func__,
3151 ireq);
3152
3153 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3154 if (!task->ata_task.device_control_reg_update)
3155 fis->flags |= 0x80;
3156 fis->flags &= 0xF0;
3157
3158 status = sci_io_request_construct_basic_sata(ireq);
3159
3160 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3161 qc->tf.command == ATA_CMD_FPDMA_READ ||
3162 qc->tf.command == ATA_CMD_FPDMA_RECV ||
3163 qc->tf.command == ATA_CMD_FPDMA_SEND ||
3164 qc->tf.command == ATA_CMD_NCQ_NON_DATA)) {
3165 fis->sector_count = qc->tag << 3;
3166 ireq->tc->type.stp.ncq_tag = qc->tag;
3167 }
3168
3169 return status;
3170}
3171
3172static enum sci_status
3173sci_io_request_construct_smp(struct device *dev,
3174 struct isci_request *ireq,
3175 struct sas_task *task)
3176{
3177 struct scatterlist *sg = &task->smp_task.smp_req;
3178 struct isci_remote_device *idev;
3179 struct scu_task_context *task_context;
3180 struct isci_port *iport;
3181 struct smp_req *smp_req;
3182 void *kaddr;
3183 u8 req_len;
3184 u32 cmd;
3185
3186 kaddr = kmap_atomic(sg_page(sg));
3187 smp_req = kaddr + sg->offset;
3188 /*
3189 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3190 * functions under SAS 2.0, a zero request length really indicates
3191 * a non-zero default length.
3192 */
3193 if (smp_req->req_len == 0) {
3194 switch (smp_req->func) {
3195 case SMP_DISCOVER:
3196 case SMP_REPORT_PHY_ERR_LOG:
3197 case SMP_REPORT_PHY_SATA:
3198 case SMP_REPORT_ROUTE_INFO:
3199 smp_req->req_len = 2;
3200 break;
3201 case SMP_CONF_ROUTE_INFO:
3202 case SMP_PHY_CONTROL:
3203 case SMP_PHY_TEST_FUNCTION:
3204 smp_req->req_len = 9;
3205 break;
3206 /* Default - zero is a valid default for 2.0. */
3207 }
3208 }
3209 req_len = smp_req->req_len;
3210 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3211 cmd = *(u32 *) smp_req;
3212 kunmap_atomic(kaddr);
3213
3214 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3215 return SCI_FAILURE;
3216
3217 ireq->protocol = SAS_PROTOCOL_SMP;
3218
3219 /* byte swap the smp request. */
3220
3221 task_context = ireq->tc;
3222
3223 idev = ireq->target_device;
3224 iport = idev->owning_port;
3225
3226 /*
3227 * Fill in the TC with its required data
3228 * 00h
3229 */
3230 task_context->priority = 0;
3231 task_context->initiator_request = 1;
3232 task_context->connection_rate = idev->connection_rate;
3233 task_context->protocol_engine_index = ISCI_PEG;
3234 task_context->logical_port_index = iport->physical_port_index;
3235 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3236 task_context->abort = 0;
3237 task_context->valid = SCU_TASK_CONTEXT_VALID;
3238 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3239
3240 /* 04h */
3241 task_context->remote_node_index = idev->rnc.remote_node_index;
3242 task_context->command_code = 0;
3243 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3244
3245 /* 08h */
3246 task_context->link_layer_control = 0;
3247 task_context->do_not_dma_ssp_good_response = 1;
3248 task_context->strict_ordering = 0;
3249 task_context->control_frame = 1;
3250 task_context->timeout_enable = 0;
3251 task_context->block_guard_enable = 0;
3252
3253 /* 0ch */
3254 task_context->address_modifier = 0;
3255
3256 /* 10h */
3257 task_context->ssp_command_iu_length = req_len;
3258
3259 /* 14h */
3260 task_context->transfer_length_bytes = 0;
3261
3262 /*
3263 * 18h ~ 30h, protocol specific
3264 * since commandIU has been build by framework at this point, we just
3265 * copy the frist DWord from command IU to this location. */
3266 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3267
3268 /*
3269 * 40h
3270 * "For SMP you could program it to zero. We would prefer that way
3271 * so that done code will be consistent." - Venki
3272 */
3273 task_context->task_phase = 0;
3274
3275 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3276 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3277 (iport->physical_port_index <<
3278 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3279 ISCI_TAG_TCI(ireq->io_tag));
3280 /*
3281 * Copy the physical address for the command buffer to the SCU Task
3282 * Context command buffer should not contain command header.
3283 */
3284 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3285 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3286
3287 /* SMP response comes as UF, so no need to set response IU address. */
3288 task_context->response_iu_upper = 0;
3289 task_context->response_iu_lower = 0;
3290
3291 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3292
3293 return SCI_SUCCESS;
3294}
3295
3296/*
3297 * isci_smp_request_build() - This function builds the smp request.
3298 * @ireq: This parameter points to the isci_request allocated in the
3299 * request construct function.
3300 *
3301 * SCI_SUCCESS on successfull completion, or specific failure code.
3302 */
3303static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3304{
3305 struct sas_task *task = isci_request_access_task(ireq);
3306 struct device *dev = &ireq->isci_host->pdev->dev;
3307 enum sci_status status = SCI_FAILURE;
3308
3309 status = sci_io_request_construct_smp(dev, ireq, task);
3310 if (status != SCI_SUCCESS)
3311 dev_dbg(&ireq->isci_host->pdev->dev,
3312 "%s: failed with status = %d\n",
3313 __func__,
3314 status);
3315
3316 return status;
3317}
3318
3319/**
3320 * isci_io_request_build() - This function builds the io request object.
3321 * @ihost: This parameter specifies the ISCI host object
3322 * @request: This parameter points to the isci_request object allocated in the
3323 * request construct function.
3324 * @idev: This parameter is the handle for the sci core's remote device
3325 * object that is the destination for this request.
3326 *
3327 * SCI_SUCCESS on successfull completion, or specific failure code.
3328 */
3329static enum sci_status isci_io_request_build(struct isci_host *ihost,
3330 struct isci_request *request,
3331 struct isci_remote_device *idev)
3332{
3333 enum sci_status status = SCI_SUCCESS;
3334 struct sas_task *task = isci_request_access_task(request);
3335
3336 dev_dbg(&ihost->pdev->dev,
3337 "%s: idev = 0x%p; request = %p, "
3338 "num_scatter = %d\n",
3339 __func__,
3340 idev,
3341 request,
3342 task->num_scatter);
3343
3344 /* map the sgl addresses, if present.
3345 * libata does the mapping for sata devices
3346 * before we get the request.
3347 */
3348 if (task->num_scatter &&
3349 !sas_protocol_ata(task->task_proto) &&
3350 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3351
3352 request->num_sg_entries = dma_map_sg(
3353 &ihost->pdev->dev,
3354 task->scatter,
3355 task->num_scatter,
3356 task->data_dir
3357 );
3358
3359 if (request->num_sg_entries == 0)
3360 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3361 }
3362
3363 status = sci_io_request_construct(ihost, idev, request);
3364
3365 if (status != SCI_SUCCESS) {
3366 dev_dbg(&ihost->pdev->dev,
3367 "%s: failed request construct\n",
3368 __func__);
3369 return SCI_FAILURE;
3370 }
3371
3372 switch (task->task_proto) {
3373 case SAS_PROTOCOL_SMP:
3374 status = isci_smp_request_build(request);
3375 break;
3376 case SAS_PROTOCOL_SSP:
3377 status = isci_request_ssp_request_construct(request);
3378 break;
3379 case SAS_PROTOCOL_SATA:
3380 case SAS_PROTOCOL_STP:
3381 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3382 status = isci_request_stp_request_construct(request);
3383 break;
3384 default:
3385 dev_dbg(&ihost->pdev->dev,
3386 "%s: unknown protocol\n", __func__);
3387 return SCI_FAILURE;
3388 }
3389
3390 return status;
3391}
3392
3393static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3394{
3395 struct isci_request *ireq;
3396
3397 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3398 ireq->io_tag = tag;
3399 ireq->io_request_completion = NULL;
3400 ireq->flags = 0;
3401 ireq->num_sg_entries = 0;
3402
3403 return ireq;
3404}
3405
3406struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3407 struct sas_task *task,
3408 u16 tag)
3409{
3410 struct isci_request *ireq;
3411
3412 ireq = isci_request_from_tag(ihost, tag);
3413 ireq->ttype_ptr.io_task_ptr = task;
3414 clear_bit(IREQ_TMF, &ireq->flags);
3415 task->lldd_task = ireq;
3416
3417 return ireq;
3418}
3419
3420struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3421 struct isci_tmf *isci_tmf,
3422 u16 tag)
3423{
3424 struct isci_request *ireq;
3425
3426 ireq = isci_request_from_tag(ihost, tag);
3427 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3428 set_bit(IREQ_TMF, &ireq->flags);
3429
3430 return ireq;
3431}
3432
3433int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3434 struct sas_task *task, struct isci_request *ireq)
3435{
3436 enum sci_status status;
3437 unsigned long flags;
3438 int ret = 0;
3439
3440 status = isci_io_request_build(ihost, ireq, idev);
3441 if (status != SCI_SUCCESS) {
3442 dev_dbg(&ihost->pdev->dev,
3443 "%s: request_construct failed - status = 0x%x\n",
3444 __func__,
3445 status);
3446 return status;
3447 }
3448
3449 spin_lock_irqsave(&ihost->scic_lock, flags);
3450
3451 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3452
3453 if (isci_task_is_ncq_recovery(task)) {
3454
3455 /* The device is in an NCQ recovery state. Issue the
3456 * request on the task side. Note that it will
3457 * complete on the I/O request side because the
3458 * request was built that way (ie.
3459 * ireq->is_task_management_request is false).
3460 */
3461 status = sci_controller_start_task(ihost,
3462 idev,
3463 ireq);
3464 } else {
3465 status = SCI_FAILURE;
3466 }
3467 } else {
3468 /* send the request, let the core assign the IO TAG. */
3469 status = sci_controller_start_io(ihost, idev,
3470 ireq);
3471 }
3472
3473 if (status != SCI_SUCCESS &&
3474 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3475 dev_dbg(&ihost->pdev->dev,
3476 "%s: failed request start (0x%x)\n",
3477 __func__, status);
3478 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3479 return status;
3480 }
3481 /* Either I/O started OK, or the core has signaled that
3482 * the device needs a target reset.
3483 */
3484 if (status != SCI_SUCCESS) {
3485 /* The request did not really start in the
3486 * hardware, so clear the request handle
3487 * here so no terminations will be done.
3488 */
3489 set_bit(IREQ_TERMINATED, &ireq->flags);
3490 }
3491 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3492
3493 if (status ==
3494 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3495 /* Signal libsas that we need the SCSI error
3496 * handler thread to work on this I/O and that
3497 * we want a device reset.
3498 */
3499 spin_lock_irqsave(&task->task_state_lock, flags);
3500 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3501 spin_unlock_irqrestore(&task->task_state_lock, flags);
3502
3503 /* Cause this task to be scheduled in the SCSI error
3504 * handler thread.
3505 */
3506 sas_task_abort(task);
3507
3508 /* Change the status, since we are holding
3509 * the I/O until it is managed by the SCSI
3510 * error handler.
3511 */
3512 status = SCI_SUCCESS;
3513 }
3514
3515 return ret;
3516}