Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
   3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
   4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
   5 *
   6 * May be copied or modified under the terms of the GNU General Public
   7 * License.  See linux/COPYING for more information.
   8 *
   9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
  10 * DVD-RAM devices.
  11 *
  12 * Theory of operation:
  13 *
  14 * At the lowest level, there is the standard driver for the CD/DVD device,
  15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
  16 * but it doesn't know anything about the special restrictions that apply to
  17 * packet writing. One restriction is that write requests must be aligned to
  18 * packet boundaries on the physical media, and the size of a write request
  19 * must be equal to the packet size. Another restriction is that a
  20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
  21 * command, if the previous command was a write.
  22 *
  23 * The purpose of the packet writing driver is to hide these restrictions from
  24 * higher layers, such as file systems, and present a block device that can be
  25 * randomly read and written using 2kB-sized blocks.
  26 *
  27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
  28 * Its data is defined by the struct packet_iosched and includes two bio
  29 * queues with pending read and write requests. These queues are processed
  30 * by the pkt_iosched_process_queue() function. The write requests in this
  31 * queue are already properly aligned and sized. This layer is responsible for
  32 * issuing the flush cache commands and scheduling the I/O in a good order.
  33 *
  34 * The next layer transforms unaligned write requests to aligned writes. This
  35 * transformation requires reading missing pieces of data from the underlying
  36 * block device, assembling the pieces to full packets and queuing them to the
  37 * packet I/O scheduler.
  38 *
  39 * At the top layer there is a custom make_request_fn function that forwards
  40 * read requests directly to the iosched queue and puts write requests in the
  41 * unaligned write queue. A kernel thread performs the necessary read
  42 * gathering to convert the unaligned writes to aligned writes and then feeds
  43 * them to the packet I/O scheduler.
  44 *
  45 *************************************************************************/
  46
  47#include <linux/pktcdvd.h>
  48#include <linux/module.h>
  49#include <linux/types.h>
  50#include <linux/kernel.h>
  51#include <linux/compat.h>
  52#include <linux/kthread.h>
 
  53#include <linux/errno.h>
  54#include <linux/spinlock.h>
  55#include <linux/file.h>
  56#include <linux/proc_fs.h>
  57#include <linux/seq_file.h>
  58#include <linux/miscdevice.h>
  59#include <linux/freezer.h>
 
 
 
 
  60#include <linux/mutex.h>
 
 
 
 
  61#include <linux/slab.h>
 
 
 
 
 
  62#include <scsi/scsi_cmnd.h>
  63#include <scsi/scsi_ioctl.h>
  64#include <scsi/scsi.h>
  65#include <linux/debugfs.h>
  66#include <linux/device.h>
  67
  68#include <asm/uaccess.h>
  69
  70#define DRIVER_NAME	"pktcdvd"
  71
  72#if PACKET_DEBUG
  73#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  74#else
  75#define DPRINTK(fmt, args...)
  76#endif
  77
  78#if PACKET_DEBUG > 1
  79#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
  80#else
  81#define VPRINTK(fmt, args...)
  82#endif
  83
  84#define MAX_SPEED 0xffff
  85
  86#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
  87
  88static DEFINE_MUTEX(pktcdvd_mutex);
  89static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
  90static struct proc_dir_entry *pkt_proc;
  91static int pktdev_major;
  92static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
  93static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
  94static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
  95static mempool_t *psd_pool;
 
  96
  97static struct class	*class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
 
  98static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
  99
 100/* forward declaration */
 101static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
 102static int pkt_remove_dev(dev_t pkt_dev);
 103static int pkt_seq_show(struct seq_file *m, void *p);
 104
 105
 106
 107/*
 108 * create and register a pktcdvd kernel object.
 109 */
 110static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
 111					const char* name,
 112					struct kobject* parent,
 113					struct kobj_type* ktype)
 114{
 115	struct pktcdvd_kobj *p;
 116	int error;
 117
 118	p = kzalloc(sizeof(*p), GFP_KERNEL);
 119	if (!p)
 120		return NULL;
 121	p->pd = pd;
 122	error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
 123	if (error) {
 124		kobject_put(&p->kobj);
 125		return NULL;
 126	}
 127	kobject_uevent(&p->kobj, KOBJ_ADD);
 128	return p;
 129}
 130/*
 131 * remove a pktcdvd kernel object.
 132 */
 133static void pkt_kobj_remove(struct pktcdvd_kobj *p)
 134{
 135	if (p)
 136		kobject_put(&p->kobj);
 137}
 138/*
 139 * default release function for pktcdvd kernel objects.
 140 */
 141static void pkt_kobj_release(struct kobject *kobj)
 142{
 143	kfree(to_pktcdvdkobj(kobj));
 144}
 145
 146
 147/**********************************************************
 148 *
 149 * sysfs interface for pktcdvd
 150 * by (C) 2006  Thomas Maier <balagi@justmail.de>
 151 *
 152 **********************************************************/
 153
 154#define DEF_ATTR(_obj,_name,_mode) \
 155	static struct attribute _obj = { .name = _name, .mode = _mode }
 156
 157/**********************************************************
 158  /sys/class/pktcdvd/pktcdvd[0-7]/
 159                     stat/reset
 160                     stat/packets_started
 161                     stat/packets_finished
 162                     stat/kb_written
 163                     stat/kb_read
 164                     stat/kb_read_gather
 165                     write_queue/size
 166                     write_queue/congestion_off
 167                     write_queue/congestion_on
 168 **********************************************************/
 169
 170DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
 171DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
 172DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
 173DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
 174DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
 175DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
 176
 177static struct attribute *kobj_pkt_attrs_stat[] = {
 178	&kobj_pkt_attr_st1,
 179	&kobj_pkt_attr_st2,
 180	&kobj_pkt_attr_st3,
 181	&kobj_pkt_attr_st4,
 182	&kobj_pkt_attr_st5,
 183	&kobj_pkt_attr_st6,
 184	NULL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185};
 186
 187DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
 188DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
 189DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
 190
 191static struct attribute *kobj_pkt_attrs_wqueue[] = {
 192	&kobj_pkt_attr_wq1,
 193	&kobj_pkt_attr_wq2,
 194	&kobj_pkt_attr_wq3,
 195	NULL
 196};
 197
 198static ssize_t kobj_pkt_show(struct kobject *kobj,
 199			struct attribute *attr, char *data)
 200{
 201	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
 202	int n = 0;
 203	int v;
 204	if (strcmp(attr->name, "packets_started") == 0) {
 205		n = sprintf(data, "%lu\n", pd->stats.pkt_started);
 206
 207	} else if (strcmp(attr->name, "packets_finished") == 0) {
 208		n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
 209
 210	} else if (strcmp(attr->name, "kb_written") == 0) {
 211		n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
 212
 213	} else if (strcmp(attr->name, "kb_read") == 0) {
 214		n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
 215
 216	} else if (strcmp(attr->name, "kb_read_gather") == 0) {
 217		n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
 218
 219	} else if (strcmp(attr->name, "size") == 0) {
 220		spin_lock(&pd->lock);
 221		v = pd->bio_queue_size;
 222		spin_unlock(&pd->lock);
 223		n = sprintf(data, "%d\n", v);
 224
 225	} else if (strcmp(attr->name, "congestion_off") == 0) {
 226		spin_lock(&pd->lock);
 227		v = pd->write_congestion_off;
 228		spin_unlock(&pd->lock);
 229		n = sprintf(data, "%d\n", v);
 230
 231	} else if (strcmp(attr->name, "congestion_on") == 0) {
 232		spin_lock(&pd->lock);
 233		v = pd->write_congestion_on;
 234		spin_unlock(&pd->lock);
 235		n = sprintf(data, "%d\n", v);
 236	}
 237	return n;
 238}
 
 239
 240static void init_write_congestion_marks(int* lo, int* hi)
 241{
 242	if (*hi > 0) {
 243		*hi = max(*hi, 500);
 244		*hi = min(*hi, 1000000);
 245		if (*lo <= 0)
 246			*lo = *hi - 100;
 247		else {
 248			*lo = min(*lo, *hi - 100);
 249			*lo = max(*lo, 100);
 250		}
 251	} else {
 252		*hi = -1;
 253		*lo = -1;
 254	}
 255}
 256
 257static ssize_t kobj_pkt_store(struct kobject *kobj,
 258			struct attribute *attr,
 259			const char *data, size_t len)
 260{
 261	struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
 262	int val;
 263
 264	if (strcmp(attr->name, "reset") == 0 && len > 0) {
 265		pd->stats.pkt_started = 0;
 266		pd->stats.pkt_ended = 0;
 267		pd->stats.secs_w = 0;
 268		pd->stats.secs_rg = 0;
 269		pd->stats.secs_r = 0;
 270
 271	} else if (strcmp(attr->name, "congestion_off") == 0
 272		   && sscanf(data, "%d", &val) == 1) {
 273		spin_lock(&pd->lock);
 274		pd->write_congestion_off = val;
 275		init_write_congestion_marks(&pd->write_congestion_off,
 276					&pd->write_congestion_on);
 277		spin_unlock(&pd->lock);
 278
 279	} else if (strcmp(attr->name, "congestion_on") == 0
 280		   && sscanf(data, "%d", &val) == 1) {
 281		spin_lock(&pd->lock);
 282		pd->write_congestion_on = val;
 283		init_write_congestion_marks(&pd->write_congestion_off,
 284					&pd->write_congestion_on);
 285		spin_unlock(&pd->lock);
 286	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287	return len;
 288}
 
 289
 290static const struct sysfs_ops kobj_pkt_ops = {
 291	.show = kobj_pkt_show,
 292	.store = kobj_pkt_store
 
 
 293};
 294static struct kobj_type kobj_pkt_type_stat = {
 295	.release = pkt_kobj_release,
 296	.sysfs_ops = &kobj_pkt_ops,
 297	.default_attrs = kobj_pkt_attrs_stat
 298};
 299static struct kobj_type kobj_pkt_type_wqueue = {
 300	.release = pkt_kobj_release,
 301	.sysfs_ops = &kobj_pkt_ops,
 302	.default_attrs = kobj_pkt_attrs_wqueue
 
 303};
 304
 305static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
 306{
 307	if (class_pktcdvd) {
 308		pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
 309					"%s", pd->name);
 
 310		if (IS_ERR(pd->dev))
 311			pd->dev = NULL;
 312	}
 313	if (pd->dev) {
 314		pd->kobj_stat = pkt_kobj_create(pd, "stat",
 315					&pd->dev->kobj,
 316					&kobj_pkt_type_stat);
 317		pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
 318					&pd->dev->kobj,
 319					&kobj_pkt_type_wqueue);
 320	}
 321}
 322
 323static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
 324{
 325	pkt_kobj_remove(pd->kobj_stat);
 326	pkt_kobj_remove(pd->kobj_wqueue);
 327	if (class_pktcdvd)
 328		device_unregister(pd->dev);
 329}
 330
 331
 332/********************************************************************
 333  /sys/class/pktcdvd/
 334                     add            map block device
 335                     remove         unmap packet dev
 336                     device_map     show mappings
 337 *******************************************************************/
 338
 339static void class_pktcdvd_release(struct class *cls)
 340{
 341	kfree(cls);
 342}
 343static ssize_t class_pktcdvd_show_map(struct class *c,
 344					struct class_attribute *attr,
 345					char *data)
 346{
 347	int n = 0;
 348	int idx;
 349	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
 350	for (idx = 0; idx < MAX_WRITERS; idx++) {
 351		struct pktcdvd_device *pd = pkt_devs[idx];
 352		if (!pd)
 353			continue;
 354		n += sprintf(data+n, "%s %u:%u %u:%u\n",
 355			pd->name,
 356			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
 357			MAJOR(pd->bdev->bd_dev),
 358			MINOR(pd->bdev->bd_dev));
 359	}
 360	mutex_unlock(&ctl_mutex);
 361	return n;
 362}
 
 363
 364static ssize_t class_pktcdvd_store_add(struct class *c,
 365					struct class_attribute *attr,
 366					const char *buf,
 367					size_t count)
 368{
 369	unsigned int major, minor;
 370
 371	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 372		/* pkt_setup_dev() expects caller to hold reference to self */
 373		if (!try_module_get(THIS_MODULE))
 374			return -ENODEV;
 375
 376		pkt_setup_dev(MKDEV(major, minor), NULL);
 377
 378		module_put(THIS_MODULE);
 379
 380		return count;
 381	}
 382
 383	return -EINVAL;
 384}
 
 385
 386static ssize_t class_pktcdvd_store_remove(struct class *c,
 387					  struct class_attribute *attr,
 388					  const char *buf,
 389					size_t count)
 390{
 391	unsigned int major, minor;
 392	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 393		pkt_remove_dev(MKDEV(major, minor));
 394		return count;
 395	}
 396	return -EINVAL;
 397}
 
 398
 399static struct class_attribute class_pktcdvd_attrs[] = {
 400 __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
 401 __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
 402 __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
 403 __ATTR_NULL
 404};
 
 405
 
 
 
 
 406
 407static int pkt_sysfs_init(void)
 408{
 409	int ret = 0;
 410
 411	/*
 412	 * create control files in sysfs
 413	 * /sys/class/pktcdvd/...
 414	 */
 415	class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
 416	if (!class_pktcdvd)
 417		return -ENOMEM;
 418	class_pktcdvd->name = DRIVER_NAME;
 419	class_pktcdvd->owner = THIS_MODULE;
 420	class_pktcdvd->class_release = class_pktcdvd_release;
 421	class_pktcdvd->class_attrs = class_pktcdvd_attrs;
 422	ret = class_register(class_pktcdvd);
 423	if (ret) {
 424		kfree(class_pktcdvd);
 425		class_pktcdvd = NULL;
 426		printk(DRIVER_NAME": failed to create class pktcdvd\n");
 427		return ret;
 428	}
 429	return 0;
 430}
 431
 432static void pkt_sysfs_cleanup(void)
 433{
 434	if (class_pktcdvd)
 435		class_destroy(class_pktcdvd);
 436	class_pktcdvd = NULL;
 437}
 438
 439/********************************************************************
 440  entries in debugfs
 441
 442  /sys/kernel/debug/pktcdvd[0-7]/
 443			info
 444
 445 *******************************************************************/
 446
 447static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
 448{
 449	return pkt_seq_show(m, p);
 
 
 
 
 
 
 
 
 
 
 450}
 451
 452static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
 453{
 454	return single_open(file, pkt_debugfs_seq_show, inode->i_private);
 455}
 
 456
 457static const struct file_operations debug_fops = {
 458	.open		= pkt_debugfs_fops_open,
 459	.read		= seq_read,
 460	.llseek		= seq_lseek,
 461	.release	= single_release,
 462	.owner		= THIS_MODULE,
 463};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464
 465static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
 466{
 467	if (!pkt_debugfs_root)
 468		return;
 469	pd->dfs_f_info = NULL;
 470	pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
 471	if (IS_ERR(pd->dfs_d_root)) {
 472		pd->dfs_d_root = NULL;
 473		return;
 474	}
 475	pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
 476				pd->dfs_d_root, pd, &debug_fops);
 477	if (IS_ERR(pd->dfs_f_info)) {
 478		pd->dfs_f_info = NULL;
 479		return;
 480	}
 
 
 481}
 482
 483static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
 484{
 485	if (!pkt_debugfs_root)
 486		return;
 487	if (pd->dfs_f_info)
 488		debugfs_remove(pd->dfs_f_info);
 489	pd->dfs_f_info = NULL;
 490	if (pd->dfs_d_root)
 491		debugfs_remove(pd->dfs_d_root);
 492	pd->dfs_d_root = NULL;
 493}
 494
 495static void pkt_debugfs_init(void)
 496{
 497	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
 498	if (IS_ERR(pkt_debugfs_root)) {
 499		pkt_debugfs_root = NULL;
 500		return;
 501	}
 502}
 503
 504static void pkt_debugfs_cleanup(void)
 505{
 506	if (!pkt_debugfs_root)
 507		return;
 508	debugfs_remove(pkt_debugfs_root);
 509	pkt_debugfs_root = NULL;
 510}
 511
 512/* ----------------------------------------------------------*/
 513
 514
 515static void pkt_bio_finished(struct pktcdvd_device *pd)
 516{
 
 
 517	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
 518	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
 519		VPRINTK(DRIVER_NAME": queue empty\n");
 520		atomic_set(&pd->iosched.attention, 1);
 521		wake_up(&pd->wqueue);
 522	}
 523}
 524
 525static void pkt_bio_destructor(struct bio *bio)
 526{
 527	kfree(bio->bi_io_vec);
 528	kfree(bio);
 529}
 530
 531static struct bio *pkt_bio_alloc(int nr_iovecs)
 532{
 533	struct bio_vec *bvl = NULL;
 534	struct bio *bio;
 535
 536	bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
 537	if (!bio)
 538		goto no_bio;
 539	bio_init(bio);
 540
 541	bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
 542	if (!bvl)
 543		goto no_bvl;
 544
 545	bio->bi_max_vecs = nr_iovecs;
 546	bio->bi_io_vec = bvl;
 547	bio->bi_destructor = pkt_bio_destructor;
 548
 549	return bio;
 550
 551 no_bvl:
 552	kfree(bio);
 553 no_bio:
 554	return NULL;
 555}
 556
 557/*
 558 * Allocate a packet_data struct
 559 */
 560static struct packet_data *pkt_alloc_packet_data(int frames)
 561{
 562	int i;
 563	struct packet_data *pkt;
 564
 565	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
 566	if (!pkt)
 567		goto no_pkt;
 568
 569	pkt->frames = frames;
 570	pkt->w_bio = pkt_bio_alloc(frames);
 571	if (!pkt->w_bio)
 572		goto no_bio;
 573
 574	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
 575		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
 576		if (!pkt->pages[i])
 577			goto no_page;
 578	}
 579
 580	spin_lock_init(&pkt->lock);
 581	bio_list_init(&pkt->orig_bios);
 582
 583	for (i = 0; i < frames; i++) {
 584		struct bio *bio = pkt_bio_alloc(1);
 585		if (!bio)
 586			goto no_rd_bio;
 587		pkt->r_bios[i] = bio;
 588	}
 589
 590	return pkt;
 591
 592no_rd_bio:
 593	for (i = 0; i < frames; i++) {
 594		struct bio *bio = pkt->r_bios[i];
 595		if (bio)
 596			bio_put(bio);
 597	}
 598
 599no_page:
 600	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
 601		if (pkt->pages[i])
 602			__free_page(pkt->pages[i]);
 603	bio_put(pkt->w_bio);
 604no_bio:
 605	kfree(pkt);
 606no_pkt:
 607	return NULL;
 608}
 609
 610/*
 611 * Free a packet_data struct
 612 */
 613static void pkt_free_packet_data(struct packet_data *pkt)
 614{
 615	int i;
 616
 617	for (i = 0; i < pkt->frames; i++) {
 618		struct bio *bio = pkt->r_bios[i];
 619		if (bio)
 620			bio_put(bio);
 621	}
 622	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
 623		__free_page(pkt->pages[i]);
 624	bio_put(pkt->w_bio);
 625	kfree(pkt);
 626}
 627
 628static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
 629{
 630	struct packet_data *pkt, *next;
 631
 632	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
 633
 634	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
 635		pkt_free_packet_data(pkt);
 636	}
 637	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
 638}
 639
 640static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
 641{
 642	struct packet_data *pkt;
 643
 644	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
 645
 646	while (nr_packets > 0) {
 647		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
 648		if (!pkt) {
 649			pkt_shrink_pktlist(pd);
 650			return 0;
 651		}
 652		pkt->id = nr_packets;
 653		pkt->pd = pd;
 654		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
 655		nr_packets--;
 656	}
 657	return 1;
 658}
 659
 660static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
 661{
 662	struct rb_node *n = rb_next(&node->rb_node);
 663	if (!n)
 664		return NULL;
 665	return rb_entry(n, struct pkt_rb_node, rb_node);
 666}
 667
 668static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 669{
 670	rb_erase(&node->rb_node, &pd->bio_queue);
 671	mempool_free(node, pd->rb_pool);
 672	pd->bio_queue_size--;
 673	BUG_ON(pd->bio_queue_size < 0);
 674}
 675
 676/*
 677 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
 678 */
 679static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
 680{
 681	struct rb_node *n = pd->bio_queue.rb_node;
 682	struct rb_node *next;
 683	struct pkt_rb_node *tmp;
 684
 685	if (!n) {
 686		BUG_ON(pd->bio_queue_size > 0);
 687		return NULL;
 688	}
 689
 690	for (;;) {
 691		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
 692		if (s <= tmp->bio->bi_sector)
 693			next = n->rb_left;
 694		else
 695			next = n->rb_right;
 696		if (!next)
 697			break;
 698		n = next;
 699	}
 700
 701	if (s > tmp->bio->bi_sector) {
 702		tmp = pkt_rbtree_next(tmp);
 703		if (!tmp)
 704			return NULL;
 705	}
 706	BUG_ON(s > tmp->bio->bi_sector);
 707	return tmp;
 708}
 709
 710/*
 711 * Insert a node into the pd->bio_queue rb tree.
 712 */
 713static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 714{
 715	struct rb_node **p = &pd->bio_queue.rb_node;
 716	struct rb_node *parent = NULL;
 717	sector_t s = node->bio->bi_sector;
 718	struct pkt_rb_node *tmp;
 719
 720	while (*p) {
 721		parent = *p;
 722		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
 723		if (s < tmp->bio->bi_sector)
 724			p = &(*p)->rb_left;
 725		else
 726			p = &(*p)->rb_right;
 727	}
 728	rb_link_node(&node->rb_node, parent, p);
 729	rb_insert_color(&node->rb_node, &pd->bio_queue);
 730	pd->bio_queue_size++;
 731}
 732
 733/*
 734 * Send a packet_command to the underlying block device and
 735 * wait for completion.
 736 */
 737static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
 738{
 739	struct request_queue *q = bdev_get_queue(pd->bdev);
 
 740	struct request *rq;
 741	int ret = 0;
 742
 743	rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
 744			     WRITE : READ, __GFP_WAIT);
 
 
 
 745
 746	if (cgc->buflen) {
 747		if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
 
 
 748			goto out;
 749	}
 750
 751	rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
 752	memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
 753
 754	rq->timeout = 60*HZ;
 755	rq->cmd_type = REQ_TYPE_BLOCK_PC;
 756	if (cgc->quiet)
 757		rq->cmd_flags |= REQ_QUIET;
 758
 759	blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
 760	if (rq->errors)
 761		ret = -EIO;
 762out:
 763	blk_put_request(rq);
 764	return ret;
 765}
 766
 
 
 
 
 
 
 
 
 
 
 
 767/*
 768 * A generic sense dump / resolve mechanism should be implemented across
 769 * all ATAPI + SCSI devices.
 770 */
 771static void pkt_dump_sense(struct packet_command *cgc)
 
 772{
 773	static char *info[9] = { "No sense", "Recovered error", "Not ready",
 774				 "Medium error", "Hardware error", "Illegal request",
 775				 "Unit attention", "Data protect", "Blank check" };
 776	int i;
 777	struct request_sense *sense = cgc->sense;
 778
 779	printk(DRIVER_NAME":");
 780	for (i = 0; i < CDROM_PACKET_SIZE; i++)
 781		printk(" %02x", cgc->cmd[i]);
 782	printk(" - ");
 783
 784	if (sense == NULL) {
 785		printk("no sense\n");
 786		return;
 787	}
 788
 789	printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
 790
 791	if (sense->sense_key > 8) {
 792		printk(" (INVALID)\n");
 793		return;
 794	}
 795
 796	printk(" (%s)\n", info[sense->sense_key]);
 
 
 
 
 
 
 797}
 798
 799/*
 800 * flush the drive cache to media
 801 */
 802static int pkt_flush_cache(struct pktcdvd_device *pd)
 803{
 804	struct packet_command cgc;
 805
 806	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 807	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
 808	cgc.quiet = 1;
 809
 810	/*
 811	 * the IMMED bit -- we default to not setting it, although that
 812	 * would allow a much faster close, this is safer
 813	 */
 814#if 0
 815	cgc.cmd[1] = 1 << 1;
 816#endif
 817	return pkt_generic_packet(pd, &cgc);
 818}
 819
 820/*
 821 * speed is given as the normal factor, e.g. 4 for 4x
 822 */
 823static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
 824				unsigned write_speed, unsigned read_speed)
 825{
 826	struct packet_command cgc;
 827	struct request_sense sense;
 828	int ret;
 829
 830	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 831	cgc.sense = &sense;
 832	cgc.cmd[0] = GPCMD_SET_SPEED;
 833	cgc.cmd[2] = (read_speed >> 8) & 0xff;
 834	cgc.cmd[3] = read_speed & 0xff;
 835	cgc.cmd[4] = (write_speed >> 8) & 0xff;
 836	cgc.cmd[5] = write_speed & 0xff;
 837
 838	if ((ret = pkt_generic_packet(pd, &cgc)))
 839		pkt_dump_sense(&cgc);
 
 840
 841	return ret;
 842}
 843
 844/*
 845 * Queue a bio for processing by the low-level CD device. Must be called
 846 * from process context.
 847 */
 848static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
 849{
 
 
 
 
 
 
 850	spin_lock(&pd->iosched.lock);
 851	if (bio_data_dir(bio) == READ)
 852		bio_list_add(&pd->iosched.read_queue, bio);
 853	else
 854		bio_list_add(&pd->iosched.write_queue, bio);
 855	spin_unlock(&pd->iosched.lock);
 856
 857	atomic_set(&pd->iosched.attention, 1);
 858	wake_up(&pd->wqueue);
 859}
 860
 861/*
 862 * Process the queued read/write requests. This function handles special
 863 * requirements for CDRW drives:
 864 * - A cache flush command must be inserted before a read request if the
 865 *   previous request was a write.
 866 * - Switching between reading and writing is slow, so don't do it more often
 867 *   than necessary.
 868 * - Optimize for throughput at the expense of latency. This means that streaming
 869 *   writes will never be interrupted by a read, but if the drive has to seek
 870 *   before the next write, switch to reading instead if there are any pending
 871 *   read requests.
 872 * - Set the read speed according to current usage pattern. When only reading
 873 *   from the device, it's best to use the highest possible read speed, but
 874 *   when switching often between reading and writing, it's better to have the
 875 *   same read and write speeds.
 876 */
 877static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
 878{
 
 879
 880	if (atomic_read(&pd->iosched.attention) == 0)
 881		return;
 882	atomic_set(&pd->iosched.attention, 0);
 883
 884	for (;;) {
 885		struct bio *bio;
 886		int reads_queued, writes_queued;
 887
 888		spin_lock(&pd->iosched.lock);
 889		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
 890		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
 891		spin_unlock(&pd->iosched.lock);
 892
 893		if (!reads_queued && !writes_queued)
 894			break;
 895
 896		if (pd->iosched.writing) {
 897			int need_write_seek = 1;
 898			spin_lock(&pd->iosched.lock);
 899			bio = bio_list_peek(&pd->iosched.write_queue);
 900			spin_unlock(&pd->iosched.lock);
 901			if (bio && (bio->bi_sector == pd->iosched.last_write))
 
 902				need_write_seek = 0;
 903			if (need_write_seek && reads_queued) {
 904				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 905					VPRINTK(DRIVER_NAME": write, waiting\n");
 906					break;
 907				}
 908				pkt_flush_cache(pd);
 909				pd->iosched.writing = 0;
 910			}
 911		} else {
 912			if (!reads_queued && writes_queued) {
 913				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 914					VPRINTK(DRIVER_NAME": read, waiting\n");
 915					break;
 916				}
 917				pd->iosched.writing = 1;
 918			}
 919		}
 920
 921		spin_lock(&pd->iosched.lock);
 922		if (pd->iosched.writing)
 923			bio = bio_list_pop(&pd->iosched.write_queue);
 924		else
 925			bio = bio_list_pop(&pd->iosched.read_queue);
 926		spin_unlock(&pd->iosched.lock);
 927
 928		if (!bio)
 929			continue;
 930
 931		if (bio_data_dir(bio) == READ)
 932			pd->iosched.successive_reads += bio->bi_size >> 10;
 
 933		else {
 934			pd->iosched.successive_reads = 0;
 935			pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
 936		}
 937		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
 938			if (pd->read_speed == pd->write_speed) {
 939				pd->read_speed = MAX_SPEED;
 940				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 941			}
 942		} else {
 943			if (pd->read_speed != pd->write_speed) {
 944				pd->read_speed = pd->write_speed;
 945				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 946			}
 947		}
 948
 949		atomic_inc(&pd->cdrw.pending_bios);
 950		generic_make_request(bio);
 951	}
 952}
 953
 954/*
 955 * Special care is needed if the underlying block device has a small
 956 * max_phys_segments value.
 957 */
 958static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
 959{
 960	if ((pd->settings.size << 9) / CD_FRAMESIZE
 961	    <= queue_max_segments(q)) {
 
 962		/*
 963		 * The cdrom device can handle one segment/frame
 964		 */
 965		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
 966		return 0;
 967	} else if ((pd->settings.size << 9) / PAGE_SIZE
 968		   <= queue_max_segments(q)) {
 
 969		/*
 970		 * We can handle this case at the expense of some extra memory
 971		 * copies during write operations
 972		 */
 973		set_bit(PACKET_MERGE_SEGS, &pd->flags);
 974		return 0;
 975	} else {
 976		printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
 977		return -EIO;
 978	}
 979}
 980
 981/*
 982 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
 983 */
 984static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
 985{
 986	unsigned int copy_size = CD_FRAMESIZE;
 987
 988	while (copy_size > 0) {
 989		struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
 990		void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
 991			src_bvl->bv_offset + offs;
 992		void *vto = page_address(dst_page) + dst_offs;
 993		int len = min_t(int, copy_size, src_bvl->bv_len - offs);
 994
 995		BUG_ON(len < 0);
 996		memcpy(vto, vfrom, len);
 997		kunmap_atomic(vfrom, KM_USER0);
 998
 999		seg++;
1000		offs = 0;
1001		dst_offs += len;
1002		copy_size -= len;
1003	}
1004}
1005
1006/*
1007 * Copy all data for this packet to pkt->pages[], so that
1008 * a) The number of required segments for the write bio is minimized, which
1009 *    is necessary for some scsi controllers.
1010 * b) The data can be used as cache to avoid read requests if we receive a
1011 *    new write request for the same zone.
1012 */
1013static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1014{
1015	int f, p, offs;
1016
1017	/* Copy all data to pkt->pages[] */
1018	p = 0;
1019	offs = 0;
1020	for (f = 0; f < pkt->frames; f++) {
1021		if (bvec[f].bv_page != pkt->pages[p]) {
1022			void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1023			void *vto = page_address(pkt->pages[p]) + offs;
1024			memcpy(vto, vfrom, CD_FRAMESIZE);
1025			kunmap_atomic(vfrom, KM_USER0);
1026			bvec[f].bv_page = pkt->pages[p];
1027			bvec[f].bv_offset = offs;
1028		} else {
1029			BUG_ON(bvec[f].bv_offset != offs);
1030		}
1031		offs += CD_FRAMESIZE;
1032		if (offs >= PAGE_SIZE) {
1033			offs = 0;
1034			p++;
1035		}
1036	}
1037}
1038
1039static void pkt_end_io_read(struct bio *bio, int err)
1040{
1041	struct packet_data *pkt = bio->bi_private;
1042	struct pktcdvd_device *pd = pkt->pd;
1043	BUG_ON(!pd);
1044
1045	VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1046		(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1047
1048	if (err)
1049		atomic_inc(&pkt->io_errors);
 
1050	if (atomic_dec_and_test(&pkt->io_wait)) {
1051		atomic_inc(&pkt->run_sm);
1052		wake_up(&pd->wqueue);
1053	}
1054	pkt_bio_finished(pd);
1055}
1056
1057static void pkt_end_io_packet_write(struct bio *bio, int err)
1058{
1059	struct packet_data *pkt = bio->bi_private;
1060	struct pktcdvd_device *pd = pkt->pd;
1061	BUG_ON(!pd);
1062
1063	VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1064
1065	pd->stats.pkt_ended++;
1066
 
1067	pkt_bio_finished(pd);
1068	atomic_dec(&pkt->io_wait);
1069	atomic_inc(&pkt->run_sm);
1070	wake_up(&pd->wqueue);
1071}
1072
1073/*
1074 * Schedule reads for the holes in a packet
1075 */
1076static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077{
 
1078	int frames_read = 0;
1079	struct bio *bio;
1080	int f;
1081	char written[PACKET_MAX_SIZE];
1082
1083	BUG_ON(bio_list_empty(&pkt->orig_bios));
1084
1085	atomic_set(&pkt->io_wait, 0);
1086	atomic_set(&pkt->io_errors, 0);
1087
1088	/*
1089	 * Figure out which frames we need to read before we can write.
1090	 */
1091	memset(written, 0, sizeof(written));
1092	spin_lock(&pkt->lock);
1093	bio_list_for_each(bio, &pkt->orig_bios) {
1094		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1095		int num_frames = bio->bi_size / CD_FRAMESIZE;
 
1096		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1097		BUG_ON(first_frame < 0);
1098		BUG_ON(first_frame + num_frames > pkt->frames);
1099		for (f = first_frame; f < first_frame + num_frames; f++)
1100			written[f] = 1;
1101	}
1102	spin_unlock(&pkt->lock);
1103
1104	if (pkt->cache_valid) {
1105		VPRINTK("pkt_gather_data: zone %llx cached\n",
1106			(unsigned long long)pkt->sector);
1107		goto out_account;
1108	}
1109
1110	/*
1111	 * Schedule reads for missing parts of the packet.
1112	 */
1113	for (f = 0; f < pkt->frames; f++) {
1114		struct bio_vec *vec;
1115
1116		int p, offset;
 
1117		if (written[f])
1118			continue;
 
1119		bio = pkt->r_bios[f];
1120		vec = bio->bi_io_vec;
1121		bio_init(bio);
1122		bio->bi_max_vecs = 1;
1123		bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1124		bio->bi_bdev = pd->bdev;
1125		bio->bi_end_io = pkt_end_io_read;
1126		bio->bi_private = pkt;
1127		bio->bi_io_vec = vec;
1128		bio->bi_destructor = pkt_bio_destructor;
1129
1130		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1131		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1132		VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1133			f, pkt->pages[p], offset);
1134		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1135			BUG();
1136
1137		atomic_inc(&pkt->io_wait);
1138		bio->bi_rw = READ;
1139		pkt_queue_bio(pd, bio);
1140		frames_read++;
1141	}
1142
1143out_account:
1144	VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1145		frames_read, (unsigned long long)pkt->sector);
1146	pd->stats.pkt_started++;
1147	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1148}
1149
1150/*
1151 * Find a packet matching zone, or the least recently used packet if
1152 * there is no match.
1153 */
1154static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1155{
1156	struct packet_data *pkt;
1157
1158	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1159		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1160			list_del_init(&pkt->list);
1161			if (pkt->sector != zone)
1162				pkt->cache_valid = 0;
1163			return pkt;
1164		}
1165	}
1166	BUG();
1167	return NULL;
1168}
1169
1170static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1171{
1172	if (pkt->cache_valid) {
1173		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1174	} else {
1175		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1176	}
1177}
1178
1179/*
1180 * recover a failed write, query for relocation if possible
1181 *
1182 * returns 1 if recovery is possible, or 0 if not
1183 *
1184 */
1185static int pkt_start_recovery(struct packet_data *pkt)
1186{
1187	/*
1188	 * FIXME. We need help from the file system to implement
1189	 * recovery handling.
1190	 */
1191	return 0;
1192#if 0
1193	struct request *rq = pkt->rq;
1194	struct pktcdvd_device *pd = rq->rq_disk->private_data;
1195	struct block_device *pkt_bdev;
1196	struct super_block *sb = NULL;
1197	unsigned long old_block, new_block;
1198	sector_t new_sector;
1199
1200	pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1201	if (pkt_bdev) {
1202		sb = get_super(pkt_bdev);
1203		bdput(pkt_bdev);
1204	}
1205
1206	if (!sb)
1207		return 0;
1208
1209	if (!sb->s_op->relocate_blocks)
1210		goto out;
1211
1212	old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1213	if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1214		goto out;
1215
1216	new_sector = new_block * (CD_FRAMESIZE >> 9);
1217	pkt->sector = new_sector;
1218
1219	pkt->bio->bi_sector = new_sector;
1220	pkt->bio->bi_next = NULL;
1221	pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1222	pkt->bio->bi_idx = 0;
1223
1224	BUG_ON(pkt->bio->bi_rw != REQ_WRITE);
1225	BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1226	BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1227	BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1228	BUG_ON(pkt->bio->bi_private != pkt);
1229
1230	drop_super(sb);
1231	return 1;
1232
1233out:
1234	drop_super(sb);
1235	return 0;
1236#endif
1237}
1238
1239static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1240{
1241#if PACKET_DEBUG > 1
1242	static const char *state_name[] = {
1243		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1244	};
1245	enum packet_data_state old_state = pkt->state;
1246	VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1247		state_name[old_state], state_name[state]);
1248#endif
 
1249	pkt->state = state;
1250}
1251
1252/*
1253 * Scan the work queue to see if we can start a new packet.
1254 * returns non-zero if any work was done.
1255 */
1256static int pkt_handle_queue(struct pktcdvd_device *pd)
1257{
 
1258	struct packet_data *pkt, *p;
1259	struct bio *bio = NULL;
1260	sector_t zone = 0; /* Suppress gcc warning */
1261	struct pkt_rb_node *node, *first_node;
1262	struct rb_node *n;
1263	int wakeup;
1264
1265	VPRINTK("handle_queue\n");
1266
1267	atomic_set(&pd->scan_queue, 0);
1268
1269	if (list_empty(&pd->cdrw.pkt_free_list)) {
1270		VPRINTK("handle_queue: no pkt\n");
1271		return 0;
1272	}
1273
1274	/*
1275	 * Try to find a zone we are not already working on.
1276	 */
1277	spin_lock(&pd->lock);
1278	first_node = pkt_rbtree_find(pd, pd->current_sector);
1279	if (!first_node) {
1280		n = rb_first(&pd->bio_queue);
1281		if (n)
1282			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1283	}
1284	node = first_node;
1285	while (node) {
1286		bio = node->bio;
1287		zone = ZONE(bio->bi_sector, pd);
1288		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1289			if (p->sector == zone) {
1290				bio = NULL;
1291				goto try_next_bio;
1292			}
1293		}
1294		break;
1295try_next_bio:
1296		node = pkt_rbtree_next(node);
1297		if (!node) {
1298			n = rb_first(&pd->bio_queue);
1299			if (n)
1300				node = rb_entry(n, struct pkt_rb_node, rb_node);
1301		}
1302		if (node == first_node)
1303			node = NULL;
1304	}
1305	spin_unlock(&pd->lock);
1306	if (!bio) {
1307		VPRINTK("handle_queue: no bio\n");
1308		return 0;
1309	}
1310
1311	pkt = pkt_get_packet_data(pd, zone);
1312
1313	pd->current_sector = zone + pd->settings.size;
1314	pkt->sector = zone;
1315	BUG_ON(pkt->frames != pd->settings.size >> 2);
1316	pkt->write_size = 0;
1317
1318	/*
1319	 * Scan work queue for bios in the same zone and link them
1320	 * to this packet.
1321	 */
1322	spin_lock(&pd->lock);
1323	VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1324	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
 
 
1325		bio = node->bio;
1326		VPRINTK("pkt_handle_queue: found zone=%llx\n",
1327			(unsigned long long)ZONE(bio->bi_sector, pd));
1328		if (ZONE(bio->bi_sector, pd) != zone)
1329			break;
1330		pkt_rbtree_erase(pd, node);
1331		spin_lock(&pkt->lock);
1332		bio_list_add(&pkt->orig_bios, bio);
1333		pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1334		spin_unlock(&pkt->lock);
1335	}
1336	/* check write congestion marks, and if bio_queue_size is
1337	   below, wake up any waiters */
1338	wakeup = (pd->write_congestion_on > 0
1339	 		&& pd->bio_queue_size <= pd->write_congestion_off);
1340	spin_unlock(&pd->lock);
1341	if (wakeup) {
1342		clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1343					BLK_RW_ASYNC);
1344	}
 
1345
1346	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1347	pkt_set_state(pkt, PACKET_WAITING_STATE);
1348	atomic_set(&pkt->run_sm, 1);
1349
1350	spin_lock(&pd->cdrw.active_list_lock);
1351	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1352	spin_unlock(&pd->cdrw.active_list_lock);
1353
1354	return 1;
1355}
1356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357/*
1358 * Assemble a bio to write one packet and queue the bio for processing
1359 * by the underlying block device.
1360 */
1361static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1362{
1363	struct bio *bio;
1364	int f;
1365	int frames_write;
1366	struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1367
 
 
 
 
 
 
 
1368	for (f = 0; f < pkt->frames; f++) {
1369		bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1370		bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
 
 
 
1371	}
 
1372
1373	/*
1374	 * Fill-in bvec with data from orig_bios.
1375	 */
1376	frames_write = 0;
1377	spin_lock(&pkt->lock);
1378	bio_list_for_each(bio, &pkt->orig_bios) {
1379		int segment = bio->bi_idx;
1380		int src_offs = 0;
1381		int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1382		int num_frames = bio->bi_size / CD_FRAMESIZE;
1383		BUG_ON(first_frame < 0);
1384		BUG_ON(first_frame + num_frames > pkt->frames);
1385		for (f = first_frame; f < first_frame + num_frames; f++) {
1386			struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1387
1388			while (src_offs >= src_bvl->bv_len) {
1389				src_offs -= src_bvl->bv_len;
1390				segment++;
1391				BUG_ON(segment >= bio->bi_vcnt);
1392				src_bvl = bio_iovec_idx(bio, segment);
1393			}
1394
1395			if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1396				bvec[f].bv_page = src_bvl->bv_page;
1397				bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1398			} else {
1399				pkt_copy_bio_data(bio, segment, src_offs,
1400						  bvec[f].bv_page, bvec[f].bv_offset);
1401			}
1402			src_offs += CD_FRAMESIZE;
1403			frames_write++;
1404		}
1405	}
1406	pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1407	spin_unlock(&pkt->lock);
1408
1409	VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1410		frames_write, (unsigned long long)pkt->sector);
1411	BUG_ON(frames_write != pkt->write_size);
1412
1413	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1414		pkt_make_local_copy(pkt, bvec);
1415		pkt->cache_valid = 1;
1416	} else {
1417		pkt->cache_valid = 0;
1418	}
1419
1420	/* Start the write request */
1421	bio_init(pkt->w_bio);
1422	pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1423	pkt->w_bio->bi_sector = pkt->sector;
1424	pkt->w_bio->bi_bdev = pd->bdev;
1425	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1426	pkt->w_bio->bi_private = pkt;
1427	pkt->w_bio->bi_io_vec = bvec;
1428	pkt->w_bio->bi_destructor = pkt_bio_destructor;
1429	for (f = 0; f < pkt->frames; f++)
1430		if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1431			BUG();
1432	VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1433
1434	atomic_set(&pkt->io_wait, 1);
1435	pkt->w_bio->bi_rw = WRITE;
1436	pkt_queue_bio(pd, pkt->w_bio);
1437}
1438
1439static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1440{
1441	struct bio *bio;
1442
1443	if (!uptodate)
1444		pkt->cache_valid = 0;
1445
1446	/* Finish all bios corresponding to this packet */
1447	while ((bio = bio_list_pop(&pkt->orig_bios)))
1448		bio_endio(bio, uptodate ? 0 : -EIO);
 
 
1449}
1450
1451static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1452{
1453	int uptodate;
1454
1455	VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1456
1457	for (;;) {
1458		switch (pkt->state) {
1459		case PACKET_WAITING_STATE:
1460			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1461				return;
1462
1463			pkt->sleep_time = 0;
1464			pkt_gather_data(pd, pkt);
1465			pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1466			break;
1467
1468		case PACKET_READ_WAIT_STATE:
1469			if (atomic_read(&pkt->io_wait) > 0)
1470				return;
1471
1472			if (atomic_read(&pkt->io_errors) > 0) {
1473				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1474			} else {
1475				pkt_start_write(pd, pkt);
1476			}
1477			break;
1478
1479		case PACKET_WRITE_WAIT_STATE:
1480			if (atomic_read(&pkt->io_wait) > 0)
1481				return;
1482
1483			if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1484				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1485			} else {
1486				pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1487			}
1488			break;
1489
1490		case PACKET_RECOVERY_STATE:
1491			if (pkt_start_recovery(pkt)) {
1492				pkt_start_write(pd, pkt);
1493			} else {
1494				VPRINTK("No recovery possible\n");
1495				pkt_set_state(pkt, PACKET_FINISHED_STATE);
1496			}
1497			break;
1498
1499		case PACKET_FINISHED_STATE:
1500			uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1501			pkt_finish_packet(pkt, uptodate);
1502			return;
1503
1504		default:
1505			BUG();
1506			break;
1507		}
1508	}
1509}
1510
1511static void pkt_handle_packets(struct pktcdvd_device *pd)
1512{
 
1513	struct packet_data *pkt, *next;
1514
1515	VPRINTK("pkt_handle_packets\n");
1516
1517	/*
1518	 * Run state machine for active packets
1519	 */
1520	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1521		if (atomic_read(&pkt->run_sm) > 0) {
1522			atomic_set(&pkt->run_sm, 0);
1523			pkt_run_state_machine(pd, pkt);
1524		}
1525	}
1526
1527	/*
1528	 * Move no longer active packets to the free list
1529	 */
1530	spin_lock(&pd->cdrw.active_list_lock);
1531	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1532		if (pkt->state == PACKET_FINISHED_STATE) {
1533			list_del(&pkt->list);
1534			pkt_put_packet_data(pd, pkt);
1535			pkt_set_state(pkt, PACKET_IDLE_STATE);
1536			atomic_set(&pd->scan_queue, 1);
1537		}
1538	}
1539	spin_unlock(&pd->cdrw.active_list_lock);
1540}
1541
1542static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1543{
1544	struct packet_data *pkt;
1545	int i;
1546
1547	for (i = 0; i < PACKET_NUM_STATES; i++)
1548		states[i] = 0;
1549
1550	spin_lock(&pd->cdrw.active_list_lock);
1551	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1552		states[pkt->state]++;
1553	}
1554	spin_unlock(&pd->cdrw.active_list_lock);
1555}
1556
1557/*
1558 * kcdrwd is woken up when writes have been queued for one of our
1559 * registered devices
1560 */
1561static int kcdrwd(void *foobar)
1562{
1563	struct pktcdvd_device *pd = foobar;
 
1564	struct packet_data *pkt;
 
1565	long min_sleep_time, residue;
1566
1567	set_user_nice(current, -20);
1568	set_freezable();
1569
1570	for (;;) {
1571		DECLARE_WAITQUEUE(wait, current);
1572
1573		/*
1574		 * Wait until there is something to do
1575		 */
1576		add_wait_queue(&pd->wqueue, &wait);
1577		for (;;) {
1578			set_current_state(TASK_INTERRUPTIBLE);
1579
1580			/* Check if we need to run pkt_handle_queue */
1581			if (atomic_read(&pd->scan_queue) > 0)
1582				goto work_to_do;
1583
1584			/* Check if we need to run the state machine for some packet */
1585			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1586				if (atomic_read(&pkt->run_sm) > 0)
1587					goto work_to_do;
1588			}
1589
1590			/* Check if we need to process the iosched queues */
1591			if (atomic_read(&pd->iosched.attention) != 0)
1592				goto work_to_do;
1593
1594			/* Otherwise, go to sleep */
1595			if (PACKET_DEBUG > 1) {
1596				int states[PACKET_NUM_STATES];
1597				pkt_count_states(pd, states);
1598				VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1599					states[0], states[1], states[2], states[3],
1600					states[4], states[5]);
1601			}
1602
1603			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1604			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1605				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1606					min_sleep_time = pkt->sleep_time;
1607			}
1608
1609			VPRINTK("kcdrwd: sleeping\n");
1610			residue = schedule_timeout(min_sleep_time);
1611			VPRINTK("kcdrwd: wake up\n");
1612
1613			/* make swsusp happy with our thread */
1614			try_to_freeze();
1615
1616			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1617				if (!pkt->sleep_time)
1618					continue;
1619				pkt->sleep_time -= min_sleep_time - residue;
1620				if (pkt->sleep_time <= 0) {
1621					pkt->sleep_time = 0;
1622					atomic_inc(&pkt->run_sm);
1623				}
1624			}
1625
1626			if (kthread_should_stop())
1627				break;
1628		}
1629work_to_do:
1630		set_current_state(TASK_RUNNING);
1631		remove_wait_queue(&pd->wqueue, &wait);
1632
1633		if (kthread_should_stop())
1634			break;
1635
1636		/*
1637		 * if pkt_handle_queue returns true, we can queue
1638		 * another request.
1639		 */
1640		while (pkt_handle_queue(pd))
1641			;
1642
1643		/*
1644		 * Handle packet state machine
1645		 */
1646		pkt_handle_packets(pd);
1647
1648		/*
1649		 * Handle iosched queues
1650		 */
1651		pkt_iosched_process_queue(pd);
1652	}
1653
1654	return 0;
1655}
1656
1657static void pkt_print_settings(struct pktcdvd_device *pd)
1658{
1659	printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1660	printk("%u blocks, ", pd->settings.size >> 2);
1661	printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
 
1662}
1663
1664static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1665{
1666	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1667
1668	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1669	cgc->cmd[2] = page_code | (page_control << 6);
1670	cgc->cmd[7] = cgc->buflen >> 8;
1671	cgc->cmd[8] = cgc->buflen & 0xff;
1672	cgc->data_direction = CGC_DATA_READ;
1673	return pkt_generic_packet(pd, cgc);
1674}
1675
1676static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1677{
1678	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1679	memset(cgc->buffer, 0, 2);
1680	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1681	cgc->cmd[1] = 0x10;		/* PF */
1682	cgc->cmd[7] = cgc->buflen >> 8;
1683	cgc->cmd[8] = cgc->buflen & 0xff;
1684	cgc->data_direction = CGC_DATA_WRITE;
1685	return pkt_generic_packet(pd, cgc);
1686}
1687
1688static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1689{
1690	struct packet_command cgc;
1691	int ret;
1692
1693	/* set up command and get the disc info */
1694	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1695	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1696	cgc.cmd[8] = cgc.buflen = 2;
1697	cgc.quiet = 1;
1698
1699	if ((ret = pkt_generic_packet(pd, &cgc)))
 
1700		return ret;
1701
1702	/* not all drives have the same disc_info length, so requeue
1703	 * packet with the length the drive tells us it can supply
1704	 */
1705	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1706		     sizeof(di->disc_information_length);
1707
1708	if (cgc.buflen > sizeof(disc_information))
1709		cgc.buflen = sizeof(disc_information);
1710
1711	cgc.cmd[8] = cgc.buflen;
1712	return pkt_generic_packet(pd, &cgc);
1713}
1714
1715static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1716{
1717	struct packet_command cgc;
1718	int ret;
1719
1720	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1721	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1722	cgc.cmd[1] = type & 3;
1723	cgc.cmd[4] = (track & 0xff00) >> 8;
1724	cgc.cmd[5] = track & 0xff;
1725	cgc.cmd[8] = 8;
1726	cgc.quiet = 1;
1727
1728	if ((ret = pkt_generic_packet(pd, &cgc)))
 
1729		return ret;
1730
1731	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1732		     sizeof(ti->track_information_length);
1733
1734	if (cgc.buflen > sizeof(track_information))
1735		cgc.buflen = sizeof(track_information);
1736
1737	cgc.cmd[8] = cgc.buflen;
1738	return pkt_generic_packet(pd, &cgc);
1739}
1740
1741static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1742						long *last_written)
1743{
1744	disc_information di;
1745	track_information ti;
1746	__u32 last_track;
1747	int ret = -1;
1748
1749	if ((ret = pkt_get_disc_info(pd, &di)))
 
1750		return ret;
1751
1752	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1753	if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
 
1754		return ret;
1755
1756	/* if this track is blank, try the previous. */
1757	if (ti.blank) {
1758		last_track--;
1759		if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
 
1760			return ret;
1761	}
1762
1763	/* if last recorded field is valid, return it. */
1764	if (ti.lra_v) {
1765		*last_written = be32_to_cpu(ti.last_rec_address);
1766	} else {
1767		/* make it up instead */
1768		*last_written = be32_to_cpu(ti.track_start) +
1769				be32_to_cpu(ti.track_size);
1770		if (ti.free_blocks)
1771			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1772	}
1773	return 0;
1774}
1775
1776/*
1777 * write mode select package based on pd->settings
1778 */
1779static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1780{
 
1781	struct packet_command cgc;
1782	struct request_sense sense;
1783	write_param_page *wp;
1784	char buffer[128];
1785	int ret, size;
1786
1787	/* doesn't apply to DVD+RW or DVD-RAM */
1788	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1789		return 0;
1790
1791	memset(buffer, 0, sizeof(buffer));
1792	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1793	cgc.sense = &sense;
1794	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1795		pkt_dump_sense(&cgc);
 
1796		return ret;
1797	}
1798
1799	size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1800	pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1801	if (size > sizeof(buffer))
1802		size = sizeof(buffer);
1803
1804	/*
1805	 * now get it all
1806	 */
1807	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1808	cgc.sense = &sense;
1809	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1810		pkt_dump_sense(&cgc);
 
1811		return ret;
1812	}
1813
1814	/*
1815	 * write page is offset header + block descriptor length
1816	 */
1817	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1818
1819	wp->fp = pd->settings.fp;
1820	wp->track_mode = pd->settings.track_mode;
1821	wp->write_type = pd->settings.write_type;
1822	wp->data_block_type = pd->settings.block_mode;
1823
1824	wp->multi_session = 0;
1825
1826#ifdef PACKET_USE_LS
1827	wp->link_size = 7;
1828	wp->ls_v = 1;
1829#endif
1830
1831	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1832		wp->session_format = 0;
1833		wp->subhdr2 = 0x20;
1834	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1835		wp->session_format = 0x20;
1836		wp->subhdr2 = 8;
1837#if 0
1838		wp->mcn[0] = 0x80;
1839		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1840#endif
1841	} else {
1842		/*
1843		 * paranoia
1844		 */
1845		printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1846		return 1;
1847	}
1848	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1849
1850	cgc.buflen = cgc.cmd[8] = size;
1851	if ((ret = pkt_mode_select(pd, &cgc))) {
1852		pkt_dump_sense(&cgc);
 
1853		return ret;
1854	}
1855
1856	pkt_print_settings(pd);
1857	return 0;
1858}
1859
1860/*
1861 * 1 -- we can write to this track, 0 -- we can't
1862 */
1863static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1864{
 
 
1865	switch (pd->mmc3_profile) {
1866		case 0x1a: /* DVD+RW */
1867		case 0x12: /* DVD-RAM */
1868			/* The track is always writable on DVD+RW/DVD-RAM */
1869			return 1;
1870		default:
1871			break;
1872	}
1873
1874	if (!ti->packet || !ti->fp)
1875		return 0;
1876
1877	/*
1878	 * "good" settings as per Mt Fuji.
1879	 */
1880	if (ti->rt == 0 && ti->blank == 0)
1881		return 1;
1882
1883	if (ti->rt == 0 && ti->blank == 1)
1884		return 1;
1885
1886	if (ti->rt == 1 && ti->blank == 0)
1887		return 1;
1888
1889	printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1890	return 0;
1891}
1892
1893/*
1894 * 1 -- we can write to this disc, 0 -- we can't
1895 */
1896static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1897{
 
 
1898	switch (pd->mmc3_profile) {
1899		case 0x0a: /* CD-RW */
1900		case 0xffff: /* MMC3 not supported */
1901			break;
1902		case 0x1a: /* DVD+RW */
1903		case 0x13: /* DVD-RW */
1904		case 0x12: /* DVD-RAM */
1905			return 1;
1906		default:
1907			VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1908			return 0;
1909	}
1910
1911	/*
1912	 * for disc type 0xff we should probably reserve a new track.
1913	 * but i'm not sure, should we leave this to user apps? probably.
1914	 */
1915	if (di->disc_type == 0xff) {
1916		printk(DRIVER_NAME": Unknown disc. No track?\n");
1917		return 0;
1918	}
1919
1920	if (di->disc_type != 0x20 && di->disc_type != 0) {
1921		printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1922		return 0;
1923	}
1924
1925	if (di->erasable == 0) {
1926		printk(DRIVER_NAME": Disc not erasable\n");
1927		return 0;
1928	}
1929
1930	if (di->border_status == PACKET_SESSION_RESERVED) {
1931		printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1932		return 0;
1933	}
1934
1935	return 1;
1936}
1937
1938static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1939{
 
1940	struct packet_command cgc;
1941	unsigned char buf[12];
1942	disc_information di;
1943	track_information ti;
1944	int ret, track;
1945
1946	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1947	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1948	cgc.cmd[8] = 8;
1949	ret = pkt_generic_packet(pd, &cgc);
1950	pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1951
1952	memset(&di, 0, sizeof(disc_information));
1953	memset(&ti, 0, sizeof(track_information));
1954
1955	if ((ret = pkt_get_disc_info(pd, &di))) {
1956		printk("failed get_disc\n");
 
1957		return ret;
1958	}
1959
1960	if (!pkt_writable_disc(pd, &di))
1961		return -EROFS;
1962
1963	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1964
1965	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1966	if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1967		printk(DRIVER_NAME": failed get_track\n");
 
1968		return ret;
1969	}
1970
1971	if (!pkt_writable_track(pd, &ti)) {
1972		printk(DRIVER_NAME": can't write to this track\n");
1973		return -EROFS;
1974	}
1975
1976	/*
1977	 * we keep packet size in 512 byte units, makes it easier to
1978	 * deal with request calculations.
1979	 */
1980	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1981	if (pd->settings.size == 0) {
1982		printk(DRIVER_NAME": detected zero packet size!\n");
1983		return -ENXIO;
1984	}
1985	if (pd->settings.size > PACKET_MAX_SECTORS) {
1986		printk(DRIVER_NAME": packet size is too big\n");
1987		return -EROFS;
1988	}
1989	pd->settings.fp = ti.fp;
1990	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1991
1992	if (ti.nwa_v) {
1993		pd->nwa = be32_to_cpu(ti.next_writable);
1994		set_bit(PACKET_NWA_VALID, &pd->flags);
1995	}
1996
1997	/*
1998	 * in theory we could use lra on -RW media as well and just zero
1999	 * blocks that haven't been written yet, but in practice that
2000	 * is just a no-go. we'll use that for -R, naturally.
2001	 */
2002	if (ti.lra_v) {
2003		pd->lra = be32_to_cpu(ti.last_rec_address);
2004		set_bit(PACKET_LRA_VALID, &pd->flags);
2005	} else {
2006		pd->lra = 0xffffffff;
2007		set_bit(PACKET_LRA_VALID, &pd->flags);
2008	}
2009
2010	/*
2011	 * fine for now
2012	 */
2013	pd->settings.link_loss = 7;
2014	pd->settings.write_type = 0;	/* packet */
2015	pd->settings.track_mode = ti.track_mode;
2016
2017	/*
2018	 * mode1 or mode2 disc
2019	 */
2020	switch (ti.data_mode) {
2021		case PACKET_MODE1:
2022			pd->settings.block_mode = PACKET_BLOCK_MODE1;
2023			break;
2024		case PACKET_MODE2:
2025			pd->settings.block_mode = PACKET_BLOCK_MODE2;
2026			break;
2027		default:
2028			printk(DRIVER_NAME": unknown data mode\n");
2029			return -EROFS;
2030	}
2031	return 0;
2032}
2033
2034/*
2035 * enable/disable write caching on drive
2036 */
2037static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2038						int set)
2039{
 
2040	struct packet_command cgc;
2041	struct request_sense sense;
2042	unsigned char buf[64];
 
2043	int ret;
2044
2045	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2046	cgc.sense = &sense;
2047	cgc.buflen = pd->mode_offset + 12;
2048
2049	/*
2050	 * caching mode page might not be there, so quiet this command
2051	 */
2052	cgc.quiet = 1;
2053
2054	if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
 
2055		return ret;
2056
2057	buf[pd->mode_offset + 10] |= (!!set << 2);
 
 
 
 
 
2058
2059	cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2060	ret = pkt_mode_select(pd, &cgc);
2061	if (ret) {
2062		printk(DRIVER_NAME": write caching control failed\n");
2063		pkt_dump_sense(&cgc);
2064	} else if (!ret && set)
2065		printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2066	return ret;
2067}
2068
2069static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2070{
2071	struct packet_command cgc;
2072
2073	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2074	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2075	cgc.cmd[4] = lockflag ? 1 : 0;
2076	return pkt_generic_packet(pd, &cgc);
2077}
2078
2079/*
2080 * Returns drive maximum write speed
2081 */
2082static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2083						unsigned *write_speed)
2084{
2085	struct packet_command cgc;
2086	struct request_sense sense;
2087	unsigned char buf[256+18];
2088	unsigned char *cap_buf;
2089	int ret, offset;
2090
2091	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2092	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2093	cgc.sense = &sense;
2094
2095	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2096	if (ret) {
2097		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2098			     sizeof(struct mode_page_header);
2099		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2100		if (ret) {
2101			pkt_dump_sense(&cgc);
2102			return ret;
2103		}
2104	}
2105
2106	offset = 20;			    /* Obsoleted field, used by older drives */
2107	if (cap_buf[1] >= 28)
2108		offset = 28;		    /* Current write speed selected */
2109	if (cap_buf[1] >= 30) {
2110		/* If the drive reports at least one "Logical Unit Write
2111		 * Speed Performance Descriptor Block", use the information
2112		 * in the first block. (contains the highest speed)
2113		 */
2114		int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2115		if (num_spdb > 0)
2116			offset = 34;
2117	}
2118
2119	*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2120	return 0;
2121}
2122
2123/* These tables from cdrecord - I don't have orange book */
2124/* standard speed CD-RW (1-4x) */
2125static char clv_to_speed[16] = {
2126	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2127	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2128};
2129/* high speed CD-RW (-10x) */
2130static char hs_clv_to_speed[16] = {
2131	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2132	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2133};
2134/* ultra high speed CD-RW */
2135static char us_clv_to_speed[16] = {
2136	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2137	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2138};
2139
2140/*
2141 * reads the maximum media speed from ATIP
2142 */
2143static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2144						unsigned *speed)
2145{
 
2146	struct packet_command cgc;
2147	struct request_sense sense;
2148	unsigned char buf[64];
2149	unsigned int size, st, sp;
2150	int ret;
2151
2152	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2153	cgc.sense = &sense;
2154	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2155	cgc.cmd[1] = 2;
2156	cgc.cmd[2] = 4; /* READ ATIP */
2157	cgc.cmd[8] = 2;
2158	ret = pkt_generic_packet(pd, &cgc);
2159	if (ret) {
2160		pkt_dump_sense(&cgc);
2161		return ret;
2162	}
2163	size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2164	if (size > sizeof(buf))
2165		size = sizeof(buf);
2166
2167	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2168	cgc.sense = &sense;
2169	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2170	cgc.cmd[1] = 2;
2171	cgc.cmd[2] = 4;
2172	cgc.cmd[8] = size;
2173	ret = pkt_generic_packet(pd, &cgc);
2174	if (ret) {
2175		pkt_dump_sense(&cgc);
2176		return ret;
2177	}
2178
2179	if (!(buf[6] & 0x40)) {
2180		printk(DRIVER_NAME": Disc type is not CD-RW\n");
2181		return 1;
2182	}
2183	if (!(buf[6] & 0x4)) {
2184		printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2185		return 1;
2186	}
2187
2188	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2189
2190	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2191
2192	/* Info from cdrecord */
2193	switch (st) {
2194		case 0: /* standard speed */
2195			*speed = clv_to_speed[sp];
2196			break;
2197		case 1: /* high speed */
2198			*speed = hs_clv_to_speed[sp];
2199			break;
2200		case 2: /* ultra high speed */
2201			*speed = us_clv_to_speed[sp];
2202			break;
2203		default:
2204			printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2205			return 1;
2206	}
2207	if (*speed) {
2208		printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2209		return 0;
2210	} else {
2211		printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2212		return 1;
2213	}
2214}
2215
2216static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2217{
 
2218	struct packet_command cgc;
2219	struct request_sense sense;
2220	int ret;
2221
2222	VPRINTK(DRIVER_NAME": Performing OPC\n");
2223
2224	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2225	cgc.sense = &sense;
2226	cgc.timeout = 60*HZ;
2227	cgc.cmd[0] = GPCMD_SEND_OPC;
2228	cgc.cmd[1] = 1;
2229	if ((ret = pkt_generic_packet(pd, &cgc)))
2230		pkt_dump_sense(&cgc);
 
2231	return ret;
2232}
2233
2234static int pkt_open_write(struct pktcdvd_device *pd)
2235{
 
2236	int ret;
2237	unsigned int write_speed, media_write_speed, read_speed;
2238
2239	if ((ret = pkt_probe_settings(pd))) {
2240		VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
 
2241		return ret;
2242	}
2243
2244	if ((ret = pkt_set_write_settings(pd))) {
2245		DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
 
2246		return -EIO;
2247	}
2248
2249	pkt_write_caching(pd, USE_WCACHING);
2250
2251	if ((ret = pkt_get_max_speed(pd, &write_speed)))
 
2252		write_speed = 16 * 177;
2253	switch (pd->mmc3_profile) {
2254		case 0x13: /* DVD-RW */
2255		case 0x1a: /* DVD+RW */
2256		case 0x12: /* DVD-RAM */
2257			DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2258			break;
2259		default:
2260			if ((ret = pkt_media_speed(pd, &media_write_speed)))
 
2261				media_write_speed = 16;
2262			write_speed = min(write_speed, media_write_speed * 177);
2263			DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2264			break;
2265	}
2266	read_speed = write_speed;
2267
2268	if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2269		DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
 
2270		return -EIO;
2271	}
2272	pd->write_speed = write_speed;
2273	pd->read_speed = read_speed;
2274
2275	if ((ret = pkt_perform_opc(pd))) {
2276		DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2277	}
2278
2279	return 0;
2280}
2281
2282/*
2283 * called at open time.
2284 */
2285static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2286{
 
2287	int ret;
2288	long lba;
2289	struct request_queue *q;
 
2290
2291	/*
2292	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2293	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2294	 * so bdget() can't fail.
2295	 */
2296	bdget(pd->bdev->bd_dev);
2297	if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
 
 
2298		goto out;
 
 
2299
2300	if ((ret = pkt_get_last_written(pd, &lba))) {
2301		printk(DRIVER_NAME": pkt_get_last_written failed\n");
 
2302		goto out_putdev;
2303	}
2304
2305	set_capacity(pd->disk, lba << 2);
2306	set_capacity(pd->bdev->bd_disk, lba << 2);
2307	bd_set_size(pd->bdev, (loff_t)lba << 11);
2308
2309	q = bdev_get_queue(pd->bdev);
2310	if (write) {
2311		if ((ret = pkt_open_write(pd)))
 
2312			goto out_putdev;
2313		/*
2314		 * Some CDRW drives can not handle writes larger than one packet,
2315		 * even if the size is a multiple of the packet size.
2316		 */
2317		spin_lock_irq(q->queue_lock);
2318		blk_queue_max_hw_sectors(q, pd->settings.size);
2319		spin_unlock_irq(q->queue_lock);
2320		set_bit(PACKET_WRITABLE, &pd->flags);
2321	} else {
2322		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2323		clear_bit(PACKET_WRITABLE, &pd->flags);
2324	}
2325
2326	if ((ret = pkt_set_segment_merging(pd, q)))
 
2327		goto out_putdev;
2328
2329	if (write) {
2330		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2331			printk(DRIVER_NAME": not enough memory for buffers\n");
2332			ret = -ENOMEM;
2333			goto out_putdev;
2334		}
2335		printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2336	}
2337
2338	return 0;
2339
2340out_putdev:
2341	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2342out:
2343	return ret;
2344}
2345
2346/*
2347 * called when the device is closed. makes sure that the device flushes
2348 * the internal cache before we close.
2349 */
2350static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2351{
 
 
2352	if (flush && pkt_flush_cache(pd))
2353		DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2354
2355	pkt_lock_door(pd, 0);
2356
2357	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2358	blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
 
2359
2360	pkt_shrink_pktlist(pd);
2361}
2362
2363static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2364{
2365	if (dev_minor >= MAX_WRITERS)
2366		return NULL;
 
 
2367	return pkt_devs[dev_minor];
2368}
2369
2370static int pkt_open(struct block_device *bdev, fmode_t mode)
2371{
2372	struct pktcdvd_device *pd = NULL;
2373	int ret;
2374
2375	VPRINTK(DRIVER_NAME": entering open\n");
2376
2377	mutex_lock(&pktcdvd_mutex);
2378	mutex_lock(&ctl_mutex);
2379	pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2380	if (!pd) {
2381		ret = -ENODEV;
2382		goto out;
2383	}
2384	BUG_ON(pd->refcnt < 0);
2385
2386	pd->refcnt++;
2387	if (pd->refcnt > 1) {
2388		if ((mode & FMODE_WRITE) &&
2389		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2390			ret = -EBUSY;
2391			goto out_dec;
2392		}
2393	} else {
2394		ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2395		if (ret)
2396			goto out_dec;
2397		/*
2398		 * needed here as well, since ext2 (among others) may change
2399		 * the blocksize at mount time
2400		 */
2401		set_blocksize(bdev, CD_FRAMESIZE);
2402	}
2403
2404	mutex_unlock(&ctl_mutex);
2405	mutex_unlock(&pktcdvd_mutex);
2406	return 0;
2407
2408out_dec:
2409	pd->refcnt--;
2410out:
2411	VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2412	mutex_unlock(&ctl_mutex);
2413	mutex_unlock(&pktcdvd_mutex);
2414	return ret;
2415}
2416
2417static int pkt_close(struct gendisk *disk, fmode_t mode)
2418{
2419	struct pktcdvd_device *pd = disk->private_data;
2420	int ret = 0;
2421
2422	mutex_lock(&pktcdvd_mutex);
2423	mutex_lock(&ctl_mutex);
2424	pd->refcnt--;
2425	BUG_ON(pd->refcnt < 0);
2426	if (pd->refcnt == 0) {
2427		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2428		pkt_release_dev(pd, flush);
2429	}
2430	mutex_unlock(&ctl_mutex);
2431	mutex_unlock(&pktcdvd_mutex);
2432	return ret;
2433}
2434
2435
2436static void pkt_end_io_read_cloned(struct bio *bio, int err)
2437{
2438	struct packet_stacked_data *psd = bio->bi_private;
2439	struct pktcdvd_device *pd = psd->pd;
2440
 
2441	bio_put(bio);
2442	bio_endio(psd->bio, err);
2443	mempool_free(psd, psd_pool);
2444	pkt_bio_finished(pd);
2445}
2446
2447static int pkt_make_request(struct request_queue *q, struct bio *bio)
2448{
2449	struct pktcdvd_device *pd;
2450	char b[BDEVNAME_SIZE];
 
 
 
 
 
 
 
 
 
 
 
 
 
2451	sector_t zone;
2452	struct packet_data *pkt;
2453	int was_empty, blocked_bio;
2454	struct pkt_rb_node *node;
2455
2456	pd = q->queuedata;
2457	if (!pd) {
2458		printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2459		goto end_io;
2460	}
2461
2462	/*
2463	 * Clone READ bios so we can have our own bi_end_io callback.
2464	 */
2465	if (bio_data_dir(bio) == READ) {
2466		struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2467		struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2468
2469		psd->pd = pd;
2470		psd->bio = bio;
2471		cloned_bio->bi_bdev = pd->bdev;
2472		cloned_bio->bi_private = psd;
2473		cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2474		pd->stats.secs_r += bio->bi_size >> 9;
2475		pkt_queue_bio(pd, cloned_bio);
2476		return 0;
2477	}
2478
2479	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2480		printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2481			pd->name, (unsigned long long)bio->bi_sector);
2482		goto end_io;
2483	}
2484
2485	if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2486		printk(DRIVER_NAME": wrong bio size\n");
2487		goto end_io;
2488	}
2489
2490	blk_queue_bounce(q, &bio);
2491
2492	zone = ZONE(bio->bi_sector, pd);
2493	VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2494		(unsigned long long)bio->bi_sector,
2495		(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2496
2497	/* Check if we have to split the bio */
2498	{
2499		struct bio_pair *bp;
2500		sector_t last_zone;
2501		int first_sectors;
2502
2503		last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2504		if (last_zone != zone) {
2505			BUG_ON(last_zone != zone + pd->settings.size);
2506			first_sectors = last_zone - bio->bi_sector;
2507			bp = bio_split(bio, first_sectors);
2508			BUG_ON(!bp);
2509			pkt_make_request(q, &bp->bio1);
2510			pkt_make_request(q, &bp->bio2);
2511			bio_pair_release(bp);
2512			return 0;
2513		}
2514	}
2515
2516	/*
2517	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2518	 * just append this bio to that packet.
2519	 */
2520	spin_lock(&pd->cdrw.active_list_lock);
2521	blocked_bio = 0;
2522	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2523		if (pkt->sector == zone) {
2524			spin_lock(&pkt->lock);
2525			if ((pkt->state == PACKET_WAITING_STATE) ||
2526			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2527				bio_list_add(&pkt->orig_bios, bio);
2528				pkt->write_size += bio->bi_size / CD_FRAMESIZE;
 
2529				if ((pkt->write_size >= pkt->frames) &&
2530				    (pkt->state == PACKET_WAITING_STATE)) {
2531					atomic_inc(&pkt->run_sm);
2532					wake_up(&pd->wqueue);
2533				}
2534				spin_unlock(&pkt->lock);
2535				spin_unlock(&pd->cdrw.active_list_lock);
2536				return 0;
2537			} else {
2538				blocked_bio = 1;
2539			}
2540			spin_unlock(&pkt->lock);
2541		}
2542	}
2543	spin_unlock(&pd->cdrw.active_list_lock);
2544
2545 	/*
2546	 * Test if there is enough room left in the bio work queue
2547	 * (queue size >= congestion on mark).
2548	 * If not, wait till the work queue size is below the congestion off mark.
2549	 */
2550	spin_lock(&pd->lock);
2551	if (pd->write_congestion_on > 0
2552	    && pd->bio_queue_size >= pd->write_congestion_on) {
2553		set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2554		do {
 
 
 
 
 
 
 
 
2555			spin_unlock(&pd->lock);
2556			congestion_wait(BLK_RW_ASYNC, HZ);
2557			spin_lock(&pd->lock);
2558		} while(pd->bio_queue_size > pd->write_congestion_off);
2559	}
2560	spin_unlock(&pd->lock);
2561
2562	/*
2563	 * No matching packet found. Store the bio in the work queue.
2564	 */
2565	node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2566	node->bio = bio;
2567	spin_lock(&pd->lock);
2568	BUG_ON(pd->bio_queue_size < 0);
2569	was_empty = (pd->bio_queue_size == 0);
2570	pkt_rbtree_insert(pd, node);
2571	spin_unlock(&pd->lock);
2572
2573	/*
2574	 * Wake up the worker thread.
2575	 */
2576	atomic_set(&pd->scan_queue, 1);
2577	if (was_empty) {
2578		/* This wake_up is required for correct operation */
2579		wake_up(&pd->wqueue);
2580	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2581		/*
2582		 * This wake up is not required for correct operation,
2583		 * but improves performance in some cases.
2584		 */
2585		wake_up(&pd->wqueue);
2586	}
2587	return 0;
2588end_io:
2589	bio_io_error(bio);
2590	return 0;
2591}
2592
 
 
 
 
 
2593
 
 
 
2594
2595static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2596			  struct bio_vec *bvec)
2597{
2598	struct pktcdvd_device *pd = q->queuedata;
2599	sector_t zone = ZONE(bmd->bi_sector, pd);
2600	int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2601	int remaining = (pd->settings.size << 9) - used;
2602	int remaining2;
2603
2604	/*
2605	 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2606	 * boundary, pkt_make_request() will split the bio.
2607	 */
2608	remaining2 = PAGE_SIZE - bmd->bi_size;
2609	remaining = max(remaining, remaining2);
2610
2611	BUG_ON(remaining < 0);
2612	return remaining;
2613}
2614
2615static void pkt_init_queue(struct pktcdvd_device *pd)
2616{
2617	struct request_queue *q = pd->disk->queue;
2618
2619	blk_queue_make_request(q, pkt_make_request);
2620	blk_queue_logical_block_size(q, CD_FRAMESIZE);
2621	blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2622	blk_queue_merge_bvec(q, pkt_merge_bvec);
2623	q->queuedata = pd;
2624}
2625
2626static int pkt_seq_show(struct seq_file *m, void *p)
2627{
2628	struct pktcdvd_device *pd = m->private;
2629	char *msg;
2630	char bdev_buf[BDEVNAME_SIZE];
2631	int states[PACKET_NUM_STATES];
2632
2633	seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2634		   bdevname(pd->bdev, bdev_buf));
2635
2636	seq_printf(m, "\nSettings:\n");
2637	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2638
2639	if (pd->settings.write_type == 0)
2640		msg = "Packet";
2641	else
2642		msg = "Unknown";
2643	seq_printf(m, "\twrite type:\t\t%s\n", msg);
2644
2645	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2646	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2647
2648	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2649
2650	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2651		msg = "Mode 1";
2652	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2653		msg = "Mode 2";
2654	else
2655		msg = "Unknown";
2656	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2657
2658	seq_printf(m, "\nStatistics:\n");
2659	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2660	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2661	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2662	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2663	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2664
2665	seq_printf(m, "\nMisc:\n");
2666	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2667	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2668	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2669	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2670	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2671	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2672
2673	seq_printf(m, "\nQueue state:\n");
2674	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2675	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2676	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2677
2678	pkt_count_states(pd, states);
2679	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2680		   states[0], states[1], states[2], states[3], states[4], states[5]);
 
 
 
 
2681
2682	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2683			pd->write_congestion_off,
2684			pd->write_congestion_on);
2685	return 0;
2686}
2687
2688static int pkt_seq_open(struct inode *inode, struct file *file)
2689{
2690	return single_open(file, pkt_seq_show, PDE(inode)->data);
2691}
2692
2693static const struct file_operations pkt_proc_fops = {
2694	.open	= pkt_seq_open,
2695	.read	= seq_read,
2696	.llseek	= seq_lseek,
2697	.release = single_release
2698};
2699
2700static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2701{
 
2702	int i;
2703	int ret = 0;
2704	char b[BDEVNAME_SIZE];
2705	struct block_device *bdev;
2706
2707	if (pd->pkt_dev == dev) {
2708		printk(DRIVER_NAME": Recursive setup not allowed\n");
2709		return -EBUSY;
2710	}
2711	for (i = 0; i < MAX_WRITERS; i++) {
2712		struct pktcdvd_device *pd2 = pkt_devs[i];
2713		if (!pd2)
2714			continue;
2715		if (pd2->bdev->bd_dev == dev) {
2716			printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
 
2717			return -EBUSY;
2718		}
2719		if (pd2->pkt_dev == dev) {
2720			printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2721			return -EBUSY;
2722		}
2723	}
2724
2725	bdev = bdget(dev);
2726	if (!bdev)
2727		return -ENOMEM;
2728	ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2729	if (ret)
2730		return ret;
 
 
 
 
2731
2732	/* This is safe, since we have a reference from open(). */
2733	__module_get(THIS_MODULE);
2734
2735	pd->bdev = bdev;
2736	set_blocksize(bdev, CD_FRAMESIZE);
2737
2738	pkt_init_queue(pd);
2739
2740	atomic_set(&pd->cdrw.pending_bios, 0);
2741	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2742	if (IS_ERR(pd->cdrw.thread)) {
2743		printk(DRIVER_NAME": can't start kernel thread\n");
2744		ret = -ENOMEM;
2745		goto out_mem;
2746	}
2747
2748	proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2749	DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2750	return 0;
2751
2752out_mem:
2753	blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2754	/* This is safe: open() is still holding a reference. */
2755	module_put(THIS_MODULE);
2756	return ret;
2757}
2758
2759static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
 
2760{
2761	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
 
2762	int ret;
2763
2764	VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2765		MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2766
2767	mutex_lock(&pktcdvd_mutex);
2768	switch (cmd) {
2769	case CDROMEJECT:
2770		/*
2771		 * The door gets locked when the device is opened, so we
2772		 * have to unlock it or else the eject command fails.
2773		 */
2774		if (pd->refcnt == 1)
2775			pkt_lock_door(pd, 0);
2776		/* fallthru */
2777	/*
2778	 * forward selected CDROM ioctls to CD-ROM, for UDF
2779	 */
2780	case CDROMMULTISESSION:
2781	case CDROMREADTOCENTRY:
2782	case CDROM_LAST_WRITTEN:
2783	case CDROM_SEND_PACKET:
2784	case SCSI_IOCTL_SEND_COMMAND:
2785		ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
 
 
 
2786		break;
2787
2788	default:
2789		VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2790		ret = -ENOTTY;
2791	}
2792	mutex_unlock(&pktcdvd_mutex);
2793
2794	return ret;
2795}
2796
2797static unsigned int pkt_check_events(struct gendisk *disk,
2798				     unsigned int clearing)
2799{
2800	struct pktcdvd_device *pd = disk->private_data;
2801	struct gendisk *attached_disk;
2802
2803	if (!pd)
2804		return 0;
2805	if (!pd->bdev)
2806		return 0;
2807	attached_disk = pd->bdev->bd_disk;
2808	if (!attached_disk || !attached_disk->fops->check_events)
2809		return 0;
2810	return attached_disk->fops->check_events(attached_disk, clearing);
2811}
2812
 
 
 
 
 
2813static const struct block_device_operations pktcdvd_ops = {
2814	.owner =		THIS_MODULE,
 
2815	.open =			pkt_open,
2816	.release =		pkt_close,
2817	.ioctl =		pkt_ioctl,
 
2818	.check_events =		pkt_check_events,
 
2819};
2820
2821static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2822{
2823	return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2824}
2825
2826/*
2827 * Set up mapping from pktcdvd device to CD-ROM device.
2828 */
2829static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2830{
 
 
 
 
2831	int idx;
2832	int ret = -ENOMEM;
2833	struct pktcdvd_device *pd;
2834	struct gendisk *disk;
2835
2836	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2837
2838	for (idx = 0; idx < MAX_WRITERS; idx++)
2839		if (!pkt_devs[idx])
2840			break;
2841	if (idx == MAX_WRITERS) {
2842		printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2843		ret = -EBUSY;
2844		goto out_mutex;
2845	}
2846
2847	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2848	if (!pd)
2849		goto out_mutex;
2850
2851	pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2852						  sizeof(struct pkt_rb_node));
2853	if (!pd->rb_pool)
2854		goto out_mem;
2855
2856	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2857	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2858	spin_lock_init(&pd->cdrw.active_list_lock);
2859
2860	spin_lock_init(&pd->lock);
2861	spin_lock_init(&pd->iosched.lock);
2862	bio_list_init(&pd->iosched.read_queue);
2863	bio_list_init(&pd->iosched.write_queue);
2864	sprintf(pd->name, DRIVER_NAME"%d", idx);
2865	init_waitqueue_head(&pd->wqueue);
2866	pd->bio_queue = RB_ROOT;
2867
2868	pd->write_congestion_on  = write_congestion_on;
2869	pd->write_congestion_off = write_congestion_off;
2870
2871	disk = alloc_disk(1);
2872	if (!disk)
 
2873		goto out_mem;
 
2874	pd->disk = disk;
2875	disk->major = pktdev_major;
2876	disk->first_minor = idx;
 
2877	disk->fops = &pktcdvd_ops;
2878	disk->flags = GENHD_FL_REMOVABLE;
2879	strcpy(disk->disk_name, pd->name);
2880	disk->devnode = pktcdvd_devnode;
2881	disk->private_data = pd;
2882	disk->queue = blk_alloc_queue(GFP_KERNEL);
2883	if (!disk->queue)
2884		goto out_mem2;
2885
2886	pd->pkt_dev = MKDEV(pktdev_major, idx);
2887	ret = pkt_new_dev(pd, dev);
2888	if (ret)
2889		goto out_new_dev;
2890
2891	/* inherit events of the host device */
2892	disk->events = pd->bdev->bd_disk->events;
2893	disk->async_events = pd->bdev->bd_disk->async_events;
2894
2895	add_disk(disk);
 
 
2896
2897	pkt_sysfs_dev_new(pd);
2898	pkt_debugfs_dev_new(pd);
2899
2900	pkt_devs[idx] = pd;
2901	if (pkt_dev)
2902		*pkt_dev = pd->pkt_dev;
2903
2904	mutex_unlock(&ctl_mutex);
2905	return 0;
2906
2907out_new_dev:
2908	blk_cleanup_queue(disk->queue);
2909out_mem2:
2910	put_disk(disk);
2911out_mem:
2912	if (pd->rb_pool)
2913		mempool_destroy(pd->rb_pool);
2914	kfree(pd);
2915out_mutex:
2916	mutex_unlock(&ctl_mutex);
2917	printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2918	return ret;
2919}
2920
2921/*
2922 * Tear down mapping from pktcdvd device to CD-ROM device.
2923 */
2924static int pkt_remove_dev(dev_t pkt_dev)
2925{
2926	struct pktcdvd_device *pd;
 
2927	int idx;
2928	int ret = 0;
2929
2930	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2931
2932	for (idx = 0; idx < MAX_WRITERS; idx++) {
2933		pd = pkt_devs[idx];
2934		if (pd && (pd->pkt_dev == pkt_dev))
2935			break;
2936	}
2937	if (idx == MAX_WRITERS) {
2938		DPRINTK(DRIVER_NAME": dev not setup\n");
2939		ret = -ENXIO;
2940		goto out;
2941	}
2942
2943	if (pd->refcnt > 0) {
2944		ret = -EBUSY;
2945		goto out;
2946	}
 
 
 
2947	if (!IS_ERR(pd->cdrw.thread))
2948		kthread_stop(pd->cdrw.thread);
2949
2950	pkt_devs[idx] = NULL;
2951
2952	pkt_debugfs_dev_remove(pd);
2953	pkt_sysfs_dev_remove(pd);
2954
2955	blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2956
2957	remove_proc_entry(pd->name, pkt_proc);
2958	DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2959
2960	del_gendisk(pd->disk);
2961	blk_cleanup_queue(pd->disk->queue);
2962	put_disk(pd->disk);
2963
2964	mempool_destroy(pd->rb_pool);
2965	kfree(pd);
2966
2967	/* This is safe: open() is still holding a reference. */
2968	module_put(THIS_MODULE);
2969
2970out:
2971	mutex_unlock(&ctl_mutex);
2972	return ret;
2973}
2974
2975static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2976{
2977	struct pktcdvd_device *pd;
2978
2979	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2980
2981	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2982	if (pd) {
2983		ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2984		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2985	} else {
2986		ctrl_cmd->dev = 0;
2987		ctrl_cmd->pkt_dev = 0;
2988	}
2989	ctrl_cmd->num_devices = MAX_WRITERS;
2990
2991	mutex_unlock(&ctl_mutex);
2992}
2993
2994static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2995{
2996	void __user *argp = (void __user *)arg;
2997	struct pkt_ctrl_command ctrl_cmd;
2998	int ret = 0;
2999	dev_t pkt_dev = 0;
3000
3001	if (cmd != PACKET_CTRL_CMD)
3002		return -ENOTTY;
3003
3004	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3005		return -EFAULT;
3006
3007	switch (ctrl_cmd.command) {
3008	case PKT_CTRL_CMD_SETUP:
3009		if (!capable(CAP_SYS_ADMIN))
3010			return -EPERM;
3011		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3012		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3013		break;
3014	case PKT_CTRL_CMD_TEARDOWN:
3015		if (!capable(CAP_SYS_ADMIN))
3016			return -EPERM;
3017		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3018		break;
3019	case PKT_CTRL_CMD_STATUS:
3020		pkt_get_status(&ctrl_cmd);
3021		break;
3022	default:
3023		return -ENOTTY;
3024	}
3025
3026	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3027		return -EFAULT;
3028	return ret;
3029}
3030
3031#ifdef CONFIG_COMPAT
3032static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3033{
3034	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
3035}
3036#endif
3037
3038static const struct file_operations pkt_ctl_fops = {
3039	.open		= nonseekable_open,
3040	.unlocked_ioctl	= pkt_ctl_ioctl,
3041#ifdef CONFIG_COMPAT
3042	.compat_ioctl	= pkt_ctl_compat_ioctl,
3043#endif
3044	.owner		= THIS_MODULE,
3045	.llseek		= no_llseek,
3046};
3047
3048static struct miscdevice pkt_misc = {
3049	.minor 		= MISC_DYNAMIC_MINOR,
3050	.name  		= DRIVER_NAME,
3051	.nodename	= "pktcdvd/control",
3052	.fops  		= &pkt_ctl_fops
3053};
3054
3055static int __init pkt_init(void)
3056{
3057	int ret;
3058
3059	mutex_init(&ctl_mutex);
3060
3061	psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3062					sizeof(struct packet_stacked_data));
3063	if (!psd_pool)
3064		return -ENOMEM;
 
 
 
 
 
3065
3066	ret = register_blkdev(pktdev_major, DRIVER_NAME);
3067	if (ret < 0) {
3068		printk(DRIVER_NAME": Unable to register block device\n");
3069		goto out2;
3070	}
3071	if (!pktdev_major)
3072		pktdev_major = ret;
3073
3074	ret = pkt_sysfs_init();
3075	if (ret)
3076		goto out;
3077
3078	pkt_debugfs_init();
3079
3080	ret = misc_register(&pkt_misc);
3081	if (ret) {
3082		printk(DRIVER_NAME": Unable to register misc device\n");
3083		goto out_misc;
3084	}
3085
3086	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3087
3088	return 0;
3089
3090out_misc:
3091	pkt_debugfs_cleanup();
3092	pkt_sysfs_cleanup();
3093out:
3094	unregister_blkdev(pktdev_major, DRIVER_NAME);
3095out2:
3096	mempool_destroy(psd_pool);
 
3097	return ret;
3098}
3099
3100static void __exit pkt_exit(void)
3101{
3102	remove_proc_entry("driver/"DRIVER_NAME, NULL);
3103	misc_deregister(&pkt_misc);
3104
3105	pkt_debugfs_cleanup();
3106	pkt_sysfs_cleanup();
3107
3108	unregister_blkdev(pktdev_major, DRIVER_NAME);
3109	mempool_destroy(psd_pool);
 
3110}
3111
3112MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3113MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3114MODULE_LICENSE("GPL");
3115
3116module_init(pkt_init);
3117module_exit(pkt_exit);
v6.9.4
   1/*
   2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
   3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
   4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
   5 *
   6 * May be copied or modified under the terms of the GNU General Public
   7 * License.  See linux/COPYING for more information.
   8 *
   9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
  10 * DVD-RAM devices.
  11 *
  12 * Theory of operation:
  13 *
  14 * At the lowest level, there is the standard driver for the CD/DVD device,
  15 * such as drivers/scsi/sr.c. This driver can handle read and write requests,
  16 * but it doesn't know anything about the special restrictions that apply to
  17 * packet writing. One restriction is that write requests must be aligned to
  18 * packet boundaries on the physical media, and the size of a write request
  19 * must be equal to the packet size. Another restriction is that a
  20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
  21 * command, if the previous command was a write.
  22 *
  23 * The purpose of the packet writing driver is to hide these restrictions from
  24 * higher layers, such as file systems, and present a block device that can be
  25 * randomly read and written using 2kB-sized blocks.
  26 *
  27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
  28 * Its data is defined by the struct packet_iosched and includes two bio
  29 * queues with pending read and write requests. These queues are processed
  30 * by the pkt_iosched_process_queue() function. The write requests in this
  31 * queue are already properly aligned and sized. This layer is responsible for
  32 * issuing the flush cache commands and scheduling the I/O in a good order.
  33 *
  34 * The next layer transforms unaligned write requests to aligned writes. This
  35 * transformation requires reading missing pieces of data from the underlying
  36 * block device, assembling the pieces to full packets and queuing them to the
  37 * packet I/O scheduler.
  38 *
  39 * At the top layer there is a custom ->submit_bio function that forwards
  40 * read requests directly to the iosched queue and puts write requests in the
  41 * unaligned write queue. A kernel thread performs the necessary read
  42 * gathering to convert the unaligned writes to aligned writes and then feeds
  43 * them to the packet I/O scheduler.
  44 *
  45 *************************************************************************/
  46
  47#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  48
  49#include <linux/backing-dev.h>
 
  50#include <linux/compat.h>
  51#include <linux/debugfs.h>
  52#include <linux/device.h>
  53#include <linux/errno.h>
 
  54#include <linux/file.h>
 
 
 
  55#include <linux/freezer.h>
  56#include <linux/kernel.h>
  57#include <linux/kthread.h>
  58#include <linux/miscdevice.h>
  59#include <linux/module.h>
  60#include <linux/mutex.h>
  61#include <linux/nospec.h>
  62#include <linux/pktcdvd.h>
  63#include <linux/proc_fs.h>
  64#include <linux/seq_file.h>
  65#include <linux/slab.h>
  66#include <linux/spinlock.h>
  67#include <linux/types.h>
  68#include <linux/uaccess.h>
  69
  70#include <scsi/scsi.h>
  71#include <scsi/scsi_cmnd.h>
  72#include <scsi/scsi_ioctl.h>
 
 
 
  73
  74#include <asm/unaligned.h>
  75
  76#define DRIVER_NAME	"pktcdvd"
  77
 
 
 
 
 
 
 
 
 
 
 
 
  78#define MAX_SPEED 0xffff
  79
 
 
  80static DEFINE_MUTEX(pktcdvd_mutex);
  81static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
  82static struct proc_dir_entry *pkt_proc;
  83static int pktdev_major;
  84static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
  85static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
  86static struct mutex ctl_mutex;	/* Serialize open/close/setup/teardown */
  87static mempool_t psd_pool;
  88static struct bio_set pkt_bio_set;
  89
  90/* /sys/class/pktcdvd */
  91static struct class	class_pktcdvd;
  92static struct dentry	*pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
  93
  94/* forward declaration */
  95static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
  96static int pkt_remove_dev(dev_t pkt_dev);
 
 
  97
  98static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
 
 
 
 
 
 
 
  99{
 100	return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101}
 102
 
 103/**********************************************************
 
 104 * sysfs interface for pktcdvd
 105 * by (C) 2006  Thomas Maier <balagi@justmail.de>
 106 
 
 
 
 
 
 
 107  /sys/class/pktcdvd/pktcdvd[0-7]/
 108                     stat/reset
 109                     stat/packets_started
 110                     stat/packets_finished
 111                     stat/kb_written
 112                     stat/kb_read
 113                     stat/kb_read_gather
 114                     write_queue/size
 115                     write_queue/congestion_off
 116                     write_queue/congestion_on
 117 **********************************************************/
 118
 119static ssize_t packets_started_show(struct device *dev,
 120				    struct device_attribute *attr, char *buf)
 121{
 122	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 123
 124	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_started);
 125}
 126static DEVICE_ATTR_RO(packets_started);
 127
 128static ssize_t packets_finished_show(struct device *dev,
 129				     struct device_attribute *attr, char *buf)
 130{
 131	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 132
 133	return sysfs_emit(buf, "%lu\n", pd->stats.pkt_ended);
 134}
 135static DEVICE_ATTR_RO(packets_finished);
 136
 137static ssize_t kb_written_show(struct device *dev,
 138			       struct device_attribute *attr, char *buf)
 139{
 140	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 141
 142	return sysfs_emit(buf, "%lu\n", pd->stats.secs_w >> 1);
 143}
 144static DEVICE_ATTR_RO(kb_written);
 145
 146static ssize_t kb_read_show(struct device *dev,
 147			    struct device_attribute *attr, char *buf)
 148{
 149	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 150
 151	return sysfs_emit(buf, "%lu\n", pd->stats.secs_r >> 1);
 152}
 153static DEVICE_ATTR_RO(kb_read);
 154
 155static ssize_t kb_read_gather_show(struct device *dev,
 156				   struct device_attribute *attr, char *buf)
 157{
 158	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 159
 160	return sysfs_emit(buf, "%lu\n", pd->stats.secs_rg >> 1);
 161}
 162static DEVICE_ATTR_RO(kb_read_gather);
 163
 164static ssize_t reset_store(struct device *dev, struct device_attribute *attr,
 165			   const char *buf, size_t len)
 166{
 167	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 168
 169	if (len > 0) {
 170		pd->stats.pkt_started = 0;
 171		pd->stats.pkt_ended = 0;
 172		pd->stats.secs_w = 0;
 173		pd->stats.secs_rg = 0;
 174		pd->stats.secs_r = 0;
 175	}
 176	return len;
 177}
 178static DEVICE_ATTR_WO(reset);
 179
 180static struct attribute *pkt_stat_attrs[] = {
 181	&dev_attr_packets_finished.attr,
 182	&dev_attr_packets_started.attr,
 183	&dev_attr_kb_read.attr,
 184	&dev_attr_kb_written.attr,
 185	&dev_attr_kb_read_gather.attr,
 186	&dev_attr_reset.attr,
 187	NULL,
 188};
 189
 190static const struct attribute_group pkt_stat_group = {
 191	.name = "stat",
 192	.attrs = pkt_stat_attrs,
 
 
 
 
 
 
 193};
 194
 195static ssize_t size_show(struct device *dev,
 196			 struct device_attribute *attr, char *buf)
 197{
 198	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 199	int n;
 200
 201	spin_lock(&pd->lock);
 202	n = sysfs_emit(buf, "%d\n", pd->bio_queue_size);
 203	spin_unlock(&pd->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 204	return n;
 205}
 206static DEVICE_ATTR_RO(size);
 207
 208static void init_write_congestion_marks(int* lo, int* hi)
 209{
 210	if (*hi > 0) {
 211		*hi = max(*hi, 500);
 212		*hi = min(*hi, 1000000);
 213		if (*lo <= 0)
 214			*lo = *hi - 100;
 215		else {
 216			*lo = min(*lo, *hi - 100);
 217			*lo = max(*lo, 100);
 218		}
 219	} else {
 220		*hi = -1;
 221		*lo = -1;
 222	}
 223}
 224
 225static ssize_t congestion_off_show(struct device *dev,
 226				   struct device_attribute *attr, char *buf)
 
 227{
 228	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 229	int n;
 230
 231	spin_lock(&pd->lock);
 232	n = sysfs_emit(buf, "%d\n", pd->write_congestion_off);
 233	spin_unlock(&pd->lock);
 234	return n;
 235}
 
 236
 237static ssize_t congestion_off_store(struct device *dev,
 238				    struct device_attribute *attr,
 239				    const char *buf, size_t len)
 240{
 241	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 242	int val, ret;
 243
 244	ret = kstrtoint(buf, 10, &val);
 245	if (ret)
 246		return ret;
 247
 248	spin_lock(&pd->lock);
 249	pd->write_congestion_off = val;
 250	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
 251	spin_unlock(&pd->lock);
 252	return len;
 253}
 254static DEVICE_ATTR_RW(congestion_off);
 255
 256static ssize_t congestion_on_show(struct device *dev,
 257				  struct device_attribute *attr, char *buf)
 258{
 259	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 260	int n;
 261
 262	spin_lock(&pd->lock);
 263	n = sysfs_emit(buf, "%d\n", pd->write_congestion_on);
 264	spin_unlock(&pd->lock);
 265	return n;
 266}
 267
 268static ssize_t congestion_on_store(struct device *dev,
 269				   struct device_attribute *attr,
 270				   const char *buf, size_t len)
 271{
 272	struct pktcdvd_device *pd = dev_get_drvdata(dev);
 273	int val, ret;
 274
 275	ret = kstrtoint(buf, 10, &val);
 276	if (ret)
 277		return ret;
 278
 279	spin_lock(&pd->lock);
 280	pd->write_congestion_on = val;
 281	init_write_congestion_marks(&pd->write_congestion_off, &pd->write_congestion_on);
 282	spin_unlock(&pd->lock);
 283	return len;
 284}
 285static DEVICE_ATTR_RW(congestion_on);
 286
 287static struct attribute *pkt_wq_attrs[] = {
 288	&dev_attr_congestion_on.attr,
 289	&dev_attr_congestion_off.attr,
 290	&dev_attr_size.attr,
 291	NULL,
 292};
 293
 294static const struct attribute_group pkt_wq_group = {
 295	.name = "write_queue",
 296	.attrs = pkt_wq_attrs,
 297};
 298
 299static const struct attribute_group *pkt_groups[] = {
 300	&pkt_stat_group,
 301	&pkt_wq_group,
 302	NULL,
 303};
 304
 305static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
 306{
 307	if (class_is_registered(&class_pktcdvd)) {
 308		pd->dev = device_create_with_groups(&class_pktcdvd, NULL,
 309						    MKDEV(0, 0), pd, pkt_groups,
 310						    "%s", pd->disk->disk_name);
 311		if (IS_ERR(pd->dev))
 312			pd->dev = NULL;
 313	}
 
 
 
 
 
 
 
 
 314}
 315
 316static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
 317{
 318	if (class_is_registered(&class_pktcdvd))
 
 
 319		device_unregister(pd->dev);
 320}
 321
 322
 323/********************************************************************
 324  /sys/class/pktcdvd/
 325                     add            map block device
 326                     remove         unmap packet dev
 327                     device_map     show mappings
 328 *******************************************************************/
 329
 330static ssize_t device_map_show(const struct class *c, const struct class_attribute *attr,
 331			       char *data)
 
 
 
 
 
 332{
 333	int n = 0;
 334	int idx;
 335	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
 336	for (idx = 0; idx < MAX_WRITERS; idx++) {
 337		struct pktcdvd_device *pd = pkt_devs[idx];
 338		if (!pd)
 339			continue;
 340		n += sysfs_emit_at(data, n, "%s %u:%u %u:%u\n",
 341			pd->disk->disk_name,
 342			MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
 343			MAJOR(file_bdev(pd->bdev_file)->bd_dev),
 344			MINOR(file_bdev(pd->bdev_file)->bd_dev));
 345	}
 346	mutex_unlock(&ctl_mutex);
 347	return n;
 348}
 349static CLASS_ATTR_RO(device_map);
 350
 351static ssize_t add_store(const struct class *c, const struct class_attribute *attr,
 352			 const char *buf, size_t count)
 
 
 353{
 354	unsigned int major, minor;
 355
 356	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 357		/* pkt_setup_dev() expects caller to hold reference to self */
 358		if (!try_module_get(THIS_MODULE))
 359			return -ENODEV;
 360
 361		pkt_setup_dev(MKDEV(major, minor), NULL);
 362
 363		module_put(THIS_MODULE);
 364
 365		return count;
 366	}
 367
 368	return -EINVAL;
 369}
 370static CLASS_ATTR_WO(add);
 371
 372static ssize_t remove_store(const struct class *c, const struct class_attribute *attr,
 373			    const char *buf, size_t count)
 
 
 374{
 375	unsigned int major, minor;
 376	if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
 377		pkt_remove_dev(MKDEV(major, minor));
 378		return count;
 379	}
 380	return -EINVAL;
 381}
 382static CLASS_ATTR_WO(remove);
 383
 384static struct attribute *class_pktcdvd_attrs[] = {
 385	&class_attr_add.attr,
 386	&class_attr_remove.attr,
 387	&class_attr_device_map.attr,
 388	NULL,
 389};
 390ATTRIBUTE_GROUPS(class_pktcdvd);
 391
 392static struct class class_pktcdvd = {
 393	.name		= DRIVER_NAME,
 394	.class_groups	= class_pktcdvd_groups,
 395};
 396
 397static int pkt_sysfs_init(void)
 398{
 
 
 399	/*
 400	 * create control files in sysfs
 401	 * /sys/class/pktcdvd/...
 402	 */
 403	return class_register(&class_pktcdvd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404}
 405
 406static void pkt_sysfs_cleanup(void)
 407{
 408	class_unregister(&class_pktcdvd);
 
 
 409}
 410
 411/********************************************************************
 412  entries in debugfs
 413
 414  /sys/kernel/debug/pktcdvd[0-7]/
 415			info
 416
 417 *******************************************************************/
 418
 419static void pkt_count_states(struct pktcdvd_device *pd, int *states)
 420{
 421	struct packet_data *pkt;
 422	int i;
 423
 424	for (i = 0; i < PACKET_NUM_STATES; i++)
 425		states[i] = 0;
 426
 427	spin_lock(&pd->cdrw.active_list_lock);
 428	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
 429		states[pkt->state]++;
 430	}
 431	spin_unlock(&pd->cdrw.active_list_lock);
 432}
 433
 434static int pkt_seq_show(struct seq_file *m, void *p)
 435{
 436	struct pktcdvd_device *pd = m->private;
 437	char *msg;
 438	int states[PACKET_NUM_STATES];
 439
 440	seq_printf(m, "Writer %s mapped to %pg:\n", pd->disk->disk_name,
 441		   file_bdev(pd->bdev_file));
 442
 443	seq_printf(m, "\nSettings:\n");
 444	seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
 445
 446	if (pd->settings.write_type == 0)
 447		msg = "Packet";
 448	else
 449		msg = "Unknown";
 450	seq_printf(m, "\twrite type:\t\t%s\n", msg);
 451
 452	seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
 453	seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
 454
 455	seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
 456
 457	if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
 458		msg = "Mode 1";
 459	else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
 460		msg = "Mode 2";
 461	else
 462		msg = "Unknown";
 463	seq_printf(m, "\tblock mode:\t\t%s\n", msg);
 464
 465	seq_printf(m, "\nStatistics:\n");
 466	seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
 467	seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
 468	seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
 469	seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
 470	seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
 471
 472	seq_printf(m, "\nMisc:\n");
 473	seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
 474	seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
 475	seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
 476	seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
 477	seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
 478	seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
 479
 480	seq_printf(m, "\nQueue state:\n");
 481	seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
 482	seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
 483	seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", pd->current_sector);
 484
 485	pkt_count_states(pd, states);
 486	seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
 487		   states[0], states[1], states[2], states[3], states[4], states[5]);
 488
 489	seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
 490			pd->write_congestion_off,
 491			pd->write_congestion_on);
 492	return 0;
 493}
 494DEFINE_SHOW_ATTRIBUTE(pkt_seq);
 495
 496static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
 497{
 498	if (!pkt_debugfs_root)
 499		return;
 500	pd->dfs_d_root = debugfs_create_dir(pd->disk->disk_name, pkt_debugfs_root);
 501	if (!pd->dfs_d_root)
 
 
 
 
 
 
 
 
 502		return;
 503
 504	pd->dfs_f_info = debugfs_create_file("info", 0444, pd->dfs_d_root,
 505					     pd, &pkt_seq_fops);
 506}
 507
 508static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
 509{
 510	if (!pkt_debugfs_root)
 511		return;
 512	debugfs_remove(pd->dfs_f_info);
 513	debugfs_remove(pd->dfs_d_root);
 514	pd->dfs_f_info = NULL;
 
 
 515	pd->dfs_d_root = NULL;
 516}
 517
 518static void pkt_debugfs_init(void)
 519{
 520	pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
 
 
 
 
 521}
 522
 523static void pkt_debugfs_cleanup(void)
 524{
 
 
 525	debugfs_remove(pkt_debugfs_root);
 526	pkt_debugfs_root = NULL;
 527}
 528
 529/* ----------------------------------------------------------*/
 530
 531
 532static void pkt_bio_finished(struct pktcdvd_device *pd)
 533{
 534	struct device *ddev = disk_to_dev(pd->disk);
 535
 536	BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
 537	if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
 538		dev_dbg(ddev, "queue empty\n");
 539		atomic_set(&pd->iosched.attention, 1);
 540		wake_up(&pd->wqueue);
 541	}
 542}
 543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544/*
 545 * Allocate a packet_data struct
 546 */
 547static struct packet_data *pkt_alloc_packet_data(int frames)
 548{
 549	int i;
 550	struct packet_data *pkt;
 551
 552	pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
 553	if (!pkt)
 554		goto no_pkt;
 555
 556	pkt->frames = frames;
 557	pkt->w_bio = bio_kmalloc(frames, GFP_KERNEL);
 558	if (!pkt->w_bio)
 559		goto no_bio;
 560
 561	for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
 562		pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
 563		if (!pkt->pages[i])
 564			goto no_page;
 565	}
 566
 567	spin_lock_init(&pkt->lock);
 568	bio_list_init(&pkt->orig_bios);
 569
 570	for (i = 0; i < frames; i++) {
 571		pkt->r_bios[i] = bio_kmalloc(1, GFP_KERNEL);
 572		if (!pkt->r_bios[i])
 573			goto no_rd_bio;
 
 574	}
 575
 576	return pkt;
 577
 578no_rd_bio:
 579	for (i = 0; i < frames; i++)
 580		kfree(pkt->r_bios[i]);
 
 
 
 
 581no_page:
 582	for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
 583		if (pkt->pages[i])
 584			__free_page(pkt->pages[i]);
 585	kfree(pkt->w_bio);
 586no_bio:
 587	kfree(pkt);
 588no_pkt:
 589	return NULL;
 590}
 591
 592/*
 593 * Free a packet_data struct
 594 */
 595static void pkt_free_packet_data(struct packet_data *pkt)
 596{
 597	int i;
 598
 599	for (i = 0; i < pkt->frames; i++)
 600		kfree(pkt->r_bios[i]);
 
 
 
 601	for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
 602		__free_page(pkt->pages[i]);
 603	kfree(pkt->w_bio);
 604	kfree(pkt);
 605}
 606
 607static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
 608{
 609	struct packet_data *pkt, *next;
 610
 611	BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
 612
 613	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
 614		pkt_free_packet_data(pkt);
 615	}
 616	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
 617}
 618
 619static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
 620{
 621	struct packet_data *pkt;
 622
 623	BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
 624
 625	while (nr_packets > 0) {
 626		pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
 627		if (!pkt) {
 628			pkt_shrink_pktlist(pd);
 629			return 0;
 630		}
 631		pkt->id = nr_packets;
 632		pkt->pd = pd;
 633		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
 634		nr_packets--;
 635	}
 636	return 1;
 637}
 638
 639static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
 640{
 641	struct rb_node *n = rb_next(&node->rb_node);
 642	if (!n)
 643		return NULL;
 644	return rb_entry(n, struct pkt_rb_node, rb_node);
 645}
 646
 647static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 648{
 649	rb_erase(&node->rb_node, &pd->bio_queue);
 650	mempool_free(node, &pd->rb_pool);
 651	pd->bio_queue_size--;
 652	BUG_ON(pd->bio_queue_size < 0);
 653}
 654
 655/*
 656 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
 657 */
 658static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
 659{
 660	struct rb_node *n = pd->bio_queue.rb_node;
 661	struct rb_node *next;
 662	struct pkt_rb_node *tmp;
 663
 664	if (!n) {
 665		BUG_ON(pd->bio_queue_size > 0);
 666		return NULL;
 667	}
 668
 669	for (;;) {
 670		tmp = rb_entry(n, struct pkt_rb_node, rb_node);
 671		if (s <= tmp->bio->bi_iter.bi_sector)
 672			next = n->rb_left;
 673		else
 674			next = n->rb_right;
 675		if (!next)
 676			break;
 677		n = next;
 678	}
 679
 680	if (s > tmp->bio->bi_iter.bi_sector) {
 681		tmp = pkt_rbtree_next(tmp);
 682		if (!tmp)
 683			return NULL;
 684	}
 685	BUG_ON(s > tmp->bio->bi_iter.bi_sector);
 686	return tmp;
 687}
 688
 689/*
 690 * Insert a node into the pd->bio_queue rb tree.
 691 */
 692static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
 693{
 694	struct rb_node **p = &pd->bio_queue.rb_node;
 695	struct rb_node *parent = NULL;
 696	sector_t s = node->bio->bi_iter.bi_sector;
 697	struct pkt_rb_node *tmp;
 698
 699	while (*p) {
 700		parent = *p;
 701		tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
 702		if (s < tmp->bio->bi_iter.bi_sector)
 703			p = &(*p)->rb_left;
 704		else
 705			p = &(*p)->rb_right;
 706	}
 707	rb_link_node(&node->rb_node, parent, p);
 708	rb_insert_color(&node->rb_node, &pd->bio_queue);
 709	pd->bio_queue_size++;
 710}
 711
 712/*
 713 * Send a packet_command to the underlying block device and
 714 * wait for completion.
 715 */
 716static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
 717{
 718	struct request_queue *q = bdev_get_queue(file_bdev(pd->bdev_file));
 719	struct scsi_cmnd *scmd;
 720	struct request *rq;
 721	int ret = 0;
 722
 723	rq = scsi_alloc_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
 724			     REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 725	if (IS_ERR(rq))
 726		return PTR_ERR(rq);
 727	scmd = blk_mq_rq_to_pdu(rq);
 728
 729	if (cgc->buflen) {
 730		ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
 731				      GFP_NOIO);
 732		if (ret)
 733			goto out;
 734	}
 735
 736	scmd->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
 737	memcpy(scmd->cmnd, cgc->cmd, CDROM_PACKET_SIZE);
 738
 739	rq->timeout = 60*HZ;
 
 740	if (cgc->quiet)
 741		rq->rq_flags |= RQF_QUIET;
 742
 743	blk_execute_rq(rq, false);
 744	if (scmd->result)
 745		ret = -EIO;
 746out:
 747	blk_mq_free_request(rq);
 748	return ret;
 749}
 750
 751static const char *sense_key_string(__u8 index)
 752{
 753	static const char * const info[] = {
 754		"No sense", "Recovered error", "Not ready",
 755		"Medium error", "Hardware error", "Illegal request",
 756		"Unit attention", "Data protect", "Blank check",
 757	};
 758
 759	return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
 760}
 761
 762/*
 763 * A generic sense dump / resolve mechanism should be implemented across
 764 * all ATAPI + SCSI devices.
 765 */
 766static void pkt_dump_sense(struct pktcdvd_device *pd,
 767			   struct packet_command *cgc)
 768{
 769	struct device *ddev = disk_to_dev(pd->disk);
 770	struct scsi_sense_hdr *sshdr = cgc->sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771
 772	if (sshdr)
 773		dev_err(ddev, "%*ph - sense %02x.%02x.%02x (%s)\n",
 774			CDROM_PACKET_SIZE, cgc->cmd,
 775			sshdr->sense_key, sshdr->asc, sshdr->ascq,
 776			sense_key_string(sshdr->sense_key));
 777	else
 778		dev_err(ddev, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
 779}
 780
 781/*
 782 * flush the drive cache to media
 783 */
 784static int pkt_flush_cache(struct pktcdvd_device *pd)
 785{
 786	struct packet_command cgc;
 787
 788	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 789	cgc.cmd[0] = GPCMD_FLUSH_CACHE;
 790	cgc.quiet = 1;
 791
 792	/*
 793	 * the IMMED bit -- we default to not setting it, although that
 794	 * would allow a much faster close, this is safer
 795	 */
 796#if 0
 797	cgc.cmd[1] = 1 << 1;
 798#endif
 799	return pkt_generic_packet(pd, &cgc);
 800}
 801
 802/*
 803 * speed is given as the normal factor, e.g. 4 for 4x
 804 */
 805static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
 806				unsigned write_speed, unsigned read_speed)
 807{
 808	struct packet_command cgc;
 809	struct scsi_sense_hdr sshdr;
 810	int ret;
 811
 812	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
 813	cgc.sshdr = &sshdr;
 814	cgc.cmd[0] = GPCMD_SET_SPEED;
 815	put_unaligned_be16(read_speed, &cgc.cmd[2]);
 816	put_unaligned_be16(write_speed, &cgc.cmd[4]);
 
 
 817
 818	ret = pkt_generic_packet(pd, &cgc);
 819	if (ret)
 820		pkt_dump_sense(pd, &cgc);
 821
 822	return ret;
 823}
 824
 825/*
 826 * Queue a bio for processing by the low-level CD device. Must be called
 827 * from process context.
 828 */
 829static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
 830{
 831	/*
 832	 * Some CDRW drives can not handle writes larger than one packet,
 833	 * even if the size is a multiple of the packet size.
 834	 */
 835	bio->bi_opf |= REQ_NOMERGE;
 836
 837	spin_lock(&pd->iosched.lock);
 838	if (bio_data_dir(bio) == READ)
 839		bio_list_add(&pd->iosched.read_queue, bio);
 840	else
 841		bio_list_add(&pd->iosched.write_queue, bio);
 842	spin_unlock(&pd->iosched.lock);
 843
 844	atomic_set(&pd->iosched.attention, 1);
 845	wake_up(&pd->wqueue);
 846}
 847
 848/*
 849 * Process the queued read/write requests. This function handles special
 850 * requirements for CDRW drives:
 851 * - A cache flush command must be inserted before a read request if the
 852 *   previous request was a write.
 853 * - Switching between reading and writing is slow, so don't do it more often
 854 *   than necessary.
 855 * - Optimize for throughput at the expense of latency. This means that streaming
 856 *   writes will never be interrupted by a read, but if the drive has to seek
 857 *   before the next write, switch to reading instead if there are any pending
 858 *   read requests.
 859 * - Set the read speed according to current usage pattern. When only reading
 860 *   from the device, it's best to use the highest possible read speed, but
 861 *   when switching often between reading and writing, it's better to have the
 862 *   same read and write speeds.
 863 */
 864static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
 865{
 866	struct device *ddev = disk_to_dev(pd->disk);
 867
 868	if (atomic_read(&pd->iosched.attention) == 0)
 869		return;
 870	atomic_set(&pd->iosched.attention, 0);
 871
 872	for (;;) {
 873		struct bio *bio;
 874		int reads_queued, writes_queued;
 875
 876		spin_lock(&pd->iosched.lock);
 877		reads_queued = !bio_list_empty(&pd->iosched.read_queue);
 878		writes_queued = !bio_list_empty(&pd->iosched.write_queue);
 879		spin_unlock(&pd->iosched.lock);
 880
 881		if (!reads_queued && !writes_queued)
 882			break;
 883
 884		if (pd->iosched.writing) {
 885			int need_write_seek = 1;
 886			spin_lock(&pd->iosched.lock);
 887			bio = bio_list_peek(&pd->iosched.write_queue);
 888			spin_unlock(&pd->iosched.lock);
 889			if (bio && (bio->bi_iter.bi_sector ==
 890				    pd->iosched.last_write))
 891				need_write_seek = 0;
 892			if (need_write_seek && reads_queued) {
 893				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 894					dev_dbg(ddev, "write, waiting\n");
 895					break;
 896				}
 897				pkt_flush_cache(pd);
 898				pd->iosched.writing = 0;
 899			}
 900		} else {
 901			if (!reads_queued && writes_queued) {
 902				if (atomic_read(&pd->cdrw.pending_bios) > 0) {
 903					dev_dbg(ddev, "read, waiting\n");
 904					break;
 905				}
 906				pd->iosched.writing = 1;
 907			}
 908		}
 909
 910		spin_lock(&pd->iosched.lock);
 911		if (pd->iosched.writing)
 912			bio = bio_list_pop(&pd->iosched.write_queue);
 913		else
 914			bio = bio_list_pop(&pd->iosched.read_queue);
 915		spin_unlock(&pd->iosched.lock);
 916
 917		if (!bio)
 918			continue;
 919
 920		if (bio_data_dir(bio) == READ)
 921			pd->iosched.successive_reads +=
 922				bio->bi_iter.bi_size >> 10;
 923		else {
 924			pd->iosched.successive_reads = 0;
 925			pd->iosched.last_write = bio_end_sector(bio);
 926		}
 927		if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
 928			if (pd->read_speed == pd->write_speed) {
 929				pd->read_speed = MAX_SPEED;
 930				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 931			}
 932		} else {
 933			if (pd->read_speed != pd->write_speed) {
 934				pd->read_speed = pd->write_speed;
 935				pkt_set_speed(pd, pd->write_speed, pd->read_speed);
 936			}
 937		}
 938
 939		atomic_inc(&pd->cdrw.pending_bios);
 940		submit_bio_noacct(bio);
 941	}
 942}
 943
 944/*
 945 * Special care is needed if the underlying block device has a small
 946 * max_phys_segments value.
 947 */
 948static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
 949{
 950	struct device *ddev = disk_to_dev(pd->disk);
 951
 952	if ((pd->settings.size << 9) / CD_FRAMESIZE <= queue_max_segments(q)) {
 953		/*
 954		 * The cdrom device can handle one segment/frame
 955		 */
 956		clear_bit(PACKET_MERGE_SEGS, &pd->flags);
 957		return 0;
 958	}
 959
 960	if ((pd->settings.size << 9) / PAGE_SIZE <= queue_max_segments(q)) {
 961		/*
 962		 * We can handle this case at the expense of some extra memory
 963		 * copies during write operations
 964		 */
 965		set_bit(PACKET_MERGE_SEGS, &pd->flags);
 966		return 0;
 
 
 
 967	}
 
 968
 969	dev_err(ddev, "cdrom max_phys_segments too small\n");
 970	return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971}
 972
 973static void pkt_end_io_read(struct bio *bio)
 974{
 975	struct packet_data *pkt = bio->bi_private;
 976	struct pktcdvd_device *pd = pkt->pd;
 977	BUG_ON(!pd);
 978
 979	dev_dbg(disk_to_dev(pd->disk), "bio=%p sec0=%llx sec=%llx err=%d\n",
 980		bio, pkt->sector, bio->bi_iter.bi_sector, bio->bi_status);
 981
 982	if (bio->bi_status)
 983		atomic_inc(&pkt->io_errors);
 984	bio_uninit(bio);
 985	if (atomic_dec_and_test(&pkt->io_wait)) {
 986		atomic_inc(&pkt->run_sm);
 987		wake_up(&pd->wqueue);
 988	}
 989	pkt_bio_finished(pd);
 990}
 991
 992static void pkt_end_io_packet_write(struct bio *bio)
 993{
 994	struct packet_data *pkt = bio->bi_private;
 995	struct pktcdvd_device *pd = pkt->pd;
 996	BUG_ON(!pd);
 997
 998	dev_dbg(disk_to_dev(pd->disk), "id=%d, err=%d\n", pkt->id, bio->bi_status);
 999
1000	pd->stats.pkt_ended++;
1001
1002	bio_uninit(bio);
1003	pkt_bio_finished(pd);
1004	atomic_dec(&pkt->io_wait);
1005	atomic_inc(&pkt->run_sm);
1006	wake_up(&pd->wqueue);
1007}
1008
1009/*
1010 * Schedule reads for the holes in a packet
1011 */
1012static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1013{
1014	struct device *ddev = disk_to_dev(pd->disk);
1015	int frames_read = 0;
1016	struct bio *bio;
1017	int f;
1018	char written[PACKET_MAX_SIZE];
1019
1020	BUG_ON(bio_list_empty(&pkt->orig_bios));
1021
1022	atomic_set(&pkt->io_wait, 0);
1023	atomic_set(&pkt->io_errors, 0);
1024
1025	/*
1026	 * Figure out which frames we need to read before we can write.
1027	 */
1028	memset(written, 0, sizeof(written));
1029	spin_lock(&pkt->lock);
1030	bio_list_for_each(bio, &pkt->orig_bios) {
1031		int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1032			(CD_FRAMESIZE >> 9);
1033		int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1034		pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1035		BUG_ON(first_frame < 0);
1036		BUG_ON(first_frame + num_frames > pkt->frames);
1037		for (f = first_frame; f < first_frame + num_frames; f++)
1038			written[f] = 1;
1039	}
1040	spin_unlock(&pkt->lock);
1041
1042	if (pkt->cache_valid) {
1043		dev_dbg(ddev, "zone %llx cached\n", pkt->sector);
 
1044		goto out_account;
1045	}
1046
1047	/*
1048	 * Schedule reads for missing parts of the packet.
1049	 */
1050	for (f = 0; f < pkt->frames; f++) {
 
 
1051		int p, offset;
1052
1053		if (written[f])
1054			continue;
1055
1056		bio = pkt->r_bios[f];
1057		bio_init(bio, file_bdev(pd->bdev_file), bio->bi_inline_vecs, 1,
1058			 REQ_OP_READ);
1059		bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
 
 
1060		bio->bi_end_io = pkt_end_io_read;
1061		bio->bi_private = pkt;
 
 
1062
1063		p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1064		offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1065		dev_dbg(ddev, "Adding frame %d, page:%p offs:%d\n", f,
1066			pkt->pages[p], offset);
1067		if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1068			BUG();
1069
1070		atomic_inc(&pkt->io_wait);
 
1071		pkt_queue_bio(pd, bio);
1072		frames_read++;
1073	}
1074
1075out_account:
1076	dev_dbg(ddev, "need %d frames for zone %llx\n", frames_read, pkt->sector);
 
1077	pd->stats.pkt_started++;
1078	pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1079}
1080
1081/*
1082 * Find a packet matching zone, or the least recently used packet if
1083 * there is no match.
1084 */
1085static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1086{
1087	struct packet_data *pkt;
1088
1089	list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1090		if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1091			list_del_init(&pkt->list);
1092			if (pkt->sector != zone)
1093				pkt->cache_valid = 0;
1094			return pkt;
1095		}
1096	}
1097	BUG();
1098	return NULL;
1099}
1100
1101static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1102{
1103	if (pkt->cache_valid) {
1104		list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1105	} else {
1106		list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1107	}
1108}
1109
1110static inline void pkt_set_state(struct device *ddev, struct packet_data *pkt,
1111				 enum packet_data_state state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112{
 
1113	static const char *state_name[] = {
1114		"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1115	};
1116	enum packet_data_state old_state = pkt->state;
1117
1118	dev_dbg(ddev, "pkt %2d : s=%6llx %s -> %s\n",
1119		pkt->id, pkt->sector, state_name[old_state], state_name[state]);
1120
1121	pkt->state = state;
1122}
1123
1124/*
1125 * Scan the work queue to see if we can start a new packet.
1126 * returns non-zero if any work was done.
1127 */
1128static int pkt_handle_queue(struct pktcdvd_device *pd)
1129{
1130	struct device *ddev = disk_to_dev(pd->disk);
1131	struct packet_data *pkt, *p;
1132	struct bio *bio = NULL;
1133	sector_t zone = 0; /* Suppress gcc warning */
1134	struct pkt_rb_node *node, *first_node;
1135	struct rb_node *n;
 
 
 
1136
1137	atomic_set(&pd->scan_queue, 0);
1138
1139	if (list_empty(&pd->cdrw.pkt_free_list)) {
1140		dev_dbg(ddev, "no pkt\n");
1141		return 0;
1142	}
1143
1144	/*
1145	 * Try to find a zone we are not already working on.
1146	 */
1147	spin_lock(&pd->lock);
1148	first_node = pkt_rbtree_find(pd, pd->current_sector);
1149	if (!first_node) {
1150		n = rb_first(&pd->bio_queue);
1151		if (n)
1152			first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1153	}
1154	node = first_node;
1155	while (node) {
1156		bio = node->bio;
1157		zone = get_zone(bio->bi_iter.bi_sector, pd);
1158		list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1159			if (p->sector == zone) {
1160				bio = NULL;
1161				goto try_next_bio;
1162			}
1163		}
1164		break;
1165try_next_bio:
1166		node = pkt_rbtree_next(node);
1167		if (!node) {
1168			n = rb_first(&pd->bio_queue);
1169			if (n)
1170				node = rb_entry(n, struct pkt_rb_node, rb_node);
1171		}
1172		if (node == first_node)
1173			node = NULL;
1174	}
1175	spin_unlock(&pd->lock);
1176	if (!bio) {
1177		dev_dbg(ddev, "no bio\n");
1178		return 0;
1179	}
1180
1181	pkt = pkt_get_packet_data(pd, zone);
1182
1183	pd->current_sector = zone + pd->settings.size;
1184	pkt->sector = zone;
1185	BUG_ON(pkt->frames != pd->settings.size >> 2);
1186	pkt->write_size = 0;
1187
1188	/*
1189	 * Scan work queue for bios in the same zone and link them
1190	 * to this packet.
1191	 */
1192	spin_lock(&pd->lock);
1193	dev_dbg(ddev, "looking for zone %llx\n", zone);
1194	while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1195		sector_t tmp = get_zone(node->bio->bi_iter.bi_sector, pd);
1196
1197		bio = node->bio;
1198		dev_dbg(ddev, "found zone=%llx\n", tmp);
1199		if (tmp != zone)
 
1200			break;
1201		pkt_rbtree_erase(pd, node);
1202		spin_lock(&pkt->lock);
1203		bio_list_add(&pkt->orig_bios, bio);
1204		pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1205		spin_unlock(&pkt->lock);
1206	}
1207	/* check write congestion marks, and if bio_queue_size is
1208	 * below, wake up any waiters
1209	 */
1210	if (pd->congested &&
1211	    pd->bio_queue_size <= pd->write_congestion_off) {
1212		pd->congested = false;
1213		wake_up_var(&pd->congested);
 
1214	}
1215	spin_unlock(&pd->lock);
1216
1217	pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1218	pkt_set_state(ddev, pkt, PACKET_WAITING_STATE);
1219	atomic_set(&pkt->run_sm, 1);
1220
1221	spin_lock(&pd->cdrw.active_list_lock);
1222	list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1223	spin_unlock(&pd->cdrw.active_list_lock);
1224
1225	return 1;
1226}
1227
1228/**
1229 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1230 * another
1231 * @src: source bio list
1232 * @dst: destination bio list
1233 *
1234 * Stops when it reaches the end of either the @src list or @dst list - that is,
1235 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1236 * bios).
1237 */
1238static void bio_list_copy_data(struct bio *dst, struct bio *src)
1239{
1240	struct bvec_iter src_iter = src->bi_iter;
1241	struct bvec_iter dst_iter = dst->bi_iter;
1242
1243	while (1) {
1244		if (!src_iter.bi_size) {
1245			src = src->bi_next;
1246			if (!src)
1247				break;
1248
1249			src_iter = src->bi_iter;
1250		}
1251
1252		if (!dst_iter.bi_size) {
1253			dst = dst->bi_next;
1254			if (!dst)
1255				break;
1256
1257			dst_iter = dst->bi_iter;
1258		}
1259
1260		bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1261	}
1262}
1263
1264/*
1265 * Assemble a bio to write one packet and queue the bio for processing
1266 * by the underlying block device.
1267 */
1268static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1269{
1270	struct device *ddev = disk_to_dev(pd->disk);
1271	int f;
 
 
1272
1273	bio_init(pkt->w_bio, file_bdev(pd->bdev_file), pkt->w_bio->bi_inline_vecs,
1274		 pkt->frames, REQ_OP_WRITE);
1275	pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1276	pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1277	pkt->w_bio->bi_private = pkt;
1278
1279	/* XXX: locking? */
1280	for (f = 0; f < pkt->frames; f++) {
1281		struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1282		unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1283
1284		if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1285			BUG();
1286	}
1287	dev_dbg(ddev, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1288
1289	/*
1290	 * Fill-in bvec with data from orig_bios.
1291	 */
 
1292	spin_lock(&pkt->lock);
1293	bio_list_copy_data(pkt->w_bio, pkt->orig_bios.head);
 
 
 
 
 
 
 
 
1294
1295	pkt_set_state(ddev, pkt, PACKET_WRITE_WAIT_STATE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296	spin_unlock(&pkt->lock);
1297
1298	dev_dbg(ddev, "Writing %d frames for zone %llx\n", pkt->write_size, pkt->sector);
 
 
1299
1300	if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
 
1301		pkt->cache_valid = 1;
1302	else
1303		pkt->cache_valid = 0;
 
1304
1305	/* Start the write request */
 
 
 
 
 
 
 
 
 
 
 
 
 
1306	atomic_set(&pkt->io_wait, 1);
 
1307	pkt_queue_bio(pd, pkt->w_bio);
1308}
1309
1310static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1311{
1312	struct bio *bio;
1313
1314	if (status)
1315		pkt->cache_valid = 0;
1316
1317	/* Finish all bios corresponding to this packet */
1318	while ((bio = bio_list_pop(&pkt->orig_bios))) {
1319		bio->bi_status = status;
1320		bio_endio(bio);
1321	}
1322}
1323
1324static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1325{
1326	struct device *ddev = disk_to_dev(pd->disk);
1327
1328	dev_dbg(ddev, "pkt %d\n", pkt->id);
1329
1330	for (;;) {
1331		switch (pkt->state) {
1332		case PACKET_WAITING_STATE:
1333			if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1334				return;
1335
1336			pkt->sleep_time = 0;
1337			pkt_gather_data(pd, pkt);
1338			pkt_set_state(ddev, pkt, PACKET_READ_WAIT_STATE);
1339			break;
1340
1341		case PACKET_READ_WAIT_STATE:
1342			if (atomic_read(&pkt->io_wait) > 0)
1343				return;
1344
1345			if (atomic_read(&pkt->io_errors) > 0) {
1346				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1347			} else {
1348				pkt_start_write(pd, pkt);
1349			}
1350			break;
1351
1352		case PACKET_WRITE_WAIT_STATE:
1353			if (atomic_read(&pkt->io_wait) > 0)
1354				return;
1355
1356			if (!pkt->w_bio->bi_status) {
1357				pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
1358			} else {
1359				pkt_set_state(ddev, pkt, PACKET_RECOVERY_STATE);
1360			}
1361			break;
1362
1363		case PACKET_RECOVERY_STATE:
1364			dev_dbg(ddev, "No recovery possible\n");
1365			pkt_set_state(ddev, pkt, PACKET_FINISHED_STATE);
 
 
 
 
1366			break;
1367
1368		case PACKET_FINISHED_STATE:
1369			pkt_finish_packet(pkt, pkt->w_bio->bi_status);
 
1370			return;
1371
1372		default:
1373			BUG();
1374			break;
1375		}
1376	}
1377}
1378
1379static void pkt_handle_packets(struct pktcdvd_device *pd)
1380{
1381	struct device *ddev = disk_to_dev(pd->disk);
1382	struct packet_data *pkt, *next;
1383
 
 
1384	/*
1385	 * Run state machine for active packets
1386	 */
1387	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1388		if (atomic_read(&pkt->run_sm) > 0) {
1389			atomic_set(&pkt->run_sm, 0);
1390			pkt_run_state_machine(pd, pkt);
1391		}
1392	}
1393
1394	/*
1395	 * Move no longer active packets to the free list
1396	 */
1397	spin_lock(&pd->cdrw.active_list_lock);
1398	list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1399		if (pkt->state == PACKET_FINISHED_STATE) {
1400			list_del(&pkt->list);
1401			pkt_put_packet_data(pd, pkt);
1402			pkt_set_state(ddev, pkt, PACKET_IDLE_STATE);
1403			atomic_set(&pd->scan_queue, 1);
1404		}
1405	}
1406	spin_unlock(&pd->cdrw.active_list_lock);
1407}
1408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409/*
1410 * kcdrwd is woken up when writes have been queued for one of our
1411 * registered devices
1412 */
1413static int kcdrwd(void *foobar)
1414{
1415	struct pktcdvd_device *pd = foobar;
1416	struct device *ddev = disk_to_dev(pd->disk);
1417	struct packet_data *pkt;
1418	int states[PACKET_NUM_STATES];
1419	long min_sleep_time, residue;
1420
1421	set_user_nice(current, MIN_NICE);
1422	set_freezable();
1423
1424	for (;;) {
1425		DECLARE_WAITQUEUE(wait, current);
1426
1427		/*
1428		 * Wait until there is something to do
1429		 */
1430		add_wait_queue(&pd->wqueue, &wait);
1431		for (;;) {
1432			set_current_state(TASK_INTERRUPTIBLE);
1433
1434			/* Check if we need to run pkt_handle_queue */
1435			if (atomic_read(&pd->scan_queue) > 0)
1436				goto work_to_do;
1437
1438			/* Check if we need to run the state machine for some packet */
1439			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1440				if (atomic_read(&pkt->run_sm) > 0)
1441					goto work_to_do;
1442			}
1443
1444			/* Check if we need to process the iosched queues */
1445			if (atomic_read(&pd->iosched.attention) != 0)
1446				goto work_to_do;
1447
1448			/* Otherwise, go to sleep */
1449			pkt_count_states(pd, states);
1450			dev_dbg(ddev, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1451				states[0], states[1], states[2], states[3], states[4], states[5]);
 
 
 
 
1452
1453			min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1454			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1455				if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1456					min_sleep_time = pkt->sleep_time;
1457			}
1458
1459			dev_dbg(ddev, "sleeping\n");
1460			residue = schedule_timeout(min_sleep_time);
1461			dev_dbg(ddev, "wake up\n");
1462
1463			/* make swsusp happy with our thread */
1464			try_to_freeze();
1465
1466			list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1467				if (!pkt->sleep_time)
1468					continue;
1469				pkt->sleep_time -= min_sleep_time - residue;
1470				if (pkt->sleep_time <= 0) {
1471					pkt->sleep_time = 0;
1472					atomic_inc(&pkt->run_sm);
1473				}
1474			}
1475
1476			if (kthread_should_stop())
1477				break;
1478		}
1479work_to_do:
1480		set_current_state(TASK_RUNNING);
1481		remove_wait_queue(&pd->wqueue, &wait);
1482
1483		if (kthread_should_stop())
1484			break;
1485
1486		/*
1487		 * if pkt_handle_queue returns true, we can queue
1488		 * another request.
1489		 */
1490		while (pkt_handle_queue(pd))
1491			;
1492
1493		/*
1494		 * Handle packet state machine
1495		 */
1496		pkt_handle_packets(pd);
1497
1498		/*
1499		 * Handle iosched queues
1500		 */
1501		pkt_iosched_process_queue(pd);
1502	}
1503
1504	return 0;
1505}
1506
1507static void pkt_print_settings(struct pktcdvd_device *pd)
1508{
1509	dev_info(disk_to_dev(pd->disk), "%s packets, %u blocks, Mode-%c disc\n",
1510		 pd->settings.fp ? "Fixed" : "Variable",
1511		 pd->settings.size >> 2,
1512		 pd->settings.block_mode == 8 ? '1' : '2');
1513}
1514
1515static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1516{
1517	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1518
1519	cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1520	cgc->cmd[2] = page_code | (page_control << 6);
1521	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
 
1522	cgc->data_direction = CGC_DATA_READ;
1523	return pkt_generic_packet(pd, cgc);
1524}
1525
1526static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1527{
1528	memset(cgc->cmd, 0, sizeof(cgc->cmd));
1529	memset(cgc->buffer, 0, 2);
1530	cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1531	cgc->cmd[1] = 0x10;		/* PF */
1532	put_unaligned_be16(cgc->buflen, &cgc->cmd[7]);
 
1533	cgc->data_direction = CGC_DATA_WRITE;
1534	return pkt_generic_packet(pd, cgc);
1535}
1536
1537static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1538{
1539	struct packet_command cgc;
1540	int ret;
1541
1542	/* set up command and get the disc info */
1543	init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1544	cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1545	cgc.cmd[8] = cgc.buflen = 2;
1546	cgc.quiet = 1;
1547
1548	ret = pkt_generic_packet(pd, &cgc);
1549	if (ret)
1550		return ret;
1551
1552	/* not all drives have the same disc_info length, so requeue
1553	 * packet with the length the drive tells us it can supply
1554	 */
1555	cgc.buflen = be16_to_cpu(di->disc_information_length) +
1556		     sizeof(di->disc_information_length);
1557
1558	if (cgc.buflen > sizeof(disc_information))
1559		cgc.buflen = sizeof(disc_information);
1560
1561	cgc.cmd[8] = cgc.buflen;
1562	return pkt_generic_packet(pd, &cgc);
1563}
1564
1565static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1566{
1567	struct packet_command cgc;
1568	int ret;
1569
1570	init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1571	cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1572	cgc.cmd[1] = type & 3;
1573	put_unaligned_be16(track, &cgc.cmd[4]);
 
1574	cgc.cmd[8] = 8;
1575	cgc.quiet = 1;
1576
1577	ret = pkt_generic_packet(pd, &cgc);
1578	if (ret)
1579		return ret;
1580
1581	cgc.buflen = be16_to_cpu(ti->track_information_length) +
1582		     sizeof(ti->track_information_length);
1583
1584	if (cgc.buflen > sizeof(track_information))
1585		cgc.buflen = sizeof(track_information);
1586
1587	cgc.cmd[8] = cgc.buflen;
1588	return pkt_generic_packet(pd, &cgc);
1589}
1590
1591static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1592						long *last_written)
1593{
1594	disc_information di;
1595	track_information ti;
1596	__u32 last_track;
1597	int ret;
1598
1599	ret = pkt_get_disc_info(pd, &di);
1600	if (ret)
1601		return ret;
1602
1603	last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1604	ret = pkt_get_track_info(pd, last_track, 1, &ti);
1605	if (ret)
1606		return ret;
1607
1608	/* if this track is blank, try the previous. */
1609	if (ti.blank) {
1610		last_track--;
1611		ret = pkt_get_track_info(pd, last_track, 1, &ti);
1612		if (ret)
1613			return ret;
1614	}
1615
1616	/* if last recorded field is valid, return it. */
1617	if (ti.lra_v) {
1618		*last_written = be32_to_cpu(ti.last_rec_address);
1619	} else {
1620		/* make it up instead */
1621		*last_written = be32_to_cpu(ti.track_start) +
1622				be32_to_cpu(ti.track_size);
1623		if (ti.free_blocks)
1624			*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1625	}
1626	return 0;
1627}
1628
1629/*
1630 * write mode select package based on pd->settings
1631 */
1632static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1633{
1634	struct device *ddev = disk_to_dev(pd->disk);
1635	struct packet_command cgc;
1636	struct scsi_sense_hdr sshdr;
1637	write_param_page *wp;
1638	char buffer[128];
1639	int ret, size;
1640
1641	/* doesn't apply to DVD+RW or DVD-RAM */
1642	if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1643		return 0;
1644
1645	memset(buffer, 0, sizeof(buffer));
1646	init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1647	cgc.sshdr = &sshdr;
1648	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1649	if (ret) {
1650		pkt_dump_sense(pd, &cgc);
1651		return ret;
1652	}
1653
1654	size = 2 + get_unaligned_be16(&buffer[0]);
1655	pd->mode_offset = get_unaligned_be16(&buffer[6]);
1656	if (size > sizeof(buffer))
1657		size = sizeof(buffer);
1658
1659	/*
1660	 * now get it all
1661	 */
1662	init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1663	cgc.sshdr = &sshdr;
1664	ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0);
1665	if (ret) {
1666		pkt_dump_sense(pd, &cgc);
1667		return ret;
1668	}
1669
1670	/*
1671	 * write page is offset header + block descriptor length
1672	 */
1673	wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1674
1675	wp->fp = pd->settings.fp;
1676	wp->track_mode = pd->settings.track_mode;
1677	wp->write_type = pd->settings.write_type;
1678	wp->data_block_type = pd->settings.block_mode;
1679
1680	wp->multi_session = 0;
1681
1682#ifdef PACKET_USE_LS
1683	wp->link_size = 7;
1684	wp->ls_v = 1;
1685#endif
1686
1687	if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1688		wp->session_format = 0;
1689		wp->subhdr2 = 0x20;
1690	} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1691		wp->session_format = 0x20;
1692		wp->subhdr2 = 8;
1693#if 0
1694		wp->mcn[0] = 0x80;
1695		memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1696#endif
1697	} else {
1698		/*
1699		 * paranoia
1700		 */
1701		dev_err(ddev, "write mode wrong %d\n", wp->data_block_type);
1702		return 1;
1703	}
1704	wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1705
1706	cgc.buflen = cgc.cmd[8] = size;
1707	ret = pkt_mode_select(pd, &cgc);
1708	if (ret) {
1709		pkt_dump_sense(pd, &cgc);
1710		return ret;
1711	}
1712
1713	pkt_print_settings(pd);
1714	return 0;
1715}
1716
1717/*
1718 * 1 -- we can write to this track, 0 -- we can't
1719 */
1720static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1721{
1722	struct device *ddev = disk_to_dev(pd->disk);
1723
1724	switch (pd->mmc3_profile) {
1725		case 0x1a: /* DVD+RW */
1726		case 0x12: /* DVD-RAM */
1727			/* The track is always writable on DVD+RW/DVD-RAM */
1728			return 1;
1729		default:
1730			break;
1731	}
1732
1733	if (!ti->packet || !ti->fp)
1734		return 0;
1735
1736	/*
1737	 * "good" settings as per Mt Fuji.
1738	 */
1739	if (ti->rt == 0 && ti->blank == 0)
1740		return 1;
1741
1742	if (ti->rt == 0 && ti->blank == 1)
1743		return 1;
1744
1745	if (ti->rt == 1 && ti->blank == 0)
1746		return 1;
1747
1748	dev_err(ddev, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1749	return 0;
1750}
1751
1752/*
1753 * 1 -- we can write to this disc, 0 -- we can't
1754 */
1755static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1756{
1757	struct device *ddev = disk_to_dev(pd->disk);
1758
1759	switch (pd->mmc3_profile) {
1760		case 0x0a: /* CD-RW */
1761		case 0xffff: /* MMC3 not supported */
1762			break;
1763		case 0x1a: /* DVD+RW */
1764		case 0x13: /* DVD-RW */
1765		case 0x12: /* DVD-RAM */
1766			return 1;
1767		default:
1768			dev_dbg(ddev, "Wrong disc profile (%x)\n", pd->mmc3_profile);
1769			return 0;
1770	}
1771
1772	/*
1773	 * for disc type 0xff we should probably reserve a new track.
1774	 * but i'm not sure, should we leave this to user apps? probably.
1775	 */
1776	if (di->disc_type == 0xff) {
1777		dev_notice(ddev, "unknown disc - no track?\n");
1778		return 0;
1779	}
1780
1781	if (di->disc_type != 0x20 && di->disc_type != 0) {
1782		dev_err(ddev, "wrong disc type (%x)\n", di->disc_type);
1783		return 0;
1784	}
1785
1786	if (di->erasable == 0) {
1787		dev_err(ddev, "disc not erasable\n");
1788		return 0;
1789	}
1790
1791	if (di->border_status == PACKET_SESSION_RESERVED) {
1792		dev_err(ddev, "can't write to last track (reserved)\n");
1793		return 0;
1794	}
1795
1796	return 1;
1797}
1798
1799static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1800{
1801	struct device *ddev = disk_to_dev(pd->disk);
1802	struct packet_command cgc;
1803	unsigned char buf[12];
1804	disc_information di;
1805	track_information ti;
1806	int ret, track;
1807
1808	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1809	cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1810	cgc.cmd[8] = 8;
1811	ret = pkt_generic_packet(pd, &cgc);
1812	pd->mmc3_profile = ret ? 0xffff : get_unaligned_be16(&buf[6]);
1813
1814	memset(&di, 0, sizeof(disc_information));
1815	memset(&ti, 0, sizeof(track_information));
1816
1817	ret = pkt_get_disc_info(pd, &di);
1818	if (ret) {
1819		dev_err(ddev, "failed get_disc\n");
1820		return ret;
1821	}
1822
1823	if (!pkt_writable_disc(pd, &di))
1824		return -EROFS;
1825
1826	pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1827
1828	track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1829	ret = pkt_get_track_info(pd, track, 1, &ti);
1830	if (ret) {
1831		dev_err(ddev, "failed get_track\n");
1832		return ret;
1833	}
1834
1835	if (!pkt_writable_track(pd, &ti)) {
1836		dev_err(ddev, "can't write to this track\n");
1837		return -EROFS;
1838	}
1839
1840	/*
1841	 * we keep packet size in 512 byte units, makes it easier to
1842	 * deal with request calculations.
1843	 */
1844	pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1845	if (pd->settings.size == 0) {
1846		dev_notice(ddev, "detected zero packet size!\n");
1847		return -ENXIO;
1848	}
1849	if (pd->settings.size > PACKET_MAX_SECTORS) {
1850		dev_err(ddev, "packet size is too big\n");
1851		return -EROFS;
1852	}
1853	pd->settings.fp = ti.fp;
1854	pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1855
1856	if (ti.nwa_v) {
1857		pd->nwa = be32_to_cpu(ti.next_writable);
1858		set_bit(PACKET_NWA_VALID, &pd->flags);
1859	}
1860
1861	/*
1862	 * in theory we could use lra on -RW media as well and just zero
1863	 * blocks that haven't been written yet, but in practice that
1864	 * is just a no-go. we'll use that for -R, naturally.
1865	 */
1866	if (ti.lra_v) {
1867		pd->lra = be32_to_cpu(ti.last_rec_address);
1868		set_bit(PACKET_LRA_VALID, &pd->flags);
1869	} else {
1870		pd->lra = 0xffffffff;
1871		set_bit(PACKET_LRA_VALID, &pd->flags);
1872	}
1873
1874	/*
1875	 * fine for now
1876	 */
1877	pd->settings.link_loss = 7;
1878	pd->settings.write_type = 0;	/* packet */
1879	pd->settings.track_mode = ti.track_mode;
1880
1881	/*
1882	 * mode1 or mode2 disc
1883	 */
1884	switch (ti.data_mode) {
1885		case PACKET_MODE1:
1886			pd->settings.block_mode = PACKET_BLOCK_MODE1;
1887			break;
1888		case PACKET_MODE2:
1889			pd->settings.block_mode = PACKET_BLOCK_MODE2;
1890			break;
1891		default:
1892			dev_err(ddev, "unknown data mode\n");
1893			return -EROFS;
1894	}
1895	return 0;
1896}
1897
1898/*
1899 * enable/disable write caching on drive
1900 */
1901static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd)
 
1902{
1903	struct device *ddev = disk_to_dev(pd->disk);
1904	struct packet_command cgc;
1905	struct scsi_sense_hdr sshdr;
1906	unsigned char buf[64];
1907	bool set = IS_ENABLED(CONFIG_CDROM_PKTCDVD_WCACHE);
1908	int ret;
1909
1910	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1911	cgc.sshdr = &sshdr;
1912	cgc.buflen = pd->mode_offset + 12;
1913
1914	/*
1915	 * caching mode page might not be there, so quiet this command
1916	 */
1917	cgc.quiet = 1;
1918
1919	ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0);
1920	if (ret)
1921		return ret;
1922
1923	/*
1924	 * use drive write caching -- we need deferred error handling to be
1925	 * able to successfully recover with this option (drive will return good
1926	 * status as soon as the cdb is validated).
1927	 */
1928	buf[pd->mode_offset + 10] |= (set << 2);
1929
1930	cgc.buflen = cgc.cmd[8] = 2 + get_unaligned_be16(&buf[0]);
1931	ret = pkt_mode_select(pd, &cgc);
1932	if (ret) {
1933		dev_err(ddev, "write caching control failed\n");
1934		pkt_dump_sense(pd, &cgc);
1935	} else if (!ret && set)
1936		dev_notice(ddev, "enabled write caching\n");
1937	return ret;
1938}
1939
1940static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1941{
1942	struct packet_command cgc;
1943
1944	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1945	cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1946	cgc.cmd[4] = lockflag ? 1 : 0;
1947	return pkt_generic_packet(pd, &cgc);
1948}
1949
1950/*
1951 * Returns drive maximum write speed
1952 */
1953static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1954						unsigned *write_speed)
1955{
1956	struct packet_command cgc;
1957	struct scsi_sense_hdr sshdr;
1958	unsigned char buf[256+18];
1959	unsigned char *cap_buf;
1960	int ret, offset;
1961
1962	cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1963	init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1964	cgc.sshdr = &sshdr;
1965
1966	ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1967	if (ret) {
1968		cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1969			     sizeof(struct mode_page_header);
1970		ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1971		if (ret) {
1972			pkt_dump_sense(pd, &cgc);
1973			return ret;
1974		}
1975	}
1976
1977	offset = 20;			    /* Obsoleted field, used by older drives */
1978	if (cap_buf[1] >= 28)
1979		offset = 28;		    /* Current write speed selected */
1980	if (cap_buf[1] >= 30) {
1981		/* If the drive reports at least one "Logical Unit Write
1982		 * Speed Performance Descriptor Block", use the information
1983		 * in the first block. (contains the highest speed)
1984		 */
1985		int num_spdb = get_unaligned_be16(&cap_buf[30]);
1986		if (num_spdb > 0)
1987			offset = 34;
1988	}
1989
1990	*write_speed = get_unaligned_be16(&cap_buf[offset]);
1991	return 0;
1992}
1993
1994/* These tables from cdrecord - I don't have orange book */
1995/* standard speed CD-RW (1-4x) */
1996static char clv_to_speed[16] = {
1997	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
1998	   0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1999};
2000/* high speed CD-RW (-10x) */
2001static char hs_clv_to_speed[16] = {
2002	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2003	   0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2004};
2005/* ultra high speed CD-RW */
2006static char us_clv_to_speed[16] = {
2007	/* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2008	   0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2009};
2010
2011/*
2012 * reads the maximum media speed from ATIP
2013 */
2014static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2015						unsigned *speed)
2016{
2017	struct device *ddev = disk_to_dev(pd->disk);
2018	struct packet_command cgc;
2019	struct scsi_sense_hdr sshdr;
2020	unsigned char buf[64];
2021	unsigned int size, st, sp;
2022	int ret;
2023
2024	init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2025	cgc.sshdr = &sshdr;
2026	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2027	cgc.cmd[1] = 2;
2028	cgc.cmd[2] = 4; /* READ ATIP */
2029	cgc.cmd[8] = 2;
2030	ret = pkt_generic_packet(pd, &cgc);
2031	if (ret) {
2032		pkt_dump_sense(pd, &cgc);
2033		return ret;
2034	}
2035	size = 2 + get_unaligned_be16(&buf[0]);
2036	if (size > sizeof(buf))
2037		size = sizeof(buf);
2038
2039	init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2040	cgc.sshdr = &sshdr;
2041	cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2042	cgc.cmd[1] = 2;
2043	cgc.cmd[2] = 4;
2044	cgc.cmd[8] = size;
2045	ret = pkt_generic_packet(pd, &cgc);
2046	if (ret) {
2047		pkt_dump_sense(pd, &cgc);
2048		return ret;
2049	}
2050
2051	if (!(buf[6] & 0x40)) {
2052		dev_notice(ddev, "disc type is not CD-RW\n");
2053		return 1;
2054	}
2055	if (!(buf[6] & 0x4)) {
2056		dev_notice(ddev, "A1 values on media are not valid, maybe not CDRW?\n");
2057		return 1;
2058	}
2059
2060	st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2061
2062	sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2063
2064	/* Info from cdrecord */
2065	switch (st) {
2066		case 0: /* standard speed */
2067			*speed = clv_to_speed[sp];
2068			break;
2069		case 1: /* high speed */
2070			*speed = hs_clv_to_speed[sp];
2071			break;
2072		case 2: /* ultra high speed */
2073			*speed = us_clv_to_speed[sp];
2074			break;
2075		default:
2076			dev_notice(ddev, "unknown disc sub-type %d\n", st);
2077			return 1;
2078	}
2079	if (*speed) {
2080		dev_info(ddev, "maximum media speed: %d\n", *speed);
2081		return 0;
2082	} else {
2083		dev_notice(ddev, "unknown speed %d for sub-type %d\n", sp, st);
2084		return 1;
2085	}
2086}
2087
2088static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2089{
2090	struct device *ddev = disk_to_dev(pd->disk);
2091	struct packet_command cgc;
2092	struct scsi_sense_hdr sshdr;
2093	int ret;
2094
2095	dev_dbg(ddev, "Performing OPC\n");
2096
2097	init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2098	cgc.sshdr = &sshdr;
2099	cgc.timeout = 60*HZ;
2100	cgc.cmd[0] = GPCMD_SEND_OPC;
2101	cgc.cmd[1] = 1;
2102	ret = pkt_generic_packet(pd, &cgc);
2103	if (ret)
2104		pkt_dump_sense(pd, &cgc);
2105	return ret;
2106}
2107
2108static int pkt_open_write(struct pktcdvd_device *pd)
2109{
2110	struct device *ddev = disk_to_dev(pd->disk);
2111	int ret;
2112	unsigned int write_speed, media_write_speed, read_speed;
2113
2114	ret = pkt_probe_settings(pd);
2115	if (ret) {
2116		dev_dbg(ddev, "failed probe\n");
2117		return ret;
2118	}
2119
2120	ret = pkt_set_write_settings(pd);
2121	if (ret) {
2122		dev_notice(ddev, "failed saving write settings\n");
2123		return -EIO;
2124	}
2125
2126	pkt_write_caching(pd);
2127
2128	ret = pkt_get_max_speed(pd, &write_speed);
2129	if (ret)
2130		write_speed = 16 * 177;
2131	switch (pd->mmc3_profile) {
2132		case 0x13: /* DVD-RW */
2133		case 0x1a: /* DVD+RW */
2134		case 0x12: /* DVD-RAM */
2135			dev_notice(ddev, "write speed %ukB/s\n", write_speed);
2136			break;
2137		default:
2138			ret = pkt_media_speed(pd, &media_write_speed);
2139			if (ret)
2140				media_write_speed = 16;
2141			write_speed = min(write_speed, media_write_speed * 177);
2142			dev_notice(ddev, "write speed %ux\n", write_speed / 176);
2143			break;
2144	}
2145	read_speed = write_speed;
2146
2147	ret = pkt_set_speed(pd, write_speed, read_speed);
2148	if (ret) {
2149		dev_notice(ddev, "couldn't set write speed\n");
2150		return -EIO;
2151	}
2152	pd->write_speed = write_speed;
2153	pd->read_speed = read_speed;
2154
2155	ret = pkt_perform_opc(pd);
2156	if (ret)
2157		dev_notice(ddev, "Optimum Power Calibration failed\n");
2158
2159	return 0;
2160}
2161
2162/*
2163 * called at open time.
2164 */
2165static int pkt_open_dev(struct pktcdvd_device *pd, bool write)
2166{
2167	struct device *ddev = disk_to_dev(pd->disk);
2168	int ret;
2169	long lba;
2170	struct request_queue *q;
2171	struct file *bdev_file;
2172
2173	/*
2174	 * We need to re-open the cdrom device without O_NONBLOCK to be able
2175	 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2176	 * so open should not fail.
2177	 */
2178	bdev_file = bdev_file_open_by_dev(file_bdev(pd->bdev_file)->bd_dev,
2179				       BLK_OPEN_READ, pd, NULL);
2180	if (IS_ERR(bdev_file)) {
2181		ret = PTR_ERR(bdev_file);
2182		goto out;
2183	}
2184	pd->f_open_bdev = bdev_file;
2185
2186	ret = pkt_get_last_written(pd, &lba);
2187	if (ret) {
2188		dev_err(ddev, "pkt_get_last_written failed\n");
2189		goto out_putdev;
2190	}
2191
2192	set_capacity(pd->disk, lba << 2);
2193	set_capacity_and_notify(file_bdev(pd->bdev_file)->bd_disk, lba << 2);
 
2194
2195	q = bdev_get_queue(file_bdev(pd->bdev_file));
2196	if (write) {
2197		ret = pkt_open_write(pd);
2198		if (ret)
2199			goto out_putdev;
 
 
 
 
 
 
 
2200		set_bit(PACKET_WRITABLE, &pd->flags);
2201	} else {
2202		pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2203		clear_bit(PACKET_WRITABLE, &pd->flags);
2204	}
2205
2206	ret = pkt_set_segment_merging(pd, q);
2207	if (ret)
2208		goto out_putdev;
2209
2210	if (write) {
2211		if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2212			dev_err(ddev, "not enough memory for buffers\n");
2213			ret = -ENOMEM;
2214			goto out_putdev;
2215		}
2216		dev_info(ddev, "%lukB available on disc\n", lba << 1);
2217	}
2218
2219	return 0;
2220
2221out_putdev:
2222	fput(bdev_file);
2223out:
2224	return ret;
2225}
2226
2227/*
2228 * called when the device is closed. makes sure that the device flushes
2229 * the internal cache before we close.
2230 */
2231static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2232{
2233	struct device *ddev = disk_to_dev(pd->disk);
2234
2235	if (flush && pkt_flush_cache(pd))
2236		dev_notice(ddev, "not flushing cache\n");
2237
2238	pkt_lock_door(pd, 0);
2239
2240	pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2241	fput(pd->f_open_bdev);
2242	pd->f_open_bdev = NULL;
2243
2244	pkt_shrink_pktlist(pd);
2245}
2246
2247static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2248{
2249	if (dev_minor >= MAX_WRITERS)
2250		return NULL;
2251
2252	dev_minor = array_index_nospec(dev_minor, MAX_WRITERS);
2253	return pkt_devs[dev_minor];
2254}
2255
2256static int pkt_open(struct gendisk *disk, blk_mode_t mode)
2257{
2258	struct pktcdvd_device *pd = NULL;
2259	int ret;
2260
 
 
2261	mutex_lock(&pktcdvd_mutex);
2262	mutex_lock(&ctl_mutex);
2263	pd = pkt_find_dev_from_minor(disk->first_minor);
2264	if (!pd) {
2265		ret = -ENODEV;
2266		goto out;
2267	}
2268	BUG_ON(pd->refcnt < 0);
2269
2270	pd->refcnt++;
2271	if (pd->refcnt > 1) {
2272		if ((mode & BLK_OPEN_WRITE) &&
2273		    !test_bit(PACKET_WRITABLE, &pd->flags)) {
2274			ret = -EBUSY;
2275			goto out_dec;
2276		}
2277	} else {
2278		ret = pkt_open_dev(pd, mode & BLK_OPEN_WRITE);
2279		if (ret)
2280			goto out_dec;
2281		/*
2282		 * needed here as well, since ext2 (among others) may change
2283		 * the blocksize at mount time
2284		 */
2285		set_blocksize(disk->part0, CD_FRAMESIZE);
2286	}
 
2287	mutex_unlock(&ctl_mutex);
2288	mutex_unlock(&pktcdvd_mutex);
2289	return 0;
2290
2291out_dec:
2292	pd->refcnt--;
2293out:
 
2294	mutex_unlock(&ctl_mutex);
2295	mutex_unlock(&pktcdvd_mutex);
2296	return ret;
2297}
2298
2299static void pkt_release(struct gendisk *disk)
2300{
2301	struct pktcdvd_device *pd = disk->private_data;
 
2302
2303	mutex_lock(&pktcdvd_mutex);
2304	mutex_lock(&ctl_mutex);
2305	pd->refcnt--;
2306	BUG_ON(pd->refcnt < 0);
2307	if (pd->refcnt == 0) {
2308		int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2309		pkt_release_dev(pd, flush);
2310	}
2311	mutex_unlock(&ctl_mutex);
2312	mutex_unlock(&pktcdvd_mutex);
 
2313}
2314
2315
2316static void pkt_end_io_read_cloned(struct bio *bio)
2317{
2318	struct packet_stacked_data *psd = bio->bi_private;
2319	struct pktcdvd_device *pd = psd->pd;
2320
2321	psd->bio->bi_status = bio->bi_status;
2322	bio_put(bio);
2323	bio_endio(psd->bio);
2324	mempool_free(psd, &psd_pool);
2325	pkt_bio_finished(pd);
2326}
2327
2328static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2329{
2330	struct bio *cloned_bio = bio_alloc_clone(file_bdev(pd->bdev_file), bio,
2331		GFP_NOIO, &pkt_bio_set);
2332	struct packet_stacked_data *psd = mempool_alloc(&psd_pool, GFP_NOIO);
2333
2334	psd->pd = pd;
2335	psd->bio = bio;
2336	cloned_bio->bi_private = psd;
2337	cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2338	pd->stats.secs_r += bio_sectors(bio);
2339	pkt_queue_bio(pd, cloned_bio);
2340}
2341
2342static void pkt_make_request_write(struct bio *bio)
2343{
2344	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data;
2345	sector_t zone;
2346	struct packet_data *pkt;
2347	int was_empty, blocked_bio;
2348	struct pkt_rb_node *node;
2349
2350	zone = get_zone(bio->bi_iter.bi_sector, pd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2351
2352	/*
2353	 * If we find a matching packet in state WAITING or READ_WAIT, we can
2354	 * just append this bio to that packet.
2355	 */
2356	spin_lock(&pd->cdrw.active_list_lock);
2357	blocked_bio = 0;
2358	list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2359		if (pkt->sector == zone) {
2360			spin_lock(&pkt->lock);
2361			if ((pkt->state == PACKET_WAITING_STATE) ||
2362			    (pkt->state == PACKET_READ_WAIT_STATE)) {
2363				bio_list_add(&pkt->orig_bios, bio);
2364				pkt->write_size +=
2365					bio->bi_iter.bi_size / CD_FRAMESIZE;
2366				if ((pkt->write_size >= pkt->frames) &&
2367				    (pkt->state == PACKET_WAITING_STATE)) {
2368					atomic_inc(&pkt->run_sm);
2369					wake_up(&pd->wqueue);
2370				}
2371				spin_unlock(&pkt->lock);
2372				spin_unlock(&pd->cdrw.active_list_lock);
2373				return;
2374			} else {
2375				blocked_bio = 1;
2376			}
2377			spin_unlock(&pkt->lock);
2378		}
2379	}
2380	spin_unlock(&pd->cdrw.active_list_lock);
2381
2382	/*
2383	 * Test if there is enough room left in the bio work queue
2384	 * (queue size >= congestion on mark).
2385	 * If not, wait till the work queue size is below the congestion off mark.
2386	 */
2387	spin_lock(&pd->lock);
2388	if (pd->write_congestion_on > 0
2389	    && pd->bio_queue_size >= pd->write_congestion_on) {
2390		struct wait_bit_queue_entry wqe;
2391
2392		init_wait_var_entry(&wqe, &pd->congested, 0);
2393		for (;;) {
2394			prepare_to_wait_event(__var_waitqueue(&pd->congested),
2395					      &wqe.wq_entry,
2396					      TASK_UNINTERRUPTIBLE);
2397			if (pd->bio_queue_size <= pd->write_congestion_off)
2398				break;
2399			pd->congested = true;
2400			spin_unlock(&pd->lock);
2401			schedule();
2402			spin_lock(&pd->lock);
2403		}
2404	}
2405	spin_unlock(&pd->lock);
2406
2407	/*
2408	 * No matching packet found. Store the bio in the work queue.
2409	 */
2410	node = mempool_alloc(&pd->rb_pool, GFP_NOIO);
2411	node->bio = bio;
2412	spin_lock(&pd->lock);
2413	BUG_ON(pd->bio_queue_size < 0);
2414	was_empty = (pd->bio_queue_size == 0);
2415	pkt_rbtree_insert(pd, node);
2416	spin_unlock(&pd->lock);
2417
2418	/*
2419	 * Wake up the worker thread.
2420	 */
2421	atomic_set(&pd->scan_queue, 1);
2422	if (was_empty) {
2423		/* This wake_up is required for correct operation */
2424		wake_up(&pd->wqueue);
2425	} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2426		/*
2427		 * This wake up is not required for correct operation,
2428		 * but improves performance in some cases.
2429		 */
2430		wake_up(&pd->wqueue);
2431	}
 
 
 
 
2432}
2433
2434static void pkt_submit_bio(struct bio *bio)
2435{
2436	struct pktcdvd_device *pd = bio->bi_bdev->bd_disk->private_data;
2437	struct device *ddev = disk_to_dev(pd->disk);
2438	struct bio *split;
2439
2440	bio = bio_split_to_limits(bio);
2441	if (!bio)
2442		return;
2443
2444	dev_dbg(ddev, "start = %6llx stop = %6llx\n",
2445		bio->bi_iter.bi_sector, bio_end_sector(bio));
 
 
 
 
 
 
2446
2447	/*
2448	 * Clone READ bios so we can have our own bi_end_io callback.
 
2449	 */
2450	if (bio_data_dir(bio) == READ) {
2451		pkt_make_request_read(pd, bio);
2452		return;
2453	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2454
2455	if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2456		dev_notice(ddev, "WRITE for ro device (%llu)\n", bio->bi_iter.bi_sector);
2457		goto end_io;
2458	}
 
 
 
2459
2460	if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2461		dev_err(ddev, "wrong bio size\n");
2462		goto end_io;
2463	}
 
 
2464
2465	do {
2466		sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2467		sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
 
 
 
 
2468
2469		if (last_zone != zone) {
2470			BUG_ON(last_zone != zone + pd->settings.size);
 
 
2471
2472			split = bio_split(bio, last_zone -
2473					  bio->bi_iter.bi_sector,
2474					  GFP_NOIO, &pkt_bio_set);
2475			bio_chain(split, bio);
2476		} else {
2477			split = bio;
2478		}
2479
2480		pkt_make_request_write(split);
2481	} while (split != bio);
 
 
 
2482
2483	return;
2484end_io:
2485	bio_io_error(bio);
2486}
2487
 
 
 
 
 
 
 
2488static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2489{
2490	struct device *ddev = disk_to_dev(pd->disk);
2491	int i;
2492	struct file *bdev_file;
2493	struct scsi_device *sdev;
 
2494
2495	if (pd->pkt_dev == dev) {
2496		dev_err(ddev, "recursive setup not allowed\n");
2497		return -EBUSY;
2498	}
2499	for (i = 0; i < MAX_WRITERS; i++) {
2500		struct pktcdvd_device *pd2 = pkt_devs[i];
2501		if (!pd2)
2502			continue;
2503		if (file_bdev(pd2->bdev_file)->bd_dev == dev) {
2504			dev_err(ddev, "%pg already setup\n",
2505				file_bdev(pd2->bdev_file));
2506			return -EBUSY;
2507		}
2508		if (pd2->pkt_dev == dev) {
2509			dev_err(ddev, "can't chain pktcdvd devices\n");
2510			return -EBUSY;
2511		}
2512	}
2513
2514	bdev_file = bdev_file_open_by_dev(dev, BLK_OPEN_READ | BLK_OPEN_NDELAY,
2515				       NULL, NULL);
2516	if (IS_ERR(bdev_file))
2517		return PTR_ERR(bdev_file);
2518	sdev = scsi_device_from_queue(file_bdev(bdev_file)->bd_disk->queue);
2519	if (!sdev) {
2520		fput(bdev_file);
2521		return -EINVAL;
2522	}
2523	put_device(&sdev->sdev_gendev);
2524
2525	/* This is safe, since we have a reference from open(). */
2526	__module_get(THIS_MODULE);
2527
2528	pd->bdev_file = bdev_file;
2529	set_blocksize(file_bdev(bdev_file), CD_FRAMESIZE);
 
 
2530
2531	atomic_set(&pd->cdrw.pending_bios, 0);
2532	pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->disk->disk_name);
2533	if (IS_ERR(pd->cdrw.thread)) {
2534		dev_err(ddev, "can't start kernel thread\n");
 
2535		goto out_mem;
2536	}
2537
2538	proc_create_single_data(pd->disk->disk_name, 0, pkt_proc, pkt_seq_show, pd);
2539	dev_notice(ddev, "writer mapped to %pg\n", file_bdev(bdev_file));
2540	return 0;
2541
2542out_mem:
2543	fput(bdev_file);
2544	/* This is safe: open() is still holding a reference. */
2545	module_put(THIS_MODULE);
2546	return -ENOMEM;
2547}
2548
2549static int pkt_ioctl(struct block_device *bdev, blk_mode_t mode,
2550		unsigned int cmd, unsigned long arg)
2551{
2552	struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2553	struct device *ddev = disk_to_dev(pd->disk);
2554	int ret;
2555
2556	dev_dbg(ddev, "cmd %x, dev %d:%d\n", cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
 
2557
2558	mutex_lock(&pktcdvd_mutex);
2559	switch (cmd) {
2560	case CDROMEJECT:
2561		/*
2562		 * The door gets locked when the device is opened, so we
2563		 * have to unlock it or else the eject command fails.
2564		 */
2565		if (pd->refcnt == 1)
2566			pkt_lock_door(pd, 0);
2567		fallthrough;
2568	/*
2569	 * forward selected CDROM ioctls to CD-ROM, for UDF
2570	 */
2571	case CDROMMULTISESSION:
2572	case CDROMREADTOCENTRY:
2573	case CDROM_LAST_WRITTEN:
2574	case CDROM_SEND_PACKET:
2575	case SCSI_IOCTL_SEND_COMMAND:
2576		if (!bdev->bd_disk->fops->ioctl)
2577			ret = -ENOTTY;
2578		else
2579			ret = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
2580		break;
 
2581	default:
2582		dev_dbg(ddev, "Unknown ioctl (%x)\n", cmd);
2583		ret = -ENOTTY;
2584	}
2585	mutex_unlock(&pktcdvd_mutex);
2586
2587	return ret;
2588}
2589
2590static unsigned int pkt_check_events(struct gendisk *disk,
2591				     unsigned int clearing)
2592{
2593	struct pktcdvd_device *pd = disk->private_data;
2594	struct gendisk *attached_disk;
2595
2596	if (!pd)
2597		return 0;
2598	if (!pd->bdev_file)
2599		return 0;
2600	attached_disk = file_bdev(pd->bdev_file)->bd_disk;
2601	if (!attached_disk || !attached_disk->fops->check_events)
2602		return 0;
2603	return attached_disk->fops->check_events(attached_disk, clearing);
2604}
2605
2606static char *pkt_devnode(struct gendisk *disk, umode_t *mode)
2607{
2608	return kasprintf(GFP_KERNEL, "pktcdvd/%s", disk->disk_name);
2609}
2610
2611static const struct block_device_operations pktcdvd_ops = {
2612	.owner =		THIS_MODULE,
2613	.submit_bio =		pkt_submit_bio,
2614	.open =			pkt_open,
2615	.release =		pkt_release,
2616	.ioctl =		pkt_ioctl,
2617	.compat_ioctl =		blkdev_compat_ptr_ioctl,
2618	.check_events =		pkt_check_events,
2619	.devnode =		pkt_devnode,
2620};
2621
 
 
 
 
 
2622/*
2623 * Set up mapping from pktcdvd device to CD-ROM device.
2624 */
2625static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2626{
2627	struct queue_limits lim = {
2628		.max_hw_sectors		= PACKET_MAX_SECTORS,
2629		.logical_block_size	= CD_FRAMESIZE,
2630	};
2631	int idx;
2632	int ret = -ENOMEM;
2633	struct pktcdvd_device *pd;
2634	struct gendisk *disk;
2635
2636	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2637
2638	for (idx = 0; idx < MAX_WRITERS; idx++)
2639		if (!pkt_devs[idx])
2640			break;
2641	if (idx == MAX_WRITERS) {
2642		pr_err("max %d writers supported\n", MAX_WRITERS);
2643		ret = -EBUSY;
2644		goto out_mutex;
2645	}
2646
2647	pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2648	if (!pd)
2649		goto out_mutex;
2650
2651	ret = mempool_init_kmalloc_pool(&pd->rb_pool, PKT_RB_POOL_SIZE,
2652					sizeof(struct pkt_rb_node));
2653	if (ret)
2654		goto out_mem;
2655
2656	INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2657	INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2658	spin_lock_init(&pd->cdrw.active_list_lock);
2659
2660	spin_lock_init(&pd->lock);
2661	spin_lock_init(&pd->iosched.lock);
2662	bio_list_init(&pd->iosched.read_queue);
2663	bio_list_init(&pd->iosched.write_queue);
 
2664	init_waitqueue_head(&pd->wqueue);
2665	pd->bio_queue = RB_ROOT;
2666
2667	pd->write_congestion_on  = write_congestion_on;
2668	pd->write_congestion_off = write_congestion_off;
2669
2670	disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2671	if (IS_ERR(disk)) {
2672		ret = PTR_ERR(disk);
2673		goto out_mem;
2674	}
2675	pd->disk = disk;
2676	disk->major = pktdev_major;
2677	disk->first_minor = idx;
2678	disk->minors = 1;
2679	disk->fops = &pktcdvd_ops;
2680	disk->flags = GENHD_FL_REMOVABLE | GENHD_FL_NO_PART;
2681	snprintf(disk->disk_name, sizeof(disk->disk_name), DRIVER_NAME"%d", idx);
 
2682	disk->private_data = pd;
 
 
 
2683
2684	pd->pkt_dev = MKDEV(pktdev_major, idx);
2685	ret = pkt_new_dev(pd, dev);
2686	if (ret)
2687		goto out_mem2;
2688
2689	/* inherit events of the host device */
2690	disk->events = file_bdev(pd->bdev_file)->bd_disk->events;
 
2691
2692	ret = add_disk(disk);
2693	if (ret)
2694		goto out_mem2;
2695
2696	pkt_sysfs_dev_new(pd);
2697	pkt_debugfs_dev_new(pd);
2698
2699	pkt_devs[idx] = pd;
2700	if (pkt_dev)
2701		*pkt_dev = pd->pkt_dev;
2702
2703	mutex_unlock(&ctl_mutex);
2704	return 0;
2705
 
 
2706out_mem2:
2707	put_disk(disk);
2708out_mem:
2709	mempool_exit(&pd->rb_pool);
 
2710	kfree(pd);
2711out_mutex:
2712	mutex_unlock(&ctl_mutex);
2713	pr_err("setup of pktcdvd device failed\n");
2714	return ret;
2715}
2716
2717/*
2718 * Tear down mapping from pktcdvd device to CD-ROM device.
2719 */
2720static int pkt_remove_dev(dev_t pkt_dev)
2721{
2722	struct pktcdvd_device *pd;
2723	struct device *ddev;
2724	int idx;
2725	int ret = 0;
2726
2727	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2728
2729	for (idx = 0; idx < MAX_WRITERS; idx++) {
2730		pd = pkt_devs[idx];
2731		if (pd && (pd->pkt_dev == pkt_dev))
2732			break;
2733	}
2734	if (idx == MAX_WRITERS) {
2735		pr_debug("dev not setup\n");
2736		ret = -ENXIO;
2737		goto out;
2738	}
2739
2740	if (pd->refcnt > 0) {
2741		ret = -EBUSY;
2742		goto out;
2743	}
2744
2745	ddev = disk_to_dev(pd->disk);
2746
2747	if (!IS_ERR(pd->cdrw.thread))
2748		kthread_stop(pd->cdrw.thread);
2749
2750	pkt_devs[idx] = NULL;
2751
2752	pkt_debugfs_dev_remove(pd);
2753	pkt_sysfs_dev_remove(pd);
2754
2755	fput(pd->bdev_file);
2756
2757	remove_proc_entry(pd->disk->disk_name, pkt_proc);
2758	dev_notice(ddev, "writer unmapped\n");
2759
2760	del_gendisk(pd->disk);
 
2761	put_disk(pd->disk);
2762
2763	mempool_exit(&pd->rb_pool);
2764	kfree(pd);
2765
2766	/* This is safe: open() is still holding a reference. */
2767	module_put(THIS_MODULE);
2768
2769out:
2770	mutex_unlock(&ctl_mutex);
2771	return ret;
2772}
2773
2774static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2775{
2776	struct pktcdvd_device *pd;
2777
2778	mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2779
2780	pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2781	if (pd) {
2782		ctrl_cmd->dev = new_encode_dev(file_bdev(pd->bdev_file)->bd_dev);
2783		ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2784	} else {
2785		ctrl_cmd->dev = 0;
2786		ctrl_cmd->pkt_dev = 0;
2787	}
2788	ctrl_cmd->num_devices = MAX_WRITERS;
2789
2790	mutex_unlock(&ctl_mutex);
2791}
2792
2793static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2794{
2795	void __user *argp = (void __user *)arg;
2796	struct pkt_ctrl_command ctrl_cmd;
2797	int ret = 0;
2798	dev_t pkt_dev = 0;
2799
2800	if (cmd != PACKET_CTRL_CMD)
2801		return -ENOTTY;
2802
2803	if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2804		return -EFAULT;
2805
2806	switch (ctrl_cmd.command) {
2807	case PKT_CTRL_CMD_SETUP:
2808		if (!capable(CAP_SYS_ADMIN))
2809			return -EPERM;
2810		ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2811		ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2812		break;
2813	case PKT_CTRL_CMD_TEARDOWN:
2814		if (!capable(CAP_SYS_ADMIN))
2815			return -EPERM;
2816		ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2817		break;
2818	case PKT_CTRL_CMD_STATUS:
2819		pkt_get_status(&ctrl_cmd);
2820		break;
2821	default:
2822		return -ENOTTY;
2823	}
2824
2825	if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2826		return -EFAULT;
2827	return ret;
2828}
2829
2830#ifdef CONFIG_COMPAT
2831static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2832{
2833	return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2834}
2835#endif
2836
2837static const struct file_operations pkt_ctl_fops = {
2838	.open		= nonseekable_open,
2839	.unlocked_ioctl	= pkt_ctl_ioctl,
2840#ifdef CONFIG_COMPAT
2841	.compat_ioctl	= pkt_ctl_compat_ioctl,
2842#endif
2843	.owner		= THIS_MODULE,
2844	.llseek		= no_llseek,
2845};
2846
2847static struct miscdevice pkt_misc = {
2848	.minor 		= MISC_DYNAMIC_MINOR,
2849	.name  		= DRIVER_NAME,
2850	.nodename	= "pktcdvd/control",
2851	.fops  		= &pkt_ctl_fops
2852};
2853
2854static int __init pkt_init(void)
2855{
2856	int ret;
2857
2858	mutex_init(&ctl_mutex);
2859
2860	ret = mempool_init_kmalloc_pool(&psd_pool, PSD_POOL_SIZE,
2861				    sizeof(struct packet_stacked_data));
2862	if (ret)
2863		return ret;
2864	ret = bioset_init(&pkt_bio_set, BIO_POOL_SIZE, 0, 0);
2865	if (ret) {
2866		mempool_exit(&psd_pool);
2867		return ret;
2868	}
2869
2870	ret = register_blkdev(pktdev_major, DRIVER_NAME);
2871	if (ret < 0) {
2872		pr_err("unable to register block device\n");
2873		goto out2;
2874	}
2875	if (!pktdev_major)
2876		pktdev_major = ret;
2877
2878	ret = pkt_sysfs_init();
2879	if (ret)
2880		goto out;
2881
2882	pkt_debugfs_init();
2883
2884	ret = misc_register(&pkt_misc);
2885	if (ret) {
2886		pr_err("unable to register misc device\n");
2887		goto out_misc;
2888	}
2889
2890	pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2891
2892	return 0;
2893
2894out_misc:
2895	pkt_debugfs_cleanup();
2896	pkt_sysfs_cleanup();
2897out:
2898	unregister_blkdev(pktdev_major, DRIVER_NAME);
2899out2:
2900	mempool_exit(&psd_pool);
2901	bioset_exit(&pkt_bio_set);
2902	return ret;
2903}
2904
2905static void __exit pkt_exit(void)
2906{
2907	remove_proc_entry("driver/"DRIVER_NAME, NULL);
2908	misc_deregister(&pkt_misc);
2909
2910	pkt_debugfs_cleanup();
2911	pkt_sysfs_cleanup();
2912
2913	unregister_blkdev(pktdev_major, DRIVER_NAME);
2914	mempool_exit(&psd_pool);
2915	bioset_exit(&pkt_bio_set);
2916}
2917
2918MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2919MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2920MODULE_LICENSE("GPL");
2921
2922module_init(pkt_init);
2923module_exit(pkt_exit);