Loading...
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#include <linux/pktcdvd.h>
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/kernel.h>
51#include <linux/compat.h>
52#include <linux/kthread.h>
53#include <linux/errno.h>
54#include <linux/spinlock.h>
55#include <linux/file.h>
56#include <linux/proc_fs.h>
57#include <linux/seq_file.h>
58#include <linux/miscdevice.h>
59#include <linux/freezer.h>
60#include <linux/mutex.h>
61#include <linux/slab.h>
62#include <scsi/scsi_cmnd.h>
63#include <scsi/scsi_ioctl.h>
64#include <scsi/scsi.h>
65#include <linux/debugfs.h>
66#include <linux/device.h>
67
68#include <asm/uaccess.h>
69
70#define DRIVER_NAME "pktcdvd"
71
72#if PACKET_DEBUG
73#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74#else
75#define DPRINTK(fmt, args...)
76#endif
77
78#if PACKET_DEBUG > 1
79#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80#else
81#define VPRINTK(fmt, args...)
82#endif
83
84#define MAX_SPEED 0xffff
85
86#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87
88static DEFINE_MUTEX(pktcdvd_mutex);
89static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90static struct proc_dir_entry *pkt_proc;
91static int pktdev_major;
92static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95static mempool_t *psd_pool;
96
97static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
99
100/* forward declaration */
101static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102static int pkt_remove_dev(dev_t pkt_dev);
103static int pkt_seq_show(struct seq_file *m, void *p);
104
105
106
107/*
108 * create and register a pktcdvd kernel object.
109 */
110static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111 const char* name,
112 struct kobject* parent,
113 struct kobj_type* ktype)
114{
115 struct pktcdvd_kobj *p;
116 int error;
117
118 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 if (!p)
120 return NULL;
121 p->pd = pd;
122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123 if (error) {
124 kobject_put(&p->kobj);
125 return NULL;
126 }
127 kobject_uevent(&p->kobj, KOBJ_ADD);
128 return p;
129}
130/*
131 * remove a pktcdvd kernel object.
132 */
133static void pkt_kobj_remove(struct pktcdvd_kobj *p)
134{
135 if (p)
136 kobject_put(&p->kobj);
137}
138/*
139 * default release function for pktcdvd kernel objects.
140 */
141static void pkt_kobj_release(struct kobject *kobj)
142{
143 kfree(to_pktcdvdkobj(kobj));
144}
145
146
147/**********************************************************
148 *
149 * sysfs interface for pktcdvd
150 * by (C) 2006 Thomas Maier <balagi@justmail.de>
151 *
152 **********************************************************/
153
154#define DEF_ATTR(_obj,_name,_mode) \
155 static struct attribute _obj = { .name = _name, .mode = _mode }
156
157/**********************************************************
158 /sys/class/pktcdvd/pktcdvd[0-7]/
159 stat/reset
160 stat/packets_started
161 stat/packets_finished
162 stat/kb_written
163 stat/kb_read
164 stat/kb_read_gather
165 write_queue/size
166 write_queue/congestion_off
167 write_queue/congestion_on
168 **********************************************************/
169
170DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
176
177static struct attribute *kobj_pkt_attrs_stat[] = {
178 &kobj_pkt_attr_st1,
179 &kobj_pkt_attr_st2,
180 &kobj_pkt_attr_st3,
181 &kobj_pkt_attr_st4,
182 &kobj_pkt_attr_st5,
183 &kobj_pkt_attr_st6,
184 NULL
185};
186
187DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
190
191static struct attribute *kobj_pkt_attrs_wqueue[] = {
192 &kobj_pkt_attr_wq1,
193 &kobj_pkt_attr_wq2,
194 &kobj_pkt_attr_wq3,
195 NULL
196};
197
198static ssize_t kobj_pkt_show(struct kobject *kobj,
199 struct attribute *attr, char *data)
200{
201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202 int n = 0;
203 int v;
204 if (strcmp(attr->name, "packets_started") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
206
207 } else if (strcmp(attr->name, "packets_finished") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
209
210 } else if (strcmp(attr->name, "kb_written") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
212
213 } else if (strcmp(attr->name, "kb_read") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
215
216 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
218
219 } else if (strcmp(attr->name, "size") == 0) {
220 spin_lock(&pd->lock);
221 v = pd->bio_queue_size;
222 spin_unlock(&pd->lock);
223 n = sprintf(data, "%d\n", v);
224
225 } else if (strcmp(attr->name, "congestion_off") == 0) {
226 spin_lock(&pd->lock);
227 v = pd->write_congestion_off;
228 spin_unlock(&pd->lock);
229 n = sprintf(data, "%d\n", v);
230
231 } else if (strcmp(attr->name, "congestion_on") == 0) {
232 spin_lock(&pd->lock);
233 v = pd->write_congestion_on;
234 spin_unlock(&pd->lock);
235 n = sprintf(data, "%d\n", v);
236 }
237 return n;
238}
239
240static void init_write_congestion_marks(int* lo, int* hi)
241{
242 if (*hi > 0) {
243 *hi = max(*hi, 500);
244 *hi = min(*hi, 1000000);
245 if (*lo <= 0)
246 *lo = *hi - 100;
247 else {
248 *lo = min(*lo, *hi - 100);
249 *lo = max(*lo, 100);
250 }
251 } else {
252 *hi = -1;
253 *lo = -1;
254 }
255}
256
257static ssize_t kobj_pkt_store(struct kobject *kobj,
258 struct attribute *attr,
259 const char *data, size_t len)
260{
261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262 int val;
263
264 if (strcmp(attr->name, "reset") == 0 && len > 0) {
265 pd->stats.pkt_started = 0;
266 pd->stats.pkt_ended = 0;
267 pd->stats.secs_w = 0;
268 pd->stats.secs_rg = 0;
269 pd->stats.secs_r = 0;
270
271 } else if (strcmp(attr->name, "congestion_off") == 0
272 && sscanf(data, "%d", &val) == 1) {
273 spin_lock(&pd->lock);
274 pd->write_congestion_off = val;
275 init_write_congestion_marks(&pd->write_congestion_off,
276 &pd->write_congestion_on);
277 spin_unlock(&pd->lock);
278
279 } else if (strcmp(attr->name, "congestion_on") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_on = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
286 }
287 return len;
288}
289
290static const struct sysfs_ops kobj_pkt_ops = {
291 .show = kobj_pkt_show,
292 .store = kobj_pkt_store
293};
294static struct kobj_type kobj_pkt_type_stat = {
295 .release = pkt_kobj_release,
296 .sysfs_ops = &kobj_pkt_ops,
297 .default_attrs = kobj_pkt_attrs_stat
298};
299static struct kobj_type kobj_pkt_type_wqueue = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_wqueue
303};
304
305static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306{
307 if (class_pktcdvd) {
308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309 "%s", pd->name);
310 if (IS_ERR(pd->dev))
311 pd->dev = NULL;
312 }
313 if (pd->dev) {
314 pd->kobj_stat = pkt_kobj_create(pd, "stat",
315 &pd->dev->kobj,
316 &kobj_pkt_type_stat);
317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318 &pd->dev->kobj,
319 &kobj_pkt_type_wqueue);
320 }
321}
322
323static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
324{
325 pkt_kobj_remove(pd->kobj_stat);
326 pkt_kobj_remove(pd->kobj_wqueue);
327 if (class_pktcdvd)
328 device_unregister(pd->dev);
329}
330
331
332/********************************************************************
333 /sys/class/pktcdvd/
334 add map block device
335 remove unmap packet dev
336 device_map show mappings
337 *******************************************************************/
338
339static void class_pktcdvd_release(struct class *cls)
340{
341 kfree(cls);
342}
343static ssize_t class_pktcdvd_show_map(struct class *c,
344 struct class_attribute *attr,
345 char *data)
346{
347 int n = 0;
348 int idx;
349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350 for (idx = 0; idx < MAX_WRITERS; idx++) {
351 struct pktcdvd_device *pd = pkt_devs[idx];
352 if (!pd)
353 continue;
354 n += sprintf(data+n, "%s %u:%u %u:%u\n",
355 pd->name,
356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357 MAJOR(pd->bdev->bd_dev),
358 MINOR(pd->bdev->bd_dev));
359 }
360 mutex_unlock(&ctl_mutex);
361 return n;
362}
363
364static ssize_t class_pktcdvd_store_add(struct class *c,
365 struct class_attribute *attr,
366 const char *buf,
367 size_t count)
368{
369 unsigned int major, minor;
370
371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372 /* pkt_setup_dev() expects caller to hold reference to self */
373 if (!try_module_get(THIS_MODULE))
374 return -ENODEV;
375
376 pkt_setup_dev(MKDEV(major, minor), NULL);
377
378 module_put(THIS_MODULE);
379
380 return count;
381 }
382
383 return -EINVAL;
384}
385
386static ssize_t class_pktcdvd_store_remove(struct class *c,
387 struct class_attribute *attr,
388 const char *buf,
389 size_t count)
390{
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
395 }
396 return -EINVAL;
397}
398
399static struct class_attribute class_pktcdvd_attrs[] = {
400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
403 __ATTR_NULL
404};
405
406
407static int pkt_sysfs_init(void)
408{
409 int ret = 0;
410
411 /*
412 * create control files in sysfs
413 * /sys/class/pktcdvd/...
414 */
415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416 if (!class_pktcdvd)
417 return -ENOMEM;
418 class_pktcdvd->name = DRIVER_NAME;
419 class_pktcdvd->owner = THIS_MODULE;
420 class_pktcdvd->class_release = class_pktcdvd_release;
421 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422 ret = class_register(class_pktcdvd);
423 if (ret) {
424 kfree(class_pktcdvd);
425 class_pktcdvd = NULL;
426 printk(DRIVER_NAME": failed to create class pktcdvd\n");
427 return ret;
428 }
429 return 0;
430}
431
432static void pkt_sysfs_cleanup(void)
433{
434 if (class_pktcdvd)
435 class_destroy(class_pktcdvd);
436 class_pktcdvd = NULL;
437}
438
439/********************************************************************
440 entries in debugfs
441
442 /sys/kernel/debug/pktcdvd[0-7]/
443 info
444
445 *******************************************************************/
446
447static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
448{
449 return pkt_seq_show(m, p);
450}
451
452static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
453{
454 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455}
456
457static const struct file_operations debug_fops = {
458 .open = pkt_debugfs_fops_open,
459 .read = seq_read,
460 .llseek = seq_lseek,
461 .release = single_release,
462 .owner = THIS_MODULE,
463};
464
465static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
466{
467 if (!pkt_debugfs_root)
468 return;
469 pd->dfs_f_info = NULL;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (IS_ERR(pd->dfs_d_root)) {
472 pd->dfs_d_root = NULL;
473 return;
474 }
475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476 pd->dfs_d_root, pd, &debug_fops);
477 if (IS_ERR(pd->dfs_f_info)) {
478 pd->dfs_f_info = NULL;
479 return;
480 }
481}
482
483static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
484{
485 if (!pkt_debugfs_root)
486 return;
487 if (pd->dfs_f_info)
488 debugfs_remove(pd->dfs_f_info);
489 pd->dfs_f_info = NULL;
490 if (pd->dfs_d_root)
491 debugfs_remove(pd->dfs_d_root);
492 pd->dfs_d_root = NULL;
493}
494
495static void pkt_debugfs_init(void)
496{
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 if (IS_ERR(pkt_debugfs_root)) {
499 pkt_debugfs_root = NULL;
500 return;
501 }
502}
503
504static void pkt_debugfs_cleanup(void)
505{
506 if (!pkt_debugfs_root)
507 return;
508 debugfs_remove(pkt_debugfs_root);
509 pkt_debugfs_root = NULL;
510}
511
512/* ----------------------------------------------------------*/
513
514
515static void pkt_bio_finished(struct pktcdvd_device *pd)
516{
517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519 VPRINTK(DRIVER_NAME": queue empty\n");
520 atomic_set(&pd->iosched.attention, 1);
521 wake_up(&pd->wqueue);
522 }
523}
524
525static void pkt_bio_destructor(struct bio *bio)
526{
527 kfree(bio->bi_io_vec);
528 kfree(bio);
529}
530
531static struct bio *pkt_bio_alloc(int nr_iovecs)
532{
533 struct bio_vec *bvl = NULL;
534 struct bio *bio;
535
536 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
537 if (!bio)
538 goto no_bio;
539 bio_init(bio);
540
541 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
542 if (!bvl)
543 goto no_bvl;
544
545 bio->bi_max_vecs = nr_iovecs;
546 bio->bi_io_vec = bvl;
547 bio->bi_destructor = pkt_bio_destructor;
548
549 return bio;
550
551 no_bvl:
552 kfree(bio);
553 no_bio:
554 return NULL;
555}
556
557/*
558 * Allocate a packet_data struct
559 */
560static struct packet_data *pkt_alloc_packet_data(int frames)
561{
562 int i;
563 struct packet_data *pkt;
564
565 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
566 if (!pkt)
567 goto no_pkt;
568
569 pkt->frames = frames;
570 pkt->w_bio = pkt_bio_alloc(frames);
571 if (!pkt->w_bio)
572 goto no_bio;
573
574 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
575 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
576 if (!pkt->pages[i])
577 goto no_page;
578 }
579
580 spin_lock_init(&pkt->lock);
581 bio_list_init(&pkt->orig_bios);
582
583 for (i = 0; i < frames; i++) {
584 struct bio *bio = pkt_bio_alloc(1);
585 if (!bio)
586 goto no_rd_bio;
587 pkt->r_bios[i] = bio;
588 }
589
590 return pkt;
591
592no_rd_bio:
593 for (i = 0; i < frames; i++) {
594 struct bio *bio = pkt->r_bios[i];
595 if (bio)
596 bio_put(bio);
597 }
598
599no_page:
600 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
601 if (pkt->pages[i])
602 __free_page(pkt->pages[i]);
603 bio_put(pkt->w_bio);
604no_bio:
605 kfree(pkt);
606no_pkt:
607 return NULL;
608}
609
610/*
611 * Free a packet_data struct
612 */
613static void pkt_free_packet_data(struct packet_data *pkt)
614{
615 int i;
616
617 for (i = 0; i < pkt->frames; i++) {
618 struct bio *bio = pkt->r_bios[i];
619 if (bio)
620 bio_put(bio);
621 }
622 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
623 __free_page(pkt->pages[i]);
624 bio_put(pkt->w_bio);
625 kfree(pkt);
626}
627
628static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
629{
630 struct packet_data *pkt, *next;
631
632 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
633
634 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
635 pkt_free_packet_data(pkt);
636 }
637 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
638}
639
640static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
641{
642 struct packet_data *pkt;
643
644 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
645
646 while (nr_packets > 0) {
647 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
648 if (!pkt) {
649 pkt_shrink_pktlist(pd);
650 return 0;
651 }
652 pkt->id = nr_packets;
653 pkt->pd = pd;
654 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
655 nr_packets--;
656 }
657 return 1;
658}
659
660static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
661{
662 struct rb_node *n = rb_next(&node->rb_node);
663 if (!n)
664 return NULL;
665 return rb_entry(n, struct pkt_rb_node, rb_node);
666}
667
668static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
669{
670 rb_erase(&node->rb_node, &pd->bio_queue);
671 mempool_free(node, pd->rb_pool);
672 pd->bio_queue_size--;
673 BUG_ON(pd->bio_queue_size < 0);
674}
675
676/*
677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
678 */
679static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
680{
681 struct rb_node *n = pd->bio_queue.rb_node;
682 struct rb_node *next;
683 struct pkt_rb_node *tmp;
684
685 if (!n) {
686 BUG_ON(pd->bio_queue_size > 0);
687 return NULL;
688 }
689
690 for (;;) {
691 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
692 if (s <= tmp->bio->bi_sector)
693 next = n->rb_left;
694 else
695 next = n->rb_right;
696 if (!next)
697 break;
698 n = next;
699 }
700
701 if (s > tmp->bio->bi_sector) {
702 tmp = pkt_rbtree_next(tmp);
703 if (!tmp)
704 return NULL;
705 }
706 BUG_ON(s > tmp->bio->bi_sector);
707 return tmp;
708}
709
710/*
711 * Insert a node into the pd->bio_queue rb tree.
712 */
713static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
714{
715 struct rb_node **p = &pd->bio_queue.rb_node;
716 struct rb_node *parent = NULL;
717 sector_t s = node->bio->bi_sector;
718 struct pkt_rb_node *tmp;
719
720 while (*p) {
721 parent = *p;
722 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
723 if (s < tmp->bio->bi_sector)
724 p = &(*p)->rb_left;
725 else
726 p = &(*p)->rb_right;
727 }
728 rb_link_node(&node->rb_node, parent, p);
729 rb_insert_color(&node->rb_node, &pd->bio_queue);
730 pd->bio_queue_size++;
731}
732
733/*
734 * Send a packet_command to the underlying block device and
735 * wait for completion.
736 */
737static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
738{
739 struct request_queue *q = bdev_get_queue(pd->bdev);
740 struct request *rq;
741 int ret = 0;
742
743 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
744 WRITE : READ, __GFP_WAIT);
745
746 if (cgc->buflen) {
747 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
748 goto out;
749 }
750
751 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
752 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
753
754 rq->timeout = 60*HZ;
755 rq->cmd_type = REQ_TYPE_BLOCK_PC;
756 if (cgc->quiet)
757 rq->cmd_flags |= REQ_QUIET;
758
759 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
760 if (rq->errors)
761 ret = -EIO;
762out:
763 blk_put_request(rq);
764 return ret;
765}
766
767/*
768 * A generic sense dump / resolve mechanism should be implemented across
769 * all ATAPI + SCSI devices.
770 */
771static void pkt_dump_sense(struct packet_command *cgc)
772{
773 static char *info[9] = { "No sense", "Recovered error", "Not ready",
774 "Medium error", "Hardware error", "Illegal request",
775 "Unit attention", "Data protect", "Blank check" };
776 int i;
777 struct request_sense *sense = cgc->sense;
778
779 printk(DRIVER_NAME":");
780 for (i = 0; i < CDROM_PACKET_SIZE; i++)
781 printk(" %02x", cgc->cmd[i]);
782 printk(" - ");
783
784 if (sense == NULL) {
785 printk("no sense\n");
786 return;
787 }
788
789 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
790
791 if (sense->sense_key > 8) {
792 printk(" (INVALID)\n");
793 return;
794 }
795
796 printk(" (%s)\n", info[sense->sense_key]);
797}
798
799/*
800 * flush the drive cache to media
801 */
802static int pkt_flush_cache(struct pktcdvd_device *pd)
803{
804 struct packet_command cgc;
805
806 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
807 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
808 cgc.quiet = 1;
809
810 /*
811 * the IMMED bit -- we default to not setting it, although that
812 * would allow a much faster close, this is safer
813 */
814#if 0
815 cgc.cmd[1] = 1 << 1;
816#endif
817 return pkt_generic_packet(pd, &cgc);
818}
819
820/*
821 * speed is given as the normal factor, e.g. 4 for 4x
822 */
823static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
824 unsigned write_speed, unsigned read_speed)
825{
826 struct packet_command cgc;
827 struct request_sense sense;
828 int ret;
829
830 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
831 cgc.sense = &sense;
832 cgc.cmd[0] = GPCMD_SET_SPEED;
833 cgc.cmd[2] = (read_speed >> 8) & 0xff;
834 cgc.cmd[3] = read_speed & 0xff;
835 cgc.cmd[4] = (write_speed >> 8) & 0xff;
836 cgc.cmd[5] = write_speed & 0xff;
837
838 if ((ret = pkt_generic_packet(pd, &cgc)))
839 pkt_dump_sense(&cgc);
840
841 return ret;
842}
843
844/*
845 * Queue a bio for processing by the low-level CD device. Must be called
846 * from process context.
847 */
848static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
849{
850 spin_lock(&pd->iosched.lock);
851 if (bio_data_dir(bio) == READ)
852 bio_list_add(&pd->iosched.read_queue, bio);
853 else
854 bio_list_add(&pd->iosched.write_queue, bio);
855 spin_unlock(&pd->iosched.lock);
856
857 atomic_set(&pd->iosched.attention, 1);
858 wake_up(&pd->wqueue);
859}
860
861/*
862 * Process the queued read/write requests. This function handles special
863 * requirements for CDRW drives:
864 * - A cache flush command must be inserted before a read request if the
865 * previous request was a write.
866 * - Switching between reading and writing is slow, so don't do it more often
867 * than necessary.
868 * - Optimize for throughput at the expense of latency. This means that streaming
869 * writes will never be interrupted by a read, but if the drive has to seek
870 * before the next write, switch to reading instead if there are any pending
871 * read requests.
872 * - Set the read speed according to current usage pattern. When only reading
873 * from the device, it's best to use the highest possible read speed, but
874 * when switching often between reading and writing, it's better to have the
875 * same read and write speeds.
876 */
877static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
878{
879
880 if (atomic_read(&pd->iosched.attention) == 0)
881 return;
882 atomic_set(&pd->iosched.attention, 0);
883
884 for (;;) {
885 struct bio *bio;
886 int reads_queued, writes_queued;
887
888 spin_lock(&pd->iosched.lock);
889 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
890 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
891 spin_unlock(&pd->iosched.lock);
892
893 if (!reads_queued && !writes_queued)
894 break;
895
896 if (pd->iosched.writing) {
897 int need_write_seek = 1;
898 spin_lock(&pd->iosched.lock);
899 bio = bio_list_peek(&pd->iosched.write_queue);
900 spin_unlock(&pd->iosched.lock);
901 if (bio && (bio->bi_sector == pd->iosched.last_write))
902 need_write_seek = 0;
903 if (need_write_seek && reads_queued) {
904 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
905 VPRINTK(DRIVER_NAME": write, waiting\n");
906 break;
907 }
908 pkt_flush_cache(pd);
909 pd->iosched.writing = 0;
910 }
911 } else {
912 if (!reads_queued && writes_queued) {
913 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
914 VPRINTK(DRIVER_NAME": read, waiting\n");
915 break;
916 }
917 pd->iosched.writing = 1;
918 }
919 }
920
921 spin_lock(&pd->iosched.lock);
922 if (pd->iosched.writing)
923 bio = bio_list_pop(&pd->iosched.write_queue);
924 else
925 bio = bio_list_pop(&pd->iosched.read_queue);
926 spin_unlock(&pd->iosched.lock);
927
928 if (!bio)
929 continue;
930
931 if (bio_data_dir(bio) == READ)
932 pd->iosched.successive_reads += bio->bi_size >> 10;
933 else {
934 pd->iosched.successive_reads = 0;
935 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
936 }
937 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
938 if (pd->read_speed == pd->write_speed) {
939 pd->read_speed = MAX_SPEED;
940 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
941 }
942 } else {
943 if (pd->read_speed != pd->write_speed) {
944 pd->read_speed = pd->write_speed;
945 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
946 }
947 }
948
949 atomic_inc(&pd->cdrw.pending_bios);
950 generic_make_request(bio);
951 }
952}
953
954/*
955 * Special care is needed if the underlying block device has a small
956 * max_phys_segments value.
957 */
958static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
959{
960 if ((pd->settings.size << 9) / CD_FRAMESIZE
961 <= queue_max_segments(q)) {
962 /*
963 * The cdrom device can handle one segment/frame
964 */
965 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
966 return 0;
967 } else if ((pd->settings.size << 9) / PAGE_SIZE
968 <= queue_max_segments(q)) {
969 /*
970 * We can handle this case at the expense of some extra memory
971 * copies during write operations
972 */
973 set_bit(PACKET_MERGE_SEGS, &pd->flags);
974 return 0;
975 } else {
976 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
977 return -EIO;
978 }
979}
980
981/*
982 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
983 */
984static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
985{
986 unsigned int copy_size = CD_FRAMESIZE;
987
988 while (copy_size > 0) {
989 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
990 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
991 src_bvl->bv_offset + offs;
992 void *vto = page_address(dst_page) + dst_offs;
993 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
994
995 BUG_ON(len < 0);
996 memcpy(vto, vfrom, len);
997 kunmap_atomic(vfrom, KM_USER0);
998
999 seg++;
1000 offs = 0;
1001 dst_offs += len;
1002 copy_size -= len;
1003 }
1004}
1005
1006/*
1007 * Copy all data for this packet to pkt->pages[], so that
1008 * a) The number of required segments for the write bio is minimized, which
1009 * is necessary for some scsi controllers.
1010 * b) The data can be used as cache to avoid read requests if we receive a
1011 * new write request for the same zone.
1012 */
1013static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1014{
1015 int f, p, offs;
1016
1017 /* Copy all data to pkt->pages[] */
1018 p = 0;
1019 offs = 0;
1020 for (f = 0; f < pkt->frames; f++) {
1021 if (bvec[f].bv_page != pkt->pages[p]) {
1022 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1023 void *vto = page_address(pkt->pages[p]) + offs;
1024 memcpy(vto, vfrom, CD_FRAMESIZE);
1025 kunmap_atomic(vfrom, KM_USER0);
1026 bvec[f].bv_page = pkt->pages[p];
1027 bvec[f].bv_offset = offs;
1028 } else {
1029 BUG_ON(bvec[f].bv_offset != offs);
1030 }
1031 offs += CD_FRAMESIZE;
1032 if (offs >= PAGE_SIZE) {
1033 offs = 0;
1034 p++;
1035 }
1036 }
1037}
1038
1039static void pkt_end_io_read(struct bio *bio, int err)
1040{
1041 struct packet_data *pkt = bio->bi_private;
1042 struct pktcdvd_device *pd = pkt->pd;
1043 BUG_ON(!pd);
1044
1045 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1047
1048 if (err)
1049 atomic_inc(&pkt->io_errors);
1050 if (atomic_dec_and_test(&pkt->io_wait)) {
1051 atomic_inc(&pkt->run_sm);
1052 wake_up(&pd->wqueue);
1053 }
1054 pkt_bio_finished(pd);
1055}
1056
1057static void pkt_end_io_packet_write(struct bio *bio, int err)
1058{
1059 struct packet_data *pkt = bio->bi_private;
1060 struct pktcdvd_device *pd = pkt->pd;
1061 BUG_ON(!pd);
1062
1063 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1064
1065 pd->stats.pkt_ended++;
1066
1067 pkt_bio_finished(pd);
1068 atomic_dec(&pkt->io_wait);
1069 atomic_inc(&pkt->run_sm);
1070 wake_up(&pd->wqueue);
1071}
1072
1073/*
1074 * Schedule reads for the holes in a packet
1075 */
1076static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077{
1078 int frames_read = 0;
1079 struct bio *bio;
1080 int f;
1081 char written[PACKET_MAX_SIZE];
1082
1083 BUG_ON(bio_list_empty(&pkt->orig_bios));
1084
1085 atomic_set(&pkt->io_wait, 0);
1086 atomic_set(&pkt->io_errors, 0);
1087
1088 /*
1089 * Figure out which frames we need to read before we can write.
1090 */
1091 memset(written, 0, sizeof(written));
1092 spin_lock(&pkt->lock);
1093 bio_list_for_each(bio, &pkt->orig_bios) {
1094 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095 int num_frames = bio->bi_size / CD_FRAMESIZE;
1096 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097 BUG_ON(first_frame < 0);
1098 BUG_ON(first_frame + num_frames > pkt->frames);
1099 for (f = first_frame; f < first_frame + num_frames; f++)
1100 written[f] = 1;
1101 }
1102 spin_unlock(&pkt->lock);
1103
1104 if (pkt->cache_valid) {
1105 VPRINTK("pkt_gather_data: zone %llx cached\n",
1106 (unsigned long long)pkt->sector);
1107 goto out_account;
1108 }
1109
1110 /*
1111 * Schedule reads for missing parts of the packet.
1112 */
1113 for (f = 0; f < pkt->frames; f++) {
1114 struct bio_vec *vec;
1115
1116 int p, offset;
1117 if (written[f])
1118 continue;
1119 bio = pkt->r_bios[f];
1120 vec = bio->bi_io_vec;
1121 bio_init(bio);
1122 bio->bi_max_vecs = 1;
1123 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124 bio->bi_bdev = pd->bdev;
1125 bio->bi_end_io = pkt_end_io_read;
1126 bio->bi_private = pkt;
1127 bio->bi_io_vec = vec;
1128 bio->bi_destructor = pkt_bio_destructor;
1129
1130 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133 f, pkt->pages[p], offset);
1134 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135 BUG();
1136
1137 atomic_inc(&pkt->io_wait);
1138 bio->bi_rw = READ;
1139 pkt_queue_bio(pd, bio);
1140 frames_read++;
1141 }
1142
1143out_account:
1144 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145 frames_read, (unsigned long long)pkt->sector);
1146 pd->stats.pkt_started++;
1147 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1148}
1149
1150/*
1151 * Find a packet matching zone, or the least recently used packet if
1152 * there is no match.
1153 */
1154static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1155{
1156 struct packet_data *pkt;
1157
1158 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160 list_del_init(&pkt->list);
1161 if (pkt->sector != zone)
1162 pkt->cache_valid = 0;
1163 return pkt;
1164 }
1165 }
1166 BUG();
1167 return NULL;
1168}
1169
1170static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1171{
1172 if (pkt->cache_valid) {
1173 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174 } else {
1175 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1176 }
1177}
1178
1179/*
1180 * recover a failed write, query for relocation if possible
1181 *
1182 * returns 1 if recovery is possible, or 0 if not
1183 *
1184 */
1185static int pkt_start_recovery(struct packet_data *pkt)
1186{
1187 /*
1188 * FIXME. We need help from the file system to implement
1189 * recovery handling.
1190 */
1191 return 0;
1192#if 0
1193 struct request *rq = pkt->rq;
1194 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195 struct block_device *pkt_bdev;
1196 struct super_block *sb = NULL;
1197 unsigned long old_block, new_block;
1198 sector_t new_sector;
1199
1200 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201 if (pkt_bdev) {
1202 sb = get_super(pkt_bdev);
1203 bdput(pkt_bdev);
1204 }
1205
1206 if (!sb)
1207 return 0;
1208
1209 if (!sb->s_op->relocate_blocks)
1210 goto out;
1211
1212 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214 goto out;
1215
1216 new_sector = new_block * (CD_FRAMESIZE >> 9);
1217 pkt->sector = new_sector;
1218
1219 pkt->bio->bi_sector = new_sector;
1220 pkt->bio->bi_next = NULL;
1221 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222 pkt->bio->bi_idx = 0;
1223
1224 BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1225 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228 BUG_ON(pkt->bio->bi_private != pkt);
1229
1230 drop_super(sb);
1231 return 1;
1232
1233out:
1234 drop_super(sb);
1235 return 0;
1236#endif
1237}
1238
1239static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1240{
1241#if PACKET_DEBUG > 1
1242 static const char *state_name[] = {
1243 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1244 };
1245 enum packet_data_state old_state = pkt->state;
1246 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1247 state_name[old_state], state_name[state]);
1248#endif
1249 pkt->state = state;
1250}
1251
1252/*
1253 * Scan the work queue to see if we can start a new packet.
1254 * returns non-zero if any work was done.
1255 */
1256static int pkt_handle_queue(struct pktcdvd_device *pd)
1257{
1258 struct packet_data *pkt, *p;
1259 struct bio *bio = NULL;
1260 sector_t zone = 0; /* Suppress gcc warning */
1261 struct pkt_rb_node *node, *first_node;
1262 struct rb_node *n;
1263 int wakeup;
1264
1265 VPRINTK("handle_queue\n");
1266
1267 atomic_set(&pd->scan_queue, 0);
1268
1269 if (list_empty(&pd->cdrw.pkt_free_list)) {
1270 VPRINTK("handle_queue: no pkt\n");
1271 return 0;
1272 }
1273
1274 /*
1275 * Try to find a zone we are not already working on.
1276 */
1277 spin_lock(&pd->lock);
1278 first_node = pkt_rbtree_find(pd, pd->current_sector);
1279 if (!first_node) {
1280 n = rb_first(&pd->bio_queue);
1281 if (n)
1282 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1283 }
1284 node = first_node;
1285 while (node) {
1286 bio = node->bio;
1287 zone = ZONE(bio->bi_sector, pd);
1288 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289 if (p->sector == zone) {
1290 bio = NULL;
1291 goto try_next_bio;
1292 }
1293 }
1294 break;
1295try_next_bio:
1296 node = pkt_rbtree_next(node);
1297 if (!node) {
1298 n = rb_first(&pd->bio_queue);
1299 if (n)
1300 node = rb_entry(n, struct pkt_rb_node, rb_node);
1301 }
1302 if (node == first_node)
1303 node = NULL;
1304 }
1305 spin_unlock(&pd->lock);
1306 if (!bio) {
1307 VPRINTK("handle_queue: no bio\n");
1308 return 0;
1309 }
1310
1311 pkt = pkt_get_packet_data(pd, zone);
1312
1313 pd->current_sector = zone + pd->settings.size;
1314 pkt->sector = zone;
1315 BUG_ON(pkt->frames != pd->settings.size >> 2);
1316 pkt->write_size = 0;
1317
1318 /*
1319 * Scan work queue for bios in the same zone and link them
1320 * to this packet.
1321 */
1322 spin_lock(&pd->lock);
1323 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1325 bio = node->bio;
1326 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327 (unsigned long long)ZONE(bio->bi_sector, pd));
1328 if (ZONE(bio->bi_sector, pd) != zone)
1329 break;
1330 pkt_rbtree_erase(pd, node);
1331 spin_lock(&pkt->lock);
1332 bio_list_add(&pkt->orig_bios, bio);
1333 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334 spin_unlock(&pkt->lock);
1335 }
1336 /* check write congestion marks, and if bio_queue_size is
1337 below, wake up any waiters */
1338 wakeup = (pd->write_congestion_on > 0
1339 && pd->bio_queue_size <= pd->write_congestion_off);
1340 spin_unlock(&pd->lock);
1341 if (wakeup) {
1342 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343 BLK_RW_ASYNC);
1344 }
1345
1346 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347 pkt_set_state(pkt, PACKET_WAITING_STATE);
1348 atomic_set(&pkt->run_sm, 1);
1349
1350 spin_lock(&pd->cdrw.active_list_lock);
1351 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352 spin_unlock(&pd->cdrw.active_list_lock);
1353
1354 return 1;
1355}
1356
1357/*
1358 * Assemble a bio to write one packet and queue the bio for processing
1359 * by the underlying block device.
1360 */
1361static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1362{
1363 struct bio *bio;
1364 int f;
1365 int frames_write;
1366 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1367
1368 for (f = 0; f < pkt->frames; f++) {
1369 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1371 }
1372
1373 /*
1374 * Fill-in bvec with data from orig_bios.
1375 */
1376 frames_write = 0;
1377 spin_lock(&pkt->lock);
1378 bio_list_for_each(bio, &pkt->orig_bios) {
1379 int segment = bio->bi_idx;
1380 int src_offs = 0;
1381 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382 int num_frames = bio->bi_size / CD_FRAMESIZE;
1383 BUG_ON(first_frame < 0);
1384 BUG_ON(first_frame + num_frames > pkt->frames);
1385 for (f = first_frame; f < first_frame + num_frames; f++) {
1386 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1387
1388 while (src_offs >= src_bvl->bv_len) {
1389 src_offs -= src_bvl->bv_len;
1390 segment++;
1391 BUG_ON(segment >= bio->bi_vcnt);
1392 src_bvl = bio_iovec_idx(bio, segment);
1393 }
1394
1395 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396 bvec[f].bv_page = src_bvl->bv_page;
1397 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398 } else {
1399 pkt_copy_bio_data(bio, segment, src_offs,
1400 bvec[f].bv_page, bvec[f].bv_offset);
1401 }
1402 src_offs += CD_FRAMESIZE;
1403 frames_write++;
1404 }
1405 }
1406 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407 spin_unlock(&pkt->lock);
1408
1409 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410 frames_write, (unsigned long long)pkt->sector);
1411 BUG_ON(frames_write != pkt->write_size);
1412
1413 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414 pkt_make_local_copy(pkt, bvec);
1415 pkt->cache_valid = 1;
1416 } else {
1417 pkt->cache_valid = 0;
1418 }
1419
1420 /* Start the write request */
1421 bio_init(pkt->w_bio);
1422 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423 pkt->w_bio->bi_sector = pkt->sector;
1424 pkt->w_bio->bi_bdev = pd->bdev;
1425 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426 pkt->w_bio->bi_private = pkt;
1427 pkt->w_bio->bi_io_vec = bvec;
1428 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429 for (f = 0; f < pkt->frames; f++)
1430 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431 BUG();
1432 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1433
1434 atomic_set(&pkt->io_wait, 1);
1435 pkt->w_bio->bi_rw = WRITE;
1436 pkt_queue_bio(pd, pkt->w_bio);
1437}
1438
1439static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1440{
1441 struct bio *bio;
1442
1443 if (!uptodate)
1444 pkt->cache_valid = 0;
1445
1446 /* Finish all bios corresponding to this packet */
1447 while ((bio = bio_list_pop(&pkt->orig_bios)))
1448 bio_endio(bio, uptodate ? 0 : -EIO);
1449}
1450
1451static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1452{
1453 int uptodate;
1454
1455 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1456
1457 for (;;) {
1458 switch (pkt->state) {
1459 case PACKET_WAITING_STATE:
1460 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461 return;
1462
1463 pkt->sleep_time = 0;
1464 pkt_gather_data(pd, pkt);
1465 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466 break;
1467
1468 case PACKET_READ_WAIT_STATE:
1469 if (atomic_read(&pkt->io_wait) > 0)
1470 return;
1471
1472 if (atomic_read(&pkt->io_errors) > 0) {
1473 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474 } else {
1475 pkt_start_write(pd, pkt);
1476 }
1477 break;
1478
1479 case PACKET_WRITE_WAIT_STATE:
1480 if (atomic_read(&pkt->io_wait) > 0)
1481 return;
1482
1483 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485 } else {
1486 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1487 }
1488 break;
1489
1490 case PACKET_RECOVERY_STATE:
1491 if (pkt_start_recovery(pkt)) {
1492 pkt_start_write(pd, pkt);
1493 } else {
1494 VPRINTK("No recovery possible\n");
1495 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1496 }
1497 break;
1498
1499 case PACKET_FINISHED_STATE:
1500 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501 pkt_finish_packet(pkt, uptodate);
1502 return;
1503
1504 default:
1505 BUG();
1506 break;
1507 }
1508 }
1509}
1510
1511static void pkt_handle_packets(struct pktcdvd_device *pd)
1512{
1513 struct packet_data *pkt, *next;
1514
1515 VPRINTK("pkt_handle_packets\n");
1516
1517 /*
1518 * Run state machine for active packets
1519 */
1520 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521 if (atomic_read(&pkt->run_sm) > 0) {
1522 atomic_set(&pkt->run_sm, 0);
1523 pkt_run_state_machine(pd, pkt);
1524 }
1525 }
1526
1527 /*
1528 * Move no longer active packets to the free list
1529 */
1530 spin_lock(&pd->cdrw.active_list_lock);
1531 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532 if (pkt->state == PACKET_FINISHED_STATE) {
1533 list_del(&pkt->list);
1534 pkt_put_packet_data(pd, pkt);
1535 pkt_set_state(pkt, PACKET_IDLE_STATE);
1536 atomic_set(&pd->scan_queue, 1);
1537 }
1538 }
1539 spin_unlock(&pd->cdrw.active_list_lock);
1540}
1541
1542static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1543{
1544 struct packet_data *pkt;
1545 int i;
1546
1547 for (i = 0; i < PACKET_NUM_STATES; i++)
1548 states[i] = 0;
1549
1550 spin_lock(&pd->cdrw.active_list_lock);
1551 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552 states[pkt->state]++;
1553 }
1554 spin_unlock(&pd->cdrw.active_list_lock);
1555}
1556
1557/*
1558 * kcdrwd is woken up when writes have been queued for one of our
1559 * registered devices
1560 */
1561static int kcdrwd(void *foobar)
1562{
1563 struct pktcdvd_device *pd = foobar;
1564 struct packet_data *pkt;
1565 long min_sleep_time, residue;
1566
1567 set_user_nice(current, -20);
1568 set_freezable();
1569
1570 for (;;) {
1571 DECLARE_WAITQUEUE(wait, current);
1572
1573 /*
1574 * Wait until there is something to do
1575 */
1576 add_wait_queue(&pd->wqueue, &wait);
1577 for (;;) {
1578 set_current_state(TASK_INTERRUPTIBLE);
1579
1580 /* Check if we need to run pkt_handle_queue */
1581 if (atomic_read(&pd->scan_queue) > 0)
1582 goto work_to_do;
1583
1584 /* Check if we need to run the state machine for some packet */
1585 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586 if (atomic_read(&pkt->run_sm) > 0)
1587 goto work_to_do;
1588 }
1589
1590 /* Check if we need to process the iosched queues */
1591 if (atomic_read(&pd->iosched.attention) != 0)
1592 goto work_to_do;
1593
1594 /* Otherwise, go to sleep */
1595 if (PACKET_DEBUG > 1) {
1596 int states[PACKET_NUM_STATES];
1597 pkt_count_states(pd, states);
1598 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599 states[0], states[1], states[2], states[3],
1600 states[4], states[5]);
1601 }
1602
1603 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606 min_sleep_time = pkt->sleep_time;
1607 }
1608
1609 VPRINTK("kcdrwd: sleeping\n");
1610 residue = schedule_timeout(min_sleep_time);
1611 VPRINTK("kcdrwd: wake up\n");
1612
1613 /* make swsusp happy with our thread */
1614 try_to_freeze();
1615
1616 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1617 if (!pkt->sleep_time)
1618 continue;
1619 pkt->sleep_time -= min_sleep_time - residue;
1620 if (pkt->sleep_time <= 0) {
1621 pkt->sleep_time = 0;
1622 atomic_inc(&pkt->run_sm);
1623 }
1624 }
1625
1626 if (kthread_should_stop())
1627 break;
1628 }
1629work_to_do:
1630 set_current_state(TASK_RUNNING);
1631 remove_wait_queue(&pd->wqueue, &wait);
1632
1633 if (kthread_should_stop())
1634 break;
1635
1636 /*
1637 * if pkt_handle_queue returns true, we can queue
1638 * another request.
1639 */
1640 while (pkt_handle_queue(pd))
1641 ;
1642
1643 /*
1644 * Handle packet state machine
1645 */
1646 pkt_handle_packets(pd);
1647
1648 /*
1649 * Handle iosched queues
1650 */
1651 pkt_iosched_process_queue(pd);
1652 }
1653
1654 return 0;
1655}
1656
1657static void pkt_print_settings(struct pktcdvd_device *pd)
1658{
1659 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1660 printk("%u blocks, ", pd->settings.size >> 2);
1661 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1662}
1663
1664static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1665{
1666 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1667
1668 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1669 cgc->cmd[2] = page_code | (page_control << 6);
1670 cgc->cmd[7] = cgc->buflen >> 8;
1671 cgc->cmd[8] = cgc->buflen & 0xff;
1672 cgc->data_direction = CGC_DATA_READ;
1673 return pkt_generic_packet(pd, cgc);
1674}
1675
1676static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1677{
1678 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1679 memset(cgc->buffer, 0, 2);
1680 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1681 cgc->cmd[1] = 0x10; /* PF */
1682 cgc->cmd[7] = cgc->buflen >> 8;
1683 cgc->cmd[8] = cgc->buflen & 0xff;
1684 cgc->data_direction = CGC_DATA_WRITE;
1685 return pkt_generic_packet(pd, cgc);
1686}
1687
1688static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1689{
1690 struct packet_command cgc;
1691 int ret;
1692
1693 /* set up command and get the disc info */
1694 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1695 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1696 cgc.cmd[8] = cgc.buflen = 2;
1697 cgc.quiet = 1;
1698
1699 if ((ret = pkt_generic_packet(pd, &cgc)))
1700 return ret;
1701
1702 /* not all drives have the same disc_info length, so requeue
1703 * packet with the length the drive tells us it can supply
1704 */
1705 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1706 sizeof(di->disc_information_length);
1707
1708 if (cgc.buflen > sizeof(disc_information))
1709 cgc.buflen = sizeof(disc_information);
1710
1711 cgc.cmd[8] = cgc.buflen;
1712 return pkt_generic_packet(pd, &cgc);
1713}
1714
1715static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1716{
1717 struct packet_command cgc;
1718 int ret;
1719
1720 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1721 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1722 cgc.cmd[1] = type & 3;
1723 cgc.cmd[4] = (track & 0xff00) >> 8;
1724 cgc.cmd[5] = track & 0xff;
1725 cgc.cmd[8] = 8;
1726 cgc.quiet = 1;
1727
1728 if ((ret = pkt_generic_packet(pd, &cgc)))
1729 return ret;
1730
1731 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1732 sizeof(ti->track_information_length);
1733
1734 if (cgc.buflen > sizeof(track_information))
1735 cgc.buflen = sizeof(track_information);
1736
1737 cgc.cmd[8] = cgc.buflen;
1738 return pkt_generic_packet(pd, &cgc);
1739}
1740
1741static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1742 long *last_written)
1743{
1744 disc_information di;
1745 track_information ti;
1746 __u32 last_track;
1747 int ret = -1;
1748
1749 if ((ret = pkt_get_disc_info(pd, &di)))
1750 return ret;
1751
1752 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1753 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1754 return ret;
1755
1756 /* if this track is blank, try the previous. */
1757 if (ti.blank) {
1758 last_track--;
1759 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1760 return ret;
1761 }
1762
1763 /* if last recorded field is valid, return it. */
1764 if (ti.lra_v) {
1765 *last_written = be32_to_cpu(ti.last_rec_address);
1766 } else {
1767 /* make it up instead */
1768 *last_written = be32_to_cpu(ti.track_start) +
1769 be32_to_cpu(ti.track_size);
1770 if (ti.free_blocks)
1771 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1772 }
1773 return 0;
1774}
1775
1776/*
1777 * write mode select package based on pd->settings
1778 */
1779static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1780{
1781 struct packet_command cgc;
1782 struct request_sense sense;
1783 write_param_page *wp;
1784 char buffer[128];
1785 int ret, size;
1786
1787 /* doesn't apply to DVD+RW or DVD-RAM */
1788 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1789 return 0;
1790
1791 memset(buffer, 0, sizeof(buffer));
1792 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1793 cgc.sense = &sense;
1794 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1795 pkt_dump_sense(&cgc);
1796 return ret;
1797 }
1798
1799 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1800 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1801 if (size > sizeof(buffer))
1802 size = sizeof(buffer);
1803
1804 /*
1805 * now get it all
1806 */
1807 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1808 cgc.sense = &sense;
1809 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1810 pkt_dump_sense(&cgc);
1811 return ret;
1812 }
1813
1814 /*
1815 * write page is offset header + block descriptor length
1816 */
1817 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1818
1819 wp->fp = pd->settings.fp;
1820 wp->track_mode = pd->settings.track_mode;
1821 wp->write_type = pd->settings.write_type;
1822 wp->data_block_type = pd->settings.block_mode;
1823
1824 wp->multi_session = 0;
1825
1826#ifdef PACKET_USE_LS
1827 wp->link_size = 7;
1828 wp->ls_v = 1;
1829#endif
1830
1831 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1832 wp->session_format = 0;
1833 wp->subhdr2 = 0x20;
1834 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1835 wp->session_format = 0x20;
1836 wp->subhdr2 = 8;
1837#if 0
1838 wp->mcn[0] = 0x80;
1839 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1840#endif
1841 } else {
1842 /*
1843 * paranoia
1844 */
1845 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1846 return 1;
1847 }
1848 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1849
1850 cgc.buflen = cgc.cmd[8] = size;
1851 if ((ret = pkt_mode_select(pd, &cgc))) {
1852 pkt_dump_sense(&cgc);
1853 return ret;
1854 }
1855
1856 pkt_print_settings(pd);
1857 return 0;
1858}
1859
1860/*
1861 * 1 -- we can write to this track, 0 -- we can't
1862 */
1863static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1864{
1865 switch (pd->mmc3_profile) {
1866 case 0x1a: /* DVD+RW */
1867 case 0x12: /* DVD-RAM */
1868 /* The track is always writable on DVD+RW/DVD-RAM */
1869 return 1;
1870 default:
1871 break;
1872 }
1873
1874 if (!ti->packet || !ti->fp)
1875 return 0;
1876
1877 /*
1878 * "good" settings as per Mt Fuji.
1879 */
1880 if (ti->rt == 0 && ti->blank == 0)
1881 return 1;
1882
1883 if (ti->rt == 0 && ti->blank == 1)
1884 return 1;
1885
1886 if (ti->rt == 1 && ti->blank == 0)
1887 return 1;
1888
1889 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1890 return 0;
1891}
1892
1893/*
1894 * 1 -- we can write to this disc, 0 -- we can't
1895 */
1896static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1897{
1898 switch (pd->mmc3_profile) {
1899 case 0x0a: /* CD-RW */
1900 case 0xffff: /* MMC3 not supported */
1901 break;
1902 case 0x1a: /* DVD+RW */
1903 case 0x13: /* DVD-RW */
1904 case 0x12: /* DVD-RAM */
1905 return 1;
1906 default:
1907 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1908 return 0;
1909 }
1910
1911 /*
1912 * for disc type 0xff we should probably reserve a new track.
1913 * but i'm not sure, should we leave this to user apps? probably.
1914 */
1915 if (di->disc_type == 0xff) {
1916 printk(DRIVER_NAME": Unknown disc. No track?\n");
1917 return 0;
1918 }
1919
1920 if (di->disc_type != 0x20 && di->disc_type != 0) {
1921 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1922 return 0;
1923 }
1924
1925 if (di->erasable == 0) {
1926 printk(DRIVER_NAME": Disc not erasable\n");
1927 return 0;
1928 }
1929
1930 if (di->border_status == PACKET_SESSION_RESERVED) {
1931 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1932 return 0;
1933 }
1934
1935 return 1;
1936}
1937
1938static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1939{
1940 struct packet_command cgc;
1941 unsigned char buf[12];
1942 disc_information di;
1943 track_information ti;
1944 int ret, track;
1945
1946 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1948 cgc.cmd[8] = 8;
1949 ret = pkt_generic_packet(pd, &cgc);
1950 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1951
1952 memset(&di, 0, sizeof(disc_information));
1953 memset(&ti, 0, sizeof(track_information));
1954
1955 if ((ret = pkt_get_disc_info(pd, &di))) {
1956 printk("failed get_disc\n");
1957 return ret;
1958 }
1959
1960 if (!pkt_writable_disc(pd, &di))
1961 return -EROFS;
1962
1963 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1964
1965 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1966 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1967 printk(DRIVER_NAME": failed get_track\n");
1968 return ret;
1969 }
1970
1971 if (!pkt_writable_track(pd, &ti)) {
1972 printk(DRIVER_NAME": can't write to this track\n");
1973 return -EROFS;
1974 }
1975
1976 /*
1977 * we keep packet size in 512 byte units, makes it easier to
1978 * deal with request calculations.
1979 */
1980 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1981 if (pd->settings.size == 0) {
1982 printk(DRIVER_NAME": detected zero packet size!\n");
1983 return -ENXIO;
1984 }
1985 if (pd->settings.size > PACKET_MAX_SECTORS) {
1986 printk(DRIVER_NAME": packet size is too big\n");
1987 return -EROFS;
1988 }
1989 pd->settings.fp = ti.fp;
1990 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1991
1992 if (ti.nwa_v) {
1993 pd->nwa = be32_to_cpu(ti.next_writable);
1994 set_bit(PACKET_NWA_VALID, &pd->flags);
1995 }
1996
1997 /*
1998 * in theory we could use lra on -RW media as well and just zero
1999 * blocks that haven't been written yet, but in practice that
2000 * is just a no-go. we'll use that for -R, naturally.
2001 */
2002 if (ti.lra_v) {
2003 pd->lra = be32_to_cpu(ti.last_rec_address);
2004 set_bit(PACKET_LRA_VALID, &pd->flags);
2005 } else {
2006 pd->lra = 0xffffffff;
2007 set_bit(PACKET_LRA_VALID, &pd->flags);
2008 }
2009
2010 /*
2011 * fine for now
2012 */
2013 pd->settings.link_loss = 7;
2014 pd->settings.write_type = 0; /* packet */
2015 pd->settings.track_mode = ti.track_mode;
2016
2017 /*
2018 * mode1 or mode2 disc
2019 */
2020 switch (ti.data_mode) {
2021 case PACKET_MODE1:
2022 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2023 break;
2024 case PACKET_MODE2:
2025 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2026 break;
2027 default:
2028 printk(DRIVER_NAME": unknown data mode\n");
2029 return -EROFS;
2030 }
2031 return 0;
2032}
2033
2034/*
2035 * enable/disable write caching on drive
2036 */
2037static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2038 int set)
2039{
2040 struct packet_command cgc;
2041 struct request_sense sense;
2042 unsigned char buf[64];
2043 int ret;
2044
2045 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2046 cgc.sense = &sense;
2047 cgc.buflen = pd->mode_offset + 12;
2048
2049 /*
2050 * caching mode page might not be there, so quiet this command
2051 */
2052 cgc.quiet = 1;
2053
2054 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2055 return ret;
2056
2057 buf[pd->mode_offset + 10] |= (!!set << 2);
2058
2059 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2060 ret = pkt_mode_select(pd, &cgc);
2061 if (ret) {
2062 printk(DRIVER_NAME": write caching control failed\n");
2063 pkt_dump_sense(&cgc);
2064 } else if (!ret && set)
2065 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2066 return ret;
2067}
2068
2069static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2070{
2071 struct packet_command cgc;
2072
2073 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2074 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2075 cgc.cmd[4] = lockflag ? 1 : 0;
2076 return pkt_generic_packet(pd, &cgc);
2077}
2078
2079/*
2080 * Returns drive maximum write speed
2081 */
2082static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2083 unsigned *write_speed)
2084{
2085 struct packet_command cgc;
2086 struct request_sense sense;
2087 unsigned char buf[256+18];
2088 unsigned char *cap_buf;
2089 int ret, offset;
2090
2091 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2092 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2093 cgc.sense = &sense;
2094
2095 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2096 if (ret) {
2097 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2098 sizeof(struct mode_page_header);
2099 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2100 if (ret) {
2101 pkt_dump_sense(&cgc);
2102 return ret;
2103 }
2104 }
2105
2106 offset = 20; /* Obsoleted field, used by older drives */
2107 if (cap_buf[1] >= 28)
2108 offset = 28; /* Current write speed selected */
2109 if (cap_buf[1] >= 30) {
2110 /* If the drive reports at least one "Logical Unit Write
2111 * Speed Performance Descriptor Block", use the information
2112 * in the first block. (contains the highest speed)
2113 */
2114 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2115 if (num_spdb > 0)
2116 offset = 34;
2117 }
2118
2119 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2120 return 0;
2121}
2122
2123/* These tables from cdrecord - I don't have orange book */
2124/* standard speed CD-RW (1-4x) */
2125static char clv_to_speed[16] = {
2126 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2127 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2128};
2129/* high speed CD-RW (-10x) */
2130static char hs_clv_to_speed[16] = {
2131 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2132 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2133};
2134/* ultra high speed CD-RW */
2135static char us_clv_to_speed[16] = {
2136 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2137 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2138};
2139
2140/*
2141 * reads the maximum media speed from ATIP
2142 */
2143static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2144 unsigned *speed)
2145{
2146 struct packet_command cgc;
2147 struct request_sense sense;
2148 unsigned char buf[64];
2149 unsigned int size, st, sp;
2150 int ret;
2151
2152 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2153 cgc.sense = &sense;
2154 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2155 cgc.cmd[1] = 2;
2156 cgc.cmd[2] = 4; /* READ ATIP */
2157 cgc.cmd[8] = 2;
2158 ret = pkt_generic_packet(pd, &cgc);
2159 if (ret) {
2160 pkt_dump_sense(&cgc);
2161 return ret;
2162 }
2163 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2164 if (size > sizeof(buf))
2165 size = sizeof(buf);
2166
2167 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2168 cgc.sense = &sense;
2169 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2170 cgc.cmd[1] = 2;
2171 cgc.cmd[2] = 4;
2172 cgc.cmd[8] = size;
2173 ret = pkt_generic_packet(pd, &cgc);
2174 if (ret) {
2175 pkt_dump_sense(&cgc);
2176 return ret;
2177 }
2178
2179 if (!(buf[6] & 0x40)) {
2180 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2181 return 1;
2182 }
2183 if (!(buf[6] & 0x4)) {
2184 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2185 return 1;
2186 }
2187
2188 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2189
2190 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2191
2192 /* Info from cdrecord */
2193 switch (st) {
2194 case 0: /* standard speed */
2195 *speed = clv_to_speed[sp];
2196 break;
2197 case 1: /* high speed */
2198 *speed = hs_clv_to_speed[sp];
2199 break;
2200 case 2: /* ultra high speed */
2201 *speed = us_clv_to_speed[sp];
2202 break;
2203 default:
2204 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2205 return 1;
2206 }
2207 if (*speed) {
2208 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2209 return 0;
2210 } else {
2211 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2212 return 1;
2213 }
2214}
2215
2216static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2217{
2218 struct packet_command cgc;
2219 struct request_sense sense;
2220 int ret;
2221
2222 VPRINTK(DRIVER_NAME": Performing OPC\n");
2223
2224 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2225 cgc.sense = &sense;
2226 cgc.timeout = 60*HZ;
2227 cgc.cmd[0] = GPCMD_SEND_OPC;
2228 cgc.cmd[1] = 1;
2229 if ((ret = pkt_generic_packet(pd, &cgc)))
2230 pkt_dump_sense(&cgc);
2231 return ret;
2232}
2233
2234static int pkt_open_write(struct pktcdvd_device *pd)
2235{
2236 int ret;
2237 unsigned int write_speed, media_write_speed, read_speed;
2238
2239 if ((ret = pkt_probe_settings(pd))) {
2240 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2241 return ret;
2242 }
2243
2244 if ((ret = pkt_set_write_settings(pd))) {
2245 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2246 return -EIO;
2247 }
2248
2249 pkt_write_caching(pd, USE_WCACHING);
2250
2251 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2252 write_speed = 16 * 177;
2253 switch (pd->mmc3_profile) {
2254 case 0x13: /* DVD-RW */
2255 case 0x1a: /* DVD+RW */
2256 case 0x12: /* DVD-RAM */
2257 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2258 break;
2259 default:
2260 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2261 media_write_speed = 16;
2262 write_speed = min(write_speed, media_write_speed * 177);
2263 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2264 break;
2265 }
2266 read_speed = write_speed;
2267
2268 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2269 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2270 return -EIO;
2271 }
2272 pd->write_speed = write_speed;
2273 pd->read_speed = read_speed;
2274
2275 if ((ret = pkt_perform_opc(pd))) {
2276 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2277 }
2278
2279 return 0;
2280}
2281
2282/*
2283 * called at open time.
2284 */
2285static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2286{
2287 int ret;
2288 long lba;
2289 struct request_queue *q;
2290
2291 /*
2292 * We need to re-open the cdrom device without O_NONBLOCK to be able
2293 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2294 * so bdget() can't fail.
2295 */
2296 bdget(pd->bdev->bd_dev);
2297 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2298 goto out;
2299
2300 if ((ret = pkt_get_last_written(pd, &lba))) {
2301 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2302 goto out_putdev;
2303 }
2304
2305 set_capacity(pd->disk, lba << 2);
2306 set_capacity(pd->bdev->bd_disk, lba << 2);
2307 bd_set_size(pd->bdev, (loff_t)lba << 11);
2308
2309 q = bdev_get_queue(pd->bdev);
2310 if (write) {
2311 if ((ret = pkt_open_write(pd)))
2312 goto out_putdev;
2313 /*
2314 * Some CDRW drives can not handle writes larger than one packet,
2315 * even if the size is a multiple of the packet size.
2316 */
2317 spin_lock_irq(q->queue_lock);
2318 blk_queue_max_hw_sectors(q, pd->settings.size);
2319 spin_unlock_irq(q->queue_lock);
2320 set_bit(PACKET_WRITABLE, &pd->flags);
2321 } else {
2322 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2323 clear_bit(PACKET_WRITABLE, &pd->flags);
2324 }
2325
2326 if ((ret = pkt_set_segment_merging(pd, q)))
2327 goto out_putdev;
2328
2329 if (write) {
2330 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2331 printk(DRIVER_NAME": not enough memory for buffers\n");
2332 ret = -ENOMEM;
2333 goto out_putdev;
2334 }
2335 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2336 }
2337
2338 return 0;
2339
2340out_putdev:
2341 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2342out:
2343 return ret;
2344}
2345
2346/*
2347 * called when the device is closed. makes sure that the device flushes
2348 * the internal cache before we close.
2349 */
2350static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2351{
2352 if (flush && pkt_flush_cache(pd))
2353 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2354
2355 pkt_lock_door(pd, 0);
2356
2357 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2358 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2359
2360 pkt_shrink_pktlist(pd);
2361}
2362
2363static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2364{
2365 if (dev_minor >= MAX_WRITERS)
2366 return NULL;
2367 return pkt_devs[dev_minor];
2368}
2369
2370static int pkt_open(struct block_device *bdev, fmode_t mode)
2371{
2372 struct pktcdvd_device *pd = NULL;
2373 int ret;
2374
2375 VPRINTK(DRIVER_NAME": entering open\n");
2376
2377 mutex_lock(&pktcdvd_mutex);
2378 mutex_lock(&ctl_mutex);
2379 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2380 if (!pd) {
2381 ret = -ENODEV;
2382 goto out;
2383 }
2384 BUG_ON(pd->refcnt < 0);
2385
2386 pd->refcnt++;
2387 if (pd->refcnt > 1) {
2388 if ((mode & FMODE_WRITE) &&
2389 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2390 ret = -EBUSY;
2391 goto out_dec;
2392 }
2393 } else {
2394 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2395 if (ret)
2396 goto out_dec;
2397 /*
2398 * needed here as well, since ext2 (among others) may change
2399 * the blocksize at mount time
2400 */
2401 set_blocksize(bdev, CD_FRAMESIZE);
2402 }
2403
2404 mutex_unlock(&ctl_mutex);
2405 mutex_unlock(&pktcdvd_mutex);
2406 return 0;
2407
2408out_dec:
2409 pd->refcnt--;
2410out:
2411 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2412 mutex_unlock(&ctl_mutex);
2413 mutex_unlock(&pktcdvd_mutex);
2414 return ret;
2415}
2416
2417static int pkt_close(struct gendisk *disk, fmode_t mode)
2418{
2419 struct pktcdvd_device *pd = disk->private_data;
2420 int ret = 0;
2421
2422 mutex_lock(&pktcdvd_mutex);
2423 mutex_lock(&ctl_mutex);
2424 pd->refcnt--;
2425 BUG_ON(pd->refcnt < 0);
2426 if (pd->refcnt == 0) {
2427 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2428 pkt_release_dev(pd, flush);
2429 }
2430 mutex_unlock(&ctl_mutex);
2431 mutex_unlock(&pktcdvd_mutex);
2432 return ret;
2433}
2434
2435
2436static void pkt_end_io_read_cloned(struct bio *bio, int err)
2437{
2438 struct packet_stacked_data *psd = bio->bi_private;
2439 struct pktcdvd_device *pd = psd->pd;
2440
2441 bio_put(bio);
2442 bio_endio(psd->bio, err);
2443 mempool_free(psd, psd_pool);
2444 pkt_bio_finished(pd);
2445}
2446
2447static int pkt_make_request(struct request_queue *q, struct bio *bio)
2448{
2449 struct pktcdvd_device *pd;
2450 char b[BDEVNAME_SIZE];
2451 sector_t zone;
2452 struct packet_data *pkt;
2453 int was_empty, blocked_bio;
2454 struct pkt_rb_node *node;
2455
2456 pd = q->queuedata;
2457 if (!pd) {
2458 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2459 goto end_io;
2460 }
2461
2462 /*
2463 * Clone READ bios so we can have our own bi_end_io callback.
2464 */
2465 if (bio_data_dir(bio) == READ) {
2466 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2467 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2468
2469 psd->pd = pd;
2470 psd->bio = bio;
2471 cloned_bio->bi_bdev = pd->bdev;
2472 cloned_bio->bi_private = psd;
2473 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2474 pd->stats.secs_r += bio->bi_size >> 9;
2475 pkt_queue_bio(pd, cloned_bio);
2476 return 0;
2477 }
2478
2479 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2480 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2481 pd->name, (unsigned long long)bio->bi_sector);
2482 goto end_io;
2483 }
2484
2485 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2486 printk(DRIVER_NAME": wrong bio size\n");
2487 goto end_io;
2488 }
2489
2490 blk_queue_bounce(q, &bio);
2491
2492 zone = ZONE(bio->bi_sector, pd);
2493 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2494 (unsigned long long)bio->bi_sector,
2495 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2496
2497 /* Check if we have to split the bio */
2498 {
2499 struct bio_pair *bp;
2500 sector_t last_zone;
2501 int first_sectors;
2502
2503 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2504 if (last_zone != zone) {
2505 BUG_ON(last_zone != zone + pd->settings.size);
2506 first_sectors = last_zone - bio->bi_sector;
2507 bp = bio_split(bio, first_sectors);
2508 BUG_ON(!bp);
2509 pkt_make_request(q, &bp->bio1);
2510 pkt_make_request(q, &bp->bio2);
2511 bio_pair_release(bp);
2512 return 0;
2513 }
2514 }
2515
2516 /*
2517 * If we find a matching packet in state WAITING or READ_WAIT, we can
2518 * just append this bio to that packet.
2519 */
2520 spin_lock(&pd->cdrw.active_list_lock);
2521 blocked_bio = 0;
2522 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2523 if (pkt->sector == zone) {
2524 spin_lock(&pkt->lock);
2525 if ((pkt->state == PACKET_WAITING_STATE) ||
2526 (pkt->state == PACKET_READ_WAIT_STATE)) {
2527 bio_list_add(&pkt->orig_bios, bio);
2528 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2529 if ((pkt->write_size >= pkt->frames) &&
2530 (pkt->state == PACKET_WAITING_STATE)) {
2531 atomic_inc(&pkt->run_sm);
2532 wake_up(&pd->wqueue);
2533 }
2534 spin_unlock(&pkt->lock);
2535 spin_unlock(&pd->cdrw.active_list_lock);
2536 return 0;
2537 } else {
2538 blocked_bio = 1;
2539 }
2540 spin_unlock(&pkt->lock);
2541 }
2542 }
2543 spin_unlock(&pd->cdrw.active_list_lock);
2544
2545 /*
2546 * Test if there is enough room left in the bio work queue
2547 * (queue size >= congestion on mark).
2548 * If not, wait till the work queue size is below the congestion off mark.
2549 */
2550 spin_lock(&pd->lock);
2551 if (pd->write_congestion_on > 0
2552 && pd->bio_queue_size >= pd->write_congestion_on) {
2553 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2554 do {
2555 spin_unlock(&pd->lock);
2556 congestion_wait(BLK_RW_ASYNC, HZ);
2557 spin_lock(&pd->lock);
2558 } while(pd->bio_queue_size > pd->write_congestion_off);
2559 }
2560 spin_unlock(&pd->lock);
2561
2562 /*
2563 * No matching packet found. Store the bio in the work queue.
2564 */
2565 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2566 node->bio = bio;
2567 spin_lock(&pd->lock);
2568 BUG_ON(pd->bio_queue_size < 0);
2569 was_empty = (pd->bio_queue_size == 0);
2570 pkt_rbtree_insert(pd, node);
2571 spin_unlock(&pd->lock);
2572
2573 /*
2574 * Wake up the worker thread.
2575 */
2576 atomic_set(&pd->scan_queue, 1);
2577 if (was_empty) {
2578 /* This wake_up is required for correct operation */
2579 wake_up(&pd->wqueue);
2580 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2581 /*
2582 * This wake up is not required for correct operation,
2583 * but improves performance in some cases.
2584 */
2585 wake_up(&pd->wqueue);
2586 }
2587 return 0;
2588end_io:
2589 bio_io_error(bio);
2590 return 0;
2591}
2592
2593
2594
2595static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2596 struct bio_vec *bvec)
2597{
2598 struct pktcdvd_device *pd = q->queuedata;
2599 sector_t zone = ZONE(bmd->bi_sector, pd);
2600 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2601 int remaining = (pd->settings.size << 9) - used;
2602 int remaining2;
2603
2604 /*
2605 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2606 * boundary, pkt_make_request() will split the bio.
2607 */
2608 remaining2 = PAGE_SIZE - bmd->bi_size;
2609 remaining = max(remaining, remaining2);
2610
2611 BUG_ON(remaining < 0);
2612 return remaining;
2613}
2614
2615static void pkt_init_queue(struct pktcdvd_device *pd)
2616{
2617 struct request_queue *q = pd->disk->queue;
2618
2619 blk_queue_make_request(q, pkt_make_request);
2620 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2621 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2622 blk_queue_merge_bvec(q, pkt_merge_bvec);
2623 q->queuedata = pd;
2624}
2625
2626static int pkt_seq_show(struct seq_file *m, void *p)
2627{
2628 struct pktcdvd_device *pd = m->private;
2629 char *msg;
2630 char bdev_buf[BDEVNAME_SIZE];
2631 int states[PACKET_NUM_STATES];
2632
2633 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2634 bdevname(pd->bdev, bdev_buf));
2635
2636 seq_printf(m, "\nSettings:\n");
2637 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2638
2639 if (pd->settings.write_type == 0)
2640 msg = "Packet";
2641 else
2642 msg = "Unknown";
2643 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2644
2645 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2646 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2647
2648 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2649
2650 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2651 msg = "Mode 1";
2652 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2653 msg = "Mode 2";
2654 else
2655 msg = "Unknown";
2656 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2657
2658 seq_printf(m, "\nStatistics:\n");
2659 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2660 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2661 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2662 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2663 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2664
2665 seq_printf(m, "\nMisc:\n");
2666 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2667 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2668 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2669 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2670 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2671 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2672
2673 seq_printf(m, "\nQueue state:\n");
2674 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2675 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2676 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2677
2678 pkt_count_states(pd, states);
2679 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2680 states[0], states[1], states[2], states[3], states[4], states[5]);
2681
2682 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2683 pd->write_congestion_off,
2684 pd->write_congestion_on);
2685 return 0;
2686}
2687
2688static int pkt_seq_open(struct inode *inode, struct file *file)
2689{
2690 return single_open(file, pkt_seq_show, PDE(inode)->data);
2691}
2692
2693static const struct file_operations pkt_proc_fops = {
2694 .open = pkt_seq_open,
2695 .read = seq_read,
2696 .llseek = seq_lseek,
2697 .release = single_release
2698};
2699
2700static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2701{
2702 int i;
2703 int ret = 0;
2704 char b[BDEVNAME_SIZE];
2705 struct block_device *bdev;
2706
2707 if (pd->pkt_dev == dev) {
2708 printk(DRIVER_NAME": Recursive setup not allowed\n");
2709 return -EBUSY;
2710 }
2711 for (i = 0; i < MAX_WRITERS; i++) {
2712 struct pktcdvd_device *pd2 = pkt_devs[i];
2713 if (!pd2)
2714 continue;
2715 if (pd2->bdev->bd_dev == dev) {
2716 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2717 return -EBUSY;
2718 }
2719 if (pd2->pkt_dev == dev) {
2720 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2721 return -EBUSY;
2722 }
2723 }
2724
2725 bdev = bdget(dev);
2726 if (!bdev)
2727 return -ENOMEM;
2728 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2729 if (ret)
2730 return ret;
2731
2732 /* This is safe, since we have a reference from open(). */
2733 __module_get(THIS_MODULE);
2734
2735 pd->bdev = bdev;
2736 set_blocksize(bdev, CD_FRAMESIZE);
2737
2738 pkt_init_queue(pd);
2739
2740 atomic_set(&pd->cdrw.pending_bios, 0);
2741 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2742 if (IS_ERR(pd->cdrw.thread)) {
2743 printk(DRIVER_NAME": can't start kernel thread\n");
2744 ret = -ENOMEM;
2745 goto out_mem;
2746 }
2747
2748 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2749 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2750 return 0;
2751
2752out_mem:
2753 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2754 /* This is safe: open() is still holding a reference. */
2755 module_put(THIS_MODULE);
2756 return ret;
2757}
2758
2759static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2760{
2761 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2762 int ret;
2763
2764 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2765 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2766
2767 mutex_lock(&pktcdvd_mutex);
2768 switch (cmd) {
2769 case CDROMEJECT:
2770 /*
2771 * The door gets locked when the device is opened, so we
2772 * have to unlock it or else the eject command fails.
2773 */
2774 if (pd->refcnt == 1)
2775 pkt_lock_door(pd, 0);
2776 /* fallthru */
2777 /*
2778 * forward selected CDROM ioctls to CD-ROM, for UDF
2779 */
2780 case CDROMMULTISESSION:
2781 case CDROMREADTOCENTRY:
2782 case CDROM_LAST_WRITTEN:
2783 case CDROM_SEND_PACKET:
2784 case SCSI_IOCTL_SEND_COMMAND:
2785 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2786 break;
2787
2788 default:
2789 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2790 ret = -ENOTTY;
2791 }
2792 mutex_unlock(&pktcdvd_mutex);
2793
2794 return ret;
2795}
2796
2797static unsigned int pkt_check_events(struct gendisk *disk,
2798 unsigned int clearing)
2799{
2800 struct pktcdvd_device *pd = disk->private_data;
2801 struct gendisk *attached_disk;
2802
2803 if (!pd)
2804 return 0;
2805 if (!pd->bdev)
2806 return 0;
2807 attached_disk = pd->bdev->bd_disk;
2808 if (!attached_disk || !attached_disk->fops->check_events)
2809 return 0;
2810 return attached_disk->fops->check_events(attached_disk, clearing);
2811}
2812
2813static const struct block_device_operations pktcdvd_ops = {
2814 .owner = THIS_MODULE,
2815 .open = pkt_open,
2816 .release = pkt_close,
2817 .ioctl = pkt_ioctl,
2818 .check_events = pkt_check_events,
2819};
2820
2821static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2822{
2823 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2824}
2825
2826/*
2827 * Set up mapping from pktcdvd device to CD-ROM device.
2828 */
2829static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2830{
2831 int idx;
2832 int ret = -ENOMEM;
2833 struct pktcdvd_device *pd;
2834 struct gendisk *disk;
2835
2836 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2837
2838 for (idx = 0; idx < MAX_WRITERS; idx++)
2839 if (!pkt_devs[idx])
2840 break;
2841 if (idx == MAX_WRITERS) {
2842 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2843 ret = -EBUSY;
2844 goto out_mutex;
2845 }
2846
2847 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2848 if (!pd)
2849 goto out_mutex;
2850
2851 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2852 sizeof(struct pkt_rb_node));
2853 if (!pd->rb_pool)
2854 goto out_mem;
2855
2856 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2857 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2858 spin_lock_init(&pd->cdrw.active_list_lock);
2859
2860 spin_lock_init(&pd->lock);
2861 spin_lock_init(&pd->iosched.lock);
2862 bio_list_init(&pd->iosched.read_queue);
2863 bio_list_init(&pd->iosched.write_queue);
2864 sprintf(pd->name, DRIVER_NAME"%d", idx);
2865 init_waitqueue_head(&pd->wqueue);
2866 pd->bio_queue = RB_ROOT;
2867
2868 pd->write_congestion_on = write_congestion_on;
2869 pd->write_congestion_off = write_congestion_off;
2870
2871 disk = alloc_disk(1);
2872 if (!disk)
2873 goto out_mem;
2874 pd->disk = disk;
2875 disk->major = pktdev_major;
2876 disk->first_minor = idx;
2877 disk->fops = &pktcdvd_ops;
2878 disk->flags = GENHD_FL_REMOVABLE;
2879 strcpy(disk->disk_name, pd->name);
2880 disk->devnode = pktcdvd_devnode;
2881 disk->private_data = pd;
2882 disk->queue = blk_alloc_queue(GFP_KERNEL);
2883 if (!disk->queue)
2884 goto out_mem2;
2885
2886 pd->pkt_dev = MKDEV(pktdev_major, idx);
2887 ret = pkt_new_dev(pd, dev);
2888 if (ret)
2889 goto out_new_dev;
2890
2891 /* inherit events of the host device */
2892 disk->events = pd->bdev->bd_disk->events;
2893 disk->async_events = pd->bdev->bd_disk->async_events;
2894
2895 add_disk(disk);
2896
2897 pkt_sysfs_dev_new(pd);
2898 pkt_debugfs_dev_new(pd);
2899
2900 pkt_devs[idx] = pd;
2901 if (pkt_dev)
2902 *pkt_dev = pd->pkt_dev;
2903
2904 mutex_unlock(&ctl_mutex);
2905 return 0;
2906
2907out_new_dev:
2908 blk_cleanup_queue(disk->queue);
2909out_mem2:
2910 put_disk(disk);
2911out_mem:
2912 if (pd->rb_pool)
2913 mempool_destroy(pd->rb_pool);
2914 kfree(pd);
2915out_mutex:
2916 mutex_unlock(&ctl_mutex);
2917 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2918 return ret;
2919}
2920
2921/*
2922 * Tear down mapping from pktcdvd device to CD-ROM device.
2923 */
2924static int pkt_remove_dev(dev_t pkt_dev)
2925{
2926 struct pktcdvd_device *pd;
2927 int idx;
2928 int ret = 0;
2929
2930 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2931
2932 for (idx = 0; idx < MAX_WRITERS; idx++) {
2933 pd = pkt_devs[idx];
2934 if (pd && (pd->pkt_dev == pkt_dev))
2935 break;
2936 }
2937 if (idx == MAX_WRITERS) {
2938 DPRINTK(DRIVER_NAME": dev not setup\n");
2939 ret = -ENXIO;
2940 goto out;
2941 }
2942
2943 if (pd->refcnt > 0) {
2944 ret = -EBUSY;
2945 goto out;
2946 }
2947 if (!IS_ERR(pd->cdrw.thread))
2948 kthread_stop(pd->cdrw.thread);
2949
2950 pkt_devs[idx] = NULL;
2951
2952 pkt_debugfs_dev_remove(pd);
2953 pkt_sysfs_dev_remove(pd);
2954
2955 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2956
2957 remove_proc_entry(pd->name, pkt_proc);
2958 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2959
2960 del_gendisk(pd->disk);
2961 blk_cleanup_queue(pd->disk->queue);
2962 put_disk(pd->disk);
2963
2964 mempool_destroy(pd->rb_pool);
2965 kfree(pd);
2966
2967 /* This is safe: open() is still holding a reference. */
2968 module_put(THIS_MODULE);
2969
2970out:
2971 mutex_unlock(&ctl_mutex);
2972 return ret;
2973}
2974
2975static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2976{
2977 struct pktcdvd_device *pd;
2978
2979 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2980
2981 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2982 if (pd) {
2983 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2984 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2985 } else {
2986 ctrl_cmd->dev = 0;
2987 ctrl_cmd->pkt_dev = 0;
2988 }
2989 ctrl_cmd->num_devices = MAX_WRITERS;
2990
2991 mutex_unlock(&ctl_mutex);
2992}
2993
2994static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2995{
2996 void __user *argp = (void __user *)arg;
2997 struct pkt_ctrl_command ctrl_cmd;
2998 int ret = 0;
2999 dev_t pkt_dev = 0;
3000
3001 if (cmd != PACKET_CTRL_CMD)
3002 return -ENOTTY;
3003
3004 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3005 return -EFAULT;
3006
3007 switch (ctrl_cmd.command) {
3008 case PKT_CTRL_CMD_SETUP:
3009 if (!capable(CAP_SYS_ADMIN))
3010 return -EPERM;
3011 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3012 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3013 break;
3014 case PKT_CTRL_CMD_TEARDOWN:
3015 if (!capable(CAP_SYS_ADMIN))
3016 return -EPERM;
3017 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3018 break;
3019 case PKT_CTRL_CMD_STATUS:
3020 pkt_get_status(&ctrl_cmd);
3021 break;
3022 default:
3023 return -ENOTTY;
3024 }
3025
3026 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3027 return -EFAULT;
3028 return ret;
3029}
3030
3031#ifdef CONFIG_COMPAT
3032static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3033{
3034 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3035}
3036#endif
3037
3038static const struct file_operations pkt_ctl_fops = {
3039 .open = nonseekable_open,
3040 .unlocked_ioctl = pkt_ctl_ioctl,
3041#ifdef CONFIG_COMPAT
3042 .compat_ioctl = pkt_ctl_compat_ioctl,
3043#endif
3044 .owner = THIS_MODULE,
3045 .llseek = no_llseek,
3046};
3047
3048static struct miscdevice pkt_misc = {
3049 .minor = MISC_DYNAMIC_MINOR,
3050 .name = DRIVER_NAME,
3051 .nodename = "pktcdvd/control",
3052 .fops = &pkt_ctl_fops
3053};
3054
3055static int __init pkt_init(void)
3056{
3057 int ret;
3058
3059 mutex_init(&ctl_mutex);
3060
3061 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3062 sizeof(struct packet_stacked_data));
3063 if (!psd_pool)
3064 return -ENOMEM;
3065
3066 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3067 if (ret < 0) {
3068 printk(DRIVER_NAME": Unable to register block device\n");
3069 goto out2;
3070 }
3071 if (!pktdev_major)
3072 pktdev_major = ret;
3073
3074 ret = pkt_sysfs_init();
3075 if (ret)
3076 goto out;
3077
3078 pkt_debugfs_init();
3079
3080 ret = misc_register(&pkt_misc);
3081 if (ret) {
3082 printk(DRIVER_NAME": Unable to register misc device\n");
3083 goto out_misc;
3084 }
3085
3086 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3087
3088 return 0;
3089
3090out_misc:
3091 pkt_debugfs_cleanup();
3092 pkt_sysfs_cleanup();
3093out:
3094 unregister_blkdev(pktdev_major, DRIVER_NAME);
3095out2:
3096 mempool_destroy(psd_pool);
3097 return ret;
3098}
3099
3100static void __exit pkt_exit(void)
3101{
3102 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3103 misc_deregister(&pkt_misc);
3104
3105 pkt_debugfs_cleanup();
3106 pkt_sysfs_cleanup();
3107
3108 unregister_blkdev(pktdev_major, DRIVER_NAME);
3109 mempool_destroy(psd_pool);
3110}
3111
3112MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3113MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3114MODULE_LICENSE("GPL");
3115
3116module_init(pkt_init);
3117module_exit(pkt_exit);
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom ->submit_bio function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49#include <linux/pktcdvd.h>
50#include <linux/module.h>
51#include <linux/types.h>
52#include <linux/kernel.h>
53#include <linux/compat.h>
54#include <linux/kthread.h>
55#include <linux/errno.h>
56#include <linux/spinlock.h>
57#include <linux/file.h>
58#include <linux/proc_fs.h>
59#include <linux/seq_file.h>
60#include <linux/miscdevice.h>
61#include <linux/freezer.h>
62#include <linux/mutex.h>
63#include <linux/slab.h>
64#include <linux/backing-dev.h>
65#include <scsi/scsi_cmnd.h>
66#include <scsi/scsi_ioctl.h>
67#include <scsi/scsi.h>
68#include <linux/debugfs.h>
69#include <linux/device.h>
70#include <linux/nospec.h>
71#include <linux/uaccess.h>
72
73#define DRIVER_NAME "pktcdvd"
74
75#define pkt_err(pd, fmt, ...) \
76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77#define pkt_notice(pd, fmt, ...) \
78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79#define pkt_info(pd, fmt, ...) \
80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81
82#define pkt_dbg(level, pd, fmt, ...) \
83do { \
84 if (level == 2 && PACKET_DEBUG >= 2) \
85 pr_notice("%s: %s():" fmt, \
86 pd->name, __func__, ##__VA_ARGS__); \
87 else if (level == 1 && PACKET_DEBUG >= 1) \
88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
89} while (0)
90
91#define MAX_SPEED 0xffff
92
93static DEFINE_MUTEX(pktcdvd_mutex);
94static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95static struct proc_dir_entry *pkt_proc;
96static int pktdev_major;
97static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
98static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
100static mempool_t psd_pool;
101static struct bio_set pkt_bio_set;
102
103static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
104static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105
106/* forward declaration */
107static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108static int pkt_remove_dev(dev_t pkt_dev);
109static int pkt_seq_show(struct seq_file *m, void *p);
110
111static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112{
113 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
114}
115
116/*
117 * create and register a pktcdvd kernel object.
118 */
119static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
120 const char* name,
121 struct kobject* parent,
122 struct kobj_type* ktype)
123{
124 struct pktcdvd_kobj *p;
125 int error;
126
127 p = kzalloc(sizeof(*p), GFP_KERNEL);
128 if (!p)
129 return NULL;
130 p->pd = pd;
131 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
132 if (error) {
133 kobject_put(&p->kobj);
134 return NULL;
135 }
136 kobject_uevent(&p->kobj, KOBJ_ADD);
137 return p;
138}
139/*
140 * remove a pktcdvd kernel object.
141 */
142static void pkt_kobj_remove(struct pktcdvd_kobj *p)
143{
144 if (p)
145 kobject_put(&p->kobj);
146}
147/*
148 * default release function for pktcdvd kernel objects.
149 */
150static void pkt_kobj_release(struct kobject *kobj)
151{
152 kfree(to_pktcdvdkobj(kobj));
153}
154
155
156/**********************************************************
157 *
158 * sysfs interface for pktcdvd
159 * by (C) 2006 Thomas Maier <balagi@justmail.de>
160 *
161 **********************************************************/
162
163#define DEF_ATTR(_obj,_name,_mode) \
164 static struct attribute _obj = { .name = _name, .mode = _mode }
165
166/**********************************************************
167 /sys/class/pktcdvd/pktcdvd[0-7]/
168 stat/reset
169 stat/packets_started
170 stat/packets_finished
171 stat/kb_written
172 stat/kb_read
173 stat/kb_read_gather
174 write_queue/size
175 write_queue/congestion_off
176 write_queue/congestion_on
177 **********************************************************/
178
179DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
180DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
181DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
182DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
183DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
184DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
185
186static struct attribute *kobj_pkt_attrs_stat[] = {
187 &kobj_pkt_attr_st1,
188 &kobj_pkt_attr_st2,
189 &kobj_pkt_attr_st3,
190 &kobj_pkt_attr_st4,
191 &kobj_pkt_attr_st5,
192 &kobj_pkt_attr_st6,
193 NULL
194};
195
196DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
197DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
198DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
199
200static struct attribute *kobj_pkt_attrs_wqueue[] = {
201 &kobj_pkt_attr_wq1,
202 &kobj_pkt_attr_wq2,
203 &kobj_pkt_attr_wq3,
204 NULL
205};
206
207static ssize_t kobj_pkt_show(struct kobject *kobj,
208 struct attribute *attr, char *data)
209{
210 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
211 int n = 0;
212 int v;
213 if (strcmp(attr->name, "packets_started") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
215
216 } else if (strcmp(attr->name, "packets_finished") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
218
219 } else if (strcmp(attr->name, "kb_written") == 0) {
220 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
221
222 } else if (strcmp(attr->name, "kb_read") == 0) {
223 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
224
225 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
226 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
227
228 } else if (strcmp(attr->name, "size") == 0) {
229 spin_lock(&pd->lock);
230 v = pd->bio_queue_size;
231 spin_unlock(&pd->lock);
232 n = sprintf(data, "%d\n", v);
233
234 } else if (strcmp(attr->name, "congestion_off") == 0) {
235 spin_lock(&pd->lock);
236 v = pd->write_congestion_off;
237 spin_unlock(&pd->lock);
238 n = sprintf(data, "%d\n", v);
239
240 } else if (strcmp(attr->name, "congestion_on") == 0) {
241 spin_lock(&pd->lock);
242 v = pd->write_congestion_on;
243 spin_unlock(&pd->lock);
244 n = sprintf(data, "%d\n", v);
245 }
246 return n;
247}
248
249static void init_write_congestion_marks(int* lo, int* hi)
250{
251 if (*hi > 0) {
252 *hi = max(*hi, 500);
253 *hi = min(*hi, 1000000);
254 if (*lo <= 0)
255 *lo = *hi - 100;
256 else {
257 *lo = min(*lo, *hi - 100);
258 *lo = max(*lo, 100);
259 }
260 } else {
261 *hi = -1;
262 *lo = -1;
263 }
264}
265
266static ssize_t kobj_pkt_store(struct kobject *kobj,
267 struct attribute *attr,
268 const char *data, size_t len)
269{
270 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
271 int val;
272
273 if (strcmp(attr->name, "reset") == 0 && len > 0) {
274 pd->stats.pkt_started = 0;
275 pd->stats.pkt_ended = 0;
276 pd->stats.secs_w = 0;
277 pd->stats.secs_rg = 0;
278 pd->stats.secs_r = 0;
279
280 } else if (strcmp(attr->name, "congestion_off") == 0
281 && sscanf(data, "%d", &val) == 1) {
282 spin_lock(&pd->lock);
283 pd->write_congestion_off = val;
284 init_write_congestion_marks(&pd->write_congestion_off,
285 &pd->write_congestion_on);
286 spin_unlock(&pd->lock);
287
288 } else if (strcmp(attr->name, "congestion_on") == 0
289 && sscanf(data, "%d", &val) == 1) {
290 spin_lock(&pd->lock);
291 pd->write_congestion_on = val;
292 init_write_congestion_marks(&pd->write_congestion_off,
293 &pd->write_congestion_on);
294 spin_unlock(&pd->lock);
295 }
296 return len;
297}
298
299static const struct sysfs_ops kobj_pkt_ops = {
300 .show = kobj_pkt_show,
301 .store = kobj_pkt_store
302};
303static struct kobj_type kobj_pkt_type_stat = {
304 .release = pkt_kobj_release,
305 .sysfs_ops = &kobj_pkt_ops,
306 .default_attrs = kobj_pkt_attrs_stat
307};
308static struct kobj_type kobj_pkt_type_wqueue = {
309 .release = pkt_kobj_release,
310 .sysfs_ops = &kobj_pkt_ops,
311 .default_attrs = kobj_pkt_attrs_wqueue
312};
313
314static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
315{
316 if (class_pktcdvd) {
317 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
318 "%s", pd->name);
319 if (IS_ERR(pd->dev))
320 pd->dev = NULL;
321 }
322 if (pd->dev) {
323 pd->kobj_stat = pkt_kobj_create(pd, "stat",
324 &pd->dev->kobj,
325 &kobj_pkt_type_stat);
326 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
327 &pd->dev->kobj,
328 &kobj_pkt_type_wqueue);
329 }
330}
331
332static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
333{
334 pkt_kobj_remove(pd->kobj_stat);
335 pkt_kobj_remove(pd->kobj_wqueue);
336 if (class_pktcdvd)
337 device_unregister(pd->dev);
338}
339
340
341/********************************************************************
342 /sys/class/pktcdvd/
343 add map block device
344 remove unmap packet dev
345 device_map show mappings
346 *******************************************************************/
347
348static void class_pktcdvd_release(struct class *cls)
349{
350 kfree(cls);
351}
352
353static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
354 char *data)
355{
356 int n = 0;
357 int idx;
358 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
359 for (idx = 0; idx < MAX_WRITERS; idx++) {
360 struct pktcdvd_device *pd = pkt_devs[idx];
361 if (!pd)
362 continue;
363 n += sprintf(data+n, "%s %u:%u %u:%u\n",
364 pd->name,
365 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
366 MAJOR(pd->bdev->bd_dev),
367 MINOR(pd->bdev->bd_dev));
368 }
369 mutex_unlock(&ctl_mutex);
370 return n;
371}
372static CLASS_ATTR_RO(device_map);
373
374static ssize_t add_store(struct class *c, struct class_attribute *attr,
375 const char *buf, size_t count)
376{
377 unsigned int major, minor;
378
379 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 /* pkt_setup_dev() expects caller to hold reference to self */
381 if (!try_module_get(THIS_MODULE))
382 return -ENODEV;
383
384 pkt_setup_dev(MKDEV(major, minor), NULL);
385
386 module_put(THIS_MODULE);
387
388 return count;
389 }
390
391 return -EINVAL;
392}
393static CLASS_ATTR_WO(add);
394
395static ssize_t remove_store(struct class *c, struct class_attribute *attr,
396 const char *buf, size_t count)
397{
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
402 }
403 return -EINVAL;
404}
405static CLASS_ATTR_WO(remove);
406
407static struct attribute *class_pktcdvd_attrs[] = {
408 &class_attr_add.attr,
409 &class_attr_remove.attr,
410 &class_attr_device_map.attr,
411 NULL,
412};
413ATTRIBUTE_GROUPS(class_pktcdvd);
414
415static int pkt_sysfs_init(void)
416{
417 int ret = 0;
418
419 /*
420 * create control files in sysfs
421 * /sys/class/pktcdvd/...
422 */
423 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 if (!class_pktcdvd)
425 return -ENOMEM;
426 class_pktcdvd->name = DRIVER_NAME;
427 class_pktcdvd->owner = THIS_MODULE;
428 class_pktcdvd->class_release = class_pktcdvd_release;
429 class_pktcdvd->class_groups = class_pktcdvd_groups;
430 ret = class_register(class_pktcdvd);
431 if (ret) {
432 kfree(class_pktcdvd);
433 class_pktcdvd = NULL;
434 pr_err("failed to create class pktcdvd\n");
435 return ret;
436 }
437 return 0;
438}
439
440static void pkt_sysfs_cleanup(void)
441{
442 if (class_pktcdvd)
443 class_destroy(class_pktcdvd);
444 class_pktcdvd = NULL;
445}
446
447/********************************************************************
448 entries in debugfs
449
450 /sys/kernel/debug/pktcdvd[0-7]/
451 info
452
453 *******************************************************************/
454
455static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
456{
457 return pkt_seq_show(m, p);
458}
459
460static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
461{
462 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
463}
464
465static const struct file_operations debug_fops = {
466 .open = pkt_debugfs_fops_open,
467 .read = seq_read,
468 .llseek = seq_lseek,
469 .release = single_release,
470 .owner = THIS_MODULE,
471};
472
473static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
474{
475 if (!pkt_debugfs_root)
476 return;
477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 if (!pd->dfs_d_root)
479 return;
480
481 pd->dfs_f_info = debugfs_create_file("info", 0444,
482 pd->dfs_d_root, pd, &debug_fops);
483}
484
485static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
486{
487 if (!pkt_debugfs_root)
488 return;
489 debugfs_remove(pd->dfs_f_info);
490 debugfs_remove(pd->dfs_d_root);
491 pd->dfs_f_info = NULL;
492 pd->dfs_d_root = NULL;
493}
494
495static void pkt_debugfs_init(void)
496{
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498}
499
500static void pkt_debugfs_cleanup(void)
501{
502 debugfs_remove(pkt_debugfs_root);
503 pkt_debugfs_root = NULL;
504}
505
506/* ----------------------------------------------------------*/
507
508
509static void pkt_bio_finished(struct pktcdvd_device *pd)
510{
511 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 pkt_dbg(2, pd, "queue empty\n");
514 atomic_set(&pd->iosched.attention, 1);
515 wake_up(&pd->wqueue);
516 }
517}
518
519/*
520 * Allocate a packet_data struct
521 */
522static struct packet_data *pkt_alloc_packet_data(int frames)
523{
524 int i;
525 struct packet_data *pkt;
526
527 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 if (!pkt)
529 goto no_pkt;
530
531 pkt->frames = frames;
532 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 if (!pkt->w_bio)
534 goto no_bio;
535
536 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 if (!pkt->pages[i])
539 goto no_page;
540 }
541
542 spin_lock_init(&pkt->lock);
543 bio_list_init(&pkt->orig_bios);
544
545 for (i = 0; i < frames; i++) {
546 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 if (!bio)
548 goto no_rd_bio;
549
550 pkt->r_bios[i] = bio;
551 }
552
553 return pkt;
554
555no_rd_bio:
556 for (i = 0; i < frames; i++) {
557 struct bio *bio = pkt->r_bios[i];
558 if (bio)
559 bio_put(bio);
560 }
561
562no_page:
563 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 if (pkt->pages[i])
565 __free_page(pkt->pages[i]);
566 bio_put(pkt->w_bio);
567no_bio:
568 kfree(pkt);
569no_pkt:
570 return NULL;
571}
572
573/*
574 * Free a packet_data struct
575 */
576static void pkt_free_packet_data(struct packet_data *pkt)
577{
578 int i;
579
580 for (i = 0; i < pkt->frames; i++) {
581 struct bio *bio = pkt->r_bios[i];
582 if (bio)
583 bio_put(bio);
584 }
585 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 __free_page(pkt->pages[i]);
587 bio_put(pkt->w_bio);
588 kfree(pkt);
589}
590
591static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
592{
593 struct packet_data *pkt, *next;
594
595 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
596
597 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 pkt_free_packet_data(pkt);
599 }
600 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
601}
602
603static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
604{
605 struct packet_data *pkt;
606
607 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
608
609 while (nr_packets > 0) {
610 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 if (!pkt) {
612 pkt_shrink_pktlist(pd);
613 return 0;
614 }
615 pkt->id = nr_packets;
616 pkt->pd = pd;
617 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 nr_packets--;
619 }
620 return 1;
621}
622
623static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
624{
625 struct rb_node *n = rb_next(&node->rb_node);
626 if (!n)
627 return NULL;
628 return rb_entry(n, struct pkt_rb_node, rb_node);
629}
630
631static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
632{
633 rb_erase(&node->rb_node, &pd->bio_queue);
634 mempool_free(node, &pd->rb_pool);
635 pd->bio_queue_size--;
636 BUG_ON(pd->bio_queue_size < 0);
637}
638
639/*
640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
641 */
642static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
643{
644 struct rb_node *n = pd->bio_queue.rb_node;
645 struct rb_node *next;
646 struct pkt_rb_node *tmp;
647
648 if (!n) {
649 BUG_ON(pd->bio_queue_size > 0);
650 return NULL;
651 }
652
653 for (;;) {
654 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 if (s <= tmp->bio->bi_iter.bi_sector)
656 next = n->rb_left;
657 else
658 next = n->rb_right;
659 if (!next)
660 break;
661 n = next;
662 }
663
664 if (s > tmp->bio->bi_iter.bi_sector) {
665 tmp = pkt_rbtree_next(tmp);
666 if (!tmp)
667 return NULL;
668 }
669 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 return tmp;
671}
672
673/*
674 * Insert a node into the pd->bio_queue rb tree.
675 */
676static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
677{
678 struct rb_node **p = &pd->bio_queue.rb_node;
679 struct rb_node *parent = NULL;
680 sector_t s = node->bio->bi_iter.bi_sector;
681 struct pkt_rb_node *tmp;
682
683 while (*p) {
684 parent = *p;
685 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 if (s < tmp->bio->bi_iter.bi_sector)
687 p = &(*p)->rb_left;
688 else
689 p = &(*p)->rb_right;
690 }
691 rb_link_node(&node->rb_node, parent, p);
692 rb_insert_color(&node->rb_node, &pd->bio_queue);
693 pd->bio_queue_size++;
694}
695
696/*
697 * Send a packet_command to the underlying block device and
698 * wait for completion.
699 */
700static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
701{
702 struct request_queue *q = bdev_get_queue(pd->bdev);
703 struct request *rq;
704 int ret = 0;
705
706 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
708 if (IS_ERR(rq))
709 return PTR_ERR(rq);
710
711 if (cgc->buflen) {
712 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
713 GFP_NOIO);
714 if (ret)
715 goto out;
716 }
717
718 scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
719 memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE);
720
721 rq->timeout = 60*HZ;
722 if (cgc->quiet)
723 rq->rq_flags |= RQF_QUIET;
724
725 blk_execute_rq(pd->bdev->bd_disk, rq, 0);
726 if (scsi_req(rq)->result)
727 ret = -EIO;
728out:
729 blk_put_request(rq);
730 return ret;
731}
732
733static const char *sense_key_string(__u8 index)
734{
735 static const char * const info[] = {
736 "No sense", "Recovered error", "Not ready",
737 "Medium error", "Hardware error", "Illegal request",
738 "Unit attention", "Data protect", "Blank check",
739 };
740
741 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
742}
743
744/*
745 * A generic sense dump / resolve mechanism should be implemented across
746 * all ATAPI + SCSI devices.
747 */
748static void pkt_dump_sense(struct pktcdvd_device *pd,
749 struct packet_command *cgc)
750{
751 struct scsi_sense_hdr *sshdr = cgc->sshdr;
752
753 if (sshdr)
754 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
755 CDROM_PACKET_SIZE, cgc->cmd,
756 sshdr->sense_key, sshdr->asc, sshdr->ascq,
757 sense_key_string(sshdr->sense_key));
758 else
759 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
760}
761
762/*
763 * flush the drive cache to media
764 */
765static int pkt_flush_cache(struct pktcdvd_device *pd)
766{
767 struct packet_command cgc;
768
769 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
770 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
771 cgc.quiet = 1;
772
773 /*
774 * the IMMED bit -- we default to not setting it, although that
775 * would allow a much faster close, this is safer
776 */
777#if 0
778 cgc.cmd[1] = 1 << 1;
779#endif
780 return pkt_generic_packet(pd, &cgc);
781}
782
783/*
784 * speed is given as the normal factor, e.g. 4 for 4x
785 */
786static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
787 unsigned write_speed, unsigned read_speed)
788{
789 struct packet_command cgc;
790 struct scsi_sense_hdr sshdr;
791 int ret;
792
793 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
794 cgc.sshdr = &sshdr;
795 cgc.cmd[0] = GPCMD_SET_SPEED;
796 cgc.cmd[2] = (read_speed >> 8) & 0xff;
797 cgc.cmd[3] = read_speed & 0xff;
798 cgc.cmd[4] = (write_speed >> 8) & 0xff;
799 cgc.cmd[5] = write_speed & 0xff;
800
801 ret = pkt_generic_packet(pd, &cgc);
802 if (ret)
803 pkt_dump_sense(pd, &cgc);
804
805 return ret;
806}
807
808/*
809 * Queue a bio for processing by the low-level CD device. Must be called
810 * from process context.
811 */
812static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
813{
814 spin_lock(&pd->iosched.lock);
815 if (bio_data_dir(bio) == READ)
816 bio_list_add(&pd->iosched.read_queue, bio);
817 else
818 bio_list_add(&pd->iosched.write_queue, bio);
819 spin_unlock(&pd->iosched.lock);
820
821 atomic_set(&pd->iosched.attention, 1);
822 wake_up(&pd->wqueue);
823}
824
825/*
826 * Process the queued read/write requests. This function handles special
827 * requirements for CDRW drives:
828 * - A cache flush command must be inserted before a read request if the
829 * previous request was a write.
830 * - Switching between reading and writing is slow, so don't do it more often
831 * than necessary.
832 * - Optimize for throughput at the expense of latency. This means that streaming
833 * writes will never be interrupted by a read, but if the drive has to seek
834 * before the next write, switch to reading instead if there are any pending
835 * read requests.
836 * - Set the read speed according to current usage pattern. When only reading
837 * from the device, it's best to use the highest possible read speed, but
838 * when switching often between reading and writing, it's better to have the
839 * same read and write speeds.
840 */
841static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
842{
843
844 if (atomic_read(&pd->iosched.attention) == 0)
845 return;
846 atomic_set(&pd->iosched.attention, 0);
847
848 for (;;) {
849 struct bio *bio;
850 int reads_queued, writes_queued;
851
852 spin_lock(&pd->iosched.lock);
853 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
854 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
855 spin_unlock(&pd->iosched.lock);
856
857 if (!reads_queued && !writes_queued)
858 break;
859
860 if (pd->iosched.writing) {
861 int need_write_seek = 1;
862 spin_lock(&pd->iosched.lock);
863 bio = bio_list_peek(&pd->iosched.write_queue);
864 spin_unlock(&pd->iosched.lock);
865 if (bio && (bio->bi_iter.bi_sector ==
866 pd->iosched.last_write))
867 need_write_seek = 0;
868 if (need_write_seek && reads_queued) {
869 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
870 pkt_dbg(2, pd, "write, waiting\n");
871 break;
872 }
873 pkt_flush_cache(pd);
874 pd->iosched.writing = 0;
875 }
876 } else {
877 if (!reads_queued && writes_queued) {
878 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
879 pkt_dbg(2, pd, "read, waiting\n");
880 break;
881 }
882 pd->iosched.writing = 1;
883 }
884 }
885
886 spin_lock(&pd->iosched.lock);
887 if (pd->iosched.writing)
888 bio = bio_list_pop(&pd->iosched.write_queue);
889 else
890 bio = bio_list_pop(&pd->iosched.read_queue);
891 spin_unlock(&pd->iosched.lock);
892
893 if (!bio)
894 continue;
895
896 if (bio_data_dir(bio) == READ)
897 pd->iosched.successive_reads +=
898 bio->bi_iter.bi_size >> 10;
899 else {
900 pd->iosched.successive_reads = 0;
901 pd->iosched.last_write = bio_end_sector(bio);
902 }
903 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
904 if (pd->read_speed == pd->write_speed) {
905 pd->read_speed = MAX_SPEED;
906 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
907 }
908 } else {
909 if (pd->read_speed != pd->write_speed) {
910 pd->read_speed = pd->write_speed;
911 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
912 }
913 }
914
915 atomic_inc(&pd->cdrw.pending_bios);
916 submit_bio_noacct(bio);
917 }
918}
919
920/*
921 * Special care is needed if the underlying block device has a small
922 * max_phys_segments value.
923 */
924static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
925{
926 if ((pd->settings.size << 9) / CD_FRAMESIZE
927 <= queue_max_segments(q)) {
928 /*
929 * The cdrom device can handle one segment/frame
930 */
931 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
932 return 0;
933 } else if ((pd->settings.size << 9) / PAGE_SIZE
934 <= queue_max_segments(q)) {
935 /*
936 * We can handle this case at the expense of some extra memory
937 * copies during write operations
938 */
939 set_bit(PACKET_MERGE_SEGS, &pd->flags);
940 return 0;
941 } else {
942 pkt_err(pd, "cdrom max_phys_segments too small\n");
943 return -EIO;
944 }
945}
946
947static void pkt_end_io_read(struct bio *bio)
948{
949 struct packet_data *pkt = bio->bi_private;
950 struct pktcdvd_device *pd = pkt->pd;
951 BUG_ON(!pd);
952
953 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
954 bio, (unsigned long long)pkt->sector,
955 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
956
957 if (bio->bi_status)
958 atomic_inc(&pkt->io_errors);
959 if (atomic_dec_and_test(&pkt->io_wait)) {
960 atomic_inc(&pkt->run_sm);
961 wake_up(&pd->wqueue);
962 }
963 pkt_bio_finished(pd);
964}
965
966static void pkt_end_io_packet_write(struct bio *bio)
967{
968 struct packet_data *pkt = bio->bi_private;
969 struct pktcdvd_device *pd = pkt->pd;
970 BUG_ON(!pd);
971
972 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
973
974 pd->stats.pkt_ended++;
975
976 pkt_bio_finished(pd);
977 atomic_dec(&pkt->io_wait);
978 atomic_inc(&pkt->run_sm);
979 wake_up(&pd->wqueue);
980}
981
982/*
983 * Schedule reads for the holes in a packet
984 */
985static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
986{
987 int frames_read = 0;
988 struct bio *bio;
989 int f;
990 char written[PACKET_MAX_SIZE];
991
992 BUG_ON(bio_list_empty(&pkt->orig_bios));
993
994 atomic_set(&pkt->io_wait, 0);
995 atomic_set(&pkt->io_errors, 0);
996
997 /*
998 * Figure out which frames we need to read before we can write.
999 */
1000 memset(written, 0, sizeof(written));
1001 spin_lock(&pkt->lock);
1002 bio_list_for_each(bio, &pkt->orig_bios) {
1003 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1004 (CD_FRAMESIZE >> 9);
1005 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1006 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1007 BUG_ON(first_frame < 0);
1008 BUG_ON(first_frame + num_frames > pkt->frames);
1009 for (f = first_frame; f < first_frame + num_frames; f++)
1010 written[f] = 1;
1011 }
1012 spin_unlock(&pkt->lock);
1013
1014 if (pkt->cache_valid) {
1015 pkt_dbg(2, pd, "zone %llx cached\n",
1016 (unsigned long long)pkt->sector);
1017 goto out_account;
1018 }
1019
1020 /*
1021 * Schedule reads for missing parts of the packet.
1022 */
1023 for (f = 0; f < pkt->frames; f++) {
1024 int p, offset;
1025
1026 if (written[f])
1027 continue;
1028
1029 bio = pkt->r_bios[f];
1030 bio_reset(bio);
1031 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1032 bio_set_dev(bio, pd->bdev);
1033 bio->bi_end_io = pkt_end_io_read;
1034 bio->bi_private = pkt;
1035
1036 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1037 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1038 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1039 f, pkt->pages[p], offset);
1040 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1041 BUG();
1042
1043 atomic_inc(&pkt->io_wait);
1044 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1045 pkt_queue_bio(pd, bio);
1046 frames_read++;
1047 }
1048
1049out_account:
1050 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1051 frames_read, (unsigned long long)pkt->sector);
1052 pd->stats.pkt_started++;
1053 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1054}
1055
1056/*
1057 * Find a packet matching zone, or the least recently used packet if
1058 * there is no match.
1059 */
1060static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1061{
1062 struct packet_data *pkt;
1063
1064 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1065 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1066 list_del_init(&pkt->list);
1067 if (pkt->sector != zone)
1068 pkt->cache_valid = 0;
1069 return pkt;
1070 }
1071 }
1072 BUG();
1073 return NULL;
1074}
1075
1076static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077{
1078 if (pkt->cache_valid) {
1079 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1080 } else {
1081 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1082 }
1083}
1084
1085static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1086{
1087#if PACKET_DEBUG > 1
1088 static const char *state_name[] = {
1089 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1090 };
1091 enum packet_data_state old_state = pkt->state;
1092 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1093 pkt->id, (unsigned long long)pkt->sector,
1094 state_name[old_state], state_name[state]);
1095#endif
1096 pkt->state = state;
1097}
1098
1099/*
1100 * Scan the work queue to see if we can start a new packet.
1101 * returns non-zero if any work was done.
1102 */
1103static int pkt_handle_queue(struct pktcdvd_device *pd)
1104{
1105 struct packet_data *pkt, *p;
1106 struct bio *bio = NULL;
1107 sector_t zone = 0; /* Suppress gcc warning */
1108 struct pkt_rb_node *node, *first_node;
1109 struct rb_node *n;
1110 int wakeup;
1111
1112 atomic_set(&pd->scan_queue, 0);
1113
1114 if (list_empty(&pd->cdrw.pkt_free_list)) {
1115 pkt_dbg(2, pd, "no pkt\n");
1116 return 0;
1117 }
1118
1119 /*
1120 * Try to find a zone we are not already working on.
1121 */
1122 spin_lock(&pd->lock);
1123 first_node = pkt_rbtree_find(pd, pd->current_sector);
1124 if (!first_node) {
1125 n = rb_first(&pd->bio_queue);
1126 if (n)
1127 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1128 }
1129 node = first_node;
1130 while (node) {
1131 bio = node->bio;
1132 zone = get_zone(bio->bi_iter.bi_sector, pd);
1133 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1134 if (p->sector == zone) {
1135 bio = NULL;
1136 goto try_next_bio;
1137 }
1138 }
1139 break;
1140try_next_bio:
1141 node = pkt_rbtree_next(node);
1142 if (!node) {
1143 n = rb_first(&pd->bio_queue);
1144 if (n)
1145 node = rb_entry(n, struct pkt_rb_node, rb_node);
1146 }
1147 if (node == first_node)
1148 node = NULL;
1149 }
1150 spin_unlock(&pd->lock);
1151 if (!bio) {
1152 pkt_dbg(2, pd, "no bio\n");
1153 return 0;
1154 }
1155
1156 pkt = pkt_get_packet_data(pd, zone);
1157
1158 pd->current_sector = zone + pd->settings.size;
1159 pkt->sector = zone;
1160 BUG_ON(pkt->frames != pd->settings.size >> 2);
1161 pkt->write_size = 0;
1162
1163 /*
1164 * Scan work queue for bios in the same zone and link them
1165 * to this packet.
1166 */
1167 spin_lock(&pd->lock);
1168 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1169 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1170 bio = node->bio;
1171 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1172 get_zone(bio->bi_iter.bi_sector, pd));
1173 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1174 break;
1175 pkt_rbtree_erase(pd, node);
1176 spin_lock(&pkt->lock);
1177 bio_list_add(&pkt->orig_bios, bio);
1178 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1179 spin_unlock(&pkt->lock);
1180 }
1181 /* check write congestion marks, and if bio_queue_size is
1182 below, wake up any waiters */
1183 wakeup = (pd->write_congestion_on > 0
1184 && pd->bio_queue_size <= pd->write_congestion_off);
1185 spin_unlock(&pd->lock);
1186 if (wakeup) {
1187 clear_bdi_congested(pd->disk->queue->backing_dev_info,
1188 BLK_RW_ASYNC);
1189 }
1190
1191 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1192 pkt_set_state(pkt, PACKET_WAITING_STATE);
1193 atomic_set(&pkt->run_sm, 1);
1194
1195 spin_lock(&pd->cdrw.active_list_lock);
1196 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1197 spin_unlock(&pd->cdrw.active_list_lock);
1198
1199 return 1;
1200}
1201
1202/**
1203 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1204 * another
1205 * @src: source bio list
1206 * @dst: destination bio list
1207 *
1208 * Stops when it reaches the end of either the @src list or @dst list - that is,
1209 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1210 * bios).
1211 */
1212static void bio_list_copy_data(struct bio *dst, struct bio *src)
1213{
1214 struct bvec_iter src_iter = src->bi_iter;
1215 struct bvec_iter dst_iter = dst->bi_iter;
1216
1217 while (1) {
1218 if (!src_iter.bi_size) {
1219 src = src->bi_next;
1220 if (!src)
1221 break;
1222
1223 src_iter = src->bi_iter;
1224 }
1225
1226 if (!dst_iter.bi_size) {
1227 dst = dst->bi_next;
1228 if (!dst)
1229 break;
1230
1231 dst_iter = dst->bi_iter;
1232 }
1233
1234 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1235 }
1236}
1237
1238/*
1239 * Assemble a bio to write one packet and queue the bio for processing
1240 * by the underlying block device.
1241 */
1242static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1243{
1244 int f;
1245
1246 bio_reset(pkt->w_bio);
1247 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1248 bio_set_dev(pkt->w_bio, pd->bdev);
1249 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1250 pkt->w_bio->bi_private = pkt;
1251
1252 /* XXX: locking? */
1253 for (f = 0; f < pkt->frames; f++) {
1254 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1255 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1256
1257 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1258 BUG();
1259 }
1260 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1261
1262 /*
1263 * Fill-in bvec with data from orig_bios.
1264 */
1265 spin_lock(&pkt->lock);
1266 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1267
1268 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1269 spin_unlock(&pkt->lock);
1270
1271 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1272 pkt->write_size, (unsigned long long)pkt->sector);
1273
1274 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1275 pkt->cache_valid = 1;
1276 else
1277 pkt->cache_valid = 0;
1278
1279 /* Start the write request */
1280 atomic_set(&pkt->io_wait, 1);
1281 bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1282 pkt_queue_bio(pd, pkt->w_bio);
1283}
1284
1285static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1286{
1287 struct bio *bio;
1288
1289 if (status)
1290 pkt->cache_valid = 0;
1291
1292 /* Finish all bios corresponding to this packet */
1293 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1294 bio->bi_status = status;
1295 bio_endio(bio);
1296 }
1297}
1298
1299static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1300{
1301 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1302
1303 for (;;) {
1304 switch (pkt->state) {
1305 case PACKET_WAITING_STATE:
1306 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1307 return;
1308
1309 pkt->sleep_time = 0;
1310 pkt_gather_data(pd, pkt);
1311 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1312 break;
1313
1314 case PACKET_READ_WAIT_STATE:
1315 if (atomic_read(&pkt->io_wait) > 0)
1316 return;
1317
1318 if (atomic_read(&pkt->io_errors) > 0) {
1319 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1320 } else {
1321 pkt_start_write(pd, pkt);
1322 }
1323 break;
1324
1325 case PACKET_WRITE_WAIT_STATE:
1326 if (atomic_read(&pkt->io_wait) > 0)
1327 return;
1328
1329 if (!pkt->w_bio->bi_status) {
1330 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1331 } else {
1332 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1333 }
1334 break;
1335
1336 case PACKET_RECOVERY_STATE:
1337 pkt_dbg(2, pd, "No recovery possible\n");
1338 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1339 break;
1340
1341 case PACKET_FINISHED_STATE:
1342 pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1343 return;
1344
1345 default:
1346 BUG();
1347 break;
1348 }
1349 }
1350}
1351
1352static void pkt_handle_packets(struct pktcdvd_device *pd)
1353{
1354 struct packet_data *pkt, *next;
1355
1356 /*
1357 * Run state machine for active packets
1358 */
1359 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1360 if (atomic_read(&pkt->run_sm) > 0) {
1361 atomic_set(&pkt->run_sm, 0);
1362 pkt_run_state_machine(pd, pkt);
1363 }
1364 }
1365
1366 /*
1367 * Move no longer active packets to the free list
1368 */
1369 spin_lock(&pd->cdrw.active_list_lock);
1370 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1371 if (pkt->state == PACKET_FINISHED_STATE) {
1372 list_del(&pkt->list);
1373 pkt_put_packet_data(pd, pkt);
1374 pkt_set_state(pkt, PACKET_IDLE_STATE);
1375 atomic_set(&pd->scan_queue, 1);
1376 }
1377 }
1378 spin_unlock(&pd->cdrw.active_list_lock);
1379}
1380
1381static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1382{
1383 struct packet_data *pkt;
1384 int i;
1385
1386 for (i = 0; i < PACKET_NUM_STATES; i++)
1387 states[i] = 0;
1388
1389 spin_lock(&pd->cdrw.active_list_lock);
1390 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1391 states[pkt->state]++;
1392 }
1393 spin_unlock(&pd->cdrw.active_list_lock);
1394}
1395
1396/*
1397 * kcdrwd is woken up when writes have been queued for one of our
1398 * registered devices
1399 */
1400static int kcdrwd(void *foobar)
1401{
1402 struct pktcdvd_device *pd = foobar;
1403 struct packet_data *pkt;
1404 long min_sleep_time, residue;
1405
1406 set_user_nice(current, MIN_NICE);
1407 set_freezable();
1408
1409 for (;;) {
1410 DECLARE_WAITQUEUE(wait, current);
1411
1412 /*
1413 * Wait until there is something to do
1414 */
1415 add_wait_queue(&pd->wqueue, &wait);
1416 for (;;) {
1417 set_current_state(TASK_INTERRUPTIBLE);
1418
1419 /* Check if we need to run pkt_handle_queue */
1420 if (atomic_read(&pd->scan_queue) > 0)
1421 goto work_to_do;
1422
1423 /* Check if we need to run the state machine for some packet */
1424 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1425 if (atomic_read(&pkt->run_sm) > 0)
1426 goto work_to_do;
1427 }
1428
1429 /* Check if we need to process the iosched queues */
1430 if (atomic_read(&pd->iosched.attention) != 0)
1431 goto work_to_do;
1432
1433 /* Otherwise, go to sleep */
1434 if (PACKET_DEBUG > 1) {
1435 int states[PACKET_NUM_STATES];
1436 pkt_count_states(pd, states);
1437 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1438 states[0], states[1], states[2],
1439 states[3], states[4], states[5]);
1440 }
1441
1442 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1443 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1444 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1445 min_sleep_time = pkt->sleep_time;
1446 }
1447
1448 pkt_dbg(2, pd, "sleeping\n");
1449 residue = schedule_timeout(min_sleep_time);
1450 pkt_dbg(2, pd, "wake up\n");
1451
1452 /* make swsusp happy with our thread */
1453 try_to_freeze();
1454
1455 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1456 if (!pkt->sleep_time)
1457 continue;
1458 pkt->sleep_time -= min_sleep_time - residue;
1459 if (pkt->sleep_time <= 0) {
1460 pkt->sleep_time = 0;
1461 atomic_inc(&pkt->run_sm);
1462 }
1463 }
1464
1465 if (kthread_should_stop())
1466 break;
1467 }
1468work_to_do:
1469 set_current_state(TASK_RUNNING);
1470 remove_wait_queue(&pd->wqueue, &wait);
1471
1472 if (kthread_should_stop())
1473 break;
1474
1475 /*
1476 * if pkt_handle_queue returns true, we can queue
1477 * another request.
1478 */
1479 while (pkt_handle_queue(pd))
1480 ;
1481
1482 /*
1483 * Handle packet state machine
1484 */
1485 pkt_handle_packets(pd);
1486
1487 /*
1488 * Handle iosched queues
1489 */
1490 pkt_iosched_process_queue(pd);
1491 }
1492
1493 return 0;
1494}
1495
1496static void pkt_print_settings(struct pktcdvd_device *pd)
1497{
1498 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1499 pd->settings.fp ? "Fixed" : "Variable",
1500 pd->settings.size >> 2,
1501 pd->settings.block_mode == 8 ? '1' : '2');
1502}
1503
1504static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1505{
1506 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1507
1508 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1509 cgc->cmd[2] = page_code | (page_control << 6);
1510 cgc->cmd[7] = cgc->buflen >> 8;
1511 cgc->cmd[8] = cgc->buflen & 0xff;
1512 cgc->data_direction = CGC_DATA_READ;
1513 return pkt_generic_packet(pd, cgc);
1514}
1515
1516static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1517{
1518 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1519 memset(cgc->buffer, 0, 2);
1520 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1521 cgc->cmd[1] = 0x10; /* PF */
1522 cgc->cmd[7] = cgc->buflen >> 8;
1523 cgc->cmd[8] = cgc->buflen & 0xff;
1524 cgc->data_direction = CGC_DATA_WRITE;
1525 return pkt_generic_packet(pd, cgc);
1526}
1527
1528static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1529{
1530 struct packet_command cgc;
1531 int ret;
1532
1533 /* set up command and get the disc info */
1534 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1535 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1536 cgc.cmd[8] = cgc.buflen = 2;
1537 cgc.quiet = 1;
1538
1539 ret = pkt_generic_packet(pd, &cgc);
1540 if (ret)
1541 return ret;
1542
1543 /* not all drives have the same disc_info length, so requeue
1544 * packet with the length the drive tells us it can supply
1545 */
1546 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1547 sizeof(di->disc_information_length);
1548
1549 if (cgc.buflen > sizeof(disc_information))
1550 cgc.buflen = sizeof(disc_information);
1551
1552 cgc.cmd[8] = cgc.buflen;
1553 return pkt_generic_packet(pd, &cgc);
1554}
1555
1556static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1557{
1558 struct packet_command cgc;
1559 int ret;
1560
1561 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1562 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1563 cgc.cmd[1] = type & 3;
1564 cgc.cmd[4] = (track & 0xff00) >> 8;
1565 cgc.cmd[5] = track & 0xff;
1566 cgc.cmd[8] = 8;
1567 cgc.quiet = 1;
1568
1569 ret = pkt_generic_packet(pd, &cgc);
1570 if (ret)
1571 return ret;
1572
1573 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1574 sizeof(ti->track_information_length);
1575
1576 if (cgc.buflen > sizeof(track_information))
1577 cgc.buflen = sizeof(track_information);
1578
1579 cgc.cmd[8] = cgc.buflen;
1580 return pkt_generic_packet(pd, &cgc);
1581}
1582
1583static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1584 long *last_written)
1585{
1586 disc_information di;
1587 track_information ti;
1588 __u32 last_track;
1589 int ret;
1590
1591 ret = pkt_get_disc_info(pd, &di);
1592 if (ret)
1593 return ret;
1594
1595 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1596 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1597 if (ret)
1598 return ret;
1599
1600 /* if this track is blank, try the previous. */
1601 if (ti.blank) {
1602 last_track--;
1603 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1604 if (ret)
1605 return ret;
1606 }
1607
1608 /* if last recorded field is valid, return it. */
1609 if (ti.lra_v) {
1610 *last_written = be32_to_cpu(ti.last_rec_address);
1611 } else {
1612 /* make it up instead */
1613 *last_written = be32_to_cpu(ti.track_start) +
1614 be32_to_cpu(ti.track_size);
1615 if (ti.free_blocks)
1616 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1617 }
1618 return 0;
1619}
1620
1621/*
1622 * write mode select package based on pd->settings
1623 */
1624static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1625{
1626 struct packet_command cgc;
1627 struct scsi_sense_hdr sshdr;
1628 write_param_page *wp;
1629 char buffer[128];
1630 int ret, size;
1631
1632 /* doesn't apply to DVD+RW or DVD-RAM */
1633 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1634 return 0;
1635
1636 memset(buffer, 0, sizeof(buffer));
1637 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1638 cgc.sshdr = &sshdr;
1639 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1640 if (ret) {
1641 pkt_dump_sense(pd, &cgc);
1642 return ret;
1643 }
1644
1645 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1646 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1647 if (size > sizeof(buffer))
1648 size = sizeof(buffer);
1649
1650 /*
1651 * now get it all
1652 */
1653 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1654 cgc.sshdr = &sshdr;
1655 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1656 if (ret) {
1657 pkt_dump_sense(pd, &cgc);
1658 return ret;
1659 }
1660
1661 /*
1662 * write page is offset header + block descriptor length
1663 */
1664 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1665
1666 wp->fp = pd->settings.fp;
1667 wp->track_mode = pd->settings.track_mode;
1668 wp->write_type = pd->settings.write_type;
1669 wp->data_block_type = pd->settings.block_mode;
1670
1671 wp->multi_session = 0;
1672
1673#ifdef PACKET_USE_LS
1674 wp->link_size = 7;
1675 wp->ls_v = 1;
1676#endif
1677
1678 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1679 wp->session_format = 0;
1680 wp->subhdr2 = 0x20;
1681 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1682 wp->session_format = 0x20;
1683 wp->subhdr2 = 8;
1684#if 0
1685 wp->mcn[0] = 0x80;
1686 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1687#endif
1688 } else {
1689 /*
1690 * paranoia
1691 */
1692 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1693 return 1;
1694 }
1695 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1696
1697 cgc.buflen = cgc.cmd[8] = size;
1698 ret = pkt_mode_select(pd, &cgc);
1699 if (ret) {
1700 pkt_dump_sense(pd, &cgc);
1701 return ret;
1702 }
1703
1704 pkt_print_settings(pd);
1705 return 0;
1706}
1707
1708/*
1709 * 1 -- we can write to this track, 0 -- we can't
1710 */
1711static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1712{
1713 switch (pd->mmc3_profile) {
1714 case 0x1a: /* DVD+RW */
1715 case 0x12: /* DVD-RAM */
1716 /* The track is always writable on DVD+RW/DVD-RAM */
1717 return 1;
1718 default:
1719 break;
1720 }
1721
1722 if (!ti->packet || !ti->fp)
1723 return 0;
1724
1725 /*
1726 * "good" settings as per Mt Fuji.
1727 */
1728 if (ti->rt == 0 && ti->blank == 0)
1729 return 1;
1730
1731 if (ti->rt == 0 && ti->blank == 1)
1732 return 1;
1733
1734 if (ti->rt == 1 && ti->blank == 0)
1735 return 1;
1736
1737 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1738 return 0;
1739}
1740
1741/*
1742 * 1 -- we can write to this disc, 0 -- we can't
1743 */
1744static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1745{
1746 switch (pd->mmc3_profile) {
1747 case 0x0a: /* CD-RW */
1748 case 0xffff: /* MMC3 not supported */
1749 break;
1750 case 0x1a: /* DVD+RW */
1751 case 0x13: /* DVD-RW */
1752 case 0x12: /* DVD-RAM */
1753 return 1;
1754 default:
1755 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1756 pd->mmc3_profile);
1757 return 0;
1758 }
1759
1760 /*
1761 * for disc type 0xff we should probably reserve a new track.
1762 * but i'm not sure, should we leave this to user apps? probably.
1763 */
1764 if (di->disc_type == 0xff) {
1765 pkt_notice(pd, "unknown disc - no track?\n");
1766 return 0;
1767 }
1768
1769 if (di->disc_type != 0x20 && di->disc_type != 0) {
1770 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1771 return 0;
1772 }
1773
1774 if (di->erasable == 0) {
1775 pkt_notice(pd, "disc not erasable\n");
1776 return 0;
1777 }
1778
1779 if (di->border_status == PACKET_SESSION_RESERVED) {
1780 pkt_err(pd, "can't write to last track (reserved)\n");
1781 return 0;
1782 }
1783
1784 return 1;
1785}
1786
1787static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1788{
1789 struct packet_command cgc;
1790 unsigned char buf[12];
1791 disc_information di;
1792 track_information ti;
1793 int ret, track;
1794
1795 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1796 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1797 cgc.cmd[8] = 8;
1798 ret = pkt_generic_packet(pd, &cgc);
1799 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1800
1801 memset(&di, 0, sizeof(disc_information));
1802 memset(&ti, 0, sizeof(track_information));
1803
1804 ret = pkt_get_disc_info(pd, &di);
1805 if (ret) {
1806 pkt_err(pd, "failed get_disc\n");
1807 return ret;
1808 }
1809
1810 if (!pkt_writable_disc(pd, &di))
1811 return -EROFS;
1812
1813 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1814
1815 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1816 ret = pkt_get_track_info(pd, track, 1, &ti);
1817 if (ret) {
1818 pkt_err(pd, "failed get_track\n");
1819 return ret;
1820 }
1821
1822 if (!pkt_writable_track(pd, &ti)) {
1823 pkt_err(pd, "can't write to this track\n");
1824 return -EROFS;
1825 }
1826
1827 /*
1828 * we keep packet size in 512 byte units, makes it easier to
1829 * deal with request calculations.
1830 */
1831 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1832 if (pd->settings.size == 0) {
1833 pkt_notice(pd, "detected zero packet size!\n");
1834 return -ENXIO;
1835 }
1836 if (pd->settings.size > PACKET_MAX_SECTORS) {
1837 pkt_err(pd, "packet size is too big\n");
1838 return -EROFS;
1839 }
1840 pd->settings.fp = ti.fp;
1841 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1842
1843 if (ti.nwa_v) {
1844 pd->nwa = be32_to_cpu(ti.next_writable);
1845 set_bit(PACKET_NWA_VALID, &pd->flags);
1846 }
1847
1848 /*
1849 * in theory we could use lra on -RW media as well and just zero
1850 * blocks that haven't been written yet, but in practice that
1851 * is just a no-go. we'll use that for -R, naturally.
1852 */
1853 if (ti.lra_v) {
1854 pd->lra = be32_to_cpu(ti.last_rec_address);
1855 set_bit(PACKET_LRA_VALID, &pd->flags);
1856 } else {
1857 pd->lra = 0xffffffff;
1858 set_bit(PACKET_LRA_VALID, &pd->flags);
1859 }
1860
1861 /*
1862 * fine for now
1863 */
1864 pd->settings.link_loss = 7;
1865 pd->settings.write_type = 0; /* packet */
1866 pd->settings.track_mode = ti.track_mode;
1867
1868 /*
1869 * mode1 or mode2 disc
1870 */
1871 switch (ti.data_mode) {
1872 case PACKET_MODE1:
1873 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1874 break;
1875 case PACKET_MODE2:
1876 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1877 break;
1878 default:
1879 pkt_err(pd, "unknown data mode\n");
1880 return -EROFS;
1881 }
1882 return 0;
1883}
1884
1885/*
1886 * enable/disable write caching on drive
1887 */
1888static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1889 int set)
1890{
1891 struct packet_command cgc;
1892 struct scsi_sense_hdr sshdr;
1893 unsigned char buf[64];
1894 int ret;
1895
1896 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1897 cgc.sshdr = &sshdr;
1898 cgc.buflen = pd->mode_offset + 12;
1899
1900 /*
1901 * caching mode page might not be there, so quiet this command
1902 */
1903 cgc.quiet = 1;
1904
1905 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1906 if (ret)
1907 return ret;
1908
1909 buf[pd->mode_offset + 10] |= (!!set << 2);
1910
1911 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1912 ret = pkt_mode_select(pd, &cgc);
1913 if (ret) {
1914 pkt_err(pd, "write caching control failed\n");
1915 pkt_dump_sense(pd, &cgc);
1916 } else if (!ret && set)
1917 pkt_notice(pd, "enabled write caching\n");
1918 return ret;
1919}
1920
1921static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1922{
1923 struct packet_command cgc;
1924
1925 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1926 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1927 cgc.cmd[4] = lockflag ? 1 : 0;
1928 return pkt_generic_packet(pd, &cgc);
1929}
1930
1931/*
1932 * Returns drive maximum write speed
1933 */
1934static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1935 unsigned *write_speed)
1936{
1937 struct packet_command cgc;
1938 struct scsi_sense_hdr sshdr;
1939 unsigned char buf[256+18];
1940 unsigned char *cap_buf;
1941 int ret, offset;
1942
1943 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1944 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1945 cgc.sshdr = &sshdr;
1946
1947 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1948 if (ret) {
1949 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1950 sizeof(struct mode_page_header);
1951 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1952 if (ret) {
1953 pkt_dump_sense(pd, &cgc);
1954 return ret;
1955 }
1956 }
1957
1958 offset = 20; /* Obsoleted field, used by older drives */
1959 if (cap_buf[1] >= 28)
1960 offset = 28; /* Current write speed selected */
1961 if (cap_buf[1] >= 30) {
1962 /* If the drive reports at least one "Logical Unit Write
1963 * Speed Performance Descriptor Block", use the information
1964 * in the first block. (contains the highest speed)
1965 */
1966 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1967 if (num_spdb > 0)
1968 offset = 34;
1969 }
1970
1971 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1972 return 0;
1973}
1974
1975/* These tables from cdrecord - I don't have orange book */
1976/* standard speed CD-RW (1-4x) */
1977static char clv_to_speed[16] = {
1978 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1979 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1980};
1981/* high speed CD-RW (-10x) */
1982static char hs_clv_to_speed[16] = {
1983 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1984 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1985};
1986/* ultra high speed CD-RW */
1987static char us_clv_to_speed[16] = {
1988 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1989 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1990};
1991
1992/*
1993 * reads the maximum media speed from ATIP
1994 */
1995static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
1996 unsigned *speed)
1997{
1998 struct packet_command cgc;
1999 struct scsi_sense_hdr sshdr;
2000 unsigned char buf[64];
2001 unsigned int size, st, sp;
2002 int ret;
2003
2004 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2005 cgc.sshdr = &sshdr;
2006 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2007 cgc.cmd[1] = 2;
2008 cgc.cmd[2] = 4; /* READ ATIP */
2009 cgc.cmd[8] = 2;
2010 ret = pkt_generic_packet(pd, &cgc);
2011 if (ret) {
2012 pkt_dump_sense(pd, &cgc);
2013 return ret;
2014 }
2015 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2016 if (size > sizeof(buf))
2017 size = sizeof(buf);
2018
2019 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2020 cgc.sshdr = &sshdr;
2021 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2022 cgc.cmd[1] = 2;
2023 cgc.cmd[2] = 4;
2024 cgc.cmd[8] = size;
2025 ret = pkt_generic_packet(pd, &cgc);
2026 if (ret) {
2027 pkt_dump_sense(pd, &cgc);
2028 return ret;
2029 }
2030
2031 if (!(buf[6] & 0x40)) {
2032 pkt_notice(pd, "disc type is not CD-RW\n");
2033 return 1;
2034 }
2035 if (!(buf[6] & 0x4)) {
2036 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2037 return 1;
2038 }
2039
2040 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2041
2042 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2043
2044 /* Info from cdrecord */
2045 switch (st) {
2046 case 0: /* standard speed */
2047 *speed = clv_to_speed[sp];
2048 break;
2049 case 1: /* high speed */
2050 *speed = hs_clv_to_speed[sp];
2051 break;
2052 case 2: /* ultra high speed */
2053 *speed = us_clv_to_speed[sp];
2054 break;
2055 default:
2056 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2057 return 1;
2058 }
2059 if (*speed) {
2060 pkt_info(pd, "maximum media speed: %d\n", *speed);
2061 return 0;
2062 } else {
2063 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2064 return 1;
2065 }
2066}
2067
2068static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2069{
2070 struct packet_command cgc;
2071 struct scsi_sense_hdr sshdr;
2072 int ret;
2073
2074 pkt_dbg(2, pd, "Performing OPC\n");
2075
2076 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2077 cgc.sshdr = &sshdr;
2078 cgc.timeout = 60*HZ;
2079 cgc.cmd[0] = GPCMD_SEND_OPC;
2080 cgc.cmd[1] = 1;
2081 ret = pkt_generic_packet(pd, &cgc);
2082 if (ret)
2083 pkt_dump_sense(pd, &cgc);
2084 return ret;
2085}
2086
2087static int pkt_open_write(struct pktcdvd_device *pd)
2088{
2089 int ret;
2090 unsigned int write_speed, media_write_speed, read_speed;
2091
2092 ret = pkt_probe_settings(pd);
2093 if (ret) {
2094 pkt_dbg(2, pd, "failed probe\n");
2095 return ret;
2096 }
2097
2098 ret = pkt_set_write_settings(pd);
2099 if (ret) {
2100 pkt_dbg(1, pd, "failed saving write settings\n");
2101 return -EIO;
2102 }
2103
2104 pkt_write_caching(pd, USE_WCACHING);
2105
2106 ret = pkt_get_max_speed(pd, &write_speed);
2107 if (ret)
2108 write_speed = 16 * 177;
2109 switch (pd->mmc3_profile) {
2110 case 0x13: /* DVD-RW */
2111 case 0x1a: /* DVD+RW */
2112 case 0x12: /* DVD-RAM */
2113 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2114 break;
2115 default:
2116 ret = pkt_media_speed(pd, &media_write_speed);
2117 if (ret)
2118 media_write_speed = 16;
2119 write_speed = min(write_speed, media_write_speed * 177);
2120 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2121 break;
2122 }
2123 read_speed = write_speed;
2124
2125 ret = pkt_set_speed(pd, write_speed, read_speed);
2126 if (ret) {
2127 pkt_dbg(1, pd, "couldn't set write speed\n");
2128 return -EIO;
2129 }
2130 pd->write_speed = write_speed;
2131 pd->read_speed = read_speed;
2132
2133 ret = pkt_perform_opc(pd);
2134 if (ret) {
2135 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2136 }
2137
2138 return 0;
2139}
2140
2141/*
2142 * called at open time.
2143 */
2144static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2145{
2146 int ret;
2147 long lba;
2148 struct request_queue *q;
2149 struct block_device *bdev;
2150
2151 /*
2152 * We need to re-open the cdrom device without O_NONBLOCK to be able
2153 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2154 * so open should not fail.
2155 */
2156 bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd);
2157 if (IS_ERR(bdev)) {
2158 ret = PTR_ERR(bdev);
2159 goto out;
2160 }
2161
2162 ret = pkt_get_last_written(pd, &lba);
2163 if (ret) {
2164 pkt_err(pd, "pkt_get_last_written failed\n");
2165 goto out_putdev;
2166 }
2167
2168 set_capacity(pd->disk, lba << 2);
2169 set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2170
2171 q = bdev_get_queue(pd->bdev);
2172 if (write) {
2173 ret = pkt_open_write(pd);
2174 if (ret)
2175 goto out_putdev;
2176 /*
2177 * Some CDRW drives can not handle writes larger than one packet,
2178 * even if the size is a multiple of the packet size.
2179 */
2180 blk_queue_max_hw_sectors(q, pd->settings.size);
2181 set_bit(PACKET_WRITABLE, &pd->flags);
2182 } else {
2183 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2184 clear_bit(PACKET_WRITABLE, &pd->flags);
2185 }
2186
2187 ret = pkt_set_segment_merging(pd, q);
2188 if (ret)
2189 goto out_putdev;
2190
2191 if (write) {
2192 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2193 pkt_err(pd, "not enough memory for buffers\n");
2194 ret = -ENOMEM;
2195 goto out_putdev;
2196 }
2197 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2198 }
2199
2200 return 0;
2201
2202out_putdev:
2203 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
2204out:
2205 return ret;
2206}
2207
2208/*
2209 * called when the device is closed. makes sure that the device flushes
2210 * the internal cache before we close.
2211 */
2212static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2213{
2214 if (flush && pkt_flush_cache(pd))
2215 pkt_dbg(1, pd, "not flushing cache\n");
2216
2217 pkt_lock_door(pd, 0);
2218
2219 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2220 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2221
2222 pkt_shrink_pktlist(pd);
2223}
2224
2225static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2226{
2227 if (dev_minor >= MAX_WRITERS)
2228 return NULL;
2229
2230 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2231 return pkt_devs[dev_minor];
2232}
2233
2234static int pkt_open(struct block_device *bdev, fmode_t mode)
2235{
2236 struct pktcdvd_device *pd = NULL;
2237 int ret;
2238
2239 mutex_lock(&pktcdvd_mutex);
2240 mutex_lock(&ctl_mutex);
2241 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2242 if (!pd) {
2243 ret = -ENODEV;
2244 goto out;
2245 }
2246 BUG_ON(pd->refcnt < 0);
2247
2248 pd->refcnt++;
2249 if (pd->refcnt > 1) {
2250 if ((mode & FMODE_WRITE) &&
2251 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2252 ret = -EBUSY;
2253 goto out_dec;
2254 }
2255 } else {
2256 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2257 if (ret)
2258 goto out_dec;
2259 /*
2260 * needed here as well, since ext2 (among others) may change
2261 * the blocksize at mount time
2262 */
2263 set_blocksize(bdev, CD_FRAMESIZE);
2264 }
2265
2266 mutex_unlock(&ctl_mutex);
2267 mutex_unlock(&pktcdvd_mutex);
2268 return 0;
2269
2270out_dec:
2271 pd->refcnt--;
2272out:
2273 mutex_unlock(&ctl_mutex);
2274 mutex_unlock(&pktcdvd_mutex);
2275 return ret;
2276}
2277
2278static void pkt_close(struct gendisk *disk, fmode_t mode)
2279{
2280 struct pktcdvd_device *pd = disk->private_data;
2281
2282 mutex_lock(&pktcdvd_mutex);
2283 mutex_lock(&ctl_mutex);
2284 pd->refcnt--;
2285 BUG_ON(pd->refcnt < 0);
2286 if (pd->refcnt == 0) {
2287 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2288 pkt_release_dev(pd, flush);
2289 }
2290 mutex_unlock(&ctl_mutex);
2291 mutex_unlock(&pktcdvd_mutex);
2292}
2293
2294
2295static void pkt_end_io_read_cloned(struct bio *bio)
2296{
2297 struct packet_stacked_data *psd = bio->bi_private;
2298 struct pktcdvd_device *pd = psd->pd;
2299
2300 psd->bio->bi_status = bio->bi_status;
2301 bio_put(bio);
2302 bio_endio(psd->bio);
2303 mempool_free(psd, &psd_pool);
2304 pkt_bio_finished(pd);
2305}
2306
2307static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2308{
2309 struct bio *cloned_bio = bio_clone_fast(bio, GFP_NOIO, &pkt_bio_set);
2310 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2311
2312 psd->pd = pd;
2313 psd->bio = bio;
2314 bio_set_dev(cloned_bio, pd->bdev);
2315 cloned_bio->bi_private = psd;
2316 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2317 pd->stats.secs_r += bio_sectors(bio);
2318 pkt_queue_bio(pd, cloned_bio);
2319}
2320
2321static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2322{
2323 struct pktcdvd_device *pd = q->queuedata;
2324 sector_t zone;
2325 struct packet_data *pkt;
2326 int was_empty, blocked_bio;
2327 struct pkt_rb_node *node;
2328
2329 zone = get_zone(bio->bi_iter.bi_sector, pd);
2330
2331 /*
2332 * If we find a matching packet in state WAITING or READ_WAIT, we can
2333 * just append this bio to that packet.
2334 */
2335 spin_lock(&pd->cdrw.active_list_lock);
2336 blocked_bio = 0;
2337 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2338 if (pkt->sector == zone) {
2339 spin_lock(&pkt->lock);
2340 if ((pkt->state == PACKET_WAITING_STATE) ||
2341 (pkt->state == PACKET_READ_WAIT_STATE)) {
2342 bio_list_add(&pkt->orig_bios, bio);
2343 pkt->write_size +=
2344 bio->bi_iter.bi_size / CD_FRAMESIZE;
2345 if ((pkt->write_size >= pkt->frames) &&
2346 (pkt->state == PACKET_WAITING_STATE)) {
2347 atomic_inc(&pkt->run_sm);
2348 wake_up(&pd->wqueue);
2349 }
2350 spin_unlock(&pkt->lock);
2351 spin_unlock(&pd->cdrw.active_list_lock);
2352 return;
2353 } else {
2354 blocked_bio = 1;
2355 }
2356 spin_unlock(&pkt->lock);
2357 }
2358 }
2359 spin_unlock(&pd->cdrw.active_list_lock);
2360
2361 /*
2362 * Test if there is enough room left in the bio work queue
2363 * (queue size >= congestion on mark).
2364 * If not, wait till the work queue size is below the congestion off mark.
2365 */
2366 spin_lock(&pd->lock);
2367 if (pd->write_congestion_on > 0
2368 && pd->bio_queue_size >= pd->write_congestion_on) {
2369 set_bdi_congested(q->backing_dev_info, BLK_RW_ASYNC);
2370 do {
2371 spin_unlock(&pd->lock);
2372 congestion_wait(BLK_RW_ASYNC, HZ);
2373 spin_lock(&pd->lock);
2374 } while(pd->bio_queue_size > pd->write_congestion_off);
2375 }
2376 spin_unlock(&pd->lock);
2377
2378 /*
2379 * No matching packet found. Store the bio in the work queue.
2380 */
2381 node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2382 node->bio = bio;
2383 spin_lock(&pd->lock);
2384 BUG_ON(pd->bio_queue_size < 0);
2385 was_empty = (pd->bio_queue_size == 0);
2386 pkt_rbtree_insert(pd, node);
2387 spin_unlock(&pd->lock);
2388
2389 /*
2390 * Wake up the worker thread.
2391 */
2392 atomic_set(&pd->scan_queue, 1);
2393 if (was_empty) {
2394 /* This wake_up is required for correct operation */
2395 wake_up(&pd->wqueue);
2396 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2397 /*
2398 * This wake up is not required for correct operation,
2399 * but improves performance in some cases.
2400 */
2401 wake_up(&pd->wqueue);
2402 }
2403}
2404
2405static blk_qc_t pkt_submit_bio(struct bio *bio)
2406{
2407 struct pktcdvd_device *pd;
2408 char b[BDEVNAME_SIZE];
2409 struct bio *split;
2410
2411 blk_queue_split(&bio);
2412
2413 pd = bio->bi_bdev->bd_disk->queue->queuedata;
2414 if (!pd) {
2415 pr_err("%s incorrect request queue\n", bio_devname(bio, b));
2416 goto end_io;
2417 }
2418
2419 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2420 (unsigned long long)bio->bi_iter.bi_sector,
2421 (unsigned long long)bio_end_sector(bio));
2422
2423 /*
2424 * Clone READ bios so we can have our own bi_end_io callback.
2425 */
2426 if (bio_data_dir(bio) == READ) {
2427 pkt_make_request_read(pd, bio);
2428 return BLK_QC_T_NONE;
2429 }
2430
2431 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2432 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2433 (unsigned long long)bio->bi_iter.bi_sector);
2434 goto end_io;
2435 }
2436
2437 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2438 pkt_err(pd, "wrong bio size\n");
2439 goto end_io;
2440 }
2441
2442 do {
2443 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2444 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2445
2446 if (last_zone != zone) {
2447 BUG_ON(last_zone != zone + pd->settings.size);
2448
2449 split = bio_split(bio, last_zone -
2450 bio->bi_iter.bi_sector,
2451 GFP_NOIO, &pkt_bio_set);
2452 bio_chain(split, bio);
2453 } else {
2454 split = bio;
2455 }
2456
2457 pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2458 } while (split != bio);
2459
2460 return BLK_QC_T_NONE;
2461end_io:
2462 bio_io_error(bio);
2463 return BLK_QC_T_NONE;
2464}
2465
2466static void pkt_init_queue(struct pktcdvd_device *pd)
2467{
2468 struct request_queue *q = pd->disk->queue;
2469
2470 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2471 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2472 q->queuedata = pd;
2473}
2474
2475static int pkt_seq_show(struct seq_file *m, void *p)
2476{
2477 struct pktcdvd_device *pd = m->private;
2478 char *msg;
2479 char bdev_buf[BDEVNAME_SIZE];
2480 int states[PACKET_NUM_STATES];
2481
2482 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2483 bdevname(pd->bdev, bdev_buf));
2484
2485 seq_printf(m, "\nSettings:\n");
2486 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2487
2488 if (pd->settings.write_type == 0)
2489 msg = "Packet";
2490 else
2491 msg = "Unknown";
2492 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2493
2494 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2495 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2496
2497 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2498
2499 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2500 msg = "Mode 1";
2501 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2502 msg = "Mode 2";
2503 else
2504 msg = "Unknown";
2505 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2506
2507 seq_printf(m, "\nStatistics:\n");
2508 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2509 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2510 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2511 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2512 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2513
2514 seq_printf(m, "\nMisc:\n");
2515 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2516 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2517 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2518 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2519 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2520 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2521
2522 seq_printf(m, "\nQueue state:\n");
2523 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2524 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2525 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2526
2527 pkt_count_states(pd, states);
2528 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2529 states[0], states[1], states[2], states[3], states[4], states[5]);
2530
2531 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2532 pd->write_congestion_off,
2533 pd->write_congestion_on);
2534 return 0;
2535}
2536
2537static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2538{
2539 int i;
2540 char b[BDEVNAME_SIZE];
2541 struct block_device *bdev;
2542
2543 if (pd->pkt_dev == dev) {
2544 pkt_err(pd, "recursive setup not allowed\n");
2545 return -EBUSY;
2546 }
2547 for (i = 0; i < MAX_WRITERS; i++) {
2548 struct pktcdvd_device *pd2 = pkt_devs[i];
2549 if (!pd2)
2550 continue;
2551 if (pd2->bdev->bd_dev == dev) {
2552 pkt_err(pd, "%s already setup\n",
2553 bdevname(pd2->bdev, b));
2554 return -EBUSY;
2555 }
2556 if (pd2->pkt_dev == dev) {
2557 pkt_err(pd, "can't chain pktcdvd devices\n");
2558 return -EBUSY;
2559 }
2560 }
2561
2562 bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL);
2563 if (IS_ERR(bdev))
2564 return PTR_ERR(bdev);
2565 if (!blk_queue_scsi_passthrough(bdev_get_queue(bdev))) {
2566 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2567 return -EINVAL;
2568 }
2569
2570 /* This is safe, since we have a reference from open(). */
2571 __module_get(THIS_MODULE);
2572
2573 pd->bdev = bdev;
2574 set_blocksize(bdev, CD_FRAMESIZE);
2575
2576 pkt_init_queue(pd);
2577
2578 atomic_set(&pd->cdrw.pending_bios, 0);
2579 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2580 if (IS_ERR(pd->cdrw.thread)) {
2581 pkt_err(pd, "can't start kernel thread\n");
2582 goto out_mem;
2583 }
2584
2585 proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2586 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2587 return 0;
2588
2589out_mem:
2590 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2591 /* This is safe: open() is still holding a reference. */
2592 module_put(THIS_MODULE);
2593 return -ENOMEM;
2594}
2595
2596static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2597{
2598 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2599 int ret;
2600
2601 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2602 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2603
2604 mutex_lock(&pktcdvd_mutex);
2605 switch (cmd) {
2606 case CDROMEJECT:
2607 /*
2608 * The door gets locked when the device is opened, so we
2609 * have to unlock it or else the eject command fails.
2610 */
2611 if (pd->refcnt == 1)
2612 pkt_lock_door(pd, 0);
2613 fallthrough;
2614 /*
2615 * forward selected CDROM ioctls to CD-ROM, for UDF
2616 */
2617 case CDROMMULTISESSION:
2618 case CDROMREADTOCENTRY:
2619 case CDROM_LAST_WRITTEN:
2620 case CDROM_SEND_PACKET:
2621 case SCSI_IOCTL_SEND_COMMAND:
2622 if (!bdev->bd_disk->fops->ioctl)
2623 ret = -ENOTTY;
2624 else
2625 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2626 break;
2627 default:
2628 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2629 ret = -ENOTTY;
2630 }
2631 mutex_unlock(&pktcdvd_mutex);
2632
2633 return ret;
2634}
2635
2636static unsigned int pkt_check_events(struct gendisk *disk,
2637 unsigned int clearing)
2638{
2639 struct pktcdvd_device *pd = disk->private_data;
2640 struct gendisk *attached_disk;
2641
2642 if (!pd)
2643 return 0;
2644 if (!pd->bdev)
2645 return 0;
2646 attached_disk = pd->bdev->bd_disk;
2647 if (!attached_disk || !attached_disk->fops->check_events)
2648 return 0;
2649 return attached_disk->fops->check_events(attached_disk, clearing);
2650}
2651
2652static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2653{
2654 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2655}
2656
2657static const struct block_device_operations pktcdvd_ops = {
2658 .owner = THIS_MODULE,
2659 .submit_bio = pkt_submit_bio,
2660 .open = pkt_open,
2661 .release = pkt_close,
2662 .ioctl = pkt_ioctl,
2663 .compat_ioctl = blkdev_compat_ptr_ioctl,
2664 .check_events = pkt_check_events,
2665 .devnode = pkt_devnode,
2666};
2667
2668/*
2669 * Set up mapping from pktcdvd device to CD-ROM device.
2670 */
2671static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2672{
2673 int idx;
2674 int ret = -ENOMEM;
2675 struct pktcdvd_device *pd;
2676 struct gendisk *disk;
2677
2678 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2679
2680 for (idx = 0; idx < MAX_WRITERS; idx++)
2681 if (!pkt_devs[idx])
2682 break;
2683 if (idx == MAX_WRITERS) {
2684 pr_err("max %d writers supported\n", MAX_WRITERS);
2685 ret = -EBUSY;
2686 goto out_mutex;
2687 }
2688
2689 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2690 if (!pd)
2691 goto out_mutex;
2692
2693 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2694 sizeof(struct pkt_rb_node));
2695 if (ret)
2696 goto out_mem;
2697
2698 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2699 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2700 spin_lock_init(&pd->cdrw.active_list_lock);
2701
2702 spin_lock_init(&pd->lock);
2703 spin_lock_init(&pd->iosched.lock);
2704 bio_list_init(&pd->iosched.read_queue);
2705 bio_list_init(&pd->iosched.write_queue);
2706 sprintf(pd->name, DRIVER_NAME"%d", idx);
2707 init_waitqueue_head(&pd->wqueue);
2708 pd->bio_queue = RB_ROOT;
2709
2710 pd->write_congestion_on = write_congestion_on;
2711 pd->write_congestion_off = write_congestion_off;
2712
2713 ret = -ENOMEM;
2714 disk = blk_alloc_disk(NUMA_NO_NODE);
2715 if (!disk)
2716 goto out_mem;
2717 pd->disk = disk;
2718 disk->major = pktdev_major;
2719 disk->first_minor = idx;
2720 disk->minors = 1;
2721 disk->fops = &pktcdvd_ops;
2722 disk->flags = GENHD_FL_REMOVABLE;
2723 strcpy(disk->disk_name, pd->name);
2724 disk->private_data = pd;
2725
2726 pd->pkt_dev = MKDEV(pktdev_major, idx);
2727 ret = pkt_new_dev(pd, dev);
2728 if (ret)
2729 goto out_mem2;
2730
2731 /* inherit events of the host device */
2732 disk->events = pd->bdev->bd_disk->events;
2733
2734 add_disk(disk);
2735
2736 pkt_sysfs_dev_new(pd);
2737 pkt_debugfs_dev_new(pd);
2738
2739 pkt_devs[idx] = pd;
2740 if (pkt_dev)
2741 *pkt_dev = pd->pkt_dev;
2742
2743 mutex_unlock(&ctl_mutex);
2744 return 0;
2745
2746out_mem2:
2747 blk_cleanup_disk(disk);
2748out_mem:
2749 mempool_exit(&pd->rb_pool);
2750 kfree(pd);
2751out_mutex:
2752 mutex_unlock(&ctl_mutex);
2753 pr_err("setup of pktcdvd device failed\n");
2754 return ret;
2755}
2756
2757/*
2758 * Tear down mapping from pktcdvd device to CD-ROM device.
2759 */
2760static int pkt_remove_dev(dev_t pkt_dev)
2761{
2762 struct pktcdvd_device *pd;
2763 int idx;
2764 int ret = 0;
2765
2766 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2767
2768 for (idx = 0; idx < MAX_WRITERS; idx++) {
2769 pd = pkt_devs[idx];
2770 if (pd && (pd->pkt_dev == pkt_dev))
2771 break;
2772 }
2773 if (idx == MAX_WRITERS) {
2774 pr_debug("dev not setup\n");
2775 ret = -ENXIO;
2776 goto out;
2777 }
2778
2779 if (pd->refcnt > 0) {
2780 ret = -EBUSY;
2781 goto out;
2782 }
2783 if (!IS_ERR(pd->cdrw.thread))
2784 kthread_stop(pd->cdrw.thread);
2785
2786 pkt_devs[idx] = NULL;
2787
2788 pkt_debugfs_dev_remove(pd);
2789 pkt_sysfs_dev_remove(pd);
2790
2791 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2792
2793 remove_proc_entry(pd->name, pkt_proc);
2794 pkt_dbg(1, pd, "writer unmapped\n");
2795
2796 del_gendisk(pd->disk);
2797 blk_cleanup_disk(pd->disk);
2798
2799 mempool_exit(&pd->rb_pool);
2800 kfree(pd);
2801
2802 /* This is safe: open() is still holding a reference. */
2803 module_put(THIS_MODULE);
2804
2805out:
2806 mutex_unlock(&ctl_mutex);
2807 return ret;
2808}
2809
2810static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2811{
2812 struct pktcdvd_device *pd;
2813
2814 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2815
2816 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2817 if (pd) {
2818 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2819 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2820 } else {
2821 ctrl_cmd->dev = 0;
2822 ctrl_cmd->pkt_dev = 0;
2823 }
2824 ctrl_cmd->num_devices = MAX_WRITERS;
2825
2826 mutex_unlock(&ctl_mutex);
2827}
2828
2829static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2830{
2831 void __user *argp = (void __user *)arg;
2832 struct pkt_ctrl_command ctrl_cmd;
2833 int ret = 0;
2834 dev_t pkt_dev = 0;
2835
2836 if (cmd != PACKET_CTRL_CMD)
2837 return -ENOTTY;
2838
2839 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2840 return -EFAULT;
2841
2842 switch (ctrl_cmd.command) {
2843 case PKT_CTRL_CMD_SETUP:
2844 if (!capable(CAP_SYS_ADMIN))
2845 return -EPERM;
2846 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2847 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2848 break;
2849 case PKT_CTRL_CMD_TEARDOWN:
2850 if (!capable(CAP_SYS_ADMIN))
2851 return -EPERM;
2852 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2853 break;
2854 case PKT_CTRL_CMD_STATUS:
2855 pkt_get_status(&ctrl_cmd);
2856 break;
2857 default:
2858 return -ENOTTY;
2859 }
2860
2861 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2862 return -EFAULT;
2863 return ret;
2864}
2865
2866#ifdef CONFIG_COMPAT
2867static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2868{
2869 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2870}
2871#endif
2872
2873static const struct file_operations pkt_ctl_fops = {
2874 .open = nonseekable_open,
2875 .unlocked_ioctl = pkt_ctl_ioctl,
2876#ifdef CONFIG_COMPAT
2877 .compat_ioctl = pkt_ctl_compat_ioctl,
2878#endif
2879 .owner = THIS_MODULE,
2880 .llseek = no_llseek,
2881};
2882
2883static struct miscdevice pkt_misc = {
2884 .minor = MISC_DYNAMIC_MINOR,
2885 .name = DRIVER_NAME,
2886 .nodename = "pktcdvd/control",
2887 .fops = &pkt_ctl_fops
2888};
2889
2890static int __init pkt_init(void)
2891{
2892 int ret;
2893
2894 mutex_init(&ctl_mutex);
2895
2896 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2897 sizeof(struct packet_stacked_data));
2898 if (ret)
2899 return ret;
2900 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2901 if (ret) {
2902 mempool_exit(&psd_pool);
2903 return ret;
2904 }
2905
2906 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2907 if (ret < 0) {
2908 pr_err("unable to register block device\n");
2909 goto out2;
2910 }
2911 if (!pktdev_major)
2912 pktdev_major = ret;
2913
2914 ret = pkt_sysfs_init();
2915 if (ret)
2916 goto out;
2917
2918 pkt_debugfs_init();
2919
2920 ret = misc_register(&pkt_misc);
2921 if (ret) {
2922 pr_err("unable to register misc device\n");
2923 goto out_misc;
2924 }
2925
2926 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2927
2928 return 0;
2929
2930out_misc:
2931 pkt_debugfs_cleanup();
2932 pkt_sysfs_cleanup();
2933out:
2934 unregister_blkdev(pktdev_major, DRIVER_NAME);
2935out2:
2936 mempool_exit(&psd_pool);
2937 bioset_exit(&pkt_bio_set);
2938 return ret;
2939}
2940
2941static void __exit pkt_exit(void)
2942{
2943 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2944 misc_deregister(&pkt_misc);
2945
2946 pkt_debugfs_cleanup();
2947 pkt_sysfs_cleanup();
2948
2949 unregister_blkdev(pktdev_major, DRIVER_NAME);
2950 mempool_exit(&psd_pool);
2951 bioset_exit(&pkt_bio_set);
2952}
2953
2954MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2955MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2956MODULE_LICENSE("GPL");
2957
2958module_init(pkt_init);
2959module_exit(pkt_exit);