Loading...
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#include <linux/pktcdvd.h>
48#include <linux/module.h>
49#include <linux/types.h>
50#include <linux/kernel.h>
51#include <linux/compat.h>
52#include <linux/kthread.h>
53#include <linux/errno.h>
54#include <linux/spinlock.h>
55#include <linux/file.h>
56#include <linux/proc_fs.h>
57#include <linux/seq_file.h>
58#include <linux/miscdevice.h>
59#include <linux/freezer.h>
60#include <linux/mutex.h>
61#include <linux/slab.h>
62#include <scsi/scsi_cmnd.h>
63#include <scsi/scsi_ioctl.h>
64#include <scsi/scsi.h>
65#include <linux/debugfs.h>
66#include <linux/device.h>
67
68#include <asm/uaccess.h>
69
70#define DRIVER_NAME "pktcdvd"
71
72#if PACKET_DEBUG
73#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74#else
75#define DPRINTK(fmt, args...)
76#endif
77
78#if PACKET_DEBUG > 1
79#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80#else
81#define VPRINTK(fmt, args...)
82#endif
83
84#define MAX_SPEED 0xffff
85
86#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87
88static DEFINE_MUTEX(pktcdvd_mutex);
89static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90static struct proc_dir_entry *pkt_proc;
91static int pktdev_major;
92static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95static mempool_t *psd_pool;
96
97static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
99
100/* forward declaration */
101static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102static int pkt_remove_dev(dev_t pkt_dev);
103static int pkt_seq_show(struct seq_file *m, void *p);
104
105
106
107/*
108 * create and register a pktcdvd kernel object.
109 */
110static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111 const char* name,
112 struct kobject* parent,
113 struct kobj_type* ktype)
114{
115 struct pktcdvd_kobj *p;
116 int error;
117
118 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 if (!p)
120 return NULL;
121 p->pd = pd;
122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123 if (error) {
124 kobject_put(&p->kobj);
125 return NULL;
126 }
127 kobject_uevent(&p->kobj, KOBJ_ADD);
128 return p;
129}
130/*
131 * remove a pktcdvd kernel object.
132 */
133static void pkt_kobj_remove(struct pktcdvd_kobj *p)
134{
135 if (p)
136 kobject_put(&p->kobj);
137}
138/*
139 * default release function for pktcdvd kernel objects.
140 */
141static void pkt_kobj_release(struct kobject *kobj)
142{
143 kfree(to_pktcdvdkobj(kobj));
144}
145
146
147/**********************************************************
148 *
149 * sysfs interface for pktcdvd
150 * by (C) 2006 Thomas Maier <balagi@justmail.de>
151 *
152 **********************************************************/
153
154#define DEF_ATTR(_obj,_name,_mode) \
155 static struct attribute _obj = { .name = _name, .mode = _mode }
156
157/**********************************************************
158 /sys/class/pktcdvd/pktcdvd[0-7]/
159 stat/reset
160 stat/packets_started
161 stat/packets_finished
162 stat/kb_written
163 stat/kb_read
164 stat/kb_read_gather
165 write_queue/size
166 write_queue/congestion_off
167 write_queue/congestion_on
168 **********************************************************/
169
170DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
176
177static struct attribute *kobj_pkt_attrs_stat[] = {
178 &kobj_pkt_attr_st1,
179 &kobj_pkt_attr_st2,
180 &kobj_pkt_attr_st3,
181 &kobj_pkt_attr_st4,
182 &kobj_pkt_attr_st5,
183 &kobj_pkt_attr_st6,
184 NULL
185};
186
187DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
190
191static struct attribute *kobj_pkt_attrs_wqueue[] = {
192 &kobj_pkt_attr_wq1,
193 &kobj_pkt_attr_wq2,
194 &kobj_pkt_attr_wq3,
195 NULL
196};
197
198static ssize_t kobj_pkt_show(struct kobject *kobj,
199 struct attribute *attr, char *data)
200{
201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202 int n = 0;
203 int v;
204 if (strcmp(attr->name, "packets_started") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
206
207 } else if (strcmp(attr->name, "packets_finished") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
209
210 } else if (strcmp(attr->name, "kb_written") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
212
213 } else if (strcmp(attr->name, "kb_read") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
215
216 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
218
219 } else if (strcmp(attr->name, "size") == 0) {
220 spin_lock(&pd->lock);
221 v = pd->bio_queue_size;
222 spin_unlock(&pd->lock);
223 n = sprintf(data, "%d\n", v);
224
225 } else if (strcmp(attr->name, "congestion_off") == 0) {
226 spin_lock(&pd->lock);
227 v = pd->write_congestion_off;
228 spin_unlock(&pd->lock);
229 n = sprintf(data, "%d\n", v);
230
231 } else if (strcmp(attr->name, "congestion_on") == 0) {
232 spin_lock(&pd->lock);
233 v = pd->write_congestion_on;
234 spin_unlock(&pd->lock);
235 n = sprintf(data, "%d\n", v);
236 }
237 return n;
238}
239
240static void init_write_congestion_marks(int* lo, int* hi)
241{
242 if (*hi > 0) {
243 *hi = max(*hi, 500);
244 *hi = min(*hi, 1000000);
245 if (*lo <= 0)
246 *lo = *hi - 100;
247 else {
248 *lo = min(*lo, *hi - 100);
249 *lo = max(*lo, 100);
250 }
251 } else {
252 *hi = -1;
253 *lo = -1;
254 }
255}
256
257static ssize_t kobj_pkt_store(struct kobject *kobj,
258 struct attribute *attr,
259 const char *data, size_t len)
260{
261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262 int val;
263
264 if (strcmp(attr->name, "reset") == 0 && len > 0) {
265 pd->stats.pkt_started = 0;
266 pd->stats.pkt_ended = 0;
267 pd->stats.secs_w = 0;
268 pd->stats.secs_rg = 0;
269 pd->stats.secs_r = 0;
270
271 } else if (strcmp(attr->name, "congestion_off") == 0
272 && sscanf(data, "%d", &val) == 1) {
273 spin_lock(&pd->lock);
274 pd->write_congestion_off = val;
275 init_write_congestion_marks(&pd->write_congestion_off,
276 &pd->write_congestion_on);
277 spin_unlock(&pd->lock);
278
279 } else if (strcmp(attr->name, "congestion_on") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_on = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
286 }
287 return len;
288}
289
290static const struct sysfs_ops kobj_pkt_ops = {
291 .show = kobj_pkt_show,
292 .store = kobj_pkt_store
293};
294static struct kobj_type kobj_pkt_type_stat = {
295 .release = pkt_kobj_release,
296 .sysfs_ops = &kobj_pkt_ops,
297 .default_attrs = kobj_pkt_attrs_stat
298};
299static struct kobj_type kobj_pkt_type_wqueue = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_wqueue
303};
304
305static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306{
307 if (class_pktcdvd) {
308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309 "%s", pd->name);
310 if (IS_ERR(pd->dev))
311 pd->dev = NULL;
312 }
313 if (pd->dev) {
314 pd->kobj_stat = pkt_kobj_create(pd, "stat",
315 &pd->dev->kobj,
316 &kobj_pkt_type_stat);
317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318 &pd->dev->kobj,
319 &kobj_pkt_type_wqueue);
320 }
321}
322
323static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
324{
325 pkt_kobj_remove(pd->kobj_stat);
326 pkt_kobj_remove(pd->kobj_wqueue);
327 if (class_pktcdvd)
328 device_unregister(pd->dev);
329}
330
331
332/********************************************************************
333 /sys/class/pktcdvd/
334 add map block device
335 remove unmap packet dev
336 device_map show mappings
337 *******************************************************************/
338
339static void class_pktcdvd_release(struct class *cls)
340{
341 kfree(cls);
342}
343static ssize_t class_pktcdvd_show_map(struct class *c,
344 struct class_attribute *attr,
345 char *data)
346{
347 int n = 0;
348 int idx;
349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350 for (idx = 0; idx < MAX_WRITERS; idx++) {
351 struct pktcdvd_device *pd = pkt_devs[idx];
352 if (!pd)
353 continue;
354 n += sprintf(data+n, "%s %u:%u %u:%u\n",
355 pd->name,
356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357 MAJOR(pd->bdev->bd_dev),
358 MINOR(pd->bdev->bd_dev));
359 }
360 mutex_unlock(&ctl_mutex);
361 return n;
362}
363
364static ssize_t class_pktcdvd_store_add(struct class *c,
365 struct class_attribute *attr,
366 const char *buf,
367 size_t count)
368{
369 unsigned int major, minor;
370
371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372 /* pkt_setup_dev() expects caller to hold reference to self */
373 if (!try_module_get(THIS_MODULE))
374 return -ENODEV;
375
376 pkt_setup_dev(MKDEV(major, minor), NULL);
377
378 module_put(THIS_MODULE);
379
380 return count;
381 }
382
383 return -EINVAL;
384}
385
386static ssize_t class_pktcdvd_store_remove(struct class *c,
387 struct class_attribute *attr,
388 const char *buf,
389 size_t count)
390{
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
395 }
396 return -EINVAL;
397}
398
399static struct class_attribute class_pktcdvd_attrs[] = {
400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
403 __ATTR_NULL
404};
405
406
407static int pkt_sysfs_init(void)
408{
409 int ret = 0;
410
411 /*
412 * create control files in sysfs
413 * /sys/class/pktcdvd/...
414 */
415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416 if (!class_pktcdvd)
417 return -ENOMEM;
418 class_pktcdvd->name = DRIVER_NAME;
419 class_pktcdvd->owner = THIS_MODULE;
420 class_pktcdvd->class_release = class_pktcdvd_release;
421 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422 ret = class_register(class_pktcdvd);
423 if (ret) {
424 kfree(class_pktcdvd);
425 class_pktcdvd = NULL;
426 printk(DRIVER_NAME": failed to create class pktcdvd\n");
427 return ret;
428 }
429 return 0;
430}
431
432static void pkt_sysfs_cleanup(void)
433{
434 if (class_pktcdvd)
435 class_destroy(class_pktcdvd);
436 class_pktcdvd = NULL;
437}
438
439/********************************************************************
440 entries in debugfs
441
442 /sys/kernel/debug/pktcdvd[0-7]/
443 info
444
445 *******************************************************************/
446
447static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
448{
449 return pkt_seq_show(m, p);
450}
451
452static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
453{
454 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455}
456
457static const struct file_operations debug_fops = {
458 .open = pkt_debugfs_fops_open,
459 .read = seq_read,
460 .llseek = seq_lseek,
461 .release = single_release,
462 .owner = THIS_MODULE,
463};
464
465static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
466{
467 if (!pkt_debugfs_root)
468 return;
469 pd->dfs_f_info = NULL;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (IS_ERR(pd->dfs_d_root)) {
472 pd->dfs_d_root = NULL;
473 return;
474 }
475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476 pd->dfs_d_root, pd, &debug_fops);
477 if (IS_ERR(pd->dfs_f_info)) {
478 pd->dfs_f_info = NULL;
479 return;
480 }
481}
482
483static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
484{
485 if (!pkt_debugfs_root)
486 return;
487 if (pd->dfs_f_info)
488 debugfs_remove(pd->dfs_f_info);
489 pd->dfs_f_info = NULL;
490 if (pd->dfs_d_root)
491 debugfs_remove(pd->dfs_d_root);
492 pd->dfs_d_root = NULL;
493}
494
495static void pkt_debugfs_init(void)
496{
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 if (IS_ERR(pkt_debugfs_root)) {
499 pkt_debugfs_root = NULL;
500 return;
501 }
502}
503
504static void pkt_debugfs_cleanup(void)
505{
506 if (!pkt_debugfs_root)
507 return;
508 debugfs_remove(pkt_debugfs_root);
509 pkt_debugfs_root = NULL;
510}
511
512/* ----------------------------------------------------------*/
513
514
515static void pkt_bio_finished(struct pktcdvd_device *pd)
516{
517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519 VPRINTK(DRIVER_NAME": queue empty\n");
520 atomic_set(&pd->iosched.attention, 1);
521 wake_up(&pd->wqueue);
522 }
523}
524
525static void pkt_bio_destructor(struct bio *bio)
526{
527 kfree(bio->bi_io_vec);
528 kfree(bio);
529}
530
531static struct bio *pkt_bio_alloc(int nr_iovecs)
532{
533 struct bio_vec *bvl = NULL;
534 struct bio *bio;
535
536 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
537 if (!bio)
538 goto no_bio;
539 bio_init(bio);
540
541 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
542 if (!bvl)
543 goto no_bvl;
544
545 bio->bi_max_vecs = nr_iovecs;
546 bio->bi_io_vec = bvl;
547 bio->bi_destructor = pkt_bio_destructor;
548
549 return bio;
550
551 no_bvl:
552 kfree(bio);
553 no_bio:
554 return NULL;
555}
556
557/*
558 * Allocate a packet_data struct
559 */
560static struct packet_data *pkt_alloc_packet_data(int frames)
561{
562 int i;
563 struct packet_data *pkt;
564
565 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
566 if (!pkt)
567 goto no_pkt;
568
569 pkt->frames = frames;
570 pkt->w_bio = pkt_bio_alloc(frames);
571 if (!pkt->w_bio)
572 goto no_bio;
573
574 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
575 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
576 if (!pkt->pages[i])
577 goto no_page;
578 }
579
580 spin_lock_init(&pkt->lock);
581 bio_list_init(&pkt->orig_bios);
582
583 for (i = 0; i < frames; i++) {
584 struct bio *bio = pkt_bio_alloc(1);
585 if (!bio)
586 goto no_rd_bio;
587 pkt->r_bios[i] = bio;
588 }
589
590 return pkt;
591
592no_rd_bio:
593 for (i = 0; i < frames; i++) {
594 struct bio *bio = pkt->r_bios[i];
595 if (bio)
596 bio_put(bio);
597 }
598
599no_page:
600 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
601 if (pkt->pages[i])
602 __free_page(pkt->pages[i]);
603 bio_put(pkt->w_bio);
604no_bio:
605 kfree(pkt);
606no_pkt:
607 return NULL;
608}
609
610/*
611 * Free a packet_data struct
612 */
613static void pkt_free_packet_data(struct packet_data *pkt)
614{
615 int i;
616
617 for (i = 0; i < pkt->frames; i++) {
618 struct bio *bio = pkt->r_bios[i];
619 if (bio)
620 bio_put(bio);
621 }
622 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
623 __free_page(pkt->pages[i]);
624 bio_put(pkt->w_bio);
625 kfree(pkt);
626}
627
628static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
629{
630 struct packet_data *pkt, *next;
631
632 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
633
634 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
635 pkt_free_packet_data(pkt);
636 }
637 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
638}
639
640static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
641{
642 struct packet_data *pkt;
643
644 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
645
646 while (nr_packets > 0) {
647 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
648 if (!pkt) {
649 pkt_shrink_pktlist(pd);
650 return 0;
651 }
652 pkt->id = nr_packets;
653 pkt->pd = pd;
654 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
655 nr_packets--;
656 }
657 return 1;
658}
659
660static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
661{
662 struct rb_node *n = rb_next(&node->rb_node);
663 if (!n)
664 return NULL;
665 return rb_entry(n, struct pkt_rb_node, rb_node);
666}
667
668static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
669{
670 rb_erase(&node->rb_node, &pd->bio_queue);
671 mempool_free(node, pd->rb_pool);
672 pd->bio_queue_size--;
673 BUG_ON(pd->bio_queue_size < 0);
674}
675
676/*
677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
678 */
679static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
680{
681 struct rb_node *n = pd->bio_queue.rb_node;
682 struct rb_node *next;
683 struct pkt_rb_node *tmp;
684
685 if (!n) {
686 BUG_ON(pd->bio_queue_size > 0);
687 return NULL;
688 }
689
690 for (;;) {
691 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
692 if (s <= tmp->bio->bi_sector)
693 next = n->rb_left;
694 else
695 next = n->rb_right;
696 if (!next)
697 break;
698 n = next;
699 }
700
701 if (s > tmp->bio->bi_sector) {
702 tmp = pkt_rbtree_next(tmp);
703 if (!tmp)
704 return NULL;
705 }
706 BUG_ON(s > tmp->bio->bi_sector);
707 return tmp;
708}
709
710/*
711 * Insert a node into the pd->bio_queue rb tree.
712 */
713static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
714{
715 struct rb_node **p = &pd->bio_queue.rb_node;
716 struct rb_node *parent = NULL;
717 sector_t s = node->bio->bi_sector;
718 struct pkt_rb_node *tmp;
719
720 while (*p) {
721 parent = *p;
722 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
723 if (s < tmp->bio->bi_sector)
724 p = &(*p)->rb_left;
725 else
726 p = &(*p)->rb_right;
727 }
728 rb_link_node(&node->rb_node, parent, p);
729 rb_insert_color(&node->rb_node, &pd->bio_queue);
730 pd->bio_queue_size++;
731}
732
733/*
734 * Send a packet_command to the underlying block device and
735 * wait for completion.
736 */
737static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
738{
739 struct request_queue *q = bdev_get_queue(pd->bdev);
740 struct request *rq;
741 int ret = 0;
742
743 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
744 WRITE : READ, __GFP_WAIT);
745
746 if (cgc->buflen) {
747 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
748 goto out;
749 }
750
751 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
752 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
753
754 rq->timeout = 60*HZ;
755 rq->cmd_type = REQ_TYPE_BLOCK_PC;
756 if (cgc->quiet)
757 rq->cmd_flags |= REQ_QUIET;
758
759 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
760 if (rq->errors)
761 ret = -EIO;
762out:
763 blk_put_request(rq);
764 return ret;
765}
766
767/*
768 * A generic sense dump / resolve mechanism should be implemented across
769 * all ATAPI + SCSI devices.
770 */
771static void pkt_dump_sense(struct packet_command *cgc)
772{
773 static char *info[9] = { "No sense", "Recovered error", "Not ready",
774 "Medium error", "Hardware error", "Illegal request",
775 "Unit attention", "Data protect", "Blank check" };
776 int i;
777 struct request_sense *sense = cgc->sense;
778
779 printk(DRIVER_NAME":");
780 for (i = 0; i < CDROM_PACKET_SIZE; i++)
781 printk(" %02x", cgc->cmd[i]);
782 printk(" - ");
783
784 if (sense == NULL) {
785 printk("no sense\n");
786 return;
787 }
788
789 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
790
791 if (sense->sense_key > 8) {
792 printk(" (INVALID)\n");
793 return;
794 }
795
796 printk(" (%s)\n", info[sense->sense_key]);
797}
798
799/*
800 * flush the drive cache to media
801 */
802static int pkt_flush_cache(struct pktcdvd_device *pd)
803{
804 struct packet_command cgc;
805
806 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
807 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
808 cgc.quiet = 1;
809
810 /*
811 * the IMMED bit -- we default to not setting it, although that
812 * would allow a much faster close, this is safer
813 */
814#if 0
815 cgc.cmd[1] = 1 << 1;
816#endif
817 return pkt_generic_packet(pd, &cgc);
818}
819
820/*
821 * speed is given as the normal factor, e.g. 4 for 4x
822 */
823static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
824 unsigned write_speed, unsigned read_speed)
825{
826 struct packet_command cgc;
827 struct request_sense sense;
828 int ret;
829
830 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
831 cgc.sense = &sense;
832 cgc.cmd[0] = GPCMD_SET_SPEED;
833 cgc.cmd[2] = (read_speed >> 8) & 0xff;
834 cgc.cmd[3] = read_speed & 0xff;
835 cgc.cmd[4] = (write_speed >> 8) & 0xff;
836 cgc.cmd[5] = write_speed & 0xff;
837
838 if ((ret = pkt_generic_packet(pd, &cgc)))
839 pkt_dump_sense(&cgc);
840
841 return ret;
842}
843
844/*
845 * Queue a bio for processing by the low-level CD device. Must be called
846 * from process context.
847 */
848static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
849{
850 spin_lock(&pd->iosched.lock);
851 if (bio_data_dir(bio) == READ)
852 bio_list_add(&pd->iosched.read_queue, bio);
853 else
854 bio_list_add(&pd->iosched.write_queue, bio);
855 spin_unlock(&pd->iosched.lock);
856
857 atomic_set(&pd->iosched.attention, 1);
858 wake_up(&pd->wqueue);
859}
860
861/*
862 * Process the queued read/write requests. This function handles special
863 * requirements for CDRW drives:
864 * - A cache flush command must be inserted before a read request if the
865 * previous request was a write.
866 * - Switching between reading and writing is slow, so don't do it more often
867 * than necessary.
868 * - Optimize for throughput at the expense of latency. This means that streaming
869 * writes will never be interrupted by a read, but if the drive has to seek
870 * before the next write, switch to reading instead if there are any pending
871 * read requests.
872 * - Set the read speed according to current usage pattern. When only reading
873 * from the device, it's best to use the highest possible read speed, but
874 * when switching often between reading and writing, it's better to have the
875 * same read and write speeds.
876 */
877static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
878{
879
880 if (atomic_read(&pd->iosched.attention) == 0)
881 return;
882 atomic_set(&pd->iosched.attention, 0);
883
884 for (;;) {
885 struct bio *bio;
886 int reads_queued, writes_queued;
887
888 spin_lock(&pd->iosched.lock);
889 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
890 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
891 spin_unlock(&pd->iosched.lock);
892
893 if (!reads_queued && !writes_queued)
894 break;
895
896 if (pd->iosched.writing) {
897 int need_write_seek = 1;
898 spin_lock(&pd->iosched.lock);
899 bio = bio_list_peek(&pd->iosched.write_queue);
900 spin_unlock(&pd->iosched.lock);
901 if (bio && (bio->bi_sector == pd->iosched.last_write))
902 need_write_seek = 0;
903 if (need_write_seek && reads_queued) {
904 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
905 VPRINTK(DRIVER_NAME": write, waiting\n");
906 break;
907 }
908 pkt_flush_cache(pd);
909 pd->iosched.writing = 0;
910 }
911 } else {
912 if (!reads_queued && writes_queued) {
913 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
914 VPRINTK(DRIVER_NAME": read, waiting\n");
915 break;
916 }
917 pd->iosched.writing = 1;
918 }
919 }
920
921 spin_lock(&pd->iosched.lock);
922 if (pd->iosched.writing)
923 bio = bio_list_pop(&pd->iosched.write_queue);
924 else
925 bio = bio_list_pop(&pd->iosched.read_queue);
926 spin_unlock(&pd->iosched.lock);
927
928 if (!bio)
929 continue;
930
931 if (bio_data_dir(bio) == READ)
932 pd->iosched.successive_reads += bio->bi_size >> 10;
933 else {
934 pd->iosched.successive_reads = 0;
935 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
936 }
937 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
938 if (pd->read_speed == pd->write_speed) {
939 pd->read_speed = MAX_SPEED;
940 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
941 }
942 } else {
943 if (pd->read_speed != pd->write_speed) {
944 pd->read_speed = pd->write_speed;
945 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
946 }
947 }
948
949 atomic_inc(&pd->cdrw.pending_bios);
950 generic_make_request(bio);
951 }
952}
953
954/*
955 * Special care is needed if the underlying block device has a small
956 * max_phys_segments value.
957 */
958static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
959{
960 if ((pd->settings.size << 9) / CD_FRAMESIZE
961 <= queue_max_segments(q)) {
962 /*
963 * The cdrom device can handle one segment/frame
964 */
965 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
966 return 0;
967 } else if ((pd->settings.size << 9) / PAGE_SIZE
968 <= queue_max_segments(q)) {
969 /*
970 * We can handle this case at the expense of some extra memory
971 * copies during write operations
972 */
973 set_bit(PACKET_MERGE_SEGS, &pd->flags);
974 return 0;
975 } else {
976 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
977 return -EIO;
978 }
979}
980
981/*
982 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
983 */
984static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
985{
986 unsigned int copy_size = CD_FRAMESIZE;
987
988 while (copy_size > 0) {
989 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
990 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
991 src_bvl->bv_offset + offs;
992 void *vto = page_address(dst_page) + dst_offs;
993 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
994
995 BUG_ON(len < 0);
996 memcpy(vto, vfrom, len);
997 kunmap_atomic(vfrom, KM_USER0);
998
999 seg++;
1000 offs = 0;
1001 dst_offs += len;
1002 copy_size -= len;
1003 }
1004}
1005
1006/*
1007 * Copy all data for this packet to pkt->pages[], so that
1008 * a) The number of required segments for the write bio is minimized, which
1009 * is necessary for some scsi controllers.
1010 * b) The data can be used as cache to avoid read requests if we receive a
1011 * new write request for the same zone.
1012 */
1013static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1014{
1015 int f, p, offs;
1016
1017 /* Copy all data to pkt->pages[] */
1018 p = 0;
1019 offs = 0;
1020 for (f = 0; f < pkt->frames; f++) {
1021 if (bvec[f].bv_page != pkt->pages[p]) {
1022 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1023 void *vto = page_address(pkt->pages[p]) + offs;
1024 memcpy(vto, vfrom, CD_FRAMESIZE);
1025 kunmap_atomic(vfrom, KM_USER0);
1026 bvec[f].bv_page = pkt->pages[p];
1027 bvec[f].bv_offset = offs;
1028 } else {
1029 BUG_ON(bvec[f].bv_offset != offs);
1030 }
1031 offs += CD_FRAMESIZE;
1032 if (offs >= PAGE_SIZE) {
1033 offs = 0;
1034 p++;
1035 }
1036 }
1037}
1038
1039static void pkt_end_io_read(struct bio *bio, int err)
1040{
1041 struct packet_data *pkt = bio->bi_private;
1042 struct pktcdvd_device *pd = pkt->pd;
1043 BUG_ON(!pd);
1044
1045 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1047
1048 if (err)
1049 atomic_inc(&pkt->io_errors);
1050 if (atomic_dec_and_test(&pkt->io_wait)) {
1051 atomic_inc(&pkt->run_sm);
1052 wake_up(&pd->wqueue);
1053 }
1054 pkt_bio_finished(pd);
1055}
1056
1057static void pkt_end_io_packet_write(struct bio *bio, int err)
1058{
1059 struct packet_data *pkt = bio->bi_private;
1060 struct pktcdvd_device *pd = pkt->pd;
1061 BUG_ON(!pd);
1062
1063 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1064
1065 pd->stats.pkt_ended++;
1066
1067 pkt_bio_finished(pd);
1068 atomic_dec(&pkt->io_wait);
1069 atomic_inc(&pkt->run_sm);
1070 wake_up(&pd->wqueue);
1071}
1072
1073/*
1074 * Schedule reads for the holes in a packet
1075 */
1076static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077{
1078 int frames_read = 0;
1079 struct bio *bio;
1080 int f;
1081 char written[PACKET_MAX_SIZE];
1082
1083 BUG_ON(bio_list_empty(&pkt->orig_bios));
1084
1085 atomic_set(&pkt->io_wait, 0);
1086 atomic_set(&pkt->io_errors, 0);
1087
1088 /*
1089 * Figure out which frames we need to read before we can write.
1090 */
1091 memset(written, 0, sizeof(written));
1092 spin_lock(&pkt->lock);
1093 bio_list_for_each(bio, &pkt->orig_bios) {
1094 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095 int num_frames = bio->bi_size / CD_FRAMESIZE;
1096 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097 BUG_ON(first_frame < 0);
1098 BUG_ON(first_frame + num_frames > pkt->frames);
1099 for (f = first_frame; f < first_frame + num_frames; f++)
1100 written[f] = 1;
1101 }
1102 spin_unlock(&pkt->lock);
1103
1104 if (pkt->cache_valid) {
1105 VPRINTK("pkt_gather_data: zone %llx cached\n",
1106 (unsigned long long)pkt->sector);
1107 goto out_account;
1108 }
1109
1110 /*
1111 * Schedule reads for missing parts of the packet.
1112 */
1113 for (f = 0; f < pkt->frames; f++) {
1114 struct bio_vec *vec;
1115
1116 int p, offset;
1117 if (written[f])
1118 continue;
1119 bio = pkt->r_bios[f];
1120 vec = bio->bi_io_vec;
1121 bio_init(bio);
1122 bio->bi_max_vecs = 1;
1123 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124 bio->bi_bdev = pd->bdev;
1125 bio->bi_end_io = pkt_end_io_read;
1126 bio->bi_private = pkt;
1127 bio->bi_io_vec = vec;
1128 bio->bi_destructor = pkt_bio_destructor;
1129
1130 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133 f, pkt->pages[p], offset);
1134 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135 BUG();
1136
1137 atomic_inc(&pkt->io_wait);
1138 bio->bi_rw = READ;
1139 pkt_queue_bio(pd, bio);
1140 frames_read++;
1141 }
1142
1143out_account:
1144 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145 frames_read, (unsigned long long)pkt->sector);
1146 pd->stats.pkt_started++;
1147 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1148}
1149
1150/*
1151 * Find a packet matching zone, or the least recently used packet if
1152 * there is no match.
1153 */
1154static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1155{
1156 struct packet_data *pkt;
1157
1158 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160 list_del_init(&pkt->list);
1161 if (pkt->sector != zone)
1162 pkt->cache_valid = 0;
1163 return pkt;
1164 }
1165 }
1166 BUG();
1167 return NULL;
1168}
1169
1170static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1171{
1172 if (pkt->cache_valid) {
1173 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174 } else {
1175 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1176 }
1177}
1178
1179/*
1180 * recover a failed write, query for relocation if possible
1181 *
1182 * returns 1 if recovery is possible, or 0 if not
1183 *
1184 */
1185static int pkt_start_recovery(struct packet_data *pkt)
1186{
1187 /*
1188 * FIXME. We need help from the file system to implement
1189 * recovery handling.
1190 */
1191 return 0;
1192#if 0
1193 struct request *rq = pkt->rq;
1194 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195 struct block_device *pkt_bdev;
1196 struct super_block *sb = NULL;
1197 unsigned long old_block, new_block;
1198 sector_t new_sector;
1199
1200 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201 if (pkt_bdev) {
1202 sb = get_super(pkt_bdev);
1203 bdput(pkt_bdev);
1204 }
1205
1206 if (!sb)
1207 return 0;
1208
1209 if (!sb->s_op->relocate_blocks)
1210 goto out;
1211
1212 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214 goto out;
1215
1216 new_sector = new_block * (CD_FRAMESIZE >> 9);
1217 pkt->sector = new_sector;
1218
1219 pkt->bio->bi_sector = new_sector;
1220 pkt->bio->bi_next = NULL;
1221 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222 pkt->bio->bi_idx = 0;
1223
1224 BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1225 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228 BUG_ON(pkt->bio->bi_private != pkt);
1229
1230 drop_super(sb);
1231 return 1;
1232
1233out:
1234 drop_super(sb);
1235 return 0;
1236#endif
1237}
1238
1239static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1240{
1241#if PACKET_DEBUG > 1
1242 static const char *state_name[] = {
1243 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1244 };
1245 enum packet_data_state old_state = pkt->state;
1246 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1247 state_name[old_state], state_name[state]);
1248#endif
1249 pkt->state = state;
1250}
1251
1252/*
1253 * Scan the work queue to see if we can start a new packet.
1254 * returns non-zero if any work was done.
1255 */
1256static int pkt_handle_queue(struct pktcdvd_device *pd)
1257{
1258 struct packet_data *pkt, *p;
1259 struct bio *bio = NULL;
1260 sector_t zone = 0; /* Suppress gcc warning */
1261 struct pkt_rb_node *node, *first_node;
1262 struct rb_node *n;
1263 int wakeup;
1264
1265 VPRINTK("handle_queue\n");
1266
1267 atomic_set(&pd->scan_queue, 0);
1268
1269 if (list_empty(&pd->cdrw.pkt_free_list)) {
1270 VPRINTK("handle_queue: no pkt\n");
1271 return 0;
1272 }
1273
1274 /*
1275 * Try to find a zone we are not already working on.
1276 */
1277 spin_lock(&pd->lock);
1278 first_node = pkt_rbtree_find(pd, pd->current_sector);
1279 if (!first_node) {
1280 n = rb_first(&pd->bio_queue);
1281 if (n)
1282 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1283 }
1284 node = first_node;
1285 while (node) {
1286 bio = node->bio;
1287 zone = ZONE(bio->bi_sector, pd);
1288 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289 if (p->sector == zone) {
1290 bio = NULL;
1291 goto try_next_bio;
1292 }
1293 }
1294 break;
1295try_next_bio:
1296 node = pkt_rbtree_next(node);
1297 if (!node) {
1298 n = rb_first(&pd->bio_queue);
1299 if (n)
1300 node = rb_entry(n, struct pkt_rb_node, rb_node);
1301 }
1302 if (node == first_node)
1303 node = NULL;
1304 }
1305 spin_unlock(&pd->lock);
1306 if (!bio) {
1307 VPRINTK("handle_queue: no bio\n");
1308 return 0;
1309 }
1310
1311 pkt = pkt_get_packet_data(pd, zone);
1312
1313 pd->current_sector = zone + pd->settings.size;
1314 pkt->sector = zone;
1315 BUG_ON(pkt->frames != pd->settings.size >> 2);
1316 pkt->write_size = 0;
1317
1318 /*
1319 * Scan work queue for bios in the same zone and link them
1320 * to this packet.
1321 */
1322 spin_lock(&pd->lock);
1323 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1325 bio = node->bio;
1326 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327 (unsigned long long)ZONE(bio->bi_sector, pd));
1328 if (ZONE(bio->bi_sector, pd) != zone)
1329 break;
1330 pkt_rbtree_erase(pd, node);
1331 spin_lock(&pkt->lock);
1332 bio_list_add(&pkt->orig_bios, bio);
1333 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334 spin_unlock(&pkt->lock);
1335 }
1336 /* check write congestion marks, and if bio_queue_size is
1337 below, wake up any waiters */
1338 wakeup = (pd->write_congestion_on > 0
1339 && pd->bio_queue_size <= pd->write_congestion_off);
1340 spin_unlock(&pd->lock);
1341 if (wakeup) {
1342 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343 BLK_RW_ASYNC);
1344 }
1345
1346 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347 pkt_set_state(pkt, PACKET_WAITING_STATE);
1348 atomic_set(&pkt->run_sm, 1);
1349
1350 spin_lock(&pd->cdrw.active_list_lock);
1351 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352 spin_unlock(&pd->cdrw.active_list_lock);
1353
1354 return 1;
1355}
1356
1357/*
1358 * Assemble a bio to write one packet and queue the bio for processing
1359 * by the underlying block device.
1360 */
1361static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1362{
1363 struct bio *bio;
1364 int f;
1365 int frames_write;
1366 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1367
1368 for (f = 0; f < pkt->frames; f++) {
1369 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1371 }
1372
1373 /*
1374 * Fill-in bvec with data from orig_bios.
1375 */
1376 frames_write = 0;
1377 spin_lock(&pkt->lock);
1378 bio_list_for_each(bio, &pkt->orig_bios) {
1379 int segment = bio->bi_idx;
1380 int src_offs = 0;
1381 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382 int num_frames = bio->bi_size / CD_FRAMESIZE;
1383 BUG_ON(first_frame < 0);
1384 BUG_ON(first_frame + num_frames > pkt->frames);
1385 for (f = first_frame; f < first_frame + num_frames; f++) {
1386 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1387
1388 while (src_offs >= src_bvl->bv_len) {
1389 src_offs -= src_bvl->bv_len;
1390 segment++;
1391 BUG_ON(segment >= bio->bi_vcnt);
1392 src_bvl = bio_iovec_idx(bio, segment);
1393 }
1394
1395 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396 bvec[f].bv_page = src_bvl->bv_page;
1397 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398 } else {
1399 pkt_copy_bio_data(bio, segment, src_offs,
1400 bvec[f].bv_page, bvec[f].bv_offset);
1401 }
1402 src_offs += CD_FRAMESIZE;
1403 frames_write++;
1404 }
1405 }
1406 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407 spin_unlock(&pkt->lock);
1408
1409 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410 frames_write, (unsigned long long)pkt->sector);
1411 BUG_ON(frames_write != pkt->write_size);
1412
1413 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414 pkt_make_local_copy(pkt, bvec);
1415 pkt->cache_valid = 1;
1416 } else {
1417 pkt->cache_valid = 0;
1418 }
1419
1420 /* Start the write request */
1421 bio_init(pkt->w_bio);
1422 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423 pkt->w_bio->bi_sector = pkt->sector;
1424 pkt->w_bio->bi_bdev = pd->bdev;
1425 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426 pkt->w_bio->bi_private = pkt;
1427 pkt->w_bio->bi_io_vec = bvec;
1428 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429 for (f = 0; f < pkt->frames; f++)
1430 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431 BUG();
1432 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1433
1434 atomic_set(&pkt->io_wait, 1);
1435 pkt->w_bio->bi_rw = WRITE;
1436 pkt_queue_bio(pd, pkt->w_bio);
1437}
1438
1439static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1440{
1441 struct bio *bio;
1442
1443 if (!uptodate)
1444 pkt->cache_valid = 0;
1445
1446 /* Finish all bios corresponding to this packet */
1447 while ((bio = bio_list_pop(&pkt->orig_bios)))
1448 bio_endio(bio, uptodate ? 0 : -EIO);
1449}
1450
1451static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1452{
1453 int uptodate;
1454
1455 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1456
1457 for (;;) {
1458 switch (pkt->state) {
1459 case PACKET_WAITING_STATE:
1460 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461 return;
1462
1463 pkt->sleep_time = 0;
1464 pkt_gather_data(pd, pkt);
1465 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466 break;
1467
1468 case PACKET_READ_WAIT_STATE:
1469 if (atomic_read(&pkt->io_wait) > 0)
1470 return;
1471
1472 if (atomic_read(&pkt->io_errors) > 0) {
1473 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474 } else {
1475 pkt_start_write(pd, pkt);
1476 }
1477 break;
1478
1479 case PACKET_WRITE_WAIT_STATE:
1480 if (atomic_read(&pkt->io_wait) > 0)
1481 return;
1482
1483 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485 } else {
1486 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1487 }
1488 break;
1489
1490 case PACKET_RECOVERY_STATE:
1491 if (pkt_start_recovery(pkt)) {
1492 pkt_start_write(pd, pkt);
1493 } else {
1494 VPRINTK("No recovery possible\n");
1495 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1496 }
1497 break;
1498
1499 case PACKET_FINISHED_STATE:
1500 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501 pkt_finish_packet(pkt, uptodate);
1502 return;
1503
1504 default:
1505 BUG();
1506 break;
1507 }
1508 }
1509}
1510
1511static void pkt_handle_packets(struct pktcdvd_device *pd)
1512{
1513 struct packet_data *pkt, *next;
1514
1515 VPRINTK("pkt_handle_packets\n");
1516
1517 /*
1518 * Run state machine for active packets
1519 */
1520 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521 if (atomic_read(&pkt->run_sm) > 0) {
1522 atomic_set(&pkt->run_sm, 0);
1523 pkt_run_state_machine(pd, pkt);
1524 }
1525 }
1526
1527 /*
1528 * Move no longer active packets to the free list
1529 */
1530 spin_lock(&pd->cdrw.active_list_lock);
1531 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532 if (pkt->state == PACKET_FINISHED_STATE) {
1533 list_del(&pkt->list);
1534 pkt_put_packet_data(pd, pkt);
1535 pkt_set_state(pkt, PACKET_IDLE_STATE);
1536 atomic_set(&pd->scan_queue, 1);
1537 }
1538 }
1539 spin_unlock(&pd->cdrw.active_list_lock);
1540}
1541
1542static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1543{
1544 struct packet_data *pkt;
1545 int i;
1546
1547 for (i = 0; i < PACKET_NUM_STATES; i++)
1548 states[i] = 0;
1549
1550 spin_lock(&pd->cdrw.active_list_lock);
1551 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552 states[pkt->state]++;
1553 }
1554 spin_unlock(&pd->cdrw.active_list_lock);
1555}
1556
1557/*
1558 * kcdrwd is woken up when writes have been queued for one of our
1559 * registered devices
1560 */
1561static int kcdrwd(void *foobar)
1562{
1563 struct pktcdvd_device *pd = foobar;
1564 struct packet_data *pkt;
1565 long min_sleep_time, residue;
1566
1567 set_user_nice(current, -20);
1568 set_freezable();
1569
1570 for (;;) {
1571 DECLARE_WAITQUEUE(wait, current);
1572
1573 /*
1574 * Wait until there is something to do
1575 */
1576 add_wait_queue(&pd->wqueue, &wait);
1577 for (;;) {
1578 set_current_state(TASK_INTERRUPTIBLE);
1579
1580 /* Check if we need to run pkt_handle_queue */
1581 if (atomic_read(&pd->scan_queue) > 0)
1582 goto work_to_do;
1583
1584 /* Check if we need to run the state machine for some packet */
1585 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586 if (atomic_read(&pkt->run_sm) > 0)
1587 goto work_to_do;
1588 }
1589
1590 /* Check if we need to process the iosched queues */
1591 if (atomic_read(&pd->iosched.attention) != 0)
1592 goto work_to_do;
1593
1594 /* Otherwise, go to sleep */
1595 if (PACKET_DEBUG > 1) {
1596 int states[PACKET_NUM_STATES];
1597 pkt_count_states(pd, states);
1598 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599 states[0], states[1], states[2], states[3],
1600 states[4], states[5]);
1601 }
1602
1603 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606 min_sleep_time = pkt->sleep_time;
1607 }
1608
1609 VPRINTK("kcdrwd: sleeping\n");
1610 residue = schedule_timeout(min_sleep_time);
1611 VPRINTK("kcdrwd: wake up\n");
1612
1613 /* make swsusp happy with our thread */
1614 try_to_freeze();
1615
1616 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1617 if (!pkt->sleep_time)
1618 continue;
1619 pkt->sleep_time -= min_sleep_time - residue;
1620 if (pkt->sleep_time <= 0) {
1621 pkt->sleep_time = 0;
1622 atomic_inc(&pkt->run_sm);
1623 }
1624 }
1625
1626 if (kthread_should_stop())
1627 break;
1628 }
1629work_to_do:
1630 set_current_state(TASK_RUNNING);
1631 remove_wait_queue(&pd->wqueue, &wait);
1632
1633 if (kthread_should_stop())
1634 break;
1635
1636 /*
1637 * if pkt_handle_queue returns true, we can queue
1638 * another request.
1639 */
1640 while (pkt_handle_queue(pd))
1641 ;
1642
1643 /*
1644 * Handle packet state machine
1645 */
1646 pkt_handle_packets(pd);
1647
1648 /*
1649 * Handle iosched queues
1650 */
1651 pkt_iosched_process_queue(pd);
1652 }
1653
1654 return 0;
1655}
1656
1657static void pkt_print_settings(struct pktcdvd_device *pd)
1658{
1659 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1660 printk("%u blocks, ", pd->settings.size >> 2);
1661 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1662}
1663
1664static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1665{
1666 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1667
1668 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1669 cgc->cmd[2] = page_code | (page_control << 6);
1670 cgc->cmd[7] = cgc->buflen >> 8;
1671 cgc->cmd[8] = cgc->buflen & 0xff;
1672 cgc->data_direction = CGC_DATA_READ;
1673 return pkt_generic_packet(pd, cgc);
1674}
1675
1676static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1677{
1678 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1679 memset(cgc->buffer, 0, 2);
1680 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1681 cgc->cmd[1] = 0x10; /* PF */
1682 cgc->cmd[7] = cgc->buflen >> 8;
1683 cgc->cmd[8] = cgc->buflen & 0xff;
1684 cgc->data_direction = CGC_DATA_WRITE;
1685 return pkt_generic_packet(pd, cgc);
1686}
1687
1688static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1689{
1690 struct packet_command cgc;
1691 int ret;
1692
1693 /* set up command and get the disc info */
1694 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1695 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1696 cgc.cmd[8] = cgc.buflen = 2;
1697 cgc.quiet = 1;
1698
1699 if ((ret = pkt_generic_packet(pd, &cgc)))
1700 return ret;
1701
1702 /* not all drives have the same disc_info length, so requeue
1703 * packet with the length the drive tells us it can supply
1704 */
1705 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1706 sizeof(di->disc_information_length);
1707
1708 if (cgc.buflen > sizeof(disc_information))
1709 cgc.buflen = sizeof(disc_information);
1710
1711 cgc.cmd[8] = cgc.buflen;
1712 return pkt_generic_packet(pd, &cgc);
1713}
1714
1715static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1716{
1717 struct packet_command cgc;
1718 int ret;
1719
1720 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1721 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1722 cgc.cmd[1] = type & 3;
1723 cgc.cmd[4] = (track & 0xff00) >> 8;
1724 cgc.cmd[5] = track & 0xff;
1725 cgc.cmd[8] = 8;
1726 cgc.quiet = 1;
1727
1728 if ((ret = pkt_generic_packet(pd, &cgc)))
1729 return ret;
1730
1731 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1732 sizeof(ti->track_information_length);
1733
1734 if (cgc.buflen > sizeof(track_information))
1735 cgc.buflen = sizeof(track_information);
1736
1737 cgc.cmd[8] = cgc.buflen;
1738 return pkt_generic_packet(pd, &cgc);
1739}
1740
1741static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1742 long *last_written)
1743{
1744 disc_information di;
1745 track_information ti;
1746 __u32 last_track;
1747 int ret = -1;
1748
1749 if ((ret = pkt_get_disc_info(pd, &di)))
1750 return ret;
1751
1752 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1753 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1754 return ret;
1755
1756 /* if this track is blank, try the previous. */
1757 if (ti.blank) {
1758 last_track--;
1759 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1760 return ret;
1761 }
1762
1763 /* if last recorded field is valid, return it. */
1764 if (ti.lra_v) {
1765 *last_written = be32_to_cpu(ti.last_rec_address);
1766 } else {
1767 /* make it up instead */
1768 *last_written = be32_to_cpu(ti.track_start) +
1769 be32_to_cpu(ti.track_size);
1770 if (ti.free_blocks)
1771 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1772 }
1773 return 0;
1774}
1775
1776/*
1777 * write mode select package based on pd->settings
1778 */
1779static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1780{
1781 struct packet_command cgc;
1782 struct request_sense sense;
1783 write_param_page *wp;
1784 char buffer[128];
1785 int ret, size;
1786
1787 /* doesn't apply to DVD+RW or DVD-RAM */
1788 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1789 return 0;
1790
1791 memset(buffer, 0, sizeof(buffer));
1792 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1793 cgc.sense = &sense;
1794 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1795 pkt_dump_sense(&cgc);
1796 return ret;
1797 }
1798
1799 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1800 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1801 if (size > sizeof(buffer))
1802 size = sizeof(buffer);
1803
1804 /*
1805 * now get it all
1806 */
1807 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1808 cgc.sense = &sense;
1809 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1810 pkt_dump_sense(&cgc);
1811 return ret;
1812 }
1813
1814 /*
1815 * write page is offset header + block descriptor length
1816 */
1817 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1818
1819 wp->fp = pd->settings.fp;
1820 wp->track_mode = pd->settings.track_mode;
1821 wp->write_type = pd->settings.write_type;
1822 wp->data_block_type = pd->settings.block_mode;
1823
1824 wp->multi_session = 0;
1825
1826#ifdef PACKET_USE_LS
1827 wp->link_size = 7;
1828 wp->ls_v = 1;
1829#endif
1830
1831 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1832 wp->session_format = 0;
1833 wp->subhdr2 = 0x20;
1834 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1835 wp->session_format = 0x20;
1836 wp->subhdr2 = 8;
1837#if 0
1838 wp->mcn[0] = 0x80;
1839 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1840#endif
1841 } else {
1842 /*
1843 * paranoia
1844 */
1845 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1846 return 1;
1847 }
1848 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1849
1850 cgc.buflen = cgc.cmd[8] = size;
1851 if ((ret = pkt_mode_select(pd, &cgc))) {
1852 pkt_dump_sense(&cgc);
1853 return ret;
1854 }
1855
1856 pkt_print_settings(pd);
1857 return 0;
1858}
1859
1860/*
1861 * 1 -- we can write to this track, 0 -- we can't
1862 */
1863static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1864{
1865 switch (pd->mmc3_profile) {
1866 case 0x1a: /* DVD+RW */
1867 case 0x12: /* DVD-RAM */
1868 /* The track is always writable on DVD+RW/DVD-RAM */
1869 return 1;
1870 default:
1871 break;
1872 }
1873
1874 if (!ti->packet || !ti->fp)
1875 return 0;
1876
1877 /*
1878 * "good" settings as per Mt Fuji.
1879 */
1880 if (ti->rt == 0 && ti->blank == 0)
1881 return 1;
1882
1883 if (ti->rt == 0 && ti->blank == 1)
1884 return 1;
1885
1886 if (ti->rt == 1 && ti->blank == 0)
1887 return 1;
1888
1889 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1890 return 0;
1891}
1892
1893/*
1894 * 1 -- we can write to this disc, 0 -- we can't
1895 */
1896static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1897{
1898 switch (pd->mmc3_profile) {
1899 case 0x0a: /* CD-RW */
1900 case 0xffff: /* MMC3 not supported */
1901 break;
1902 case 0x1a: /* DVD+RW */
1903 case 0x13: /* DVD-RW */
1904 case 0x12: /* DVD-RAM */
1905 return 1;
1906 default:
1907 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1908 return 0;
1909 }
1910
1911 /*
1912 * for disc type 0xff we should probably reserve a new track.
1913 * but i'm not sure, should we leave this to user apps? probably.
1914 */
1915 if (di->disc_type == 0xff) {
1916 printk(DRIVER_NAME": Unknown disc. No track?\n");
1917 return 0;
1918 }
1919
1920 if (di->disc_type != 0x20 && di->disc_type != 0) {
1921 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1922 return 0;
1923 }
1924
1925 if (di->erasable == 0) {
1926 printk(DRIVER_NAME": Disc not erasable\n");
1927 return 0;
1928 }
1929
1930 if (di->border_status == PACKET_SESSION_RESERVED) {
1931 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1932 return 0;
1933 }
1934
1935 return 1;
1936}
1937
1938static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1939{
1940 struct packet_command cgc;
1941 unsigned char buf[12];
1942 disc_information di;
1943 track_information ti;
1944 int ret, track;
1945
1946 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1948 cgc.cmd[8] = 8;
1949 ret = pkt_generic_packet(pd, &cgc);
1950 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1951
1952 memset(&di, 0, sizeof(disc_information));
1953 memset(&ti, 0, sizeof(track_information));
1954
1955 if ((ret = pkt_get_disc_info(pd, &di))) {
1956 printk("failed get_disc\n");
1957 return ret;
1958 }
1959
1960 if (!pkt_writable_disc(pd, &di))
1961 return -EROFS;
1962
1963 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1964
1965 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1966 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1967 printk(DRIVER_NAME": failed get_track\n");
1968 return ret;
1969 }
1970
1971 if (!pkt_writable_track(pd, &ti)) {
1972 printk(DRIVER_NAME": can't write to this track\n");
1973 return -EROFS;
1974 }
1975
1976 /*
1977 * we keep packet size in 512 byte units, makes it easier to
1978 * deal with request calculations.
1979 */
1980 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1981 if (pd->settings.size == 0) {
1982 printk(DRIVER_NAME": detected zero packet size!\n");
1983 return -ENXIO;
1984 }
1985 if (pd->settings.size > PACKET_MAX_SECTORS) {
1986 printk(DRIVER_NAME": packet size is too big\n");
1987 return -EROFS;
1988 }
1989 pd->settings.fp = ti.fp;
1990 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1991
1992 if (ti.nwa_v) {
1993 pd->nwa = be32_to_cpu(ti.next_writable);
1994 set_bit(PACKET_NWA_VALID, &pd->flags);
1995 }
1996
1997 /*
1998 * in theory we could use lra on -RW media as well and just zero
1999 * blocks that haven't been written yet, but in practice that
2000 * is just a no-go. we'll use that for -R, naturally.
2001 */
2002 if (ti.lra_v) {
2003 pd->lra = be32_to_cpu(ti.last_rec_address);
2004 set_bit(PACKET_LRA_VALID, &pd->flags);
2005 } else {
2006 pd->lra = 0xffffffff;
2007 set_bit(PACKET_LRA_VALID, &pd->flags);
2008 }
2009
2010 /*
2011 * fine for now
2012 */
2013 pd->settings.link_loss = 7;
2014 pd->settings.write_type = 0; /* packet */
2015 pd->settings.track_mode = ti.track_mode;
2016
2017 /*
2018 * mode1 or mode2 disc
2019 */
2020 switch (ti.data_mode) {
2021 case PACKET_MODE1:
2022 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2023 break;
2024 case PACKET_MODE2:
2025 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2026 break;
2027 default:
2028 printk(DRIVER_NAME": unknown data mode\n");
2029 return -EROFS;
2030 }
2031 return 0;
2032}
2033
2034/*
2035 * enable/disable write caching on drive
2036 */
2037static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2038 int set)
2039{
2040 struct packet_command cgc;
2041 struct request_sense sense;
2042 unsigned char buf[64];
2043 int ret;
2044
2045 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2046 cgc.sense = &sense;
2047 cgc.buflen = pd->mode_offset + 12;
2048
2049 /*
2050 * caching mode page might not be there, so quiet this command
2051 */
2052 cgc.quiet = 1;
2053
2054 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2055 return ret;
2056
2057 buf[pd->mode_offset + 10] |= (!!set << 2);
2058
2059 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2060 ret = pkt_mode_select(pd, &cgc);
2061 if (ret) {
2062 printk(DRIVER_NAME": write caching control failed\n");
2063 pkt_dump_sense(&cgc);
2064 } else if (!ret && set)
2065 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2066 return ret;
2067}
2068
2069static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2070{
2071 struct packet_command cgc;
2072
2073 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2074 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2075 cgc.cmd[4] = lockflag ? 1 : 0;
2076 return pkt_generic_packet(pd, &cgc);
2077}
2078
2079/*
2080 * Returns drive maximum write speed
2081 */
2082static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2083 unsigned *write_speed)
2084{
2085 struct packet_command cgc;
2086 struct request_sense sense;
2087 unsigned char buf[256+18];
2088 unsigned char *cap_buf;
2089 int ret, offset;
2090
2091 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2092 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2093 cgc.sense = &sense;
2094
2095 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2096 if (ret) {
2097 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2098 sizeof(struct mode_page_header);
2099 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2100 if (ret) {
2101 pkt_dump_sense(&cgc);
2102 return ret;
2103 }
2104 }
2105
2106 offset = 20; /* Obsoleted field, used by older drives */
2107 if (cap_buf[1] >= 28)
2108 offset = 28; /* Current write speed selected */
2109 if (cap_buf[1] >= 30) {
2110 /* If the drive reports at least one "Logical Unit Write
2111 * Speed Performance Descriptor Block", use the information
2112 * in the first block. (contains the highest speed)
2113 */
2114 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2115 if (num_spdb > 0)
2116 offset = 34;
2117 }
2118
2119 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2120 return 0;
2121}
2122
2123/* These tables from cdrecord - I don't have orange book */
2124/* standard speed CD-RW (1-4x) */
2125static char clv_to_speed[16] = {
2126 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2127 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2128};
2129/* high speed CD-RW (-10x) */
2130static char hs_clv_to_speed[16] = {
2131 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2132 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2133};
2134/* ultra high speed CD-RW */
2135static char us_clv_to_speed[16] = {
2136 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2137 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2138};
2139
2140/*
2141 * reads the maximum media speed from ATIP
2142 */
2143static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2144 unsigned *speed)
2145{
2146 struct packet_command cgc;
2147 struct request_sense sense;
2148 unsigned char buf[64];
2149 unsigned int size, st, sp;
2150 int ret;
2151
2152 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2153 cgc.sense = &sense;
2154 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2155 cgc.cmd[1] = 2;
2156 cgc.cmd[2] = 4; /* READ ATIP */
2157 cgc.cmd[8] = 2;
2158 ret = pkt_generic_packet(pd, &cgc);
2159 if (ret) {
2160 pkt_dump_sense(&cgc);
2161 return ret;
2162 }
2163 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2164 if (size > sizeof(buf))
2165 size = sizeof(buf);
2166
2167 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2168 cgc.sense = &sense;
2169 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2170 cgc.cmd[1] = 2;
2171 cgc.cmd[2] = 4;
2172 cgc.cmd[8] = size;
2173 ret = pkt_generic_packet(pd, &cgc);
2174 if (ret) {
2175 pkt_dump_sense(&cgc);
2176 return ret;
2177 }
2178
2179 if (!(buf[6] & 0x40)) {
2180 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2181 return 1;
2182 }
2183 if (!(buf[6] & 0x4)) {
2184 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2185 return 1;
2186 }
2187
2188 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2189
2190 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2191
2192 /* Info from cdrecord */
2193 switch (st) {
2194 case 0: /* standard speed */
2195 *speed = clv_to_speed[sp];
2196 break;
2197 case 1: /* high speed */
2198 *speed = hs_clv_to_speed[sp];
2199 break;
2200 case 2: /* ultra high speed */
2201 *speed = us_clv_to_speed[sp];
2202 break;
2203 default:
2204 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2205 return 1;
2206 }
2207 if (*speed) {
2208 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2209 return 0;
2210 } else {
2211 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2212 return 1;
2213 }
2214}
2215
2216static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2217{
2218 struct packet_command cgc;
2219 struct request_sense sense;
2220 int ret;
2221
2222 VPRINTK(DRIVER_NAME": Performing OPC\n");
2223
2224 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2225 cgc.sense = &sense;
2226 cgc.timeout = 60*HZ;
2227 cgc.cmd[0] = GPCMD_SEND_OPC;
2228 cgc.cmd[1] = 1;
2229 if ((ret = pkt_generic_packet(pd, &cgc)))
2230 pkt_dump_sense(&cgc);
2231 return ret;
2232}
2233
2234static int pkt_open_write(struct pktcdvd_device *pd)
2235{
2236 int ret;
2237 unsigned int write_speed, media_write_speed, read_speed;
2238
2239 if ((ret = pkt_probe_settings(pd))) {
2240 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2241 return ret;
2242 }
2243
2244 if ((ret = pkt_set_write_settings(pd))) {
2245 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2246 return -EIO;
2247 }
2248
2249 pkt_write_caching(pd, USE_WCACHING);
2250
2251 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2252 write_speed = 16 * 177;
2253 switch (pd->mmc3_profile) {
2254 case 0x13: /* DVD-RW */
2255 case 0x1a: /* DVD+RW */
2256 case 0x12: /* DVD-RAM */
2257 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2258 break;
2259 default:
2260 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2261 media_write_speed = 16;
2262 write_speed = min(write_speed, media_write_speed * 177);
2263 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2264 break;
2265 }
2266 read_speed = write_speed;
2267
2268 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2269 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2270 return -EIO;
2271 }
2272 pd->write_speed = write_speed;
2273 pd->read_speed = read_speed;
2274
2275 if ((ret = pkt_perform_opc(pd))) {
2276 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2277 }
2278
2279 return 0;
2280}
2281
2282/*
2283 * called at open time.
2284 */
2285static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2286{
2287 int ret;
2288 long lba;
2289 struct request_queue *q;
2290
2291 /*
2292 * We need to re-open the cdrom device without O_NONBLOCK to be able
2293 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2294 * so bdget() can't fail.
2295 */
2296 bdget(pd->bdev->bd_dev);
2297 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2298 goto out;
2299
2300 if ((ret = pkt_get_last_written(pd, &lba))) {
2301 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2302 goto out_putdev;
2303 }
2304
2305 set_capacity(pd->disk, lba << 2);
2306 set_capacity(pd->bdev->bd_disk, lba << 2);
2307 bd_set_size(pd->bdev, (loff_t)lba << 11);
2308
2309 q = bdev_get_queue(pd->bdev);
2310 if (write) {
2311 if ((ret = pkt_open_write(pd)))
2312 goto out_putdev;
2313 /*
2314 * Some CDRW drives can not handle writes larger than one packet,
2315 * even if the size is a multiple of the packet size.
2316 */
2317 spin_lock_irq(q->queue_lock);
2318 blk_queue_max_hw_sectors(q, pd->settings.size);
2319 spin_unlock_irq(q->queue_lock);
2320 set_bit(PACKET_WRITABLE, &pd->flags);
2321 } else {
2322 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2323 clear_bit(PACKET_WRITABLE, &pd->flags);
2324 }
2325
2326 if ((ret = pkt_set_segment_merging(pd, q)))
2327 goto out_putdev;
2328
2329 if (write) {
2330 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2331 printk(DRIVER_NAME": not enough memory for buffers\n");
2332 ret = -ENOMEM;
2333 goto out_putdev;
2334 }
2335 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2336 }
2337
2338 return 0;
2339
2340out_putdev:
2341 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2342out:
2343 return ret;
2344}
2345
2346/*
2347 * called when the device is closed. makes sure that the device flushes
2348 * the internal cache before we close.
2349 */
2350static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2351{
2352 if (flush && pkt_flush_cache(pd))
2353 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2354
2355 pkt_lock_door(pd, 0);
2356
2357 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2358 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2359
2360 pkt_shrink_pktlist(pd);
2361}
2362
2363static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2364{
2365 if (dev_minor >= MAX_WRITERS)
2366 return NULL;
2367 return pkt_devs[dev_minor];
2368}
2369
2370static int pkt_open(struct block_device *bdev, fmode_t mode)
2371{
2372 struct pktcdvd_device *pd = NULL;
2373 int ret;
2374
2375 VPRINTK(DRIVER_NAME": entering open\n");
2376
2377 mutex_lock(&pktcdvd_mutex);
2378 mutex_lock(&ctl_mutex);
2379 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2380 if (!pd) {
2381 ret = -ENODEV;
2382 goto out;
2383 }
2384 BUG_ON(pd->refcnt < 0);
2385
2386 pd->refcnt++;
2387 if (pd->refcnt > 1) {
2388 if ((mode & FMODE_WRITE) &&
2389 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2390 ret = -EBUSY;
2391 goto out_dec;
2392 }
2393 } else {
2394 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2395 if (ret)
2396 goto out_dec;
2397 /*
2398 * needed here as well, since ext2 (among others) may change
2399 * the blocksize at mount time
2400 */
2401 set_blocksize(bdev, CD_FRAMESIZE);
2402 }
2403
2404 mutex_unlock(&ctl_mutex);
2405 mutex_unlock(&pktcdvd_mutex);
2406 return 0;
2407
2408out_dec:
2409 pd->refcnt--;
2410out:
2411 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2412 mutex_unlock(&ctl_mutex);
2413 mutex_unlock(&pktcdvd_mutex);
2414 return ret;
2415}
2416
2417static int pkt_close(struct gendisk *disk, fmode_t mode)
2418{
2419 struct pktcdvd_device *pd = disk->private_data;
2420 int ret = 0;
2421
2422 mutex_lock(&pktcdvd_mutex);
2423 mutex_lock(&ctl_mutex);
2424 pd->refcnt--;
2425 BUG_ON(pd->refcnt < 0);
2426 if (pd->refcnt == 0) {
2427 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2428 pkt_release_dev(pd, flush);
2429 }
2430 mutex_unlock(&ctl_mutex);
2431 mutex_unlock(&pktcdvd_mutex);
2432 return ret;
2433}
2434
2435
2436static void pkt_end_io_read_cloned(struct bio *bio, int err)
2437{
2438 struct packet_stacked_data *psd = bio->bi_private;
2439 struct pktcdvd_device *pd = psd->pd;
2440
2441 bio_put(bio);
2442 bio_endio(psd->bio, err);
2443 mempool_free(psd, psd_pool);
2444 pkt_bio_finished(pd);
2445}
2446
2447static int pkt_make_request(struct request_queue *q, struct bio *bio)
2448{
2449 struct pktcdvd_device *pd;
2450 char b[BDEVNAME_SIZE];
2451 sector_t zone;
2452 struct packet_data *pkt;
2453 int was_empty, blocked_bio;
2454 struct pkt_rb_node *node;
2455
2456 pd = q->queuedata;
2457 if (!pd) {
2458 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2459 goto end_io;
2460 }
2461
2462 /*
2463 * Clone READ bios so we can have our own bi_end_io callback.
2464 */
2465 if (bio_data_dir(bio) == READ) {
2466 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2467 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2468
2469 psd->pd = pd;
2470 psd->bio = bio;
2471 cloned_bio->bi_bdev = pd->bdev;
2472 cloned_bio->bi_private = psd;
2473 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2474 pd->stats.secs_r += bio->bi_size >> 9;
2475 pkt_queue_bio(pd, cloned_bio);
2476 return 0;
2477 }
2478
2479 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2480 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2481 pd->name, (unsigned long long)bio->bi_sector);
2482 goto end_io;
2483 }
2484
2485 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2486 printk(DRIVER_NAME": wrong bio size\n");
2487 goto end_io;
2488 }
2489
2490 blk_queue_bounce(q, &bio);
2491
2492 zone = ZONE(bio->bi_sector, pd);
2493 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2494 (unsigned long long)bio->bi_sector,
2495 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2496
2497 /* Check if we have to split the bio */
2498 {
2499 struct bio_pair *bp;
2500 sector_t last_zone;
2501 int first_sectors;
2502
2503 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2504 if (last_zone != zone) {
2505 BUG_ON(last_zone != zone + pd->settings.size);
2506 first_sectors = last_zone - bio->bi_sector;
2507 bp = bio_split(bio, first_sectors);
2508 BUG_ON(!bp);
2509 pkt_make_request(q, &bp->bio1);
2510 pkt_make_request(q, &bp->bio2);
2511 bio_pair_release(bp);
2512 return 0;
2513 }
2514 }
2515
2516 /*
2517 * If we find a matching packet in state WAITING or READ_WAIT, we can
2518 * just append this bio to that packet.
2519 */
2520 spin_lock(&pd->cdrw.active_list_lock);
2521 blocked_bio = 0;
2522 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2523 if (pkt->sector == zone) {
2524 spin_lock(&pkt->lock);
2525 if ((pkt->state == PACKET_WAITING_STATE) ||
2526 (pkt->state == PACKET_READ_WAIT_STATE)) {
2527 bio_list_add(&pkt->orig_bios, bio);
2528 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2529 if ((pkt->write_size >= pkt->frames) &&
2530 (pkt->state == PACKET_WAITING_STATE)) {
2531 atomic_inc(&pkt->run_sm);
2532 wake_up(&pd->wqueue);
2533 }
2534 spin_unlock(&pkt->lock);
2535 spin_unlock(&pd->cdrw.active_list_lock);
2536 return 0;
2537 } else {
2538 blocked_bio = 1;
2539 }
2540 spin_unlock(&pkt->lock);
2541 }
2542 }
2543 spin_unlock(&pd->cdrw.active_list_lock);
2544
2545 /*
2546 * Test if there is enough room left in the bio work queue
2547 * (queue size >= congestion on mark).
2548 * If not, wait till the work queue size is below the congestion off mark.
2549 */
2550 spin_lock(&pd->lock);
2551 if (pd->write_congestion_on > 0
2552 && pd->bio_queue_size >= pd->write_congestion_on) {
2553 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2554 do {
2555 spin_unlock(&pd->lock);
2556 congestion_wait(BLK_RW_ASYNC, HZ);
2557 spin_lock(&pd->lock);
2558 } while(pd->bio_queue_size > pd->write_congestion_off);
2559 }
2560 spin_unlock(&pd->lock);
2561
2562 /*
2563 * No matching packet found. Store the bio in the work queue.
2564 */
2565 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2566 node->bio = bio;
2567 spin_lock(&pd->lock);
2568 BUG_ON(pd->bio_queue_size < 0);
2569 was_empty = (pd->bio_queue_size == 0);
2570 pkt_rbtree_insert(pd, node);
2571 spin_unlock(&pd->lock);
2572
2573 /*
2574 * Wake up the worker thread.
2575 */
2576 atomic_set(&pd->scan_queue, 1);
2577 if (was_empty) {
2578 /* This wake_up is required for correct operation */
2579 wake_up(&pd->wqueue);
2580 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2581 /*
2582 * This wake up is not required for correct operation,
2583 * but improves performance in some cases.
2584 */
2585 wake_up(&pd->wqueue);
2586 }
2587 return 0;
2588end_io:
2589 bio_io_error(bio);
2590 return 0;
2591}
2592
2593
2594
2595static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2596 struct bio_vec *bvec)
2597{
2598 struct pktcdvd_device *pd = q->queuedata;
2599 sector_t zone = ZONE(bmd->bi_sector, pd);
2600 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2601 int remaining = (pd->settings.size << 9) - used;
2602 int remaining2;
2603
2604 /*
2605 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2606 * boundary, pkt_make_request() will split the bio.
2607 */
2608 remaining2 = PAGE_SIZE - bmd->bi_size;
2609 remaining = max(remaining, remaining2);
2610
2611 BUG_ON(remaining < 0);
2612 return remaining;
2613}
2614
2615static void pkt_init_queue(struct pktcdvd_device *pd)
2616{
2617 struct request_queue *q = pd->disk->queue;
2618
2619 blk_queue_make_request(q, pkt_make_request);
2620 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2621 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2622 blk_queue_merge_bvec(q, pkt_merge_bvec);
2623 q->queuedata = pd;
2624}
2625
2626static int pkt_seq_show(struct seq_file *m, void *p)
2627{
2628 struct pktcdvd_device *pd = m->private;
2629 char *msg;
2630 char bdev_buf[BDEVNAME_SIZE];
2631 int states[PACKET_NUM_STATES];
2632
2633 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2634 bdevname(pd->bdev, bdev_buf));
2635
2636 seq_printf(m, "\nSettings:\n");
2637 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2638
2639 if (pd->settings.write_type == 0)
2640 msg = "Packet";
2641 else
2642 msg = "Unknown";
2643 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2644
2645 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2646 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2647
2648 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2649
2650 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2651 msg = "Mode 1";
2652 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2653 msg = "Mode 2";
2654 else
2655 msg = "Unknown";
2656 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2657
2658 seq_printf(m, "\nStatistics:\n");
2659 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2660 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2661 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2662 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2663 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2664
2665 seq_printf(m, "\nMisc:\n");
2666 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2667 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2668 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2669 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2670 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2671 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2672
2673 seq_printf(m, "\nQueue state:\n");
2674 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2675 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2676 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2677
2678 pkt_count_states(pd, states);
2679 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2680 states[0], states[1], states[2], states[3], states[4], states[5]);
2681
2682 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2683 pd->write_congestion_off,
2684 pd->write_congestion_on);
2685 return 0;
2686}
2687
2688static int pkt_seq_open(struct inode *inode, struct file *file)
2689{
2690 return single_open(file, pkt_seq_show, PDE(inode)->data);
2691}
2692
2693static const struct file_operations pkt_proc_fops = {
2694 .open = pkt_seq_open,
2695 .read = seq_read,
2696 .llseek = seq_lseek,
2697 .release = single_release
2698};
2699
2700static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2701{
2702 int i;
2703 int ret = 0;
2704 char b[BDEVNAME_SIZE];
2705 struct block_device *bdev;
2706
2707 if (pd->pkt_dev == dev) {
2708 printk(DRIVER_NAME": Recursive setup not allowed\n");
2709 return -EBUSY;
2710 }
2711 for (i = 0; i < MAX_WRITERS; i++) {
2712 struct pktcdvd_device *pd2 = pkt_devs[i];
2713 if (!pd2)
2714 continue;
2715 if (pd2->bdev->bd_dev == dev) {
2716 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2717 return -EBUSY;
2718 }
2719 if (pd2->pkt_dev == dev) {
2720 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2721 return -EBUSY;
2722 }
2723 }
2724
2725 bdev = bdget(dev);
2726 if (!bdev)
2727 return -ENOMEM;
2728 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2729 if (ret)
2730 return ret;
2731
2732 /* This is safe, since we have a reference from open(). */
2733 __module_get(THIS_MODULE);
2734
2735 pd->bdev = bdev;
2736 set_blocksize(bdev, CD_FRAMESIZE);
2737
2738 pkt_init_queue(pd);
2739
2740 atomic_set(&pd->cdrw.pending_bios, 0);
2741 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2742 if (IS_ERR(pd->cdrw.thread)) {
2743 printk(DRIVER_NAME": can't start kernel thread\n");
2744 ret = -ENOMEM;
2745 goto out_mem;
2746 }
2747
2748 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2749 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2750 return 0;
2751
2752out_mem:
2753 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2754 /* This is safe: open() is still holding a reference. */
2755 module_put(THIS_MODULE);
2756 return ret;
2757}
2758
2759static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2760{
2761 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2762 int ret;
2763
2764 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2765 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2766
2767 mutex_lock(&pktcdvd_mutex);
2768 switch (cmd) {
2769 case CDROMEJECT:
2770 /*
2771 * The door gets locked when the device is opened, so we
2772 * have to unlock it or else the eject command fails.
2773 */
2774 if (pd->refcnt == 1)
2775 pkt_lock_door(pd, 0);
2776 /* fallthru */
2777 /*
2778 * forward selected CDROM ioctls to CD-ROM, for UDF
2779 */
2780 case CDROMMULTISESSION:
2781 case CDROMREADTOCENTRY:
2782 case CDROM_LAST_WRITTEN:
2783 case CDROM_SEND_PACKET:
2784 case SCSI_IOCTL_SEND_COMMAND:
2785 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2786 break;
2787
2788 default:
2789 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2790 ret = -ENOTTY;
2791 }
2792 mutex_unlock(&pktcdvd_mutex);
2793
2794 return ret;
2795}
2796
2797static unsigned int pkt_check_events(struct gendisk *disk,
2798 unsigned int clearing)
2799{
2800 struct pktcdvd_device *pd = disk->private_data;
2801 struct gendisk *attached_disk;
2802
2803 if (!pd)
2804 return 0;
2805 if (!pd->bdev)
2806 return 0;
2807 attached_disk = pd->bdev->bd_disk;
2808 if (!attached_disk || !attached_disk->fops->check_events)
2809 return 0;
2810 return attached_disk->fops->check_events(attached_disk, clearing);
2811}
2812
2813static const struct block_device_operations pktcdvd_ops = {
2814 .owner = THIS_MODULE,
2815 .open = pkt_open,
2816 .release = pkt_close,
2817 .ioctl = pkt_ioctl,
2818 .check_events = pkt_check_events,
2819};
2820
2821static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2822{
2823 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2824}
2825
2826/*
2827 * Set up mapping from pktcdvd device to CD-ROM device.
2828 */
2829static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2830{
2831 int idx;
2832 int ret = -ENOMEM;
2833 struct pktcdvd_device *pd;
2834 struct gendisk *disk;
2835
2836 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2837
2838 for (idx = 0; idx < MAX_WRITERS; idx++)
2839 if (!pkt_devs[idx])
2840 break;
2841 if (idx == MAX_WRITERS) {
2842 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2843 ret = -EBUSY;
2844 goto out_mutex;
2845 }
2846
2847 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2848 if (!pd)
2849 goto out_mutex;
2850
2851 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2852 sizeof(struct pkt_rb_node));
2853 if (!pd->rb_pool)
2854 goto out_mem;
2855
2856 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2857 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2858 spin_lock_init(&pd->cdrw.active_list_lock);
2859
2860 spin_lock_init(&pd->lock);
2861 spin_lock_init(&pd->iosched.lock);
2862 bio_list_init(&pd->iosched.read_queue);
2863 bio_list_init(&pd->iosched.write_queue);
2864 sprintf(pd->name, DRIVER_NAME"%d", idx);
2865 init_waitqueue_head(&pd->wqueue);
2866 pd->bio_queue = RB_ROOT;
2867
2868 pd->write_congestion_on = write_congestion_on;
2869 pd->write_congestion_off = write_congestion_off;
2870
2871 disk = alloc_disk(1);
2872 if (!disk)
2873 goto out_mem;
2874 pd->disk = disk;
2875 disk->major = pktdev_major;
2876 disk->first_minor = idx;
2877 disk->fops = &pktcdvd_ops;
2878 disk->flags = GENHD_FL_REMOVABLE;
2879 strcpy(disk->disk_name, pd->name);
2880 disk->devnode = pktcdvd_devnode;
2881 disk->private_data = pd;
2882 disk->queue = blk_alloc_queue(GFP_KERNEL);
2883 if (!disk->queue)
2884 goto out_mem2;
2885
2886 pd->pkt_dev = MKDEV(pktdev_major, idx);
2887 ret = pkt_new_dev(pd, dev);
2888 if (ret)
2889 goto out_new_dev;
2890
2891 /* inherit events of the host device */
2892 disk->events = pd->bdev->bd_disk->events;
2893 disk->async_events = pd->bdev->bd_disk->async_events;
2894
2895 add_disk(disk);
2896
2897 pkt_sysfs_dev_new(pd);
2898 pkt_debugfs_dev_new(pd);
2899
2900 pkt_devs[idx] = pd;
2901 if (pkt_dev)
2902 *pkt_dev = pd->pkt_dev;
2903
2904 mutex_unlock(&ctl_mutex);
2905 return 0;
2906
2907out_new_dev:
2908 blk_cleanup_queue(disk->queue);
2909out_mem2:
2910 put_disk(disk);
2911out_mem:
2912 if (pd->rb_pool)
2913 mempool_destroy(pd->rb_pool);
2914 kfree(pd);
2915out_mutex:
2916 mutex_unlock(&ctl_mutex);
2917 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2918 return ret;
2919}
2920
2921/*
2922 * Tear down mapping from pktcdvd device to CD-ROM device.
2923 */
2924static int pkt_remove_dev(dev_t pkt_dev)
2925{
2926 struct pktcdvd_device *pd;
2927 int idx;
2928 int ret = 0;
2929
2930 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2931
2932 for (idx = 0; idx < MAX_WRITERS; idx++) {
2933 pd = pkt_devs[idx];
2934 if (pd && (pd->pkt_dev == pkt_dev))
2935 break;
2936 }
2937 if (idx == MAX_WRITERS) {
2938 DPRINTK(DRIVER_NAME": dev not setup\n");
2939 ret = -ENXIO;
2940 goto out;
2941 }
2942
2943 if (pd->refcnt > 0) {
2944 ret = -EBUSY;
2945 goto out;
2946 }
2947 if (!IS_ERR(pd->cdrw.thread))
2948 kthread_stop(pd->cdrw.thread);
2949
2950 pkt_devs[idx] = NULL;
2951
2952 pkt_debugfs_dev_remove(pd);
2953 pkt_sysfs_dev_remove(pd);
2954
2955 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2956
2957 remove_proc_entry(pd->name, pkt_proc);
2958 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2959
2960 del_gendisk(pd->disk);
2961 blk_cleanup_queue(pd->disk->queue);
2962 put_disk(pd->disk);
2963
2964 mempool_destroy(pd->rb_pool);
2965 kfree(pd);
2966
2967 /* This is safe: open() is still holding a reference. */
2968 module_put(THIS_MODULE);
2969
2970out:
2971 mutex_unlock(&ctl_mutex);
2972 return ret;
2973}
2974
2975static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2976{
2977 struct pktcdvd_device *pd;
2978
2979 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2980
2981 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2982 if (pd) {
2983 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2984 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2985 } else {
2986 ctrl_cmd->dev = 0;
2987 ctrl_cmd->pkt_dev = 0;
2988 }
2989 ctrl_cmd->num_devices = MAX_WRITERS;
2990
2991 mutex_unlock(&ctl_mutex);
2992}
2993
2994static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2995{
2996 void __user *argp = (void __user *)arg;
2997 struct pkt_ctrl_command ctrl_cmd;
2998 int ret = 0;
2999 dev_t pkt_dev = 0;
3000
3001 if (cmd != PACKET_CTRL_CMD)
3002 return -ENOTTY;
3003
3004 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3005 return -EFAULT;
3006
3007 switch (ctrl_cmd.command) {
3008 case PKT_CTRL_CMD_SETUP:
3009 if (!capable(CAP_SYS_ADMIN))
3010 return -EPERM;
3011 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3012 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3013 break;
3014 case PKT_CTRL_CMD_TEARDOWN:
3015 if (!capable(CAP_SYS_ADMIN))
3016 return -EPERM;
3017 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3018 break;
3019 case PKT_CTRL_CMD_STATUS:
3020 pkt_get_status(&ctrl_cmd);
3021 break;
3022 default:
3023 return -ENOTTY;
3024 }
3025
3026 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3027 return -EFAULT;
3028 return ret;
3029}
3030
3031#ifdef CONFIG_COMPAT
3032static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3033{
3034 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3035}
3036#endif
3037
3038static const struct file_operations pkt_ctl_fops = {
3039 .open = nonseekable_open,
3040 .unlocked_ioctl = pkt_ctl_ioctl,
3041#ifdef CONFIG_COMPAT
3042 .compat_ioctl = pkt_ctl_compat_ioctl,
3043#endif
3044 .owner = THIS_MODULE,
3045 .llseek = no_llseek,
3046};
3047
3048static struct miscdevice pkt_misc = {
3049 .minor = MISC_DYNAMIC_MINOR,
3050 .name = DRIVER_NAME,
3051 .nodename = "pktcdvd/control",
3052 .fops = &pkt_ctl_fops
3053};
3054
3055static int __init pkt_init(void)
3056{
3057 int ret;
3058
3059 mutex_init(&ctl_mutex);
3060
3061 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3062 sizeof(struct packet_stacked_data));
3063 if (!psd_pool)
3064 return -ENOMEM;
3065
3066 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3067 if (ret < 0) {
3068 printk(DRIVER_NAME": Unable to register block device\n");
3069 goto out2;
3070 }
3071 if (!pktdev_major)
3072 pktdev_major = ret;
3073
3074 ret = pkt_sysfs_init();
3075 if (ret)
3076 goto out;
3077
3078 pkt_debugfs_init();
3079
3080 ret = misc_register(&pkt_misc);
3081 if (ret) {
3082 printk(DRIVER_NAME": Unable to register misc device\n");
3083 goto out_misc;
3084 }
3085
3086 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3087
3088 return 0;
3089
3090out_misc:
3091 pkt_debugfs_cleanup();
3092 pkt_sysfs_cleanup();
3093out:
3094 unregister_blkdev(pktdev_major, DRIVER_NAME);
3095out2:
3096 mempool_destroy(psd_pool);
3097 return ret;
3098}
3099
3100static void __exit pkt_exit(void)
3101{
3102 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3103 misc_deregister(&pkt_misc);
3104
3105 pkt_debugfs_cleanup();
3106 pkt_sysfs_cleanup();
3107
3108 unregister_blkdev(pktdev_major, DRIVER_NAME);
3109 mempool_destroy(psd_pool);
3110}
3111
3112MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3113MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3114MODULE_LICENSE("GPL");
3115
3116module_init(pkt_init);
3117module_exit(pkt_exit);
1/*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * such as drivers/scsi/sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom ->submit_bio function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49#include <linux/backing-dev.h>
50#include <linux/compat.h>
51#include <linux/debugfs.h>
52#include <linux/device.h>
53#include <linux/errno.h>
54#include <linux/file.h>
55#include <linux/freezer.h>
56#include <linux/kernel.h>
57#include <linux/kthread.h>
58#include <linux/miscdevice.h>
59#include <linux/module.h>
60#include <linux/mutex.h>
61#include <linux/nospec.h>
62#include <linux/pktcdvd.h>
63#include <linux/proc_fs.h>
64#include <linux/seq_file.h>
65#include <linux/slab.h>
66#include <linux/spinlock.h>
67#include <linux/types.h>
68#include <linux/uaccess.h>
69
70#include <scsi/scsi.h>
71#include <scsi/scsi_cmnd.h>
72#include <scsi/scsi_ioctl.h>
73
74#include <asm/unaligned.h>
75
76#define DRIVER_NAME "pktcdvd"
77
78#define MAX_SPEED 0xffff
79
80static DEFINE_MUTEX(pktcdvd_mutex);
81static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
82static struct proc_dir_entry *pkt_proc;
83static int pktdev_major;
84static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
85static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
86static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
87static mempool_t psd_pool;
88static struct bio_set pkt_bio_set;
89
90/* /sys/class/pktcdvd */
91static struct class class_pktcdvd;
92static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
93
94/* forward declaration */
95static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
96static int pkt_remove_dev(dev_t pkt_dev);
97
98static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
99{
100 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
101}
102
103/**********************************************************
104 * sysfs interface for pktcdvd
105 * by (C) 2006 Thomas Maier <balagi@justmail.de>
106
107 /sys/class/pktcdvd/pktcdvd[0-7]/
108 stat/reset
109 stat/packets_started
110 stat/packets_finished
111 stat/kb_written
112 stat/kb_read
113 stat/kb_read_gather
114 write_queue/size
115 write_queue/congestion_off
116 write_queue/congestion_on
117 **********************************************************/
118
119static ssize_t packets_started_show(struct device *dev,
120 struct device_attribute *attr, char *buf)
121{
122 struct pktcdvd_device *pd = dev_get_drvdata(dev);
123
124 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
125}
126static DEVICE_ATTR_RO(packets_started);
127
128static ssize_t packets_finished_show(struct device *dev,
129 struct device_attribute *attr, char *buf)
130{
131 struct pktcdvd_device *pd = dev_get_drvdata(dev);
132
133 return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
134}
135static DEVICE_ATTR_RO(packets_finished);
136
137static ssize_t kb_written_show(struct device *dev,
138 struct device_attribute *attr, char *buf)
139{
140 struct pktcdvd_device *pd = dev_get_drvdata(dev);
141
142 return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
143}
144static DEVICE_ATTR_RO(kb_written);
145
146static ssize_t kb_read_show(struct device *dev,
147 struct device_attribute *attr, char *buf)
148{
149 struct pktcdvd_device *pd = dev_get_drvdata(dev);
150
151 return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
152}
153static DEVICE_ATTR_RO(kb_read);
154
155static ssize_t kb_read_gather_show(struct device *dev,
156 struct device_attribute *attr, char *buf)
157{
158 struct pktcdvd_device *pd = dev_get_drvdata(dev);
159
160 return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
161}
162static DEVICE_ATTR_RO(kb_read_gather);
163
164static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
165 const char *buf, size_t len)
166{
167 struct pktcdvd_device *pd = dev_get_drvdata(dev);
168
169 if (len > 0) {
170 pd->stats.pkt_started = 0;
171 pd->stats.pkt_ended = 0;
172 pd->stats.secs_w = 0;
173 pd->stats.secs_rg = 0;
174 pd->stats.secs_r = 0;
175 }
176 return len;
177}
178static DEVICE_ATTR_WO(reset);
179
180static struct attribute *pkt_stat_attrs[] = {
181 &dev_attr_packets_finished.attr,
182 &dev_attr_packets_started.attr,
183 &dev_attr_kb_read.attr,
184 &dev_attr_kb_written.attr,
185 &dev_attr_kb_read_gather.attr,
186 &dev_attr_reset.attr,
187 NULL,
188};
189
190static const struct attribute_group pkt_stat_group = {
191 .name = "stat",
192 .attrs = pkt_stat_attrs,
193};
194
195static ssize_t size_show(struct device *dev,
196 struct device_attribute *attr, char *buf)
197{
198 struct pktcdvd_device *pd = dev_get_drvdata(dev);
199 int n;
200
201 spin_lock(&pd->lock);
202 n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
203 spin_unlock(&pd->lock);
204 return n;
205}
206static DEVICE_ATTR_RO(size);
207
208static void init_write_congestion_marks(int* lo, int* hi)
209{
210 if (*hi > 0) {
211 *hi = max(*hi, 500);
212 *hi = min(*hi, 1000000);
213 if (*lo <= 0)
214 *lo = *hi - 100;
215 else {
216 *lo = min(*lo, *hi - 100);
217 *lo = max(*lo, 100);
218 }
219 } else {
220 *hi = -1;
221 *lo = -1;
222 }
223}
224
225static ssize_t congestion_off_show(struct device *dev,
226 struct device_attribute *attr, char *buf)
227{
228 struct pktcdvd_device *pd = dev_get_drvdata(dev);
229 int n;
230
231 spin_lock(&pd->lock);
232 n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
233 spin_unlock(&pd->lock);
234 return n;
235}
236
237static ssize_t congestion_off_store(struct device *dev,
238 struct device_attribute *attr,
239 const char *buf, size_t len)
240{
241 struct pktcdvd_device *pd = dev_get_drvdata(dev);
242 int val, ret;
243
244 ret = kstrtoint(buf, 10, &val);
245 if (ret)
246 return ret;
247
248 spin_lock(&pd->lock);
249 pd->write_congestion_off = val;
250 init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
251 spin_unlock(&pd->lock);
252 return len;
253}
254static DEVICE_ATTR_RW(congestion_off);
255
256static ssize_t congestion_on_show(struct device *dev,
257 struct device_attribute *attr, char *buf)
258{
259 struct pktcdvd_device *pd = dev_get_drvdata(dev);
260 int n;
261
262 spin_lock(&pd->lock);
263 n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
264 spin_unlock(&pd->lock);
265 return n;
266}
267
268static ssize_t congestion_on_store(struct device *dev,
269 struct device_attribute *attr,
270 const char *buf, size_t len)
271{
272 struct pktcdvd_device *pd = dev_get_drvdata(dev);
273 int val, ret;
274
275 ret = kstrtoint(buf, 10, &val);
276 if (ret)
277 return ret;
278
279 spin_lock(&pd->lock);
280 pd->write_congestion_on = val;
281 init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
282 spin_unlock(&pd->lock);
283 return len;
284}
285static DEVICE_ATTR_RW(congestion_on);
286
287static struct attribute *pkt_wq_attrs[] = {
288 &dev_attr_congestion_on.attr,
289 &dev_attr_congestion_off.attr,
290 &dev_attr_size.attr,
291 NULL,
292};
293
294static const struct attribute_group pkt_wq_group = {
295 .name = "write_queue",
296 .attrs = pkt_wq_attrs,
297};
298
299static const struct attribute_group *pkt_groups[] = {
300 &pkt_stat_group,
301 &pkt_wq_group,
302 NULL,
303};
304
305static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306{
307 if (class_is_registered(&class_pktcdvd)) {
308 pd->dev = device_create_with_groups(&class_pktcdvd, NULL,
309 MKDEV(0, 0), pd, pkt_groups,
310 "%s", pd->disk->disk_name);
311 if (IS_ERR(pd->dev))
312 pd->dev = NULL;
313 }
314}
315
316static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
317{
318 if (class_is_registered(&class_pktcdvd))
319 device_unregister(pd->dev);
320}
321
322
323/********************************************************************
324 /sys/class/pktcdvd/
325 add map block device
326 remove unmap packet dev
327 device_map show mappings
328 *******************************************************************/
329
330static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr,
331 char *data)
332{
333 int n = 0;
334 int idx;
335 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
336 for (idx = 0; idx < MAX_WRITERS; idx++) {
337 struct pktcdvd_device *pd = pkt_devs[idx];
338 if (!pd)
339 continue;
340 n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n",
341 pd->disk->disk_name,
342 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
343 MAJOR(file_bdev(pd->bdev_file)->bd_dev),
344 MINOR(file_bdev(pd->bdev_file)->bd_dev));
345 }
346 mutex_unlock(&ctl_mutex);
347 return n;
348}
349static CLASS_ATTR_RO(device_map);
350
351static ssize_t add_store(const struct class *c, const struct class_attribute *attr,
352 const char *buf, size_t count)
353{
354 unsigned int major, minor;
355
356 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
357 /* pkt_setup_dev() expects caller to hold reference to self */
358 if (!try_module_get(THIS_MODULE))
359 return -ENODEV;
360
361 pkt_setup_dev(MKDEV(major, minor), NULL);
362
363 module_put(THIS_MODULE);
364
365 return count;
366 }
367
368 return -EINVAL;
369}
370static CLASS_ATTR_WO(add);
371
372static ssize_t remove_store(const struct class *c, const struct class_attribute *attr,
373 const char *buf, size_t count)
374{
375 unsigned int major, minor;
376 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
377 pkt_remove_dev(MKDEV(major, minor));
378 return count;
379 }
380 return -EINVAL;
381}
382static CLASS_ATTR_WO(remove);
383
384static struct attribute *class_pktcdvd_attrs[] = {
385 &class_attr_add.attr,
386 &class_attr_remove.attr,
387 &class_attr_device_map.attr,
388 NULL,
389};
390ATTRIBUTE_GROUPS(class_pktcdvd);
391
392static struct class class_pktcdvd = {
393 .name = DRIVER_NAME,
394 .class_groups = class_pktcdvd_groups,
395};
396
397static int pkt_sysfs_init(void)
398{
399 /*
400 * create control files in sysfs
401 * /sys/class/pktcdvd/...
402 */
403 return class_register(&class_pktcdvd);
404}
405
406static void pkt_sysfs_cleanup(void)
407{
408 class_unregister(&class_pktcdvd);
409}
410
411/********************************************************************
412 entries in debugfs
413
414 /sys/kernel/debug/pktcdvd[0-7]/
415 info
416
417 *******************************************************************/
418
419static void pkt_count_states(struct pktcdvd_device *pd, int *states)
420{
421 struct packet_data *pkt;
422 int i;
423
424 for (i = 0; i < PACKET_NUM_STATES; i++)
425 states[i] = 0;
426
427 spin_lock(&pd->cdrw.active_list_lock);
428 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
429 states[pkt->state]++;
430 }
431 spin_unlock(&pd->cdrw.active_list_lock);
432}
433
434static int pkt_seq_show(struct seq_file *m, void *p)
435{
436 struct pktcdvd_device *pd = m->private;
437 char *msg;
438 int states[PACKET_NUM_STATES];
439
440 seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name,
441 file_bdev(pd->bdev_file));
442
443 seq_printf(m, "\nSettings:\n");
444 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
445
446 if (pd->settings.write_type == 0)
447 msg = "Packet";
448 else
449 msg = "Unknown";
450 seq_printf(m, "\twrite type:\t\t%s\n", msg);
451
452 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
453 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
454
455 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
456
457 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
458 msg = "Mode 1";
459 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
460 msg = "Mode 2";
461 else
462 msg = "Unknown";
463 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
464
465 seq_printf(m, "\nStatistics:\n");
466 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
467 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
468 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
469 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
470 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
471
472 seq_printf(m, "\nMisc:\n");
473 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
474 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
475 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
476 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
477 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
478 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
479
480 seq_printf(m, "\nQueue state:\n");
481 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
482 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
483 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector);
484
485 pkt_count_states(pd, states);
486 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
487 states[0], states[1], states[2], states[3], states[4], states[5]);
488
489 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
490 pd->write_congestion_off,
491 pd->write_congestion_on);
492 return 0;
493}
494DEFINE_SHOW_ATTRIBUTE(pkt_seq);
495
496static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
497{
498 if (!pkt_debugfs_root)
499 return;
500 pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
501 if (!pd->dfs_d_root)
502 return;
503
504 pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root,
505 pd, &pkt_seq_fops);
506}
507
508static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
509{
510 if (!pkt_debugfs_root)
511 return;
512 debugfs_remove(pd->dfs_f_info);
513 debugfs_remove(pd->dfs_d_root);
514 pd->dfs_f_info = NULL;
515 pd->dfs_d_root = NULL;
516}
517
518static void pkt_debugfs_init(void)
519{
520 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
521}
522
523static void pkt_debugfs_cleanup(void)
524{
525 debugfs_remove(pkt_debugfs_root);
526 pkt_debugfs_root = NULL;
527}
528
529/* ----------------------------------------------------------*/
530
531
532static void pkt_bio_finished(struct pktcdvd_device *pd)
533{
534 struct device *ddev = disk_to_dev(pd->disk);
535
536 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
537 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
538 dev_dbg(ddev, "queue empty\n");
539 atomic_set(&pd->iosched.attention, 1);
540 wake_up(&pd->wqueue);
541 }
542}
543
544/*
545 * Allocate a packet_data struct
546 */
547static struct packet_data *pkt_alloc_packet_data(int frames)
548{
549 int i;
550 struct packet_data *pkt;
551
552 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
553 if (!pkt)
554 goto no_pkt;
555
556 pkt->frames = frames;
557 pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
558 if (!pkt->w_bio)
559 goto no_bio;
560
561 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
562 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
563 if (!pkt->pages[i])
564 goto no_page;
565 }
566
567 spin_lock_init(&pkt->lock);
568 bio_list_init(&pkt->orig_bios);
569
570 for (i = 0; i < frames; i++) {
571 pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
572 if (!pkt->r_bios[i])
573 goto no_rd_bio;
574 }
575
576 return pkt;
577
578no_rd_bio:
579 for (i = 0; i < frames; i++)
580 kfree(pkt->r_bios[i]);
581no_page:
582 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
583 if (pkt->pages[i])
584 __free_page(pkt->pages[i]);
585 kfree(pkt->w_bio);
586no_bio:
587 kfree(pkt);
588no_pkt:
589 return NULL;
590}
591
592/*
593 * Free a packet_data struct
594 */
595static void pkt_free_packet_data(struct packet_data *pkt)
596{
597 int i;
598
599 for (i = 0; i < pkt->frames; i++)
600 kfree(pkt->r_bios[i]);
601 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
602 __free_page(pkt->pages[i]);
603 kfree(pkt->w_bio);
604 kfree(pkt);
605}
606
607static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
608{
609 struct packet_data *pkt, *next;
610
611 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
612
613 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
614 pkt_free_packet_data(pkt);
615 }
616 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
617}
618
619static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
620{
621 struct packet_data *pkt;
622
623 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
624
625 while (nr_packets > 0) {
626 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
627 if (!pkt) {
628 pkt_shrink_pktlist(pd);
629 return 0;
630 }
631 pkt->id = nr_packets;
632 pkt->pd = pd;
633 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
634 nr_packets--;
635 }
636 return 1;
637}
638
639static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
640{
641 struct rb_node *n = rb_next(&node->rb_node);
642 if (!n)
643 return NULL;
644 return rb_entry(n, struct pkt_rb_node, rb_node);
645}
646
647static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
648{
649 rb_erase(&node->rb_node, &pd->bio_queue);
650 mempool_free(node, &pd->rb_pool);
651 pd->bio_queue_size--;
652 BUG_ON(pd->bio_queue_size < 0);
653}
654
655/*
656 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
657 */
658static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
659{
660 struct rb_node *n = pd->bio_queue.rb_node;
661 struct rb_node *next;
662 struct pkt_rb_node *tmp;
663
664 if (!n) {
665 BUG_ON(pd->bio_queue_size > 0);
666 return NULL;
667 }
668
669 for (;;) {
670 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
671 if (s <= tmp->bio->bi_iter.bi_sector)
672 next = n->rb_left;
673 else
674 next = n->rb_right;
675 if (!next)
676 break;
677 n = next;
678 }
679
680 if (s > tmp->bio->bi_iter.bi_sector) {
681 tmp = pkt_rbtree_next(tmp);
682 if (!tmp)
683 return NULL;
684 }
685 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
686 return tmp;
687}
688
689/*
690 * Insert a node into the pd->bio_queue rb tree.
691 */
692static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
693{
694 struct rb_node **p = &pd->bio_queue.rb_node;
695 struct rb_node *parent = NULL;
696 sector_t s = node->bio->bi_iter.bi_sector;
697 struct pkt_rb_node *tmp;
698
699 while (*p) {
700 parent = *p;
701 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
702 if (s < tmp->bio->bi_iter.bi_sector)
703 p = &(*p)->rb_left;
704 else
705 p = &(*p)->rb_right;
706 }
707 rb_link_node(&node->rb_node, parent, p);
708 rb_insert_color(&node->rb_node, &pd->bio_queue);
709 pd->bio_queue_size++;
710}
711
712/*
713 * Send a packet_command to the underlying block device and
714 * wait for completion.
715 */
716static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
717{
718 struct request_queue *q = bdev_get_queue(file_bdev(pd->bdev_file));
719 struct scsi_cmnd *scmd;
720 struct request *rq;
721 int ret = 0;
722
723 rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
724 REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
725 if (IS_ERR(rq))
726 return PTR_ERR(rq);
727 scmd = blk_mq_rq_to_pdu(rq);
728
729 if (cgc->buflen) {
730 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
731 GFP_NOIO);
732 if (ret)
733 goto out;
734 }
735
736 scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
737 memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
738
739 rq->timeout = 60*HZ;
740 if (cgc->quiet)
741 rq->rq_flags |= RQF_QUIET;
742
743 blk_execute_rq(rq, false);
744 if (scmd->result)
745 ret = -EIO;
746out:
747 blk_mq_free_request(rq);
748 return ret;
749}
750
751static const char *sense_key_string(__u8 index)
752{
753 static const char * const info[] = {
754 "No sense", "Recovered error", "Not ready",
755 "Medium error", "Hardware error", "Illegal request",
756 "Unit attention", "Data protect", "Blank check",
757 };
758
759 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
760}
761
762/*
763 * A generic sense dump / resolve mechanism should be implemented across
764 * all ATAPI + SCSI devices.
765 */
766static void pkt_dump_sense(struct pktcdvd_device *pd,
767 struct packet_command *cgc)
768{
769 struct device *ddev = disk_to_dev(pd->disk);
770 struct scsi_sense_hdr *sshdr = cgc->sshdr;
771
772 if (sshdr)
773 dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n",
774 CDROM_PACKET_SIZE, cgc->cmd,
775 sshdr->sense_key, sshdr->asc, sshdr->ascq,
776 sense_key_string(sshdr->sense_key));
777 else
778 dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
779}
780
781/*
782 * flush the drive cache to media
783 */
784static int pkt_flush_cache(struct pktcdvd_device *pd)
785{
786 struct packet_command cgc;
787
788 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
789 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
790 cgc.quiet = 1;
791
792 /*
793 * the IMMED bit -- we default to not setting it, although that
794 * would allow a much faster close, this is safer
795 */
796#if 0
797 cgc.cmd[1] = 1 << 1;
798#endif
799 return pkt_generic_packet(pd, &cgc);
800}
801
802/*
803 * speed is given as the normal factor, e.g. 4 for 4x
804 */
805static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
806 unsigned write_speed, unsigned read_speed)
807{
808 struct packet_command cgc;
809 struct scsi_sense_hdr sshdr;
810 int ret;
811
812 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
813 cgc.sshdr = &sshdr;
814 cgc.cmd[0] = GPCMD_SET_SPEED;
815 put_unaligned_be16(read_speed, &cgc.cmd[2]);
816 put_unaligned_be16(write_speed, &cgc.cmd[4]);
817
818 ret = pkt_generic_packet(pd, &cgc);
819 if (ret)
820 pkt_dump_sense(pd, &cgc);
821
822 return ret;
823}
824
825/*
826 * Queue a bio for processing by the low-level CD device. Must be called
827 * from process context.
828 */
829static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
830{
831 /*
832 * Some CDRW drives can not handle writes larger than one packet,
833 * even if the size is a multiple of the packet size.
834 */
835 bio->bi_opf |= REQ_NOMERGE;
836
837 spin_lock(&pd->iosched.lock);
838 if (bio_data_dir(bio) == READ)
839 bio_list_add(&pd->iosched.read_queue, bio);
840 else
841 bio_list_add(&pd->iosched.write_queue, bio);
842 spin_unlock(&pd->iosched.lock);
843
844 atomic_set(&pd->iosched.attention, 1);
845 wake_up(&pd->wqueue);
846}
847
848/*
849 * Process the queued read/write requests. This function handles special
850 * requirements for CDRW drives:
851 * - A cache flush command must be inserted before a read request if the
852 * previous request was a write.
853 * - Switching between reading and writing is slow, so don't do it more often
854 * than necessary.
855 * - Optimize for throughput at the expense of latency. This means that streaming
856 * writes will never be interrupted by a read, but if the drive has to seek
857 * before the next write, switch to reading instead if there are any pending
858 * read requests.
859 * - Set the read speed according to current usage pattern. When only reading
860 * from the device, it's best to use the highest possible read speed, but
861 * when switching often between reading and writing, it's better to have the
862 * same read and write speeds.
863 */
864static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
865{
866 struct device *ddev = disk_to_dev(pd->disk);
867
868 if (atomic_read(&pd->iosched.attention) == 0)
869 return;
870 atomic_set(&pd->iosched.attention, 0);
871
872 for (;;) {
873 struct bio *bio;
874 int reads_queued, writes_queued;
875
876 spin_lock(&pd->iosched.lock);
877 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
878 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
879 spin_unlock(&pd->iosched.lock);
880
881 if (!reads_queued && !writes_queued)
882 break;
883
884 if (pd->iosched.writing) {
885 int need_write_seek = 1;
886 spin_lock(&pd->iosched.lock);
887 bio = bio_list_peek(&pd->iosched.write_queue);
888 spin_unlock(&pd->iosched.lock);
889 if (bio && (bio->bi_iter.bi_sector ==
890 pd->iosched.last_write))
891 need_write_seek = 0;
892 if (need_write_seek && reads_queued) {
893 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
894 dev_dbg(ddev, "write, waiting\n");
895 break;
896 }
897 pkt_flush_cache(pd);
898 pd->iosched.writing = 0;
899 }
900 } else {
901 if (!reads_queued && writes_queued) {
902 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
903 dev_dbg(ddev, "read, waiting\n");
904 break;
905 }
906 pd->iosched.writing = 1;
907 }
908 }
909
910 spin_lock(&pd->iosched.lock);
911 if (pd->iosched.writing)
912 bio = bio_list_pop(&pd->iosched.write_queue);
913 else
914 bio = bio_list_pop(&pd->iosched.read_queue);
915 spin_unlock(&pd->iosched.lock);
916
917 if (!bio)
918 continue;
919
920 if (bio_data_dir(bio) == READ)
921 pd->iosched.successive_reads +=
922 bio->bi_iter.bi_size >> 10;
923 else {
924 pd->iosched.successive_reads = 0;
925 pd->iosched.last_write = bio_end_sector(bio);
926 }
927 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
928 if (pd->read_speed == pd->write_speed) {
929 pd->read_speed = MAX_SPEED;
930 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
931 }
932 } else {
933 if (pd->read_speed != pd->write_speed) {
934 pd->read_speed = pd->write_speed;
935 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
936 }
937 }
938
939 atomic_inc(&pd->cdrw.pending_bios);
940 submit_bio_noacct(bio);
941 }
942}
943
944/*
945 * Special care is needed if the underlying block device has a small
946 * max_phys_segments value.
947 */
948static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
949{
950 struct device *ddev = disk_to_dev(pd->disk);
951
952 if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) {
953 /*
954 * The cdrom device can handle one segment/frame
955 */
956 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
957 return 0;
958 }
959
960 if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) {
961 /*
962 * We can handle this case at the expense of some extra memory
963 * copies during write operations
964 */
965 set_bit(PACKET_MERGE_SEGS, &pd->flags);
966 return 0;
967 }
968
969 dev_err(ddev, "cdrom max_phys_segments too small\n");
970 return -EIO;
971}
972
973static void pkt_end_io_read(struct bio *bio)
974{
975 struct packet_data *pkt = bio->bi_private;
976 struct pktcdvd_device *pd = pkt->pd;
977 BUG_ON(!pd);
978
979 dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n",
980 bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status);
981
982 if (bio->bi_status)
983 atomic_inc(&pkt->io_errors);
984 bio_uninit(bio);
985 if (atomic_dec_and_test(&pkt->io_wait)) {
986 atomic_inc(&pkt->run_sm);
987 wake_up(&pd->wqueue);
988 }
989 pkt_bio_finished(pd);
990}
991
992static void pkt_end_io_packet_write(struct bio *bio)
993{
994 struct packet_data *pkt = bio->bi_private;
995 struct pktcdvd_device *pd = pkt->pd;
996 BUG_ON(!pd);
997
998 dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status);
999
1000 pd->stats.pkt_ended++;
1001
1002 bio_uninit(bio);
1003 pkt_bio_finished(pd);
1004 atomic_dec(&pkt->io_wait);
1005 atomic_inc(&pkt->run_sm);
1006 wake_up(&pd->wqueue);
1007}
1008
1009/*
1010 * Schedule reads for the holes in a packet
1011 */
1012static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1013{
1014 struct device *ddev = disk_to_dev(pd->disk);
1015 int frames_read = 0;
1016 struct bio *bio;
1017 int f;
1018 char written[PACKET_MAX_SIZE];
1019
1020 BUG_ON(bio_list_empty(&pkt->orig_bios));
1021
1022 atomic_set(&pkt->io_wait, 0);
1023 atomic_set(&pkt->io_errors, 0);
1024
1025 /*
1026 * Figure out which frames we need to read before we can write.
1027 */
1028 memset(written, 0, sizeof(written));
1029 spin_lock(&pkt->lock);
1030 bio_list_for_each(bio, &pkt->orig_bios) {
1031 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1032 (CD_FRAMESIZE >> 9);
1033 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1034 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1035 BUG_ON(first_frame < 0);
1036 BUG_ON(first_frame + num_frames > pkt->frames);
1037 for (f = first_frame; f < first_frame + num_frames; f++)
1038 written[f] = 1;
1039 }
1040 spin_unlock(&pkt->lock);
1041
1042 if (pkt->cache_valid) {
1043 dev_dbg(ddev, "zone %llx cached\n", pkt->sector);
1044 goto out_account;
1045 }
1046
1047 /*
1048 * Schedule reads for missing parts of the packet.
1049 */
1050 for (f = 0; f < pkt->frames; f++) {
1051 int p, offset;
1052
1053 if (written[f])
1054 continue;
1055
1056 bio = pkt->r_bios[f];
1057 bio_init(bio, file_bdev(pd->bdev_file), bio->bi_inline_vecs, 1,
1058 REQ_OP_READ);
1059 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1060 bio->bi_end_io = pkt_end_io_read;
1061 bio->bi_private = pkt;
1062
1063 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1064 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1065 dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f,
1066 pkt->pages[p], offset);
1067 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1068 BUG();
1069
1070 atomic_inc(&pkt->io_wait);
1071 pkt_queue_bio(pd, bio);
1072 frames_read++;
1073 }
1074
1075out_account:
1076 dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector);
1077 pd->stats.pkt_started++;
1078 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1079}
1080
1081/*
1082 * Find a packet matching zone, or the least recently used packet if
1083 * there is no match.
1084 */
1085static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1086{
1087 struct packet_data *pkt;
1088
1089 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1090 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1091 list_del_init(&pkt->list);
1092 if (pkt->sector != zone)
1093 pkt->cache_valid = 0;
1094 return pkt;
1095 }
1096 }
1097 BUG();
1098 return NULL;
1099}
1100
1101static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1102{
1103 if (pkt->cache_valid) {
1104 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1105 } else {
1106 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1107 }
1108}
1109
1110static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt,
1111 enum packet_data_state state)
1112{
1113 static const char *state_name[] = {
1114 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1115 };
1116 enum packet_data_state old_state = pkt->state;
1117
1118 dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n",
1119 pkt->id, pkt->sector, state_name[old_state], state_name[state]);
1120
1121 pkt->state = state;
1122}
1123
1124/*
1125 * Scan the work queue to see if we can start a new packet.
1126 * returns non-zero if any work was done.
1127 */
1128static int pkt_handle_queue(struct pktcdvd_device *pd)
1129{
1130 struct device *ddev = disk_to_dev(pd->disk);
1131 struct packet_data *pkt, *p;
1132 struct bio *bio = NULL;
1133 sector_t zone = 0; /* Suppress gcc warning */
1134 struct pkt_rb_node *node, *first_node;
1135 struct rb_node *n;
1136
1137 atomic_set(&pd->scan_queue, 0);
1138
1139 if (list_empty(&pd->cdrw.pkt_free_list)) {
1140 dev_dbg(ddev, "no pkt\n");
1141 return 0;
1142 }
1143
1144 /*
1145 * Try to find a zone we are not already working on.
1146 */
1147 spin_lock(&pd->lock);
1148 first_node = pkt_rbtree_find(pd, pd->current_sector);
1149 if (!first_node) {
1150 n = rb_first(&pd->bio_queue);
1151 if (n)
1152 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1153 }
1154 node = first_node;
1155 while (node) {
1156 bio = node->bio;
1157 zone = get_zone(bio->bi_iter.bi_sector, pd);
1158 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1159 if (p->sector == zone) {
1160 bio = NULL;
1161 goto try_next_bio;
1162 }
1163 }
1164 break;
1165try_next_bio:
1166 node = pkt_rbtree_next(node);
1167 if (!node) {
1168 n = rb_first(&pd->bio_queue);
1169 if (n)
1170 node = rb_entry(n, struct pkt_rb_node, rb_node);
1171 }
1172 if (node == first_node)
1173 node = NULL;
1174 }
1175 spin_unlock(&pd->lock);
1176 if (!bio) {
1177 dev_dbg(ddev, "no bio\n");
1178 return 0;
1179 }
1180
1181 pkt = pkt_get_packet_data(pd, zone);
1182
1183 pd->current_sector = zone + pd->settings.size;
1184 pkt->sector = zone;
1185 BUG_ON(pkt->frames != pd->settings.size >> 2);
1186 pkt->write_size = 0;
1187
1188 /*
1189 * Scan work queue for bios in the same zone and link them
1190 * to this packet.
1191 */
1192 spin_lock(&pd->lock);
1193 dev_dbg(ddev, "looking for zone %llx\n", zone);
1194 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1195 sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd);
1196
1197 bio = node->bio;
1198 dev_dbg(ddev, "found zone=%llx\n", tmp);
1199 if (tmp != zone)
1200 break;
1201 pkt_rbtree_erase(pd, node);
1202 spin_lock(&pkt->lock);
1203 bio_list_add(&pkt->orig_bios, bio);
1204 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1205 spin_unlock(&pkt->lock);
1206 }
1207 /* check write congestion marks, and if bio_queue_size is
1208 * below, wake up any waiters
1209 */
1210 if (pd->congested &&
1211 pd->bio_queue_size <= pd->write_congestion_off) {
1212 pd->congested = false;
1213 wake_up_var(&pd->congested);
1214 }
1215 spin_unlock(&pd->lock);
1216
1217 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1218 pkt_set_state(ddev, pkt, PACKET_WAITING_STATE);
1219 atomic_set(&pkt->run_sm, 1);
1220
1221 spin_lock(&pd->cdrw.active_list_lock);
1222 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1223 spin_unlock(&pd->cdrw.active_list_lock);
1224
1225 return 1;
1226}
1227
1228/**
1229 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1230 * another
1231 * @src: source bio list
1232 * @dst: destination bio list
1233 *
1234 * Stops when it reaches the end of either the @src list or @dst list - that is,
1235 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1236 * bios).
1237 */
1238static void bio_list_copy_data(struct bio *dst, struct bio *src)
1239{
1240 struct bvec_iter src_iter = src->bi_iter;
1241 struct bvec_iter dst_iter = dst->bi_iter;
1242
1243 while (1) {
1244 if (!src_iter.bi_size) {
1245 src = src->bi_next;
1246 if (!src)
1247 break;
1248
1249 src_iter = src->bi_iter;
1250 }
1251
1252 if (!dst_iter.bi_size) {
1253 dst = dst->bi_next;
1254 if (!dst)
1255 break;
1256
1257 dst_iter = dst->bi_iter;
1258 }
1259
1260 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1261 }
1262}
1263
1264/*
1265 * Assemble a bio to write one packet and queue the bio for processing
1266 * by the underlying block device.
1267 */
1268static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1269{
1270 struct device *ddev = disk_to_dev(pd->disk);
1271 int f;
1272
1273 bio_init(pkt->w_bio, file_bdev(pd->bdev_file), pkt->w_bio->bi_inline_vecs,
1274 pkt->frames, REQ_OP_WRITE);
1275 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1276 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1277 pkt->w_bio->bi_private = pkt;
1278
1279 /* XXX: locking? */
1280 for (f = 0; f < pkt->frames; f++) {
1281 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1282 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1283
1284 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1285 BUG();
1286 }
1287 dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1288
1289 /*
1290 * Fill-in bvec with data from orig_bios.
1291 */
1292 spin_lock(&pkt->lock);
1293 bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
1294
1295 pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE);
1296 spin_unlock(&pkt->lock);
1297
1298 dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector);
1299
1300 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1301 pkt->cache_valid = 1;
1302 else
1303 pkt->cache_valid = 0;
1304
1305 /* Start the write request */
1306 atomic_set(&pkt->io_wait, 1);
1307 pkt_queue_bio(pd, pkt->w_bio);
1308}
1309
1310static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1311{
1312 struct bio *bio;
1313
1314 if (status)
1315 pkt->cache_valid = 0;
1316
1317 /* Finish all bios corresponding to this packet */
1318 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1319 bio->bi_status = status;
1320 bio_endio(bio);
1321 }
1322}
1323
1324static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1325{
1326 struct device *ddev = disk_to_dev(pd->disk);
1327
1328 dev_dbg(ddev, "pkt %d\n", pkt->id);
1329
1330 for (;;) {
1331 switch (pkt->state) {
1332 case PACKET_WAITING_STATE:
1333 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1334 return;
1335
1336 pkt->sleep_time = 0;
1337 pkt_gather_data(pd, pkt);
1338 pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE);
1339 break;
1340
1341 case PACKET_READ_WAIT_STATE:
1342 if (atomic_read(&pkt->io_wait) > 0)
1343 return;
1344
1345 if (atomic_read(&pkt->io_errors) > 0) {
1346 pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1347 } else {
1348 pkt_start_write(pd, pkt);
1349 }
1350 break;
1351
1352 case PACKET_WRITE_WAIT_STATE:
1353 if (atomic_read(&pkt->io_wait) > 0)
1354 return;
1355
1356 if (!pkt->w_bio->bi_status) {
1357 pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1358 } else {
1359 pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1360 }
1361 break;
1362
1363 case PACKET_RECOVERY_STATE:
1364 dev_dbg(ddev, "No recovery possible\n");
1365 pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1366 break;
1367
1368 case PACKET_FINISHED_STATE:
1369 pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1370 return;
1371
1372 default:
1373 BUG();
1374 break;
1375 }
1376 }
1377}
1378
1379static void pkt_handle_packets(struct pktcdvd_device *pd)
1380{
1381 struct device *ddev = disk_to_dev(pd->disk);
1382 struct packet_data *pkt, *next;
1383
1384 /*
1385 * Run state machine for active packets
1386 */
1387 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1388 if (atomic_read(&pkt->run_sm) > 0) {
1389 atomic_set(&pkt->run_sm, 0);
1390 pkt_run_state_machine(pd, pkt);
1391 }
1392 }
1393
1394 /*
1395 * Move no longer active packets to the free list
1396 */
1397 spin_lock(&pd->cdrw.active_list_lock);
1398 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1399 if (pkt->state == PACKET_FINISHED_STATE) {
1400 list_del(&pkt->list);
1401 pkt_put_packet_data(pd, pkt);
1402 pkt_set_state(ddev, pkt, PACKET_IDLE_STATE);
1403 atomic_set(&pd->scan_queue, 1);
1404 }
1405 }
1406 spin_unlock(&pd->cdrw.active_list_lock);
1407}
1408
1409/*
1410 * kcdrwd is woken up when writes have been queued for one of our
1411 * registered devices
1412 */
1413static int kcdrwd(void *foobar)
1414{
1415 struct pktcdvd_device *pd = foobar;
1416 struct device *ddev = disk_to_dev(pd->disk);
1417 struct packet_data *pkt;
1418 int states[PACKET_NUM_STATES];
1419 long min_sleep_time, residue;
1420
1421 set_user_nice(current, MIN_NICE);
1422 set_freezable();
1423
1424 for (;;) {
1425 DECLARE_WAITQUEUE(wait, current);
1426
1427 /*
1428 * Wait until there is something to do
1429 */
1430 add_wait_queue(&pd->wqueue, &wait);
1431 for (;;) {
1432 set_current_state(TASK_INTERRUPTIBLE);
1433
1434 /* Check if we need to run pkt_handle_queue */
1435 if (atomic_read(&pd->scan_queue) > 0)
1436 goto work_to_do;
1437
1438 /* Check if we need to run the state machine for some packet */
1439 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1440 if (atomic_read(&pkt->run_sm) > 0)
1441 goto work_to_do;
1442 }
1443
1444 /* Check if we need to process the iosched queues */
1445 if (atomic_read(&pd->iosched.attention) != 0)
1446 goto work_to_do;
1447
1448 /* Otherwise, go to sleep */
1449 pkt_count_states(pd, states);
1450 dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1451 states[0], states[1], states[2], states[3], states[4], states[5]);
1452
1453 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1454 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1455 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1456 min_sleep_time = pkt->sleep_time;
1457 }
1458
1459 dev_dbg(ddev, "sleeping\n");
1460 residue = schedule_timeout(min_sleep_time);
1461 dev_dbg(ddev, "wake up\n");
1462
1463 /* make swsusp happy with our thread */
1464 try_to_freeze();
1465
1466 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1467 if (!pkt->sleep_time)
1468 continue;
1469 pkt->sleep_time -= min_sleep_time - residue;
1470 if (pkt->sleep_time <= 0) {
1471 pkt->sleep_time = 0;
1472 atomic_inc(&pkt->run_sm);
1473 }
1474 }
1475
1476 if (kthread_should_stop())
1477 break;
1478 }
1479work_to_do:
1480 set_current_state(TASK_RUNNING);
1481 remove_wait_queue(&pd->wqueue, &wait);
1482
1483 if (kthread_should_stop())
1484 break;
1485
1486 /*
1487 * if pkt_handle_queue returns true, we can queue
1488 * another request.
1489 */
1490 while (pkt_handle_queue(pd))
1491 ;
1492
1493 /*
1494 * Handle packet state machine
1495 */
1496 pkt_handle_packets(pd);
1497
1498 /*
1499 * Handle iosched queues
1500 */
1501 pkt_iosched_process_queue(pd);
1502 }
1503
1504 return 0;
1505}
1506
1507static void pkt_print_settings(struct pktcdvd_device *pd)
1508{
1509 dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n",
1510 pd->settings.fp ? "Fixed" : "Variable",
1511 pd->settings.size >> 2,
1512 pd->settings.block_mode == 8 ? '1' : '2');
1513}
1514
1515static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1516{
1517 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1518
1519 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1520 cgc->cmd[2] = page_code | (page_control << 6);
1521 put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1522 cgc->data_direction = CGC_DATA_READ;
1523 return pkt_generic_packet(pd, cgc);
1524}
1525
1526static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1527{
1528 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1529 memset(cgc->buffer, 0, 2);
1530 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1531 cgc->cmd[1] = 0x10; /* PF */
1532 put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
1533 cgc->data_direction = CGC_DATA_WRITE;
1534 return pkt_generic_packet(pd, cgc);
1535}
1536
1537static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1538{
1539 struct packet_command cgc;
1540 int ret;
1541
1542 /* set up command and get the disc info */
1543 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1544 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1545 cgc.cmd[8] = cgc.buflen = 2;
1546 cgc.quiet = 1;
1547
1548 ret = pkt_generic_packet(pd, &cgc);
1549 if (ret)
1550 return ret;
1551
1552 /* not all drives have the same disc_info length, so requeue
1553 * packet with the length the drive tells us it can supply
1554 */
1555 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1556 sizeof(di->disc_information_length);
1557
1558 if (cgc.buflen > sizeof(disc_information))
1559 cgc.buflen = sizeof(disc_information);
1560
1561 cgc.cmd[8] = cgc.buflen;
1562 return pkt_generic_packet(pd, &cgc);
1563}
1564
1565static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1566{
1567 struct packet_command cgc;
1568 int ret;
1569
1570 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1571 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1572 cgc.cmd[1] = type & 3;
1573 put_unaligned_be16(track, &cgc.cmd[4]);
1574 cgc.cmd[8] = 8;
1575 cgc.quiet = 1;
1576
1577 ret = pkt_generic_packet(pd, &cgc);
1578 if (ret)
1579 return ret;
1580
1581 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1582 sizeof(ti->track_information_length);
1583
1584 if (cgc.buflen > sizeof(track_information))
1585 cgc.buflen = sizeof(track_information);
1586
1587 cgc.cmd[8] = cgc.buflen;
1588 return pkt_generic_packet(pd, &cgc);
1589}
1590
1591static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1592 long *last_written)
1593{
1594 disc_information di;
1595 track_information ti;
1596 __u32 last_track;
1597 int ret;
1598
1599 ret = pkt_get_disc_info(pd, &di);
1600 if (ret)
1601 return ret;
1602
1603 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1604 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1605 if (ret)
1606 return ret;
1607
1608 /* if this track is blank, try the previous. */
1609 if (ti.blank) {
1610 last_track--;
1611 ret = pkt_get_track_info(pd, last_track, 1, &ti);
1612 if (ret)
1613 return ret;
1614 }
1615
1616 /* if last recorded field is valid, return it. */
1617 if (ti.lra_v) {
1618 *last_written = be32_to_cpu(ti.last_rec_address);
1619 } else {
1620 /* make it up instead */
1621 *last_written = be32_to_cpu(ti.track_start) +
1622 be32_to_cpu(ti.track_size);
1623 if (ti.free_blocks)
1624 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1625 }
1626 return 0;
1627}
1628
1629/*
1630 * write mode select package based on pd->settings
1631 */
1632static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1633{
1634 struct device *ddev = disk_to_dev(pd->disk);
1635 struct packet_command cgc;
1636 struct scsi_sense_hdr sshdr;
1637 write_param_page *wp;
1638 char buffer[128];
1639 int ret, size;
1640
1641 /* doesn't apply to DVD+RW or DVD-RAM */
1642 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1643 return 0;
1644
1645 memset(buffer, 0, sizeof(buffer));
1646 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1647 cgc.sshdr = &sshdr;
1648 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1649 if (ret) {
1650 pkt_dump_sense(pd, &cgc);
1651 return ret;
1652 }
1653
1654 size = 2 + get_unaligned_be16(&buffer[0]);
1655 pd->mode_offset = get_unaligned_be16(&buffer[6]);
1656 if (size > sizeof(buffer))
1657 size = sizeof(buffer);
1658
1659 /*
1660 * now get it all
1661 */
1662 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1663 cgc.sshdr = &sshdr;
1664 ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1665 if (ret) {
1666 pkt_dump_sense(pd, &cgc);
1667 return ret;
1668 }
1669
1670 /*
1671 * write page is offset header + block descriptor length
1672 */
1673 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1674
1675 wp->fp = pd->settings.fp;
1676 wp->track_mode = pd->settings.track_mode;
1677 wp->write_type = pd->settings.write_type;
1678 wp->data_block_type = pd->settings.block_mode;
1679
1680 wp->multi_session = 0;
1681
1682#ifdef PACKET_USE_LS
1683 wp->link_size = 7;
1684 wp->ls_v = 1;
1685#endif
1686
1687 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1688 wp->session_format = 0;
1689 wp->subhdr2 = 0x20;
1690 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1691 wp->session_format = 0x20;
1692 wp->subhdr2 = 8;
1693#if 0
1694 wp->mcn[0] = 0x80;
1695 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1696#endif
1697 } else {
1698 /*
1699 * paranoia
1700 */
1701 dev_err(ddev, "write mode wrong %d\n", wp->data_block_type);
1702 return 1;
1703 }
1704 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1705
1706 cgc.buflen = cgc.cmd[8] = size;
1707 ret = pkt_mode_select(pd, &cgc);
1708 if (ret) {
1709 pkt_dump_sense(pd, &cgc);
1710 return ret;
1711 }
1712
1713 pkt_print_settings(pd);
1714 return 0;
1715}
1716
1717/*
1718 * 1 -- we can write to this track, 0 -- we can't
1719 */
1720static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1721{
1722 struct device *ddev = disk_to_dev(pd->disk);
1723
1724 switch (pd->mmc3_profile) {
1725 case 0x1a: /* DVD+RW */
1726 case 0x12: /* DVD-RAM */
1727 /* The track is always writable on DVD+RW/DVD-RAM */
1728 return 1;
1729 default:
1730 break;
1731 }
1732
1733 if (!ti->packet || !ti->fp)
1734 return 0;
1735
1736 /*
1737 * "good" settings as per Mt Fuji.
1738 */
1739 if (ti->rt == 0 && ti->blank == 0)
1740 return 1;
1741
1742 if (ti->rt == 0 && ti->blank == 1)
1743 return 1;
1744
1745 if (ti->rt == 1 && ti->blank == 0)
1746 return 1;
1747
1748 dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1749 return 0;
1750}
1751
1752/*
1753 * 1 -- we can write to this disc, 0 -- we can't
1754 */
1755static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1756{
1757 struct device *ddev = disk_to_dev(pd->disk);
1758
1759 switch (pd->mmc3_profile) {
1760 case 0x0a: /* CD-RW */
1761 case 0xffff: /* MMC3 not supported */
1762 break;
1763 case 0x1a: /* DVD+RW */
1764 case 0x13: /* DVD-RW */
1765 case 0x12: /* DVD-RAM */
1766 return 1;
1767 default:
1768 dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile);
1769 return 0;
1770 }
1771
1772 /*
1773 * for disc type 0xff we should probably reserve a new track.
1774 * but i'm not sure, should we leave this to user apps? probably.
1775 */
1776 if (di->disc_type == 0xff) {
1777 dev_notice(ddev, "unknown disc - no track?\n");
1778 return 0;
1779 }
1780
1781 if (di->disc_type != 0x20 && di->disc_type != 0) {
1782 dev_err(ddev, "wrong disc type (%x)\n", di->disc_type);
1783 return 0;
1784 }
1785
1786 if (di->erasable == 0) {
1787 dev_err(ddev, "disc not erasable\n");
1788 return 0;
1789 }
1790
1791 if (di->border_status == PACKET_SESSION_RESERVED) {
1792 dev_err(ddev, "can't write to last track (reserved)\n");
1793 return 0;
1794 }
1795
1796 return 1;
1797}
1798
1799static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1800{
1801 struct device *ddev = disk_to_dev(pd->disk);
1802 struct packet_command cgc;
1803 unsigned char buf[12];
1804 disc_information di;
1805 track_information ti;
1806 int ret, track;
1807
1808 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1809 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1810 cgc.cmd[8] = 8;
1811 ret = pkt_generic_packet(pd, &cgc);
1812 pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]);
1813
1814 memset(&di, 0, sizeof(disc_information));
1815 memset(&ti, 0, sizeof(track_information));
1816
1817 ret = pkt_get_disc_info(pd, &di);
1818 if (ret) {
1819 dev_err(ddev, "failed get_disc\n");
1820 return ret;
1821 }
1822
1823 if (!pkt_writable_disc(pd, &di))
1824 return -EROFS;
1825
1826 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1827
1828 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1829 ret = pkt_get_track_info(pd, track, 1, &ti);
1830 if (ret) {
1831 dev_err(ddev, "failed get_track\n");
1832 return ret;
1833 }
1834
1835 if (!pkt_writable_track(pd, &ti)) {
1836 dev_err(ddev, "can't write to this track\n");
1837 return -EROFS;
1838 }
1839
1840 /*
1841 * we keep packet size in 512 byte units, makes it easier to
1842 * deal with request calculations.
1843 */
1844 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1845 if (pd->settings.size == 0) {
1846 dev_notice(ddev, "detected zero packet size!\n");
1847 return -ENXIO;
1848 }
1849 if (pd->settings.size > PACKET_MAX_SECTORS) {
1850 dev_err(ddev, "packet size is too big\n");
1851 return -EROFS;
1852 }
1853 pd->settings.fp = ti.fp;
1854 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1855
1856 if (ti.nwa_v) {
1857 pd->nwa = be32_to_cpu(ti.next_writable);
1858 set_bit(PACKET_NWA_VALID, &pd->flags);
1859 }
1860
1861 /*
1862 * in theory we could use lra on -RW media as well and just zero
1863 * blocks that haven't been written yet, but in practice that
1864 * is just a no-go. we'll use that for -R, naturally.
1865 */
1866 if (ti.lra_v) {
1867 pd->lra = be32_to_cpu(ti.last_rec_address);
1868 set_bit(PACKET_LRA_VALID, &pd->flags);
1869 } else {
1870 pd->lra = 0xffffffff;
1871 set_bit(PACKET_LRA_VALID, &pd->flags);
1872 }
1873
1874 /*
1875 * fine for now
1876 */
1877 pd->settings.link_loss = 7;
1878 pd->settings.write_type = 0; /* packet */
1879 pd->settings.track_mode = ti.track_mode;
1880
1881 /*
1882 * mode1 or mode2 disc
1883 */
1884 switch (ti.data_mode) {
1885 case PACKET_MODE1:
1886 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1887 break;
1888 case PACKET_MODE2:
1889 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1890 break;
1891 default:
1892 dev_err(ddev, "unknown data mode\n");
1893 return -EROFS;
1894 }
1895 return 0;
1896}
1897
1898/*
1899 * enable/disable write caching on drive
1900 */
1901static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd)
1902{
1903 struct device *ddev = disk_to_dev(pd->disk);
1904 struct packet_command cgc;
1905 struct scsi_sense_hdr sshdr;
1906 unsigned char buf[64];
1907 bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE);
1908 int ret;
1909
1910 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1911 cgc.sshdr = &sshdr;
1912 cgc.buflen = pd->mode_offset + 12;
1913
1914 /*
1915 * caching mode page might not be there, so quiet this command
1916 */
1917 cgc.quiet = 1;
1918
1919 ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1920 if (ret)
1921 return ret;
1922
1923 /*
1924 * use drive write caching -- we need deferred error handling to be
1925 * able to successfully recover with this option (drive will return good
1926 * status as soon as the cdb is validated).
1927 */
1928 buf[pd->mode_offset + 10] |= (set << 2);
1929
1930 cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]);
1931 ret = pkt_mode_select(pd, &cgc);
1932 if (ret) {
1933 dev_err(ddev, "write caching control failed\n");
1934 pkt_dump_sense(pd, &cgc);
1935 } else if (!ret && set)
1936 dev_notice(ddev, "enabled write caching\n");
1937 return ret;
1938}
1939
1940static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1941{
1942 struct packet_command cgc;
1943
1944 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1945 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1946 cgc.cmd[4] = lockflag ? 1 : 0;
1947 return pkt_generic_packet(pd, &cgc);
1948}
1949
1950/*
1951 * Returns drive maximum write speed
1952 */
1953static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1954 unsigned *write_speed)
1955{
1956 struct packet_command cgc;
1957 struct scsi_sense_hdr sshdr;
1958 unsigned char buf[256+18];
1959 unsigned char *cap_buf;
1960 int ret, offset;
1961
1962 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1963 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1964 cgc.sshdr = &sshdr;
1965
1966 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1967 if (ret) {
1968 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1969 sizeof(struct mode_page_header);
1970 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1971 if (ret) {
1972 pkt_dump_sense(pd, &cgc);
1973 return ret;
1974 }
1975 }
1976
1977 offset = 20; /* Obsoleted field, used by older drives */
1978 if (cap_buf[1] >= 28)
1979 offset = 28; /* Current write speed selected */
1980 if (cap_buf[1] >= 30) {
1981 /* If the drive reports at least one "Logical Unit Write
1982 * Speed Performance Descriptor Block", use the information
1983 * in the first block. (contains the highest speed)
1984 */
1985 int num_spdb = get_unaligned_be16(&cap_buf[30]);
1986 if (num_spdb > 0)
1987 offset = 34;
1988 }
1989
1990 *write_speed = get_unaligned_be16(&cap_buf[offset]);
1991 return 0;
1992}
1993
1994/* These tables from cdrecord - I don't have orange book */
1995/* standard speed CD-RW (1-4x) */
1996static char clv_to_speed[16] = {
1997 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1998 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1999};
2000/* high speed CD-RW (-10x) */
2001static char hs_clv_to_speed[16] = {
2002 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2003 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2004};
2005/* ultra high speed CD-RW */
2006static char us_clv_to_speed[16] = {
2007 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2008 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2009};
2010
2011/*
2012 * reads the maximum media speed from ATIP
2013 */
2014static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2015 unsigned *speed)
2016{
2017 struct device *ddev = disk_to_dev(pd->disk);
2018 struct packet_command cgc;
2019 struct scsi_sense_hdr sshdr;
2020 unsigned char buf[64];
2021 unsigned int size, st, sp;
2022 int ret;
2023
2024 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2025 cgc.sshdr = &sshdr;
2026 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2027 cgc.cmd[1] = 2;
2028 cgc.cmd[2] = 4; /* READ ATIP */
2029 cgc.cmd[8] = 2;
2030 ret = pkt_generic_packet(pd, &cgc);
2031 if (ret) {
2032 pkt_dump_sense(pd, &cgc);
2033 return ret;
2034 }
2035 size = 2 + get_unaligned_be16(&buf[0]);
2036 if (size > sizeof(buf))
2037 size = sizeof(buf);
2038
2039 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2040 cgc.sshdr = &sshdr;
2041 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2042 cgc.cmd[1] = 2;
2043 cgc.cmd[2] = 4;
2044 cgc.cmd[8] = size;
2045 ret = pkt_generic_packet(pd, &cgc);
2046 if (ret) {
2047 pkt_dump_sense(pd, &cgc);
2048 return ret;
2049 }
2050
2051 if (!(buf[6] & 0x40)) {
2052 dev_notice(ddev, "disc type is not CD-RW\n");
2053 return 1;
2054 }
2055 if (!(buf[6] & 0x4)) {
2056 dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n");
2057 return 1;
2058 }
2059
2060 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2061
2062 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2063
2064 /* Info from cdrecord */
2065 switch (st) {
2066 case 0: /* standard speed */
2067 *speed = clv_to_speed[sp];
2068 break;
2069 case 1: /* high speed */
2070 *speed = hs_clv_to_speed[sp];
2071 break;
2072 case 2: /* ultra high speed */
2073 *speed = us_clv_to_speed[sp];
2074 break;
2075 default:
2076 dev_notice(ddev, "unknown disc sub-type %d\n", st);
2077 return 1;
2078 }
2079 if (*speed) {
2080 dev_info(ddev, "maximum media speed: %d\n", *speed);
2081 return 0;
2082 } else {
2083 dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st);
2084 return 1;
2085 }
2086}
2087
2088static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2089{
2090 struct device *ddev = disk_to_dev(pd->disk);
2091 struct packet_command cgc;
2092 struct scsi_sense_hdr sshdr;
2093 int ret;
2094
2095 dev_dbg(ddev, "Performing OPC\n");
2096
2097 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2098 cgc.sshdr = &sshdr;
2099 cgc.timeout = 60*HZ;
2100 cgc.cmd[0] = GPCMD_SEND_OPC;
2101 cgc.cmd[1] = 1;
2102 ret = pkt_generic_packet(pd, &cgc);
2103 if (ret)
2104 pkt_dump_sense(pd, &cgc);
2105 return ret;
2106}
2107
2108static int pkt_open_write(struct pktcdvd_device *pd)
2109{
2110 struct device *ddev = disk_to_dev(pd->disk);
2111 int ret;
2112 unsigned int write_speed, media_write_speed, read_speed;
2113
2114 ret = pkt_probe_settings(pd);
2115 if (ret) {
2116 dev_dbg(ddev, "failed probe\n");
2117 return ret;
2118 }
2119
2120 ret = pkt_set_write_settings(pd);
2121 if (ret) {
2122 dev_notice(ddev, "failed saving write settings\n");
2123 return -EIO;
2124 }
2125
2126 pkt_write_caching(pd);
2127
2128 ret = pkt_get_max_speed(pd, &write_speed);
2129 if (ret)
2130 write_speed = 16 * 177;
2131 switch (pd->mmc3_profile) {
2132 case 0x13: /* DVD-RW */
2133 case 0x1a: /* DVD+RW */
2134 case 0x12: /* DVD-RAM */
2135 dev_notice(ddev, "write speed %ukB/s\n", write_speed);
2136 break;
2137 default:
2138 ret = pkt_media_speed(pd, &media_write_speed);
2139 if (ret)
2140 media_write_speed = 16;
2141 write_speed = min(write_speed, media_write_speed * 177);
2142 dev_notice(ddev, "write speed %ux\n", write_speed / 176);
2143 break;
2144 }
2145 read_speed = write_speed;
2146
2147 ret = pkt_set_speed(pd, write_speed, read_speed);
2148 if (ret) {
2149 dev_notice(ddev, "couldn't set write speed\n");
2150 return -EIO;
2151 }
2152 pd->write_speed = write_speed;
2153 pd->read_speed = read_speed;
2154
2155 ret = pkt_perform_opc(pd);
2156 if (ret)
2157 dev_notice(ddev, "Optimum Power Calibration failed\n");
2158
2159 return 0;
2160}
2161
2162/*
2163 * called at open time.
2164 */
2165static int pkt_open_dev(struct pktcdvd_device *pd, bool write)
2166{
2167 struct device *ddev = disk_to_dev(pd->disk);
2168 int ret;
2169 long lba;
2170 struct request_queue *q;
2171 struct file *bdev_file;
2172
2173 /*
2174 * We need to re-open the cdrom device without O_NONBLOCK to be able
2175 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2176 * so open should not fail.
2177 */
2178 bdev_file = bdev_file_open_by_dev(file_bdev(pd->bdev_file)->bd_dev,
2179 BLK_OPEN_READ, pd, NULL);
2180 if (IS_ERR(bdev_file)) {
2181 ret = PTR_ERR(bdev_file);
2182 goto out;
2183 }
2184 pd->f_open_bdev = bdev_file;
2185
2186 ret = pkt_get_last_written(pd, &lba);
2187 if (ret) {
2188 dev_err(ddev, "pkt_get_last_written failed\n");
2189 goto out_putdev;
2190 }
2191
2192 set_capacity(pd->disk, lba << 2);
2193 set_capacity_and_notify(file_bdev(pd->bdev_file)->bd_disk, lba << 2);
2194
2195 q = bdev_get_queue(file_bdev(pd->bdev_file));
2196 if (write) {
2197 ret = pkt_open_write(pd);
2198 if (ret)
2199 goto out_putdev;
2200 set_bit(PACKET_WRITABLE, &pd->flags);
2201 } else {
2202 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2203 clear_bit(PACKET_WRITABLE, &pd->flags);
2204 }
2205
2206 ret = pkt_set_segment_merging(pd, q);
2207 if (ret)
2208 goto out_putdev;
2209
2210 if (write) {
2211 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2212 dev_err(ddev, "not enough memory for buffers\n");
2213 ret = -ENOMEM;
2214 goto out_putdev;
2215 }
2216 dev_info(ddev, "%lukB available on disc\n", lba << 1);
2217 }
2218
2219 return 0;
2220
2221out_putdev:
2222 fput(bdev_file);
2223out:
2224 return ret;
2225}
2226
2227/*
2228 * called when the device is closed. makes sure that the device flushes
2229 * the internal cache before we close.
2230 */
2231static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2232{
2233 struct device *ddev = disk_to_dev(pd->disk);
2234
2235 if (flush && pkt_flush_cache(pd))
2236 dev_notice(ddev, "not flushing cache\n");
2237
2238 pkt_lock_door(pd, 0);
2239
2240 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2241 fput(pd->f_open_bdev);
2242 pd->f_open_bdev = NULL;
2243
2244 pkt_shrink_pktlist(pd);
2245}
2246
2247static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2248{
2249 if (dev_minor >= MAX_WRITERS)
2250 return NULL;
2251
2252 dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2253 return pkt_devs[dev_minor];
2254}
2255
2256static int pkt_open(struct gendisk *disk, blk_mode_t mode)
2257{
2258 struct pktcdvd_device *pd = NULL;
2259 int ret;
2260
2261 mutex_lock(&pktcdvd_mutex);
2262 mutex_lock(&ctl_mutex);
2263 pd = pkt_find_dev_from_minor(disk->first_minor);
2264 if (!pd) {
2265 ret = -ENODEV;
2266 goto out;
2267 }
2268 BUG_ON(pd->refcnt < 0);
2269
2270 pd->refcnt++;
2271 if (pd->refcnt > 1) {
2272 if ((mode & BLK_OPEN_WRITE) &&
2273 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2274 ret = -EBUSY;
2275 goto out_dec;
2276 }
2277 } else {
2278 ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE);
2279 if (ret)
2280 goto out_dec;
2281 /*
2282 * needed here as well, since ext2 (among others) may change
2283 * the blocksize at mount time
2284 */
2285 set_blocksize(disk->part0, CD_FRAMESIZE);
2286 }
2287 mutex_unlock(&ctl_mutex);
2288 mutex_unlock(&pktcdvd_mutex);
2289 return 0;
2290
2291out_dec:
2292 pd->refcnt--;
2293out:
2294 mutex_unlock(&ctl_mutex);
2295 mutex_unlock(&pktcdvd_mutex);
2296 return ret;
2297}
2298
2299static void pkt_release(struct gendisk *disk)
2300{
2301 struct pktcdvd_device *pd = disk->private_data;
2302
2303 mutex_lock(&pktcdvd_mutex);
2304 mutex_lock(&ctl_mutex);
2305 pd->refcnt--;
2306 BUG_ON(pd->refcnt < 0);
2307 if (pd->refcnt == 0) {
2308 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2309 pkt_release_dev(pd, flush);
2310 }
2311 mutex_unlock(&ctl_mutex);
2312 mutex_unlock(&pktcdvd_mutex);
2313}
2314
2315
2316static void pkt_end_io_read_cloned(struct bio *bio)
2317{
2318 struct packet_stacked_data *psd = bio->bi_private;
2319 struct pktcdvd_device *pd = psd->pd;
2320
2321 psd->bio->bi_status = bio->bi_status;
2322 bio_put(bio);
2323 bio_endio(psd->bio);
2324 mempool_free(psd, &psd_pool);
2325 pkt_bio_finished(pd);
2326}
2327
2328static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2329{
2330 struct bio *cloned_bio = bio_alloc_clone(file_bdev(pd->bdev_file), bio,
2331 GFP_NOIO, &pkt_bio_set);
2332 struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2333
2334 psd->pd = pd;
2335 psd->bio = bio;
2336 cloned_bio->bi_private = psd;
2337 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2338 pd->stats.secs_r += bio_sectors(bio);
2339 pkt_queue_bio(pd, cloned_bio);
2340}
2341
2342static void pkt_make_request_write(struct bio *bio)
2343{
2344 struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data;
2345 sector_t zone;
2346 struct packet_data *pkt;
2347 int was_empty, blocked_bio;
2348 struct pkt_rb_node *node;
2349
2350 zone = get_zone(bio->bi_iter.bi_sector, pd);
2351
2352 /*
2353 * If we find a matching packet in state WAITING or READ_WAIT, we can
2354 * just append this bio to that packet.
2355 */
2356 spin_lock(&pd->cdrw.active_list_lock);
2357 blocked_bio = 0;
2358 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2359 if (pkt->sector == zone) {
2360 spin_lock(&pkt->lock);
2361 if ((pkt->state == PACKET_WAITING_STATE) ||
2362 (pkt->state == PACKET_READ_WAIT_STATE)) {
2363 bio_list_add(&pkt->orig_bios, bio);
2364 pkt->write_size +=
2365 bio->bi_iter.bi_size / CD_FRAMESIZE;
2366 if ((pkt->write_size >= pkt->frames) &&
2367 (pkt->state == PACKET_WAITING_STATE)) {
2368 atomic_inc(&pkt->run_sm);
2369 wake_up(&pd->wqueue);
2370 }
2371 spin_unlock(&pkt->lock);
2372 spin_unlock(&pd->cdrw.active_list_lock);
2373 return;
2374 } else {
2375 blocked_bio = 1;
2376 }
2377 spin_unlock(&pkt->lock);
2378 }
2379 }
2380 spin_unlock(&pd->cdrw.active_list_lock);
2381
2382 /*
2383 * Test if there is enough room left in the bio work queue
2384 * (queue size >= congestion on mark).
2385 * If not, wait till the work queue size is below the congestion off mark.
2386 */
2387 spin_lock(&pd->lock);
2388 if (pd->write_congestion_on > 0
2389 && pd->bio_queue_size >= pd->write_congestion_on) {
2390 struct wait_bit_queue_entry wqe;
2391
2392 init_wait_var_entry(&wqe, &pd->congested, 0);
2393 for (;;) {
2394 prepare_to_wait_event(__var_waitqueue(&pd->congested),
2395 &wqe.wq_entry,
2396 TASK_UNINTERRUPTIBLE);
2397 if (pd->bio_queue_size <= pd->write_congestion_off)
2398 break;
2399 pd->congested = true;
2400 spin_unlock(&pd->lock);
2401 schedule();
2402 spin_lock(&pd->lock);
2403 }
2404 }
2405 spin_unlock(&pd->lock);
2406
2407 /*
2408 * No matching packet found. Store the bio in the work queue.
2409 */
2410 node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2411 node->bio = bio;
2412 spin_lock(&pd->lock);
2413 BUG_ON(pd->bio_queue_size < 0);
2414 was_empty = (pd->bio_queue_size == 0);
2415 pkt_rbtree_insert(pd, node);
2416 spin_unlock(&pd->lock);
2417
2418 /*
2419 * Wake up the worker thread.
2420 */
2421 atomic_set(&pd->scan_queue, 1);
2422 if (was_empty) {
2423 /* This wake_up is required for correct operation */
2424 wake_up(&pd->wqueue);
2425 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2426 /*
2427 * This wake up is not required for correct operation,
2428 * but improves performance in some cases.
2429 */
2430 wake_up(&pd->wqueue);
2431 }
2432}
2433
2434static void pkt_submit_bio(struct bio *bio)
2435{
2436 struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data;
2437 struct device *ddev = disk_to_dev(pd->disk);
2438 struct bio *split;
2439
2440 bio = bio_split_to_limits(bio);
2441 if (!bio)
2442 return;
2443
2444 dev_dbg(ddev, "start = %6llx stop = %6llx\n",
2445 bio->bi_iter.bi_sector, bio_end_sector(bio));
2446
2447 /*
2448 * Clone READ bios so we can have our own bi_end_io callback.
2449 */
2450 if (bio_data_dir(bio) == READ) {
2451 pkt_make_request_read(pd, bio);
2452 return;
2453 }
2454
2455 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2456 dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector);
2457 goto end_io;
2458 }
2459
2460 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2461 dev_err(ddev, "wrong bio size\n");
2462 goto end_io;
2463 }
2464
2465 do {
2466 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2467 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2468
2469 if (last_zone != zone) {
2470 BUG_ON(last_zone != zone + pd->settings.size);
2471
2472 split = bio_split(bio, last_zone -
2473 bio->bi_iter.bi_sector,
2474 GFP_NOIO, &pkt_bio_set);
2475 bio_chain(split, bio);
2476 } else {
2477 split = bio;
2478 }
2479
2480 pkt_make_request_write(split);
2481 } while (split != bio);
2482
2483 return;
2484end_io:
2485 bio_io_error(bio);
2486}
2487
2488static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2489{
2490 struct device *ddev = disk_to_dev(pd->disk);
2491 int i;
2492 struct file *bdev_file;
2493 struct scsi_device *sdev;
2494
2495 if (pd->pkt_dev == dev) {
2496 dev_err(ddev, "recursive setup not allowed\n");
2497 return -EBUSY;
2498 }
2499 for (i = 0; i < MAX_WRITERS; i++) {
2500 struct pktcdvd_device *pd2 = pkt_devs[i];
2501 if (!pd2)
2502 continue;
2503 if (file_bdev(pd2->bdev_file)->bd_dev == dev) {
2504 dev_err(ddev, "%pg already setup\n",
2505 file_bdev(pd2->bdev_file));
2506 return -EBUSY;
2507 }
2508 if (pd2->pkt_dev == dev) {
2509 dev_err(ddev, "can't chain pktcdvd devices\n");
2510 return -EBUSY;
2511 }
2512 }
2513
2514 bdev_file = bdev_file_open_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY,
2515 NULL, NULL);
2516 if (IS_ERR(bdev_file))
2517 return PTR_ERR(bdev_file);
2518 sdev = scsi_device_from_queue(file_bdev(bdev_file)->bd_disk->queue);
2519 if (!sdev) {
2520 fput(bdev_file);
2521 return -EINVAL;
2522 }
2523 put_device(&sdev->sdev_gendev);
2524
2525 /* This is safe, since we have a reference from open(). */
2526 __module_get(THIS_MODULE);
2527
2528 pd->bdev_file = bdev_file;
2529 set_blocksize(file_bdev(bdev_file), CD_FRAMESIZE);
2530
2531 atomic_set(&pd->cdrw.pending_bios, 0);
2532 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name);
2533 if (IS_ERR(pd->cdrw.thread)) {
2534 dev_err(ddev, "can't start kernel thread\n");
2535 goto out_mem;
2536 }
2537
2538 proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd);
2539 dev_notice(ddev, "writer mapped to %pg\n", file_bdev(bdev_file));
2540 return 0;
2541
2542out_mem:
2543 fput(bdev_file);
2544 /* This is safe: open() is still holding a reference. */
2545 module_put(THIS_MODULE);
2546 return -ENOMEM;
2547}
2548
2549static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode,
2550 unsigned int cmd, unsigned long arg)
2551{
2552 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2553 struct device *ddev = disk_to_dev(pd->disk);
2554 int ret;
2555
2556 dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2557
2558 mutex_lock(&pktcdvd_mutex);
2559 switch (cmd) {
2560 case CDROMEJECT:
2561 /*
2562 * The door gets locked when the device is opened, so we
2563 * have to unlock it or else the eject command fails.
2564 */
2565 if (pd->refcnt == 1)
2566 pkt_lock_door(pd, 0);
2567 fallthrough;
2568 /*
2569 * forward selected CDROM ioctls to CD-ROM, for UDF
2570 */
2571 case CDROMMULTISESSION:
2572 case CDROMREADTOCENTRY:
2573 case CDROM_LAST_WRITTEN:
2574 case CDROM_SEND_PACKET:
2575 case SCSI_IOCTL_SEND_COMMAND:
2576 if (!bdev->bd_disk->fops->ioctl)
2577 ret = -ENOTTY;
2578 else
2579 ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2580 break;
2581 default:
2582 dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd);
2583 ret = -ENOTTY;
2584 }
2585 mutex_unlock(&pktcdvd_mutex);
2586
2587 return ret;
2588}
2589
2590static unsigned int pkt_check_events(struct gendisk *disk,
2591 unsigned int clearing)
2592{
2593 struct pktcdvd_device *pd = disk->private_data;
2594 struct gendisk *attached_disk;
2595
2596 if (!pd)
2597 return 0;
2598 if (!pd->bdev_file)
2599 return 0;
2600 attached_disk = file_bdev(pd->bdev_file)->bd_disk;
2601 if (!attached_disk || !attached_disk->fops->check_events)
2602 return 0;
2603 return attached_disk->fops->check_events(attached_disk, clearing);
2604}
2605
2606static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2607{
2608 return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2609}
2610
2611static const struct block_device_operations pktcdvd_ops = {
2612 .owner = THIS_MODULE,
2613 .submit_bio = pkt_submit_bio,
2614 .open = pkt_open,
2615 .release = pkt_release,
2616 .ioctl = pkt_ioctl,
2617 .compat_ioctl = blkdev_compat_ptr_ioctl,
2618 .check_events = pkt_check_events,
2619 .devnode = pkt_devnode,
2620};
2621
2622/*
2623 * Set up mapping from pktcdvd device to CD-ROM device.
2624 */
2625static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2626{
2627 struct queue_limits lim = {
2628 .max_hw_sectors = PACKET_MAX_SECTORS,
2629 .logical_block_size = CD_FRAMESIZE,
2630 };
2631 int idx;
2632 int ret = -ENOMEM;
2633 struct pktcdvd_device *pd;
2634 struct gendisk *disk;
2635
2636 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2637
2638 for (idx = 0; idx < MAX_WRITERS; idx++)
2639 if (!pkt_devs[idx])
2640 break;
2641 if (idx == MAX_WRITERS) {
2642 pr_err("max %d writers supported\n", MAX_WRITERS);
2643 ret = -EBUSY;
2644 goto out_mutex;
2645 }
2646
2647 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2648 if (!pd)
2649 goto out_mutex;
2650
2651 ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2652 sizeof(struct pkt_rb_node));
2653 if (ret)
2654 goto out_mem;
2655
2656 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2657 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2658 spin_lock_init(&pd->cdrw.active_list_lock);
2659
2660 spin_lock_init(&pd->lock);
2661 spin_lock_init(&pd->iosched.lock);
2662 bio_list_init(&pd->iosched.read_queue);
2663 bio_list_init(&pd->iosched.write_queue);
2664 init_waitqueue_head(&pd->wqueue);
2665 pd->bio_queue = RB_ROOT;
2666
2667 pd->write_congestion_on = write_congestion_on;
2668 pd->write_congestion_off = write_congestion_off;
2669
2670 disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2671 if (IS_ERR(disk)) {
2672 ret = PTR_ERR(disk);
2673 goto out_mem;
2674 }
2675 pd->disk = disk;
2676 disk->major = pktdev_major;
2677 disk->first_minor = idx;
2678 disk->minors = 1;
2679 disk->fops = &pktcdvd_ops;
2680 disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2681 snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx);
2682 disk->private_data = pd;
2683
2684 pd->pkt_dev = MKDEV(pktdev_major, idx);
2685 ret = pkt_new_dev(pd, dev);
2686 if (ret)
2687 goto out_mem2;
2688
2689 /* inherit events of the host device */
2690 disk->events = file_bdev(pd->bdev_file)->bd_disk->events;
2691
2692 ret = add_disk(disk);
2693 if (ret)
2694 goto out_mem2;
2695
2696 pkt_sysfs_dev_new(pd);
2697 pkt_debugfs_dev_new(pd);
2698
2699 pkt_devs[idx] = pd;
2700 if (pkt_dev)
2701 *pkt_dev = pd->pkt_dev;
2702
2703 mutex_unlock(&ctl_mutex);
2704 return 0;
2705
2706out_mem2:
2707 put_disk(disk);
2708out_mem:
2709 mempool_exit(&pd->rb_pool);
2710 kfree(pd);
2711out_mutex:
2712 mutex_unlock(&ctl_mutex);
2713 pr_err("setup of pktcdvd device failed\n");
2714 return ret;
2715}
2716
2717/*
2718 * Tear down mapping from pktcdvd device to CD-ROM device.
2719 */
2720static int pkt_remove_dev(dev_t pkt_dev)
2721{
2722 struct pktcdvd_device *pd;
2723 struct device *ddev;
2724 int idx;
2725 int ret = 0;
2726
2727 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2728
2729 for (idx = 0; idx < MAX_WRITERS; idx++) {
2730 pd = pkt_devs[idx];
2731 if (pd && (pd->pkt_dev == pkt_dev))
2732 break;
2733 }
2734 if (idx == MAX_WRITERS) {
2735 pr_debug("dev not setup\n");
2736 ret = -ENXIO;
2737 goto out;
2738 }
2739
2740 if (pd->refcnt > 0) {
2741 ret = -EBUSY;
2742 goto out;
2743 }
2744
2745 ddev = disk_to_dev(pd->disk);
2746
2747 if (!IS_ERR(pd->cdrw.thread))
2748 kthread_stop(pd->cdrw.thread);
2749
2750 pkt_devs[idx] = NULL;
2751
2752 pkt_debugfs_dev_remove(pd);
2753 pkt_sysfs_dev_remove(pd);
2754
2755 fput(pd->bdev_file);
2756
2757 remove_proc_entry(pd->disk->disk_name, pkt_proc);
2758 dev_notice(ddev, "writer unmapped\n");
2759
2760 del_gendisk(pd->disk);
2761 put_disk(pd->disk);
2762
2763 mempool_exit(&pd->rb_pool);
2764 kfree(pd);
2765
2766 /* This is safe: open() is still holding a reference. */
2767 module_put(THIS_MODULE);
2768
2769out:
2770 mutex_unlock(&ctl_mutex);
2771 return ret;
2772}
2773
2774static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2775{
2776 struct pktcdvd_device *pd;
2777
2778 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2779
2780 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2781 if (pd) {
2782 ctrl_cmd->dev = new_encode_dev(file_bdev(pd->bdev_file)->bd_dev);
2783 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2784 } else {
2785 ctrl_cmd->dev = 0;
2786 ctrl_cmd->pkt_dev = 0;
2787 }
2788 ctrl_cmd->num_devices = MAX_WRITERS;
2789
2790 mutex_unlock(&ctl_mutex);
2791}
2792
2793static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2794{
2795 void __user *argp = (void __user *)arg;
2796 struct pkt_ctrl_command ctrl_cmd;
2797 int ret = 0;
2798 dev_t pkt_dev = 0;
2799
2800 if (cmd != PACKET_CTRL_CMD)
2801 return -ENOTTY;
2802
2803 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2804 return -EFAULT;
2805
2806 switch (ctrl_cmd.command) {
2807 case PKT_CTRL_CMD_SETUP:
2808 if (!capable(CAP_SYS_ADMIN))
2809 return -EPERM;
2810 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2811 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2812 break;
2813 case PKT_CTRL_CMD_TEARDOWN:
2814 if (!capable(CAP_SYS_ADMIN))
2815 return -EPERM;
2816 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2817 break;
2818 case PKT_CTRL_CMD_STATUS:
2819 pkt_get_status(&ctrl_cmd);
2820 break;
2821 default:
2822 return -ENOTTY;
2823 }
2824
2825 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2826 return -EFAULT;
2827 return ret;
2828}
2829
2830#ifdef CONFIG_COMPAT
2831static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2832{
2833 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2834}
2835#endif
2836
2837static const struct file_operations pkt_ctl_fops = {
2838 .open = nonseekable_open,
2839 .unlocked_ioctl = pkt_ctl_ioctl,
2840#ifdef CONFIG_COMPAT
2841 .compat_ioctl = pkt_ctl_compat_ioctl,
2842#endif
2843 .owner = THIS_MODULE,
2844 .llseek = no_llseek,
2845};
2846
2847static struct miscdevice pkt_misc = {
2848 .minor = MISC_DYNAMIC_MINOR,
2849 .name = DRIVER_NAME,
2850 .nodename = "pktcdvd/control",
2851 .fops = &pkt_ctl_fops
2852};
2853
2854static int __init pkt_init(void)
2855{
2856 int ret;
2857
2858 mutex_init(&ctl_mutex);
2859
2860 ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2861 sizeof(struct packet_stacked_data));
2862 if (ret)
2863 return ret;
2864 ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2865 if (ret) {
2866 mempool_exit(&psd_pool);
2867 return ret;
2868 }
2869
2870 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2871 if (ret < 0) {
2872 pr_err("unable to register block device\n");
2873 goto out2;
2874 }
2875 if (!pktdev_major)
2876 pktdev_major = ret;
2877
2878 ret = pkt_sysfs_init();
2879 if (ret)
2880 goto out;
2881
2882 pkt_debugfs_init();
2883
2884 ret = misc_register(&pkt_misc);
2885 if (ret) {
2886 pr_err("unable to register misc device\n");
2887 goto out_misc;
2888 }
2889
2890 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2891
2892 return 0;
2893
2894out_misc:
2895 pkt_debugfs_cleanup();
2896 pkt_sysfs_cleanup();
2897out:
2898 unregister_blkdev(pktdev_major, DRIVER_NAME);
2899out2:
2900 mempool_exit(&psd_pool);
2901 bioset_exit(&pkt_bio_set);
2902 return ret;
2903}
2904
2905static void __exit pkt_exit(void)
2906{
2907 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2908 misc_deregister(&pkt_misc);
2909
2910 pkt_debugfs_cleanup();
2911 pkt_sysfs_cleanup();
2912
2913 unregister_blkdev(pktdev_major, DRIVER_NAME);
2914 mempool_exit(&psd_pool);
2915 bioset_exit(&pkt_bio_set);
2916}
2917
2918MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2919MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2920MODULE_LICENSE("GPL");
2921
2922module_init(pkt_init);
2923module_exit(pkt_exit);