Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
   3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
   4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
   5 *
   6 * May be copied or modified under the terms of the GNU General Public
   7 * License.  See linux/COPYING for more information.
   8 *
   9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
  10 * DVD-RAM devices.
  11 *
  12 * Theory of operation:
  13 *
  14 * At the lowest level, there is the standard driver for the CD/DVD device,
  15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
  16 * but it doesn't know anything about the special restrictions that apply to
  17 * packet writing. One restriction is that write requests must be aligned to
  18 * packet boundaries on the physical media, and the size of a write request
  19 * must be equal to the packet size. Another restriction is that a
  20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
  21 * command, if the previous command was a write.
  22 *
  23 * The purpose of the packet writing driver is to hide these restrictions from
  24 * higher layers, such as file systems, and present a block device that can be
  25 * randomly read and written using 2kB-sized blocks.
  26 *
  27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
  28 * Its data is defined by the struct packet_iosched and includes two bio
  29 * queues with pending read and write requests. These queues are processed
  30 * by the pkt_iosched_process_queue() function. The write requests in this
  31 * queue are already properly aligned and sized. This layer is responsible for
  32 * issuing the flush cache commands and scheduling the I/O in a good order.
  33 *
  34 * The next layer transforms unaligned write requests to aligned writes. This
  35 * transformation requires reading missing pieces of data from the underlying
  36 * block device, assembling the pieces to full packets and queuing them to the
  37 * packet I/O scheduler.
  38 *
  39 * At the top layer there is a custom make_request_fn function that forwards
  40 * read requests directly to the iosched queue and puts write requests in the
  41 * unaligned write queue. A kernel thread performs the necessary read
  42 * gathering to convert the unaligned writes to aligned writes and then feeds
  43 * them to the packet I/O scheduler.
  44 *
  45 *************************************************************************/
  46
 
 
  47#include <linux/pktcdvd.h>
  48#include <linux/module.h>
  49#include <linux/types.h>
  50#include <linux/kernel.h>
  51#include <linux/compat.h>
  52#include <linux/kthread.h>
  53#include <linux/errno.h>
  54#include <linux/spinlock.h>
  55#include <linux/file.h>
  56#include <linux/proc_fs.h>
  57#include <linux/seq_file.h>
  58#include <linux/miscdevice.h>
  59#include <linux/freezer.h>
  60#include <linux/mutex.h>
  61#include <linux/slab.h>
 
  62#include <scsi/scsi_cmnd.h>
  63#include <scsi/scsi_ioctl.h>
  64#include <scsi/scsi.h>
  65#include <linux/debugfs.h>
  66#include <linux/device.h>
  67
  68#include <asm/uaccess.h>
  69
  70#define DRIVER_NAME	"pktcdvd"
  71
  72#if PACKET_DEBUG
  73#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  74#else
  75#define DPRINTK(fmt, args...)
  76#endif
  77
  78#if PACKET_DEBUG > 1
  79#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  80#else
  81#define VPRINTK(fmt, args...)
  82#endif
 
 
 
 
  83
  84#define MAX_SPEED 0xffff
  85
  86#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
  87
  88static DEFINE_MUTEX(pktcdvd_mutex);
  89static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
  90static struct proc_dir_entry *pkt_proc;
  91static int pktdev_major;
  92static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
  93static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
  94static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
  95static mempool_t *psd_pool;
 
  96
  97static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
  98static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
  99
 100/* forward declaration */
 101static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
 102static int pkt_remove_dev(dev_t pkt_dev);
 103static int pkt_seq_show(struct seq_file *m, void *p);
 104
 105
 
 
 
 106
 107/*
 108 * create and register a pktcdvd kernel object.
 109 */
 110static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
 111					const char* name,
 112					struct kobject* parent,
 113					struct kobj_type* ktype)
 114{
 115	struct pktcdvd_kobj *p;
 116	int error;
 117
 118	p = kzalloc(sizeof(*p), GFP_KERNEL);
 119	if (!p)
 120		return NULL;
 121	p->pd = pd;
 122	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
 123	if (error) {
 124		kobject_put(&p->kobj);
 125		return NULL;
 126	}
 127	kobject_uevent(&p->kobj, KOBJ_ADD);
 128	return p;
 129}
 130/*
 131 * remove a pktcdvd kernel object.
 132 */
 133static void pkt_kobj_remove(struct pktcdvd_kobj *p)
 134{
 135	if (p)
 136		kobject_put(&p->kobj);
 137}
 138/*
 139 * default release function for pktcdvd kernel objects.
 140 */
 141static void pkt_kobj_release(struct kobject *kobj)
 142{
 143	kfree(to_pktcdvdkobj(kobj));
 144}
 145
 146
 147/**********************************************************
 148 *
 149 * sysfs interface for pktcdvd
 150 * by (C) 2006  Thomas Maier <balagi@justmail.de>
 151 *
 152 **********************************************************/
 153
 154#define DEF_ATTR(_obj,_name,_mode) \
 155	static struct attribute _obj = { .name = _name, .mode = _mode }
 156
 157/**********************************************************
 158  /sys/class/pktcdvd/pktcdvd[0-7]/
 159                     stat/reset
 160                     stat/packets_started
 161                     stat/packets_finished
 162                     stat/kb_written
 163                     stat/kb_read
 164                     stat/kb_read_gather
 165                     write_queue/size
 166                     write_queue/congestion_off
 167                     write_queue/congestion_on
 168 **********************************************************/
 169
 170DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
 171DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
 172DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
 173DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
 174DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
 175DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
 176
 177static struct attribute *kobj_pkt_attrs_stat[] = {
 178	&kobj_pkt_attr_st1,
 179	&kobj_pkt_attr_st2,
 180	&kobj_pkt_attr_st3,
 181	&kobj_pkt_attr_st4,
 182	&kobj_pkt_attr_st5,
 183	&kobj_pkt_attr_st6,
 184	NULL
 185};
 186
 187DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
 188DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
 189DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
 190
 191static struct attribute *kobj_pkt_attrs_wqueue[] = {
 192	&kobj_pkt_attr_wq1,
 193	&kobj_pkt_attr_wq2,
 194	&kobj_pkt_attr_wq3,
 195	NULL
 196};
 197
 198static ssize_t kobj_pkt_show(struct kobject *kobj,
 199			struct attribute *attr, char *data)
 200{
 201	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
 202	int n = 0;
 203	int v;
 204	if (strcmp(attr->name, "packets_started") == 0) {
 205		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
 206
 207	} else if (strcmp(attr->name, "packets_finished") == 0) {
 208		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
 209
 210	} else if (strcmp(attr->name, "kb_written") == 0) {
 211		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
 212
 213	} else if (strcmp(attr->name, "kb_read") == 0) {
 214		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
 215
 216	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
 217		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
 218
 219	} else if (strcmp(attr->name, "size") == 0) {
 220		spin_lock(&pd->lock);
 221		v = pd->bio_queue_size;
 222		spin_unlock(&pd->lock);
 223		n = sprintf(data, "%d\n", v);
 224
 225	} else if (strcmp(attr->name, "congestion_off") == 0) {
 226		spin_lock(&pd->lock);
 227		v = pd->write_congestion_off;
 228		spin_unlock(&pd->lock);
 229		n = sprintf(data, "%d\n", v);
 230
 231	} else if (strcmp(attr->name, "congestion_on") == 0) {
 232		spin_lock(&pd->lock);
 233		v = pd->write_congestion_on;
 234		spin_unlock(&pd->lock);
 235		n = sprintf(data, "%d\n", v);
 236	}
 237	return n;
 238}
 239
 240static void init_write_congestion_marks(int* lo, int* hi)
 241{
 242	if (*hi > 0) {
 243		*hi = max(*hi, 500);
 244		*hi = min(*hi, 1000000);
 245		if (*lo <= 0)
 246			*lo = *hi - 100;
 247		else {
 248			*lo = min(*lo, *hi - 100);
 249			*lo = max(*lo, 100);
 250		}
 251	} else {
 252		*hi = -1;
 253		*lo = -1;
 254	}
 255}
 256
 257static ssize_t kobj_pkt_store(struct kobject *kobj,
 258			struct attribute *attr,
 259			const char *data, size_t len)
 260{
 261	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
 262	int val;
 263
 264	if (strcmp(attr->name, "reset") == 0 && len > 0) {
 265		pd->stats.pkt_started = 0;
 266		pd->stats.pkt_ended = 0;
 267		pd->stats.secs_w = 0;
 268		pd->stats.secs_rg = 0;
 269		pd->stats.secs_r = 0;
 270
 271	} else if (strcmp(attr->name, "congestion_off") == 0
 272		   && sscanf(data, "%d", &val) == 1) {
 273		spin_lock(&pd->lock);
 274		pd->write_congestion_off = val;
 275		init_write_congestion_marks(&pd->write_congestion_off,
 276					&pd->write_congestion_on);
 277		spin_unlock(&pd->lock);
 278
 279	} else if (strcmp(attr->name, "congestion_on") == 0
 280		   && sscanf(data, "%d", &val) == 1) {
 281		spin_lock(&pd->lock);
 282		pd->write_congestion_on = val;
 283		init_write_congestion_marks(&pd->write_congestion_off,
 284					&pd->write_congestion_on);
 285		spin_unlock(&pd->lock);
 286	}
 287	return len;
 288}
 289
 290static const struct sysfs_ops kobj_pkt_ops = {
 291	.show = kobj_pkt_show,
 292	.store = kobj_pkt_store
 293};
 294static struct kobj_type kobj_pkt_type_stat = {
 295	.release = pkt_kobj_release,
 296	.sysfs_ops = &kobj_pkt_ops,
 297	.default_attrs = kobj_pkt_attrs_stat
 298};
 299static struct kobj_type kobj_pkt_type_wqueue = {
 300	.release = pkt_kobj_release,
 301	.sysfs_ops = &kobj_pkt_ops,
 302	.default_attrs = kobj_pkt_attrs_wqueue
 303};
 304
 305static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
 306{
 307	if (class_pktcdvd) {
 308		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
 309					"%s", pd->name);
 310		if (IS_ERR(pd->dev))
 311			pd->dev = NULL;
 312	}
 313	if (pd->dev) {
 314		pd->kobj_stat = pkt_kobj_create(pd, "stat",
 315					&pd->dev->kobj,
 316					&kobj_pkt_type_stat);
 317		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
 318					&pd->dev->kobj,
 319					&kobj_pkt_type_wqueue);
 320	}
 321}
 322
 323static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
 324{
 325	pkt_kobj_remove(pd->kobj_stat);
 326	pkt_kobj_remove(pd->kobj_wqueue);
 327	if (class_pktcdvd)
 328		device_unregister(pd->dev);
 329}
 330
 331
 332/********************************************************************
 333  /sys/class/pktcdvd/
 334                     add            map block device
 335                     remove         unmap packet dev
 336                     device_map     show mappings
 337 *******************************************************************/
 338
 339static void class_pktcdvd_release(struct class *cls)
 340{
 341	kfree(cls);
 342}
 343static ssize_t class_pktcdvd_show_map(struct class *c,
 344					struct class_attribute *attr,
 345					char *data)
 346{
 347	int n = 0;
 348	int idx;
 349	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
 350	for (idx = 0; idx < MAX_WRITERS; idx++) {
 351		struct pktcdvd_device *pd = pkt_devs[idx];
 352		if (!pd)
 353			continue;
 354		n += sprintf(data+n, "%s %u:%u %u:%u\n",
 355			pd->name,
 356			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
 357			MAJOR(pd->bdev->bd_dev),
 358			MINOR(pd->bdev->bd_dev));
 359	}
 360	mutex_unlock(&ctl_mutex);
 361	return n;
 362}
 
 363
 364static ssize_t class_pktcdvd_store_add(struct class *c,
 365					struct class_attribute *attr,
 366					const char *buf,
 367					size_t count)
 368{
 369	unsigned int major, minor;
 370
 371	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 372		/* pkt_setup_dev() expects caller to hold reference to self */
 373		if (!try_module_get(THIS_MODULE))
 374			return -ENODEV;
 375
 376		pkt_setup_dev(MKDEV(major, minor), NULL);
 377
 378		module_put(THIS_MODULE);
 379
 380		return count;
 381	}
 382
 383	return -EINVAL;
 384}
 
 385
 386static ssize_t class_pktcdvd_store_remove(struct class *c,
 387					  struct class_attribute *attr,
 388					  const char *buf,
 389					size_t count)
 390{
 391	unsigned int major, minor;
 392	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 393		pkt_remove_dev(MKDEV(major, minor));
 394		return count;
 395	}
 396	return -EINVAL;
 397}
 
 398
 399static struct class_attribute class_pktcdvd_attrs[] = {
 400 __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
 401 __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
 402 __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
 403 __ATTR_NULL
 404};
 405
 406
 407static int pkt_sysfs_init(void)
 408{
 409	int ret = 0;
 410
 411	/*
 412	 * create control files in sysfs
 413	 * /sys/class/pktcdvd/...
 414	 */
 415	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
 416	if (!class_pktcdvd)
 417		return -ENOMEM;
 418	class_pktcdvd->name = DRIVER_NAME;
 419	class_pktcdvd->owner = THIS_MODULE;
 420	class_pktcdvd->class_release = class_pktcdvd_release;
 421	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
 422	ret = class_register(class_pktcdvd);
 423	if (ret) {
 424		kfree(class_pktcdvd);
 425		class_pktcdvd = NULL;
 426		printk(DRIVER_NAME": failed to create class pktcdvd\n");
 427		return ret;
 428	}
 429	return 0;
 430}
 431
 432static void pkt_sysfs_cleanup(void)
 433{
 434	if (class_pktcdvd)
 435		class_destroy(class_pktcdvd);
 436	class_pktcdvd = NULL;
 437}
 438
 439/********************************************************************
 440  entries in debugfs
 441
 442  /sys/kernel/debug/pktcdvd[0-7]/
 443			info
 444
 445 *******************************************************************/
 446
 447static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
 448{
 449	return pkt_seq_show(m, p);
 450}
 451
 452static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
 453{
 454	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
 455}
 456
 457static const struct file_operations debug_fops = {
 458	.open		= pkt_debugfs_fops_open,
 459	.read		= seq_read,
 460	.llseek		= seq_lseek,
 461	.release	= single_release,
 462	.owner		= THIS_MODULE,
 463};
 464
 465static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
 466{
 467	if (!pkt_debugfs_root)
 468		return;
 469	pd->dfs_f_info = NULL;
 470	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
 471	if (IS_ERR(pd->dfs_d_root)) {
 472		pd->dfs_d_root = NULL;
 473		return;
 474	}
 475	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
 476				pd->dfs_d_root, pd, &debug_fops);
 477	if (IS_ERR(pd->dfs_f_info)) {
 478		pd->dfs_f_info = NULL;
 479		return;
 480	}
 481}
 482
 483static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
 484{
 485	if (!pkt_debugfs_root)
 486		return;
 487	if (pd->dfs_f_info)
 488		debugfs_remove(pd->dfs_f_info);
 489	pd->dfs_f_info = NULL;
 490	if (pd->dfs_d_root)
 491		debugfs_remove(pd->dfs_d_root);
 492	pd->dfs_d_root = NULL;
 493}
 494
 495static void pkt_debugfs_init(void)
 496{
 497	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
 498	if (IS_ERR(pkt_debugfs_root)) {
 499		pkt_debugfs_root = NULL;
 500		return;
 501	}
 502}
 503
 504static void pkt_debugfs_cleanup(void)
 505{
 506	if (!pkt_debugfs_root)
 507		return;
 508	debugfs_remove(pkt_debugfs_root);
 509	pkt_debugfs_root = NULL;
 510}
 511
 512/* ----------------------------------------------------------*/
 513
 514
 515static void pkt_bio_finished(struct pktcdvd_device *pd)
 516{
 517	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
 518	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
 519		VPRINTK(DRIVER_NAME": queue empty\n");
 520		atomic_set(&pd->iosched.attention, 1);
 521		wake_up(&pd->wqueue);
 522	}
 523}
 524
 525static void pkt_bio_destructor(struct bio *bio)
 526{
 527	kfree(bio->bi_io_vec);
 528	kfree(bio);
 529}
 530
 531static struct bio *pkt_bio_alloc(int nr_iovecs)
 532{
 533	struct bio_vec *bvl = NULL;
 534	struct bio *bio;
 535
 536	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
 537	if (!bio)
 538		goto no_bio;
 539	bio_init(bio);
 540
 541	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
 542	if (!bvl)
 543		goto no_bvl;
 544
 545	bio->bi_max_vecs = nr_iovecs;
 546	bio->bi_io_vec = bvl;
 547	bio->bi_destructor = pkt_bio_destructor;
 548
 549	return bio;
 550
 551 no_bvl:
 552	kfree(bio);
 553 no_bio:
 554	return NULL;
 555}
 556
 557/*
 558 * Allocate a packet_data struct
 559 */
 560static struct packet_data *pkt_alloc_packet_data(int frames)
 561{
 562	int i;
 563	struct packet_data *pkt;
 564
 565	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
 566	if (!pkt)
 567		goto no_pkt;
 568
 569	pkt->frames = frames;
 570	pkt->w_bio = pkt_bio_alloc(frames);
 571	if (!pkt->w_bio)
 572		goto no_bio;
 573
 574	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
 575		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
 576		if (!pkt->pages[i])
 577			goto no_page;
 578	}
 579
 580	spin_lock_init(&pkt->lock);
 581	bio_list_init(&pkt->orig_bios);
 582
 583	for (i = 0; i < frames; i++) {
 584		struct bio *bio = pkt_bio_alloc(1);
 585		if (!bio)
 586			goto no_rd_bio;
 
 587		pkt->r_bios[i] = bio;
 588	}
 589
 590	return pkt;
 591
 592no_rd_bio:
 593	for (i = 0; i < frames; i++) {
 594		struct bio *bio = pkt->r_bios[i];
 595		if (bio)
 596			bio_put(bio);
 597	}
 598
 599no_page:
 600	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
 601		if (pkt->pages[i])
 602			__free_page(pkt->pages[i]);
 603	bio_put(pkt->w_bio);
 604no_bio:
 605	kfree(pkt);
 606no_pkt:
 607	return NULL;
 608}
 609
 610/*
 611 * Free a packet_data struct
 612 */
 613static void pkt_free_packet_data(struct packet_data *pkt)
 614{
 615	int i;
 616
 617	for (i = 0; i < pkt->frames; i++) {
 618		struct bio *bio = pkt->r_bios[i];
 619		if (bio)
 620			bio_put(bio);
 621	}
 622	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
 623		__free_page(pkt->pages[i]);
 624	bio_put(pkt->w_bio);
 625	kfree(pkt);
 626}
 627
 628static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
 629{
 630	struct packet_data *pkt, *next;
 631
 632	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
 633
 634	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
 635		pkt_free_packet_data(pkt);
 636	}
 637	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
 638}
 639
 640static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
 641{
 642	struct packet_data *pkt;
 643
 644	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
 645
 646	while (nr_packets > 0) {
 647		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
 648		if (!pkt) {
 649			pkt_shrink_pktlist(pd);
 650			return 0;
 651		}
 652		pkt->id = nr_packets;
 653		pkt->pd = pd;
 654		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
 655		nr_packets--;
 656	}
 657	return 1;
 658}
 659
 660static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
 661{
 662	struct rb_node *n = rb_next(&node->rb_node);
 663	if (!n)
 664		return NULL;
 665	return rb_entry(n, struct pkt_rb_node, rb_node);
 666}
 667
 668static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 669{
 670	rb_erase(&node->rb_node, &pd->bio_queue);
 671	mempool_free(node, pd->rb_pool);
 672	pd->bio_queue_size--;
 673	BUG_ON(pd->bio_queue_size < 0);
 674}
 675
 676/*
 677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
 678 */
 679static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
 680{
 681	struct rb_node *n = pd->bio_queue.rb_node;
 682	struct rb_node *next;
 683	struct pkt_rb_node *tmp;
 684
 685	if (!n) {
 686		BUG_ON(pd->bio_queue_size > 0);
 687		return NULL;
 688	}
 689
 690	for (;;) {
 691		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
 692		if (s <= tmp->bio->bi_sector)
 693			next = n->rb_left;
 694		else
 695			next = n->rb_right;
 696		if (!next)
 697			break;
 698		n = next;
 699	}
 700
 701	if (s > tmp->bio->bi_sector) {
 702		tmp = pkt_rbtree_next(tmp);
 703		if (!tmp)
 704			return NULL;
 705	}
 706	BUG_ON(s > tmp->bio->bi_sector);
 707	return tmp;
 708}
 709
 710/*
 711 * Insert a node into the pd->bio_queue rb tree.
 712 */
 713static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 714{
 715	struct rb_node **p = &pd->bio_queue.rb_node;
 716	struct rb_node *parent = NULL;
 717	sector_t s = node->bio->bi_sector;
 718	struct pkt_rb_node *tmp;
 719
 720	while (*p) {
 721		parent = *p;
 722		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
 723		if (s < tmp->bio->bi_sector)
 724			p = &(*p)->rb_left;
 725		else
 726			p = &(*p)->rb_right;
 727	}
 728	rb_link_node(&node->rb_node, parent, p);
 729	rb_insert_color(&node->rb_node, &pd->bio_queue);
 730	pd->bio_queue_size++;
 731}
 732
 733/*
 734 * Send a packet_command to the underlying block device and
 735 * wait for completion.
 736 */
 737static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
 738{
 739	struct request_queue *q = bdev_get_queue(pd->bdev);
 740	struct request *rq;
 741	int ret = 0;
 742
 743	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
 744			     WRITE : READ, __GFP_WAIT);
 
 
 745
 746	if (cgc->buflen) {
 747		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
 
 
 748			goto out;
 749	}
 750
 751	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
 752	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
 753
 754	rq->timeout = 60*HZ;
 755	rq->cmd_type = REQ_TYPE_BLOCK_PC;
 756	if (cgc->quiet)
 757		rq->cmd_flags |= REQ_QUIET;
 758
 759	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
 760	if (rq->errors)
 761		ret = -EIO;
 762out:
 763	blk_put_request(rq);
 764	return ret;
 765}
 766
 
 
 
 
 
 
 
 
 
 
 
 767/*
 768 * A generic sense dump / resolve mechanism should be implemented across
 769 * all ATAPI + SCSI devices.
 770 */
 771static void pkt_dump_sense(struct packet_command *cgc)
 
 772{
 773	static char *info[9] = { "No sense", "Recovered error", "Not ready",
 774				 "Medium error", "Hardware error", "Illegal request",
 775				 "Unit attention", "Data protect", "Blank check" };
 776	int i;
 777	struct request_sense *sense = cgc->sense;
 778
 779	printk(DRIVER_NAME":");
 780	for (i = 0; i < CDROM_PACKET_SIZE; i++)
 781		printk(" %02x", cgc->cmd[i]);
 782	printk(" - ");
 783
 784	if (sense == NULL) {
 785		printk("no sense\n");
 786		return;
 787	}
 788
 789	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
 790
 791	if (sense->sense_key > 8) {
 792		printk(" (INVALID)\n");
 793		return;
 794	}
 795
 796	printk(" (%s)\n", info[sense->sense_key]);
 
 
 
 
 
 
 797}
 798
 799/*
 800 * flush the drive cache to media
 801 */
 802static int pkt_flush_cache(struct pktcdvd_device *pd)
 803{
 804	struct packet_command cgc;
 805
 806	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 807	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
 808	cgc.quiet = 1;
 809
 810	/*
 811	 * the IMMED bit -- we default to not setting it, although that
 812	 * would allow a much faster close, this is safer
 813	 */
 814#if 0
 815	cgc.cmd[1] = 1 << 1;
 816#endif
 817	return pkt_generic_packet(pd, &cgc);
 818}
 819
 820/*
 821 * speed is given as the normal factor, e.g. 4 for 4x
 822 */
 823static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
 824				unsigned write_speed, unsigned read_speed)
 825{
 826	struct packet_command cgc;
 827	struct request_sense sense;
 828	int ret;
 829
 830	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 831	cgc.sense = &sense;
 832	cgc.cmd[0] = GPCMD_SET_SPEED;
 833	cgc.cmd[2] = (read_speed >> 8) & 0xff;
 834	cgc.cmd[3] = read_speed & 0xff;
 835	cgc.cmd[4] = (write_speed >> 8) & 0xff;
 836	cgc.cmd[5] = write_speed & 0xff;
 837
 838	if ((ret = pkt_generic_packet(pd, &cgc)))
 839		pkt_dump_sense(&cgc);
 
 840
 841	return ret;
 842}
 843
 844/*
 845 * Queue a bio for processing by the low-level CD device. Must be called
 846 * from process context.
 847 */
 848static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
 849{
 850	spin_lock(&pd->iosched.lock);
 851	if (bio_data_dir(bio) == READ)
 852		bio_list_add(&pd->iosched.read_queue, bio);
 853	else
 854		bio_list_add(&pd->iosched.write_queue, bio);
 855	spin_unlock(&pd->iosched.lock);
 856
 857	atomic_set(&pd->iosched.attention, 1);
 858	wake_up(&pd->wqueue);
 859}
 860
 861/*
 862 * Process the queued read/write requests. This function handles special
 863 * requirements for CDRW drives:
 864 * - A cache flush command must be inserted before a read request if the
 865 *   previous request was a write.
 866 * - Switching between reading and writing is slow, so don't do it more often
 867 *   than necessary.
 868 * - Optimize for throughput at the expense of latency. This means that streaming
 869 *   writes will never be interrupted by a read, but if the drive has to seek
 870 *   before the next write, switch to reading instead if there are any pending
 871 *   read requests.
 872 * - Set the read speed according to current usage pattern. When only reading
 873 *   from the device, it's best to use the highest possible read speed, but
 874 *   when switching often between reading and writing, it's better to have the
 875 *   same read and write speeds.
 876 */
 877static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
 878{
 879
 880	if (atomic_read(&pd->iosched.attention) == 0)
 881		return;
 882	atomic_set(&pd->iosched.attention, 0);
 883
 884	for (;;) {
 885		struct bio *bio;
 886		int reads_queued, writes_queued;
 887
 888		spin_lock(&pd->iosched.lock);
 889		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
 890		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
 891		spin_unlock(&pd->iosched.lock);
 892
 893		if (!reads_queued && !writes_queued)
 894			break;
 895
 896		if (pd->iosched.writing) {
 897			int need_write_seek = 1;
 898			spin_lock(&pd->iosched.lock);
 899			bio = bio_list_peek(&pd->iosched.write_queue);
 900			spin_unlock(&pd->iosched.lock);
 901			if (bio && (bio->bi_sector == pd->iosched.last_write))
 
 902				need_write_seek = 0;
 903			if (need_write_seek && reads_queued) {
 904				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 905					VPRINTK(DRIVER_NAME": write, waiting\n");
 906					break;
 907				}
 908				pkt_flush_cache(pd);
 909				pd->iosched.writing = 0;
 910			}
 911		} else {
 912			if (!reads_queued && writes_queued) {
 913				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 914					VPRINTK(DRIVER_NAME": read, waiting\n");
 915					break;
 916				}
 917				pd->iosched.writing = 1;
 918			}
 919		}
 920
 921		spin_lock(&pd->iosched.lock);
 922		if (pd->iosched.writing)
 923			bio = bio_list_pop(&pd->iosched.write_queue);
 924		else
 925			bio = bio_list_pop(&pd->iosched.read_queue);
 926		spin_unlock(&pd->iosched.lock);
 927
 928		if (!bio)
 929			continue;
 930
 931		if (bio_data_dir(bio) == READ)
 932			pd->iosched.successive_reads += bio->bi_size >> 10;
 
 933		else {
 934			pd->iosched.successive_reads = 0;
 935			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
 936		}
 937		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
 938			if (pd->read_speed == pd->write_speed) {
 939				pd->read_speed = MAX_SPEED;
 940				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 941			}
 942		} else {
 943			if (pd->read_speed != pd->write_speed) {
 944				pd->read_speed = pd->write_speed;
 945				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 946			}
 947		}
 948
 949		atomic_inc(&pd->cdrw.pending_bios);
 950		generic_make_request(bio);
 951	}
 952}
 953
 954/*
 955 * Special care is needed if the underlying block device has a small
 956 * max_phys_segments value.
 957 */
 958static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
 959{
 960	if ((pd->settings.size << 9) / CD_FRAMESIZE
 961	    <= queue_max_segments(q)) {
 962		/*
 963		 * The cdrom device can handle one segment/frame
 964		 */
 965		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
 966		return 0;
 967	} else if ((pd->settings.size << 9) / PAGE_SIZE
 968		   <= queue_max_segments(q)) {
 969		/*
 970		 * We can handle this case at the expense of some extra memory
 971		 * copies during write operations
 972		 */
 973		set_bit(PACKET_MERGE_SEGS, &pd->flags);
 974		return 0;
 975	} else {
 976		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
 977		return -EIO;
 978	}
 979}
 980
 981/*
 982 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
 983 */
 984static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
 985{
 986	unsigned int copy_size = CD_FRAMESIZE;
 987
 988	while (copy_size > 0) {
 989		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
 990		void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
 991			src_bvl->bv_offset + offs;
 992		void *vto = page_address(dst_page) + dst_offs;
 993		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
 994
 995		BUG_ON(len < 0);
 996		memcpy(vto, vfrom, len);
 997		kunmap_atomic(vfrom, KM_USER0);
 998
 999		seg++;
1000		offs = 0;
1001		dst_offs += len;
1002		copy_size -= len;
1003	}
1004}
1005
1006/*
1007 * Copy all data for this packet to pkt->pages[], so that
1008 * a) The number of required segments for the write bio is minimized, which
1009 *    is necessary for some scsi controllers.
1010 * b) The data can be used as cache to avoid read requests if we receive a
1011 *    new write request for the same zone.
1012 */
1013static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1014{
1015	int f, p, offs;
1016
1017	/* Copy all data to pkt->pages[] */
1018	p = 0;
1019	offs = 0;
1020	for (f = 0; f < pkt->frames; f++) {
1021		if (bvec[f].bv_page != pkt->pages[p]) {
1022			void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1023			void *vto = page_address(pkt->pages[p]) + offs;
1024			memcpy(vto, vfrom, CD_FRAMESIZE);
1025			kunmap_atomic(vfrom, KM_USER0);
1026			bvec[f].bv_page = pkt->pages[p];
1027			bvec[f].bv_offset = offs;
1028		} else {
1029			BUG_ON(bvec[f].bv_offset != offs);
1030		}
1031		offs += CD_FRAMESIZE;
1032		if (offs >= PAGE_SIZE) {
1033			offs = 0;
1034			p++;
1035		}
1036	}
1037}
1038
1039static void pkt_end_io_read(struct bio *bio, int err)
1040{
1041	struct packet_data *pkt = bio->bi_private;
1042	struct pktcdvd_device *pd = pkt->pd;
1043	BUG_ON(!pd);
1044
1045	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
 
1047
1048	if (err)
1049		atomic_inc(&pkt->io_errors);
1050	if (atomic_dec_and_test(&pkt->io_wait)) {
1051		atomic_inc(&pkt->run_sm);
1052		wake_up(&pd->wqueue);
1053	}
1054	pkt_bio_finished(pd);
1055}
1056
1057static void pkt_end_io_packet_write(struct bio *bio, int err)
1058{
1059	struct packet_data *pkt = bio->bi_private;
1060	struct pktcdvd_device *pd = pkt->pd;
1061	BUG_ON(!pd);
1062
1063	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1064
1065	pd->stats.pkt_ended++;
1066
1067	pkt_bio_finished(pd);
1068	atomic_dec(&pkt->io_wait);
1069	atomic_inc(&pkt->run_sm);
1070	wake_up(&pd->wqueue);
1071}
1072
1073/*
1074 * Schedule reads for the holes in a packet
1075 */
1076static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077{
1078	int frames_read = 0;
1079	struct bio *bio;
1080	int f;
1081	char written[PACKET_MAX_SIZE];
1082
1083	BUG_ON(bio_list_empty(&pkt->orig_bios));
1084
1085	atomic_set(&pkt->io_wait, 0);
1086	atomic_set(&pkt->io_errors, 0);
1087
1088	/*
1089	 * Figure out which frames we need to read before we can write.
1090	 */
1091	memset(written, 0, sizeof(written));
1092	spin_lock(&pkt->lock);
1093	bio_list_for_each(bio, &pkt->orig_bios) {
1094		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095		int num_frames = bio->bi_size / CD_FRAMESIZE;
 
1096		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097		BUG_ON(first_frame < 0);
1098		BUG_ON(first_frame + num_frames > pkt->frames);
1099		for (f = first_frame; f < first_frame + num_frames; f++)
1100			written[f] = 1;
1101	}
1102	spin_unlock(&pkt->lock);
1103
1104	if (pkt->cache_valid) {
1105		VPRINTK("pkt_gather_data: zone %llx cached\n",
1106			(unsigned long long)pkt->sector);
1107		goto out_account;
1108	}
1109
1110	/*
1111	 * Schedule reads for missing parts of the packet.
1112	 */
1113	for (f = 0; f < pkt->frames; f++) {
1114		struct bio_vec *vec;
1115
1116		int p, offset;
 
1117		if (written[f])
1118			continue;
 
1119		bio = pkt->r_bios[f];
1120		vec = bio->bi_io_vec;
1121		bio_init(bio);
1122		bio->bi_max_vecs = 1;
1123		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124		bio->bi_bdev = pd->bdev;
1125		bio->bi_end_io = pkt_end_io_read;
1126		bio->bi_private = pkt;
1127		bio->bi_io_vec = vec;
1128		bio->bi_destructor = pkt_bio_destructor;
1129
1130		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133			f, pkt->pages[p], offset);
1134		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135			BUG();
1136
1137		atomic_inc(&pkt->io_wait);
1138		bio->bi_rw = READ;
1139		pkt_queue_bio(pd, bio);
1140		frames_read++;
1141	}
1142
1143out_account:
1144	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145		frames_read, (unsigned long long)pkt->sector);
1146	pd->stats.pkt_started++;
1147	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1148}
1149
1150/*
1151 * Find a packet matching zone, or the least recently used packet if
1152 * there is no match.
1153 */
1154static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1155{
1156	struct packet_data *pkt;
1157
1158	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160			list_del_init(&pkt->list);
1161			if (pkt->sector != zone)
1162				pkt->cache_valid = 0;
1163			return pkt;
1164		}
1165	}
1166	BUG();
1167	return NULL;
1168}
1169
1170static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1171{
1172	if (pkt->cache_valid) {
1173		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174	} else {
1175		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1176	}
1177}
1178
1179/*
1180 * recover a failed write, query for relocation if possible
1181 *
1182 * returns 1 if recovery is possible, or 0 if not
1183 *
1184 */
1185static int pkt_start_recovery(struct packet_data *pkt)
1186{
1187	/*
1188	 * FIXME. We need help from the file system to implement
1189	 * recovery handling.
1190	 */
1191	return 0;
1192#if 0
1193	struct request *rq = pkt->rq;
1194	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195	struct block_device *pkt_bdev;
1196	struct super_block *sb = NULL;
1197	unsigned long old_block, new_block;
1198	sector_t new_sector;
1199
1200	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201	if (pkt_bdev) {
1202		sb = get_super(pkt_bdev);
1203		bdput(pkt_bdev);
1204	}
1205
1206	if (!sb)
1207		return 0;
1208
1209	if (!sb->s_op->relocate_blocks)
1210		goto out;
1211
1212	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214		goto out;
1215
1216	new_sector = new_block * (CD_FRAMESIZE >> 9);
1217	pkt->sector = new_sector;
1218
1219	pkt->bio->bi_sector = new_sector;
1220	pkt->bio->bi_next = NULL;
1221	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222	pkt->bio->bi_idx = 0;
1223
1224	BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1225	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228	BUG_ON(pkt->bio->bi_private != pkt);
1229
1230	drop_super(sb);
1231	return 1;
1232
1233out:
1234	drop_super(sb);
1235	return 0;
1236#endif
1237}
1238
1239static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1240{
1241#if PACKET_DEBUG > 1
1242	static const char *state_name[] = {
1243		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1244	};
1245	enum packet_data_state old_state = pkt->state;
1246	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
 
1247		state_name[old_state], state_name[state]);
1248#endif
1249	pkt->state = state;
1250}
1251
1252/*
1253 * Scan the work queue to see if we can start a new packet.
1254 * returns non-zero if any work was done.
1255 */
1256static int pkt_handle_queue(struct pktcdvd_device *pd)
1257{
1258	struct packet_data *pkt, *p;
1259	struct bio *bio = NULL;
1260	sector_t zone = 0; /* Suppress gcc warning */
1261	struct pkt_rb_node *node, *first_node;
1262	struct rb_node *n;
1263	int wakeup;
1264
1265	VPRINTK("handle_queue\n");
1266
1267	atomic_set(&pd->scan_queue, 0);
1268
1269	if (list_empty(&pd->cdrw.pkt_free_list)) {
1270		VPRINTK("handle_queue: no pkt\n");
1271		return 0;
1272	}
1273
1274	/*
1275	 * Try to find a zone we are not already working on.
1276	 */
1277	spin_lock(&pd->lock);
1278	first_node = pkt_rbtree_find(pd, pd->current_sector);
1279	if (!first_node) {
1280		n = rb_first(&pd->bio_queue);
1281		if (n)
1282			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1283	}
1284	node = first_node;
1285	while (node) {
1286		bio = node->bio;
1287		zone = ZONE(bio->bi_sector, pd);
1288		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289			if (p->sector == zone) {
1290				bio = NULL;
1291				goto try_next_bio;
1292			}
1293		}
1294		break;
1295try_next_bio:
1296		node = pkt_rbtree_next(node);
1297		if (!node) {
1298			n = rb_first(&pd->bio_queue);
1299			if (n)
1300				node = rb_entry(n, struct pkt_rb_node, rb_node);
1301		}
1302		if (node == first_node)
1303			node = NULL;
1304	}
1305	spin_unlock(&pd->lock);
1306	if (!bio) {
1307		VPRINTK("handle_queue: no bio\n");
1308		return 0;
1309	}
1310
1311	pkt = pkt_get_packet_data(pd, zone);
1312
1313	pd->current_sector = zone + pd->settings.size;
1314	pkt->sector = zone;
1315	BUG_ON(pkt->frames != pd->settings.size >> 2);
1316	pkt->write_size = 0;
1317
1318	/*
1319	 * Scan work queue for bios in the same zone and link them
1320	 * to this packet.
1321	 */
1322	spin_lock(&pd->lock);
1323	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1325		bio = node->bio;
1326		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327			(unsigned long long)ZONE(bio->bi_sector, pd));
1328		if (ZONE(bio->bi_sector, pd) != zone)
1329			break;
1330		pkt_rbtree_erase(pd, node);
1331		spin_lock(&pkt->lock);
1332		bio_list_add(&pkt->orig_bios, bio);
1333		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334		spin_unlock(&pkt->lock);
1335	}
1336	/* check write congestion marks, and if bio_queue_size is
1337	   below, wake up any waiters */
1338	wakeup = (pd->write_congestion_on > 0
1339	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1340	spin_unlock(&pd->lock);
1341	if (wakeup) {
1342		clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343					BLK_RW_ASYNC);
1344	}
1345
1346	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347	pkt_set_state(pkt, PACKET_WAITING_STATE);
1348	atomic_set(&pkt->run_sm, 1);
1349
1350	spin_lock(&pd->cdrw.active_list_lock);
1351	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352	spin_unlock(&pd->cdrw.active_list_lock);
1353
1354	return 1;
1355}
1356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357/*
1358 * Assemble a bio to write one packet and queue the bio for processing
1359 * by the underlying block device.
1360 */
1361static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1362{
1363	struct bio *bio;
1364	int f;
1365	int frames_write;
1366	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1367
 
 
 
 
 
 
 
1368	for (f = 0; f < pkt->frames; f++) {
1369		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
 
 
 
1371	}
 
1372
1373	/*
1374	 * Fill-in bvec with data from orig_bios.
1375	 */
1376	frames_write = 0;
1377	spin_lock(&pkt->lock);
1378	bio_list_for_each(bio, &pkt->orig_bios) {
1379		int segment = bio->bi_idx;
1380		int src_offs = 0;
1381		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382		int num_frames = bio->bi_size / CD_FRAMESIZE;
1383		BUG_ON(first_frame < 0);
1384		BUG_ON(first_frame + num_frames > pkt->frames);
1385		for (f = first_frame; f < first_frame + num_frames; f++) {
1386			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1387
1388			while (src_offs >= src_bvl->bv_len) {
1389				src_offs -= src_bvl->bv_len;
1390				segment++;
1391				BUG_ON(segment >= bio->bi_vcnt);
1392				src_bvl = bio_iovec_idx(bio, segment);
1393			}
1394
1395			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396				bvec[f].bv_page = src_bvl->bv_page;
1397				bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398			} else {
1399				pkt_copy_bio_data(bio, segment, src_offs,
1400						  bvec[f].bv_page, bvec[f].bv_offset);
1401			}
1402			src_offs += CD_FRAMESIZE;
1403			frames_write++;
1404		}
1405	}
1406	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407	spin_unlock(&pkt->lock);
1408
1409	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410		frames_write, (unsigned long long)pkt->sector);
1411	BUG_ON(frames_write != pkt->write_size);
1412
1413	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414		pkt_make_local_copy(pkt, bvec);
1415		pkt->cache_valid = 1;
1416	} else {
1417		pkt->cache_valid = 0;
1418	}
1419
1420	/* Start the write request */
1421	bio_init(pkt->w_bio);
1422	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423	pkt->w_bio->bi_sector = pkt->sector;
1424	pkt->w_bio->bi_bdev = pd->bdev;
1425	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426	pkt->w_bio->bi_private = pkt;
1427	pkt->w_bio->bi_io_vec = bvec;
1428	pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429	for (f = 0; f < pkt->frames; f++)
1430		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431			BUG();
1432	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1433
1434	atomic_set(&pkt->io_wait, 1);
1435	pkt->w_bio->bi_rw = WRITE;
1436	pkt_queue_bio(pd, pkt->w_bio);
1437}
1438
1439static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1440{
1441	struct bio *bio;
1442
1443	if (!uptodate)
1444		pkt->cache_valid = 0;
1445
1446	/* Finish all bios corresponding to this packet */
1447	while ((bio = bio_list_pop(&pkt->orig_bios)))
1448		bio_endio(bio, uptodate ? 0 : -EIO);
 
 
1449}
1450
1451static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1452{
1453	int uptodate;
1454
1455	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1456
1457	for (;;) {
1458		switch (pkt->state) {
1459		case PACKET_WAITING_STATE:
1460			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461				return;
1462
1463			pkt->sleep_time = 0;
1464			pkt_gather_data(pd, pkt);
1465			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466			break;
1467
1468		case PACKET_READ_WAIT_STATE:
1469			if (atomic_read(&pkt->io_wait) > 0)
1470				return;
1471
1472			if (atomic_read(&pkt->io_errors) > 0) {
1473				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474			} else {
1475				pkt_start_write(pd, pkt);
1476			}
1477			break;
1478
1479		case PACKET_WRITE_WAIT_STATE:
1480			if (atomic_read(&pkt->io_wait) > 0)
1481				return;
1482
1483			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485			} else {
1486				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1487			}
1488			break;
1489
1490		case PACKET_RECOVERY_STATE:
1491			if (pkt_start_recovery(pkt)) {
1492				pkt_start_write(pd, pkt);
1493			} else {
1494				VPRINTK("No recovery possible\n");
1495				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1496			}
1497			break;
1498
1499		case PACKET_FINISHED_STATE:
1500			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501			pkt_finish_packet(pkt, uptodate);
1502			return;
1503
1504		default:
1505			BUG();
1506			break;
1507		}
1508	}
1509}
1510
1511static void pkt_handle_packets(struct pktcdvd_device *pd)
1512{
1513	struct packet_data *pkt, *next;
1514
1515	VPRINTK("pkt_handle_packets\n");
1516
1517	/*
1518	 * Run state machine for active packets
1519	 */
1520	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521		if (atomic_read(&pkt->run_sm) > 0) {
1522			atomic_set(&pkt->run_sm, 0);
1523			pkt_run_state_machine(pd, pkt);
1524		}
1525	}
1526
1527	/*
1528	 * Move no longer active packets to the free list
1529	 */
1530	spin_lock(&pd->cdrw.active_list_lock);
1531	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532		if (pkt->state == PACKET_FINISHED_STATE) {
1533			list_del(&pkt->list);
1534			pkt_put_packet_data(pd, pkt);
1535			pkt_set_state(pkt, PACKET_IDLE_STATE);
1536			atomic_set(&pd->scan_queue, 1);
1537		}
1538	}
1539	spin_unlock(&pd->cdrw.active_list_lock);
1540}
1541
1542static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1543{
1544	struct packet_data *pkt;
1545	int i;
1546
1547	for (i = 0; i < PACKET_NUM_STATES; i++)
1548		states[i] = 0;
1549
1550	spin_lock(&pd->cdrw.active_list_lock);
1551	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552		states[pkt->state]++;
1553	}
1554	spin_unlock(&pd->cdrw.active_list_lock);
1555}
1556
1557/*
1558 * kcdrwd is woken up when writes have been queued for one of our
1559 * registered devices
1560 */
1561static int kcdrwd(void *foobar)
1562{
1563	struct pktcdvd_device *pd = foobar;
1564	struct packet_data *pkt;
1565	long min_sleep_time, residue;
1566
1567	set_user_nice(current, -20);
1568	set_freezable();
1569
1570	for (;;) {
1571		DECLARE_WAITQUEUE(wait, current);
1572
1573		/*
1574		 * Wait until there is something to do
1575		 */
1576		add_wait_queue(&pd->wqueue, &wait);
1577		for (;;) {
1578			set_current_state(TASK_INTERRUPTIBLE);
1579
1580			/* Check if we need to run pkt_handle_queue */
1581			if (atomic_read(&pd->scan_queue) > 0)
1582				goto work_to_do;
1583
1584			/* Check if we need to run the state machine for some packet */
1585			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586				if (atomic_read(&pkt->run_sm) > 0)
1587					goto work_to_do;
1588			}
1589
1590			/* Check if we need to process the iosched queues */
1591			if (atomic_read(&pd->iosched.attention) != 0)
1592				goto work_to_do;
1593
1594			/* Otherwise, go to sleep */
1595			if (PACKET_DEBUG > 1) {
1596				int states[PACKET_NUM_STATES];
1597				pkt_count_states(pd, states);
1598				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599					states[0], states[1], states[2], states[3],
1600					states[4], states[5]);
1601			}
1602
1603			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606					min_sleep_time = pkt->sleep_time;
1607			}
1608
1609			VPRINTK("kcdrwd: sleeping\n");
1610			residue = schedule_timeout(min_sleep_time);
1611			VPRINTK("kcdrwd: wake up\n");
1612
1613			/* make swsusp happy with our thread */
1614			try_to_freeze();
1615
1616			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1617				if (!pkt->sleep_time)
1618					continue;
1619				pkt->sleep_time -= min_sleep_time - residue;
1620				if (pkt->sleep_time <= 0) {
1621					pkt->sleep_time = 0;
1622					atomic_inc(&pkt->run_sm);
1623				}
1624			}
1625
1626			if (kthread_should_stop())
1627				break;
1628		}
1629work_to_do:
1630		set_current_state(TASK_RUNNING);
1631		remove_wait_queue(&pd->wqueue, &wait);
1632
1633		if (kthread_should_stop())
1634			break;
1635
1636		/*
1637		 * if pkt_handle_queue returns true, we can queue
1638		 * another request.
1639		 */
1640		while (pkt_handle_queue(pd))
1641			;
1642
1643		/*
1644		 * Handle packet state machine
1645		 */
1646		pkt_handle_packets(pd);
1647
1648		/*
1649		 * Handle iosched queues
1650		 */
1651		pkt_iosched_process_queue(pd);
1652	}
1653
1654	return 0;
1655}
1656
1657static void pkt_print_settings(struct pktcdvd_device *pd)
1658{
1659	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1660	printk("%u blocks, ", pd->settings.size >> 2);
1661	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
 
1662}
1663
1664static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1665{
1666	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1667
1668	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1669	cgc->cmd[2] = page_code | (page_control << 6);
1670	cgc->cmd[7] = cgc->buflen >> 8;
1671	cgc->cmd[8] = cgc->buflen & 0xff;
1672	cgc->data_direction = CGC_DATA_READ;
1673	return pkt_generic_packet(pd, cgc);
1674}
1675
1676static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1677{
1678	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1679	memset(cgc->buffer, 0, 2);
1680	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1681	cgc->cmd[1] = 0x10;		/* PF */
1682	cgc->cmd[7] = cgc->buflen >> 8;
1683	cgc->cmd[8] = cgc->buflen & 0xff;
1684	cgc->data_direction = CGC_DATA_WRITE;
1685	return pkt_generic_packet(pd, cgc);
1686}
1687
1688static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1689{
1690	struct packet_command cgc;
1691	int ret;
1692
1693	/* set up command and get the disc info */
1694	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1695	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1696	cgc.cmd[8] = cgc.buflen = 2;
1697	cgc.quiet = 1;
1698
1699	if ((ret = pkt_generic_packet(pd, &cgc)))
 
1700		return ret;
1701
1702	/* not all drives have the same disc_info length, so requeue
1703	 * packet with the length the drive tells us it can supply
1704	 */
1705	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1706		     sizeof(di->disc_information_length);
1707
1708	if (cgc.buflen > sizeof(disc_information))
1709		cgc.buflen = sizeof(disc_information);
1710
1711	cgc.cmd[8] = cgc.buflen;
1712	return pkt_generic_packet(pd, &cgc);
1713}
1714
1715static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1716{
1717	struct packet_command cgc;
1718	int ret;
1719
1720	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1721	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1722	cgc.cmd[1] = type & 3;
1723	cgc.cmd[4] = (track & 0xff00) >> 8;
1724	cgc.cmd[5] = track & 0xff;
1725	cgc.cmd[8] = 8;
1726	cgc.quiet = 1;
1727
1728	if ((ret = pkt_generic_packet(pd, &cgc)))
 
1729		return ret;
1730
1731	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1732		     sizeof(ti->track_information_length);
1733
1734	if (cgc.buflen > sizeof(track_information))
1735		cgc.buflen = sizeof(track_information);
1736
1737	cgc.cmd[8] = cgc.buflen;
1738	return pkt_generic_packet(pd, &cgc);
1739}
1740
1741static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1742						long *last_written)
1743{
1744	disc_information di;
1745	track_information ti;
1746	__u32 last_track;
1747	int ret = -1;
1748
1749	if ((ret = pkt_get_disc_info(pd, &di)))
 
1750		return ret;
1751
1752	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1753	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
 
1754		return ret;
1755
1756	/* if this track is blank, try the previous. */
1757	if (ti.blank) {
1758		last_track--;
1759		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
 
1760			return ret;
1761	}
1762
1763	/* if last recorded field is valid, return it. */
1764	if (ti.lra_v) {
1765		*last_written = be32_to_cpu(ti.last_rec_address);
1766	} else {
1767		/* make it up instead */
1768		*last_written = be32_to_cpu(ti.track_start) +
1769				be32_to_cpu(ti.track_size);
1770		if (ti.free_blocks)
1771			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1772	}
1773	return 0;
1774}
1775
1776/*
1777 * write mode select package based on pd->settings
1778 */
1779static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1780{
1781	struct packet_command cgc;
1782	struct request_sense sense;
1783	write_param_page *wp;
1784	char buffer[128];
1785	int ret, size;
1786
1787	/* doesn't apply to DVD+RW or DVD-RAM */
1788	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1789		return 0;
1790
1791	memset(buffer, 0, sizeof(buffer));
1792	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1793	cgc.sense = &sense;
1794	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1795		pkt_dump_sense(&cgc);
 
1796		return ret;
1797	}
1798
1799	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1800	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1801	if (size > sizeof(buffer))
1802		size = sizeof(buffer);
1803
1804	/*
1805	 * now get it all
1806	 */
1807	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1808	cgc.sense = &sense;
1809	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1810		pkt_dump_sense(&cgc);
 
1811		return ret;
1812	}
1813
1814	/*
1815	 * write page is offset header + block descriptor length
1816	 */
1817	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1818
1819	wp->fp = pd->settings.fp;
1820	wp->track_mode = pd->settings.track_mode;
1821	wp->write_type = pd->settings.write_type;
1822	wp->data_block_type = pd->settings.block_mode;
1823
1824	wp->multi_session = 0;
1825
1826#ifdef PACKET_USE_LS
1827	wp->link_size = 7;
1828	wp->ls_v = 1;
1829#endif
1830
1831	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1832		wp->session_format = 0;
1833		wp->subhdr2 = 0x20;
1834	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1835		wp->session_format = 0x20;
1836		wp->subhdr2 = 8;
1837#if 0
1838		wp->mcn[0] = 0x80;
1839		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1840#endif
1841	} else {
1842		/*
1843		 * paranoia
1844		 */
1845		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1846		return 1;
1847	}
1848	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1849
1850	cgc.buflen = cgc.cmd[8] = size;
1851	if ((ret = pkt_mode_select(pd, &cgc))) {
1852		pkt_dump_sense(&cgc);
 
1853		return ret;
1854	}
1855
1856	pkt_print_settings(pd);
1857	return 0;
1858}
1859
1860/*
1861 * 1 -- we can write to this track, 0 -- we can't
1862 */
1863static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1864{
1865	switch (pd->mmc3_profile) {
1866		case 0x1a: /* DVD+RW */
1867		case 0x12: /* DVD-RAM */
1868			/* The track is always writable on DVD+RW/DVD-RAM */
1869			return 1;
1870		default:
1871			break;
1872	}
1873
1874	if (!ti->packet || !ti->fp)
1875		return 0;
1876
1877	/*
1878	 * "good" settings as per Mt Fuji.
1879	 */
1880	if (ti->rt == 0 && ti->blank == 0)
1881		return 1;
1882
1883	if (ti->rt == 0 && ti->blank == 1)
1884		return 1;
1885
1886	if (ti->rt == 1 && ti->blank == 0)
1887		return 1;
1888
1889	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1890	return 0;
1891}
1892
1893/*
1894 * 1 -- we can write to this disc, 0 -- we can't
1895 */
1896static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1897{
1898	switch (pd->mmc3_profile) {
1899		case 0x0a: /* CD-RW */
1900		case 0xffff: /* MMC3 not supported */
1901			break;
1902		case 0x1a: /* DVD+RW */
1903		case 0x13: /* DVD-RW */
1904		case 0x12: /* DVD-RAM */
1905			return 1;
1906		default:
1907			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
 
1908			return 0;
1909	}
1910
1911	/*
1912	 * for disc type 0xff we should probably reserve a new track.
1913	 * but i'm not sure, should we leave this to user apps? probably.
1914	 */
1915	if (di->disc_type == 0xff) {
1916		printk(DRIVER_NAME": Unknown disc. No track?\n");
1917		return 0;
1918	}
1919
1920	if (di->disc_type != 0x20 && di->disc_type != 0) {
1921		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1922		return 0;
1923	}
1924
1925	if (di->erasable == 0) {
1926		printk(DRIVER_NAME": Disc not erasable\n");
1927		return 0;
1928	}
1929
1930	if (di->border_status == PACKET_SESSION_RESERVED) {
1931		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1932		return 0;
1933	}
1934
1935	return 1;
1936}
1937
1938static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1939{
1940	struct packet_command cgc;
1941	unsigned char buf[12];
1942	disc_information di;
1943	track_information ti;
1944	int ret, track;
1945
1946	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1948	cgc.cmd[8] = 8;
1949	ret = pkt_generic_packet(pd, &cgc);
1950	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1951
1952	memset(&di, 0, sizeof(disc_information));
1953	memset(&ti, 0, sizeof(track_information));
1954
1955	if ((ret = pkt_get_disc_info(pd, &di))) {
1956		printk("failed get_disc\n");
 
1957		return ret;
1958	}
1959
1960	if (!pkt_writable_disc(pd, &di))
1961		return -EROFS;
1962
1963	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1964
1965	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1966	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1967		printk(DRIVER_NAME": failed get_track\n");
 
1968		return ret;
1969	}
1970
1971	if (!pkt_writable_track(pd, &ti)) {
1972		printk(DRIVER_NAME": can't write to this track\n");
1973		return -EROFS;
1974	}
1975
1976	/*
1977	 * we keep packet size in 512 byte units, makes it easier to
1978	 * deal with request calculations.
1979	 */
1980	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1981	if (pd->settings.size == 0) {
1982		printk(DRIVER_NAME": detected zero packet size!\n");
1983		return -ENXIO;
1984	}
1985	if (pd->settings.size > PACKET_MAX_SECTORS) {
1986		printk(DRIVER_NAME": packet size is too big\n");
1987		return -EROFS;
1988	}
1989	pd->settings.fp = ti.fp;
1990	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1991
1992	if (ti.nwa_v) {
1993		pd->nwa = be32_to_cpu(ti.next_writable);
1994		set_bit(PACKET_NWA_VALID, &pd->flags);
1995	}
1996
1997	/*
1998	 * in theory we could use lra on -RW media as well and just zero
1999	 * blocks that haven't been written yet, but in practice that
2000	 * is just a no-go. we'll use that for -R, naturally.
2001	 */
2002	if (ti.lra_v) {
2003		pd->lra = be32_to_cpu(ti.last_rec_address);
2004		set_bit(PACKET_LRA_VALID, &pd->flags);
2005	} else {
2006		pd->lra = 0xffffffff;
2007		set_bit(PACKET_LRA_VALID, &pd->flags);
2008	}
2009
2010	/*
2011	 * fine for now
2012	 */
2013	pd->settings.link_loss = 7;
2014	pd->settings.write_type = 0;	/* packet */
2015	pd->settings.track_mode = ti.track_mode;
2016
2017	/*
2018	 * mode1 or mode2 disc
2019	 */
2020	switch (ti.data_mode) {
2021		case PACKET_MODE1:
2022			pd->settings.block_mode = PACKET_BLOCK_MODE1;
2023			break;
2024		case PACKET_MODE2:
2025			pd->settings.block_mode = PACKET_BLOCK_MODE2;
2026			break;
2027		default:
2028			printk(DRIVER_NAME": unknown data mode\n");
2029			return -EROFS;
2030	}
2031	return 0;
2032}
2033
2034/*
2035 * enable/disable write caching on drive
2036 */
2037static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2038						int set)
2039{
2040	struct packet_command cgc;
2041	struct request_sense sense;
2042	unsigned char buf[64];
2043	int ret;
2044
2045	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2046	cgc.sense = &sense;
2047	cgc.buflen = pd->mode_offset + 12;
2048
2049	/*
2050	 * caching mode page might not be there, so quiet this command
2051	 */
2052	cgc.quiet = 1;
2053
2054	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
 
2055		return ret;
2056
2057	buf[pd->mode_offset + 10] |= (!!set << 2);
2058
2059	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2060	ret = pkt_mode_select(pd, &cgc);
2061	if (ret) {
2062		printk(DRIVER_NAME": write caching control failed\n");
2063		pkt_dump_sense(&cgc);
2064	} else if (!ret && set)
2065		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2066	return ret;
2067}
2068
2069static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2070{
2071	struct packet_command cgc;
2072
2073	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2074	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2075	cgc.cmd[4] = lockflag ? 1 : 0;
2076	return pkt_generic_packet(pd, &cgc);
2077}
2078
2079/*
2080 * Returns drive maximum write speed
2081 */
2082static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2083						unsigned *write_speed)
2084{
2085	struct packet_command cgc;
2086	struct request_sense sense;
2087	unsigned char buf[256+18];
2088	unsigned char *cap_buf;
2089	int ret, offset;
2090
2091	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2092	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2093	cgc.sense = &sense;
2094
2095	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2096	if (ret) {
2097		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2098			     sizeof(struct mode_page_header);
2099		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2100		if (ret) {
2101			pkt_dump_sense(&cgc);
2102			return ret;
2103		}
2104	}
2105
2106	offset = 20;			    /* Obsoleted field, used by older drives */
2107	if (cap_buf[1] >= 28)
2108		offset = 28;		    /* Current write speed selected */
2109	if (cap_buf[1] >= 30) {
2110		/* If the drive reports at least one "Logical Unit Write
2111		 * Speed Performance Descriptor Block", use the information
2112		 * in the first block. (contains the highest speed)
2113		 */
2114		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2115		if (num_spdb > 0)
2116			offset = 34;
2117	}
2118
2119	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2120	return 0;
2121}
2122
2123/* These tables from cdrecord - I don't have orange book */
2124/* standard speed CD-RW (1-4x) */
2125static char clv_to_speed[16] = {
2126	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2127	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2128};
2129/* high speed CD-RW (-10x) */
2130static char hs_clv_to_speed[16] = {
2131	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2132	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2133};
2134/* ultra high speed CD-RW */
2135static char us_clv_to_speed[16] = {
2136	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2137	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2138};
2139
2140/*
2141 * reads the maximum media speed from ATIP
2142 */
2143static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2144						unsigned *speed)
2145{
2146	struct packet_command cgc;
2147	struct request_sense sense;
2148	unsigned char buf[64];
2149	unsigned int size, st, sp;
2150	int ret;
2151
2152	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2153	cgc.sense = &sense;
2154	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2155	cgc.cmd[1] = 2;
2156	cgc.cmd[2] = 4; /* READ ATIP */
2157	cgc.cmd[8] = 2;
2158	ret = pkt_generic_packet(pd, &cgc);
2159	if (ret) {
2160		pkt_dump_sense(&cgc);
2161		return ret;
2162	}
2163	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2164	if (size > sizeof(buf))
2165		size = sizeof(buf);
2166
2167	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2168	cgc.sense = &sense;
2169	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2170	cgc.cmd[1] = 2;
2171	cgc.cmd[2] = 4;
2172	cgc.cmd[8] = size;
2173	ret = pkt_generic_packet(pd, &cgc);
2174	if (ret) {
2175		pkt_dump_sense(&cgc);
2176		return ret;
2177	}
2178
2179	if (!(buf[6] & 0x40)) {
2180		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2181		return 1;
2182	}
2183	if (!(buf[6] & 0x4)) {
2184		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2185		return 1;
2186	}
2187
2188	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2189
2190	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2191
2192	/* Info from cdrecord */
2193	switch (st) {
2194		case 0: /* standard speed */
2195			*speed = clv_to_speed[sp];
2196			break;
2197		case 1: /* high speed */
2198			*speed = hs_clv_to_speed[sp];
2199			break;
2200		case 2: /* ultra high speed */
2201			*speed = us_clv_to_speed[sp];
2202			break;
2203		default:
2204			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2205			return 1;
2206	}
2207	if (*speed) {
2208		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2209		return 0;
2210	} else {
2211		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2212		return 1;
2213	}
2214}
2215
2216static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2217{
2218	struct packet_command cgc;
2219	struct request_sense sense;
2220	int ret;
2221
2222	VPRINTK(DRIVER_NAME": Performing OPC\n");
2223
2224	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2225	cgc.sense = &sense;
2226	cgc.timeout = 60*HZ;
2227	cgc.cmd[0] = GPCMD_SEND_OPC;
2228	cgc.cmd[1] = 1;
2229	if ((ret = pkt_generic_packet(pd, &cgc)))
2230		pkt_dump_sense(&cgc);
 
2231	return ret;
2232}
2233
2234static int pkt_open_write(struct pktcdvd_device *pd)
2235{
2236	int ret;
2237	unsigned int write_speed, media_write_speed, read_speed;
2238
2239	if ((ret = pkt_probe_settings(pd))) {
2240		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
 
2241		return ret;
2242	}
2243
2244	if ((ret = pkt_set_write_settings(pd))) {
2245		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
 
2246		return -EIO;
2247	}
2248
2249	pkt_write_caching(pd, USE_WCACHING);
2250
2251	if ((ret = pkt_get_max_speed(pd, &write_speed)))
 
2252		write_speed = 16 * 177;
2253	switch (pd->mmc3_profile) {
2254		case 0x13: /* DVD-RW */
2255		case 0x1a: /* DVD+RW */
2256		case 0x12: /* DVD-RAM */
2257			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2258			break;
2259		default:
2260			if ((ret = pkt_media_speed(pd, &media_write_speed)))
 
2261				media_write_speed = 16;
2262			write_speed = min(write_speed, media_write_speed * 177);
2263			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2264			break;
2265	}
2266	read_speed = write_speed;
2267
2268	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2269		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
 
2270		return -EIO;
2271	}
2272	pd->write_speed = write_speed;
2273	pd->read_speed = read_speed;
2274
2275	if ((ret = pkt_perform_opc(pd))) {
2276		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
 
2277	}
2278
2279	return 0;
2280}
2281
2282/*
2283 * called at open time.
2284 */
2285static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2286{
2287	int ret;
2288	long lba;
2289	struct request_queue *q;
 
2290
2291	/*
2292	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2293	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2294	 * so bdget() can't fail.
2295	 */
2296	bdget(pd->bdev->bd_dev);
2297	if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
 
2298		goto out;
 
2299
2300	if ((ret = pkt_get_last_written(pd, &lba))) {
2301		printk(DRIVER_NAME": pkt_get_last_written failed\n");
 
2302		goto out_putdev;
2303	}
2304
2305	set_capacity(pd->disk, lba << 2);
2306	set_capacity(pd->bdev->bd_disk, lba << 2);
2307	bd_set_size(pd->bdev, (loff_t)lba << 11);
2308
2309	q = bdev_get_queue(pd->bdev);
2310	if (write) {
2311		if ((ret = pkt_open_write(pd)))
 
2312			goto out_putdev;
2313		/*
2314		 * Some CDRW drives can not handle writes larger than one packet,
2315		 * even if the size is a multiple of the packet size.
2316		 */
2317		spin_lock_irq(q->queue_lock);
2318		blk_queue_max_hw_sectors(q, pd->settings.size);
2319		spin_unlock_irq(q->queue_lock);
2320		set_bit(PACKET_WRITABLE, &pd->flags);
2321	} else {
2322		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2323		clear_bit(PACKET_WRITABLE, &pd->flags);
2324	}
2325
2326	if ((ret = pkt_set_segment_merging(pd, q)))
 
2327		goto out_putdev;
2328
2329	if (write) {
2330		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2331			printk(DRIVER_NAME": not enough memory for buffers\n");
2332			ret = -ENOMEM;
2333			goto out_putdev;
2334		}
2335		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2336	}
2337
2338	return 0;
2339
2340out_putdev:
2341	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2342out:
2343	return ret;
2344}
2345
2346/*
2347 * called when the device is closed. makes sure that the device flushes
2348 * the internal cache before we close.
2349 */
2350static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2351{
2352	if (flush && pkt_flush_cache(pd))
2353		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2354
2355	pkt_lock_door(pd, 0);
2356
2357	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2358	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2359
2360	pkt_shrink_pktlist(pd);
2361}
2362
2363static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2364{
2365	if (dev_minor >= MAX_WRITERS)
2366		return NULL;
 
 
2367	return pkt_devs[dev_minor];
2368}
2369
2370static int pkt_open(struct block_device *bdev, fmode_t mode)
2371{
2372	struct pktcdvd_device *pd = NULL;
2373	int ret;
2374
2375	VPRINTK(DRIVER_NAME": entering open\n");
2376
2377	mutex_lock(&pktcdvd_mutex);
2378	mutex_lock(&ctl_mutex);
2379	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2380	if (!pd) {
2381		ret = -ENODEV;
2382		goto out;
2383	}
2384	BUG_ON(pd->refcnt < 0);
2385
2386	pd->refcnt++;
2387	if (pd->refcnt > 1) {
2388		if ((mode & FMODE_WRITE) &&
2389		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2390			ret = -EBUSY;
2391			goto out_dec;
2392		}
2393	} else {
2394		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2395		if (ret)
2396			goto out_dec;
2397		/*
2398		 * needed here as well, since ext2 (among others) may change
2399		 * the blocksize at mount time
2400		 */
2401		set_blocksize(bdev, CD_FRAMESIZE);
2402	}
2403
2404	mutex_unlock(&ctl_mutex);
2405	mutex_unlock(&pktcdvd_mutex);
2406	return 0;
2407
2408out_dec:
2409	pd->refcnt--;
2410out:
2411	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2412	mutex_unlock(&ctl_mutex);
2413	mutex_unlock(&pktcdvd_mutex);
2414	return ret;
2415}
2416
2417static int pkt_close(struct gendisk *disk, fmode_t mode)
2418{
2419	struct pktcdvd_device *pd = disk->private_data;
2420	int ret = 0;
2421
2422	mutex_lock(&pktcdvd_mutex);
2423	mutex_lock(&ctl_mutex);
2424	pd->refcnt--;
2425	BUG_ON(pd->refcnt < 0);
2426	if (pd->refcnt == 0) {
2427		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2428		pkt_release_dev(pd, flush);
2429	}
2430	mutex_unlock(&ctl_mutex);
2431	mutex_unlock(&pktcdvd_mutex);
2432	return ret;
2433}
2434
2435
2436static void pkt_end_io_read_cloned(struct bio *bio, int err)
2437{
2438	struct packet_stacked_data *psd = bio->bi_private;
2439	struct pktcdvd_device *pd = psd->pd;
2440
 
2441	bio_put(bio);
2442	bio_endio(psd->bio, err);
2443	mempool_free(psd, psd_pool);
2444	pkt_bio_finished(pd);
2445}
2446
2447static int pkt_make_request(struct request_queue *q, struct bio *bio)
2448{
2449	struct pktcdvd_device *pd;
2450	char b[BDEVNAME_SIZE];
 
 
 
 
 
 
 
 
 
 
 
 
 
2451	sector_t zone;
2452	struct packet_data *pkt;
2453	int was_empty, blocked_bio;
2454	struct pkt_rb_node *node;
2455
2456	pd = q->queuedata;
2457	if (!pd) {
2458		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2459		goto end_io;
2460	}
2461
2462	/*
2463	 * Clone READ bios so we can have our own bi_end_io callback.
2464	 */
2465	if (bio_data_dir(bio) == READ) {
2466		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2467		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2468
2469		psd->pd = pd;
2470		psd->bio = bio;
2471		cloned_bio->bi_bdev = pd->bdev;
2472		cloned_bio->bi_private = psd;
2473		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2474		pd->stats.secs_r += bio->bi_size >> 9;
2475		pkt_queue_bio(pd, cloned_bio);
2476		return 0;
2477	}
2478
2479	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2480		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2481			pd->name, (unsigned long long)bio->bi_sector);
2482		goto end_io;
2483	}
2484
2485	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2486		printk(DRIVER_NAME": wrong bio size\n");
2487		goto end_io;
2488	}
2489
2490	blk_queue_bounce(q, &bio);
2491
2492	zone = ZONE(bio->bi_sector, pd);
2493	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2494		(unsigned long long)bio->bi_sector,
2495		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2496
2497	/* Check if we have to split the bio */
2498	{
2499		struct bio_pair *bp;
2500		sector_t last_zone;
2501		int first_sectors;
2502
2503		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2504		if (last_zone != zone) {
2505			BUG_ON(last_zone != zone + pd->settings.size);
2506			first_sectors = last_zone - bio->bi_sector;
2507			bp = bio_split(bio, first_sectors);
2508			BUG_ON(!bp);
2509			pkt_make_request(q, &bp->bio1);
2510			pkt_make_request(q, &bp->bio2);
2511			bio_pair_release(bp);
2512			return 0;
2513		}
2514	}
2515
2516	/*
2517	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2518	 * just append this bio to that packet.
2519	 */
2520	spin_lock(&pd->cdrw.active_list_lock);
2521	blocked_bio = 0;
2522	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2523		if (pkt->sector == zone) {
2524			spin_lock(&pkt->lock);
2525			if ((pkt->state == PACKET_WAITING_STATE) ||
2526			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2527				bio_list_add(&pkt->orig_bios, bio);
2528				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
 
2529				if ((pkt->write_size >= pkt->frames) &&
2530				    (pkt->state == PACKET_WAITING_STATE)) {
2531					atomic_inc(&pkt->run_sm);
2532					wake_up(&pd->wqueue);
2533				}
2534				spin_unlock(&pkt->lock);
2535				spin_unlock(&pd->cdrw.active_list_lock);
2536				return 0;
2537			} else {
2538				blocked_bio = 1;
2539			}
2540			spin_unlock(&pkt->lock);
2541		}
2542	}
2543	spin_unlock(&pd->cdrw.active_list_lock);
2544
2545 	/*
2546	 * Test if there is enough room left in the bio work queue
2547	 * (queue size >= congestion on mark).
2548	 * If not, wait till the work queue size is below the congestion off mark.
2549	 */
2550	spin_lock(&pd->lock);
2551	if (pd->write_congestion_on > 0
2552	    && pd->bio_queue_size >= pd->write_congestion_on) {
2553		set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2554		do {
2555			spin_unlock(&pd->lock);
2556			congestion_wait(BLK_RW_ASYNC, HZ);
2557			spin_lock(&pd->lock);
2558		} while(pd->bio_queue_size > pd->write_congestion_off);
2559	}
2560	spin_unlock(&pd->lock);
2561
2562	/*
2563	 * No matching packet found. Store the bio in the work queue.
2564	 */
2565	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2566	node->bio = bio;
2567	spin_lock(&pd->lock);
2568	BUG_ON(pd->bio_queue_size < 0);
2569	was_empty = (pd->bio_queue_size == 0);
2570	pkt_rbtree_insert(pd, node);
2571	spin_unlock(&pd->lock);
2572
2573	/*
2574	 * Wake up the worker thread.
2575	 */
2576	atomic_set(&pd->scan_queue, 1);
2577	if (was_empty) {
2578		/* This wake_up is required for correct operation */
2579		wake_up(&pd->wqueue);
2580	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2581		/*
2582		 * This wake up is not required for correct operation,
2583		 * but improves performance in some cases.
2584		 */
2585		wake_up(&pd->wqueue);
2586	}
2587	return 0;
2588end_io:
2589	bio_io_error(bio);
2590	return 0;
2591}
2592
 
 
 
 
 
2593
 
2594
2595static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2596			  struct bio_vec *bvec)
2597{
2598	struct pktcdvd_device *pd = q->queuedata;
2599	sector_t zone = ZONE(bmd->bi_sector, pd);
2600	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2601	int remaining = (pd->settings.size << 9) - used;
2602	int remaining2;
 
2603
2604	/*
2605	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2606	 * boundary, pkt_make_request() will split the bio.
2607	 */
2608	remaining2 = PAGE_SIZE - bmd->bi_size;
2609	remaining = max(remaining, remaining2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610
2611	BUG_ON(remaining < 0);
2612	return remaining;
 
 
 
 
 
 
 
 
 
 
 
 
 
2613}
2614
2615static void pkt_init_queue(struct pktcdvd_device *pd)
2616{
2617	struct request_queue *q = pd->disk->queue;
2618
2619	blk_queue_make_request(q, pkt_make_request);
2620	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2621	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2622	blk_queue_merge_bvec(q, pkt_merge_bvec);
2623	q->queuedata = pd;
2624}
2625
2626static int pkt_seq_show(struct seq_file *m, void *p)
2627{
2628	struct pktcdvd_device *pd = m->private;
2629	char *msg;
2630	char bdev_buf[BDEVNAME_SIZE];
2631	int states[PACKET_NUM_STATES];
2632
2633	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2634		   bdevname(pd->bdev, bdev_buf));
2635
2636	seq_printf(m, "\nSettings:\n");
2637	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2638
2639	if (pd->settings.write_type == 0)
2640		msg = "Packet";
2641	else
2642		msg = "Unknown";
2643	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2644
2645	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2646	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2647
2648	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2649
2650	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2651		msg = "Mode 1";
2652	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2653		msg = "Mode 2";
2654	else
2655		msg = "Unknown";
2656	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2657
2658	seq_printf(m, "\nStatistics:\n");
2659	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2660	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2661	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2662	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2663	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2664
2665	seq_printf(m, "\nMisc:\n");
2666	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2667	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2668	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2669	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2670	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2671	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2672
2673	seq_printf(m, "\nQueue state:\n");
2674	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2675	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2676	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2677
2678	pkt_count_states(pd, states);
2679	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2680		   states[0], states[1], states[2], states[3], states[4], states[5]);
2681
2682	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2683			pd->write_congestion_off,
2684			pd->write_congestion_on);
2685	return 0;
2686}
2687
2688static int pkt_seq_open(struct inode *inode, struct file *file)
2689{
2690	return single_open(file, pkt_seq_show, PDE(inode)->data);
2691}
2692
2693static const struct file_operations pkt_proc_fops = {
2694	.open	= pkt_seq_open,
2695	.read	= seq_read,
2696	.llseek	= seq_lseek,
2697	.release = single_release
2698};
2699
2700static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2701{
2702	int i;
2703	int ret = 0;
2704	char b[BDEVNAME_SIZE];
2705	struct block_device *bdev;
2706
2707	if (pd->pkt_dev == dev) {
2708		printk(DRIVER_NAME": Recursive setup not allowed\n");
2709		return -EBUSY;
2710	}
2711	for (i = 0; i < MAX_WRITERS; i++) {
2712		struct pktcdvd_device *pd2 = pkt_devs[i];
2713		if (!pd2)
2714			continue;
2715		if (pd2->bdev->bd_dev == dev) {
2716			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
 
2717			return -EBUSY;
2718		}
2719		if (pd2->pkt_dev == dev) {
2720			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2721			return -EBUSY;
2722		}
2723	}
2724
2725	bdev = bdget(dev);
2726	if (!bdev)
2727		return -ENOMEM;
2728	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2729	if (ret)
2730		return ret;
 
2731
2732	/* This is safe, since we have a reference from open(). */
2733	__module_get(THIS_MODULE);
2734
2735	pd->bdev = bdev;
2736	set_blocksize(bdev, CD_FRAMESIZE);
2737
2738	pkt_init_queue(pd);
2739
2740	atomic_set(&pd->cdrw.pending_bios, 0);
2741	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2742	if (IS_ERR(pd->cdrw.thread)) {
2743		printk(DRIVER_NAME": can't start kernel thread\n");
2744		ret = -ENOMEM;
2745		goto out_mem;
2746	}
2747
2748	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2749	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2750	return 0;
2751
2752out_mem:
2753	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2754	/* This is safe: open() is still holding a reference. */
2755	module_put(THIS_MODULE);
2756	return ret;
2757}
2758
2759static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2760{
2761	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2762	int ret;
2763
2764	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2765		MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2766
2767	mutex_lock(&pktcdvd_mutex);
2768	switch (cmd) {
2769	case CDROMEJECT:
2770		/*
2771		 * The door gets locked when the device is opened, so we
2772		 * have to unlock it or else the eject command fails.
2773		 */
2774		if (pd->refcnt == 1)
2775			pkt_lock_door(pd, 0);
2776		/* fallthru */
2777	/*
2778	 * forward selected CDROM ioctls to CD-ROM, for UDF
2779	 */
2780	case CDROMMULTISESSION:
2781	case CDROMREADTOCENTRY:
2782	case CDROM_LAST_WRITTEN:
2783	case CDROM_SEND_PACKET:
2784	case SCSI_IOCTL_SEND_COMMAND:
2785		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
 
 
 
2786		break;
2787
2788	default:
2789		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2790		ret = -ENOTTY;
2791	}
2792	mutex_unlock(&pktcdvd_mutex);
2793
2794	return ret;
2795}
2796
2797static unsigned int pkt_check_events(struct gendisk *disk,
2798				     unsigned int clearing)
2799{
2800	struct pktcdvd_device *pd = disk->private_data;
2801	struct gendisk *attached_disk;
2802
2803	if (!pd)
2804		return 0;
2805	if (!pd->bdev)
2806		return 0;
2807	attached_disk = pd->bdev->bd_disk;
2808	if (!attached_disk || !attached_disk->fops->check_events)
2809		return 0;
2810	return attached_disk->fops->check_events(attached_disk, clearing);
2811}
2812
 
 
 
 
 
2813static const struct block_device_operations pktcdvd_ops = {
2814	.owner =		THIS_MODULE,
 
2815	.open =			pkt_open,
2816	.release =		pkt_close,
2817	.ioctl =		pkt_ioctl,
 
2818	.check_events =		pkt_check_events,
 
2819};
2820
2821static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2822{
2823	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2824}
2825
2826/*
2827 * Set up mapping from pktcdvd device to CD-ROM device.
2828 */
2829static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2830{
2831	int idx;
2832	int ret = -ENOMEM;
2833	struct pktcdvd_device *pd;
2834	struct gendisk *disk;
2835
2836	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2837
2838	for (idx = 0; idx < MAX_WRITERS; idx++)
2839		if (!pkt_devs[idx])
2840			break;
2841	if (idx == MAX_WRITERS) {
2842		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2843		ret = -EBUSY;
2844		goto out_mutex;
2845	}
2846
2847	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2848	if (!pd)
2849		goto out_mutex;
2850
2851	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2852						  sizeof(struct pkt_rb_node));
2853	if (!pd->rb_pool)
2854		goto out_mem;
2855
2856	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2857	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2858	spin_lock_init(&pd->cdrw.active_list_lock);
2859
2860	spin_lock_init(&pd->lock);
2861	spin_lock_init(&pd->iosched.lock);
2862	bio_list_init(&pd->iosched.read_queue);
2863	bio_list_init(&pd->iosched.write_queue);
2864	sprintf(pd->name, DRIVER_NAME"%d", idx);
2865	init_waitqueue_head(&pd->wqueue);
2866	pd->bio_queue = RB_ROOT;
2867
2868	pd->write_congestion_on  = write_congestion_on;
2869	pd->write_congestion_off = write_congestion_off;
2870
2871	disk = alloc_disk(1);
 
2872	if (!disk)
2873		goto out_mem;
2874	pd->disk = disk;
2875	disk->major = pktdev_major;
2876	disk->first_minor = idx;
 
2877	disk->fops = &pktcdvd_ops;
2878	disk->flags = GENHD_FL_REMOVABLE;
2879	strcpy(disk->disk_name, pd->name);
2880	disk->devnode = pktcdvd_devnode;
2881	disk->private_data = pd;
2882	disk->queue = blk_alloc_queue(GFP_KERNEL);
2883	if (!disk->queue)
2884		goto out_mem2;
2885
2886	pd->pkt_dev = MKDEV(pktdev_major, idx);
2887	ret = pkt_new_dev(pd, dev);
2888	if (ret)
2889		goto out_new_dev;
2890
2891	/* inherit events of the host device */
2892	disk->events = pd->bdev->bd_disk->events;
2893	disk->async_events = pd->bdev->bd_disk->async_events;
2894
2895	add_disk(disk);
2896
2897	pkt_sysfs_dev_new(pd);
2898	pkt_debugfs_dev_new(pd);
2899
2900	pkt_devs[idx] = pd;
2901	if (pkt_dev)
2902		*pkt_dev = pd->pkt_dev;
2903
2904	mutex_unlock(&ctl_mutex);
2905	return 0;
2906
2907out_new_dev:
2908	blk_cleanup_queue(disk->queue);
2909out_mem2:
2910	put_disk(disk);
2911out_mem:
2912	if (pd->rb_pool)
2913		mempool_destroy(pd->rb_pool);
2914	kfree(pd);
2915out_mutex:
2916	mutex_unlock(&ctl_mutex);
2917	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2918	return ret;
2919}
2920
2921/*
2922 * Tear down mapping from pktcdvd device to CD-ROM device.
2923 */
2924static int pkt_remove_dev(dev_t pkt_dev)
2925{
2926	struct pktcdvd_device *pd;
2927	int idx;
2928	int ret = 0;
2929
2930	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2931
2932	for (idx = 0; idx < MAX_WRITERS; idx++) {
2933		pd = pkt_devs[idx];
2934		if (pd && (pd->pkt_dev == pkt_dev))
2935			break;
2936	}
2937	if (idx == MAX_WRITERS) {
2938		DPRINTK(DRIVER_NAME": dev not setup\n");
2939		ret = -ENXIO;
2940		goto out;
2941	}
2942
2943	if (pd->refcnt > 0) {
2944		ret = -EBUSY;
2945		goto out;
2946	}
2947	if (!IS_ERR(pd->cdrw.thread))
2948		kthread_stop(pd->cdrw.thread);
2949
2950	pkt_devs[idx] = NULL;
2951
2952	pkt_debugfs_dev_remove(pd);
2953	pkt_sysfs_dev_remove(pd);
2954
2955	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2956
2957	remove_proc_entry(pd->name, pkt_proc);
2958	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2959
2960	del_gendisk(pd->disk);
2961	blk_cleanup_queue(pd->disk->queue);
2962	put_disk(pd->disk);
2963
2964	mempool_destroy(pd->rb_pool);
2965	kfree(pd);
2966
2967	/* This is safe: open() is still holding a reference. */
2968	module_put(THIS_MODULE);
2969
2970out:
2971	mutex_unlock(&ctl_mutex);
2972	return ret;
2973}
2974
2975static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2976{
2977	struct pktcdvd_device *pd;
2978
2979	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2980
2981	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2982	if (pd) {
2983		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2984		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2985	} else {
2986		ctrl_cmd->dev = 0;
2987		ctrl_cmd->pkt_dev = 0;
2988	}
2989	ctrl_cmd->num_devices = MAX_WRITERS;
2990
2991	mutex_unlock(&ctl_mutex);
2992}
2993
2994static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2995{
2996	void __user *argp = (void __user *)arg;
2997	struct pkt_ctrl_command ctrl_cmd;
2998	int ret = 0;
2999	dev_t pkt_dev = 0;
3000
3001	if (cmd != PACKET_CTRL_CMD)
3002		return -ENOTTY;
3003
3004	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3005		return -EFAULT;
3006
3007	switch (ctrl_cmd.command) {
3008	case PKT_CTRL_CMD_SETUP:
3009		if (!capable(CAP_SYS_ADMIN))
3010			return -EPERM;
3011		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3012		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3013		break;
3014	case PKT_CTRL_CMD_TEARDOWN:
3015		if (!capable(CAP_SYS_ADMIN))
3016			return -EPERM;
3017		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3018		break;
3019	case PKT_CTRL_CMD_STATUS:
3020		pkt_get_status(&ctrl_cmd);
3021		break;
3022	default:
3023		return -ENOTTY;
3024	}
3025
3026	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3027		return -EFAULT;
3028	return ret;
3029}
3030
3031#ifdef CONFIG_COMPAT
3032static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3033{
3034	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3035}
3036#endif
3037
3038static const struct file_operations pkt_ctl_fops = {
3039	.open		= nonseekable_open,
3040	.unlocked_ioctl	= pkt_ctl_ioctl,
3041#ifdef CONFIG_COMPAT
3042	.compat_ioctl	= pkt_ctl_compat_ioctl,
3043#endif
3044	.owner		= THIS_MODULE,
3045	.llseek		= no_llseek,
3046};
3047
3048static struct miscdevice pkt_misc = {
3049	.minor 		= MISC_DYNAMIC_MINOR,
3050	.name  		= DRIVER_NAME,
3051	.nodename	= "pktcdvd/control",
3052	.fops  		= &pkt_ctl_fops
3053};
3054
3055static int __init pkt_init(void)
3056{
3057	int ret;
3058
3059	mutex_init(&ctl_mutex);
3060
3061	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3062					sizeof(struct packet_stacked_data));
3063	if (!psd_pool)
3064		return -ENOMEM;
 
 
 
 
 
3065
3066	ret = register_blkdev(pktdev_major, DRIVER_NAME);
3067	if (ret < 0) {
3068		printk(DRIVER_NAME": Unable to register block device\n");
3069		goto out2;
3070	}
3071	if (!pktdev_major)
3072		pktdev_major = ret;
3073
3074	ret = pkt_sysfs_init();
3075	if (ret)
3076		goto out;
3077
3078	pkt_debugfs_init();
3079
3080	ret = misc_register(&pkt_misc);
3081	if (ret) {
3082		printk(DRIVER_NAME": Unable to register misc device\n");
3083		goto out_misc;
3084	}
3085
3086	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3087
3088	return 0;
3089
3090out_misc:
3091	pkt_debugfs_cleanup();
3092	pkt_sysfs_cleanup();
3093out:
3094	unregister_blkdev(pktdev_major, DRIVER_NAME);
3095out2:
3096	mempool_destroy(psd_pool);
 
3097	return ret;
3098}
3099
3100static void __exit pkt_exit(void)
3101{
3102	remove_proc_entry("driver/"DRIVER_NAME, NULL);
3103	misc_deregister(&pkt_misc);
3104
3105	pkt_debugfs_cleanup();
3106	pkt_sysfs_cleanup();
3107
3108	unregister_blkdev(pktdev_major, DRIVER_NAME);
3109	mempool_destroy(psd_pool);
 
3110}
3111
3112MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3113MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3114MODULE_LICENSE("GPL");
3115
3116module_init(pkt_init);
3117module_exit(pkt_exit);
v5.14.15
   1/*
   2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
   3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
   4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
   5 *
   6 * May be copied or modified under the terms of the GNU General Public
   7 * License.  See linux/COPYING for more information.
   8 *
   9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
  10 * DVD-RAM devices.
  11 *
  12 * Theory of operation:
  13 *
  14 * At the lowest level, there is the standard driver for the CD/DVD device,
  15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
  16 * but it doesn't know anything about the special restrictions that apply to
  17 * packet writing. One restriction is that write requests must be aligned to
  18 * packet boundaries on the physical media, and the size of a write request
  19 * must be equal to the packet size. Another restriction is that a
  20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
  21 * command, if the previous command was a write.
  22 *
  23 * The purpose of the packet writing driver is to hide these restrictions from
  24 * higher layers, such as file systems, and present a block device that can be
  25 * randomly read and written using 2kB-sized blocks.
  26 *
  27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
  28 * Its data is defined by the struct packet_iosched and includes two bio
  29 * queues with pending read and write requests. These queues are processed
  30 * by the pkt_iosched_process_queue() function. The write requests in this
  31 * queue are already properly aligned and sized. This layer is responsible for
  32 * issuing the flush cache commands and scheduling the I/O in a good order.
  33 *
  34 * The next layer transforms unaligned write requests to aligned writes. This
  35 * transformation requires reading missing pieces of data from the underlying
  36 * block device, assembling the pieces to full packets and queuing them to the
  37 * packet I/O scheduler.
  38 *
  39 * At the top layer there is a custom ->submit_bio function that forwards
  40 * read requests directly to the iosched queue and puts write requests in the
  41 * unaligned write queue. A kernel thread performs the necessary read
  42 * gathering to convert the unaligned writes to aligned writes and then feeds
  43 * them to the packet I/O scheduler.
  44 *
  45 *************************************************************************/
  46
  47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  48
  49#include <linux/pktcdvd.h>
  50#include <linux/module.h>
  51#include <linux/types.h>
  52#include <linux/kernel.h>
  53#include <linux/compat.h>
  54#include <linux/kthread.h>
  55#include <linux/errno.h>
  56#include <linux/spinlock.h>
  57#include <linux/file.h>
  58#include <linux/proc_fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/miscdevice.h>
  61#include <linux/freezer.h>
  62#include <linux/mutex.h>
  63#include <linux/slab.h>
  64#include <linux/backing-dev.h>
  65#include <scsi/scsi_cmnd.h>
  66#include <scsi/scsi_ioctl.h>
  67#include <scsi/scsi.h>
  68#include <linux/debugfs.h>
  69#include <linux/device.h>
  70#include <linux/nospec.h>
  71#include <linux/uaccess.h>
  72
  73#define DRIVER_NAME	"pktcdvd"
  74
  75#define pkt_err(pd, fmt, ...)						\
  76	pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
  77#define pkt_notice(pd, fmt, ...)					\
  78	pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
  79#define pkt_info(pd, fmt, ...)						\
  80	pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
  81
  82#define pkt_dbg(level, pd, fmt, ...)					\
  83do {									\
  84	if (level == 2 && PACKET_DEBUG >= 2)				\
  85		pr_notice("%s: %s():" fmt,				\
  86			  pd->name, __func__, ##__VA_ARGS__);		\
  87	else if (level == 1 && PACKET_DEBUG >= 1)			\
  88		pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__);		\
  89} while (0)
  90
  91#define MAX_SPEED 0xffff
  92
 
 
  93static DEFINE_MUTEX(pktcdvd_mutex);
  94static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
  95static struct proc_dir_entry *pkt_proc;
  96static int pktdev_major;
  97static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
  98static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
  99static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
 100static mempool_t psd_pool;
 101static struct bio_set pkt_bio_set;
 102
 103static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
 104static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
 105
 106/* forward declaration */
 107static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
 108static int pkt_remove_dev(dev_t pkt_dev);
 109static int pkt_seq_show(struct seq_file *m, void *p);
 110
 111static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
 112{
 113	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
 114}
 115
 116/*
 117 * create and register a pktcdvd kernel object.
 118 */
 119static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
 120					const char* name,
 121					struct kobject* parent,
 122					struct kobj_type* ktype)
 123{
 124	struct pktcdvd_kobj *p;
 125	int error;
 126
 127	p = kzalloc(sizeof(*p), GFP_KERNEL);
 128	if (!p)
 129		return NULL;
 130	p->pd = pd;
 131	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
 132	if (error) {
 133		kobject_put(&p->kobj);
 134		return NULL;
 135	}
 136	kobject_uevent(&p->kobj, KOBJ_ADD);
 137	return p;
 138}
 139/*
 140 * remove a pktcdvd kernel object.
 141 */
 142static void pkt_kobj_remove(struct pktcdvd_kobj *p)
 143{
 144	if (p)
 145		kobject_put(&p->kobj);
 146}
 147/*
 148 * default release function for pktcdvd kernel objects.
 149 */
 150static void pkt_kobj_release(struct kobject *kobj)
 151{
 152	kfree(to_pktcdvdkobj(kobj));
 153}
 154
 155
 156/**********************************************************
 157 *
 158 * sysfs interface for pktcdvd
 159 * by (C) 2006  Thomas Maier <balagi@justmail.de>
 160 *
 161 **********************************************************/
 162
 163#define DEF_ATTR(_obj,_name,_mode) \
 164	static struct attribute _obj = { .name = _name, .mode = _mode }
 165
 166/**********************************************************
 167  /sys/class/pktcdvd/pktcdvd[0-7]/
 168                     stat/reset
 169                     stat/packets_started
 170                     stat/packets_finished
 171                     stat/kb_written
 172                     stat/kb_read
 173                     stat/kb_read_gather
 174                     write_queue/size
 175                     write_queue/congestion_off
 176                     write_queue/congestion_on
 177 **********************************************************/
 178
 179DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
 180DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
 181DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
 182DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
 183DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
 184DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
 185
 186static struct attribute *kobj_pkt_attrs_stat[] = {
 187	&kobj_pkt_attr_st1,
 188	&kobj_pkt_attr_st2,
 189	&kobj_pkt_attr_st3,
 190	&kobj_pkt_attr_st4,
 191	&kobj_pkt_attr_st5,
 192	&kobj_pkt_attr_st6,
 193	NULL
 194};
 195
 196DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
 197DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
 198DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
 199
 200static struct attribute *kobj_pkt_attrs_wqueue[] = {
 201	&kobj_pkt_attr_wq1,
 202	&kobj_pkt_attr_wq2,
 203	&kobj_pkt_attr_wq3,
 204	NULL
 205};
 206
 207static ssize_t kobj_pkt_show(struct kobject *kobj,
 208			struct attribute *attr, char *data)
 209{
 210	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
 211	int n = 0;
 212	int v;
 213	if (strcmp(attr->name, "packets_started") == 0) {
 214		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
 215
 216	} else if (strcmp(attr->name, "packets_finished") == 0) {
 217		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
 218
 219	} else if (strcmp(attr->name, "kb_written") == 0) {
 220		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
 221
 222	} else if (strcmp(attr->name, "kb_read") == 0) {
 223		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
 224
 225	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
 226		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
 227
 228	} else if (strcmp(attr->name, "size") == 0) {
 229		spin_lock(&pd->lock);
 230		v = pd->bio_queue_size;
 231		spin_unlock(&pd->lock);
 232		n = sprintf(data, "%d\n", v);
 233
 234	} else if (strcmp(attr->name, "congestion_off") == 0) {
 235		spin_lock(&pd->lock);
 236		v = pd->write_congestion_off;
 237		spin_unlock(&pd->lock);
 238		n = sprintf(data, "%d\n", v);
 239
 240	} else if (strcmp(attr->name, "congestion_on") == 0) {
 241		spin_lock(&pd->lock);
 242		v = pd->write_congestion_on;
 243		spin_unlock(&pd->lock);
 244		n = sprintf(data, "%d\n", v);
 245	}
 246	return n;
 247}
 248
 249static void init_write_congestion_marks(int* lo, int* hi)
 250{
 251	if (*hi > 0) {
 252		*hi = max(*hi, 500);
 253		*hi = min(*hi, 1000000);
 254		if (*lo <= 0)
 255			*lo = *hi - 100;
 256		else {
 257			*lo = min(*lo, *hi - 100);
 258			*lo = max(*lo, 100);
 259		}
 260	} else {
 261		*hi = -1;
 262		*lo = -1;
 263	}
 264}
 265
 266static ssize_t kobj_pkt_store(struct kobject *kobj,
 267			struct attribute *attr,
 268			const char *data, size_t len)
 269{
 270	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
 271	int val;
 272
 273	if (strcmp(attr->name, "reset") == 0 && len > 0) {
 274		pd->stats.pkt_started = 0;
 275		pd->stats.pkt_ended = 0;
 276		pd->stats.secs_w = 0;
 277		pd->stats.secs_rg = 0;
 278		pd->stats.secs_r = 0;
 279
 280	} else if (strcmp(attr->name, "congestion_off") == 0
 281		   && sscanf(data, "%d", &val) == 1) {
 282		spin_lock(&pd->lock);
 283		pd->write_congestion_off = val;
 284		init_write_congestion_marks(&pd->write_congestion_off,
 285					&pd->write_congestion_on);
 286		spin_unlock(&pd->lock);
 287
 288	} else if (strcmp(attr->name, "congestion_on") == 0
 289		   && sscanf(data, "%d", &val) == 1) {
 290		spin_lock(&pd->lock);
 291		pd->write_congestion_on = val;
 292		init_write_congestion_marks(&pd->write_congestion_off,
 293					&pd->write_congestion_on);
 294		spin_unlock(&pd->lock);
 295	}
 296	return len;
 297}
 298
 299static const struct sysfs_ops kobj_pkt_ops = {
 300	.show = kobj_pkt_show,
 301	.store = kobj_pkt_store
 302};
 303static struct kobj_type kobj_pkt_type_stat = {
 304	.release = pkt_kobj_release,
 305	.sysfs_ops = &kobj_pkt_ops,
 306	.default_attrs = kobj_pkt_attrs_stat
 307};
 308static struct kobj_type kobj_pkt_type_wqueue = {
 309	.release = pkt_kobj_release,
 310	.sysfs_ops = &kobj_pkt_ops,
 311	.default_attrs = kobj_pkt_attrs_wqueue
 312};
 313
 314static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
 315{
 316	if (class_pktcdvd) {
 317		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
 318					"%s", pd->name);
 319		if (IS_ERR(pd->dev))
 320			pd->dev = NULL;
 321	}
 322	if (pd->dev) {
 323		pd->kobj_stat = pkt_kobj_create(pd, "stat",
 324					&pd->dev->kobj,
 325					&kobj_pkt_type_stat);
 326		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
 327					&pd->dev->kobj,
 328					&kobj_pkt_type_wqueue);
 329	}
 330}
 331
 332static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
 333{
 334	pkt_kobj_remove(pd->kobj_stat);
 335	pkt_kobj_remove(pd->kobj_wqueue);
 336	if (class_pktcdvd)
 337		device_unregister(pd->dev);
 338}
 339
 340
 341/********************************************************************
 342  /sys/class/pktcdvd/
 343                     add            map block device
 344                     remove         unmap packet dev
 345                     device_map     show mappings
 346 *******************************************************************/
 347
 348static void class_pktcdvd_release(struct class *cls)
 349{
 350	kfree(cls);
 351}
 352
 353static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
 354			       char *data)
 355{
 356	int n = 0;
 357	int idx;
 358	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
 359	for (idx = 0; idx < MAX_WRITERS; idx++) {
 360		struct pktcdvd_device *pd = pkt_devs[idx];
 361		if (!pd)
 362			continue;
 363		n += sprintf(data+n, "%s %u:%u %u:%u\n",
 364			pd->name,
 365			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
 366			MAJOR(pd->bdev->bd_dev),
 367			MINOR(pd->bdev->bd_dev));
 368	}
 369	mutex_unlock(&ctl_mutex);
 370	return n;
 371}
 372static CLASS_ATTR_RO(device_map);
 373
 374static ssize_t add_store(struct class *c, struct class_attribute *attr,
 375			 const char *buf, size_t count)
 
 
 376{
 377	unsigned int major, minor;
 378
 379	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 380		/* pkt_setup_dev() expects caller to hold reference to self */
 381		if (!try_module_get(THIS_MODULE))
 382			return -ENODEV;
 383
 384		pkt_setup_dev(MKDEV(major, minor), NULL);
 385
 386		module_put(THIS_MODULE);
 387
 388		return count;
 389	}
 390
 391	return -EINVAL;
 392}
 393static CLASS_ATTR_WO(add);
 394
 395static ssize_t remove_store(struct class *c, struct class_attribute *attr,
 396			    const char *buf, size_t count)
 
 
 397{
 398	unsigned int major, minor;
 399	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 400		pkt_remove_dev(MKDEV(major, minor));
 401		return count;
 402	}
 403	return -EINVAL;
 404}
 405static CLASS_ATTR_WO(remove);
 406
 407static struct attribute *class_pktcdvd_attrs[] = {
 408	&class_attr_add.attr,
 409	&class_attr_remove.attr,
 410	&class_attr_device_map.attr,
 411	NULL,
 412};
 413ATTRIBUTE_GROUPS(class_pktcdvd);
 414
 415static int pkt_sysfs_init(void)
 416{
 417	int ret = 0;
 418
 419	/*
 420	 * create control files in sysfs
 421	 * /sys/class/pktcdvd/...
 422	 */
 423	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
 424	if (!class_pktcdvd)
 425		return -ENOMEM;
 426	class_pktcdvd->name = DRIVER_NAME;
 427	class_pktcdvd->owner = THIS_MODULE;
 428	class_pktcdvd->class_release = class_pktcdvd_release;
 429	class_pktcdvd->class_groups = class_pktcdvd_groups;
 430	ret = class_register(class_pktcdvd);
 431	if (ret) {
 432		kfree(class_pktcdvd);
 433		class_pktcdvd = NULL;
 434		pr_err("failed to create class pktcdvd\n");
 435		return ret;
 436	}
 437	return 0;
 438}
 439
 440static void pkt_sysfs_cleanup(void)
 441{
 442	if (class_pktcdvd)
 443		class_destroy(class_pktcdvd);
 444	class_pktcdvd = NULL;
 445}
 446
 447/********************************************************************
 448  entries in debugfs
 449
 450  /sys/kernel/debug/pktcdvd[0-7]/
 451			info
 452
 453 *******************************************************************/
 454
 455static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
 456{
 457	return pkt_seq_show(m, p);
 458}
 459
 460static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
 461{
 462	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
 463}
 464
 465static const struct file_operations debug_fops = {
 466	.open		= pkt_debugfs_fops_open,
 467	.read		= seq_read,
 468	.llseek		= seq_lseek,
 469	.release	= single_release,
 470	.owner		= THIS_MODULE,
 471};
 472
 473static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
 474{
 475	if (!pkt_debugfs_root)
 476		return;
 
 477	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
 478	if (!pd->dfs_d_root)
 
 479		return;
 480
 481	pd->dfs_f_info = debugfs_create_file("info", 0444,
 482					     pd->dfs_d_root, pd, &debug_fops);
 
 
 
 
 483}
 484
 485static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
 486{
 487	if (!pkt_debugfs_root)
 488		return;
 489	debugfs_remove(pd->dfs_f_info);
 490	debugfs_remove(pd->dfs_d_root);
 491	pd->dfs_f_info = NULL;
 
 
 492	pd->dfs_d_root = NULL;
 493}
 494
 495static void pkt_debugfs_init(void)
 496{
 497	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
 
 
 
 
 498}
 499
 500static void pkt_debugfs_cleanup(void)
 501{
 
 
 502	debugfs_remove(pkt_debugfs_root);
 503	pkt_debugfs_root = NULL;
 504}
 505
 506/* ----------------------------------------------------------*/
 507
 508
 509static void pkt_bio_finished(struct pktcdvd_device *pd)
 510{
 511	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
 512	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
 513		pkt_dbg(2, pd, "queue empty\n");
 514		atomic_set(&pd->iosched.attention, 1);
 515		wake_up(&pd->wqueue);
 516	}
 517}
 518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 519/*
 520 * Allocate a packet_data struct
 521 */
 522static struct packet_data *pkt_alloc_packet_data(int frames)
 523{
 524	int i;
 525	struct packet_data *pkt;
 526
 527	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
 528	if (!pkt)
 529		goto no_pkt;
 530
 531	pkt->frames = frames;
 532	pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
 533	if (!pkt->w_bio)
 534		goto no_bio;
 535
 536	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
 537		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
 538		if (!pkt->pages[i])
 539			goto no_page;
 540	}
 541
 542	spin_lock_init(&pkt->lock);
 543	bio_list_init(&pkt->orig_bios);
 544
 545	for (i = 0; i < frames; i++) {
 546		struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
 547		if (!bio)
 548			goto no_rd_bio;
 549
 550		pkt->r_bios[i] = bio;
 551	}
 552
 553	return pkt;
 554
 555no_rd_bio:
 556	for (i = 0; i < frames; i++) {
 557		struct bio *bio = pkt->r_bios[i];
 558		if (bio)
 559			bio_put(bio);
 560	}
 561
 562no_page:
 563	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
 564		if (pkt->pages[i])
 565			__free_page(pkt->pages[i]);
 566	bio_put(pkt->w_bio);
 567no_bio:
 568	kfree(pkt);
 569no_pkt:
 570	return NULL;
 571}
 572
 573/*
 574 * Free a packet_data struct
 575 */
 576static void pkt_free_packet_data(struct packet_data *pkt)
 577{
 578	int i;
 579
 580	for (i = 0; i < pkt->frames; i++) {
 581		struct bio *bio = pkt->r_bios[i];
 582		if (bio)
 583			bio_put(bio);
 584	}
 585	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
 586		__free_page(pkt->pages[i]);
 587	bio_put(pkt->w_bio);
 588	kfree(pkt);
 589}
 590
 591static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
 592{
 593	struct packet_data *pkt, *next;
 594
 595	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
 596
 597	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
 598		pkt_free_packet_data(pkt);
 599	}
 600	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
 601}
 602
 603static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
 604{
 605	struct packet_data *pkt;
 606
 607	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
 608
 609	while (nr_packets > 0) {
 610		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
 611		if (!pkt) {
 612			pkt_shrink_pktlist(pd);
 613			return 0;
 614		}
 615		pkt->id = nr_packets;
 616		pkt->pd = pd;
 617		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
 618		nr_packets--;
 619	}
 620	return 1;
 621}
 622
 623static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
 624{
 625	struct rb_node *n = rb_next(&node->rb_node);
 626	if (!n)
 627		return NULL;
 628	return rb_entry(n, struct pkt_rb_node, rb_node);
 629}
 630
 631static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 632{
 633	rb_erase(&node->rb_node, &pd->bio_queue);
 634	mempool_free(node, &pd->rb_pool);
 635	pd->bio_queue_size--;
 636	BUG_ON(pd->bio_queue_size < 0);
 637}
 638
 639/*
 640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
 641 */
 642static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
 643{
 644	struct rb_node *n = pd->bio_queue.rb_node;
 645	struct rb_node *next;
 646	struct pkt_rb_node *tmp;
 647
 648	if (!n) {
 649		BUG_ON(pd->bio_queue_size > 0);
 650		return NULL;
 651	}
 652
 653	for (;;) {
 654		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
 655		if (s <= tmp->bio->bi_iter.bi_sector)
 656			next = n->rb_left;
 657		else
 658			next = n->rb_right;
 659		if (!next)
 660			break;
 661		n = next;
 662	}
 663
 664	if (s > tmp->bio->bi_iter.bi_sector) {
 665		tmp = pkt_rbtree_next(tmp);
 666		if (!tmp)
 667			return NULL;
 668	}
 669	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
 670	return tmp;
 671}
 672
 673/*
 674 * Insert a node into the pd->bio_queue rb tree.
 675 */
 676static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 677{
 678	struct rb_node **p = &pd->bio_queue.rb_node;
 679	struct rb_node *parent = NULL;
 680	sector_t s = node->bio->bi_iter.bi_sector;
 681	struct pkt_rb_node *tmp;
 682
 683	while (*p) {
 684		parent = *p;
 685		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
 686		if (s < tmp->bio->bi_iter.bi_sector)
 687			p = &(*p)->rb_left;
 688		else
 689			p = &(*p)->rb_right;
 690	}
 691	rb_link_node(&node->rb_node, parent, p);
 692	rb_insert_color(&node->rb_node, &pd->bio_queue);
 693	pd->bio_queue_size++;
 694}
 695
 696/*
 697 * Send a packet_command to the underlying block device and
 698 * wait for completion.
 699 */
 700static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
 701{
 702	struct request_queue *q = bdev_get_queue(pd->bdev);
 703	struct request *rq;
 704	int ret = 0;
 705
 706	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
 707			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 708	if (IS_ERR(rq))
 709		return PTR_ERR(rq);
 710
 711	if (cgc->buflen) {
 712		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
 713				      GFP_NOIO);
 714		if (ret)
 715			goto out;
 716	}
 717
 718	scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
 719	memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE);
 720
 721	rq->timeout = 60*HZ;
 
 722	if (cgc->quiet)
 723		rq->rq_flags |= RQF_QUIET;
 724
 725	blk_execute_rq(pd->bdev->bd_disk, rq, 0);
 726	if (scsi_req(rq)->result)
 727		ret = -EIO;
 728out:
 729	blk_put_request(rq);
 730	return ret;
 731}
 732
 733static const char *sense_key_string(__u8 index)
 734{
 735	static const char * const info[] = {
 736		"No sense", "Recovered error", "Not ready",
 737		"Medium error", "Hardware error", "Illegal request",
 738		"Unit attention", "Data protect", "Blank check",
 739	};
 740
 741	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
 742}
 743
 744/*
 745 * A generic sense dump / resolve mechanism should be implemented across
 746 * all ATAPI + SCSI devices.
 747 */
 748static void pkt_dump_sense(struct pktcdvd_device *pd,
 749			   struct packet_command *cgc)
 750{
 751	struct scsi_sense_hdr *sshdr = cgc->sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752
 753	if (sshdr)
 754		pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
 755			CDROM_PACKET_SIZE, cgc->cmd,
 756			sshdr->sense_key, sshdr->asc, sshdr->ascq,
 757			sense_key_string(sshdr->sense_key));
 758	else
 759		pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
 760}
 761
 762/*
 763 * flush the drive cache to media
 764 */
 765static int pkt_flush_cache(struct pktcdvd_device *pd)
 766{
 767	struct packet_command cgc;
 768
 769	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 770	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
 771	cgc.quiet = 1;
 772
 773	/*
 774	 * the IMMED bit -- we default to not setting it, although that
 775	 * would allow a much faster close, this is safer
 776	 */
 777#if 0
 778	cgc.cmd[1] = 1 << 1;
 779#endif
 780	return pkt_generic_packet(pd, &cgc);
 781}
 782
 783/*
 784 * speed is given as the normal factor, e.g. 4 for 4x
 785 */
 786static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
 787				unsigned write_speed, unsigned read_speed)
 788{
 789	struct packet_command cgc;
 790	struct scsi_sense_hdr sshdr;
 791	int ret;
 792
 793	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 794	cgc.sshdr = &sshdr;
 795	cgc.cmd[0] = GPCMD_SET_SPEED;
 796	cgc.cmd[2] = (read_speed >> 8) & 0xff;
 797	cgc.cmd[3] = read_speed & 0xff;
 798	cgc.cmd[4] = (write_speed >> 8) & 0xff;
 799	cgc.cmd[5] = write_speed & 0xff;
 800
 801	ret = pkt_generic_packet(pd, &cgc);
 802	if (ret)
 803		pkt_dump_sense(pd, &cgc);
 804
 805	return ret;
 806}
 807
 808/*
 809 * Queue a bio for processing by the low-level CD device. Must be called
 810 * from process context.
 811 */
 812static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
 813{
 814	spin_lock(&pd->iosched.lock);
 815	if (bio_data_dir(bio) == READ)
 816		bio_list_add(&pd->iosched.read_queue, bio);
 817	else
 818		bio_list_add(&pd->iosched.write_queue, bio);
 819	spin_unlock(&pd->iosched.lock);
 820
 821	atomic_set(&pd->iosched.attention, 1);
 822	wake_up(&pd->wqueue);
 823}
 824
 825/*
 826 * Process the queued read/write requests. This function handles special
 827 * requirements for CDRW drives:
 828 * - A cache flush command must be inserted before a read request if the
 829 *   previous request was a write.
 830 * - Switching between reading and writing is slow, so don't do it more often
 831 *   than necessary.
 832 * - Optimize for throughput at the expense of latency. This means that streaming
 833 *   writes will never be interrupted by a read, but if the drive has to seek
 834 *   before the next write, switch to reading instead if there are any pending
 835 *   read requests.
 836 * - Set the read speed according to current usage pattern. When only reading
 837 *   from the device, it's best to use the highest possible read speed, but
 838 *   when switching often between reading and writing, it's better to have the
 839 *   same read and write speeds.
 840 */
 841static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
 842{
 843
 844	if (atomic_read(&pd->iosched.attention) == 0)
 845		return;
 846	atomic_set(&pd->iosched.attention, 0);
 847
 848	for (;;) {
 849		struct bio *bio;
 850		int reads_queued, writes_queued;
 851
 852		spin_lock(&pd->iosched.lock);
 853		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
 854		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
 855		spin_unlock(&pd->iosched.lock);
 856
 857		if (!reads_queued && !writes_queued)
 858			break;
 859
 860		if (pd->iosched.writing) {
 861			int need_write_seek = 1;
 862			spin_lock(&pd->iosched.lock);
 863			bio = bio_list_peek(&pd->iosched.write_queue);
 864			spin_unlock(&pd->iosched.lock);
 865			if (bio && (bio->bi_iter.bi_sector ==
 866				    pd->iosched.last_write))
 867				need_write_seek = 0;
 868			if (need_write_seek && reads_queued) {
 869				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 870					pkt_dbg(2, pd, "write, waiting\n");
 871					break;
 872				}
 873				pkt_flush_cache(pd);
 874				pd->iosched.writing = 0;
 875			}
 876		} else {
 877			if (!reads_queued && writes_queued) {
 878				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 879					pkt_dbg(2, pd, "read, waiting\n");
 880					break;
 881				}
 882				pd->iosched.writing = 1;
 883			}
 884		}
 885
 886		spin_lock(&pd->iosched.lock);
 887		if (pd->iosched.writing)
 888			bio = bio_list_pop(&pd->iosched.write_queue);
 889		else
 890			bio = bio_list_pop(&pd->iosched.read_queue);
 891		spin_unlock(&pd->iosched.lock);
 892
 893		if (!bio)
 894			continue;
 895
 896		if (bio_data_dir(bio) == READ)
 897			pd->iosched.successive_reads +=
 898				bio->bi_iter.bi_size >> 10;
 899		else {
 900			pd->iosched.successive_reads = 0;
 901			pd->iosched.last_write = bio_end_sector(bio);
 902		}
 903		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
 904			if (pd->read_speed == pd->write_speed) {
 905				pd->read_speed = MAX_SPEED;
 906				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 907			}
 908		} else {
 909			if (pd->read_speed != pd->write_speed) {
 910				pd->read_speed = pd->write_speed;
 911				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 912			}
 913		}
 914
 915		atomic_inc(&pd->cdrw.pending_bios);
 916		submit_bio_noacct(bio);
 917	}
 918}
 919
 920/*
 921 * Special care is needed if the underlying block device has a small
 922 * max_phys_segments value.
 923 */
 924static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
 925{
 926	if ((pd->settings.size << 9) / CD_FRAMESIZE
 927	    <= queue_max_segments(q)) {
 928		/*
 929		 * The cdrom device can handle one segment/frame
 930		 */
 931		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
 932		return 0;
 933	} else if ((pd->settings.size << 9) / PAGE_SIZE
 934		   <= queue_max_segments(q)) {
 935		/*
 936		 * We can handle this case at the expense of some extra memory
 937		 * copies during write operations
 938		 */
 939		set_bit(PACKET_MERGE_SEGS, &pd->flags);
 940		return 0;
 941	} else {
 942		pkt_err(pd, "cdrom max_phys_segments too small\n");
 943		return -EIO;
 944	}
 945}
 946
 947static void pkt_end_io_read(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948{
 949	struct packet_data *pkt = bio->bi_private;
 950	struct pktcdvd_device *pd = pkt->pd;
 951	BUG_ON(!pd);
 952
 953	pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
 954		bio, (unsigned long long)pkt->sector,
 955		(unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
 956
 957	if (bio->bi_status)
 958		atomic_inc(&pkt->io_errors);
 959	if (atomic_dec_and_test(&pkt->io_wait)) {
 960		atomic_inc(&pkt->run_sm);
 961		wake_up(&pd->wqueue);
 962	}
 963	pkt_bio_finished(pd);
 964}
 965
 966static void pkt_end_io_packet_write(struct bio *bio)
 967{
 968	struct packet_data *pkt = bio->bi_private;
 969	struct pktcdvd_device *pd = pkt->pd;
 970	BUG_ON(!pd);
 971
 972	pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
 973
 974	pd->stats.pkt_ended++;
 975
 976	pkt_bio_finished(pd);
 977	atomic_dec(&pkt->io_wait);
 978	atomic_inc(&pkt->run_sm);
 979	wake_up(&pd->wqueue);
 980}
 981
 982/*
 983 * Schedule reads for the holes in a packet
 984 */
 985static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
 986{
 987	int frames_read = 0;
 988	struct bio *bio;
 989	int f;
 990	char written[PACKET_MAX_SIZE];
 991
 992	BUG_ON(bio_list_empty(&pkt->orig_bios));
 993
 994	atomic_set(&pkt->io_wait, 0);
 995	atomic_set(&pkt->io_errors, 0);
 996
 997	/*
 998	 * Figure out which frames we need to read before we can write.
 999	 */
1000	memset(written, 0, sizeof(written));
1001	spin_lock(&pkt->lock);
1002	bio_list_for_each(bio, &pkt->orig_bios) {
1003		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1004			(CD_FRAMESIZE >> 9);
1005		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1006		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1007		BUG_ON(first_frame < 0);
1008		BUG_ON(first_frame + num_frames > pkt->frames);
1009		for (f = first_frame; f < first_frame + num_frames; f++)
1010			written[f] = 1;
1011	}
1012	spin_unlock(&pkt->lock);
1013
1014	if (pkt->cache_valid) {
1015		pkt_dbg(2, pd, "zone %llx cached\n",
1016			(unsigned long long)pkt->sector);
1017		goto out_account;
1018	}
1019
1020	/*
1021	 * Schedule reads for missing parts of the packet.
1022	 */
1023	for (f = 0; f < pkt->frames; f++) {
 
 
1024		int p, offset;
1025
1026		if (written[f])
1027			continue;
1028
1029		bio = pkt->r_bios[f];
1030		bio_reset(bio);
1031		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1032		bio_set_dev(bio, pd->bdev);
 
 
1033		bio->bi_end_io = pkt_end_io_read;
1034		bio->bi_private = pkt;
 
 
1035
1036		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1037		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1038		pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1039			f, pkt->pages[p], offset);
1040		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1041			BUG();
1042
1043		atomic_inc(&pkt->io_wait);
1044		bio_set_op_attrs(bio, REQ_OP_READ, 0);
1045		pkt_queue_bio(pd, bio);
1046		frames_read++;
1047	}
1048
1049out_account:
1050	pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1051		frames_read, (unsigned long long)pkt->sector);
1052	pd->stats.pkt_started++;
1053	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1054}
1055
1056/*
1057 * Find a packet matching zone, or the least recently used packet if
1058 * there is no match.
1059 */
1060static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1061{
1062	struct packet_data *pkt;
1063
1064	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1065		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1066			list_del_init(&pkt->list);
1067			if (pkt->sector != zone)
1068				pkt->cache_valid = 0;
1069			return pkt;
1070		}
1071	}
1072	BUG();
1073	return NULL;
1074}
1075
1076static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077{
1078	if (pkt->cache_valid) {
1079		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1080	} else {
1081		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1082	}
1083}
1084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1086{
1087#if PACKET_DEBUG > 1
1088	static const char *state_name[] = {
1089		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1090	};
1091	enum packet_data_state old_state = pkt->state;
1092	pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1093		pkt->id, (unsigned long long)pkt->sector,
1094		state_name[old_state], state_name[state]);
1095#endif
1096	pkt->state = state;
1097}
1098
1099/*
1100 * Scan the work queue to see if we can start a new packet.
1101 * returns non-zero if any work was done.
1102 */
1103static int pkt_handle_queue(struct pktcdvd_device *pd)
1104{
1105	struct packet_data *pkt, *p;
1106	struct bio *bio = NULL;
1107	sector_t zone = 0; /* Suppress gcc warning */
1108	struct pkt_rb_node *node, *first_node;
1109	struct rb_node *n;
1110	int wakeup;
1111
 
 
1112	atomic_set(&pd->scan_queue, 0);
1113
1114	if (list_empty(&pd->cdrw.pkt_free_list)) {
1115		pkt_dbg(2, pd, "no pkt\n");
1116		return 0;
1117	}
1118
1119	/*
1120	 * Try to find a zone we are not already working on.
1121	 */
1122	spin_lock(&pd->lock);
1123	first_node = pkt_rbtree_find(pd, pd->current_sector);
1124	if (!first_node) {
1125		n = rb_first(&pd->bio_queue);
1126		if (n)
1127			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1128	}
1129	node = first_node;
1130	while (node) {
1131		bio = node->bio;
1132		zone = get_zone(bio->bi_iter.bi_sector, pd);
1133		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1134			if (p->sector == zone) {
1135				bio = NULL;
1136				goto try_next_bio;
1137			}
1138		}
1139		break;
1140try_next_bio:
1141		node = pkt_rbtree_next(node);
1142		if (!node) {
1143			n = rb_first(&pd->bio_queue);
1144			if (n)
1145				node = rb_entry(n, struct pkt_rb_node, rb_node);
1146		}
1147		if (node == first_node)
1148			node = NULL;
1149	}
1150	spin_unlock(&pd->lock);
1151	if (!bio) {
1152		pkt_dbg(2, pd, "no bio\n");
1153		return 0;
1154	}
1155
1156	pkt = pkt_get_packet_data(pd, zone);
1157
1158	pd->current_sector = zone + pd->settings.size;
1159	pkt->sector = zone;
1160	BUG_ON(pkt->frames != pd->settings.size >> 2);
1161	pkt->write_size = 0;
1162
1163	/*
1164	 * Scan work queue for bios in the same zone and link them
1165	 * to this packet.
1166	 */
1167	spin_lock(&pd->lock);
1168	pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1169	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1170		bio = node->bio;
1171		pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1172			get_zone(bio->bi_iter.bi_sector, pd));
1173		if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1174			break;
1175		pkt_rbtree_erase(pd, node);
1176		spin_lock(&pkt->lock);
1177		bio_list_add(&pkt->orig_bios, bio);
1178		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1179		spin_unlock(&pkt->lock);
1180	}
1181	/* check write congestion marks, and if bio_queue_size is
1182	   below, wake up any waiters */
1183	wakeup = (pd->write_congestion_on > 0
1184	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1185	spin_unlock(&pd->lock);
1186	if (wakeup) {
1187		clear_bdi_congested(pd->disk->queue->backing_dev_info,
1188					BLK_RW_ASYNC);
1189	}
1190
1191	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1192	pkt_set_state(pkt, PACKET_WAITING_STATE);
1193	atomic_set(&pkt->run_sm, 1);
1194
1195	spin_lock(&pd->cdrw.active_list_lock);
1196	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1197	spin_unlock(&pd->cdrw.active_list_lock);
1198
1199	return 1;
1200}
1201
1202/**
1203 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1204 * another
1205 * @src: source bio list
1206 * @dst: destination bio list
1207 *
1208 * Stops when it reaches the end of either the @src list or @dst list - that is,
1209 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1210 * bios).
1211 */
1212static void bio_list_copy_data(struct bio *dst, struct bio *src)
1213{
1214	struct bvec_iter src_iter = src->bi_iter;
1215	struct bvec_iter dst_iter = dst->bi_iter;
1216
1217	while (1) {
1218		if (!src_iter.bi_size) {
1219			src = src->bi_next;
1220			if (!src)
1221				break;
1222
1223			src_iter = src->bi_iter;
1224		}
1225
1226		if (!dst_iter.bi_size) {
1227			dst = dst->bi_next;
1228			if (!dst)
1229				break;
1230
1231			dst_iter = dst->bi_iter;
1232		}
1233
1234		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1235	}
1236}
1237
1238/*
1239 * Assemble a bio to write one packet and queue the bio for processing
1240 * by the underlying block device.
1241 */
1242static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1243{
 
1244	int f;
 
 
1245
1246	bio_reset(pkt->w_bio);
1247	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1248	bio_set_dev(pkt->w_bio, pd->bdev);
1249	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1250	pkt->w_bio->bi_private = pkt;
1251
1252	/* XXX: locking? */
1253	for (f = 0; f < pkt->frames; f++) {
1254		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1255		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1256
1257		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1258			BUG();
1259	}
1260	pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1261
1262	/*
1263	 * Fill-in bvec with data from orig_bios.
1264	 */
 
1265	spin_lock(&pkt->lock);
1266	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267
 
 
 
 
 
 
 
 
 
 
 
1268	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1269	spin_unlock(&pkt->lock);
1270
1271	pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1272		pkt->write_size, (unsigned long long)pkt->sector);
 
1273
1274	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
 
1275		pkt->cache_valid = 1;
1276	else
1277		pkt->cache_valid = 0;
 
1278
1279	/* Start the write request */
 
 
 
 
 
 
 
 
 
 
 
 
 
1280	atomic_set(&pkt->io_wait, 1);
1281	bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1282	pkt_queue_bio(pd, pkt->w_bio);
1283}
1284
1285static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1286{
1287	struct bio *bio;
1288
1289	if (status)
1290		pkt->cache_valid = 0;
1291
1292	/* Finish all bios corresponding to this packet */
1293	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1294		bio->bi_status = status;
1295		bio_endio(bio);
1296	}
1297}
1298
1299static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1300{
1301	pkt_dbg(2, pd, "pkt %d\n", pkt->id);
 
 
1302
1303	for (;;) {
1304		switch (pkt->state) {
1305		case PACKET_WAITING_STATE:
1306			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1307				return;
1308
1309			pkt->sleep_time = 0;
1310			pkt_gather_data(pd, pkt);
1311			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1312			break;
1313
1314		case PACKET_READ_WAIT_STATE:
1315			if (atomic_read(&pkt->io_wait) > 0)
1316				return;
1317
1318			if (atomic_read(&pkt->io_errors) > 0) {
1319				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1320			} else {
1321				pkt_start_write(pd, pkt);
1322			}
1323			break;
1324
1325		case PACKET_WRITE_WAIT_STATE:
1326			if (atomic_read(&pkt->io_wait) > 0)
1327				return;
1328
1329			if (!pkt->w_bio->bi_status) {
1330				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1331			} else {
1332				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1333			}
1334			break;
1335
1336		case PACKET_RECOVERY_STATE:
1337			pkt_dbg(2, pd, "No recovery possible\n");
1338			pkt_set_state(pkt, PACKET_FINISHED_STATE);
 
 
 
 
1339			break;
1340
1341		case PACKET_FINISHED_STATE:
1342			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
 
1343			return;
1344
1345		default:
1346			BUG();
1347			break;
1348		}
1349	}
1350}
1351
1352static void pkt_handle_packets(struct pktcdvd_device *pd)
1353{
1354	struct packet_data *pkt, *next;
1355
 
 
1356	/*
1357	 * Run state machine for active packets
1358	 */
1359	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1360		if (atomic_read(&pkt->run_sm) > 0) {
1361			atomic_set(&pkt->run_sm, 0);
1362			pkt_run_state_machine(pd, pkt);
1363		}
1364	}
1365
1366	/*
1367	 * Move no longer active packets to the free list
1368	 */
1369	spin_lock(&pd->cdrw.active_list_lock);
1370	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1371		if (pkt->state == PACKET_FINISHED_STATE) {
1372			list_del(&pkt->list);
1373			pkt_put_packet_data(pd, pkt);
1374			pkt_set_state(pkt, PACKET_IDLE_STATE);
1375			atomic_set(&pd->scan_queue, 1);
1376		}
1377	}
1378	spin_unlock(&pd->cdrw.active_list_lock);
1379}
1380
1381static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1382{
1383	struct packet_data *pkt;
1384	int i;
1385
1386	for (i = 0; i < PACKET_NUM_STATES; i++)
1387		states[i] = 0;
1388
1389	spin_lock(&pd->cdrw.active_list_lock);
1390	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1391		states[pkt->state]++;
1392	}
1393	spin_unlock(&pd->cdrw.active_list_lock);
1394}
1395
1396/*
1397 * kcdrwd is woken up when writes have been queued for one of our
1398 * registered devices
1399 */
1400static int kcdrwd(void *foobar)
1401{
1402	struct pktcdvd_device *pd = foobar;
1403	struct packet_data *pkt;
1404	long min_sleep_time, residue;
1405
1406	set_user_nice(current, MIN_NICE);
1407	set_freezable();
1408
1409	for (;;) {
1410		DECLARE_WAITQUEUE(wait, current);
1411
1412		/*
1413		 * Wait until there is something to do
1414		 */
1415		add_wait_queue(&pd->wqueue, &wait);
1416		for (;;) {
1417			set_current_state(TASK_INTERRUPTIBLE);
1418
1419			/* Check if we need to run pkt_handle_queue */
1420			if (atomic_read(&pd->scan_queue) > 0)
1421				goto work_to_do;
1422
1423			/* Check if we need to run the state machine for some packet */
1424			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1425				if (atomic_read(&pkt->run_sm) > 0)
1426					goto work_to_do;
1427			}
1428
1429			/* Check if we need to process the iosched queues */
1430			if (atomic_read(&pd->iosched.attention) != 0)
1431				goto work_to_do;
1432
1433			/* Otherwise, go to sleep */
1434			if (PACKET_DEBUG > 1) {
1435				int states[PACKET_NUM_STATES];
1436				pkt_count_states(pd, states);
1437				pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1438					states[0], states[1], states[2],
1439					states[3], states[4], states[5]);
1440			}
1441
1442			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1443			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1444				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1445					min_sleep_time = pkt->sleep_time;
1446			}
1447
1448			pkt_dbg(2, pd, "sleeping\n");
1449			residue = schedule_timeout(min_sleep_time);
1450			pkt_dbg(2, pd, "wake up\n");
1451
1452			/* make swsusp happy with our thread */
1453			try_to_freeze();
1454
1455			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1456				if (!pkt->sleep_time)
1457					continue;
1458				pkt->sleep_time -= min_sleep_time - residue;
1459				if (pkt->sleep_time <= 0) {
1460					pkt->sleep_time = 0;
1461					atomic_inc(&pkt->run_sm);
1462				}
1463			}
1464
1465			if (kthread_should_stop())
1466				break;
1467		}
1468work_to_do:
1469		set_current_state(TASK_RUNNING);
1470		remove_wait_queue(&pd->wqueue, &wait);
1471
1472		if (kthread_should_stop())
1473			break;
1474
1475		/*
1476		 * if pkt_handle_queue returns true, we can queue
1477		 * another request.
1478		 */
1479		while (pkt_handle_queue(pd))
1480			;
1481
1482		/*
1483		 * Handle packet state machine
1484		 */
1485		pkt_handle_packets(pd);
1486
1487		/*
1488		 * Handle iosched queues
1489		 */
1490		pkt_iosched_process_queue(pd);
1491	}
1492
1493	return 0;
1494}
1495
1496static void pkt_print_settings(struct pktcdvd_device *pd)
1497{
1498	pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1499		 pd->settings.fp ? "Fixed" : "Variable",
1500		 pd->settings.size >> 2,
1501		 pd->settings.block_mode == 8 ? '1' : '2');
1502}
1503
1504static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1505{
1506	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1507
1508	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1509	cgc->cmd[2] = page_code | (page_control << 6);
1510	cgc->cmd[7] = cgc->buflen >> 8;
1511	cgc->cmd[8] = cgc->buflen & 0xff;
1512	cgc->data_direction = CGC_DATA_READ;
1513	return pkt_generic_packet(pd, cgc);
1514}
1515
1516static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1517{
1518	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1519	memset(cgc->buffer, 0, 2);
1520	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1521	cgc->cmd[1] = 0x10;		/* PF */
1522	cgc->cmd[7] = cgc->buflen >> 8;
1523	cgc->cmd[8] = cgc->buflen & 0xff;
1524	cgc->data_direction = CGC_DATA_WRITE;
1525	return pkt_generic_packet(pd, cgc);
1526}
1527
1528static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1529{
1530	struct packet_command cgc;
1531	int ret;
1532
1533	/* set up command and get the disc info */
1534	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1535	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1536	cgc.cmd[8] = cgc.buflen = 2;
1537	cgc.quiet = 1;
1538
1539	ret = pkt_generic_packet(pd, &cgc);
1540	if (ret)
1541		return ret;
1542
1543	/* not all drives have the same disc_info length, so requeue
1544	 * packet with the length the drive tells us it can supply
1545	 */
1546	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1547		     sizeof(di->disc_information_length);
1548
1549	if (cgc.buflen > sizeof(disc_information))
1550		cgc.buflen = sizeof(disc_information);
1551
1552	cgc.cmd[8] = cgc.buflen;
1553	return pkt_generic_packet(pd, &cgc);
1554}
1555
1556static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1557{
1558	struct packet_command cgc;
1559	int ret;
1560
1561	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1562	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1563	cgc.cmd[1] = type & 3;
1564	cgc.cmd[4] = (track & 0xff00) >> 8;
1565	cgc.cmd[5] = track & 0xff;
1566	cgc.cmd[8] = 8;
1567	cgc.quiet = 1;
1568
1569	ret = pkt_generic_packet(pd, &cgc);
1570	if (ret)
1571		return ret;
1572
1573	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1574		     sizeof(ti->track_information_length);
1575
1576	if (cgc.buflen > sizeof(track_information))
1577		cgc.buflen = sizeof(track_information);
1578
1579	cgc.cmd[8] = cgc.buflen;
1580	return pkt_generic_packet(pd, &cgc);
1581}
1582
1583static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1584						long *last_written)
1585{
1586	disc_information di;
1587	track_information ti;
1588	__u32 last_track;
1589	int ret;
1590
1591	ret = pkt_get_disc_info(pd, &di);
1592	if (ret)
1593		return ret;
1594
1595	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1596	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1597	if (ret)
1598		return ret;
1599
1600	/* if this track is blank, try the previous. */
1601	if (ti.blank) {
1602		last_track--;
1603		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1604		if (ret)
1605			return ret;
1606	}
1607
1608	/* if last recorded field is valid, return it. */
1609	if (ti.lra_v) {
1610		*last_written = be32_to_cpu(ti.last_rec_address);
1611	} else {
1612		/* make it up instead */
1613		*last_written = be32_to_cpu(ti.track_start) +
1614				be32_to_cpu(ti.track_size);
1615		if (ti.free_blocks)
1616			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1617	}
1618	return 0;
1619}
1620
1621/*
1622 * write mode select package based on pd->settings
1623 */
1624static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1625{
1626	struct packet_command cgc;
1627	struct scsi_sense_hdr sshdr;
1628	write_param_page *wp;
1629	char buffer[128];
1630	int ret, size;
1631
1632	/* doesn't apply to DVD+RW or DVD-RAM */
1633	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1634		return 0;
1635
1636	memset(buffer, 0, sizeof(buffer));
1637	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1638	cgc.sshdr = &sshdr;
1639	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1640	if (ret) {
1641		pkt_dump_sense(pd, &cgc);
1642		return ret;
1643	}
1644
1645	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1646	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1647	if (size > sizeof(buffer))
1648		size = sizeof(buffer);
1649
1650	/*
1651	 * now get it all
1652	 */
1653	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1654	cgc.sshdr = &sshdr;
1655	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1656	if (ret) {
1657		pkt_dump_sense(pd, &cgc);
1658		return ret;
1659	}
1660
1661	/*
1662	 * write page is offset header + block descriptor length
1663	 */
1664	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1665
1666	wp->fp = pd->settings.fp;
1667	wp->track_mode = pd->settings.track_mode;
1668	wp->write_type = pd->settings.write_type;
1669	wp->data_block_type = pd->settings.block_mode;
1670
1671	wp->multi_session = 0;
1672
1673#ifdef PACKET_USE_LS
1674	wp->link_size = 7;
1675	wp->ls_v = 1;
1676#endif
1677
1678	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1679		wp->session_format = 0;
1680		wp->subhdr2 = 0x20;
1681	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1682		wp->session_format = 0x20;
1683		wp->subhdr2 = 8;
1684#if 0
1685		wp->mcn[0] = 0x80;
1686		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1687#endif
1688	} else {
1689		/*
1690		 * paranoia
1691		 */
1692		pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1693		return 1;
1694	}
1695	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1696
1697	cgc.buflen = cgc.cmd[8] = size;
1698	ret = pkt_mode_select(pd, &cgc);
1699	if (ret) {
1700		pkt_dump_sense(pd, &cgc);
1701		return ret;
1702	}
1703
1704	pkt_print_settings(pd);
1705	return 0;
1706}
1707
1708/*
1709 * 1 -- we can write to this track, 0 -- we can't
1710 */
1711static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1712{
1713	switch (pd->mmc3_profile) {
1714		case 0x1a: /* DVD+RW */
1715		case 0x12: /* DVD-RAM */
1716			/* The track is always writable on DVD+RW/DVD-RAM */
1717			return 1;
1718		default:
1719			break;
1720	}
1721
1722	if (!ti->packet || !ti->fp)
1723		return 0;
1724
1725	/*
1726	 * "good" settings as per Mt Fuji.
1727	 */
1728	if (ti->rt == 0 && ti->blank == 0)
1729		return 1;
1730
1731	if (ti->rt == 0 && ti->blank == 1)
1732		return 1;
1733
1734	if (ti->rt == 1 && ti->blank == 0)
1735		return 1;
1736
1737	pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1738	return 0;
1739}
1740
1741/*
1742 * 1 -- we can write to this disc, 0 -- we can't
1743 */
1744static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1745{
1746	switch (pd->mmc3_profile) {
1747		case 0x0a: /* CD-RW */
1748		case 0xffff: /* MMC3 not supported */
1749			break;
1750		case 0x1a: /* DVD+RW */
1751		case 0x13: /* DVD-RW */
1752		case 0x12: /* DVD-RAM */
1753			return 1;
1754		default:
1755			pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1756				pd->mmc3_profile);
1757			return 0;
1758	}
1759
1760	/*
1761	 * for disc type 0xff we should probably reserve a new track.
1762	 * but i'm not sure, should we leave this to user apps? probably.
1763	 */
1764	if (di->disc_type == 0xff) {
1765		pkt_notice(pd, "unknown disc - no track?\n");
1766		return 0;
1767	}
1768
1769	if (di->disc_type != 0x20 && di->disc_type != 0) {
1770		pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1771		return 0;
1772	}
1773
1774	if (di->erasable == 0) {
1775		pkt_notice(pd, "disc not erasable\n");
1776		return 0;
1777	}
1778
1779	if (di->border_status == PACKET_SESSION_RESERVED) {
1780		pkt_err(pd, "can't write to last track (reserved)\n");
1781		return 0;
1782	}
1783
1784	return 1;
1785}
1786
1787static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1788{
1789	struct packet_command cgc;
1790	unsigned char buf[12];
1791	disc_information di;
1792	track_information ti;
1793	int ret, track;
1794
1795	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1796	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1797	cgc.cmd[8] = 8;
1798	ret = pkt_generic_packet(pd, &cgc);
1799	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1800
1801	memset(&di, 0, sizeof(disc_information));
1802	memset(&ti, 0, sizeof(track_information));
1803
1804	ret = pkt_get_disc_info(pd, &di);
1805	if (ret) {
1806		pkt_err(pd, "failed get_disc\n");
1807		return ret;
1808	}
1809
1810	if (!pkt_writable_disc(pd, &di))
1811		return -EROFS;
1812
1813	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1814
1815	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1816	ret = pkt_get_track_info(pd, track, 1, &ti);
1817	if (ret) {
1818		pkt_err(pd, "failed get_track\n");
1819		return ret;
1820	}
1821
1822	if (!pkt_writable_track(pd, &ti)) {
1823		pkt_err(pd, "can't write to this track\n");
1824		return -EROFS;
1825	}
1826
1827	/*
1828	 * we keep packet size in 512 byte units, makes it easier to
1829	 * deal with request calculations.
1830	 */
1831	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1832	if (pd->settings.size == 0) {
1833		pkt_notice(pd, "detected zero packet size!\n");
1834		return -ENXIO;
1835	}
1836	if (pd->settings.size > PACKET_MAX_SECTORS) {
1837		pkt_err(pd, "packet size is too big\n");
1838		return -EROFS;
1839	}
1840	pd->settings.fp = ti.fp;
1841	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1842
1843	if (ti.nwa_v) {
1844		pd->nwa = be32_to_cpu(ti.next_writable);
1845		set_bit(PACKET_NWA_VALID, &pd->flags);
1846	}
1847
1848	/*
1849	 * in theory we could use lra on -RW media as well and just zero
1850	 * blocks that haven't been written yet, but in practice that
1851	 * is just a no-go. we'll use that for -R, naturally.
1852	 */
1853	if (ti.lra_v) {
1854		pd->lra = be32_to_cpu(ti.last_rec_address);
1855		set_bit(PACKET_LRA_VALID, &pd->flags);
1856	} else {
1857		pd->lra = 0xffffffff;
1858		set_bit(PACKET_LRA_VALID, &pd->flags);
1859	}
1860
1861	/*
1862	 * fine for now
1863	 */
1864	pd->settings.link_loss = 7;
1865	pd->settings.write_type = 0;	/* packet */
1866	pd->settings.track_mode = ti.track_mode;
1867
1868	/*
1869	 * mode1 or mode2 disc
1870	 */
1871	switch (ti.data_mode) {
1872		case PACKET_MODE1:
1873			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1874			break;
1875		case PACKET_MODE2:
1876			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1877			break;
1878		default:
1879			pkt_err(pd, "unknown data mode\n");
1880			return -EROFS;
1881	}
1882	return 0;
1883}
1884
1885/*
1886 * enable/disable write caching on drive
1887 */
1888static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1889						int set)
1890{
1891	struct packet_command cgc;
1892	struct scsi_sense_hdr sshdr;
1893	unsigned char buf[64];
1894	int ret;
1895
1896	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1897	cgc.sshdr = &sshdr;
1898	cgc.buflen = pd->mode_offset + 12;
1899
1900	/*
1901	 * caching mode page might not be there, so quiet this command
1902	 */
1903	cgc.quiet = 1;
1904
1905	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1906	if (ret)
1907		return ret;
1908
1909	buf[pd->mode_offset + 10] |= (!!set << 2);
1910
1911	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1912	ret = pkt_mode_select(pd, &cgc);
1913	if (ret) {
1914		pkt_err(pd, "write caching control failed\n");
1915		pkt_dump_sense(pd, &cgc);
1916	} else if (!ret && set)
1917		pkt_notice(pd, "enabled write caching\n");
1918	return ret;
1919}
1920
1921static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1922{
1923	struct packet_command cgc;
1924
1925	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1926	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1927	cgc.cmd[4] = lockflag ? 1 : 0;
1928	return pkt_generic_packet(pd, &cgc);
1929}
1930
1931/*
1932 * Returns drive maximum write speed
1933 */
1934static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1935						unsigned *write_speed)
1936{
1937	struct packet_command cgc;
1938	struct scsi_sense_hdr sshdr;
1939	unsigned char buf[256+18];
1940	unsigned char *cap_buf;
1941	int ret, offset;
1942
1943	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1944	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1945	cgc.sshdr = &sshdr;
1946
1947	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1948	if (ret) {
1949		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1950			     sizeof(struct mode_page_header);
1951		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1952		if (ret) {
1953			pkt_dump_sense(pd, &cgc);
1954			return ret;
1955		}
1956	}
1957
1958	offset = 20;			    /* Obsoleted field, used by older drives */
1959	if (cap_buf[1] >= 28)
1960		offset = 28;		    /* Current write speed selected */
1961	if (cap_buf[1] >= 30) {
1962		/* If the drive reports at least one "Logical Unit Write
1963		 * Speed Performance Descriptor Block", use the information
1964		 * in the first block. (contains the highest speed)
1965		 */
1966		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1967		if (num_spdb > 0)
1968			offset = 34;
1969	}
1970
1971	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1972	return 0;
1973}
1974
1975/* These tables from cdrecord - I don't have orange book */
1976/* standard speed CD-RW (1-4x) */
1977static char clv_to_speed[16] = {
1978	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1979	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1980};
1981/* high speed CD-RW (-10x) */
1982static char hs_clv_to_speed[16] = {
1983	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1984	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1985};
1986/* ultra high speed CD-RW */
1987static char us_clv_to_speed[16] = {
1988	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1989	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1990};
1991
1992/*
1993 * reads the maximum media speed from ATIP
1994 */
1995static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
1996						unsigned *speed)
1997{
1998	struct packet_command cgc;
1999	struct scsi_sense_hdr sshdr;
2000	unsigned char buf[64];
2001	unsigned int size, st, sp;
2002	int ret;
2003
2004	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2005	cgc.sshdr = &sshdr;
2006	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2007	cgc.cmd[1] = 2;
2008	cgc.cmd[2] = 4; /* READ ATIP */
2009	cgc.cmd[8] = 2;
2010	ret = pkt_generic_packet(pd, &cgc);
2011	if (ret) {
2012		pkt_dump_sense(pd, &cgc);
2013		return ret;
2014	}
2015	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2016	if (size > sizeof(buf))
2017		size = sizeof(buf);
2018
2019	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2020	cgc.sshdr = &sshdr;
2021	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2022	cgc.cmd[1] = 2;
2023	cgc.cmd[2] = 4;
2024	cgc.cmd[8] = size;
2025	ret = pkt_generic_packet(pd, &cgc);
2026	if (ret) {
2027		pkt_dump_sense(pd, &cgc);
2028		return ret;
2029	}
2030
2031	if (!(buf[6] & 0x40)) {
2032		pkt_notice(pd, "disc type is not CD-RW\n");
2033		return 1;
2034	}
2035	if (!(buf[6] & 0x4)) {
2036		pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2037		return 1;
2038	}
2039
2040	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2041
2042	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2043
2044	/* Info from cdrecord */
2045	switch (st) {
2046		case 0: /* standard speed */
2047			*speed = clv_to_speed[sp];
2048			break;
2049		case 1: /* high speed */
2050			*speed = hs_clv_to_speed[sp];
2051			break;
2052		case 2: /* ultra high speed */
2053			*speed = us_clv_to_speed[sp];
2054			break;
2055		default:
2056			pkt_notice(pd, "unknown disc sub-type %d\n", st);
2057			return 1;
2058	}
2059	if (*speed) {
2060		pkt_info(pd, "maximum media speed: %d\n", *speed);
2061		return 0;
2062	} else {
2063		pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2064		return 1;
2065	}
2066}
2067
2068static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2069{
2070	struct packet_command cgc;
2071	struct scsi_sense_hdr sshdr;
2072	int ret;
2073
2074	pkt_dbg(2, pd, "Performing OPC\n");
2075
2076	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2077	cgc.sshdr = &sshdr;
2078	cgc.timeout = 60*HZ;
2079	cgc.cmd[0] = GPCMD_SEND_OPC;
2080	cgc.cmd[1] = 1;
2081	ret = pkt_generic_packet(pd, &cgc);
2082	if (ret)
2083		pkt_dump_sense(pd, &cgc);
2084	return ret;
2085}
2086
2087static int pkt_open_write(struct pktcdvd_device *pd)
2088{
2089	int ret;
2090	unsigned int write_speed, media_write_speed, read_speed;
2091
2092	ret = pkt_probe_settings(pd);
2093	if (ret) {
2094		pkt_dbg(2, pd, "failed probe\n");
2095		return ret;
2096	}
2097
2098	ret = pkt_set_write_settings(pd);
2099	if (ret) {
2100		pkt_dbg(1, pd, "failed saving write settings\n");
2101		return -EIO;
2102	}
2103
2104	pkt_write_caching(pd, USE_WCACHING);
2105
2106	ret = pkt_get_max_speed(pd, &write_speed);
2107	if (ret)
2108		write_speed = 16 * 177;
2109	switch (pd->mmc3_profile) {
2110		case 0x13: /* DVD-RW */
2111		case 0x1a: /* DVD+RW */
2112		case 0x12: /* DVD-RAM */
2113			pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2114			break;
2115		default:
2116			ret = pkt_media_speed(pd, &media_write_speed);
2117			if (ret)
2118				media_write_speed = 16;
2119			write_speed = min(write_speed, media_write_speed * 177);
2120			pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2121			break;
2122	}
2123	read_speed = write_speed;
2124
2125	ret = pkt_set_speed(pd, write_speed, read_speed);
2126	if (ret) {
2127		pkt_dbg(1, pd, "couldn't set write speed\n");
2128		return -EIO;
2129	}
2130	pd->write_speed = write_speed;
2131	pd->read_speed = read_speed;
2132
2133	ret = pkt_perform_opc(pd);
2134	if (ret) {
2135		pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2136	}
2137
2138	return 0;
2139}
2140
2141/*
2142 * called at open time.
2143 */
2144static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2145{
2146	int ret;
2147	long lba;
2148	struct request_queue *q;
2149	struct block_device *bdev;
2150
2151	/*
2152	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2153	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2154	 * so open should not fail.
2155	 */
2156	bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd);
2157	if (IS_ERR(bdev)) {
2158		ret = PTR_ERR(bdev);
2159		goto out;
2160	}
2161
2162	ret = pkt_get_last_written(pd, &lba);
2163	if (ret) {
2164		pkt_err(pd, "pkt_get_last_written failed\n");
2165		goto out_putdev;
2166	}
2167
2168	set_capacity(pd->disk, lba << 2);
2169	set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
 
2170
2171	q = bdev_get_queue(pd->bdev);
2172	if (write) {
2173		ret = pkt_open_write(pd);
2174		if (ret)
2175			goto out_putdev;
2176		/*
2177		 * Some CDRW drives can not handle writes larger than one packet,
2178		 * even if the size is a multiple of the packet size.
2179		 */
 
2180		blk_queue_max_hw_sectors(q, pd->settings.size);
 
2181		set_bit(PACKET_WRITABLE, &pd->flags);
2182	} else {
2183		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2184		clear_bit(PACKET_WRITABLE, &pd->flags);
2185	}
2186
2187	ret = pkt_set_segment_merging(pd, q);
2188	if (ret)
2189		goto out_putdev;
2190
2191	if (write) {
2192		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2193			pkt_err(pd, "not enough memory for buffers\n");
2194			ret = -ENOMEM;
2195			goto out_putdev;
2196		}
2197		pkt_info(pd, "%lukB available on disc\n", lba << 1);
2198	}
2199
2200	return 0;
2201
2202out_putdev:
2203	blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
2204out:
2205	return ret;
2206}
2207
2208/*
2209 * called when the device is closed. makes sure that the device flushes
2210 * the internal cache before we close.
2211 */
2212static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2213{
2214	if (flush && pkt_flush_cache(pd))
2215		pkt_dbg(1, pd, "not flushing cache\n");
2216
2217	pkt_lock_door(pd, 0);
2218
2219	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2220	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2221
2222	pkt_shrink_pktlist(pd);
2223}
2224
2225static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2226{
2227	if (dev_minor >= MAX_WRITERS)
2228		return NULL;
2229
2230	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2231	return pkt_devs[dev_minor];
2232}
2233
2234static int pkt_open(struct block_device *bdev, fmode_t mode)
2235{
2236	struct pktcdvd_device *pd = NULL;
2237	int ret;
2238
 
 
2239	mutex_lock(&pktcdvd_mutex);
2240	mutex_lock(&ctl_mutex);
2241	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2242	if (!pd) {
2243		ret = -ENODEV;
2244		goto out;
2245	}
2246	BUG_ON(pd->refcnt < 0);
2247
2248	pd->refcnt++;
2249	if (pd->refcnt > 1) {
2250		if ((mode & FMODE_WRITE) &&
2251		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2252			ret = -EBUSY;
2253			goto out_dec;
2254		}
2255	} else {
2256		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2257		if (ret)
2258			goto out_dec;
2259		/*
2260		 * needed here as well, since ext2 (among others) may change
2261		 * the blocksize at mount time
2262		 */
2263		set_blocksize(bdev, CD_FRAMESIZE);
2264	}
2265
2266	mutex_unlock(&ctl_mutex);
2267	mutex_unlock(&pktcdvd_mutex);
2268	return 0;
2269
2270out_dec:
2271	pd->refcnt--;
2272out:
 
2273	mutex_unlock(&ctl_mutex);
2274	mutex_unlock(&pktcdvd_mutex);
2275	return ret;
2276}
2277
2278static void pkt_close(struct gendisk *disk, fmode_t mode)
2279{
2280	struct pktcdvd_device *pd = disk->private_data;
 
2281
2282	mutex_lock(&pktcdvd_mutex);
2283	mutex_lock(&ctl_mutex);
2284	pd->refcnt--;
2285	BUG_ON(pd->refcnt < 0);
2286	if (pd->refcnt == 0) {
2287		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2288		pkt_release_dev(pd, flush);
2289	}
2290	mutex_unlock(&ctl_mutex);
2291	mutex_unlock(&pktcdvd_mutex);
 
2292}
2293
2294
2295static void pkt_end_io_read_cloned(struct bio *bio)
2296{
2297	struct packet_stacked_data *psd = bio->bi_private;
2298	struct pktcdvd_device *pd = psd->pd;
2299
2300	psd->bio->bi_status = bio->bi_status;
2301	bio_put(bio);
2302	bio_endio(psd->bio);
2303	mempool_free(psd, &psd_pool);
2304	pkt_bio_finished(pd);
2305}
2306
2307static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2308{
2309	struct bio *cloned_bio = bio_clone_fast(bio, GFP_NOIO, &pkt_bio_set);
2310	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2311
2312	psd->pd = pd;
2313	psd->bio = bio;
2314	bio_set_dev(cloned_bio, pd->bdev);
2315	cloned_bio->bi_private = psd;
2316	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2317	pd->stats.secs_r += bio_sectors(bio);
2318	pkt_queue_bio(pd, cloned_bio);
2319}
2320
2321static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2322{
2323	struct pktcdvd_device *pd = q->queuedata;
2324	sector_t zone;
2325	struct packet_data *pkt;
2326	int was_empty, blocked_bio;
2327	struct pkt_rb_node *node;
2328
2329	zone = get_zone(bio->bi_iter.bi_sector, pd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330
2331	/*
2332	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2333	 * just append this bio to that packet.
2334	 */
2335	spin_lock(&pd->cdrw.active_list_lock);
2336	blocked_bio = 0;
2337	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2338		if (pkt->sector == zone) {
2339			spin_lock(&pkt->lock);
2340			if ((pkt->state == PACKET_WAITING_STATE) ||
2341			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2342				bio_list_add(&pkt->orig_bios, bio);
2343				pkt->write_size +=
2344					bio->bi_iter.bi_size / CD_FRAMESIZE;
2345				if ((pkt->write_size >= pkt->frames) &&
2346				    (pkt->state == PACKET_WAITING_STATE)) {
2347					atomic_inc(&pkt->run_sm);
2348					wake_up(&pd->wqueue);
2349				}
2350				spin_unlock(&pkt->lock);
2351				spin_unlock(&pd->cdrw.active_list_lock);
2352				return;
2353			} else {
2354				blocked_bio = 1;
2355			}
2356			spin_unlock(&pkt->lock);
2357		}
2358	}
2359	spin_unlock(&pd->cdrw.active_list_lock);
2360
2361 	/*
2362	 * Test if there is enough room left in the bio work queue
2363	 * (queue size >= congestion on mark).
2364	 * If not, wait till the work queue size is below the congestion off mark.
2365	 */
2366	spin_lock(&pd->lock);
2367	if (pd->write_congestion_on > 0
2368	    && pd->bio_queue_size >= pd->write_congestion_on) {
2369		set_bdi_congested(q->backing_dev_info, BLK_RW_ASYNC);
2370		do {
2371			spin_unlock(&pd->lock);
2372			congestion_wait(BLK_RW_ASYNC, HZ);
2373			spin_lock(&pd->lock);
2374		} while(pd->bio_queue_size > pd->write_congestion_off);
2375	}
2376	spin_unlock(&pd->lock);
2377
2378	/*
2379	 * No matching packet found. Store the bio in the work queue.
2380	 */
2381	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2382	node->bio = bio;
2383	spin_lock(&pd->lock);
2384	BUG_ON(pd->bio_queue_size < 0);
2385	was_empty = (pd->bio_queue_size == 0);
2386	pkt_rbtree_insert(pd, node);
2387	spin_unlock(&pd->lock);
2388
2389	/*
2390	 * Wake up the worker thread.
2391	 */
2392	atomic_set(&pd->scan_queue, 1);
2393	if (was_empty) {
2394		/* This wake_up is required for correct operation */
2395		wake_up(&pd->wqueue);
2396	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2397		/*
2398		 * This wake up is not required for correct operation,
2399		 * but improves performance in some cases.
2400		 */
2401		wake_up(&pd->wqueue);
2402	}
 
 
 
 
2403}
2404
2405static blk_qc_t pkt_submit_bio(struct bio *bio)
2406{
2407	struct pktcdvd_device *pd;
2408	char b[BDEVNAME_SIZE];
2409	struct bio *split;
2410
2411	blk_queue_split(&bio);
2412
2413	pd = bio->bi_bdev->bd_disk->queue->queuedata;
2414	if (!pd) {
2415		pr_err("%s incorrect request queue\n", bio_devname(bio, b));
2416		goto end_io;
2417	}
2418
2419	pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2420		(unsigned long long)bio->bi_iter.bi_sector,
2421		(unsigned long long)bio_end_sector(bio));
2422
2423	/*
2424	 * Clone READ bios so we can have our own bi_end_io callback.
 
2425	 */
2426	if (bio_data_dir(bio) == READ) {
2427		pkt_make_request_read(pd, bio);
2428		return BLK_QC_T_NONE;
2429	}
2430
2431	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2432		pkt_notice(pd, "WRITE for ro device (%llu)\n",
2433			   (unsigned long long)bio->bi_iter.bi_sector);
2434		goto end_io;
2435	}
2436
2437	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2438		pkt_err(pd, "wrong bio size\n");
2439		goto end_io;
2440	}
2441
2442	do {
2443		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2444		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2445
2446		if (last_zone != zone) {
2447			BUG_ON(last_zone != zone + pd->settings.size);
2448
2449			split = bio_split(bio, last_zone -
2450					  bio->bi_iter.bi_sector,
2451					  GFP_NOIO, &pkt_bio_set);
2452			bio_chain(split, bio);
2453		} else {
2454			split = bio;
2455		}
2456
2457		pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2458	} while (split != bio);
2459
2460	return BLK_QC_T_NONE;
2461end_io:
2462	bio_io_error(bio);
2463	return BLK_QC_T_NONE;
2464}
2465
2466static void pkt_init_queue(struct pktcdvd_device *pd)
2467{
2468	struct request_queue *q = pd->disk->queue;
2469
 
2470	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2471	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
 
2472	q->queuedata = pd;
2473}
2474
2475static int pkt_seq_show(struct seq_file *m, void *p)
2476{
2477	struct pktcdvd_device *pd = m->private;
2478	char *msg;
2479	char bdev_buf[BDEVNAME_SIZE];
2480	int states[PACKET_NUM_STATES];
2481
2482	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2483		   bdevname(pd->bdev, bdev_buf));
2484
2485	seq_printf(m, "\nSettings:\n");
2486	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2487
2488	if (pd->settings.write_type == 0)
2489		msg = "Packet";
2490	else
2491		msg = "Unknown";
2492	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2493
2494	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2495	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2496
2497	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2498
2499	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2500		msg = "Mode 1";
2501	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2502		msg = "Mode 2";
2503	else
2504		msg = "Unknown";
2505	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2506
2507	seq_printf(m, "\nStatistics:\n");
2508	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2509	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2510	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2511	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2512	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2513
2514	seq_printf(m, "\nMisc:\n");
2515	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2516	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2517	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2518	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2519	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2520	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2521
2522	seq_printf(m, "\nQueue state:\n");
2523	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2524	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2525	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2526
2527	pkt_count_states(pd, states);
2528	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2529		   states[0], states[1], states[2], states[3], states[4], states[5]);
2530
2531	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2532			pd->write_congestion_off,
2533			pd->write_congestion_on);
2534	return 0;
2535}
2536
 
 
 
 
 
 
 
 
 
 
 
 
2537static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2538{
2539	int i;
 
2540	char b[BDEVNAME_SIZE];
2541	struct block_device *bdev;
2542
2543	if (pd->pkt_dev == dev) {
2544		pkt_err(pd, "recursive setup not allowed\n");
2545		return -EBUSY;
2546	}
2547	for (i = 0; i < MAX_WRITERS; i++) {
2548		struct pktcdvd_device *pd2 = pkt_devs[i];
2549		if (!pd2)
2550			continue;
2551		if (pd2->bdev->bd_dev == dev) {
2552			pkt_err(pd, "%s already setup\n",
2553				bdevname(pd2->bdev, b));
2554			return -EBUSY;
2555		}
2556		if (pd2->pkt_dev == dev) {
2557			pkt_err(pd, "can't chain pktcdvd devices\n");
2558			return -EBUSY;
2559		}
2560	}
2561
2562	bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL);
2563	if (IS_ERR(bdev))
2564		return PTR_ERR(bdev);
2565	if (!blk_queue_scsi_passthrough(bdev_get_queue(bdev))) {
2566		blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2567		return -EINVAL;
2568	}
2569
2570	/* This is safe, since we have a reference from open(). */
2571	__module_get(THIS_MODULE);
2572
2573	pd->bdev = bdev;
2574	set_blocksize(bdev, CD_FRAMESIZE);
2575
2576	pkt_init_queue(pd);
2577
2578	atomic_set(&pd->cdrw.pending_bios, 0);
2579	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2580	if (IS_ERR(pd->cdrw.thread)) {
2581		pkt_err(pd, "can't start kernel thread\n");
 
2582		goto out_mem;
2583	}
2584
2585	proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2586	pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2587	return 0;
2588
2589out_mem:
2590	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2591	/* This is safe: open() is still holding a reference. */
2592	module_put(THIS_MODULE);
2593	return -ENOMEM;
2594}
2595
2596static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2597{
2598	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2599	int ret;
2600
2601	pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2602		cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2603
2604	mutex_lock(&pktcdvd_mutex);
2605	switch (cmd) {
2606	case CDROMEJECT:
2607		/*
2608		 * The door gets locked when the device is opened, so we
2609		 * have to unlock it or else the eject command fails.
2610		 */
2611		if (pd->refcnt == 1)
2612			pkt_lock_door(pd, 0);
2613		fallthrough;
2614	/*
2615	 * forward selected CDROM ioctls to CD-ROM, for UDF
2616	 */
2617	case CDROMMULTISESSION:
2618	case CDROMREADTOCENTRY:
2619	case CDROM_LAST_WRITTEN:
2620	case CDROM_SEND_PACKET:
2621	case SCSI_IOCTL_SEND_COMMAND:
2622		if (!bdev->bd_disk->fops->ioctl)
2623			ret = -ENOTTY;
2624		else
2625			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2626		break;
 
2627	default:
2628		pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2629		ret = -ENOTTY;
2630	}
2631	mutex_unlock(&pktcdvd_mutex);
2632
2633	return ret;
2634}
2635
2636static unsigned int pkt_check_events(struct gendisk *disk,
2637				     unsigned int clearing)
2638{
2639	struct pktcdvd_device *pd = disk->private_data;
2640	struct gendisk *attached_disk;
2641
2642	if (!pd)
2643		return 0;
2644	if (!pd->bdev)
2645		return 0;
2646	attached_disk = pd->bdev->bd_disk;
2647	if (!attached_disk || !attached_disk->fops->check_events)
2648		return 0;
2649	return attached_disk->fops->check_events(attached_disk, clearing);
2650}
2651
2652static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2653{
2654	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2655}
2656
2657static const struct block_device_operations pktcdvd_ops = {
2658	.owner =		THIS_MODULE,
2659	.submit_bio =		pkt_submit_bio,
2660	.open =			pkt_open,
2661	.release =		pkt_close,
2662	.ioctl =		pkt_ioctl,
2663	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2664	.check_events =		pkt_check_events,
2665	.devnode =		pkt_devnode,
2666};
2667
 
 
 
 
 
2668/*
2669 * Set up mapping from pktcdvd device to CD-ROM device.
2670 */
2671static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2672{
2673	int idx;
2674	int ret = -ENOMEM;
2675	struct pktcdvd_device *pd;
2676	struct gendisk *disk;
2677
2678	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2679
2680	for (idx = 0; idx < MAX_WRITERS; idx++)
2681		if (!pkt_devs[idx])
2682			break;
2683	if (idx == MAX_WRITERS) {
2684		pr_err("max %d writers supported\n", MAX_WRITERS);
2685		ret = -EBUSY;
2686		goto out_mutex;
2687	}
2688
2689	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2690	if (!pd)
2691		goto out_mutex;
2692
2693	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2694					sizeof(struct pkt_rb_node));
2695	if (ret)
2696		goto out_mem;
2697
2698	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2699	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2700	spin_lock_init(&pd->cdrw.active_list_lock);
2701
2702	spin_lock_init(&pd->lock);
2703	spin_lock_init(&pd->iosched.lock);
2704	bio_list_init(&pd->iosched.read_queue);
2705	bio_list_init(&pd->iosched.write_queue);
2706	sprintf(pd->name, DRIVER_NAME"%d", idx);
2707	init_waitqueue_head(&pd->wqueue);
2708	pd->bio_queue = RB_ROOT;
2709
2710	pd->write_congestion_on  = write_congestion_on;
2711	pd->write_congestion_off = write_congestion_off;
2712
2713	ret = -ENOMEM;
2714	disk = blk_alloc_disk(NUMA_NO_NODE);
2715	if (!disk)
2716		goto out_mem;
2717	pd->disk = disk;
2718	disk->major = pktdev_major;
2719	disk->first_minor = idx;
2720	disk->minors = 1;
2721	disk->fops = &pktcdvd_ops;
2722	disk->flags = GENHD_FL_REMOVABLE;
2723	strcpy(disk->disk_name, pd->name);
 
2724	disk->private_data = pd;
 
 
 
2725
2726	pd->pkt_dev = MKDEV(pktdev_major, idx);
2727	ret = pkt_new_dev(pd, dev);
2728	if (ret)
2729		goto out_mem2;
2730
2731	/* inherit events of the host device */
2732	disk->events = pd->bdev->bd_disk->events;
 
2733
2734	add_disk(disk);
2735
2736	pkt_sysfs_dev_new(pd);
2737	pkt_debugfs_dev_new(pd);
2738
2739	pkt_devs[idx] = pd;
2740	if (pkt_dev)
2741		*pkt_dev = pd->pkt_dev;
2742
2743	mutex_unlock(&ctl_mutex);
2744	return 0;
2745
 
 
2746out_mem2:
2747	blk_cleanup_disk(disk);
2748out_mem:
2749	mempool_exit(&pd->rb_pool);
 
2750	kfree(pd);
2751out_mutex:
2752	mutex_unlock(&ctl_mutex);
2753	pr_err("setup of pktcdvd device failed\n");
2754	return ret;
2755}
2756
2757/*
2758 * Tear down mapping from pktcdvd device to CD-ROM device.
2759 */
2760static int pkt_remove_dev(dev_t pkt_dev)
2761{
2762	struct pktcdvd_device *pd;
2763	int idx;
2764	int ret = 0;
2765
2766	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2767
2768	for (idx = 0; idx < MAX_WRITERS; idx++) {
2769		pd = pkt_devs[idx];
2770		if (pd && (pd->pkt_dev == pkt_dev))
2771			break;
2772	}
2773	if (idx == MAX_WRITERS) {
2774		pr_debug("dev not setup\n");
2775		ret = -ENXIO;
2776		goto out;
2777	}
2778
2779	if (pd->refcnt > 0) {
2780		ret = -EBUSY;
2781		goto out;
2782	}
2783	if (!IS_ERR(pd->cdrw.thread))
2784		kthread_stop(pd->cdrw.thread);
2785
2786	pkt_devs[idx] = NULL;
2787
2788	pkt_debugfs_dev_remove(pd);
2789	pkt_sysfs_dev_remove(pd);
2790
2791	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2792
2793	remove_proc_entry(pd->name, pkt_proc);
2794	pkt_dbg(1, pd, "writer unmapped\n");
2795
2796	del_gendisk(pd->disk);
2797	blk_cleanup_disk(pd->disk);
 
2798
2799	mempool_exit(&pd->rb_pool);
2800	kfree(pd);
2801
2802	/* This is safe: open() is still holding a reference. */
2803	module_put(THIS_MODULE);
2804
2805out:
2806	mutex_unlock(&ctl_mutex);
2807	return ret;
2808}
2809
2810static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2811{
2812	struct pktcdvd_device *pd;
2813
2814	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2815
2816	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2817	if (pd) {
2818		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2819		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2820	} else {
2821		ctrl_cmd->dev = 0;
2822		ctrl_cmd->pkt_dev = 0;
2823	}
2824	ctrl_cmd->num_devices = MAX_WRITERS;
2825
2826	mutex_unlock(&ctl_mutex);
2827}
2828
2829static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2830{
2831	void __user *argp = (void __user *)arg;
2832	struct pkt_ctrl_command ctrl_cmd;
2833	int ret = 0;
2834	dev_t pkt_dev = 0;
2835
2836	if (cmd != PACKET_CTRL_CMD)
2837		return -ENOTTY;
2838
2839	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2840		return -EFAULT;
2841
2842	switch (ctrl_cmd.command) {
2843	case PKT_CTRL_CMD_SETUP:
2844		if (!capable(CAP_SYS_ADMIN))
2845			return -EPERM;
2846		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2847		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2848		break;
2849	case PKT_CTRL_CMD_TEARDOWN:
2850		if (!capable(CAP_SYS_ADMIN))
2851			return -EPERM;
2852		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2853		break;
2854	case PKT_CTRL_CMD_STATUS:
2855		pkt_get_status(&ctrl_cmd);
2856		break;
2857	default:
2858		return -ENOTTY;
2859	}
2860
2861	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2862		return -EFAULT;
2863	return ret;
2864}
2865
2866#ifdef CONFIG_COMPAT
2867static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2868{
2869	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2870}
2871#endif
2872
2873static const struct file_operations pkt_ctl_fops = {
2874	.open		= nonseekable_open,
2875	.unlocked_ioctl	= pkt_ctl_ioctl,
2876#ifdef CONFIG_COMPAT
2877	.compat_ioctl	= pkt_ctl_compat_ioctl,
2878#endif
2879	.owner		= THIS_MODULE,
2880	.llseek		= no_llseek,
2881};
2882
2883static struct miscdevice pkt_misc = {
2884	.minor 		= MISC_DYNAMIC_MINOR,
2885	.name  		= DRIVER_NAME,
2886	.nodename	= "pktcdvd/control",
2887	.fops  		= &pkt_ctl_fops
2888};
2889
2890static int __init pkt_init(void)
2891{
2892	int ret;
2893
2894	mutex_init(&ctl_mutex);
2895
2896	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2897				    sizeof(struct packet_stacked_data));
2898	if (ret)
2899		return ret;
2900	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2901	if (ret) {
2902		mempool_exit(&psd_pool);
2903		return ret;
2904	}
2905
2906	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2907	if (ret < 0) {
2908		pr_err("unable to register block device\n");
2909		goto out2;
2910	}
2911	if (!pktdev_major)
2912		pktdev_major = ret;
2913
2914	ret = pkt_sysfs_init();
2915	if (ret)
2916		goto out;
2917
2918	pkt_debugfs_init();
2919
2920	ret = misc_register(&pkt_misc);
2921	if (ret) {
2922		pr_err("unable to register misc device\n");
2923		goto out_misc;
2924	}
2925
2926	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2927
2928	return 0;
2929
2930out_misc:
2931	pkt_debugfs_cleanup();
2932	pkt_sysfs_cleanup();
2933out:
2934	unregister_blkdev(pktdev_major, DRIVER_NAME);
2935out2:
2936	mempool_exit(&psd_pool);
2937	bioset_exit(&pkt_bio_set);
2938	return ret;
2939}
2940
2941static void __exit pkt_exit(void)
2942{
2943	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2944	misc_deregister(&pkt_misc);
2945
2946	pkt_debugfs_cleanup();
2947	pkt_sysfs_cleanup();
2948
2949	unregister_blkdev(pktdev_major, DRIVER_NAME);
2950	mempool_exit(&psd_pool);
2951	bioset_exit(&pkt_bio_set);
2952}
2953
2954MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2955MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2956MODULE_LICENSE("GPL");
2957
2958module_init(pkt_init);
2959module_exit(pkt_exit);