Loading...
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#include <linux/pktcdvd.h>
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/kernel.h>
51#include <linux/compat.h>
52#include <linux/kthread.h>
53#include <linux/errno.h>
54#include <linux/spinlock.h>
55#include <linux/file.h>
56#include <linux/proc_fs.h>
57#include <linux/seq_file.h>
58#include <linux/miscdevice.h>
59#include <linux/freezer.h>
60#include <linux/mutex.h>
61#include <linux/slab.h>
62#include <scsi/scsi_cmnd.h>
63#include <scsi/scsi_ioctl.h>
64#include <scsi/scsi.h>
65#include <linux/debugfs.h>
66#include <linux/device.h>
67
68#include <asm/uaccess.h>
69
70#define DRIVER_NAME "pktcdvd"
71
72#if PACKET_DEBUG
73#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74#else
75#define DPRINTK(fmt, args...)
76#endif
77
78#if PACKET_DEBUG > 1
79#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80#else
81#define VPRINTK(fmt, args...)
82#endif
83
84#define MAX_SPEED 0xffff
85
86#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87
88static DEFINE_MUTEX(pktcdvd_mutex);
89static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90static struct proc_dir_entry *pkt_proc;
91static int pktdev_major;
92static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95static mempool_t *psd_pool;
96
97static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
99
100/* forward declaration */
101static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102static int pkt_remove_dev(dev_t pkt_dev);
103static int pkt_seq_show(struct seq_file *m, void *p);
104
105
106
107/*
108 * create and register a pktcdvd kernel object.
109 */
110static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111 const char* name,
112 struct kobject* parent,
113 struct kobj_type* ktype)
114{
115 struct pktcdvd_kobj *p;
116 int error;
117
118 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 if (!p)
120 return NULL;
121 p->pd = pd;
122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123 if (error) {
124 kobject_put(&p->kobj);
125 return NULL;
126 }
127 kobject_uevent(&p->kobj, KOBJ_ADD);
128 return p;
129}
130/*
131 * remove a pktcdvd kernel object.
132 */
133static void pkt_kobj_remove(struct pktcdvd_kobj *p)
134{
135 if (p)
136 kobject_put(&p->kobj);
137}
138/*
139 * default release function for pktcdvd kernel objects.
140 */
141static void pkt_kobj_release(struct kobject *kobj)
142{
143 kfree(to_pktcdvdkobj(kobj));
144}
145
146
147/**********************************************************
148 *
149 * sysfs interface for pktcdvd
150 * by (C) 2006 Thomas Maier <balagi@justmail.de>
151 *
152 **********************************************************/
153
154#define DEF_ATTR(_obj,_name,_mode) \
155 static struct attribute _obj = { .name = _name, .mode = _mode }
156
157/**********************************************************
158 /sys/class/pktcdvd/pktcdvd[0-7]/
159 stat/reset
160 stat/packets_started
161 stat/packets_finished
162 stat/kb_written
163 stat/kb_read
164 stat/kb_read_gather
165 write_queue/size
166 write_queue/congestion_off
167 write_queue/congestion_on
168 **********************************************************/
169
170DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
176
177static struct attribute *kobj_pkt_attrs_stat[] = {
178 &kobj_pkt_attr_st1,
179 &kobj_pkt_attr_st2,
180 &kobj_pkt_attr_st3,
181 &kobj_pkt_attr_st4,
182 &kobj_pkt_attr_st5,
183 &kobj_pkt_attr_st6,
184 NULL
185};
186
187DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
190
191static struct attribute *kobj_pkt_attrs_wqueue[] = {
192 &kobj_pkt_attr_wq1,
193 &kobj_pkt_attr_wq2,
194 &kobj_pkt_attr_wq3,
195 NULL
196};
197
198static ssize_t kobj_pkt_show(struct kobject *kobj,
199 struct attribute *attr, char *data)
200{
201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202 int n = 0;
203 int v;
204 if (strcmp(attr->name, "packets_started") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
206
207 } else if (strcmp(attr->name, "packets_finished") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
209
210 } else if (strcmp(attr->name, "kb_written") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
212
213 } else if (strcmp(attr->name, "kb_read") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
215
216 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
218
219 } else if (strcmp(attr->name, "size") == 0) {
220 spin_lock(&pd->lock);
221 v = pd->bio_queue_size;
222 spin_unlock(&pd->lock);
223 n = sprintf(data, "%d\n", v);
224
225 } else if (strcmp(attr->name, "congestion_off") == 0) {
226 spin_lock(&pd->lock);
227 v = pd->write_congestion_off;
228 spin_unlock(&pd->lock);
229 n = sprintf(data, "%d\n", v);
230
231 } else if (strcmp(attr->name, "congestion_on") == 0) {
232 spin_lock(&pd->lock);
233 v = pd->write_congestion_on;
234 spin_unlock(&pd->lock);
235 n = sprintf(data, "%d\n", v);
236 }
237 return n;
238}
239
240static void init_write_congestion_marks(int* lo, int* hi)
241{
242 if (*hi > 0) {
243 *hi = max(*hi, 500);
244 *hi = min(*hi, 1000000);
245 if (*lo <= 0)
246 *lo = *hi - 100;
247 else {
248 *lo = min(*lo, *hi - 100);
249 *lo = max(*lo, 100);
250 }
251 } else {
252 *hi = -1;
253 *lo = -1;
254 }
255}
256
257static ssize_t kobj_pkt_store(struct kobject *kobj,
258 struct attribute *attr,
259 const char *data, size_t len)
260{
261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262 int val;
263
264 if (strcmp(attr->name, "reset") == 0 && len > 0) {
265 pd->stats.pkt_started = 0;
266 pd->stats.pkt_ended = 0;
267 pd->stats.secs_w = 0;
268 pd->stats.secs_rg = 0;
269 pd->stats.secs_r = 0;
270
271 } else if (strcmp(attr->name, "congestion_off") == 0
272 && sscanf(data, "%d", &val) == 1) {
273 spin_lock(&pd->lock);
274 pd->write_congestion_off = val;
275 init_write_congestion_marks(&pd->write_congestion_off,
276 &pd->write_congestion_on);
277 spin_unlock(&pd->lock);
278
279 } else if (strcmp(attr->name, "congestion_on") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_on = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
286 }
287 return len;
288}
289
290static const struct sysfs_ops kobj_pkt_ops = {
291 .show = kobj_pkt_show,
292 .store = kobj_pkt_store
293};
294static struct kobj_type kobj_pkt_type_stat = {
295 .release = pkt_kobj_release,
296 .sysfs_ops = &kobj_pkt_ops,
297 .default_attrs = kobj_pkt_attrs_stat
298};
299static struct kobj_type kobj_pkt_type_wqueue = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_wqueue
303};
304
305static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306{
307 if (class_pktcdvd) {
308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309 "%s", pd->name);
310 if (IS_ERR(pd->dev))
311 pd->dev = NULL;
312 }
313 if (pd->dev) {
314 pd->kobj_stat = pkt_kobj_create(pd, "stat",
315 &pd->dev->kobj,
316 &kobj_pkt_type_stat);
317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318 &pd->dev->kobj,
319 &kobj_pkt_type_wqueue);
320 }
321}
322
323static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
324{
325 pkt_kobj_remove(pd->kobj_stat);
326 pkt_kobj_remove(pd->kobj_wqueue);
327 if (class_pktcdvd)
328 device_unregister(pd->dev);
329}
330
331
332/********************************************************************
333 /sys/class/pktcdvd/
334 add map block device
335 remove unmap packet dev
336 device_map show mappings
337 *******************************************************************/
338
339static void class_pktcdvd_release(struct class *cls)
340{
341 kfree(cls);
342}
343static ssize_t class_pktcdvd_show_map(struct class *c,
344 struct class_attribute *attr,
345 char *data)
346{
347 int n = 0;
348 int idx;
349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350 for (idx = 0; idx < MAX_WRITERS; idx++) {
351 struct pktcdvd_device *pd = pkt_devs[idx];
352 if (!pd)
353 continue;
354 n += sprintf(data+n, "%s %u:%u %u:%u\n",
355 pd->name,
356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357 MAJOR(pd->bdev->bd_dev),
358 MINOR(pd->bdev->bd_dev));
359 }
360 mutex_unlock(&ctl_mutex);
361 return n;
362}
363
364static ssize_t class_pktcdvd_store_add(struct class *c,
365 struct class_attribute *attr,
366 const char *buf,
367 size_t count)
368{
369 unsigned int major, minor;
370
371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372 /* pkt_setup_dev() expects caller to hold reference to self */
373 if (!try_module_get(THIS_MODULE))
374 return -ENODEV;
375
376 pkt_setup_dev(MKDEV(major, minor), NULL);
377
378 module_put(THIS_MODULE);
379
380 return count;
381 }
382
383 return -EINVAL;
384}
385
386static ssize_t class_pktcdvd_store_remove(struct class *c,
387 struct class_attribute *attr,
388 const char *buf,
389 size_t count)
390{
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
395 }
396 return -EINVAL;
397}
398
399static struct class_attribute class_pktcdvd_attrs[] = {
400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
403 __ATTR_NULL
404};
405
406
407static int pkt_sysfs_init(void)
408{
409 int ret = 0;
410
411 /*
412 * create control files in sysfs
413 * /sys/class/pktcdvd/...
414 */
415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416 if (!class_pktcdvd)
417 return -ENOMEM;
418 class_pktcdvd->name = DRIVER_NAME;
419 class_pktcdvd->owner = THIS_MODULE;
420 class_pktcdvd->class_release = class_pktcdvd_release;
421 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422 ret = class_register(class_pktcdvd);
423 if (ret) {
424 kfree(class_pktcdvd);
425 class_pktcdvd = NULL;
426 printk(DRIVER_NAME": failed to create class pktcdvd\n");
427 return ret;
428 }
429 return 0;
430}
431
432static void pkt_sysfs_cleanup(void)
433{
434 if (class_pktcdvd)
435 class_destroy(class_pktcdvd);
436 class_pktcdvd = NULL;
437}
438
439/********************************************************************
440 entries in debugfs
441
442 /sys/kernel/debug/pktcdvd[0-7]/
443 info
444
445 *******************************************************************/
446
447static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
448{
449 return pkt_seq_show(m, p);
450}
451
452static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
453{
454 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455}
456
457static const struct file_operations debug_fops = {
458 .open = pkt_debugfs_fops_open,
459 .read = seq_read,
460 .llseek = seq_lseek,
461 .release = single_release,
462 .owner = THIS_MODULE,
463};
464
465static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
466{
467 if (!pkt_debugfs_root)
468 return;
469 pd->dfs_f_info = NULL;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (IS_ERR(pd->dfs_d_root)) {
472 pd->dfs_d_root = NULL;
473 return;
474 }
475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476 pd->dfs_d_root, pd, &debug_fops);
477 if (IS_ERR(pd->dfs_f_info)) {
478 pd->dfs_f_info = NULL;
479 return;
480 }
481}
482
483static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
484{
485 if (!pkt_debugfs_root)
486 return;
487 if (pd->dfs_f_info)
488 debugfs_remove(pd->dfs_f_info);
489 pd->dfs_f_info = NULL;
490 if (pd->dfs_d_root)
491 debugfs_remove(pd->dfs_d_root);
492 pd->dfs_d_root = NULL;
493}
494
495static void pkt_debugfs_init(void)
496{
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 if (IS_ERR(pkt_debugfs_root)) {
499 pkt_debugfs_root = NULL;
500 return;
501 }
502}
503
504static void pkt_debugfs_cleanup(void)
505{
506 if (!pkt_debugfs_root)
507 return;
508 debugfs_remove(pkt_debugfs_root);
509 pkt_debugfs_root = NULL;
510}
511
512/* ----------------------------------------------------------*/
513
514
515static void pkt_bio_finished(struct pktcdvd_device *pd)
516{
517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519 VPRINTK(DRIVER_NAME": queue empty\n");
520 atomic_set(&pd->iosched.attention, 1);
521 wake_up(&pd->wqueue);
522 }
523}
524
525static void pkt_bio_destructor(struct bio *bio)
526{
527 kfree(bio->bi_io_vec);
528 kfree(bio);
529}
530
531static struct bio *pkt_bio_alloc(int nr_iovecs)
532{
533 struct bio_vec *bvl = NULL;
534 struct bio *bio;
535
536 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
537 if (!bio)
538 goto no_bio;
539 bio_init(bio);
540
541 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
542 if (!bvl)
543 goto no_bvl;
544
545 bio->bi_max_vecs = nr_iovecs;
546 bio->bi_io_vec = bvl;
547 bio->bi_destructor = pkt_bio_destructor;
548
549 return bio;
550
551 no_bvl:
552 kfree(bio);
553 no_bio:
554 return NULL;
555}
556
557/*
558 * Allocate a packet_data struct
559 */
560static struct packet_data *pkt_alloc_packet_data(int frames)
561{
562 int i;
563 struct packet_data *pkt;
564
565 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
566 if (!pkt)
567 goto no_pkt;
568
569 pkt->frames = frames;
570 pkt->w_bio = pkt_bio_alloc(frames);
571 if (!pkt->w_bio)
572 goto no_bio;
573
574 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
575 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
576 if (!pkt->pages[i])
577 goto no_page;
578 }
579
580 spin_lock_init(&pkt->lock);
581 bio_list_init(&pkt->orig_bios);
582
583 for (i = 0; i < frames; i++) {
584 struct bio *bio = pkt_bio_alloc(1);
585 if (!bio)
586 goto no_rd_bio;
587 pkt->r_bios[i] = bio;
588 }
589
590 return pkt;
591
592no_rd_bio:
593 for (i = 0; i < frames; i++) {
594 struct bio *bio = pkt->r_bios[i];
595 if (bio)
596 bio_put(bio);
597 }
598
599no_page:
600 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
601 if (pkt->pages[i])
602 __free_page(pkt->pages[i]);
603 bio_put(pkt->w_bio);
604no_bio:
605 kfree(pkt);
606no_pkt:
607 return NULL;
608}
609
610/*
611 * Free a packet_data struct
612 */
613static void pkt_free_packet_data(struct packet_data *pkt)
614{
615 int i;
616
617 for (i = 0; i < pkt->frames; i++) {
618 struct bio *bio = pkt->r_bios[i];
619 if (bio)
620 bio_put(bio);
621 }
622 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
623 __free_page(pkt->pages[i]);
624 bio_put(pkt->w_bio);
625 kfree(pkt);
626}
627
628static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
629{
630 struct packet_data *pkt, *next;
631
632 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
633
634 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
635 pkt_free_packet_data(pkt);
636 }
637 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
638}
639
640static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
641{
642 struct packet_data *pkt;
643
644 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
645
646 while (nr_packets > 0) {
647 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
648 if (!pkt) {
649 pkt_shrink_pktlist(pd);
650 return 0;
651 }
652 pkt->id = nr_packets;
653 pkt->pd = pd;
654 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
655 nr_packets--;
656 }
657 return 1;
658}
659
660static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
661{
662 struct rb_node *n = rb_next(&node->rb_node);
663 if (!n)
664 return NULL;
665 return rb_entry(n, struct pkt_rb_node, rb_node);
666}
667
668static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
669{
670 rb_erase(&node->rb_node, &pd->bio_queue);
671 mempool_free(node, pd->rb_pool);
672 pd->bio_queue_size--;
673 BUG_ON(pd->bio_queue_size < 0);
674}
675
676/*
677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
678 */
679static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
680{
681 struct rb_node *n = pd->bio_queue.rb_node;
682 struct rb_node *next;
683 struct pkt_rb_node *tmp;
684
685 if (!n) {
686 BUG_ON(pd->bio_queue_size > 0);
687 return NULL;
688 }
689
690 for (;;) {
691 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
692 if (s <= tmp->bio->bi_sector)
693 next = n->rb_left;
694 else
695 next = n->rb_right;
696 if (!next)
697 break;
698 n = next;
699 }
700
701 if (s > tmp->bio->bi_sector) {
702 tmp = pkt_rbtree_next(tmp);
703 if (!tmp)
704 return NULL;
705 }
706 BUG_ON(s > tmp->bio->bi_sector);
707 return tmp;
708}
709
710/*
711 * Insert a node into the pd->bio_queue rb tree.
712 */
713static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
714{
715 struct rb_node **p = &pd->bio_queue.rb_node;
716 struct rb_node *parent = NULL;
717 sector_t s = node->bio->bi_sector;
718 struct pkt_rb_node *tmp;
719
720 while (*p) {
721 parent = *p;
722 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
723 if (s < tmp->bio->bi_sector)
724 p = &(*p)->rb_left;
725 else
726 p = &(*p)->rb_right;
727 }
728 rb_link_node(&node->rb_node, parent, p);
729 rb_insert_color(&node->rb_node, &pd->bio_queue);
730 pd->bio_queue_size++;
731}
732
733/*
734 * Send a packet_command to the underlying block device and
735 * wait for completion.
736 */
737static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
738{
739 struct request_queue *q = bdev_get_queue(pd->bdev);
740 struct request *rq;
741 int ret = 0;
742
743 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
744 WRITE : READ, __GFP_WAIT);
745
746 if (cgc->buflen) {
747 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
748 goto out;
749 }
750
751 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
752 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
753
754 rq->timeout = 60*HZ;
755 rq->cmd_type = REQ_TYPE_BLOCK_PC;
756 if (cgc->quiet)
757 rq->cmd_flags |= REQ_QUIET;
758
759 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
760 if (rq->errors)
761 ret = -EIO;
762out:
763 blk_put_request(rq);
764 return ret;
765}
766
767/*
768 * A generic sense dump / resolve mechanism should be implemented across
769 * all ATAPI + SCSI devices.
770 */
771static void pkt_dump_sense(struct packet_command *cgc)
772{
773 static char *info[9] = { "No sense", "Recovered error", "Not ready",
774 "Medium error", "Hardware error", "Illegal request",
775 "Unit attention", "Data protect", "Blank check" };
776 int i;
777 struct request_sense *sense = cgc->sense;
778
779 printk(DRIVER_NAME":");
780 for (i = 0; i < CDROM_PACKET_SIZE; i++)
781 printk(" %02x", cgc->cmd[i]);
782 printk(" - ");
783
784 if (sense == NULL) {
785 printk("no sense\n");
786 return;
787 }
788
789 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
790
791 if (sense->sense_key > 8) {
792 printk(" (INVALID)\n");
793 return;
794 }
795
796 printk(" (%s)\n", info[sense->sense_key]);
797}
798
799/*
800 * flush the drive cache to media
801 */
802static int pkt_flush_cache(struct pktcdvd_device *pd)
803{
804 struct packet_command cgc;
805
806 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
807 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
808 cgc.quiet = 1;
809
810 /*
811 * the IMMED bit -- we default to not setting it, although that
812 * would allow a much faster close, this is safer
813 */
814#if 0
815 cgc.cmd[1] = 1 << 1;
816#endif
817 return pkt_generic_packet(pd, &cgc);
818}
819
820/*
821 * speed is given as the normal factor, e.g. 4 for 4x
822 */
823static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
824 unsigned write_speed, unsigned read_speed)
825{
826 struct packet_command cgc;
827 struct request_sense sense;
828 int ret;
829
830 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
831 cgc.sense = &sense;
832 cgc.cmd[0] = GPCMD_SET_SPEED;
833 cgc.cmd[2] = (read_speed >> 8) & 0xff;
834 cgc.cmd[3] = read_speed & 0xff;
835 cgc.cmd[4] = (write_speed >> 8) & 0xff;
836 cgc.cmd[5] = write_speed & 0xff;
837
838 if ((ret = pkt_generic_packet(pd, &cgc)))
839 pkt_dump_sense(&cgc);
840
841 return ret;
842}
843
844/*
845 * Queue a bio for processing by the low-level CD device. Must be called
846 * from process context.
847 */
848static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
849{
850 spin_lock(&pd->iosched.lock);
851 if (bio_data_dir(bio) == READ)
852 bio_list_add(&pd->iosched.read_queue, bio);
853 else
854 bio_list_add(&pd->iosched.write_queue, bio);
855 spin_unlock(&pd->iosched.lock);
856
857 atomic_set(&pd->iosched.attention, 1);
858 wake_up(&pd->wqueue);
859}
860
861/*
862 * Process the queued read/write requests. This function handles special
863 * requirements for CDRW drives:
864 * - A cache flush command must be inserted before a read request if the
865 * previous request was a write.
866 * - Switching between reading and writing is slow, so don't do it more often
867 * than necessary.
868 * - Optimize for throughput at the expense of latency. This means that streaming
869 * writes will never be interrupted by a read, but if the drive has to seek
870 * before the next write, switch to reading instead if there are any pending
871 * read requests.
872 * - Set the read speed according to current usage pattern. When only reading
873 * from the device, it's best to use the highest possible read speed, but
874 * when switching often between reading and writing, it's better to have the
875 * same read and write speeds.
876 */
877static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
878{
879
880 if (atomic_read(&pd->iosched.attention) == 0)
881 return;
882 atomic_set(&pd->iosched.attention, 0);
883
884 for (;;) {
885 struct bio *bio;
886 int reads_queued, writes_queued;
887
888 spin_lock(&pd->iosched.lock);
889 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
890 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
891 spin_unlock(&pd->iosched.lock);
892
893 if (!reads_queued && !writes_queued)
894 break;
895
896 if (pd->iosched.writing) {
897 int need_write_seek = 1;
898 spin_lock(&pd->iosched.lock);
899 bio = bio_list_peek(&pd->iosched.write_queue);
900 spin_unlock(&pd->iosched.lock);
901 if (bio && (bio->bi_sector == pd->iosched.last_write))
902 need_write_seek = 0;
903 if (need_write_seek && reads_queued) {
904 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
905 VPRINTK(DRIVER_NAME": write, waiting\n");
906 break;
907 }
908 pkt_flush_cache(pd);
909 pd->iosched.writing = 0;
910 }
911 } else {
912 if (!reads_queued && writes_queued) {
913 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
914 VPRINTK(DRIVER_NAME": read, waiting\n");
915 break;
916 }
917 pd->iosched.writing = 1;
918 }
919 }
920
921 spin_lock(&pd->iosched.lock);
922 if (pd->iosched.writing)
923 bio = bio_list_pop(&pd->iosched.write_queue);
924 else
925 bio = bio_list_pop(&pd->iosched.read_queue);
926 spin_unlock(&pd->iosched.lock);
927
928 if (!bio)
929 continue;
930
931 if (bio_data_dir(bio) == READ)
932 pd->iosched.successive_reads += bio->bi_size >> 10;
933 else {
934 pd->iosched.successive_reads = 0;
935 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
936 }
937 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
938 if (pd->read_speed == pd->write_speed) {
939 pd->read_speed = MAX_SPEED;
940 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
941 }
942 } else {
943 if (pd->read_speed != pd->write_speed) {
944 pd->read_speed = pd->write_speed;
945 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
946 }
947 }
948
949 atomic_inc(&pd->cdrw.pending_bios);
950 generic_make_request(bio);
951 }
952}
953
954/*
955 * Special care is needed if the underlying block device has a small
956 * max_phys_segments value.
957 */
958static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
959{
960 if ((pd->settings.size << 9) / CD_FRAMESIZE
961 <= queue_max_segments(q)) {
962 /*
963 * The cdrom device can handle one segment/frame
964 */
965 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
966 return 0;
967 } else if ((pd->settings.size << 9) / PAGE_SIZE
968 <= queue_max_segments(q)) {
969 /*
970 * We can handle this case at the expense of some extra memory
971 * copies during write operations
972 */
973 set_bit(PACKET_MERGE_SEGS, &pd->flags);
974 return 0;
975 } else {
976 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
977 return -EIO;
978 }
979}
980
981/*
982 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
983 */
984static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
985{
986 unsigned int copy_size = CD_FRAMESIZE;
987
988 while (copy_size > 0) {
989 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
990 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
991 src_bvl->bv_offset + offs;
992 void *vto = page_address(dst_page) + dst_offs;
993 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
994
995 BUG_ON(len < 0);
996 memcpy(vto, vfrom, len);
997 kunmap_atomic(vfrom, KM_USER0);
998
999 seg++;
1000 offs = 0;
1001 dst_offs += len;
1002 copy_size -= len;
1003 }
1004}
1005
1006/*
1007 * Copy all data for this packet to pkt->pages[], so that
1008 * a) The number of required segments for the write bio is minimized, which
1009 * is necessary for some scsi controllers.
1010 * b) The data can be used as cache to avoid read requests if we receive a
1011 * new write request for the same zone.
1012 */
1013static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1014{
1015 int f, p, offs;
1016
1017 /* Copy all data to pkt->pages[] */
1018 p = 0;
1019 offs = 0;
1020 for (f = 0; f < pkt->frames; f++) {
1021 if (bvec[f].bv_page != pkt->pages[p]) {
1022 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1023 void *vto = page_address(pkt->pages[p]) + offs;
1024 memcpy(vto, vfrom, CD_FRAMESIZE);
1025 kunmap_atomic(vfrom, KM_USER0);
1026 bvec[f].bv_page = pkt->pages[p];
1027 bvec[f].bv_offset = offs;
1028 } else {
1029 BUG_ON(bvec[f].bv_offset != offs);
1030 }
1031 offs += CD_FRAMESIZE;
1032 if (offs >= PAGE_SIZE) {
1033 offs = 0;
1034 p++;
1035 }
1036 }
1037}
1038
1039static void pkt_end_io_read(struct bio *bio, int err)
1040{
1041 struct packet_data *pkt = bio->bi_private;
1042 struct pktcdvd_device *pd = pkt->pd;
1043 BUG_ON(!pd);
1044
1045 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1047
1048 if (err)
1049 atomic_inc(&pkt->io_errors);
1050 if (atomic_dec_and_test(&pkt->io_wait)) {
1051 atomic_inc(&pkt->run_sm);
1052 wake_up(&pd->wqueue);
1053 }
1054 pkt_bio_finished(pd);
1055}
1056
1057static void pkt_end_io_packet_write(struct bio *bio, int err)
1058{
1059 struct packet_data *pkt = bio->bi_private;
1060 struct pktcdvd_device *pd = pkt->pd;
1061 BUG_ON(!pd);
1062
1063 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1064
1065 pd->stats.pkt_ended++;
1066
1067 pkt_bio_finished(pd);
1068 atomic_dec(&pkt->io_wait);
1069 atomic_inc(&pkt->run_sm);
1070 wake_up(&pd->wqueue);
1071}
1072
1073/*
1074 * Schedule reads for the holes in a packet
1075 */
1076static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077{
1078 int frames_read = 0;
1079 struct bio *bio;
1080 int f;
1081 char written[PACKET_MAX_SIZE];
1082
1083 BUG_ON(bio_list_empty(&pkt->orig_bios));
1084
1085 atomic_set(&pkt->io_wait, 0);
1086 atomic_set(&pkt->io_errors, 0);
1087
1088 /*
1089 * Figure out which frames we need to read before we can write.
1090 */
1091 memset(written, 0, sizeof(written));
1092 spin_lock(&pkt->lock);
1093 bio_list_for_each(bio, &pkt->orig_bios) {
1094 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095 int num_frames = bio->bi_size / CD_FRAMESIZE;
1096 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097 BUG_ON(first_frame < 0);
1098 BUG_ON(first_frame + num_frames > pkt->frames);
1099 for (f = first_frame; f < first_frame + num_frames; f++)
1100 written[f] = 1;
1101 }
1102 spin_unlock(&pkt->lock);
1103
1104 if (pkt->cache_valid) {
1105 VPRINTK("pkt_gather_data: zone %llx cached\n",
1106 (unsigned long long)pkt->sector);
1107 goto out_account;
1108 }
1109
1110 /*
1111 * Schedule reads for missing parts of the packet.
1112 */
1113 for (f = 0; f < pkt->frames; f++) {
1114 struct bio_vec *vec;
1115
1116 int p, offset;
1117 if (written[f])
1118 continue;
1119 bio = pkt->r_bios[f];
1120 vec = bio->bi_io_vec;
1121 bio_init(bio);
1122 bio->bi_max_vecs = 1;
1123 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124 bio->bi_bdev = pd->bdev;
1125 bio->bi_end_io = pkt_end_io_read;
1126 bio->bi_private = pkt;
1127 bio->bi_io_vec = vec;
1128 bio->bi_destructor = pkt_bio_destructor;
1129
1130 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133 f, pkt->pages[p], offset);
1134 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135 BUG();
1136
1137 atomic_inc(&pkt->io_wait);
1138 bio->bi_rw = READ;
1139 pkt_queue_bio(pd, bio);
1140 frames_read++;
1141 }
1142
1143out_account:
1144 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145 frames_read, (unsigned long long)pkt->sector);
1146 pd->stats.pkt_started++;
1147 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1148}
1149
1150/*
1151 * Find a packet matching zone, or the least recently used packet if
1152 * there is no match.
1153 */
1154static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1155{
1156 struct packet_data *pkt;
1157
1158 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160 list_del_init(&pkt->list);
1161 if (pkt->sector != zone)
1162 pkt->cache_valid = 0;
1163 return pkt;
1164 }
1165 }
1166 BUG();
1167 return NULL;
1168}
1169
1170static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1171{
1172 if (pkt->cache_valid) {
1173 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174 } else {
1175 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1176 }
1177}
1178
1179/*
1180 * recover a failed write, query for relocation if possible
1181 *
1182 * returns 1 if recovery is possible, or 0 if not
1183 *
1184 */
1185static int pkt_start_recovery(struct packet_data *pkt)
1186{
1187 /*
1188 * FIXME. We need help from the file system to implement
1189 * recovery handling.
1190 */
1191 return 0;
1192#if 0
1193 struct request *rq = pkt->rq;
1194 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195 struct block_device *pkt_bdev;
1196 struct super_block *sb = NULL;
1197 unsigned long old_block, new_block;
1198 sector_t new_sector;
1199
1200 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201 if (pkt_bdev) {
1202 sb = get_super(pkt_bdev);
1203 bdput(pkt_bdev);
1204 }
1205
1206 if (!sb)
1207 return 0;
1208
1209 if (!sb->s_op->relocate_blocks)
1210 goto out;
1211
1212 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214 goto out;
1215
1216 new_sector = new_block * (CD_FRAMESIZE >> 9);
1217 pkt->sector = new_sector;
1218
1219 pkt->bio->bi_sector = new_sector;
1220 pkt->bio->bi_next = NULL;
1221 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222 pkt->bio->bi_idx = 0;
1223
1224 BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1225 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228 BUG_ON(pkt->bio->bi_private != pkt);
1229
1230 drop_super(sb);
1231 return 1;
1232
1233out:
1234 drop_super(sb);
1235 return 0;
1236#endif
1237}
1238
1239static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1240{
1241#if PACKET_DEBUG > 1
1242 static const char *state_name[] = {
1243 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1244 };
1245 enum packet_data_state old_state = pkt->state;
1246 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1247 state_name[old_state], state_name[state]);
1248#endif
1249 pkt->state = state;
1250}
1251
1252/*
1253 * Scan the work queue to see if we can start a new packet.
1254 * returns non-zero if any work was done.
1255 */
1256static int pkt_handle_queue(struct pktcdvd_device *pd)
1257{
1258 struct packet_data *pkt, *p;
1259 struct bio *bio = NULL;
1260 sector_t zone = 0; /* Suppress gcc warning */
1261 struct pkt_rb_node *node, *first_node;
1262 struct rb_node *n;
1263 int wakeup;
1264
1265 VPRINTK("handle_queue\n");
1266
1267 atomic_set(&pd->scan_queue, 0);
1268
1269 if (list_empty(&pd->cdrw.pkt_free_list)) {
1270 VPRINTK("handle_queue: no pkt\n");
1271 return 0;
1272 }
1273
1274 /*
1275 * Try to find a zone we are not already working on.
1276 */
1277 spin_lock(&pd->lock);
1278 first_node = pkt_rbtree_find(pd, pd->current_sector);
1279 if (!first_node) {
1280 n = rb_first(&pd->bio_queue);
1281 if (n)
1282 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1283 }
1284 node = first_node;
1285 while (node) {
1286 bio = node->bio;
1287 zone = ZONE(bio->bi_sector, pd);
1288 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289 if (p->sector == zone) {
1290 bio = NULL;
1291 goto try_next_bio;
1292 }
1293 }
1294 break;
1295try_next_bio:
1296 node = pkt_rbtree_next(node);
1297 if (!node) {
1298 n = rb_first(&pd->bio_queue);
1299 if (n)
1300 node = rb_entry(n, struct pkt_rb_node, rb_node);
1301 }
1302 if (node == first_node)
1303 node = NULL;
1304 }
1305 spin_unlock(&pd->lock);
1306 if (!bio) {
1307 VPRINTK("handle_queue: no bio\n");
1308 return 0;
1309 }
1310
1311 pkt = pkt_get_packet_data(pd, zone);
1312
1313 pd->current_sector = zone + pd->settings.size;
1314 pkt->sector = zone;
1315 BUG_ON(pkt->frames != pd->settings.size >> 2);
1316 pkt->write_size = 0;
1317
1318 /*
1319 * Scan work queue for bios in the same zone and link them
1320 * to this packet.
1321 */
1322 spin_lock(&pd->lock);
1323 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1325 bio = node->bio;
1326 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327 (unsigned long long)ZONE(bio->bi_sector, pd));
1328 if (ZONE(bio->bi_sector, pd) != zone)
1329 break;
1330 pkt_rbtree_erase(pd, node);
1331 spin_lock(&pkt->lock);
1332 bio_list_add(&pkt->orig_bios, bio);
1333 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334 spin_unlock(&pkt->lock);
1335 }
1336 /* check write congestion marks, and if bio_queue_size is
1337 below, wake up any waiters */
1338 wakeup = (pd->write_congestion_on > 0
1339 && pd->bio_queue_size <= pd->write_congestion_off);
1340 spin_unlock(&pd->lock);
1341 if (wakeup) {
1342 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343 BLK_RW_ASYNC);
1344 }
1345
1346 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347 pkt_set_state(pkt, PACKET_WAITING_STATE);
1348 atomic_set(&pkt->run_sm, 1);
1349
1350 spin_lock(&pd->cdrw.active_list_lock);
1351 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352 spin_unlock(&pd->cdrw.active_list_lock);
1353
1354 return 1;
1355}
1356
1357/*
1358 * Assemble a bio to write one packet and queue the bio for processing
1359 * by the underlying block device.
1360 */
1361static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1362{
1363 struct bio *bio;
1364 int f;
1365 int frames_write;
1366 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1367
1368 for (f = 0; f < pkt->frames; f++) {
1369 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1371 }
1372
1373 /*
1374 * Fill-in bvec with data from orig_bios.
1375 */
1376 frames_write = 0;
1377 spin_lock(&pkt->lock);
1378 bio_list_for_each(bio, &pkt->orig_bios) {
1379 int segment = bio->bi_idx;
1380 int src_offs = 0;
1381 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382 int num_frames = bio->bi_size / CD_FRAMESIZE;
1383 BUG_ON(first_frame < 0);
1384 BUG_ON(first_frame + num_frames > pkt->frames);
1385 for (f = first_frame; f < first_frame + num_frames; f++) {
1386 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1387
1388 while (src_offs >= src_bvl->bv_len) {
1389 src_offs -= src_bvl->bv_len;
1390 segment++;
1391 BUG_ON(segment >= bio->bi_vcnt);
1392 src_bvl = bio_iovec_idx(bio, segment);
1393 }
1394
1395 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396 bvec[f].bv_page = src_bvl->bv_page;
1397 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398 } else {
1399 pkt_copy_bio_data(bio, segment, src_offs,
1400 bvec[f].bv_page, bvec[f].bv_offset);
1401 }
1402 src_offs += CD_FRAMESIZE;
1403 frames_write++;
1404 }
1405 }
1406 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407 spin_unlock(&pkt->lock);
1408
1409 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410 frames_write, (unsigned long long)pkt->sector);
1411 BUG_ON(frames_write != pkt->write_size);
1412
1413 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414 pkt_make_local_copy(pkt, bvec);
1415 pkt->cache_valid = 1;
1416 } else {
1417 pkt->cache_valid = 0;
1418 }
1419
1420 /* Start the write request */
1421 bio_init(pkt->w_bio);
1422 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423 pkt->w_bio->bi_sector = pkt->sector;
1424 pkt->w_bio->bi_bdev = pd->bdev;
1425 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426 pkt->w_bio->bi_private = pkt;
1427 pkt->w_bio->bi_io_vec = bvec;
1428 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429 for (f = 0; f < pkt->frames; f++)
1430 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431 BUG();
1432 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1433
1434 atomic_set(&pkt->io_wait, 1);
1435 pkt->w_bio->bi_rw = WRITE;
1436 pkt_queue_bio(pd, pkt->w_bio);
1437}
1438
1439static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1440{
1441 struct bio *bio;
1442
1443 if (!uptodate)
1444 pkt->cache_valid = 0;
1445
1446 /* Finish all bios corresponding to this packet */
1447 while ((bio = bio_list_pop(&pkt->orig_bios)))
1448 bio_endio(bio, uptodate ? 0 : -EIO);
1449}
1450
1451static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1452{
1453 int uptodate;
1454
1455 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1456
1457 for (;;) {
1458 switch (pkt->state) {
1459 case PACKET_WAITING_STATE:
1460 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461 return;
1462
1463 pkt->sleep_time = 0;
1464 pkt_gather_data(pd, pkt);
1465 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466 break;
1467
1468 case PACKET_READ_WAIT_STATE:
1469 if (atomic_read(&pkt->io_wait) > 0)
1470 return;
1471
1472 if (atomic_read(&pkt->io_errors) > 0) {
1473 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474 } else {
1475 pkt_start_write(pd, pkt);
1476 }
1477 break;
1478
1479 case PACKET_WRITE_WAIT_STATE:
1480 if (atomic_read(&pkt->io_wait) > 0)
1481 return;
1482
1483 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485 } else {
1486 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1487 }
1488 break;
1489
1490 case PACKET_RECOVERY_STATE:
1491 if (pkt_start_recovery(pkt)) {
1492 pkt_start_write(pd, pkt);
1493 } else {
1494 VPRINTK("No recovery possible\n");
1495 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1496 }
1497 break;
1498
1499 case PACKET_FINISHED_STATE:
1500 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501 pkt_finish_packet(pkt, uptodate);
1502 return;
1503
1504 default:
1505 BUG();
1506 break;
1507 }
1508 }
1509}
1510
1511static void pkt_handle_packets(struct pktcdvd_device *pd)
1512{
1513 struct packet_data *pkt, *next;
1514
1515 VPRINTK("pkt_handle_packets\n");
1516
1517 /*
1518 * Run state machine for active packets
1519 */
1520 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521 if (atomic_read(&pkt->run_sm) > 0) {
1522 atomic_set(&pkt->run_sm, 0);
1523 pkt_run_state_machine(pd, pkt);
1524 }
1525 }
1526
1527 /*
1528 * Move no longer active packets to the free list
1529 */
1530 spin_lock(&pd->cdrw.active_list_lock);
1531 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532 if (pkt->state == PACKET_FINISHED_STATE) {
1533 list_del(&pkt->list);
1534 pkt_put_packet_data(pd, pkt);
1535 pkt_set_state(pkt, PACKET_IDLE_STATE);
1536 atomic_set(&pd->scan_queue, 1);
1537 }
1538 }
1539 spin_unlock(&pd->cdrw.active_list_lock);
1540}
1541
1542static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1543{
1544 struct packet_data *pkt;
1545 int i;
1546
1547 for (i = 0; i < PACKET_NUM_STATES; i++)
1548 states[i] = 0;
1549
1550 spin_lock(&pd->cdrw.active_list_lock);
1551 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552 states[pkt->state]++;
1553 }
1554 spin_unlock(&pd->cdrw.active_list_lock);
1555}
1556
1557/*
1558 * kcdrwd is woken up when writes have been queued for one of our
1559 * registered devices
1560 */
1561static int kcdrwd(void *foobar)
1562{
1563 struct pktcdvd_device *pd = foobar;
1564 struct packet_data *pkt;
1565 long min_sleep_time, residue;
1566
1567 set_user_nice(current, -20);
1568 set_freezable();
1569
1570 for (;;) {
1571 DECLARE_WAITQUEUE(wait, current);
1572
1573 /*
1574 * Wait until there is something to do
1575 */
1576 add_wait_queue(&pd->wqueue, &wait);
1577 for (;;) {
1578 set_current_state(TASK_INTERRUPTIBLE);
1579
1580 /* Check if we need to run pkt_handle_queue */
1581 if (atomic_read(&pd->scan_queue) > 0)
1582 goto work_to_do;
1583
1584 /* Check if we need to run the state machine for some packet */
1585 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586 if (atomic_read(&pkt->run_sm) > 0)
1587 goto work_to_do;
1588 }
1589
1590 /* Check if we need to process the iosched queues */
1591 if (atomic_read(&pd->iosched.attention) != 0)
1592 goto work_to_do;
1593
1594 /* Otherwise, go to sleep */
1595 if (PACKET_DEBUG > 1) {
1596 int states[PACKET_NUM_STATES];
1597 pkt_count_states(pd, states);
1598 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599 states[0], states[1], states[2], states[3],
1600 states[4], states[5]);
1601 }
1602
1603 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606 min_sleep_time = pkt->sleep_time;
1607 }
1608
1609 VPRINTK("kcdrwd: sleeping\n");
1610 residue = schedule_timeout(min_sleep_time);
1611 VPRINTK("kcdrwd: wake up\n");
1612
1613 /* make swsusp happy with our thread */
1614 try_to_freeze();
1615
1616 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1617 if (!pkt->sleep_time)
1618 continue;
1619 pkt->sleep_time -= min_sleep_time - residue;
1620 if (pkt->sleep_time <= 0) {
1621 pkt->sleep_time = 0;
1622 atomic_inc(&pkt->run_sm);
1623 }
1624 }
1625
1626 if (kthread_should_stop())
1627 break;
1628 }
1629work_to_do:
1630 set_current_state(TASK_RUNNING);
1631 remove_wait_queue(&pd->wqueue, &wait);
1632
1633 if (kthread_should_stop())
1634 break;
1635
1636 /*
1637 * if pkt_handle_queue returns true, we can queue
1638 * another request.
1639 */
1640 while (pkt_handle_queue(pd))
1641 ;
1642
1643 /*
1644 * Handle packet state machine
1645 */
1646 pkt_handle_packets(pd);
1647
1648 /*
1649 * Handle iosched queues
1650 */
1651 pkt_iosched_process_queue(pd);
1652 }
1653
1654 return 0;
1655}
1656
1657static void pkt_print_settings(struct pktcdvd_device *pd)
1658{
1659 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1660 printk("%u blocks, ", pd->settings.size >> 2);
1661 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1662}
1663
1664static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1665{
1666 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1667
1668 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1669 cgc->cmd[2] = page_code | (page_control << 6);
1670 cgc->cmd[7] = cgc->buflen >> 8;
1671 cgc->cmd[8] = cgc->buflen & 0xff;
1672 cgc->data_direction = CGC_DATA_READ;
1673 return pkt_generic_packet(pd, cgc);
1674}
1675
1676static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1677{
1678 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1679 memset(cgc->buffer, 0, 2);
1680 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1681 cgc->cmd[1] = 0x10; /* PF */
1682 cgc->cmd[7] = cgc->buflen >> 8;
1683 cgc->cmd[8] = cgc->buflen & 0xff;
1684 cgc->data_direction = CGC_DATA_WRITE;
1685 return pkt_generic_packet(pd, cgc);
1686}
1687
1688static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1689{
1690 struct packet_command cgc;
1691 int ret;
1692
1693 /* set up command and get the disc info */
1694 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1695 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1696 cgc.cmd[8] = cgc.buflen = 2;
1697 cgc.quiet = 1;
1698
1699 if ((ret = pkt_generic_packet(pd, &cgc)))
1700 return ret;
1701
1702 /* not all drives have the same disc_info length, so requeue
1703 * packet with the length the drive tells us it can supply
1704 */
1705 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1706 sizeof(di->disc_information_length);
1707
1708 if (cgc.buflen > sizeof(disc_information))
1709 cgc.buflen = sizeof(disc_information);
1710
1711 cgc.cmd[8] = cgc.buflen;
1712 return pkt_generic_packet(pd, &cgc);
1713}
1714
1715static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1716{
1717 struct packet_command cgc;
1718 int ret;
1719
1720 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1721 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1722 cgc.cmd[1] = type & 3;
1723 cgc.cmd[4] = (track & 0xff00) >> 8;
1724 cgc.cmd[5] = track & 0xff;
1725 cgc.cmd[8] = 8;
1726 cgc.quiet = 1;
1727
1728 if ((ret = pkt_generic_packet(pd, &cgc)))
1729 return ret;
1730
1731 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1732 sizeof(ti->track_information_length);
1733
1734 if (cgc.buflen > sizeof(track_information))
1735 cgc.buflen = sizeof(track_information);
1736
1737 cgc.cmd[8] = cgc.buflen;
1738 return pkt_generic_packet(pd, &cgc);
1739}
1740
1741static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1742 long *last_written)
1743{
1744 disc_information di;
1745 track_information ti;
1746 __u32 last_track;
1747 int ret = -1;
1748
1749 if ((ret = pkt_get_disc_info(pd, &di)))
1750 return ret;
1751
1752 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1753 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1754 return ret;
1755
1756 /* if this track is blank, try the previous. */
1757 if (ti.blank) {
1758 last_track--;
1759 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1760 return ret;
1761 }
1762
1763 /* if last recorded field is valid, return it. */
1764 if (ti.lra_v) {
1765 *last_written = be32_to_cpu(ti.last_rec_address);
1766 } else {
1767 /* make it up instead */
1768 *last_written = be32_to_cpu(ti.track_start) +
1769 be32_to_cpu(ti.track_size);
1770 if (ti.free_blocks)
1771 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1772 }
1773 return 0;
1774}
1775
1776/*
1777 * write mode select package based on pd->settings
1778 */
1779static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1780{
1781 struct packet_command cgc;
1782 struct request_sense sense;
1783 write_param_page *wp;
1784 char buffer[128];
1785 int ret, size;
1786
1787 /* doesn't apply to DVD+RW or DVD-RAM */
1788 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1789 return 0;
1790
1791 memset(buffer, 0, sizeof(buffer));
1792 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1793 cgc.sense = &sense;
1794 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1795 pkt_dump_sense(&cgc);
1796 return ret;
1797 }
1798
1799 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1800 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1801 if (size > sizeof(buffer))
1802 size = sizeof(buffer);
1803
1804 /*
1805 * now get it all
1806 */
1807 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1808 cgc.sense = &sense;
1809 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1810 pkt_dump_sense(&cgc);
1811 return ret;
1812 }
1813
1814 /*
1815 * write page is offset header + block descriptor length
1816 */
1817 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1818
1819 wp->fp = pd->settings.fp;
1820 wp->track_mode = pd->settings.track_mode;
1821 wp->write_type = pd->settings.write_type;
1822 wp->data_block_type = pd->settings.block_mode;
1823
1824 wp->multi_session = 0;
1825
1826#ifdef PACKET_USE_LS
1827 wp->link_size = 7;
1828 wp->ls_v = 1;
1829#endif
1830
1831 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1832 wp->session_format = 0;
1833 wp->subhdr2 = 0x20;
1834 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1835 wp->session_format = 0x20;
1836 wp->subhdr2 = 8;
1837#if 0
1838 wp->mcn[0] = 0x80;
1839 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1840#endif
1841 } else {
1842 /*
1843 * paranoia
1844 */
1845 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1846 return 1;
1847 }
1848 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1849
1850 cgc.buflen = cgc.cmd[8] = size;
1851 if ((ret = pkt_mode_select(pd, &cgc))) {
1852 pkt_dump_sense(&cgc);
1853 return ret;
1854 }
1855
1856 pkt_print_settings(pd);
1857 return 0;
1858}
1859
1860/*
1861 * 1 -- we can write to this track, 0 -- we can't
1862 */
1863static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1864{
1865 switch (pd->mmc3_profile) {
1866 case 0x1a: /* DVD+RW */
1867 case 0x12: /* DVD-RAM */
1868 /* The track is always writable on DVD+RW/DVD-RAM */
1869 return 1;
1870 default:
1871 break;
1872 }
1873
1874 if (!ti->packet || !ti->fp)
1875 return 0;
1876
1877 /*
1878 * "good" settings as per Mt Fuji.
1879 */
1880 if (ti->rt == 0 && ti->blank == 0)
1881 return 1;
1882
1883 if (ti->rt == 0 && ti->blank == 1)
1884 return 1;
1885
1886 if (ti->rt == 1 && ti->blank == 0)
1887 return 1;
1888
1889 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1890 return 0;
1891}
1892
1893/*
1894 * 1 -- we can write to this disc, 0 -- we can't
1895 */
1896static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1897{
1898 switch (pd->mmc3_profile) {
1899 case 0x0a: /* CD-RW */
1900 case 0xffff: /* MMC3 not supported */
1901 break;
1902 case 0x1a: /* DVD+RW */
1903 case 0x13: /* DVD-RW */
1904 case 0x12: /* DVD-RAM */
1905 return 1;
1906 default:
1907 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1908 return 0;
1909 }
1910
1911 /*
1912 * for disc type 0xff we should probably reserve a new track.
1913 * but i'm not sure, should we leave this to user apps? probably.
1914 */
1915 if (di->disc_type == 0xff) {
1916 printk(DRIVER_NAME": Unknown disc. No track?\n");
1917 return 0;
1918 }
1919
1920 if (di->disc_type != 0x20 && di->disc_type != 0) {
1921 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1922 return 0;
1923 }
1924
1925 if (di->erasable == 0) {
1926 printk(DRIVER_NAME": Disc not erasable\n");
1927 return 0;
1928 }
1929
1930 if (di->border_status == PACKET_SESSION_RESERVED) {
1931 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1932 return 0;
1933 }
1934
1935 return 1;
1936}
1937
1938static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1939{
1940 struct packet_command cgc;
1941 unsigned char buf[12];
1942 disc_information di;
1943 track_information ti;
1944 int ret, track;
1945
1946 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1948 cgc.cmd[8] = 8;
1949 ret = pkt_generic_packet(pd, &cgc);
1950 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1951
1952 memset(&di, 0, sizeof(disc_information));
1953 memset(&ti, 0, sizeof(track_information));
1954
1955 if ((ret = pkt_get_disc_info(pd, &di))) {
1956 printk("failed get_disc\n");
1957 return ret;
1958 }
1959
1960 if (!pkt_writable_disc(pd, &di))
1961 return -EROFS;
1962
1963 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1964
1965 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1966 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1967 printk(DRIVER_NAME": failed get_track\n");
1968 return ret;
1969 }
1970
1971 if (!pkt_writable_track(pd, &ti)) {
1972 printk(DRIVER_NAME": can't write to this track\n");
1973 return -EROFS;
1974 }
1975
1976 /*
1977 * we keep packet size in 512 byte units, makes it easier to
1978 * deal with request calculations.
1979 */
1980 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1981 if (pd->settings.size == 0) {
1982 printk(DRIVER_NAME": detected zero packet size!\n");
1983 return -ENXIO;
1984 }
1985 if (pd->settings.size > PACKET_MAX_SECTORS) {
1986 printk(DRIVER_NAME": packet size is too big\n");
1987 return -EROFS;
1988 }
1989 pd->settings.fp = ti.fp;
1990 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1991
1992 if (ti.nwa_v) {
1993 pd->nwa = be32_to_cpu(ti.next_writable);
1994 set_bit(PACKET_NWA_VALID, &pd->flags);
1995 }
1996
1997 /*
1998 * in theory we could use lra on -RW media as well and just zero
1999 * blocks that haven't been written yet, but in practice that
2000 * is just a no-go. we'll use that for -R, naturally.
2001 */
2002 if (ti.lra_v) {
2003 pd->lra = be32_to_cpu(ti.last_rec_address);
2004 set_bit(PACKET_LRA_VALID, &pd->flags);
2005 } else {
2006 pd->lra = 0xffffffff;
2007 set_bit(PACKET_LRA_VALID, &pd->flags);
2008 }
2009
2010 /*
2011 * fine for now
2012 */
2013 pd->settings.link_loss = 7;
2014 pd->settings.write_type = 0; /* packet */
2015 pd->settings.track_mode = ti.track_mode;
2016
2017 /*
2018 * mode1 or mode2 disc
2019 */
2020 switch (ti.data_mode) {
2021 case PACKET_MODE1:
2022 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2023 break;
2024 case PACKET_MODE2:
2025 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2026 break;
2027 default:
2028 printk(DRIVER_NAME": unknown data mode\n");
2029 return -EROFS;
2030 }
2031 return 0;
2032}
2033
2034/*
2035 * enable/disable write caching on drive
2036 */
2037static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2038 int set)
2039{
2040 struct packet_command cgc;
2041 struct request_sense sense;
2042 unsigned char buf[64];
2043 int ret;
2044
2045 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2046 cgc.sense = &sense;
2047 cgc.buflen = pd->mode_offset + 12;
2048
2049 /*
2050 * caching mode page might not be there, so quiet this command
2051 */
2052 cgc.quiet = 1;
2053
2054 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2055 return ret;
2056
2057 buf[pd->mode_offset + 10] |= (!!set << 2);
2058
2059 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2060 ret = pkt_mode_select(pd, &cgc);
2061 if (ret) {
2062 printk(DRIVER_NAME": write caching control failed\n");
2063 pkt_dump_sense(&cgc);
2064 } else if (!ret && set)
2065 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2066 return ret;
2067}
2068
2069static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2070{
2071 struct packet_command cgc;
2072
2073 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2074 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2075 cgc.cmd[4] = lockflag ? 1 : 0;
2076 return pkt_generic_packet(pd, &cgc);
2077}
2078
2079/*
2080 * Returns drive maximum write speed
2081 */
2082static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2083 unsigned *write_speed)
2084{
2085 struct packet_command cgc;
2086 struct request_sense sense;
2087 unsigned char buf[256+18];
2088 unsigned char *cap_buf;
2089 int ret, offset;
2090
2091 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2092 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2093 cgc.sense = &sense;
2094
2095 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2096 if (ret) {
2097 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2098 sizeof(struct mode_page_header);
2099 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2100 if (ret) {
2101 pkt_dump_sense(&cgc);
2102 return ret;
2103 }
2104 }
2105
2106 offset = 20; /* Obsoleted field, used by older drives */
2107 if (cap_buf[1] >= 28)
2108 offset = 28; /* Current write speed selected */
2109 if (cap_buf[1] >= 30) {
2110 /* If the drive reports at least one "Logical Unit Write
2111 * Speed Performance Descriptor Block", use the information
2112 * in the first block. (contains the highest speed)
2113 */
2114 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2115 if (num_spdb > 0)
2116 offset = 34;
2117 }
2118
2119 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2120 return 0;
2121}
2122
2123/* These tables from cdrecord - I don't have orange book */
2124/* standard speed CD-RW (1-4x) */
2125static char clv_to_speed[16] = {
2126 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2127 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2128};
2129/* high speed CD-RW (-10x) */
2130static char hs_clv_to_speed[16] = {
2131 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2132 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2133};
2134/* ultra high speed CD-RW */
2135static char us_clv_to_speed[16] = {
2136 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2137 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2138};
2139
2140/*
2141 * reads the maximum media speed from ATIP
2142 */
2143static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2144 unsigned *speed)
2145{
2146 struct packet_command cgc;
2147 struct request_sense sense;
2148 unsigned char buf[64];
2149 unsigned int size, st, sp;
2150 int ret;
2151
2152 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2153 cgc.sense = &sense;
2154 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2155 cgc.cmd[1] = 2;
2156 cgc.cmd[2] = 4; /* READ ATIP */
2157 cgc.cmd[8] = 2;
2158 ret = pkt_generic_packet(pd, &cgc);
2159 if (ret) {
2160 pkt_dump_sense(&cgc);
2161 return ret;
2162 }
2163 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2164 if (size > sizeof(buf))
2165 size = sizeof(buf);
2166
2167 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2168 cgc.sense = &sense;
2169 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2170 cgc.cmd[1] = 2;
2171 cgc.cmd[2] = 4;
2172 cgc.cmd[8] = size;
2173 ret = pkt_generic_packet(pd, &cgc);
2174 if (ret) {
2175 pkt_dump_sense(&cgc);
2176 return ret;
2177 }
2178
2179 if (!(buf[6] & 0x40)) {
2180 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2181 return 1;
2182 }
2183 if (!(buf[6] & 0x4)) {
2184 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2185 return 1;
2186 }
2187
2188 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2189
2190 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2191
2192 /* Info from cdrecord */
2193 switch (st) {
2194 case 0: /* standard speed */
2195 *speed = clv_to_speed[sp];
2196 break;
2197 case 1: /* high speed */
2198 *speed = hs_clv_to_speed[sp];
2199 break;
2200 case 2: /* ultra high speed */
2201 *speed = us_clv_to_speed[sp];
2202 break;
2203 default:
2204 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2205 return 1;
2206 }
2207 if (*speed) {
2208 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2209 return 0;
2210 } else {
2211 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2212 return 1;
2213 }
2214}
2215
2216static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2217{
2218 struct packet_command cgc;
2219 struct request_sense sense;
2220 int ret;
2221
2222 VPRINTK(DRIVER_NAME": Performing OPC\n");
2223
2224 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2225 cgc.sense = &sense;
2226 cgc.timeout = 60*HZ;
2227 cgc.cmd[0] = GPCMD_SEND_OPC;
2228 cgc.cmd[1] = 1;
2229 if ((ret = pkt_generic_packet(pd, &cgc)))
2230 pkt_dump_sense(&cgc);
2231 return ret;
2232}
2233
2234static int pkt_open_write(struct pktcdvd_device *pd)
2235{
2236 int ret;
2237 unsigned int write_speed, media_write_speed, read_speed;
2238
2239 if ((ret = pkt_probe_settings(pd))) {
2240 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2241 return ret;
2242 }
2243
2244 if ((ret = pkt_set_write_settings(pd))) {
2245 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2246 return -EIO;
2247 }
2248
2249 pkt_write_caching(pd, USE_WCACHING);
2250
2251 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2252 write_speed = 16 * 177;
2253 switch (pd->mmc3_profile) {
2254 case 0x13: /* DVD-RW */
2255 case 0x1a: /* DVD+RW */
2256 case 0x12: /* DVD-RAM */
2257 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2258 break;
2259 default:
2260 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2261 media_write_speed = 16;
2262 write_speed = min(write_speed, media_write_speed * 177);
2263 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2264 break;
2265 }
2266 read_speed = write_speed;
2267
2268 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2269 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2270 return -EIO;
2271 }
2272 pd->write_speed = write_speed;
2273 pd->read_speed = read_speed;
2274
2275 if ((ret = pkt_perform_opc(pd))) {
2276 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2277 }
2278
2279 return 0;
2280}
2281
2282/*
2283 * called at open time.
2284 */
2285static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2286{
2287 int ret;
2288 long lba;
2289 struct request_queue *q;
2290
2291 /*
2292 * We need to re-open the cdrom device without O_NONBLOCK to be able
2293 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2294 * so bdget() can't fail.
2295 */
2296 bdget(pd->bdev->bd_dev);
2297 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2298 goto out;
2299
2300 if ((ret = pkt_get_last_written(pd, &lba))) {
2301 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2302 goto out_putdev;
2303 }
2304
2305 set_capacity(pd->disk, lba << 2);
2306 set_capacity(pd->bdev->bd_disk, lba << 2);
2307 bd_set_size(pd->bdev, (loff_t)lba << 11);
2308
2309 q = bdev_get_queue(pd->bdev);
2310 if (write) {
2311 if ((ret = pkt_open_write(pd)))
2312 goto out_putdev;
2313 /*
2314 * Some CDRW drives can not handle writes larger than one packet,
2315 * even if the size is a multiple of the packet size.
2316 */
2317 spin_lock_irq(q->queue_lock);
2318 blk_queue_max_hw_sectors(q, pd->settings.size);
2319 spin_unlock_irq(q->queue_lock);
2320 set_bit(PACKET_WRITABLE, &pd->flags);
2321 } else {
2322 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2323 clear_bit(PACKET_WRITABLE, &pd->flags);
2324 }
2325
2326 if ((ret = pkt_set_segment_merging(pd, q)))
2327 goto out_putdev;
2328
2329 if (write) {
2330 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2331 printk(DRIVER_NAME": not enough memory for buffers\n");
2332 ret = -ENOMEM;
2333 goto out_putdev;
2334 }
2335 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2336 }
2337
2338 return 0;
2339
2340out_putdev:
2341 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2342out:
2343 return ret;
2344}
2345
2346/*
2347 * called when the device is closed. makes sure that the device flushes
2348 * the internal cache before we close.
2349 */
2350static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2351{
2352 if (flush && pkt_flush_cache(pd))
2353 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2354
2355 pkt_lock_door(pd, 0);
2356
2357 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2358 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2359
2360 pkt_shrink_pktlist(pd);
2361}
2362
2363static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2364{
2365 if (dev_minor >= MAX_WRITERS)
2366 return NULL;
2367 return pkt_devs[dev_minor];
2368}
2369
2370static int pkt_open(struct block_device *bdev, fmode_t mode)
2371{
2372 struct pktcdvd_device *pd = NULL;
2373 int ret;
2374
2375 VPRINTK(DRIVER_NAME": entering open\n");
2376
2377 mutex_lock(&pktcdvd_mutex);
2378 mutex_lock(&ctl_mutex);
2379 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2380 if (!pd) {
2381 ret = -ENODEV;
2382 goto out;
2383 }
2384 BUG_ON(pd->refcnt < 0);
2385
2386 pd->refcnt++;
2387 if (pd->refcnt > 1) {
2388 if ((mode & FMODE_WRITE) &&
2389 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2390 ret = -EBUSY;
2391 goto out_dec;
2392 }
2393 } else {
2394 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2395 if (ret)
2396 goto out_dec;
2397 /*
2398 * needed here as well, since ext2 (among others) may change
2399 * the blocksize at mount time
2400 */
2401 set_blocksize(bdev, CD_FRAMESIZE);
2402 }
2403
2404 mutex_unlock(&ctl_mutex);
2405 mutex_unlock(&pktcdvd_mutex);
2406 return 0;
2407
2408out_dec:
2409 pd->refcnt--;
2410out:
2411 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2412 mutex_unlock(&ctl_mutex);
2413 mutex_unlock(&pktcdvd_mutex);
2414 return ret;
2415}
2416
2417static int pkt_close(struct gendisk *disk, fmode_t mode)
2418{
2419 struct pktcdvd_device *pd = disk->private_data;
2420 int ret = 0;
2421
2422 mutex_lock(&pktcdvd_mutex);
2423 mutex_lock(&ctl_mutex);
2424 pd->refcnt--;
2425 BUG_ON(pd->refcnt < 0);
2426 if (pd->refcnt == 0) {
2427 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2428 pkt_release_dev(pd, flush);
2429 }
2430 mutex_unlock(&ctl_mutex);
2431 mutex_unlock(&pktcdvd_mutex);
2432 return ret;
2433}
2434
2435
2436static void pkt_end_io_read_cloned(struct bio *bio, int err)
2437{
2438 struct packet_stacked_data *psd = bio->bi_private;
2439 struct pktcdvd_device *pd = psd->pd;
2440
2441 bio_put(bio);
2442 bio_endio(psd->bio, err);
2443 mempool_free(psd, psd_pool);
2444 pkt_bio_finished(pd);
2445}
2446
2447static int pkt_make_request(struct request_queue *q, struct bio *bio)
2448{
2449 struct pktcdvd_device *pd;
2450 char b[BDEVNAME_SIZE];
2451 sector_t zone;
2452 struct packet_data *pkt;
2453 int was_empty, blocked_bio;
2454 struct pkt_rb_node *node;
2455
2456 pd = q->queuedata;
2457 if (!pd) {
2458 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2459 goto end_io;
2460 }
2461
2462 /*
2463 * Clone READ bios so we can have our own bi_end_io callback.
2464 */
2465 if (bio_data_dir(bio) == READ) {
2466 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2467 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2468
2469 psd->pd = pd;
2470 psd->bio = bio;
2471 cloned_bio->bi_bdev = pd->bdev;
2472 cloned_bio->bi_private = psd;
2473 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2474 pd->stats.secs_r += bio->bi_size >> 9;
2475 pkt_queue_bio(pd, cloned_bio);
2476 return 0;
2477 }
2478
2479 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2480 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2481 pd->name, (unsigned long long)bio->bi_sector);
2482 goto end_io;
2483 }
2484
2485 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2486 printk(DRIVER_NAME": wrong bio size\n");
2487 goto end_io;
2488 }
2489
2490 blk_queue_bounce(q, &bio);
2491
2492 zone = ZONE(bio->bi_sector, pd);
2493 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2494 (unsigned long long)bio->bi_sector,
2495 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2496
2497 /* Check if we have to split the bio */
2498 {
2499 struct bio_pair *bp;
2500 sector_t last_zone;
2501 int first_sectors;
2502
2503 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2504 if (last_zone != zone) {
2505 BUG_ON(last_zone != zone + pd->settings.size);
2506 first_sectors = last_zone - bio->bi_sector;
2507 bp = bio_split(bio, first_sectors);
2508 BUG_ON(!bp);
2509 pkt_make_request(q, &bp->bio1);
2510 pkt_make_request(q, &bp->bio2);
2511 bio_pair_release(bp);
2512 return 0;
2513 }
2514 }
2515
2516 /*
2517 * If we find a matching packet in state WAITING or READ_WAIT, we can
2518 * just append this bio to that packet.
2519 */
2520 spin_lock(&pd->cdrw.active_list_lock);
2521 blocked_bio = 0;
2522 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2523 if (pkt->sector == zone) {
2524 spin_lock(&pkt->lock);
2525 if ((pkt->state == PACKET_WAITING_STATE) ||
2526 (pkt->state == PACKET_READ_WAIT_STATE)) {
2527 bio_list_add(&pkt->orig_bios, bio);
2528 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2529 if ((pkt->write_size >= pkt->frames) &&
2530 (pkt->state == PACKET_WAITING_STATE)) {
2531 atomic_inc(&pkt->run_sm);
2532 wake_up(&pd->wqueue);
2533 }
2534 spin_unlock(&pkt->lock);
2535 spin_unlock(&pd->cdrw.active_list_lock);
2536 return 0;
2537 } else {
2538 blocked_bio = 1;
2539 }
2540 spin_unlock(&pkt->lock);
2541 }
2542 }
2543 spin_unlock(&pd->cdrw.active_list_lock);
2544
2545 /*
2546 * Test if there is enough room left in the bio work queue
2547 * (queue size >= congestion on mark).
2548 * If not, wait till the work queue size is below the congestion off mark.
2549 */
2550 spin_lock(&pd->lock);
2551 if (pd->write_congestion_on > 0
2552 && pd->bio_queue_size >= pd->write_congestion_on) {
2553 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2554 do {
2555 spin_unlock(&pd->lock);
2556 congestion_wait(BLK_RW_ASYNC, HZ);
2557 spin_lock(&pd->lock);
2558 } while(pd->bio_queue_size > pd->write_congestion_off);
2559 }
2560 spin_unlock(&pd->lock);
2561
2562 /*
2563 * No matching packet found. Store the bio in the work queue.
2564 */
2565 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2566 node->bio = bio;
2567 spin_lock(&pd->lock);
2568 BUG_ON(pd->bio_queue_size < 0);
2569 was_empty = (pd->bio_queue_size == 0);
2570 pkt_rbtree_insert(pd, node);
2571 spin_unlock(&pd->lock);
2572
2573 /*
2574 * Wake up the worker thread.
2575 */
2576 atomic_set(&pd->scan_queue, 1);
2577 if (was_empty) {
2578 /* This wake_up is required for correct operation */
2579 wake_up(&pd->wqueue);
2580 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2581 /*
2582 * This wake up is not required for correct operation,
2583 * but improves performance in some cases.
2584 */
2585 wake_up(&pd->wqueue);
2586 }
2587 return 0;
2588end_io:
2589 bio_io_error(bio);
2590 return 0;
2591}
2592
2593
2594
2595static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2596 struct bio_vec *bvec)
2597{
2598 struct pktcdvd_device *pd = q->queuedata;
2599 sector_t zone = ZONE(bmd->bi_sector, pd);
2600 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2601 int remaining = (pd->settings.size << 9) - used;
2602 int remaining2;
2603
2604 /*
2605 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2606 * boundary, pkt_make_request() will split the bio.
2607 */
2608 remaining2 = PAGE_SIZE - bmd->bi_size;
2609 remaining = max(remaining, remaining2);
2610
2611 BUG_ON(remaining < 0);
2612 return remaining;
2613}
2614
2615static void pkt_init_queue(struct pktcdvd_device *pd)
2616{
2617 struct request_queue *q = pd->disk->queue;
2618
2619 blk_queue_make_request(q, pkt_make_request);
2620 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2621 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2622 blk_queue_merge_bvec(q, pkt_merge_bvec);
2623 q->queuedata = pd;
2624}
2625
2626static int pkt_seq_show(struct seq_file *m, void *p)
2627{
2628 struct pktcdvd_device *pd = m->private;
2629 char *msg;
2630 char bdev_buf[BDEVNAME_SIZE];
2631 int states[PACKET_NUM_STATES];
2632
2633 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2634 bdevname(pd->bdev, bdev_buf));
2635
2636 seq_printf(m, "\nSettings:\n");
2637 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2638
2639 if (pd->settings.write_type == 0)
2640 msg = "Packet";
2641 else
2642 msg = "Unknown";
2643 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2644
2645 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2646 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2647
2648 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2649
2650 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2651 msg = "Mode 1";
2652 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2653 msg = "Mode 2";
2654 else
2655 msg = "Unknown";
2656 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2657
2658 seq_printf(m, "\nStatistics:\n");
2659 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2660 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2661 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2662 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2663 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2664
2665 seq_printf(m, "\nMisc:\n");
2666 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2667 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2668 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2669 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2670 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2671 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2672
2673 seq_printf(m, "\nQueue state:\n");
2674 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2675 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2676 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2677
2678 pkt_count_states(pd, states);
2679 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2680 states[0], states[1], states[2], states[3], states[4], states[5]);
2681
2682 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2683 pd->write_congestion_off,
2684 pd->write_congestion_on);
2685 return 0;
2686}
2687
2688static int pkt_seq_open(struct inode *inode, struct file *file)
2689{
2690 return single_open(file, pkt_seq_show, PDE(inode)->data);
2691}
2692
2693static const struct file_operations pkt_proc_fops = {
2694 .open = pkt_seq_open,
2695 .read = seq_read,
2696 .llseek = seq_lseek,
2697 .release = single_release
2698};
2699
2700static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2701{
2702 int i;
2703 int ret = 0;
2704 char b[BDEVNAME_SIZE];
2705 struct block_device *bdev;
2706
2707 if (pd->pkt_dev == dev) {
2708 printk(DRIVER_NAME": Recursive setup not allowed\n");
2709 return -EBUSY;
2710 }
2711 for (i = 0; i < MAX_WRITERS; i++) {
2712 struct pktcdvd_device *pd2 = pkt_devs[i];
2713 if (!pd2)
2714 continue;
2715 if (pd2->bdev->bd_dev == dev) {
2716 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2717 return -EBUSY;
2718 }
2719 if (pd2->pkt_dev == dev) {
2720 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2721 return -EBUSY;
2722 }
2723 }
2724
2725 bdev = bdget(dev);
2726 if (!bdev)
2727 return -ENOMEM;
2728 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2729 if (ret)
2730 return ret;
2731
2732 /* This is safe, since we have a reference from open(). */
2733 __module_get(THIS_MODULE);
2734
2735 pd->bdev = bdev;
2736 set_blocksize(bdev, CD_FRAMESIZE);
2737
2738 pkt_init_queue(pd);
2739
2740 atomic_set(&pd->cdrw.pending_bios, 0);
2741 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2742 if (IS_ERR(pd->cdrw.thread)) {
2743 printk(DRIVER_NAME": can't start kernel thread\n");
2744 ret = -ENOMEM;
2745 goto out_mem;
2746 }
2747
2748 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2749 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2750 return 0;
2751
2752out_mem:
2753 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2754 /* This is safe: open() is still holding a reference. */
2755 module_put(THIS_MODULE);
2756 return ret;
2757}
2758
2759static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2760{
2761 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2762 int ret;
2763
2764 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2765 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2766
2767 mutex_lock(&pktcdvd_mutex);
2768 switch (cmd) {
2769 case CDROMEJECT:
2770 /*
2771 * The door gets locked when the device is opened, so we
2772 * have to unlock it or else the eject command fails.
2773 */
2774 if (pd->refcnt == 1)
2775 pkt_lock_door(pd, 0);
2776 /* fallthru */
2777 /*
2778 * forward selected CDROM ioctls to CD-ROM, for UDF
2779 */
2780 case CDROMMULTISESSION:
2781 case CDROMREADTOCENTRY:
2782 case CDROM_LAST_WRITTEN:
2783 case CDROM_SEND_PACKET:
2784 case SCSI_IOCTL_SEND_COMMAND:
2785 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2786 break;
2787
2788 default:
2789 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2790 ret = -ENOTTY;
2791 }
2792 mutex_unlock(&pktcdvd_mutex);
2793
2794 return ret;
2795}
2796
2797static unsigned int pkt_check_events(struct gendisk *disk,
2798 unsigned int clearing)
2799{
2800 struct pktcdvd_device *pd = disk->private_data;
2801 struct gendisk *attached_disk;
2802
2803 if (!pd)
2804 return 0;
2805 if (!pd->bdev)
2806 return 0;
2807 attached_disk = pd->bdev->bd_disk;
2808 if (!attached_disk || !attached_disk->fops->check_events)
2809 return 0;
2810 return attached_disk->fops->check_events(attached_disk, clearing);
2811}
2812
2813static const struct block_device_operations pktcdvd_ops = {
2814 .owner = THIS_MODULE,
2815 .open = pkt_open,
2816 .release = pkt_close,
2817 .ioctl = pkt_ioctl,
2818 .check_events = pkt_check_events,
2819};
2820
2821static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2822{
2823 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2824}
2825
2826/*
2827 * Set up mapping from pktcdvd device to CD-ROM device.
2828 */
2829static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2830{
2831 int idx;
2832 int ret = -ENOMEM;
2833 struct pktcdvd_device *pd;
2834 struct gendisk *disk;
2835
2836 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2837
2838 for (idx = 0; idx < MAX_WRITERS; idx++)
2839 if (!pkt_devs[idx])
2840 break;
2841 if (idx == MAX_WRITERS) {
2842 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2843 ret = -EBUSY;
2844 goto out_mutex;
2845 }
2846
2847 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2848 if (!pd)
2849 goto out_mutex;
2850
2851 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2852 sizeof(struct pkt_rb_node));
2853 if (!pd->rb_pool)
2854 goto out_mem;
2855
2856 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2857 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2858 spin_lock_init(&pd->cdrw.active_list_lock);
2859
2860 spin_lock_init(&pd->lock);
2861 spin_lock_init(&pd->iosched.lock);
2862 bio_list_init(&pd->iosched.read_queue);
2863 bio_list_init(&pd->iosched.write_queue);
2864 sprintf(pd->name, DRIVER_NAME"%d", idx);
2865 init_waitqueue_head(&pd->wqueue);
2866 pd->bio_queue = RB_ROOT;
2867
2868 pd->write_congestion_on = write_congestion_on;
2869 pd->write_congestion_off = write_congestion_off;
2870
2871 disk = alloc_disk(1);
2872 if (!disk)
2873 goto out_mem;
2874 pd->disk = disk;
2875 disk->major = pktdev_major;
2876 disk->first_minor = idx;
2877 disk->fops = &pktcdvd_ops;
2878 disk->flags = GENHD_FL_REMOVABLE;
2879 strcpy(disk->disk_name, pd->name);
2880 disk->devnode = pktcdvd_devnode;
2881 disk->private_data = pd;
2882 disk->queue = blk_alloc_queue(GFP_KERNEL);
2883 if (!disk->queue)
2884 goto out_mem2;
2885
2886 pd->pkt_dev = MKDEV(pktdev_major, idx);
2887 ret = pkt_new_dev(pd, dev);
2888 if (ret)
2889 goto out_new_dev;
2890
2891 /* inherit events of the host device */
2892 disk->events = pd->bdev->bd_disk->events;
2893 disk->async_events = pd->bdev->bd_disk->async_events;
2894
2895 add_disk(disk);
2896
2897 pkt_sysfs_dev_new(pd);
2898 pkt_debugfs_dev_new(pd);
2899
2900 pkt_devs[idx] = pd;
2901 if (pkt_dev)
2902 *pkt_dev = pd->pkt_dev;
2903
2904 mutex_unlock(&ctl_mutex);
2905 return 0;
2906
2907out_new_dev:
2908 blk_cleanup_queue(disk->queue);
2909out_mem2:
2910 put_disk(disk);
2911out_mem:
2912 if (pd->rb_pool)
2913 mempool_destroy(pd->rb_pool);
2914 kfree(pd);
2915out_mutex:
2916 mutex_unlock(&ctl_mutex);
2917 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2918 return ret;
2919}
2920
2921/*
2922 * Tear down mapping from pktcdvd device to CD-ROM device.
2923 */
2924static int pkt_remove_dev(dev_t pkt_dev)
2925{
2926 struct pktcdvd_device *pd;
2927 int idx;
2928 int ret = 0;
2929
2930 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2931
2932 for (idx = 0; idx < MAX_WRITERS; idx++) {
2933 pd = pkt_devs[idx];
2934 if (pd && (pd->pkt_dev == pkt_dev))
2935 break;
2936 }
2937 if (idx == MAX_WRITERS) {
2938 DPRINTK(DRIVER_NAME": dev not setup\n");
2939 ret = -ENXIO;
2940 goto out;
2941 }
2942
2943 if (pd->refcnt > 0) {
2944 ret = -EBUSY;
2945 goto out;
2946 }
2947 if (!IS_ERR(pd->cdrw.thread))
2948 kthread_stop(pd->cdrw.thread);
2949
2950 pkt_devs[idx] = NULL;
2951
2952 pkt_debugfs_dev_remove(pd);
2953 pkt_sysfs_dev_remove(pd);
2954
2955 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2956
2957 remove_proc_entry(pd->name, pkt_proc);
2958 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2959
2960 del_gendisk(pd->disk);
2961 blk_cleanup_queue(pd->disk->queue);
2962 put_disk(pd->disk);
2963
2964 mempool_destroy(pd->rb_pool);
2965 kfree(pd);
2966
2967 /* This is safe: open() is still holding a reference. */
2968 module_put(THIS_MODULE);
2969
2970out:
2971 mutex_unlock(&ctl_mutex);
2972 return ret;
2973}
2974
2975static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2976{
2977 struct pktcdvd_device *pd;
2978
2979 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2980
2981 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2982 if (pd) {
2983 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2984 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2985 } else {
2986 ctrl_cmd->dev = 0;
2987 ctrl_cmd->pkt_dev = 0;
2988 }
2989 ctrl_cmd->num_devices = MAX_WRITERS;
2990
2991 mutex_unlock(&ctl_mutex);
2992}
2993
2994static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2995{
2996 void __user *argp = (void __user *)arg;
2997 struct pkt_ctrl_command ctrl_cmd;
2998 int ret = 0;
2999 dev_t pkt_dev = 0;
3000
3001 if (cmd != PACKET_CTRL_CMD)
3002 return -ENOTTY;
3003
3004 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3005 return -EFAULT;
3006
3007 switch (ctrl_cmd.command) {
3008 case PKT_CTRL_CMD_SETUP:
3009 if (!capable(CAP_SYS_ADMIN))
3010 return -EPERM;
3011 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3012 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3013 break;
3014 case PKT_CTRL_CMD_TEARDOWN:
3015 if (!capable(CAP_SYS_ADMIN))
3016 return -EPERM;
3017 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3018 break;
3019 case PKT_CTRL_CMD_STATUS:
3020 pkt_get_status(&ctrl_cmd);
3021 break;
3022 default:
3023 return -ENOTTY;
3024 }
3025
3026 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3027 return -EFAULT;
3028 return ret;
3029}
3030
3031#ifdef CONFIG_COMPAT
3032static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3033{
3034 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3035}
3036#endif
3037
3038static const struct file_operations pkt_ctl_fops = {
3039 .open = nonseekable_open,
3040 .unlocked_ioctl = pkt_ctl_ioctl,
3041#ifdef CONFIG_COMPAT
3042 .compat_ioctl = pkt_ctl_compat_ioctl,
3043#endif
3044 .owner = THIS_MODULE,
3045 .llseek = no_llseek,
3046};
3047
3048static struct miscdevice pkt_misc = {
3049 .minor = MISC_DYNAMIC_MINOR,
3050 .name = DRIVER_NAME,
3051 .nodename = "pktcdvd/control",
3052 .fops = &pkt_ctl_fops
3053};
3054
3055static int __init pkt_init(void)
3056{
3057 int ret;
3058
3059 mutex_init(&ctl_mutex);
3060
3061 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3062 sizeof(struct packet_stacked_data));
3063 if (!psd_pool)
3064 return -ENOMEM;
3065
3066 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3067 if (ret < 0) {
3068 printk(DRIVER_NAME": Unable to register block device\n");
3069 goto out2;
3070 }
3071 if (!pktdev_major)
3072 pktdev_major = ret;
3073
3074 ret = pkt_sysfs_init();
3075 if (ret)
3076 goto out;
3077
3078 pkt_debugfs_init();
3079
3080 ret = misc_register(&pkt_misc);
3081 if (ret) {
3082 printk(DRIVER_NAME": Unable to register misc device\n");
3083 goto out_misc;
3084 }
3085
3086 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3087
3088 return 0;
3089
3090out_misc:
3091 pkt_debugfs_cleanup();
3092 pkt_sysfs_cleanup();
3093out:
3094 unregister_blkdev(pktdev_major, DRIVER_NAME);
3095out2:
3096 mempool_destroy(psd_pool);
3097 return ret;
3098}
3099
3100static void __exit pkt_exit(void)
3101{
3102 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3103 misc_deregister(&pkt_misc);
3104
3105 pkt_debugfs_cleanup();
3106 pkt_sysfs_cleanup();
3107
3108 unregister_blkdev(pktdev_major, DRIVER_NAME);
3109 mempool_destroy(psd_pool);
3110}
3111
3112MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3113MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3114MODULE_LICENSE("GPL");
3115
3116module_init(pkt_init);
3117module_exit(pkt_exit);
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom ->submit_bio function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49#include <linux/pktcdvd.h>
50#include <linux/module.h>
51#include <linux/types.h>
52#include <linux/kernel.h>
53#include <linux/compat.h>
54#include <linux/kthread.h>
55#include <linux/errno.h>
56#include <linux/spinlock.h>
57#include <linux/file.h>
58#include <linux/proc_fs.h>
59#include <linux/seq_file.h>
60#include <linux/miscdevice.h>
61#include <linux/freezer.h>
62#include <linux/mutex.h>
63#include <linux/slab.h>
64#include <linux/backing-dev.h>
65#include <scsi/scsi_cmnd.h>
66#include <scsi/scsi_ioctl.h>
67#include <scsi/scsi.h>
68#include <linux/debugfs.h>
69#include <linux/device.h>
70#include <linux/nospec.h>
71#include <linux/uaccess.h>
72
73#define DRIVER_NAME "pktcdvd"
74
75#define pkt_err(pd, fmt, ...) \
76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77#define pkt_notice(pd, fmt, ...) \
78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79#define pkt_info(pd, fmt, ...) \
80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81
82#define pkt_dbg(level, pd, fmt, ...) \
83do { \
84 if (level == 2 && PACKET_DEBUG >= 2) \
85 pr_notice("%s: %s():" fmt, \
86 pd->name, __func__, ##__VA_ARGS__); \
87 else if (level == 1 && PACKET_DEBUG >= 1) \
88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
89} while (0)
90
91#define MAX_SPEED 0xffff
92
93static DEFINE_MUTEX(pktcdvd_mutex);
94static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95static struct proc_dir_entry *pkt_proc;
96static int pktdev_major;
97static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
98static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
100static mempool_t psd_pool;
101static struct bio_set pkt_bio_set;
102
103static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
104static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
105
106/* forward declaration */
107static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108static int pkt_remove_dev(dev_t pkt_dev);
109static int pkt_seq_show(struct seq_file *m, void *p);
110
111static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
112{
113 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
114}
115
116/**********************************************************
117 * sysfs interface for pktcdvd
118 * by (C) 2006 Thomas Maier <balagi@justmail.de>
119
120 /sys/class/pktcdvd/pktcdvd[0-7]/
121 stat/reset
122 stat/packets_started
123 stat/packets_finished
124 stat/kb_written
125 stat/kb_read
126 stat/kb_read_gather
127 write_queue/size
128 write_queue/congestion_off
129 write_queue/congestion_on
130 **********************************************************/
131
132static ssize_t packets_started_show(struct device *dev,
133 struct device_attribute *attr, char *buf)
134{
135 struct pktcdvd_device *pd = dev_get_drvdata(dev);
136
137 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
138}
139static DEVICE_ATTR_RO(packets_started);
140
141static ssize_t packets_finished_show(struct device *dev,
142 struct device_attribute *attr, char *buf)
143{
144 struct pktcdvd_device *pd = dev_get_drvdata(dev);
145
146 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
147}
148static DEVICE_ATTR_RO(packets_finished);
149
150static ssize_t kb_written_show(struct device *dev,
151 struct device_attribute *attr, char *buf)
152{
153 struct pktcdvd_device *pd = dev_get_drvdata(dev);
154
155 return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
156}
157static DEVICE_ATTR_RO(kb_written);
158
159static ssize_t kb_read_show(struct device *dev,
160 struct device_attribute *attr, char *buf)
161{
162 struct pktcdvd_device *pd = dev_get_drvdata(dev);
163
164 return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
165}
166static DEVICE_ATTR_RO(kb_read);
167
168static ssize_t kb_read_gather_show(struct device *dev,
169 struct device_attribute *attr, char *buf)
170{
171 struct pktcdvd_device *pd = dev_get_drvdata(dev);
172
173 return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
174}
175static DEVICE_ATTR_RO(kb_read_gather);
176
177static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
178 const char *buf, size_t len)
179{
180 struct pktcdvd_device *pd = dev_get_drvdata(dev);
181
182 if (len > 0) {
183 pd->stats.pkt_started = 0;
184 pd->stats.pkt_ended = 0;
185 pd->stats.secs_w = 0;
186 pd->stats.secs_rg = 0;
187 pd->stats.secs_r = 0;
188 }
189 return len;
190}
191static DEVICE_ATTR_WO(reset);
192
193static struct attribute *pkt_stat_attrs[] = {
194 &dev_attr_packets_finished.attr,
195 &dev_attr_packets_started.attr,
196 &dev_attr_kb_read.attr,
197 &dev_attr_kb_written.attr,
198 &dev_attr_kb_read_gather.attr,
199 &dev_attr_reset.attr,
200 NULL,
201};
202
203static const struct attribute_group pkt_stat_group = {
204 .name = "stat",
205 .attrs = pkt_stat_attrs,
206};
207
208static ssize_t size_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210{
211 struct pktcdvd_device *pd = dev_get_drvdata(dev);
212 int n;
213
214 spin_lock(&pd->lock);
215 n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
216 spin_unlock(&pd->lock);
217 return n;
218}
219static DEVICE_ATTR_RO(size);
220
221static void init_write_congestion_marks(int* lo, int* hi)
222{
223 if (*hi > 0) {
224 *hi = max(*hi, 500);
225 *hi = min(*hi, 1000000);
226 if (*lo <= 0)
227 *lo = *hi - 100;
228 else {
229 *lo = min(*lo, *hi - 100);
230 *lo = max(*lo, 100);
231 }
232 } else {
233 *hi = -1;
234 *lo = -1;
235 }
236}
237
238static ssize_t congestion_off_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240{
241 struct pktcdvd_device *pd = dev_get_drvdata(dev);
242 int n;
243
244 spin_lock(&pd->lock);
245 n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
246 spin_unlock(&pd->lock);
247 return n;
248}
249
250static ssize_t congestion_off_store(struct device *dev,
251 struct device_attribute *attr,
252 const char *buf, size_t len)
253{
254 struct pktcdvd_device *pd = dev_get_drvdata(dev);
255 int val;
256
257 if (sscanf(buf, "%d", &val) == 1) {
258 spin_lock(&pd->lock);
259 pd->write_congestion_off = val;
260 init_write_congestion_marks(&pd->write_congestion_off,
261 &pd->write_congestion_on);
262 spin_unlock(&pd->lock);
263 }
264 return len;
265}
266static DEVICE_ATTR_RW(congestion_off);
267
268static ssize_t congestion_on_show(struct device *dev,
269 struct device_attribute *attr, char *buf)
270{
271 struct pktcdvd_device *pd = dev_get_drvdata(dev);
272 int n;
273
274 spin_lock(&pd->lock);
275 n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
276 spin_unlock(&pd->lock);
277 return n;
278}
279
280static ssize_t congestion_on_store(struct device *dev,
281 struct device_attribute *attr,
282 const char *buf, size_t len)
283{
284 struct pktcdvd_device *pd = dev_get_drvdata(dev);
285 int val;
286
287 if (sscanf(buf, "%d", &val) == 1) {
288 spin_lock(&pd->lock);
289 pd->write_congestion_on = val;
290 init_write_congestion_marks(&pd->write_congestion_off,
291 &pd->write_congestion_on);
292 spin_unlock(&pd->lock);
293 }
294 return len;
295}
296static DEVICE_ATTR_RW(congestion_on);
297
298static struct attribute *pkt_wq_attrs[] = {
299 &dev_attr_congestion_on.attr,
300 &dev_attr_congestion_off.attr,
301 &dev_attr_size.attr,
302 NULL,
303};
304
305static const struct attribute_group pkt_wq_group = {
306 .name = "write_queue",
307 .attrs = pkt_wq_attrs,
308};
309
310static const struct attribute_group *pkt_groups[] = {
311 &pkt_stat_group,
312 &pkt_wq_group,
313 NULL,
314};
315
316static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
317{
318 if (class_pktcdvd) {
319 pd->dev = device_create_with_groups(class_pktcdvd, NULL,
320 MKDEV(0, 0), pd, pkt_groups,
321 "%s", pd->name);
322 if (IS_ERR(pd->dev))
323 pd->dev = NULL;
324 }
325}
326
327static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
328{
329 if (class_pktcdvd)
330 device_unregister(pd->dev);
331}
332
333
334/********************************************************************
335 /sys/class/pktcdvd/
336 add map block device
337 remove unmap packet dev
338 device_map show mappings
339 *******************************************************************/
340
341static void class_pktcdvd_release(struct class *cls)
342{
343 kfree(cls);
344}
345
346static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
347 char *data)
348{
349 int n = 0;
350 int idx;
351 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
352 for (idx = 0; idx < MAX_WRITERS; idx++) {
353 struct pktcdvd_device *pd = pkt_devs[idx];
354 if (!pd)
355 continue;
356 n += sprintf(data+n, "%s %u:%u %u:%u\n",
357 pd->name,
358 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
359 MAJOR(pd->bdev->bd_dev),
360 MINOR(pd->bdev->bd_dev));
361 }
362 mutex_unlock(&ctl_mutex);
363 return n;
364}
365static CLASS_ATTR_RO(device_map);
366
367static ssize_t add_store(struct class *c, struct class_attribute *attr,
368 const char *buf, size_t count)
369{
370 unsigned int major, minor;
371
372 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
373 /* pkt_setup_dev() expects caller to hold reference to self */
374 if (!try_module_get(THIS_MODULE))
375 return -ENODEV;
376
377 pkt_setup_dev(MKDEV(major, minor), NULL);
378
379 module_put(THIS_MODULE);
380
381 return count;
382 }
383
384 return -EINVAL;
385}
386static CLASS_ATTR_WO(add);
387
388static ssize_t remove_store(struct class *c, struct class_attribute *attr,
389 const char *buf, size_t count)
390{
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
395 }
396 return -EINVAL;
397}
398static CLASS_ATTR_WO(remove);
399
400static struct attribute *class_pktcdvd_attrs[] = {
401 &class_attr_add.attr,
402 &class_attr_remove.attr,
403 &class_attr_device_map.attr,
404 NULL,
405};
406ATTRIBUTE_GROUPS(class_pktcdvd);
407
408static int pkt_sysfs_init(void)
409{
410 int ret = 0;
411
412 /*
413 * create control files in sysfs
414 * /sys/class/pktcdvd/...
415 */
416 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
417 if (!class_pktcdvd)
418 return -ENOMEM;
419 class_pktcdvd->name = DRIVER_NAME;
420 class_pktcdvd->owner = THIS_MODULE;
421 class_pktcdvd->class_release = class_pktcdvd_release;
422 class_pktcdvd->class_groups = class_pktcdvd_groups;
423 ret = class_register(class_pktcdvd);
424 if (ret) {
425 kfree(class_pktcdvd);
426 class_pktcdvd = NULL;
427 pr_err("failed to create class pktcdvd\n");
428 return ret;
429 }
430 return 0;
431}
432
433static void pkt_sysfs_cleanup(void)
434{
435 if (class_pktcdvd)
436 class_destroy(class_pktcdvd);
437 class_pktcdvd = NULL;
438}
439
440/********************************************************************
441 entries in debugfs
442
443 /sys/kernel/debug/pktcdvd[0-7]/
444 info
445
446 *******************************************************************/
447
448static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
449{
450 return pkt_seq_show(m, p);
451}
452
453static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
454{
455 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
456}
457
458static const struct file_operations debug_fops = {
459 .open = pkt_debugfs_fops_open,
460 .read = seq_read,
461 .llseek = seq_lseek,
462 .release = single_release,
463 .owner = THIS_MODULE,
464};
465
466static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
467{
468 if (!pkt_debugfs_root)
469 return;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (!pd->dfs_d_root)
472 return;
473
474 pd->dfs_f_info = debugfs_create_file("info", 0444,
475 pd->dfs_d_root, pd, &debug_fops);
476}
477
478static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
479{
480 if (!pkt_debugfs_root)
481 return;
482 debugfs_remove(pd->dfs_f_info);
483 debugfs_remove(pd->dfs_d_root);
484 pd->dfs_f_info = NULL;
485 pd->dfs_d_root = NULL;
486}
487
488static void pkt_debugfs_init(void)
489{
490 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
491}
492
493static void pkt_debugfs_cleanup(void)
494{
495 debugfs_remove(pkt_debugfs_root);
496 pkt_debugfs_root = NULL;
497}
498
499/* ----------------------------------------------------------*/
500
501
502static void pkt_bio_finished(struct pktcdvd_device *pd)
503{
504 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
505 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
506 pkt_dbg(2, pd, "queue empty\n");
507 atomic_set(&pd->iosched.attention, 1);
508 wake_up(&pd->wqueue);
509 }
510}
511
512/*
513 * Allocate a packet_data struct
514 */
515static struct packet_data *pkt_alloc_packet_data(int frames)
516{
517 int i;
518 struct packet_data *pkt;
519
520 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
521 if (!pkt)
522 goto no_pkt;
523
524 pkt->frames = frames;
525 pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
526 if (!pkt->w_bio)
527 goto no_bio;
528
529 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
530 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
531 if (!pkt->pages[i])
532 goto no_page;
533 }
534
535 spin_lock_init(&pkt->lock);
536 bio_list_init(&pkt->orig_bios);
537
538 for (i = 0; i < frames; i++) {
539 pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
540 if (!pkt->r_bios[i])
541 goto no_rd_bio;
542 }
543
544 return pkt;
545
546no_rd_bio:
547 for (i = 0; i < frames; i++)
548 kfree(pkt->r_bios[i]);
549no_page:
550 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
551 if (pkt->pages[i])
552 __free_page(pkt->pages[i]);
553 kfree(pkt->w_bio);
554no_bio:
555 kfree(pkt);
556no_pkt:
557 return NULL;
558}
559
560/*
561 * Free a packet_data struct
562 */
563static void pkt_free_packet_data(struct packet_data *pkt)
564{
565 int i;
566
567 for (i = 0; i < pkt->frames; i++)
568 kfree(pkt->r_bios[i]);
569 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
570 __free_page(pkt->pages[i]);
571 kfree(pkt->w_bio);
572 kfree(pkt);
573}
574
575static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
576{
577 struct packet_data *pkt, *next;
578
579 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
580
581 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
582 pkt_free_packet_data(pkt);
583 }
584 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
585}
586
587static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
588{
589 struct packet_data *pkt;
590
591 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
592
593 while (nr_packets > 0) {
594 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
595 if (!pkt) {
596 pkt_shrink_pktlist(pd);
597 return 0;
598 }
599 pkt->id = nr_packets;
600 pkt->pd = pd;
601 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
602 nr_packets--;
603 }
604 return 1;
605}
606
607static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
608{
609 struct rb_node *n = rb_next(&node->rb_node);
610 if (!n)
611 return NULL;
612 return rb_entry(n, struct pkt_rb_node, rb_node);
613}
614
615static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
616{
617 rb_erase(&node->rb_node, &pd->bio_queue);
618 mempool_free(node, &pd->rb_pool);
619 pd->bio_queue_size--;
620 BUG_ON(pd->bio_queue_size < 0);
621}
622
623/*
624 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
625 */
626static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
627{
628 struct rb_node *n = pd->bio_queue.rb_node;
629 struct rb_node *next;
630 struct pkt_rb_node *tmp;
631
632 if (!n) {
633 BUG_ON(pd->bio_queue_size > 0);
634 return NULL;
635 }
636
637 for (;;) {
638 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
639 if (s <= tmp->bio->bi_iter.bi_sector)
640 next = n->rb_left;
641 else
642 next = n->rb_right;
643 if (!next)
644 break;
645 n = next;
646 }
647
648 if (s > tmp->bio->bi_iter.bi_sector) {
649 tmp = pkt_rbtree_next(tmp);
650 if (!tmp)
651 return NULL;
652 }
653 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
654 return tmp;
655}
656
657/*
658 * Insert a node into the pd->bio_queue rb tree.
659 */
660static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
661{
662 struct rb_node **p = &pd->bio_queue.rb_node;
663 struct rb_node *parent = NULL;
664 sector_t s = node->bio->bi_iter.bi_sector;
665 struct pkt_rb_node *tmp;
666
667 while (*p) {
668 parent = *p;
669 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
670 if (s < tmp->bio->bi_iter.bi_sector)
671 p = &(*p)->rb_left;
672 else
673 p = &(*p)->rb_right;
674 }
675 rb_link_node(&node->rb_node, parent, p);
676 rb_insert_color(&node->rb_node, &pd->bio_queue);
677 pd->bio_queue_size++;
678}
679
680/*
681 * Send a packet_command to the underlying block device and
682 * wait for completion.
683 */
684static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
685{
686 struct request_queue *q = bdev_get_queue(pd->bdev);
687 struct scsi_cmnd *scmd;
688 struct request *rq;
689 int ret = 0;
690
691 rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
692 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
693 if (IS_ERR(rq))
694 return PTR_ERR(rq);
695 scmd = blk_mq_rq_to_pdu(rq);
696
697 if (cgc->buflen) {
698 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
699 GFP_NOIO);
700 if (ret)
701 goto out;
702 }
703
704 scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
705 memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
706
707 rq->timeout = 60*HZ;
708 if (cgc->quiet)
709 rq->rq_flags |= RQF_QUIET;
710
711 blk_execute_rq(rq, false);
712 if (scmd->result)
713 ret = -EIO;
714out:
715 blk_mq_free_request(rq);
716 return ret;
717}
718
719static const char *sense_key_string(__u8 index)
720{
721 static const char * const info[] = {
722 "No sense", "Recovered error", "Not ready",
723 "Medium error", "Hardware error", "Illegal request",
724 "Unit attention", "Data protect", "Blank check",
725 };
726
727 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
728}
729
730/*
731 * A generic sense dump / resolve mechanism should be implemented across
732 * all ATAPI + SCSI devices.
733 */
734static void pkt_dump_sense(struct pktcdvd_device *pd,
735 struct packet_command *cgc)
736{
737 struct scsi_sense_hdr *sshdr = cgc->sshdr;
738
739 if (sshdr)
740 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
741 CDROM_PACKET_SIZE, cgc->cmd,
742 sshdr->sense_key, sshdr->asc, sshdr->ascq,
743 sense_key_string(sshdr->sense_key));
744 else
745 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
746}
747
748/*
749 * flush the drive cache to media
750 */
751static int pkt_flush_cache(struct pktcdvd_device *pd)
752{
753 struct packet_command cgc;
754
755 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
756 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
757 cgc.quiet = 1;
758
759 /*
760 * the IMMED bit -- we default to not setting it, although that
761 * would allow a much faster close, this is safer
762 */
763#if 0
764 cgc.cmd[1] = 1 << 1;
765#endif
766 return pkt_generic_packet(pd, &cgc);
767}
768
769/*
770 * speed is given as the normal factor, e.g. 4 for 4x
771 */
772static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
773 unsigned write_speed, unsigned read_speed)
774{
775 struct packet_command cgc;
776 struct scsi_sense_hdr sshdr;
777 int ret;
778
779 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
780 cgc.sshdr = &sshdr;
781 cgc.cmd[0] = GPCMD_SET_SPEED;
782 cgc.cmd[2] = (read_speed >> 8) & 0xff;
783 cgc.cmd[3] = read_speed & 0xff;
784 cgc.cmd[4] = (write_speed >> 8) & 0xff;
785 cgc.cmd[5] = write_speed & 0xff;
786
787 ret = pkt_generic_packet(pd, &cgc);
788 if (ret)
789 pkt_dump_sense(pd, &cgc);
790
791 return ret;
792}
793
794/*
795 * Queue a bio for processing by the low-level CD device. Must be called
796 * from process context.
797 */
798static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
799{
800 spin_lock(&pd->iosched.lock);
801 if (bio_data_dir(bio) == READ)
802 bio_list_add(&pd->iosched.read_queue, bio);
803 else
804 bio_list_add(&pd->iosched.write_queue, bio);
805 spin_unlock(&pd->iosched.lock);
806
807 atomic_set(&pd->iosched.attention, 1);
808 wake_up(&pd->wqueue);
809}
810
811/*
812 * Process the queued read/write requests. This function handles special
813 * requirements for CDRW drives:
814 * - A cache flush command must be inserted before a read request if the
815 * previous request was a write.
816 * - Switching between reading and writing is slow, so don't do it more often
817 * than necessary.
818 * - Optimize for throughput at the expense of latency. This means that streaming
819 * writes will never be interrupted by a read, but if the drive has to seek
820 * before the next write, switch to reading instead if there are any pending
821 * read requests.
822 * - Set the read speed according to current usage pattern. When only reading
823 * from the device, it's best to use the highest possible read speed, but
824 * when switching often between reading and writing, it's better to have the
825 * same read and write speeds.
826 */
827static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
828{
829
830 if (atomic_read(&pd->iosched.attention) == 0)
831 return;
832 atomic_set(&pd->iosched.attention, 0);
833
834 for (;;) {
835 struct bio *bio;
836 int reads_queued, writes_queued;
837
838 spin_lock(&pd->iosched.lock);
839 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
840 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
841 spin_unlock(&pd->iosched.lock);
842
843 if (!reads_queued && !writes_queued)
844 break;
845
846 if (pd->iosched.writing) {
847 int need_write_seek = 1;
848 spin_lock(&pd->iosched.lock);
849 bio = bio_list_peek(&pd->iosched.write_queue);
850 spin_unlock(&pd->iosched.lock);
851 if (bio && (bio->bi_iter.bi_sector ==
852 pd->iosched.last_write))
853 need_write_seek = 0;
854 if (need_write_seek && reads_queued) {
855 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
856 pkt_dbg(2, pd, "write, waiting\n");
857 break;
858 }
859 pkt_flush_cache(pd);
860 pd->iosched.writing = 0;
861 }
862 } else {
863 if (!reads_queued && writes_queued) {
864 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
865 pkt_dbg(2, pd, "read, waiting\n");
866 break;
867 }
868 pd->iosched.writing = 1;
869 }
870 }
871
872 spin_lock(&pd->iosched.lock);
873 if (pd->iosched.writing)
874 bio = bio_list_pop(&pd->iosched.write_queue);
875 else
876 bio = bio_list_pop(&pd->iosched.read_queue);
877 spin_unlock(&pd->iosched.lock);
878
879 if (!bio)
880 continue;
881
882 if (bio_data_dir(bio) == READ)
883 pd->iosched.successive_reads +=
884 bio->bi_iter.bi_size >> 10;
885 else {
886 pd->iosched.successive_reads = 0;
887 pd->iosched.last_write = bio_end_sector(bio);
888 }
889 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
890 if (pd->read_speed == pd->write_speed) {
891 pd->read_speed = MAX_SPEED;
892 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
893 }
894 } else {
895 if (pd->read_speed != pd->write_speed) {
896 pd->read_speed = pd->write_speed;
897 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
898 }
899 }
900
901 atomic_inc(&pd->cdrw.pending_bios);
902 submit_bio_noacct(bio);
903 }
904}
905
906/*
907 * Special care is needed if the underlying block device has a small
908 * max_phys_segments value.
909 */
910static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
911{
912 if ((pd->settings.size << 9) / CD_FRAMESIZE
913 <= queue_max_segments(q)) {
914 /*
915 * The cdrom device can handle one segment/frame
916 */
917 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
918 return 0;
919 } else if ((pd->settings.size << 9) / PAGE_SIZE
920 <= queue_max_segments(q)) {
921 /*
922 * We can handle this case at the expense of some extra memory
923 * copies during write operations
924 */
925 set_bit(PACKET_MERGE_SEGS, &pd->flags);
926 return 0;
927 } else {
928 pkt_err(pd, "cdrom max_phys_segments too small\n");
929 return -EIO;
930 }
931}
932
933static void pkt_end_io_read(struct bio *bio)
934{
935 struct packet_data *pkt = bio->bi_private;
936 struct pktcdvd_device *pd = pkt->pd;
937 BUG_ON(!pd);
938
939 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
940 bio, (unsigned long long)pkt->sector,
941 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
942
943 if (bio->bi_status)
944 atomic_inc(&pkt->io_errors);
945 bio_uninit(bio);
946 if (atomic_dec_and_test(&pkt->io_wait)) {
947 atomic_inc(&pkt->run_sm);
948 wake_up(&pd->wqueue);
949 }
950 pkt_bio_finished(pd);
951}
952
953static void pkt_end_io_packet_write(struct bio *bio)
954{
955 struct packet_data *pkt = bio->bi_private;
956 struct pktcdvd_device *pd = pkt->pd;
957 BUG_ON(!pd);
958
959 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
960
961 pd->stats.pkt_ended++;
962
963 bio_uninit(bio);
964 pkt_bio_finished(pd);
965 atomic_dec(&pkt->io_wait);
966 atomic_inc(&pkt->run_sm);
967 wake_up(&pd->wqueue);
968}
969
970/*
971 * Schedule reads for the holes in a packet
972 */
973static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
974{
975 int frames_read = 0;
976 struct bio *bio;
977 int f;
978 char written[PACKET_MAX_SIZE];
979
980 BUG_ON(bio_list_empty(&pkt->orig_bios));
981
982 atomic_set(&pkt->io_wait, 0);
983 atomic_set(&pkt->io_errors, 0);
984
985 /*
986 * Figure out which frames we need to read before we can write.
987 */
988 memset(written, 0, sizeof(written));
989 spin_lock(&pkt->lock);
990 bio_list_for_each(bio, &pkt->orig_bios) {
991 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
992 (CD_FRAMESIZE >> 9);
993 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
994 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
995 BUG_ON(first_frame < 0);
996 BUG_ON(first_frame + num_frames > pkt->frames);
997 for (f = first_frame; f < first_frame + num_frames; f++)
998 written[f] = 1;
999 }
1000 spin_unlock(&pkt->lock);
1001
1002 if (pkt->cache_valid) {
1003 pkt_dbg(2, pd, "zone %llx cached\n",
1004 (unsigned long long)pkt->sector);
1005 goto out_account;
1006 }
1007
1008 /*
1009 * Schedule reads for missing parts of the packet.
1010 */
1011 for (f = 0; f < pkt->frames; f++) {
1012 int p, offset;
1013
1014 if (written[f])
1015 continue;
1016
1017 bio = pkt->r_bios[f];
1018 bio_init(bio, pd->bdev, bio->bi_inline_vecs, 1, REQ_OP_READ);
1019 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1020 bio->bi_end_io = pkt_end_io_read;
1021 bio->bi_private = pkt;
1022
1023 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1024 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1025 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1026 f, pkt->pages[p], offset);
1027 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1028 BUG();
1029
1030 atomic_inc(&pkt->io_wait);
1031 pkt_queue_bio(pd, bio);
1032 frames_read++;
1033 }
1034
1035out_account:
1036 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1037 frames_read, (unsigned long long)pkt->sector);
1038 pd->stats.pkt_started++;
1039 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1040}
1041
1042/*
1043 * Find a packet matching zone, or the least recently used packet if
1044 * there is no match.
1045 */
1046static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1047{
1048 struct packet_data *pkt;
1049
1050 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1051 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1052 list_del_init(&pkt->list);
1053 if (pkt->sector != zone)
1054 pkt->cache_valid = 0;
1055 return pkt;
1056 }
1057 }
1058 BUG();
1059 return NULL;
1060}
1061
1062static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1063{
1064 if (pkt->cache_valid) {
1065 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1066 } else {
1067 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1068 }
1069}
1070
1071static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1072{
1073#if PACKET_DEBUG > 1
1074 static const char *state_name[] = {
1075 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1076 };
1077 enum packet_data_state old_state = pkt->state;
1078 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1079 pkt->id, (unsigned long long)pkt->sector,
1080 state_name[old_state], state_name[state]);
1081#endif
1082 pkt->state = state;
1083}
1084
1085/*
1086 * Scan the work queue to see if we can start a new packet.
1087 * returns non-zero if any work was done.
1088 */
1089static int pkt_handle_queue(struct pktcdvd_device *pd)
1090{
1091 struct packet_data *pkt, *p;
1092 struct bio *bio = NULL;
1093 sector_t zone = 0; /* Suppress gcc warning */
1094 struct pkt_rb_node *node, *first_node;
1095 struct rb_node *n;
1096
1097 atomic_set(&pd->scan_queue, 0);
1098
1099 if (list_empty(&pd->cdrw.pkt_free_list)) {
1100 pkt_dbg(2, pd, "no pkt\n");
1101 return 0;
1102 }
1103
1104 /*
1105 * Try to find a zone we are not already working on.
1106 */
1107 spin_lock(&pd->lock);
1108 first_node = pkt_rbtree_find(pd, pd->current_sector);
1109 if (!first_node) {
1110 n = rb_first(&pd->bio_queue);
1111 if (n)
1112 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1113 }
1114 node = first_node;
1115 while (node) {
1116 bio = node->bio;
1117 zone = get_zone(bio->bi_iter.bi_sector, pd);
1118 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1119 if (p->sector == zone) {
1120 bio = NULL;
1121 goto try_next_bio;
1122 }
1123 }
1124 break;
1125try_next_bio:
1126 node = pkt_rbtree_next(node);
1127 if (!node) {
1128 n = rb_first(&pd->bio_queue);
1129 if (n)
1130 node = rb_entry(n, struct pkt_rb_node, rb_node);
1131 }
1132 if (node == first_node)
1133 node = NULL;
1134 }
1135 spin_unlock(&pd->lock);
1136 if (!bio) {
1137 pkt_dbg(2, pd, "no bio\n");
1138 return 0;
1139 }
1140
1141 pkt = pkt_get_packet_data(pd, zone);
1142
1143 pd->current_sector = zone + pd->settings.size;
1144 pkt->sector = zone;
1145 BUG_ON(pkt->frames != pd->settings.size >> 2);
1146 pkt->write_size = 0;
1147
1148 /*
1149 * Scan work queue for bios in the same zone and link them
1150 * to this packet.
1151 */
1152 spin_lock(&pd->lock);
1153 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1154 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1155 bio = node->bio;
1156 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1157 get_zone(bio->bi_iter.bi_sector, pd));
1158 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1159 break;
1160 pkt_rbtree_erase(pd, node);
1161 spin_lock(&pkt->lock);
1162 bio_list_add(&pkt->orig_bios, bio);
1163 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1164 spin_unlock(&pkt->lock);
1165 }
1166 /* check write congestion marks, and if bio_queue_size is
1167 * below, wake up any waiters
1168 */
1169 if (pd->congested &&
1170 pd->bio_queue_size <= pd->write_congestion_off) {
1171 pd->congested = false;
1172 wake_up_var(&pd->congested);
1173 }
1174 spin_unlock(&pd->lock);
1175
1176 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1177 pkt_set_state(pkt, PACKET_WAITING_STATE);
1178 atomic_set(&pkt->run_sm, 1);
1179
1180 spin_lock(&pd->cdrw.active_list_lock);
1181 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1182 spin_unlock(&pd->cdrw.active_list_lock);
1183
1184 return 1;
1185}
1186
1187/**
1188 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1189 * another
1190 * @src: source bio list
1191 * @dst: destination bio list
1192 *
1193 * Stops when it reaches the end of either the @src list or @dst list - that is,
1194 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1195 * bios).
1196 */
1197static void bio_list_copy_data(struct bio *dst, struct bio *src)
1198{
1199 struct bvec_iter src_iter = src->bi_iter;
1200 struct bvec_iter dst_iter = dst->bi_iter;
1201
1202 while (1) {
1203 if (!src_iter.bi_size) {
1204 src = src->bi_next;
1205 if (!src)
1206 break;
1207
1208 src_iter = src->bi_iter;
1209 }
1210
1211 if (!dst_iter.bi_size) {
1212 dst = dst->bi_next;
1213 if (!dst)
1214 break;
1215
1216 dst_iter = dst->bi_iter;
1217 }
1218
1219 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1220 }
1221}
1222
1223/*
1224 * Assemble a bio to write one packet and queue the bio for processing
1225 * by the underlying block device.
1226 */
1227static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1228{
1229 int f;
1230
1231 bio_init(pkt->w_bio, pd->bdev, pkt->w_bio->bi_inline_vecs, pkt->frames,
1232 REQ_OP_WRITE);
1233 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1234 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1235 pkt->w_bio->bi_private = pkt;
1236
1237 /* XXX: locking? */
1238 for (f = 0; f < pkt->frames; f++) {
1239 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1240 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1241
1242 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1243 BUG();
1244 }
1245 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1246
1247 /*
1248 * Fill-in bvec with data from orig_bios.
1249 */
1250 spin_lock(&pkt->lock);
1251 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1252
1253 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1254 spin_unlock(&pkt->lock);
1255
1256 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1257 pkt->write_size, (unsigned long long)pkt->sector);
1258
1259 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1260 pkt->cache_valid = 1;
1261 else
1262 pkt->cache_valid = 0;
1263
1264 /* Start the write request */
1265 atomic_set(&pkt->io_wait, 1);
1266 pkt_queue_bio(pd, pkt->w_bio);
1267}
1268
1269static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1270{
1271 struct bio *bio;
1272
1273 if (status)
1274 pkt->cache_valid = 0;
1275
1276 /* Finish all bios corresponding to this packet */
1277 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1278 bio->bi_status = status;
1279 bio_endio(bio);
1280 }
1281}
1282
1283static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1284{
1285 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1286
1287 for (;;) {
1288 switch (pkt->state) {
1289 case PACKET_WAITING_STATE:
1290 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1291 return;
1292
1293 pkt->sleep_time = 0;
1294 pkt_gather_data(pd, pkt);
1295 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1296 break;
1297
1298 case PACKET_READ_WAIT_STATE:
1299 if (atomic_read(&pkt->io_wait) > 0)
1300 return;
1301
1302 if (atomic_read(&pkt->io_errors) > 0) {
1303 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1304 } else {
1305 pkt_start_write(pd, pkt);
1306 }
1307 break;
1308
1309 case PACKET_WRITE_WAIT_STATE:
1310 if (atomic_read(&pkt->io_wait) > 0)
1311 return;
1312
1313 if (!pkt->w_bio->bi_status) {
1314 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1315 } else {
1316 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1317 }
1318 break;
1319
1320 case PACKET_RECOVERY_STATE:
1321 pkt_dbg(2, pd, "No recovery possible\n");
1322 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1323 break;
1324
1325 case PACKET_FINISHED_STATE:
1326 pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1327 return;
1328
1329 default:
1330 BUG();
1331 break;
1332 }
1333 }
1334}
1335
1336static void pkt_handle_packets(struct pktcdvd_device *pd)
1337{
1338 struct packet_data *pkt, *next;
1339
1340 /*
1341 * Run state machine for active packets
1342 */
1343 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1344 if (atomic_read(&pkt->run_sm) > 0) {
1345 atomic_set(&pkt->run_sm, 0);
1346 pkt_run_state_machine(pd, pkt);
1347 }
1348 }
1349
1350 /*
1351 * Move no longer active packets to the free list
1352 */
1353 spin_lock(&pd->cdrw.active_list_lock);
1354 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1355 if (pkt->state == PACKET_FINISHED_STATE) {
1356 list_del(&pkt->list);
1357 pkt_put_packet_data(pd, pkt);
1358 pkt_set_state(pkt, PACKET_IDLE_STATE);
1359 atomic_set(&pd->scan_queue, 1);
1360 }
1361 }
1362 spin_unlock(&pd->cdrw.active_list_lock);
1363}
1364
1365static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1366{
1367 struct packet_data *pkt;
1368 int i;
1369
1370 for (i = 0; i < PACKET_NUM_STATES; i++)
1371 states[i] = 0;
1372
1373 spin_lock(&pd->cdrw.active_list_lock);
1374 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1375 states[pkt->state]++;
1376 }
1377 spin_unlock(&pd->cdrw.active_list_lock);
1378}
1379
1380/*
1381 * kcdrwd is woken up when writes have been queued for one of our
1382 * registered devices
1383 */
1384static int kcdrwd(void *foobar)
1385{
1386 struct pktcdvd_device *pd = foobar;
1387 struct packet_data *pkt;
1388 long min_sleep_time, residue;
1389
1390 set_user_nice(current, MIN_NICE);
1391 set_freezable();
1392
1393 for (;;) {
1394 DECLARE_WAITQUEUE(wait, current);
1395
1396 /*
1397 * Wait until there is something to do
1398 */
1399 add_wait_queue(&pd->wqueue, &wait);
1400 for (;;) {
1401 set_current_state(TASK_INTERRUPTIBLE);
1402
1403 /* Check if we need to run pkt_handle_queue */
1404 if (atomic_read(&pd->scan_queue) > 0)
1405 goto work_to_do;
1406
1407 /* Check if we need to run the state machine for some packet */
1408 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1409 if (atomic_read(&pkt->run_sm) > 0)
1410 goto work_to_do;
1411 }
1412
1413 /* Check if we need to process the iosched queues */
1414 if (atomic_read(&pd->iosched.attention) != 0)
1415 goto work_to_do;
1416
1417 /* Otherwise, go to sleep */
1418 if (PACKET_DEBUG > 1) {
1419 int states[PACKET_NUM_STATES];
1420 pkt_count_states(pd, states);
1421 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1422 states[0], states[1], states[2],
1423 states[3], states[4], states[5]);
1424 }
1425
1426 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1427 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1428 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1429 min_sleep_time = pkt->sleep_time;
1430 }
1431
1432 pkt_dbg(2, pd, "sleeping\n");
1433 residue = schedule_timeout(min_sleep_time);
1434 pkt_dbg(2, pd, "wake up\n");
1435
1436 /* make swsusp happy with our thread */
1437 try_to_freeze();
1438
1439 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1440 if (!pkt->sleep_time)
1441 continue;
1442 pkt->sleep_time -= min_sleep_time - residue;
1443 if (pkt->sleep_time <= 0) {
1444 pkt->sleep_time = 0;
1445 atomic_inc(&pkt->run_sm);
1446 }
1447 }
1448
1449 if (kthread_should_stop())
1450 break;
1451 }
1452work_to_do:
1453 set_current_state(TASK_RUNNING);
1454 remove_wait_queue(&pd->wqueue, &wait);
1455
1456 if (kthread_should_stop())
1457 break;
1458
1459 /*
1460 * if pkt_handle_queue returns true, we can queue
1461 * another request.
1462 */
1463 while (pkt_handle_queue(pd))
1464 ;
1465
1466 /*
1467 * Handle packet state machine
1468 */
1469 pkt_handle_packets(pd);
1470
1471 /*
1472 * Handle iosched queues
1473 */
1474 pkt_iosched_process_queue(pd);
1475 }
1476
1477 return 0;
1478}
1479
1480static void pkt_print_settings(struct pktcdvd_device *pd)
1481{
1482 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1483 pd->settings.fp ? "Fixed" : "Variable",
1484 pd->settings.size >> 2,
1485 pd->settings.block_mode == 8 ? '1' : '2');
1486}
1487
1488static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1489{
1490 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1491
1492 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1493 cgc->cmd[2] = page_code | (page_control << 6);
1494 cgc->cmd[7] = cgc->buflen >> 8;
1495 cgc->cmd[8] = cgc->buflen & 0xff;
1496 cgc->data_direction = CGC_DATA_READ;
1497 return pkt_generic_packet(pd, cgc);
1498}
1499
1500static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1501{
1502 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1503 memset(cgc->buffer, 0, 2);
1504 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1505 cgc->cmd[1] = 0x10; /* PF */
1506 cgc->cmd[7] = cgc->buflen >> 8;
1507 cgc->cmd[8] = cgc->buflen & 0xff;
1508 cgc->data_direction = CGC_DATA_WRITE;
1509 return pkt_generic_packet(pd, cgc);
1510}
1511
1512static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1513{
1514 struct packet_command cgc;
1515 int ret;
1516
1517 /* set up command and get the disc info */
1518 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1519 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1520 cgc.cmd[8] = cgc.buflen = 2;
1521 cgc.quiet = 1;
1522
1523 ret = pkt_generic_packet(pd, &cgc);
1524 if (ret)
1525 return ret;
1526
1527 /* not all drives have the same disc_info length, so requeue
1528 * packet with the length the drive tells us it can supply
1529 */
1530 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1531 sizeof(di->disc_information_length);
1532
1533 if (cgc.buflen > sizeof(disc_information))
1534 cgc.buflen = sizeof(disc_information);
1535
1536 cgc.cmd[8] = cgc.buflen;
1537 return pkt_generic_packet(pd, &cgc);
1538}
1539
1540static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1541{
1542 struct packet_command cgc;
1543 int ret;
1544
1545 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1546 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1547 cgc.cmd[1] = type & 3;
1548 cgc.cmd[4] = (track & 0xff00) >> 8;
1549 cgc.cmd[5] = track & 0xff;
1550 cgc.cmd[8] = 8;
1551 cgc.quiet = 1;
1552
1553 ret = pkt_generic_packet(pd, &cgc);
1554 if (ret)
1555 return ret;
1556
1557 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1558 sizeof(ti->track_information_length);
1559
1560 if (cgc.buflen > sizeof(track_information))
1561 cgc.buflen = sizeof(track_information);
1562
1563 cgc.cmd[8] = cgc.buflen;
1564 return pkt_generic_packet(pd, &cgc);
1565}
1566
1567static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1568 long *last_written)
1569{
1570 disc_information di;
1571 track_information ti;
1572 __u32 last_track;
1573 int ret;
1574
1575 ret = pkt_get_disc_info(pd, &di);
1576 if (ret)
1577 return ret;
1578
1579 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1580 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1581 if (ret)
1582 return ret;
1583
1584 /* if this track is blank, try the previous. */
1585 if (ti.blank) {
1586 last_track--;
1587 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1588 if (ret)
1589 return ret;
1590 }
1591
1592 /* if last recorded field is valid, return it. */
1593 if (ti.lra_v) {
1594 *last_written = be32_to_cpu(ti.last_rec_address);
1595 } else {
1596 /* make it up instead */
1597 *last_written = be32_to_cpu(ti.track_start) +
1598 be32_to_cpu(ti.track_size);
1599 if (ti.free_blocks)
1600 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1601 }
1602 return 0;
1603}
1604
1605/*
1606 * write mode select package based on pd->settings
1607 */
1608static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1609{
1610 struct packet_command cgc;
1611 struct scsi_sense_hdr sshdr;
1612 write_param_page *wp;
1613 char buffer[128];
1614 int ret, size;
1615
1616 /* doesn't apply to DVD+RW or DVD-RAM */
1617 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1618 return 0;
1619
1620 memset(buffer, 0, sizeof(buffer));
1621 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1622 cgc.sshdr = &sshdr;
1623 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1624 if (ret) {
1625 pkt_dump_sense(pd, &cgc);
1626 return ret;
1627 }
1628
1629 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1630 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1631 if (size > sizeof(buffer))
1632 size = sizeof(buffer);
1633
1634 /*
1635 * now get it all
1636 */
1637 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1638 cgc.sshdr = &sshdr;
1639 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1640 if (ret) {
1641 pkt_dump_sense(pd, &cgc);
1642 return ret;
1643 }
1644
1645 /*
1646 * write page is offset header + block descriptor length
1647 */
1648 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1649
1650 wp->fp = pd->settings.fp;
1651 wp->track_mode = pd->settings.track_mode;
1652 wp->write_type = pd->settings.write_type;
1653 wp->data_block_type = pd->settings.block_mode;
1654
1655 wp->multi_session = 0;
1656
1657#ifdef PACKET_USE_LS
1658 wp->link_size = 7;
1659 wp->ls_v = 1;
1660#endif
1661
1662 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1663 wp->session_format = 0;
1664 wp->subhdr2 = 0x20;
1665 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1666 wp->session_format = 0x20;
1667 wp->subhdr2 = 8;
1668#if 0
1669 wp->mcn[0] = 0x80;
1670 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1671#endif
1672 } else {
1673 /*
1674 * paranoia
1675 */
1676 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1677 return 1;
1678 }
1679 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1680
1681 cgc.buflen = cgc.cmd[8] = size;
1682 ret = pkt_mode_select(pd, &cgc);
1683 if (ret) {
1684 pkt_dump_sense(pd, &cgc);
1685 return ret;
1686 }
1687
1688 pkt_print_settings(pd);
1689 return 0;
1690}
1691
1692/*
1693 * 1 -- we can write to this track, 0 -- we can't
1694 */
1695static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1696{
1697 switch (pd->mmc3_profile) {
1698 case 0x1a: /* DVD+RW */
1699 case 0x12: /* DVD-RAM */
1700 /* The track is always writable on DVD+RW/DVD-RAM */
1701 return 1;
1702 default:
1703 break;
1704 }
1705
1706 if (!ti->packet || !ti->fp)
1707 return 0;
1708
1709 /*
1710 * "good" settings as per Mt Fuji.
1711 */
1712 if (ti->rt == 0 && ti->blank == 0)
1713 return 1;
1714
1715 if (ti->rt == 0 && ti->blank == 1)
1716 return 1;
1717
1718 if (ti->rt == 1 && ti->blank == 0)
1719 return 1;
1720
1721 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1722 return 0;
1723}
1724
1725/*
1726 * 1 -- we can write to this disc, 0 -- we can't
1727 */
1728static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1729{
1730 switch (pd->mmc3_profile) {
1731 case 0x0a: /* CD-RW */
1732 case 0xffff: /* MMC3 not supported */
1733 break;
1734 case 0x1a: /* DVD+RW */
1735 case 0x13: /* DVD-RW */
1736 case 0x12: /* DVD-RAM */
1737 return 1;
1738 default:
1739 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1740 pd->mmc3_profile);
1741 return 0;
1742 }
1743
1744 /*
1745 * for disc type 0xff we should probably reserve a new track.
1746 * but i'm not sure, should we leave this to user apps? probably.
1747 */
1748 if (di->disc_type == 0xff) {
1749 pkt_notice(pd, "unknown disc - no track?\n");
1750 return 0;
1751 }
1752
1753 if (di->disc_type != 0x20 && di->disc_type != 0) {
1754 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1755 return 0;
1756 }
1757
1758 if (di->erasable == 0) {
1759 pkt_notice(pd, "disc not erasable\n");
1760 return 0;
1761 }
1762
1763 if (di->border_status == PACKET_SESSION_RESERVED) {
1764 pkt_err(pd, "can't write to last track (reserved)\n");
1765 return 0;
1766 }
1767
1768 return 1;
1769}
1770
1771static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1772{
1773 struct packet_command cgc;
1774 unsigned char buf[12];
1775 disc_information di;
1776 track_information ti;
1777 int ret, track;
1778
1779 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1780 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1781 cgc.cmd[8] = 8;
1782 ret = pkt_generic_packet(pd, &cgc);
1783 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1784
1785 memset(&di, 0, sizeof(disc_information));
1786 memset(&ti, 0, sizeof(track_information));
1787
1788 ret = pkt_get_disc_info(pd, &di);
1789 if (ret) {
1790 pkt_err(pd, "failed get_disc\n");
1791 return ret;
1792 }
1793
1794 if (!pkt_writable_disc(pd, &di))
1795 return -EROFS;
1796
1797 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1798
1799 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1800 ret = pkt_get_track_info(pd, track, 1, &ti);
1801 if (ret) {
1802 pkt_err(pd, "failed get_track\n");
1803 return ret;
1804 }
1805
1806 if (!pkt_writable_track(pd, &ti)) {
1807 pkt_err(pd, "can't write to this track\n");
1808 return -EROFS;
1809 }
1810
1811 /*
1812 * we keep packet size in 512 byte units, makes it easier to
1813 * deal with request calculations.
1814 */
1815 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1816 if (pd->settings.size == 0) {
1817 pkt_notice(pd, "detected zero packet size!\n");
1818 return -ENXIO;
1819 }
1820 if (pd->settings.size > PACKET_MAX_SECTORS) {
1821 pkt_err(pd, "packet size is too big\n");
1822 return -EROFS;
1823 }
1824 pd->settings.fp = ti.fp;
1825 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1826
1827 if (ti.nwa_v) {
1828 pd->nwa = be32_to_cpu(ti.next_writable);
1829 set_bit(PACKET_NWA_VALID, &pd->flags);
1830 }
1831
1832 /*
1833 * in theory we could use lra on -RW media as well and just zero
1834 * blocks that haven't been written yet, but in practice that
1835 * is just a no-go. we'll use that for -R, naturally.
1836 */
1837 if (ti.lra_v) {
1838 pd->lra = be32_to_cpu(ti.last_rec_address);
1839 set_bit(PACKET_LRA_VALID, &pd->flags);
1840 } else {
1841 pd->lra = 0xffffffff;
1842 set_bit(PACKET_LRA_VALID, &pd->flags);
1843 }
1844
1845 /*
1846 * fine for now
1847 */
1848 pd->settings.link_loss = 7;
1849 pd->settings.write_type = 0; /* packet */
1850 pd->settings.track_mode = ti.track_mode;
1851
1852 /*
1853 * mode1 or mode2 disc
1854 */
1855 switch (ti.data_mode) {
1856 case PACKET_MODE1:
1857 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1858 break;
1859 case PACKET_MODE2:
1860 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1861 break;
1862 default:
1863 pkt_err(pd, "unknown data mode\n");
1864 return -EROFS;
1865 }
1866 return 0;
1867}
1868
1869/*
1870 * enable/disable write caching on drive
1871 */
1872static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1873 int set)
1874{
1875 struct packet_command cgc;
1876 struct scsi_sense_hdr sshdr;
1877 unsigned char buf[64];
1878 int ret;
1879
1880 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1881 cgc.sshdr = &sshdr;
1882 cgc.buflen = pd->mode_offset + 12;
1883
1884 /*
1885 * caching mode page might not be there, so quiet this command
1886 */
1887 cgc.quiet = 1;
1888
1889 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1890 if (ret)
1891 return ret;
1892
1893 buf[pd->mode_offset + 10] |= (!!set << 2);
1894
1895 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1896 ret = pkt_mode_select(pd, &cgc);
1897 if (ret) {
1898 pkt_err(pd, "write caching control failed\n");
1899 pkt_dump_sense(pd, &cgc);
1900 } else if (!ret && set)
1901 pkt_notice(pd, "enabled write caching\n");
1902 return ret;
1903}
1904
1905static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1906{
1907 struct packet_command cgc;
1908
1909 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1910 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1911 cgc.cmd[4] = lockflag ? 1 : 0;
1912 return pkt_generic_packet(pd, &cgc);
1913}
1914
1915/*
1916 * Returns drive maximum write speed
1917 */
1918static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1919 unsigned *write_speed)
1920{
1921 struct packet_command cgc;
1922 struct scsi_sense_hdr sshdr;
1923 unsigned char buf[256+18];
1924 unsigned char *cap_buf;
1925 int ret, offset;
1926
1927 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1928 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1929 cgc.sshdr = &sshdr;
1930
1931 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1932 if (ret) {
1933 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1934 sizeof(struct mode_page_header);
1935 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1936 if (ret) {
1937 pkt_dump_sense(pd, &cgc);
1938 return ret;
1939 }
1940 }
1941
1942 offset = 20; /* Obsoleted field, used by older drives */
1943 if (cap_buf[1] >= 28)
1944 offset = 28; /* Current write speed selected */
1945 if (cap_buf[1] >= 30) {
1946 /* If the drive reports at least one "Logical Unit Write
1947 * Speed Performance Descriptor Block", use the information
1948 * in the first block. (contains the highest speed)
1949 */
1950 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1951 if (num_spdb > 0)
1952 offset = 34;
1953 }
1954
1955 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1956 return 0;
1957}
1958
1959/* These tables from cdrecord - I don't have orange book */
1960/* standard speed CD-RW (1-4x) */
1961static char clv_to_speed[16] = {
1962 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1963 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1964};
1965/* high speed CD-RW (-10x) */
1966static char hs_clv_to_speed[16] = {
1967 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1968 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1969};
1970/* ultra high speed CD-RW */
1971static char us_clv_to_speed[16] = {
1972 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1973 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
1974};
1975
1976/*
1977 * reads the maximum media speed from ATIP
1978 */
1979static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
1980 unsigned *speed)
1981{
1982 struct packet_command cgc;
1983 struct scsi_sense_hdr sshdr;
1984 unsigned char buf[64];
1985 unsigned int size, st, sp;
1986 int ret;
1987
1988 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
1989 cgc.sshdr = &sshdr;
1990 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
1991 cgc.cmd[1] = 2;
1992 cgc.cmd[2] = 4; /* READ ATIP */
1993 cgc.cmd[8] = 2;
1994 ret = pkt_generic_packet(pd, &cgc);
1995 if (ret) {
1996 pkt_dump_sense(pd, &cgc);
1997 return ret;
1998 }
1999 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2000 if (size > sizeof(buf))
2001 size = sizeof(buf);
2002
2003 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2004 cgc.sshdr = &sshdr;
2005 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2006 cgc.cmd[1] = 2;
2007 cgc.cmd[2] = 4;
2008 cgc.cmd[8] = size;
2009 ret = pkt_generic_packet(pd, &cgc);
2010 if (ret) {
2011 pkt_dump_sense(pd, &cgc);
2012 return ret;
2013 }
2014
2015 if (!(buf[6] & 0x40)) {
2016 pkt_notice(pd, "disc type is not CD-RW\n");
2017 return 1;
2018 }
2019 if (!(buf[6] & 0x4)) {
2020 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2021 return 1;
2022 }
2023
2024 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2025
2026 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2027
2028 /* Info from cdrecord */
2029 switch (st) {
2030 case 0: /* standard speed */
2031 *speed = clv_to_speed[sp];
2032 break;
2033 case 1: /* high speed */
2034 *speed = hs_clv_to_speed[sp];
2035 break;
2036 case 2: /* ultra high speed */
2037 *speed = us_clv_to_speed[sp];
2038 break;
2039 default:
2040 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2041 return 1;
2042 }
2043 if (*speed) {
2044 pkt_info(pd, "maximum media speed: %d\n", *speed);
2045 return 0;
2046 } else {
2047 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2048 return 1;
2049 }
2050}
2051
2052static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2053{
2054 struct packet_command cgc;
2055 struct scsi_sense_hdr sshdr;
2056 int ret;
2057
2058 pkt_dbg(2, pd, "Performing OPC\n");
2059
2060 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2061 cgc.sshdr = &sshdr;
2062 cgc.timeout = 60*HZ;
2063 cgc.cmd[0] = GPCMD_SEND_OPC;
2064 cgc.cmd[1] = 1;
2065 ret = pkt_generic_packet(pd, &cgc);
2066 if (ret)
2067 pkt_dump_sense(pd, &cgc);
2068 return ret;
2069}
2070
2071static int pkt_open_write(struct pktcdvd_device *pd)
2072{
2073 int ret;
2074 unsigned int write_speed, media_write_speed, read_speed;
2075
2076 ret = pkt_probe_settings(pd);
2077 if (ret) {
2078 pkt_dbg(2, pd, "failed probe\n");
2079 return ret;
2080 }
2081
2082 ret = pkt_set_write_settings(pd);
2083 if (ret) {
2084 pkt_dbg(1, pd, "failed saving write settings\n");
2085 return -EIO;
2086 }
2087
2088 pkt_write_caching(pd, USE_WCACHING);
2089
2090 ret = pkt_get_max_speed(pd, &write_speed);
2091 if (ret)
2092 write_speed = 16 * 177;
2093 switch (pd->mmc3_profile) {
2094 case 0x13: /* DVD-RW */
2095 case 0x1a: /* DVD+RW */
2096 case 0x12: /* DVD-RAM */
2097 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2098 break;
2099 default:
2100 ret = pkt_media_speed(pd, &media_write_speed);
2101 if (ret)
2102 media_write_speed = 16;
2103 write_speed = min(write_speed, media_write_speed * 177);
2104 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2105 break;
2106 }
2107 read_speed = write_speed;
2108
2109 ret = pkt_set_speed(pd, write_speed, read_speed);
2110 if (ret) {
2111 pkt_dbg(1, pd, "couldn't set write speed\n");
2112 return -EIO;
2113 }
2114 pd->write_speed = write_speed;
2115 pd->read_speed = read_speed;
2116
2117 ret = pkt_perform_opc(pd);
2118 if (ret) {
2119 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2120 }
2121
2122 return 0;
2123}
2124
2125/*
2126 * called at open time.
2127 */
2128static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2129{
2130 int ret;
2131 long lba;
2132 struct request_queue *q;
2133 struct block_device *bdev;
2134
2135 /*
2136 * We need to re-open the cdrom device without O_NONBLOCK to be able
2137 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2138 * so open should not fail.
2139 */
2140 bdev = blkdev_get_by_dev(pd->bdev->bd_dev, FMODE_READ | FMODE_EXCL, pd);
2141 if (IS_ERR(bdev)) {
2142 ret = PTR_ERR(bdev);
2143 goto out;
2144 }
2145
2146 ret = pkt_get_last_written(pd, &lba);
2147 if (ret) {
2148 pkt_err(pd, "pkt_get_last_written failed\n");
2149 goto out_putdev;
2150 }
2151
2152 set_capacity(pd->disk, lba << 2);
2153 set_capacity_and_notify(pd->bdev->bd_disk, lba << 2);
2154
2155 q = bdev_get_queue(pd->bdev);
2156 if (write) {
2157 ret = pkt_open_write(pd);
2158 if (ret)
2159 goto out_putdev;
2160 /*
2161 * Some CDRW drives can not handle writes larger than one packet,
2162 * even if the size is a multiple of the packet size.
2163 */
2164 blk_queue_max_hw_sectors(q, pd->settings.size);
2165 set_bit(PACKET_WRITABLE, &pd->flags);
2166 } else {
2167 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2168 clear_bit(PACKET_WRITABLE, &pd->flags);
2169 }
2170
2171 ret = pkt_set_segment_merging(pd, q);
2172 if (ret)
2173 goto out_putdev;
2174
2175 if (write) {
2176 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2177 pkt_err(pd, "not enough memory for buffers\n");
2178 ret = -ENOMEM;
2179 goto out_putdev;
2180 }
2181 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2182 }
2183
2184 return 0;
2185
2186out_putdev:
2187 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
2188out:
2189 return ret;
2190}
2191
2192/*
2193 * called when the device is closed. makes sure that the device flushes
2194 * the internal cache before we close.
2195 */
2196static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2197{
2198 if (flush && pkt_flush_cache(pd))
2199 pkt_dbg(1, pd, "not flushing cache\n");
2200
2201 pkt_lock_door(pd, 0);
2202
2203 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2204 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2205
2206 pkt_shrink_pktlist(pd);
2207}
2208
2209static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2210{
2211 if (dev_minor >= MAX_WRITERS)
2212 return NULL;
2213
2214 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2215 return pkt_devs[dev_minor];
2216}
2217
2218static int pkt_open(struct block_device *bdev, fmode_t mode)
2219{
2220 struct pktcdvd_device *pd = NULL;
2221 int ret;
2222
2223 mutex_lock(&pktcdvd_mutex);
2224 mutex_lock(&ctl_mutex);
2225 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2226 if (!pd) {
2227 ret = -ENODEV;
2228 goto out;
2229 }
2230 BUG_ON(pd->refcnt < 0);
2231
2232 pd->refcnt++;
2233 if (pd->refcnt > 1) {
2234 if ((mode & FMODE_WRITE) &&
2235 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2236 ret = -EBUSY;
2237 goto out_dec;
2238 }
2239 } else {
2240 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2241 if (ret)
2242 goto out_dec;
2243 /*
2244 * needed here as well, since ext2 (among others) may change
2245 * the blocksize at mount time
2246 */
2247 set_blocksize(bdev, CD_FRAMESIZE);
2248 }
2249
2250 mutex_unlock(&ctl_mutex);
2251 mutex_unlock(&pktcdvd_mutex);
2252 return 0;
2253
2254out_dec:
2255 pd->refcnt--;
2256out:
2257 mutex_unlock(&ctl_mutex);
2258 mutex_unlock(&pktcdvd_mutex);
2259 return ret;
2260}
2261
2262static void pkt_close(struct gendisk *disk, fmode_t mode)
2263{
2264 struct pktcdvd_device *pd = disk->private_data;
2265
2266 mutex_lock(&pktcdvd_mutex);
2267 mutex_lock(&ctl_mutex);
2268 pd->refcnt--;
2269 BUG_ON(pd->refcnt < 0);
2270 if (pd->refcnt == 0) {
2271 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2272 pkt_release_dev(pd, flush);
2273 }
2274 mutex_unlock(&ctl_mutex);
2275 mutex_unlock(&pktcdvd_mutex);
2276}
2277
2278
2279static void pkt_end_io_read_cloned(struct bio *bio)
2280{
2281 struct packet_stacked_data *psd = bio->bi_private;
2282 struct pktcdvd_device *pd = psd->pd;
2283
2284 psd->bio->bi_status = bio->bi_status;
2285 bio_put(bio);
2286 bio_endio(psd->bio);
2287 mempool_free(psd, &psd_pool);
2288 pkt_bio_finished(pd);
2289}
2290
2291static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2292{
2293 struct bio *cloned_bio =
2294 bio_alloc_clone(pd->bdev, bio, GFP_NOIO, &pkt_bio_set);
2295 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2296
2297 psd->pd = pd;
2298 psd->bio = bio;
2299 cloned_bio->bi_private = psd;
2300 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2301 pd->stats.secs_r += bio_sectors(bio);
2302 pkt_queue_bio(pd, cloned_bio);
2303}
2304
2305static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2306{
2307 struct pktcdvd_device *pd = q->queuedata;
2308 sector_t zone;
2309 struct packet_data *pkt;
2310 int was_empty, blocked_bio;
2311 struct pkt_rb_node *node;
2312
2313 zone = get_zone(bio->bi_iter.bi_sector, pd);
2314
2315 /*
2316 * If we find a matching packet in state WAITING or READ_WAIT, we can
2317 * just append this bio to that packet.
2318 */
2319 spin_lock(&pd->cdrw.active_list_lock);
2320 blocked_bio = 0;
2321 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2322 if (pkt->sector == zone) {
2323 spin_lock(&pkt->lock);
2324 if ((pkt->state == PACKET_WAITING_STATE) ||
2325 (pkt->state == PACKET_READ_WAIT_STATE)) {
2326 bio_list_add(&pkt->orig_bios, bio);
2327 pkt->write_size +=
2328 bio->bi_iter.bi_size / CD_FRAMESIZE;
2329 if ((pkt->write_size >= pkt->frames) &&
2330 (pkt->state == PACKET_WAITING_STATE)) {
2331 atomic_inc(&pkt->run_sm);
2332 wake_up(&pd->wqueue);
2333 }
2334 spin_unlock(&pkt->lock);
2335 spin_unlock(&pd->cdrw.active_list_lock);
2336 return;
2337 } else {
2338 blocked_bio = 1;
2339 }
2340 spin_unlock(&pkt->lock);
2341 }
2342 }
2343 spin_unlock(&pd->cdrw.active_list_lock);
2344
2345 /*
2346 * Test if there is enough room left in the bio work queue
2347 * (queue size >= congestion on mark).
2348 * If not, wait till the work queue size is below the congestion off mark.
2349 */
2350 spin_lock(&pd->lock);
2351 if (pd->write_congestion_on > 0
2352 && pd->bio_queue_size >= pd->write_congestion_on) {
2353 struct wait_bit_queue_entry wqe;
2354
2355 init_wait_var_entry(&wqe, &pd->congested, 0);
2356 for (;;) {
2357 prepare_to_wait_event(__var_waitqueue(&pd->congested),
2358 &wqe.wq_entry,
2359 TASK_UNINTERRUPTIBLE);
2360 if (pd->bio_queue_size <= pd->write_congestion_off)
2361 break;
2362 pd->congested = true;
2363 spin_unlock(&pd->lock);
2364 schedule();
2365 spin_lock(&pd->lock);
2366 }
2367 }
2368 spin_unlock(&pd->lock);
2369
2370 /*
2371 * No matching packet found. Store the bio in the work queue.
2372 */
2373 node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2374 node->bio = bio;
2375 spin_lock(&pd->lock);
2376 BUG_ON(pd->bio_queue_size < 0);
2377 was_empty = (pd->bio_queue_size == 0);
2378 pkt_rbtree_insert(pd, node);
2379 spin_unlock(&pd->lock);
2380
2381 /*
2382 * Wake up the worker thread.
2383 */
2384 atomic_set(&pd->scan_queue, 1);
2385 if (was_empty) {
2386 /* This wake_up is required for correct operation */
2387 wake_up(&pd->wqueue);
2388 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2389 /*
2390 * This wake up is not required for correct operation,
2391 * but improves performance in some cases.
2392 */
2393 wake_up(&pd->wqueue);
2394 }
2395}
2396
2397static void pkt_submit_bio(struct bio *bio)
2398{
2399 struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->queue->queuedata;
2400 struct bio *split;
2401
2402 bio = bio_split_to_limits(bio);
2403 if (!bio)
2404 return;
2405
2406 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2407 (unsigned long long)bio->bi_iter.bi_sector,
2408 (unsigned long long)bio_end_sector(bio));
2409
2410 /*
2411 * Clone READ bios so we can have our own bi_end_io callback.
2412 */
2413 if (bio_data_dir(bio) == READ) {
2414 pkt_make_request_read(pd, bio);
2415 return;
2416 }
2417
2418 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2419 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2420 (unsigned long long)bio->bi_iter.bi_sector);
2421 goto end_io;
2422 }
2423
2424 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2425 pkt_err(pd, "wrong bio size\n");
2426 goto end_io;
2427 }
2428
2429 do {
2430 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2431 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2432
2433 if (last_zone != zone) {
2434 BUG_ON(last_zone != zone + pd->settings.size);
2435
2436 split = bio_split(bio, last_zone -
2437 bio->bi_iter.bi_sector,
2438 GFP_NOIO, &pkt_bio_set);
2439 bio_chain(split, bio);
2440 } else {
2441 split = bio;
2442 }
2443
2444 pkt_make_request_write(bio->bi_bdev->bd_disk->queue, split);
2445 } while (split != bio);
2446
2447 return;
2448end_io:
2449 bio_io_error(bio);
2450}
2451
2452static void pkt_init_queue(struct pktcdvd_device *pd)
2453{
2454 struct request_queue *q = pd->disk->queue;
2455
2456 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2457 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2458 q->queuedata = pd;
2459}
2460
2461static int pkt_seq_show(struct seq_file *m, void *p)
2462{
2463 struct pktcdvd_device *pd = m->private;
2464 char *msg;
2465 int states[PACKET_NUM_STATES];
2466
2467 seq_printf(m, "Writer %s mapped to %pg:\n", pd->name, pd->bdev);
2468
2469 seq_printf(m, "\nSettings:\n");
2470 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2471
2472 if (pd->settings.write_type == 0)
2473 msg = "Packet";
2474 else
2475 msg = "Unknown";
2476 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2477
2478 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2479 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2480
2481 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2482
2483 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2484 msg = "Mode 1";
2485 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2486 msg = "Mode 2";
2487 else
2488 msg = "Unknown";
2489 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2490
2491 seq_printf(m, "\nStatistics:\n");
2492 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2493 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2494 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2495 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2496 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2497
2498 seq_printf(m, "\nMisc:\n");
2499 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2500 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2501 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2502 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2503 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2504 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2505
2506 seq_printf(m, "\nQueue state:\n");
2507 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2508 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2509 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2510
2511 pkt_count_states(pd, states);
2512 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2513 states[0], states[1], states[2], states[3], states[4], states[5]);
2514
2515 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2516 pd->write_congestion_off,
2517 pd->write_congestion_on);
2518 return 0;
2519}
2520
2521static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2522{
2523 int i;
2524 struct block_device *bdev;
2525 struct scsi_device *sdev;
2526
2527 if (pd->pkt_dev == dev) {
2528 pkt_err(pd, "recursive setup not allowed\n");
2529 return -EBUSY;
2530 }
2531 for (i = 0; i < MAX_WRITERS; i++) {
2532 struct pktcdvd_device *pd2 = pkt_devs[i];
2533 if (!pd2)
2534 continue;
2535 if (pd2->bdev->bd_dev == dev) {
2536 pkt_err(pd, "%pg already setup\n", pd2->bdev);
2537 return -EBUSY;
2538 }
2539 if (pd2->pkt_dev == dev) {
2540 pkt_err(pd, "can't chain pktcdvd devices\n");
2541 return -EBUSY;
2542 }
2543 }
2544
2545 bdev = blkdev_get_by_dev(dev, FMODE_READ | FMODE_NDELAY, NULL);
2546 if (IS_ERR(bdev))
2547 return PTR_ERR(bdev);
2548 sdev = scsi_device_from_queue(bdev->bd_disk->queue);
2549 if (!sdev) {
2550 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2551 return -EINVAL;
2552 }
2553 put_device(&sdev->sdev_gendev);
2554
2555 /* This is safe, since we have a reference from open(). */
2556 __module_get(THIS_MODULE);
2557
2558 pd->bdev = bdev;
2559 set_blocksize(bdev, CD_FRAMESIZE);
2560
2561 pkt_init_queue(pd);
2562
2563 atomic_set(&pd->cdrw.pending_bios, 0);
2564 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2565 if (IS_ERR(pd->cdrw.thread)) {
2566 pkt_err(pd, "can't start kernel thread\n");
2567 goto out_mem;
2568 }
2569
2570 proc_create_single_data(pd->name, 0, pkt_proc, pkt_seq_show, pd);
2571 pkt_dbg(1, pd, "writer mapped to %pg\n", bdev);
2572 return 0;
2573
2574out_mem:
2575 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2576 /* This is safe: open() is still holding a reference. */
2577 module_put(THIS_MODULE);
2578 return -ENOMEM;
2579}
2580
2581static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2582{
2583 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2584 int ret;
2585
2586 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2587 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2588
2589 mutex_lock(&pktcdvd_mutex);
2590 switch (cmd) {
2591 case CDROMEJECT:
2592 /*
2593 * The door gets locked when the device is opened, so we
2594 * have to unlock it or else the eject command fails.
2595 */
2596 if (pd->refcnt == 1)
2597 pkt_lock_door(pd, 0);
2598 fallthrough;
2599 /*
2600 * forward selected CDROM ioctls to CD-ROM, for UDF
2601 */
2602 case CDROMMULTISESSION:
2603 case CDROMREADTOCENTRY:
2604 case CDROM_LAST_WRITTEN:
2605 case CDROM_SEND_PACKET:
2606 case SCSI_IOCTL_SEND_COMMAND:
2607 if (!bdev->bd_disk->fops->ioctl)
2608 ret = -ENOTTY;
2609 else
2610 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2611 break;
2612 default:
2613 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2614 ret = -ENOTTY;
2615 }
2616 mutex_unlock(&pktcdvd_mutex);
2617
2618 return ret;
2619}
2620
2621static unsigned int pkt_check_events(struct gendisk *disk,
2622 unsigned int clearing)
2623{
2624 struct pktcdvd_device *pd = disk->private_data;
2625 struct gendisk *attached_disk;
2626
2627 if (!pd)
2628 return 0;
2629 if (!pd->bdev)
2630 return 0;
2631 attached_disk = pd->bdev->bd_disk;
2632 if (!attached_disk || !attached_disk->fops->check_events)
2633 return 0;
2634 return attached_disk->fops->check_events(attached_disk, clearing);
2635}
2636
2637static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2638{
2639 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2640}
2641
2642static const struct block_device_operations pktcdvd_ops = {
2643 .owner = THIS_MODULE,
2644 .submit_bio = pkt_submit_bio,
2645 .open = pkt_open,
2646 .release = pkt_close,
2647 .ioctl = pkt_ioctl,
2648 .compat_ioctl = blkdev_compat_ptr_ioctl,
2649 .check_events = pkt_check_events,
2650 .devnode = pkt_devnode,
2651};
2652
2653/*
2654 * Set up mapping from pktcdvd device to CD-ROM device.
2655 */
2656static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2657{
2658 int idx;
2659 int ret = -ENOMEM;
2660 struct pktcdvd_device *pd;
2661 struct gendisk *disk;
2662
2663 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2664
2665 for (idx = 0; idx < MAX_WRITERS; idx++)
2666 if (!pkt_devs[idx])
2667 break;
2668 if (idx == MAX_WRITERS) {
2669 pr_err("max %d writers supported\n", MAX_WRITERS);
2670 ret = -EBUSY;
2671 goto out_mutex;
2672 }
2673
2674 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2675 if (!pd)
2676 goto out_mutex;
2677
2678 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2679 sizeof(struct pkt_rb_node));
2680 if (ret)
2681 goto out_mem;
2682
2683 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2684 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2685 spin_lock_init(&pd->cdrw.active_list_lock);
2686
2687 spin_lock_init(&pd->lock);
2688 spin_lock_init(&pd->iosched.lock);
2689 bio_list_init(&pd->iosched.read_queue);
2690 bio_list_init(&pd->iosched.write_queue);
2691 sprintf(pd->name, DRIVER_NAME"%d", idx);
2692 init_waitqueue_head(&pd->wqueue);
2693 pd->bio_queue = RB_ROOT;
2694
2695 pd->write_congestion_on = write_congestion_on;
2696 pd->write_congestion_off = write_congestion_off;
2697
2698 ret = -ENOMEM;
2699 disk = blk_alloc_disk(NUMA_NO_NODE);
2700 if (!disk)
2701 goto out_mem;
2702 pd->disk = disk;
2703 disk->major = pktdev_major;
2704 disk->first_minor = idx;
2705 disk->minors = 1;
2706 disk->fops = &pktcdvd_ops;
2707 disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2708 strcpy(disk->disk_name, pd->name);
2709 disk->private_data = pd;
2710
2711 pd->pkt_dev = MKDEV(pktdev_major, idx);
2712 ret = pkt_new_dev(pd, dev);
2713 if (ret)
2714 goto out_mem2;
2715
2716 /* inherit events of the host device */
2717 disk->events = pd->bdev->bd_disk->events;
2718
2719 ret = add_disk(disk);
2720 if (ret)
2721 goto out_mem2;
2722
2723 pkt_sysfs_dev_new(pd);
2724 pkt_debugfs_dev_new(pd);
2725
2726 pkt_devs[idx] = pd;
2727 if (pkt_dev)
2728 *pkt_dev = pd->pkt_dev;
2729
2730 mutex_unlock(&ctl_mutex);
2731 return 0;
2732
2733out_mem2:
2734 put_disk(disk);
2735out_mem:
2736 mempool_exit(&pd->rb_pool);
2737 kfree(pd);
2738out_mutex:
2739 mutex_unlock(&ctl_mutex);
2740 pr_err("setup of pktcdvd device failed\n");
2741 return ret;
2742}
2743
2744/*
2745 * Tear down mapping from pktcdvd device to CD-ROM device.
2746 */
2747static int pkt_remove_dev(dev_t pkt_dev)
2748{
2749 struct pktcdvd_device *pd;
2750 int idx;
2751 int ret = 0;
2752
2753 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2754
2755 for (idx = 0; idx < MAX_WRITERS; idx++) {
2756 pd = pkt_devs[idx];
2757 if (pd && (pd->pkt_dev == pkt_dev))
2758 break;
2759 }
2760 if (idx == MAX_WRITERS) {
2761 pr_debug("dev not setup\n");
2762 ret = -ENXIO;
2763 goto out;
2764 }
2765
2766 if (pd->refcnt > 0) {
2767 ret = -EBUSY;
2768 goto out;
2769 }
2770 if (!IS_ERR(pd->cdrw.thread))
2771 kthread_stop(pd->cdrw.thread);
2772
2773 pkt_devs[idx] = NULL;
2774
2775 pkt_debugfs_dev_remove(pd);
2776 pkt_sysfs_dev_remove(pd);
2777
2778 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2779
2780 remove_proc_entry(pd->name, pkt_proc);
2781 pkt_dbg(1, pd, "writer unmapped\n");
2782
2783 del_gendisk(pd->disk);
2784 put_disk(pd->disk);
2785
2786 mempool_exit(&pd->rb_pool);
2787 kfree(pd);
2788
2789 /* This is safe: open() is still holding a reference. */
2790 module_put(THIS_MODULE);
2791
2792out:
2793 mutex_unlock(&ctl_mutex);
2794 return ret;
2795}
2796
2797static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2798{
2799 struct pktcdvd_device *pd;
2800
2801 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2802
2803 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2804 if (pd) {
2805 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2806 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2807 } else {
2808 ctrl_cmd->dev = 0;
2809 ctrl_cmd->pkt_dev = 0;
2810 }
2811 ctrl_cmd->num_devices = MAX_WRITERS;
2812
2813 mutex_unlock(&ctl_mutex);
2814}
2815
2816static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2817{
2818 void __user *argp = (void __user *)arg;
2819 struct pkt_ctrl_command ctrl_cmd;
2820 int ret = 0;
2821 dev_t pkt_dev = 0;
2822
2823 if (cmd != PACKET_CTRL_CMD)
2824 return -ENOTTY;
2825
2826 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2827 return -EFAULT;
2828
2829 switch (ctrl_cmd.command) {
2830 case PKT_CTRL_CMD_SETUP:
2831 if (!capable(CAP_SYS_ADMIN))
2832 return -EPERM;
2833 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2834 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2835 break;
2836 case PKT_CTRL_CMD_TEARDOWN:
2837 if (!capable(CAP_SYS_ADMIN))
2838 return -EPERM;
2839 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2840 break;
2841 case PKT_CTRL_CMD_STATUS:
2842 pkt_get_status(&ctrl_cmd);
2843 break;
2844 default:
2845 return -ENOTTY;
2846 }
2847
2848 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2849 return -EFAULT;
2850 return ret;
2851}
2852
2853#ifdef CONFIG_COMPAT
2854static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2855{
2856 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2857}
2858#endif
2859
2860static const struct file_operations pkt_ctl_fops = {
2861 .open = nonseekable_open,
2862 .unlocked_ioctl = pkt_ctl_ioctl,
2863#ifdef CONFIG_COMPAT
2864 .compat_ioctl = pkt_ctl_compat_ioctl,
2865#endif
2866 .owner = THIS_MODULE,
2867 .llseek = no_llseek,
2868};
2869
2870static struct miscdevice pkt_misc = {
2871 .minor = MISC_DYNAMIC_MINOR,
2872 .name = DRIVER_NAME,
2873 .nodename = "pktcdvd/control",
2874 .fops = &pkt_ctl_fops
2875};
2876
2877static int __init pkt_init(void)
2878{
2879 int ret;
2880
2881 mutex_init(&ctl_mutex);
2882
2883 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2884 sizeof(struct packet_stacked_data));
2885 if (ret)
2886 return ret;
2887 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2888 if (ret) {
2889 mempool_exit(&psd_pool);
2890 return ret;
2891 }
2892
2893 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2894 if (ret < 0) {
2895 pr_err("unable to register block device\n");
2896 goto out2;
2897 }
2898 if (!pktdev_major)
2899 pktdev_major = ret;
2900
2901 ret = pkt_sysfs_init();
2902 if (ret)
2903 goto out;
2904
2905 pkt_debugfs_init();
2906
2907 ret = misc_register(&pkt_misc);
2908 if (ret) {
2909 pr_err("unable to register misc device\n");
2910 goto out_misc;
2911 }
2912
2913 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2914
2915 return 0;
2916
2917out_misc:
2918 pkt_debugfs_cleanup();
2919 pkt_sysfs_cleanup();
2920out:
2921 unregister_blkdev(pktdev_major, DRIVER_NAME);
2922out2:
2923 mempool_exit(&psd_pool);
2924 bioset_exit(&pkt_bio_set);
2925 return ret;
2926}
2927
2928static void __exit pkt_exit(void)
2929{
2930 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2931 misc_deregister(&pkt_misc);
2932
2933 pkt_debugfs_cleanup();
2934 pkt_sysfs_cleanup();
2935
2936 unregister_blkdev(pktdev_major, DRIVER_NAME);
2937 mempool_exit(&psd_pool);
2938 bioset_exit(&pkt_bio_set);
2939}
2940
2941MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2942MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2943MODULE_LICENSE("GPL");
2944
2945module_init(pkt_init);
2946module_exit(pkt_exit);