Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   4 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   5 */
   6#include <linux/magic.h>		/* STACK_END_MAGIC		*/
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
 
   8#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
   9#include <linux/module.h>		/* search_exception_table	*/
  10#include <linux/bootmem.h>		/* max_low_pfn			*/
  11#include <linux/kprobes.h>		/* __kprobes, ...		*/
 
  12#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  13#include <linux/perf_event.h>		/* perf_sw_event		*/
  14#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  15#include <linux/prefetch.h>		/* prefetchw			*/
 
 
 
 
  16
 
  17#include <asm/traps.h>			/* dotraplinkage, ...		*/
  18#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
  19#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
  20#include <asm/vsyscall.h>
 
 
 
 
 
 
 
  21
  22/*
  23 * Page fault error code bits:
  24 *
  25 *   bit 0 ==	 0: no page found	1: protection fault
  26 *   bit 1 ==	 0: read access		1: write access
  27 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
  28 *   bit 3 ==				1: use of reserved bit detected
  29 *   bit 4 ==				1: fault was an instruction fetch
  30 */
  31enum x86_pf_error_code {
  32
  33	PF_PROT		=		1 << 0,
  34	PF_WRITE	=		1 << 1,
  35	PF_USER		=		1 << 2,
  36	PF_RSVD		=		1 << 3,
  37	PF_INSTR	=		1 << 4,
  38};
  39
  40/*
  41 * Returns 0 if mmiotrace is disabled, or if the fault is not
  42 * handled by mmiotrace:
  43 */
  44static inline int __kprobes
  45kmmio_fault(struct pt_regs *regs, unsigned long addr)
  46{
  47	if (unlikely(is_kmmio_active()))
  48		if (kmmio_handler(regs, addr) == 1)
  49			return -1;
  50	return 0;
  51}
  52
  53static inline int __kprobes notify_page_fault(struct pt_regs *regs)
  54{
  55	int ret = 0;
  56
  57	/* kprobe_running() needs smp_processor_id() */
  58	if (kprobes_built_in() && !user_mode_vm(regs)) {
  59		preempt_disable();
  60		if (kprobe_running() && kprobe_fault_handler(regs, 14))
  61			ret = 1;
  62		preempt_enable();
  63	}
  64
  65	return ret;
  66}
  67
  68/*
  69 * Prefetch quirks:
  70 *
  71 * 32-bit mode:
  72 *
  73 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  74 *   Check that here and ignore it.
  75 *
  76 * 64-bit mode:
  77 *
  78 *   Sometimes the CPU reports invalid exceptions on prefetch.
  79 *   Check that here and ignore it.
  80 *
  81 * Opcode checker based on code by Richard Brunner.
  82 */
  83static inline int
  84check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  85		      unsigned char opcode, int *prefetch)
  86{
  87	unsigned char instr_hi = opcode & 0xf0;
  88	unsigned char instr_lo = opcode & 0x0f;
  89
  90	switch (instr_hi) {
  91	case 0x20:
  92	case 0x30:
  93		/*
  94		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  95		 * In X86_64 long mode, the CPU will signal invalid
  96		 * opcode if some of these prefixes are present so
  97		 * X86_64 will never get here anyway
  98		 */
  99		return ((instr_lo & 7) == 0x6);
 100#ifdef CONFIG_X86_64
 101	case 0x40:
 102		/*
 103		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 104		 * Need to figure out under what instruction mode the
 105		 * instruction was issued. Could check the LDT for lm,
 106		 * but for now it's good enough to assume that long
 107		 * mode only uses well known segments or kernel.
 108		 */
 109		return (!user_mode(regs) || user_64bit_mode(regs));
 110#endif
 111	case 0x60:
 112		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 113		return (instr_lo & 0xC) == 0x4;
 114	case 0xF0:
 115		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 116		return !instr_lo || (instr_lo>>1) == 1;
 117	case 0x00:
 118		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 119		if (probe_kernel_address(instr, opcode))
 120			return 0;
 121
 122		*prefetch = (instr_lo == 0xF) &&
 123			(opcode == 0x0D || opcode == 0x18);
 124		return 0;
 125	default:
 126		return 0;
 127	}
 128}
 129
 
 
 
 
 
 
 
 
 
 130static int
 131is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 132{
 133	unsigned char *max_instr;
 134	unsigned char *instr;
 135	int prefetch = 0;
 136
 
 
 
 
 137	/*
 138	 * If it was a exec (instruction fetch) fault on NX page, then
 139	 * do not ignore the fault:
 140	 */
 141	if (error_code & PF_INSTR)
 142		return 0;
 143
 144	instr = (void *)convert_ip_to_linear(current, regs);
 145	max_instr = instr + 15;
 146
 147	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
 148		return 0;
 
 
 
 
 149
 150	while (instr < max_instr) {
 151		unsigned char opcode;
 152
 153		if (probe_kernel_address(instr, opcode))
 154			break;
 
 
 
 
 
 155
 156		instr++;
 157
 158		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 159			break;
 160	}
 161	return prefetch;
 162}
 163
 164static void
 165force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 166		     struct task_struct *tsk, int fault)
 167{
 168	unsigned lsb = 0;
 169	siginfo_t info;
 170
 171	info.si_signo	= si_signo;
 172	info.si_errno	= 0;
 173	info.si_code	= si_code;
 174	info.si_addr	= (void __user *)address;
 175	if (fault & VM_FAULT_HWPOISON_LARGE)
 176		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 177	if (fault & VM_FAULT_HWPOISON)
 178		lsb = PAGE_SHIFT;
 179	info.si_addr_lsb = lsb;
 180
 181	force_sig_info(si_signo, &info, tsk);
 
 182}
 183
 184DEFINE_SPINLOCK(pgd_lock);
 185LIST_HEAD(pgd_list);
 186
 187#ifdef CONFIG_X86_32
 188static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 189{
 190	unsigned index = pgd_index(address);
 191	pgd_t *pgd_k;
 
 192	pud_t *pud, *pud_k;
 193	pmd_t *pmd, *pmd_k;
 194
 195	pgd += index;
 196	pgd_k = init_mm.pgd + index;
 197
 198	if (!pgd_present(*pgd_k))
 199		return NULL;
 200
 201	/*
 202	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 203	 * and redundant with the set_pmd() on non-PAE. As would
 204	 * set_pud.
 205	 */
 206	pud = pud_offset(pgd, address);
 207	pud_k = pud_offset(pgd_k, address);
 
 
 
 
 
 208	if (!pud_present(*pud_k))
 209		return NULL;
 210
 211	pmd = pmd_offset(pud, address);
 212	pmd_k = pmd_offset(pud_k, address);
 213	if (!pmd_present(*pmd_k))
 214		return NULL;
 215
 216	if (!pmd_present(*pmd))
 217		set_pmd(pmd, *pmd_k);
 
 
 
 218	else
 219		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 220
 221	return pmd_k;
 222}
 223
 224void vmalloc_sync_all(void)
 225{
 226	unsigned long address;
 227
 228	if (SHARED_KERNEL_PMD)
 229		return;
 230
 231	for (address = VMALLOC_START & PMD_MASK;
 232	     address >= TASK_SIZE && address < FIXADDR_TOP;
 233	     address += PMD_SIZE) {
 234		struct page *page;
 235
 236		spin_lock(&pgd_lock);
 237		list_for_each_entry(page, &pgd_list, lru) {
 238			spinlock_t *pgt_lock;
 239			pmd_t *ret;
 240
 241			/* the pgt_lock only for Xen */
 242			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 243
 244			spin_lock(pgt_lock);
 245			ret = vmalloc_sync_one(page_address(page), address);
 246			spin_unlock(pgt_lock);
 247
 248			if (!ret)
 249				break;
 250		}
 251		spin_unlock(&pgd_lock);
 252	}
 253}
 254
 255/*
 256 * 32-bit:
 257 *
 258 *   Handle a fault on the vmalloc or module mapping area
 
 
 
 
 
 
 
 
 
 
 
 259 */
 260static noinline __kprobes int vmalloc_fault(unsigned long address)
 261{
 262	unsigned long pgd_paddr;
 263	pmd_t *pmd_k;
 264	pte_t *pte_k;
 265
 266	/* Make sure we are in vmalloc area: */
 267	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 268		return -1;
 269
 270	WARN_ON_ONCE(in_nmi());
 271
 272	/*
 273	 * Synchronize this task's top level page-table
 274	 * with the 'reference' page table.
 275	 *
 276	 * Do _not_ use "current" here. We might be inside
 277	 * an interrupt in the middle of a task switch..
 278	 */
 279	pgd_paddr = read_cr3();
 280	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 281	if (!pmd_k)
 282		return -1;
 283
 
 
 
 284	pte_k = pte_offset_kernel(pmd_k, address);
 285	if (!pte_present(*pte_k))
 286		return -1;
 287
 288	return 0;
 289}
 
 290
 291/*
 292 * Did it hit the DOS screen memory VA from vm86 mode?
 293 */
 294static inline void
 295check_v8086_mode(struct pt_regs *regs, unsigned long address,
 296		 struct task_struct *tsk)
 297{
 298	unsigned long bit;
 299
 300	if (!v8086_mode(regs))
 301		return;
 
 
 
 
 
 
 
 
 
 302
 303	bit = (address - 0xA0000) >> PAGE_SHIFT;
 304	if (bit < 32)
 305		tsk->thread.screen_bitmap |= 1 << bit;
 
 
 
 306}
 307
 308static bool low_pfn(unsigned long pfn)
 309{
 310	return pfn < max_low_pfn;
 311}
 312
 313static void dump_pagetable(unsigned long address)
 314{
 315	pgd_t *base = __va(read_cr3());
 316	pgd_t *pgd = &base[pgd_index(address)];
 
 
 317	pmd_t *pmd;
 318	pte_t *pte;
 319
 320#ifdef CONFIG_X86_PAE
 321	printk("*pdpt = %016Lx ", pgd_val(*pgd));
 322	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 323		goto out;
 
 
 
 324#endif
 325	pmd = pmd_offset(pud_offset(pgd, address), address);
 326	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 
 
 
 327
 328	/*
 329	 * We must not directly access the pte in the highpte
 330	 * case if the page table is located in highmem.
 331	 * And let's rather not kmap-atomic the pte, just in case
 332	 * it's allocated already:
 333	 */
 334	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 335		goto out;
 336
 337	pte = pte_offset_kernel(pmd, address);
 338	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 339out:
 340	printk("\n");
 341}
 342
 343#else /* CONFIG_X86_64: */
 344
 345void vmalloc_sync_all(void)
 346{
 347	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 348}
 349
 350/*
 351 * 64-bit:
 352 *
 353 *   Handle a fault on the vmalloc area
 354 *
 355 * This assumes no large pages in there.
 356 */
 357static noinline __kprobes int vmalloc_fault(unsigned long address)
 358{
 359	pgd_t *pgd, *pgd_ref;
 360	pud_t *pud, *pud_ref;
 361	pmd_t *pmd, *pmd_ref;
 362	pte_t *pte, *pte_ref;
 363
 364	/* Make sure we are in vmalloc area: */
 365	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 366		return -1;
 367
 368	WARN_ON_ONCE(in_nmi());
 369
 370	/*
 371	 * Copy kernel mappings over when needed. This can also
 372	 * happen within a race in page table update. In the later
 373	 * case just flush:
 374	 */
 375	pgd = pgd_offset(current->active_mm, address);
 376	pgd_ref = pgd_offset_k(address);
 377	if (pgd_none(*pgd_ref))
 378		return -1;
 379
 380	if (pgd_none(*pgd))
 381		set_pgd(pgd, *pgd_ref);
 382	else
 383		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 384
 385	/*
 386	 * Below here mismatches are bugs because these lower tables
 387	 * are shared:
 388	 */
 389
 390	pud = pud_offset(pgd, address);
 391	pud_ref = pud_offset(pgd_ref, address);
 392	if (pud_none(*pud_ref))
 393		return -1;
 394
 395	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
 396		BUG();
 397
 398	pmd = pmd_offset(pud, address);
 399	pmd_ref = pmd_offset(pud_ref, address);
 400	if (pmd_none(*pmd_ref))
 401		return -1;
 402
 403	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
 404		BUG();
 405
 406	pte_ref = pte_offset_kernel(pmd_ref, address);
 407	if (!pte_present(*pte_ref))
 408		return -1;
 409
 410	pte = pte_offset_kernel(pmd, address);
 411
 412	/*
 413	 * Don't use pte_page here, because the mappings can point
 414	 * outside mem_map, and the NUMA hash lookup cannot handle
 415	 * that:
 416	 */
 417	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 418		BUG();
 419
 420	return 0;
 421}
 422
 423static const char errata93_warning[] =
 424KERN_ERR 
 425"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 426"******* Working around it, but it may cause SEGVs or burn power.\n"
 427"******* Please consider a BIOS update.\n"
 428"******* Disabling USB legacy in the BIOS may also help.\n";
 429
 430/*
 431 * No vm86 mode in 64-bit mode:
 432 */
 433static inline void
 434check_v8086_mode(struct pt_regs *regs, unsigned long address,
 435		 struct task_struct *tsk)
 436{
 437}
 438
 439static int bad_address(void *p)
 440{
 441	unsigned long dummy;
 442
 443	return probe_kernel_address((unsigned long *)p, dummy);
 444}
 445
 446static void dump_pagetable(unsigned long address)
 447{
 448	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 449	pgd_t *pgd = base + pgd_index(address);
 
 450	pud_t *pud;
 451	pmd_t *pmd;
 452	pte_t *pte;
 453
 454	if (bad_address(pgd))
 455		goto bad;
 456
 457	printk("PGD %lx ", pgd_val(*pgd));
 458
 459	if (!pgd_present(*pgd))
 460		goto out;
 461
 462	pud = pud_offset(pgd, address);
 
 
 
 
 
 
 
 
 463	if (bad_address(pud))
 464		goto bad;
 465
 466	printk("PUD %lx ", pud_val(*pud));
 467	if (!pud_present(*pud) || pud_large(*pud))
 468		goto out;
 469
 470	pmd = pmd_offset(pud, address);
 471	if (bad_address(pmd))
 472		goto bad;
 473
 474	printk("PMD %lx ", pmd_val(*pmd));
 475	if (!pmd_present(*pmd) || pmd_large(*pmd))
 476		goto out;
 477
 478	pte = pte_offset_kernel(pmd, address);
 479	if (bad_address(pte))
 480		goto bad;
 481
 482	printk("PTE %lx", pte_val(*pte));
 483out:
 484	printk("\n");
 485	return;
 486bad:
 487	printk("BAD\n");
 488}
 489
 490#endif /* CONFIG_X86_64 */
 491
 492/*
 493 * Workaround for K8 erratum #93 & buggy BIOS.
 494 *
 495 * BIOS SMM functions are required to use a specific workaround
 496 * to avoid corruption of the 64bit RIP register on C stepping K8.
 497 *
 498 * A lot of BIOS that didn't get tested properly miss this.
 499 *
 500 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 501 * Try to work around it here.
 502 *
 503 * Note we only handle faults in kernel here.
 504 * Does nothing on 32-bit.
 505 */
 506static int is_errata93(struct pt_regs *regs, unsigned long address)
 507{
 508#ifdef CONFIG_X86_64
 
 
 
 
 
 
 
 509	if (address != regs->ip)
 510		return 0;
 511
 512	if ((address >> 32) != 0)
 513		return 0;
 514
 515	address |= 0xffffffffUL << 32;
 516	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 517	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 518		printk_once(errata93_warning);
 519		regs->ip = address;
 520		return 1;
 521	}
 522#endif
 523	return 0;
 524}
 525
 526/*
 527 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 528 * to illegal addresses >4GB.
 529 *
 530 * We catch this in the page fault handler because these addresses
 531 * are not reachable. Just detect this case and return.  Any code
 532 * segment in LDT is compatibility mode.
 533 */
 534static int is_errata100(struct pt_regs *regs, unsigned long address)
 535{
 536#ifdef CONFIG_X86_64
 537	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 538		return 1;
 539#endif
 540	return 0;
 541}
 542
 543static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 
 
 544{
 545#ifdef CONFIG_X86_F00F_BUG
 546	unsigned long nr;
 547
 548	/*
 549	 * Pentium F0 0F C7 C8 bug workaround:
 550	 */
 551	if (boot_cpu_data.f00f_bug) {
 552		nr = (address - idt_descr.address) >> 3;
 553
 554		if (nr == 6) {
 555			do_invalid_op(regs, 0);
 556			return 1;
 557		}
 558	}
 559#endif
 560	return 0;
 561}
 562
 563static const char nx_warning[] = KERN_CRIT
 564"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565
 566static void
 567show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 568		unsigned long address)
 569{
 570	if (!oops_may_print())
 571		return;
 572
 573	if (error_code & PF_INSTR) {
 574		unsigned int level;
 
 
 575
 576		pte_t *pte = lookup_address(address, &level);
 
 
 
 577
 578		if (pte && pte_present(*pte) && !pte_exec(*pte))
 579			printk(nx_warning, current_uid());
 
 
 
 
 
 
 580	}
 581
 582	printk(KERN_ALERT "BUG: unable to handle kernel ");
 583	if (address < PAGE_SIZE)
 584		printk(KERN_CONT "NULL pointer dereference");
 585	else
 586		printk(KERN_CONT "paging request");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587
 588	printk(KERN_CONT " at %p\n", (void *) address);
 589	printk(KERN_ALERT "IP:");
 590	printk_address(regs->ip, 1);
 
 
 
 
 
 
 
 
 
 591
 592	dump_pagetable(address);
 593}
 594
 595static noinline void
 596pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 597	    unsigned long address)
 598{
 599	struct task_struct *tsk;
 600	unsigned long flags;
 601	int sig;
 602
 603	flags = oops_begin();
 604	tsk = current;
 605	sig = SIGKILL;
 606
 607	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 608	       tsk->comm, address);
 609	dump_pagetable(address);
 610
 611	tsk->thread.cr2		= address;
 612	tsk->thread.trap_no	= 14;
 613	tsk->thread.error_code	= error_code;
 614
 615	if (__die("Bad pagetable", regs, error_code))
 616		sig = 0;
 617
 618	oops_end(flags, regs, sig);
 619}
 620
 621static noinline void
 622no_context(struct pt_regs *regs, unsigned long error_code,
 623	   unsigned long address)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624{
 625	struct task_struct *tsk = current;
 626	unsigned long *stackend;
 
 
 
 
 
 
 
 
 
 627	unsigned long flags;
 628	int sig;
 629
 630	/* Are we prepared to handle this kernel fault? */
 631	if (fixup_exception(regs))
 632		return;
 
 
 
 
 633
 
 634	/*
 635	 * 32-bit:
 636	 *
 637	 *   Valid to do another page fault here, because if this fault
 638	 *   had been triggered by is_prefetch fixup_exception would have
 639	 *   handled it.
 640	 *
 641	 * 64-bit:
 642	 *
 643	 *   Hall of shame of CPU/BIOS bugs.
 644	 */
 645	if (is_prefetch(regs, error_code, address))
 646		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 647
 648	if (is_errata93(regs, address))
 
 
 
 
 
 
 
 
 
 
 649		return;
 650
 
 651	/*
 652	 * Oops. The kernel tried to access some bad page. We'll have to
 653	 * terminate things with extreme prejudice:
 654	 */
 655	flags = oops_begin();
 656
 657	show_fault_oops(regs, error_code, address);
 658
 659	stackend = end_of_stack(tsk);
 660	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
 661		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 662
 663	tsk->thread.cr2		= address;
 664	tsk->thread.trap_no	= 14;
 665	tsk->thread.error_code	= error_code;
 666
 667	sig = SIGKILL;
 668	if (__die("Oops", regs, error_code))
 669		sig = 0;
 670
 671	/* Executive summary in case the body of the oops scrolled away */
 672	printk(KERN_EMERG "CR2: %016lx\n", address);
 673
 674	oops_end(flags, regs, sig);
 675}
 676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677/*
 678 * Print out info about fatal segfaults, if the show_unhandled_signals
 679 * sysctl is set:
 680 */
 681static inline void
 682show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 683		unsigned long address, struct task_struct *tsk)
 684{
 
 
 685	if (!unhandled_signal(tsk, SIGSEGV))
 686		return;
 687
 688	if (!printk_ratelimit())
 689		return;
 690
 691	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 692		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 693		tsk->comm, task_pid_nr(tsk), address,
 694		(void *)regs->ip, (void *)regs->sp, error_code);
 695
 696	print_vma_addr(KERN_CONT " in ", regs->ip);
 697
 698	printk(KERN_CONT "\n");
 
 
 
 
 
 
 
 
 
 
 
 699}
 700
 701static void
 702__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 703		       unsigned long address, int si_code)
 704{
 705	struct task_struct *tsk = current;
 706
 707	/* User mode accesses just cause a SIGSEGV */
 708	if (error_code & PF_USER) {
 709		/*
 710		 * It's possible to have interrupts off here:
 711		 */
 712		local_irq_enable();
 713
 714		/*
 715		 * Valid to do another page fault here because this one came
 716		 * from user space:
 717		 */
 718		if (is_prefetch(regs, error_code, address))
 719			return;
 720
 721		if (is_errata100(regs, address))
 722			return;
 
 
 
 723
 724#ifdef CONFIG_X86_64
 725		/*
 726		 * Instruction fetch faults in the vsyscall page might need
 727		 * emulation.
 728		 */
 729		if (unlikely((error_code & PF_INSTR) &&
 730			     ((address & ~0xfff) == VSYSCALL_START))) {
 731			if (emulate_vsyscall(regs, address))
 732				return;
 733		}
 734#endif
 735
 736		if (unlikely(show_unhandled_signals))
 737			show_signal_msg(regs, error_code, address, tsk);
 
 
 
 
 738
 739		/* Kernel addresses are always protection faults: */
 740		tsk->thread.cr2		= address;
 741		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
 742		tsk->thread.trap_no	= 14;
 743
 744		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
 745
 
 746		return;
 747	}
 748
 749	if (is_f00f_bug(regs, address))
 750		return;
 
 
 751
 752	no_context(regs, error_code, address);
 
 
 
 
 
 753}
 754
 755static noinline void
 756bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 757		     unsigned long address)
 758{
 759	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
 760}
 761
 762static void
 763__bad_area(struct pt_regs *regs, unsigned long error_code,
 764	   unsigned long address, int si_code)
 765{
 766	struct mm_struct *mm = current->mm;
 767
 768	/*
 769	 * Something tried to access memory that isn't in our memory map..
 770	 * Fix it, but check if it's kernel or user first..
 771	 */
 772	up_read(&mm->mmap_sem);
 773
 774	__bad_area_nosemaphore(regs, error_code, address, si_code);
 775}
 776
 777static noinline void
 778bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 779{
 780	__bad_area(regs, error_code, address, SEGV_MAPERR);
 781}
 782
 783static noinline void
 784bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 785		      unsigned long address)
 786{
 787	__bad_area(regs, error_code, address, SEGV_ACCERR);
 
 
 
 
 
 
 
 
 
 
 
 788}
 789
 790/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
 791static void
 792out_of_memory(struct pt_regs *regs, unsigned long error_code,
 793	      unsigned long address)
 794{
 795	/*
 796	 * We ran out of memory, call the OOM killer, and return the userspace
 797	 * (which will retry the fault, or kill us if we got oom-killed):
 
 798	 */
 799	up_read(&current->mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800
 801	pagefault_out_of_memory();
 
 
 
 802}
 803
 804static void
 805do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 806	  unsigned int fault)
 807{
 808	struct task_struct *tsk = current;
 809	struct mm_struct *mm = tsk->mm;
 810	int code = BUS_ADRERR;
 811
 812	up_read(&mm->mmap_sem);
 813
 814	/* Kernel mode? Handle exceptions or die: */
 815	if (!(error_code & PF_USER)) {
 816		no_context(regs, error_code, address);
 
 817		return;
 818	}
 819
 820	/* User-space => ok to do another page fault: */
 821	if (is_prefetch(regs, error_code, address))
 822		return;
 823
 824	tsk->thread.cr2		= address;
 825	tsk->thread.error_code	= error_code;
 826	tsk->thread.trap_no	= 14;
 
 
 
 827
 828#ifdef CONFIG_MEMORY_FAILURE
 829	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 830		printk(KERN_ERR
 
 
 
 831	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 832			tsk->comm, tsk->pid, address);
 833		code = BUS_MCEERR_AR;
 
 
 
 
 
 834	}
 835#endif
 836	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
 837}
 838
 839static noinline int
 840mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 841	       unsigned long address, unsigned int fault)
 842{
 843	/*
 844	 * Pagefault was interrupted by SIGKILL. We have no reason to
 845	 * continue pagefault.
 846	 */
 847	if (fatal_signal_pending(current)) {
 848		if (!(fault & VM_FAULT_RETRY))
 849			up_read(&current->mm->mmap_sem);
 850		if (!(error_code & PF_USER))
 851			no_context(regs, error_code, address);
 852		return 1;
 853	}
 854	if (!(fault & VM_FAULT_ERROR))
 855		return 0;
 856
 857	if (fault & VM_FAULT_OOM) {
 858		/* Kernel mode? Handle exceptions or die: */
 859		if (!(error_code & PF_USER)) {
 860			up_read(&current->mm->mmap_sem);
 861			no_context(regs, error_code, address);
 862			return 1;
 863		}
 864
 865		out_of_memory(regs, error_code, address);
 866	} else {
 867		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 868			     VM_FAULT_HWPOISON_LARGE))
 869			do_sigbus(regs, error_code, address, fault);
 870		else
 871			BUG();
 872	}
 873	return 1;
 874}
 875
 876static int spurious_fault_check(unsigned long error_code, pte_t *pte)
 877{
 878	if ((error_code & PF_WRITE) && !pte_write(*pte))
 879		return 0;
 880
 881	if ((error_code & PF_INSTR) && !pte_exec(*pte))
 882		return 0;
 883
 884	return 1;
 885}
 886
 887/*
 888 * Handle a spurious fault caused by a stale TLB entry.
 889 *
 890 * This allows us to lazily refresh the TLB when increasing the
 891 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 892 * eagerly is very expensive since that implies doing a full
 893 * cross-processor TLB flush, even if no stale TLB entries exist
 894 * on other processors.
 895 *
 
 
 
 
 896 * There are no security implications to leaving a stale TLB when
 897 * increasing the permissions on a page.
 
 
 
 
 
 898 */
 899static noinline __kprobes int
 900spurious_fault(unsigned long error_code, unsigned long address)
 901{
 902	pgd_t *pgd;
 
 903	pud_t *pud;
 904	pmd_t *pmd;
 905	pte_t *pte;
 906	int ret;
 907
 908	/* Reserved-bit violation or user access to kernel space? */
 909	if (error_code & (PF_USER | PF_RSVD))
 
 
 
 
 
 
 
 
 
 910		return 0;
 911
 912	pgd = init_mm.pgd + pgd_index(address);
 913	if (!pgd_present(*pgd))
 914		return 0;
 915
 916	pud = pud_offset(pgd, address);
 
 
 
 
 
 
 
 917	if (!pud_present(*pud))
 918		return 0;
 919
 920	if (pud_large(*pud))
 921		return spurious_fault_check(error_code, (pte_t *) pud);
 922
 923	pmd = pmd_offset(pud, address);
 924	if (!pmd_present(*pmd))
 925		return 0;
 926
 927	if (pmd_large(*pmd))
 928		return spurious_fault_check(error_code, (pte_t *) pmd);
 929
 930	/*
 931	 * Note: don't use pte_present() here, since it returns true
 932	 * if the _PAGE_PROTNONE bit is set.  However, this aliases the
 933	 * _PAGE_GLOBAL bit, which for kernel pages give false positives
 934	 * when CONFIG_DEBUG_PAGEALLOC is used.
 935	 */
 936	pte = pte_offset_kernel(pmd, address);
 937	if (!(pte_flags(*pte) & _PAGE_PRESENT))
 938		return 0;
 939
 940	ret = spurious_fault_check(error_code, pte);
 941	if (!ret)
 942		return 0;
 943
 944	/*
 945	 * Make sure we have permissions in PMD.
 946	 * If not, then there's a bug in the page tables:
 947	 */
 948	ret = spurious_fault_check(error_code, (pte_t *) pmd);
 949	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
 950
 951	return ret;
 952}
 
 953
 954int show_unhandled_signals = 1;
 955
 956static inline int
 957access_error(unsigned long error_code, struct vm_area_struct *vma)
 958{
 959	if (error_code & PF_WRITE) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960		/* write, present and write, not present: */
 961		if (unlikely(!(vma->vm_flags & VM_WRITE)))
 962			return 1;
 963		return 0;
 964	}
 965
 966	/* read, present: */
 967	if (unlikely(error_code & PF_PROT))
 968		return 1;
 969
 970	/* read, not present: */
 971	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 972		return 1;
 973
 974	return 0;
 975}
 976
 977static int fault_in_kernel_space(unsigned long address)
 978{
 
 
 
 
 
 
 
 
 979	return address >= TASK_SIZE_MAX;
 980}
 981
 982/*
 983 * This routine handles page faults.  It determines the address,
 984 * and the problem, and then passes it off to one of the appropriate
 985 * routines.
 986 */
 987dotraplinkage void __kprobes
 988do_page_fault(struct pt_regs *regs, unsigned long error_code)
 
 989{
 990	struct vm_area_struct *vma;
 991	struct task_struct *tsk;
 992	unsigned long address;
 993	struct mm_struct *mm;
 994	int fault;
 995	int write = error_code & PF_WRITE;
 996	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
 997					(write ? FAULT_FLAG_WRITE : 0);
 998
 999	tsk = current;
1000	mm = tsk->mm;
1001
1002	/* Get the faulting address: */
1003	address = read_cr2();
1004
1005	/*
1006	 * Detect and handle instructions that would cause a page fault for
1007	 * both a tracked kernel page and a userspace page.
 
1008	 */
1009	if (kmemcheck_active(regs))
1010		kmemcheck_hide(regs);
1011	prefetchw(&mm->mmap_sem);
1012
1013	if (unlikely(kmmio_fault(regs, address)))
1014		return;
1015
 
1016	/*
1017	 * We fault-in kernel-space virtual memory on-demand. The
1018	 * 'reference' page table is init_mm.pgd.
1019	 *
1020	 * NOTE! We MUST NOT take any locks for this case. We may
1021	 * be in an interrupt or a critical region, and should
1022	 * only copy the information from the master page table,
1023	 * nothing more.
1024	 *
1025	 * This verifies that the fault happens in kernel space
1026	 * (error_code & 4) == 0, and that the fault was not a
1027	 * protection error (error_code & 9) == 0.
 
 
 
 
 
 
 
 
 
 
 
1028	 */
1029	if (unlikely(fault_in_kernel_space(address))) {
1030		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1031			if (vmalloc_fault(address) >= 0)
1032				return;
 
1033
1034			if (kmemcheck_fault(regs, address, error_code))
1035				return;
1036		}
1037
1038		/* Can handle a stale RO->RW TLB: */
1039		if (spurious_fault(error_code, address))
1040			return;
1041
1042		/* kprobes don't want to hook the spurious faults: */
1043		if (notify_page_fault(regs))
1044			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045		/*
1046		 * Don't take the mm semaphore here. If we fixup a prefetch
1047		 * fault we could otherwise deadlock:
 
 
 
1048		 */
1049		bad_area_nosemaphore(regs, error_code, address);
 
1050
 
1051		return;
1052	}
1053
1054	/* kprobes don't want to hook the spurious faults: */
1055	if (unlikely(notify_page_fault(regs)))
1056		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	/*
1058	 * It's safe to allow irq's after cr2 has been saved and the
1059	 * vmalloc fault has been handled.
1060	 *
1061	 * User-mode registers count as a user access even for any
1062	 * potential system fault or CPU buglet:
1063	 */
1064	if (user_mode_vm(regs)) {
1065		local_irq_enable();
1066		error_code |= PF_USER;
1067	} else {
1068		if (regs->flags & X86_EFLAGS_IF)
1069			local_irq_enable();
1070	}
1071
1072	if (unlikely(error_code & PF_RSVD))
1073		pgtable_bad(regs, error_code, address);
1074
1075	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1076
 
 
 
 
 
 
1077	/*
1078	 * If we're in an interrupt, have no user context or are running
1079	 * in an atomic region then we must not take the fault:
 
 
 
 
 
 
 
1080	 */
1081	if (unlikely(in_atomic() || !mm)) {
1082		bad_area_nosemaphore(regs, error_code, address);
1083		return;
1084	}
 
1085
1086	/*
1087	 * When running in the kernel we expect faults to occur only to
1088	 * addresses in user space.  All other faults represent errors in
1089	 * the kernel and should generate an OOPS.  Unfortunately, in the
1090	 * case of an erroneous fault occurring in a code path which already
1091	 * holds mmap_sem we will deadlock attempting to validate the fault
1092	 * against the address space.  Luckily the kernel only validly
1093	 * references user space from well defined areas of code, which are
1094	 * listed in the exceptions table.
1095	 *
1096	 * As the vast majority of faults will be valid we will only perform
1097	 * the source reference check when there is a possibility of a
1098	 * deadlock. Attempt to lock the address space, if we cannot we then
1099	 * validate the source. If this is invalid we can skip the address
1100	 * space check, thus avoiding the deadlock:
1101	 */
1102	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1103		if ((error_code & PF_USER) == 0 &&
1104		    !search_exception_tables(regs->ip)) {
 
 
1105			bad_area_nosemaphore(regs, error_code, address);
1106			return;
1107		}
1108retry:
1109		down_read(&mm->mmap_sem);
1110	} else {
1111		/*
1112		 * The above down_read_trylock() might have succeeded in
1113		 * which case we'll have missed the might_sleep() from
1114		 * down_read():
1115		 */
1116		might_sleep();
1117	}
1118
1119	vma = find_vma(mm, address);
1120	if (unlikely(!vma)) {
1121		bad_area(regs, error_code, address);
1122		return;
1123	}
1124	if (likely(vma->vm_start <= address))
1125		goto good_area;
1126	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1127		bad_area(regs, error_code, address);
1128		return;
1129	}
1130	if (error_code & PF_USER) {
1131		/*
1132		 * Accessing the stack below %sp is always a bug.
1133		 * The large cushion allows instructions like enter
1134		 * and pusha to work. ("enter $65535, $31" pushes
1135		 * 32 pointers and then decrements %sp by 65535.)
1136		 */
1137		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1138			bad_area(regs, error_code, address);
1139			return;
1140		}
1141	}
1142	if (unlikely(expand_stack(vma, address))) {
1143		bad_area(regs, error_code, address);
1144		return;
1145	}
1146
1147	/*
1148	 * Ok, we have a good vm_area for this memory access, so
1149	 * we can handle it..
1150	 */
1151good_area:
1152	if (unlikely(access_error(error_code, vma))) {
1153		bad_area_access_error(regs, error_code, address);
1154		return;
1155	}
1156
1157	/*
1158	 * If for any reason at all we couldn't handle the fault,
1159	 * make sure we exit gracefully rather than endlessly redo
1160	 * the fault:
 
 
 
 
 
 
 
 
1161	 */
1162	fault = handle_mm_fault(mm, vma, address, flags);
1163
1164	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1165		if (mm_fault_error(regs, error_code, address, fault))
1166			return;
 
 
 
 
 
 
 
1167	}
1168
1169	/*
1170	 * Major/minor page fault accounting is only done on the
1171	 * initial attempt. If we go through a retry, it is extremely
1172	 * likely that the page will be found in page cache at that point.
1173	 */
1174	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1175		if (fault & VM_FAULT_MAJOR) {
1176			tsk->maj_flt++;
1177			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1178				      regs, address);
1179		} else {
1180			tsk->min_flt++;
1181			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1182				      regs, address);
1183		}
1184		if (fault & VM_FAULT_RETRY) {
1185			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1186			 * of starvation. */
1187			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1188			goto retry;
 
 
 
 
 
 
 
 
1189		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1190	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191
1192	check_v8086_mode(regs, address, tsk);
 
 
1193
1194	up_read(&mm->mmap_sem);
1195}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
 
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
   8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
   9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
  10#include <linux/extable.h>		/* search_exception_tables	*/
  11#include <linux/memblock.h>		/* max_low_pfn			*/
  12#include <linux/kfence.h>		/* kfence_handle_page_fault	*/
  13#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  14#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  15#include <linux/perf_event.h>		/* perf_sw_event		*/
  16#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  17#include <linux/prefetch.h>		/* prefetchw			*/
  18#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  19#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
  20#include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  21#include <linux/mm_types.h>
  22
  23#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  24#include <asm/traps.h>			/* dotraplinkage, ...		*/
  25#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  26#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  27#include <asm/vm86.h>			/* struct vm86			*/
  28#include <asm/mmu_context.h>		/* vma_pkey()			*/
  29#include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
  30#include <asm/desc.h>			/* store_idt(), ...		*/
  31#include <asm/cpu_entry_area.h>		/* exception stack		*/
  32#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
  33#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
  34#include <asm/vdso.h>			/* fixup_vdso_exception()	*/
  35
  36#define CREATE_TRACE_POINTS
  37#include <asm/trace/exceptions.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38
  39/*
  40 * Returns 0 if mmiotrace is disabled, or if the fault is not
  41 * handled by mmiotrace:
  42 */
  43static nokprobe_inline int
  44kmmio_fault(struct pt_regs *regs, unsigned long addr)
  45{
  46	if (unlikely(is_kmmio_active()))
  47		if (kmmio_handler(regs, addr) == 1)
  48			return -1;
  49	return 0;
  50}
  51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52/*
  53 * Prefetch quirks:
  54 *
  55 * 32-bit mode:
  56 *
  57 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  58 *   Check that here and ignore it.  This is AMD erratum #91.
  59 *
  60 * 64-bit mode:
  61 *
  62 *   Sometimes the CPU reports invalid exceptions on prefetch.
  63 *   Check that here and ignore it.
  64 *
  65 * Opcode checker based on code by Richard Brunner.
  66 */
  67static inline int
  68check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  69		      unsigned char opcode, int *prefetch)
  70{
  71	unsigned char instr_hi = opcode & 0xf0;
  72	unsigned char instr_lo = opcode & 0x0f;
  73
  74	switch (instr_hi) {
  75	case 0x20:
  76	case 0x30:
  77		/*
  78		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  79		 * In X86_64 long mode, the CPU will signal invalid
  80		 * opcode if some of these prefixes are present so
  81		 * X86_64 will never get here anyway
  82		 */
  83		return ((instr_lo & 7) == 0x6);
  84#ifdef CONFIG_X86_64
  85	case 0x40:
  86		/*
  87		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
 
 
 
 
  88		 */
  89		return (!user_mode(regs) || user_64bit_mode(regs));
  90#endif
  91	case 0x60:
  92		/* 0x64 thru 0x67 are valid prefixes in all modes. */
  93		return (instr_lo & 0xC) == 0x4;
  94	case 0xF0:
  95		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  96		return !instr_lo || (instr_lo>>1) == 1;
  97	case 0x00:
  98		/* Prefetch instruction is 0x0F0D or 0x0F18 */
  99		if (get_kernel_nofault(opcode, instr))
 100			return 0;
 101
 102		*prefetch = (instr_lo == 0xF) &&
 103			(opcode == 0x0D || opcode == 0x18);
 104		return 0;
 105	default:
 106		return 0;
 107	}
 108}
 109
 110static bool is_amd_k8_pre_npt(void)
 111{
 112	struct cpuinfo_x86 *c = &boot_cpu_data;
 113
 114	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
 115			c->x86_vendor == X86_VENDOR_AMD &&
 116			c->x86 == 0xf && c->x86_model < 0x40);
 117}
 118
 119static int
 120is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 121{
 122	unsigned char *max_instr;
 123	unsigned char *instr;
 124	int prefetch = 0;
 125
 126	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
 127	if (!is_amd_k8_pre_npt())
 128		return 0;
 129
 130	/*
 131	 * If it was a exec (instruction fetch) fault on NX page, then
 132	 * do not ignore the fault:
 133	 */
 134	if (error_code & X86_PF_INSTR)
 135		return 0;
 136
 137	instr = (void *)convert_ip_to_linear(current, regs);
 138	max_instr = instr + 15;
 139
 140	/*
 141	 * This code has historically always bailed out if IP points to a
 142	 * not-present page (e.g. due to a race).  No one has ever
 143	 * complained about this.
 144	 */
 145	pagefault_disable();
 146
 147	while (instr < max_instr) {
 148		unsigned char opcode;
 149
 150		if (user_mode(regs)) {
 151			if (get_user(opcode, instr))
 152				break;
 153		} else {
 154			if (get_kernel_nofault(opcode, instr))
 155				break;
 156		}
 157
 158		instr++;
 159
 160		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 161			break;
 162	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163
 164	pagefault_enable();
 165	return prefetch;
 166}
 167
 168DEFINE_SPINLOCK(pgd_lock);
 169LIST_HEAD(pgd_list);
 170
 171#ifdef CONFIG_X86_32
 172static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 173{
 174	unsigned index = pgd_index(address);
 175	pgd_t *pgd_k;
 176	p4d_t *p4d, *p4d_k;
 177	pud_t *pud, *pud_k;
 178	pmd_t *pmd, *pmd_k;
 179
 180	pgd += index;
 181	pgd_k = init_mm.pgd + index;
 182
 183	if (!pgd_present(*pgd_k))
 184		return NULL;
 185
 186	/*
 187	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 188	 * and redundant with the set_pmd() on non-PAE. As would
 189	 * set_p4d/set_pud.
 190	 */
 191	p4d = p4d_offset(pgd, address);
 192	p4d_k = p4d_offset(pgd_k, address);
 193	if (!p4d_present(*p4d_k))
 194		return NULL;
 195
 196	pud = pud_offset(p4d, address);
 197	pud_k = pud_offset(p4d_k, address);
 198	if (!pud_present(*pud_k))
 199		return NULL;
 200
 201	pmd = pmd_offset(pud, address);
 202	pmd_k = pmd_offset(pud_k, address);
 
 
 203
 204	if (pmd_present(*pmd) != pmd_present(*pmd_k))
 205		set_pmd(pmd, *pmd_k);
 206
 207	if (!pmd_present(*pmd_k))
 208		return NULL;
 209	else
 210		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 211
 212	return pmd_k;
 213}
 214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215/*
 
 
 216 *   Handle a fault on the vmalloc or module mapping area
 217 *
 218 *   This is needed because there is a race condition between the time
 219 *   when the vmalloc mapping code updates the PMD to the point in time
 220 *   where it synchronizes this update with the other page-tables in the
 221 *   system.
 222 *
 223 *   In this race window another thread/CPU can map an area on the same
 224 *   PMD, finds it already present and does not synchronize it with the
 225 *   rest of the system yet. As a result v[mz]alloc might return areas
 226 *   which are not mapped in every page-table in the system, causing an
 227 *   unhandled page-fault when they are accessed.
 228 */
 229static noinline int vmalloc_fault(unsigned long address)
 230{
 231	unsigned long pgd_paddr;
 232	pmd_t *pmd_k;
 233	pte_t *pte_k;
 234
 235	/* Make sure we are in vmalloc area: */
 236	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 237		return -1;
 238
 
 
 239	/*
 240	 * Synchronize this task's top level page-table
 241	 * with the 'reference' page table.
 242	 *
 243	 * Do _not_ use "current" here. We might be inside
 244	 * an interrupt in the middle of a task switch..
 245	 */
 246	pgd_paddr = read_cr3_pa();
 247	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 248	if (!pmd_k)
 249		return -1;
 250
 251	if (pmd_large(*pmd_k))
 252		return 0;
 253
 254	pte_k = pte_offset_kernel(pmd_k, address);
 255	if (!pte_present(*pte_k))
 256		return -1;
 257
 258	return 0;
 259}
 260NOKPROBE_SYMBOL(vmalloc_fault);
 261
 262void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
 
 
 
 
 
 263{
 264	unsigned long addr;
 265
 266	for (addr = start & PMD_MASK;
 267	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
 268	     addr += PMD_SIZE) {
 269		struct page *page;
 270
 271		spin_lock(&pgd_lock);
 272		list_for_each_entry(page, &pgd_list, lru) {
 273			spinlock_t *pgt_lock;
 274
 275			/* the pgt_lock only for Xen */
 276			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 277
 278			spin_lock(pgt_lock);
 279			vmalloc_sync_one(page_address(page), addr);
 280			spin_unlock(pgt_lock);
 281		}
 282		spin_unlock(&pgd_lock);
 283	}
 284}
 285
 286static bool low_pfn(unsigned long pfn)
 287{
 288	return pfn < max_low_pfn;
 289}
 290
 291static void dump_pagetable(unsigned long address)
 292{
 293	pgd_t *base = __va(read_cr3_pa());
 294	pgd_t *pgd = &base[pgd_index(address)];
 295	p4d_t *p4d;
 296	pud_t *pud;
 297	pmd_t *pmd;
 298	pte_t *pte;
 299
 300#ifdef CONFIG_X86_PAE
 301	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 302	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 303		goto out;
 304#define pr_pde pr_cont
 305#else
 306#define pr_pde pr_info
 307#endif
 308	p4d = p4d_offset(pgd, address);
 309	pud = pud_offset(p4d, address);
 310	pmd = pmd_offset(pud, address);
 311	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 312#undef pr_pde
 313
 314	/*
 315	 * We must not directly access the pte in the highpte
 316	 * case if the page table is located in highmem.
 317	 * And let's rather not kmap-atomic the pte, just in case
 318	 * it's allocated already:
 319	 */
 320	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 321		goto out;
 322
 323	pte = pte_offset_kernel(pmd, address);
 324	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 325out:
 326	pr_cont("\n");
 327}
 328
 329#else /* CONFIG_X86_64: */
 330
 331#ifdef CONFIG_CPU_SUP_AMD
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332static const char errata93_warning[] =
 333KERN_ERR 
 334"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 335"******* Working around it, but it may cause SEGVs or burn power.\n"
 336"******* Please consider a BIOS update.\n"
 337"******* Disabling USB legacy in the BIOS may also help.\n";
 338#endif
 
 
 
 
 
 
 
 
 339
 340static int bad_address(void *p)
 341{
 342	unsigned long dummy;
 343
 344	return get_kernel_nofault(dummy, (unsigned long *)p);
 345}
 346
 347static void dump_pagetable(unsigned long address)
 348{
 349	pgd_t *base = __va(read_cr3_pa());
 350	pgd_t *pgd = base + pgd_index(address);
 351	p4d_t *p4d;
 352	pud_t *pud;
 353	pmd_t *pmd;
 354	pte_t *pte;
 355
 356	if (bad_address(pgd))
 357		goto bad;
 358
 359	pr_info("PGD %lx ", pgd_val(*pgd));
 360
 361	if (!pgd_present(*pgd))
 362		goto out;
 363
 364	p4d = p4d_offset(pgd, address);
 365	if (bad_address(p4d))
 366		goto bad;
 367
 368	pr_cont("P4D %lx ", p4d_val(*p4d));
 369	if (!p4d_present(*p4d) || p4d_large(*p4d))
 370		goto out;
 371
 372	pud = pud_offset(p4d, address);
 373	if (bad_address(pud))
 374		goto bad;
 375
 376	pr_cont("PUD %lx ", pud_val(*pud));
 377	if (!pud_present(*pud) || pud_large(*pud))
 378		goto out;
 379
 380	pmd = pmd_offset(pud, address);
 381	if (bad_address(pmd))
 382		goto bad;
 383
 384	pr_cont("PMD %lx ", pmd_val(*pmd));
 385	if (!pmd_present(*pmd) || pmd_large(*pmd))
 386		goto out;
 387
 388	pte = pte_offset_kernel(pmd, address);
 389	if (bad_address(pte))
 390		goto bad;
 391
 392	pr_cont("PTE %lx", pte_val(*pte));
 393out:
 394	pr_cont("\n");
 395	return;
 396bad:
 397	pr_info("BAD\n");
 398}
 399
 400#endif /* CONFIG_X86_64 */
 401
 402/*
 403 * Workaround for K8 erratum #93 & buggy BIOS.
 404 *
 405 * BIOS SMM functions are required to use a specific workaround
 406 * to avoid corruption of the 64bit RIP register on C stepping K8.
 407 *
 408 * A lot of BIOS that didn't get tested properly miss this.
 409 *
 410 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 411 * Try to work around it here.
 412 *
 413 * Note we only handle faults in kernel here.
 414 * Does nothing on 32-bit.
 415 */
 416static int is_errata93(struct pt_regs *regs, unsigned long address)
 417{
 418#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 419	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 420	    || boot_cpu_data.x86 != 0xf)
 421		return 0;
 422
 423	if (user_mode(regs))
 424		return 0;
 425
 426	if (address != regs->ip)
 427		return 0;
 428
 429	if ((address >> 32) != 0)
 430		return 0;
 431
 432	address |= 0xffffffffUL << 32;
 433	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 434	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 435		printk_once(errata93_warning);
 436		regs->ip = address;
 437		return 1;
 438	}
 439#endif
 440	return 0;
 441}
 442
 443/*
 444 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 445 * to illegal addresses >4GB.
 446 *
 447 * We catch this in the page fault handler because these addresses
 448 * are not reachable. Just detect this case and return.  Any code
 449 * segment in LDT is compatibility mode.
 450 */
 451static int is_errata100(struct pt_regs *regs, unsigned long address)
 452{
 453#ifdef CONFIG_X86_64
 454	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 455		return 1;
 456#endif
 457	return 0;
 458}
 459
 460/* Pentium F0 0F C7 C8 bug workaround: */
 461static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
 462		       unsigned long address)
 463{
 464#ifdef CONFIG_X86_F00F_BUG
 465	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
 466	    idt_is_f00f_address(address)) {
 467		handle_invalid_op(regs);
 468		return 1;
 
 
 
 
 
 
 
 
 469	}
 470#endif
 471	return 0;
 472}
 473
 474static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 475{
 476	u32 offset = (index >> 3) * sizeof(struct desc_struct);
 477	unsigned long addr;
 478	struct ldttss_desc desc;
 479
 480	if (index == 0) {
 481		pr_alert("%s: NULL\n", name);
 482		return;
 483	}
 484
 485	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 486		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 487		return;
 488	}
 489
 490	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
 491			      sizeof(struct ldttss_desc))) {
 492		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 493			 name, index);
 494		return;
 495	}
 496
 497	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 498#ifdef CONFIG_X86_64
 499	addr |= ((u64)desc.base3 << 32);
 500#endif
 501	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 502		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 503}
 504
 505static void
 506show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 
 507{
 508	if (!oops_may_print())
 509		return;
 510
 511	if (error_code & X86_PF_INSTR) {
 512		unsigned int level;
 513		pgd_t *pgd;
 514		pte_t *pte;
 515
 516		pgd = __va(read_cr3_pa());
 517		pgd += pgd_index(address);
 518
 519		pte = lookup_address_in_pgd(pgd, address, &level);
 520
 521		if (pte && pte_present(*pte) && !pte_exec(*pte))
 522			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 523				from_kuid(&init_user_ns, current_uid()));
 524		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 525				(pgd_flags(*pgd) & _PAGE_USER) &&
 526				(__read_cr4() & X86_CR4_SMEP))
 527			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 528				from_kuid(&init_user_ns, current_uid()));
 529	}
 530
 531	if (address < PAGE_SIZE && !user_mode(regs))
 532		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 533			(void *)address);
 534	else
 535		pr_alert("BUG: unable to handle page fault for address: %px\n",
 536			(void *)address);
 537
 538	pr_alert("#PF: %s %s in %s mode\n",
 539		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 540		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 541		 (error_code & X86_PF_WRITE) ? "write access" :
 542					       "read access",
 543			     user_mode(regs) ? "user" : "kernel");
 544	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 545		 !(error_code & X86_PF_PROT) ? "not-present page" :
 546		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 547		 (error_code & X86_PF_PK)    ? "protection keys violation" :
 548					       "permissions violation");
 549
 550	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 551		struct desc_ptr idt, gdt;
 552		u16 ldtr, tr;
 553
 554		/*
 555		 * This can happen for quite a few reasons.  The more obvious
 556		 * ones are faults accessing the GDT, or LDT.  Perhaps
 557		 * surprisingly, if the CPU tries to deliver a benign or
 558		 * contributory exception from user code and gets a page fault
 559		 * during delivery, the page fault can be delivered as though
 560		 * it originated directly from user code.  This could happen
 561		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 562		 * kernel or IST stack.
 563		 */
 564		store_idt(&idt);
 565
 566		/* Usable even on Xen PV -- it's just slow. */
 567		native_store_gdt(&gdt);
 568
 569		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 570			 idt.address, idt.size, gdt.address, gdt.size);
 571
 572		store_ldt(ldtr);
 573		show_ldttss(&gdt, "LDTR", ldtr);
 574
 575		store_tr(tr);
 576		show_ldttss(&gdt, "TR", tr);
 577	}
 578
 579	dump_pagetable(address);
 580}
 581
 582static noinline void
 583pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 584	    unsigned long address)
 585{
 586	struct task_struct *tsk;
 587	unsigned long flags;
 588	int sig;
 589
 590	flags = oops_begin();
 591	tsk = current;
 592	sig = SIGKILL;
 593
 594	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 595	       tsk->comm, address);
 596	dump_pagetable(address);
 597
 
 
 
 
 598	if (__die("Bad pagetable", regs, error_code))
 599		sig = 0;
 600
 601	oops_end(flags, regs, sig);
 602}
 603
 604static void sanitize_error_code(unsigned long address,
 605				unsigned long *error_code)
 606{
 607	/*
 608	 * To avoid leaking information about the kernel page
 609	 * table layout, pretend that user-mode accesses to
 610	 * kernel addresses are always protection faults.
 611	 *
 612	 * NB: This means that failed vsyscalls with vsyscall=none
 613	 * will have the PROT bit.  This doesn't leak any
 614	 * information and does not appear to cause any problems.
 615	 */
 616	if (address >= TASK_SIZE_MAX)
 617		*error_code |= X86_PF_PROT;
 618}
 619
 620static void set_signal_archinfo(unsigned long address,
 621				unsigned long error_code)
 622{
 623	struct task_struct *tsk = current;
 624
 625	tsk->thread.trap_nr = X86_TRAP_PF;
 626	tsk->thread.error_code = error_code | X86_PF_USER;
 627	tsk->thread.cr2 = address;
 628}
 629
 630static noinline void
 631page_fault_oops(struct pt_regs *regs, unsigned long error_code,
 632		unsigned long address)
 633{
 634	unsigned long flags;
 635	int sig;
 636
 637	if (user_mode(regs)) {
 638		/*
 639		 * Implicit kernel access from user mode?  Skip the stack
 640		 * overflow and EFI special cases.
 641		 */
 642		goto oops;
 643	}
 644
 645#ifdef CONFIG_VMAP_STACK
 646	/*
 647	 * Stack overflow?  During boot, we can fault near the initial
 648	 * stack in the direct map, but that's not an overflow -- check
 649	 * that we're in vmalloc space to avoid this.
 
 
 
 
 
 
 650	 */
 651	if (is_vmalloc_addr((void *)address) &&
 652	    (((unsigned long)current->stack - 1 - address < PAGE_SIZE) ||
 653	     address - ((unsigned long)current->stack + THREAD_SIZE) < PAGE_SIZE)) {
 654		unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
 655		/*
 656		 * We're likely to be running with very little stack space
 657		 * left.  It's plausible that we'd hit this condition but
 658		 * double-fault even before we get this far, in which case
 659		 * we're fine: the double-fault handler will deal with it.
 660		 *
 661		 * We don't want to make it all the way into the oops code
 662		 * and then double-fault, though, because we're likely to
 663		 * break the console driver and lose most of the stack dump.
 664		 */
 665		asm volatile ("movq %[stack], %%rsp\n\t"
 666			      "call handle_stack_overflow\n\t"
 667			      "1: jmp 1b"
 668			      : ASM_CALL_CONSTRAINT
 669			      : "D" ("kernel stack overflow (page fault)"),
 670				"S" (regs), "d" (address),
 671				[stack] "rm" (stack));
 672		unreachable();
 673	}
 674#endif
 675
 676	/*
 677	 * Buggy firmware could access regions which might page fault.  If
 678	 * this happens, EFI has a special OOPS path that will try to
 679	 * avoid hanging the system.
 680	 */
 681	if (IS_ENABLED(CONFIG_EFI))
 682		efi_crash_gracefully_on_page_fault(address);
 683
 684	/* Only not-present faults should be handled by KFENCE. */
 685	if (!(error_code & X86_PF_PROT) &&
 686	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
 687		return;
 688
 689oops:
 690	/*
 691	 * Oops. The kernel tried to access some bad page. We'll have to
 692	 * terminate things with extreme prejudice:
 693	 */
 694	flags = oops_begin();
 695
 696	show_fault_oops(regs, error_code, address);
 697
 698	if (task_stack_end_corrupted(current))
 699		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 
 
 
 
 
 700
 701	sig = SIGKILL;
 702	if (__die("Oops", regs, error_code))
 703		sig = 0;
 704
 705	/* Executive summary in case the body of the oops scrolled away */
 706	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 707
 708	oops_end(flags, regs, sig);
 709}
 710
 711static noinline void
 712kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
 713			 unsigned long address, int signal, int si_code,
 714			 u32 pkey)
 715{
 716	WARN_ON_ONCE(user_mode(regs));
 717
 718	/* Are we prepared to handle this kernel fault? */
 719	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 720		/*
 721		 * Any interrupt that takes a fault gets the fixup. This makes
 722		 * the below recursive fault logic only apply to a faults from
 723		 * task context.
 724		 */
 725		if (in_interrupt())
 726			return;
 727
 728		/*
 729		 * Per the above we're !in_interrupt(), aka. task context.
 730		 *
 731		 * In this case we need to make sure we're not recursively
 732		 * faulting through the emulate_vsyscall() logic.
 733		 */
 734		if (current->thread.sig_on_uaccess_err && signal) {
 735			sanitize_error_code(address, &error_code);
 736
 737			set_signal_archinfo(address, error_code);
 738
 739			if (si_code == SEGV_PKUERR) {
 740				force_sig_pkuerr((void __user *)address, pkey);
 741			} else {
 742				/* XXX: hwpoison faults will set the wrong code. */
 743				force_sig_fault(signal, si_code, (void __user *)address);
 744			}
 745		}
 746
 747		/*
 748		 * Barring that, we can do the fixup and be happy.
 749		 */
 750		return;
 751	}
 752
 753	/*
 754	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
 755	 * instruction.
 756	 */
 757	if (is_prefetch(regs, error_code, address))
 758		return;
 759
 760	page_fault_oops(regs, error_code, address);
 761}
 762
 763/*
 764 * Print out info about fatal segfaults, if the show_unhandled_signals
 765 * sysctl is set:
 766 */
 767static inline void
 768show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 769		unsigned long address, struct task_struct *tsk)
 770{
 771	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 772
 773	if (!unhandled_signal(tsk, SIGSEGV))
 774		return;
 775
 776	if (!printk_ratelimit())
 777		return;
 778
 779	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 780		loglvl, tsk->comm, task_pid_nr(tsk), address,
 
 781		(void *)regs->ip, (void *)regs->sp, error_code);
 782
 783	print_vma_addr(KERN_CONT " in ", regs->ip);
 784
 785	printk(KERN_CONT "\n");
 786
 787	show_opcodes(regs, loglvl);
 788}
 789
 790/*
 791 * The (legacy) vsyscall page is the long page in the kernel portion
 792 * of the address space that has user-accessible permissions.
 793 */
 794static bool is_vsyscall_vaddr(unsigned long vaddr)
 795{
 796	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
 797}
 798
 799static void
 800__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 801		       unsigned long address, u32 pkey, int si_code)
 802{
 803	struct task_struct *tsk = current;
 804
 805	if (!user_mode(regs)) {
 806		kernelmode_fixup_or_oops(regs, error_code, address,
 807					 SIGSEGV, si_code, pkey);
 808		return;
 809	}
 
 
 
 
 
 
 
 
 810
 811	if (!(error_code & X86_PF_USER)) {
 812		/* Implicit user access to kernel memory -- just oops */
 813		page_fault_oops(regs, error_code, address);
 814		return;
 815	}
 816
 817	/*
 818	 * User mode accesses just cause a SIGSEGV.
 819	 * It's possible to have interrupts off here:
 820	 */
 821	local_irq_enable();
 
 
 
 
 
 
 822
 823	/*
 824	 * Valid to do another page fault here because this one came
 825	 * from user space:
 826	 */
 827	if (is_prefetch(regs, error_code, address))
 828		return;
 829
 830	if (is_errata100(regs, address))
 831		return;
 
 
 832
 833	sanitize_error_code(address, &error_code);
 834
 835	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 836		return;
 
 837
 838	if (likely(show_unhandled_signals))
 839		show_signal_msg(regs, error_code, address, tsk);
 840
 841	set_signal_archinfo(address, error_code);
 842
 843	if (si_code == SEGV_PKUERR)
 844		force_sig_pkuerr((void __user *)address, pkey);
 845	else
 846		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 847
 848	local_irq_disable();
 849}
 850
 851static noinline void
 852bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 853		     unsigned long address)
 854{
 855	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 856}
 857
 858static void
 859__bad_area(struct pt_regs *regs, unsigned long error_code,
 860	   unsigned long address, u32 pkey, int si_code)
 861{
 862	struct mm_struct *mm = current->mm;
 
 863	/*
 864	 * Something tried to access memory that isn't in our memory map..
 865	 * Fix it, but check if it's kernel or user first..
 866	 */
 867	mmap_read_unlock(mm);
 868
 869	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 870}
 871
 872static noinline void
 873bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 874{
 875	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
 876}
 877
 878static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 879		struct vm_area_struct *vma)
 
 880{
 881	/* This code is always called on the current mm */
 882	bool foreign = false;
 883
 884	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
 885		return false;
 886	if (error_code & X86_PF_PK)
 887		return true;
 888	/* this checks permission keys on the VMA: */
 889	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 890				       (error_code & X86_PF_INSTR), foreign))
 891		return true;
 892	return false;
 893}
 894
 895static noinline void
 896bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 897		      unsigned long address, struct vm_area_struct *vma)
 
 898{
 899	/*
 900	 * This OSPKE check is not strictly necessary at runtime.
 901	 * But, doing it this way allows compiler optimizations
 902	 * if pkeys are compiled out.
 903	 */
 904	if (bad_area_access_from_pkeys(error_code, vma)) {
 905		/*
 906		 * A protection key fault means that the PKRU value did not allow
 907		 * access to some PTE.  Userspace can figure out what PKRU was
 908		 * from the XSAVE state.  This function captures the pkey from
 909		 * the vma and passes it to userspace so userspace can discover
 910		 * which protection key was set on the PTE.
 911		 *
 912		 * If we get here, we know that the hardware signaled a X86_PF_PK
 913		 * fault and that there was a VMA once we got in the fault
 914		 * handler.  It does *not* guarantee that the VMA we find here
 915		 * was the one that we faulted on.
 916		 *
 917		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 918		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 919		 * 3. T1   : faults...
 920		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 921		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 922		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 923		 *	     faulted on a pte with its pkey=4.
 924		 */
 925		u32 pkey = vma_pkey(vma);
 926
 927		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 928	} else {
 929		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 930	}
 931}
 932
 933static void
 934do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 935	  vm_fault_t fault)
 936{
 
 
 
 
 
 
 937	/* Kernel mode? Handle exceptions or die: */
 938	if (!user_mode(regs)) {
 939		kernelmode_fixup_or_oops(regs, error_code, address,
 940					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
 941		return;
 942	}
 943
 944	/* User-space => ok to do another page fault: */
 945	if (is_prefetch(regs, error_code, address))
 946		return;
 947
 948	sanitize_error_code(address, &error_code);
 949
 950	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 951		return;
 952
 953	set_signal_archinfo(address, error_code);
 954
 955#ifdef CONFIG_MEMORY_FAILURE
 956	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 957		struct task_struct *tsk = current;
 958		unsigned lsb = 0;
 959
 960		pr_err(
 961	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 962			tsk->comm, tsk->pid, address);
 963		if (fault & VM_FAULT_HWPOISON_LARGE)
 964			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 965		if (fault & VM_FAULT_HWPOISON)
 966			lsb = PAGE_SHIFT;
 967		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 968		return;
 969	}
 970#endif
 971	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972}
 973
 974static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
 975{
 976	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
 977		return 0;
 978
 979	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
 980		return 0;
 981
 982	return 1;
 983}
 984
 985/*
 986 * Handle a spurious fault caused by a stale TLB entry.
 987 *
 988 * This allows us to lazily refresh the TLB when increasing the
 989 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 990 * eagerly is very expensive since that implies doing a full
 991 * cross-processor TLB flush, even if no stale TLB entries exist
 992 * on other processors.
 993 *
 994 * Spurious faults may only occur if the TLB contains an entry with
 995 * fewer permission than the page table entry.  Non-present (P = 0)
 996 * and reserved bit (R = 1) faults are never spurious.
 997 *
 998 * There are no security implications to leaving a stale TLB when
 999 * increasing the permissions on a page.
1000 *
1001 * Returns non-zero if a spurious fault was handled, zero otherwise.
1002 *
1003 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1004 * (Optional Invalidation).
1005 */
1006static noinline int
1007spurious_kernel_fault(unsigned long error_code, unsigned long address)
1008{
1009	pgd_t *pgd;
1010	p4d_t *p4d;
1011	pud_t *pud;
1012	pmd_t *pmd;
1013	pte_t *pte;
1014	int ret;
1015
1016	/*
1017	 * Only writes to RO or instruction fetches from NX may cause
1018	 * spurious faults.
1019	 *
1020	 * These could be from user or supervisor accesses but the TLB
1021	 * is only lazily flushed after a kernel mapping protection
1022	 * change, so user accesses are not expected to cause spurious
1023	 * faults.
1024	 */
1025	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1026	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1027		return 0;
1028
1029	pgd = init_mm.pgd + pgd_index(address);
1030	if (!pgd_present(*pgd))
1031		return 0;
1032
1033	p4d = p4d_offset(pgd, address);
1034	if (!p4d_present(*p4d))
1035		return 0;
1036
1037	if (p4d_large(*p4d))
1038		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1039
1040	pud = pud_offset(p4d, address);
1041	if (!pud_present(*pud))
1042		return 0;
1043
1044	if (pud_large(*pud))
1045		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1046
1047	pmd = pmd_offset(pud, address);
1048	if (!pmd_present(*pmd))
1049		return 0;
1050
1051	if (pmd_large(*pmd))
1052		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1053
 
 
 
 
 
 
1054	pte = pte_offset_kernel(pmd, address);
1055	if (!pte_present(*pte))
1056		return 0;
1057
1058	ret = spurious_kernel_fault_check(error_code, pte);
1059	if (!ret)
1060		return 0;
1061
1062	/*
1063	 * Make sure we have permissions in PMD.
1064	 * If not, then there's a bug in the page tables:
1065	 */
1066	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1067	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1068
1069	return ret;
1070}
1071NOKPROBE_SYMBOL(spurious_kernel_fault);
1072
1073int show_unhandled_signals = 1;
1074
1075static inline int
1076access_error(unsigned long error_code, struct vm_area_struct *vma)
1077{
1078	/* This is only called for the current mm, so: */
1079	bool foreign = false;
1080
1081	/*
1082	 * Read or write was blocked by protection keys.  This is
1083	 * always an unconditional error and can never result in
1084	 * a follow-up action to resolve the fault, like a COW.
1085	 */
1086	if (error_code & X86_PF_PK)
1087		return 1;
1088
1089	/*
1090	 * SGX hardware blocked the access.  This usually happens
1091	 * when the enclave memory contents have been destroyed, like
1092	 * after a suspend/resume cycle. In any case, the kernel can't
1093	 * fix the cause of the fault.  Handle the fault as an access
1094	 * error even in cases where no actual access violation
1095	 * occurred.  This allows userspace to rebuild the enclave in
1096	 * response to the signal.
1097	 */
1098	if (unlikely(error_code & X86_PF_SGX))
1099		return 1;
1100
1101	/*
1102	 * Make sure to check the VMA so that we do not perform
1103	 * faults just to hit a X86_PF_PK as soon as we fill in a
1104	 * page.
1105	 */
1106	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1107				       (error_code & X86_PF_INSTR), foreign))
1108		return 1;
1109
1110	if (error_code & X86_PF_WRITE) {
1111		/* write, present and write, not present: */
1112		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1113			return 1;
1114		return 0;
1115	}
1116
1117	/* read, present: */
1118	if (unlikely(error_code & X86_PF_PROT))
1119		return 1;
1120
1121	/* read, not present: */
1122	if (unlikely(!vma_is_accessible(vma)))
1123		return 1;
1124
1125	return 0;
1126}
1127
1128bool fault_in_kernel_space(unsigned long address)
1129{
1130	/*
1131	 * On 64-bit systems, the vsyscall page is at an address above
1132	 * TASK_SIZE_MAX, but is not considered part of the kernel
1133	 * address space.
1134	 */
1135	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1136		return false;
1137
1138	return address >= TASK_SIZE_MAX;
1139}
1140
1141/*
1142 * Called for all faults where 'address' is part of the kernel address
1143 * space.  Might get called for faults that originate from *code* that
1144 * ran in userspace or the kernel.
1145 */
1146static void
1147do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1148		   unsigned long address)
1149{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150	/*
1151	 * Protection keys exceptions only happen on user pages.  We
1152	 * have no user pages in the kernel portion of the address
1153	 * space, so do not expect them here.
1154	 */
1155	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
 
 
 
 
 
1156
1157#ifdef CONFIG_X86_32
1158	/*
1159	 * We can fault-in kernel-space virtual memory on-demand. The
1160	 * 'reference' page table is init_mm.pgd.
1161	 *
1162	 * NOTE! We MUST NOT take any locks for this case. We may
1163	 * be in an interrupt or a critical region, and should
1164	 * only copy the information from the master page table,
1165	 * nothing more.
1166	 *
1167	 * Before doing this on-demand faulting, ensure that the
1168	 * fault is not any of the following:
1169	 * 1. A fault on a PTE with a reserved bit set.
1170	 * 2. A fault caused by a user-mode access.  (Do not demand-
1171	 *    fault kernel memory due to user-mode accesses).
1172	 * 3. A fault caused by a page-level protection violation.
1173	 *    (A demand fault would be on a non-present page which
1174	 *     would have X86_PF_PROT==0).
1175	 *
1176	 * This is only needed to close a race condition on x86-32 in
1177	 * the vmalloc mapping/unmapping code. See the comment above
1178	 * vmalloc_fault() for details. On x86-64 the race does not
1179	 * exist as the vmalloc mappings don't need to be synchronized
1180	 * there.
1181	 */
1182	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1183		if (vmalloc_fault(address) >= 0)
1184			return;
1185	}
1186#endif
1187
1188	if (is_f00f_bug(regs, hw_error_code, address))
1189		return;
 
1190
1191	/* Was the fault spurious, caused by lazy TLB invalidation? */
1192	if (spurious_kernel_fault(hw_error_code, address))
1193		return;
1194
1195	/* kprobes don't want to hook the spurious faults: */
1196	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1197		return;
1198
1199	/*
1200	 * Note, despite being a "bad area", there are quite a few
1201	 * acceptable reasons to get here, such as erratum fixups
1202	 * and handling kernel code that can fault, like get_user().
1203	 *
1204	 * Don't take the mm semaphore here. If we fixup a prefetch
1205	 * fault we could otherwise deadlock:
1206	 */
1207	bad_area_nosemaphore(regs, hw_error_code, address);
1208}
1209NOKPROBE_SYMBOL(do_kern_addr_fault);
1210
1211/*
1212 * Handle faults in the user portion of the address space.  Nothing in here
1213 * should check X86_PF_USER without a specific justification: for almost
1214 * all purposes, we should treat a normal kernel access to user memory
1215 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1216 * The one exception is AC flag handling, which is, per the x86
1217 * architecture, special for WRUSS.
1218 */
1219static inline
1220void do_user_addr_fault(struct pt_regs *regs,
1221			unsigned long error_code,
1222			unsigned long address)
1223{
1224	struct vm_area_struct *vma;
1225	struct task_struct *tsk;
1226	struct mm_struct *mm;
1227	vm_fault_t fault;
1228	unsigned int flags = FAULT_FLAG_DEFAULT;
1229
1230	tsk = current;
1231	mm = tsk->mm;
1232
1233	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1234		/*
1235		 * Whoops, this is kernel mode code trying to execute from
1236		 * user memory.  Unless this is AMD erratum #93, which
1237		 * corrupts RIP such that it looks like a user address,
1238		 * this is unrecoverable.  Don't even try to look up the
1239		 * VMA or look for extable entries.
1240		 */
1241		if (is_errata93(regs, address))
1242			return;
1243
1244		page_fault_oops(regs, error_code, address);
1245		return;
1246	}
1247
1248	/* kprobes don't want to hook the spurious faults: */
1249	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1250		return;
1251
1252	/*
1253	 * Reserved bits are never expected to be set on
1254	 * entries in the user portion of the page tables.
1255	 */
1256	if (unlikely(error_code & X86_PF_RSVD))
1257		pgtable_bad(regs, error_code, address);
1258
1259	/*
1260	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1261	 * pages in the user address space.  The odd case here is WRUSS,
1262	 * which, according to the preliminary documentation, does not respect
1263	 * SMAP and will have the USER bit set so, in all cases, SMAP
1264	 * enforcement appears to be consistent with the USER bit.
1265	 */
1266	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1267		     !(error_code & X86_PF_USER) &&
1268		     !(regs->flags & X86_EFLAGS_AC))) {
1269		/*
1270		 * No extable entry here.  This was a kernel access to an
1271		 * invalid pointer.  get_kernel_nofault() will not get here.
1272		 */
1273		page_fault_oops(regs, error_code, address);
1274		return;
1275	}
1276
1277	/*
1278	 * If we're in an interrupt, have no user context or are running
1279	 * in a region with pagefaults disabled then we must not take the fault
1280	 */
1281	if (unlikely(faulthandler_disabled() || !mm)) {
1282		bad_area_nosemaphore(regs, error_code, address);
1283		return;
1284	}
1285
1286	/*
1287	 * It's safe to allow irq's after cr2 has been saved and the
1288	 * vmalloc fault has been handled.
1289	 *
1290	 * User-mode registers count as a user access even for any
1291	 * potential system fault or CPU buglet:
1292	 */
1293	if (user_mode(regs)) {
1294		local_irq_enable();
1295		flags |= FAULT_FLAG_USER;
1296	} else {
1297		if (regs->flags & X86_EFLAGS_IF)
1298			local_irq_enable();
1299	}
1300
 
 
 
1301	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1302
1303	if (error_code & X86_PF_WRITE)
1304		flags |= FAULT_FLAG_WRITE;
1305	if (error_code & X86_PF_INSTR)
1306		flags |= FAULT_FLAG_INSTRUCTION;
1307
1308#ifdef CONFIG_X86_64
1309	/*
1310	 * Faults in the vsyscall page might need emulation.  The
1311	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1312	 * considered to be part of the user address space.
1313	 *
1314	 * The vsyscall page does not have a "real" VMA, so do this
1315	 * emulation before we go searching for VMAs.
1316	 *
1317	 * PKRU never rejects instruction fetches, so we don't need
1318	 * to consider the PF_PK bit.
1319	 */
1320	if (is_vsyscall_vaddr(address)) {
1321		if (emulate_vsyscall(error_code, regs, address))
1322			return;
1323	}
1324#endif
1325
1326	/*
1327	 * Kernel-mode access to the user address space should only occur
1328	 * on well-defined single instructions listed in the exception
1329	 * tables.  But, an erroneous kernel fault occurring outside one of
1330	 * those areas which also holds mmap_lock might deadlock attempting
1331	 * to validate the fault against the address space.
 
 
 
1332	 *
1333	 * Only do the expensive exception table search when we might be at
1334	 * risk of a deadlock.  This happens if we
1335	 * 1. Failed to acquire mmap_lock, and
1336	 * 2. The access did not originate in userspace.
1337	 */
1338	if (unlikely(!mmap_read_trylock(mm))) {
1339		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1340			/*
1341			 * Fault from code in kernel from
1342			 * which we do not expect faults.
1343			 */
1344			bad_area_nosemaphore(regs, error_code, address);
1345			return;
1346		}
1347retry:
1348		mmap_read_lock(mm);
1349	} else {
1350		/*
1351		 * The above down_read_trylock() might have succeeded in
1352		 * which case we'll have missed the might_sleep() from
1353		 * down_read():
1354		 */
1355		might_sleep();
1356	}
1357
1358	vma = find_vma(mm, address);
1359	if (unlikely(!vma)) {
1360		bad_area(regs, error_code, address);
1361		return;
1362	}
1363	if (likely(vma->vm_start <= address))
1364		goto good_area;
1365	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1366		bad_area(regs, error_code, address);
1367		return;
1368	}
 
 
 
 
 
 
 
 
 
 
 
 
1369	if (unlikely(expand_stack(vma, address))) {
1370		bad_area(regs, error_code, address);
1371		return;
1372	}
1373
1374	/*
1375	 * Ok, we have a good vm_area for this memory access, so
1376	 * we can handle it..
1377	 */
1378good_area:
1379	if (unlikely(access_error(error_code, vma))) {
1380		bad_area_access_error(regs, error_code, address, vma);
1381		return;
1382	}
1383
1384	/*
1385	 * If for any reason at all we couldn't handle the fault,
1386	 * make sure we exit gracefully rather than endlessly redo
1387	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1388	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1389	 *
1390	 * Note that handle_userfault() may also release and reacquire mmap_lock
1391	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1392	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1393	 * (potentially after handling any pending signal during the return to
1394	 * userland). The return to userland is identified whenever
1395	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1396	 */
1397	fault = handle_mm_fault(vma, address, flags, regs);
1398
1399	if (fault_signal_pending(fault, regs)) {
1400		/*
1401		 * Quick path to respond to signals.  The core mm code
1402		 * has unlocked the mm for us if we get here.
1403		 */
1404		if (!user_mode(regs))
1405			kernelmode_fixup_or_oops(regs, error_code, address,
1406						 SIGBUS, BUS_ADRERR,
1407						 ARCH_DEFAULT_PKEY);
1408		return;
1409	}
1410
1411	/*
1412	 * If we need to retry the mmap_lock has already been released,
1413	 * and if there is a fatal signal pending there is no guarantee
1414	 * that we made any progress. Handle this case first.
1415	 */
1416	if (unlikely((fault & VM_FAULT_RETRY) &&
1417		     (flags & FAULT_FLAG_ALLOW_RETRY))) {
1418		flags |= FAULT_FLAG_TRIED;
1419		goto retry;
1420	}
1421
1422	mmap_read_unlock(mm);
1423	if (likely(!(fault & VM_FAULT_ERROR)))
1424		return;
1425
1426	if (fatal_signal_pending(current) && !user_mode(regs)) {
1427		kernelmode_fixup_or_oops(regs, error_code, address,
1428					 0, 0, ARCH_DEFAULT_PKEY);
1429		return;
1430	}
1431
1432	if (fault & VM_FAULT_OOM) {
1433		/* Kernel mode? Handle exceptions or die: */
1434		if (!user_mode(regs)) {
1435			kernelmode_fixup_or_oops(regs, error_code, address,
1436						 SIGSEGV, SEGV_MAPERR,
1437						 ARCH_DEFAULT_PKEY);
1438			return;
1439		}
1440
1441		/*
1442		 * We ran out of memory, call the OOM killer, and return the
1443		 * userspace (which will retry the fault, or kill us if we got
1444		 * oom-killed):
1445		 */
1446		pagefault_out_of_memory();
1447	} else {
1448		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1449			     VM_FAULT_HWPOISON_LARGE))
1450			do_sigbus(regs, error_code, address, fault);
1451		else if (fault & VM_FAULT_SIGSEGV)
1452			bad_area_nosemaphore(regs, error_code, address);
1453		else
1454			BUG();
1455	}
1456}
1457NOKPROBE_SYMBOL(do_user_addr_fault);
1458
1459static __always_inline void
1460trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1461			 unsigned long address)
1462{
1463	if (!trace_pagefault_enabled())
1464		return;
1465
1466	if (user_mode(regs))
1467		trace_page_fault_user(address, regs, error_code);
1468	else
1469		trace_page_fault_kernel(address, regs, error_code);
1470}
1471
1472static __always_inline void
1473handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1474			      unsigned long address)
1475{
1476	trace_page_fault_entries(regs, error_code, address);
1477
1478	if (unlikely(kmmio_fault(regs, address)))
1479		return;
1480
1481	/* Was the fault on kernel-controlled part of the address space? */
1482	if (unlikely(fault_in_kernel_space(address))) {
1483		do_kern_addr_fault(regs, error_code, address);
1484	} else {
1485		do_user_addr_fault(regs, error_code, address);
1486		/*
1487		 * User address page fault handling might have reenabled
1488		 * interrupts. Fixing up all potential exit points of
1489		 * do_user_addr_fault() and its leaf functions is just not
1490		 * doable w/o creating an unholy mess or turning the code
1491		 * upside down.
1492		 */
1493		local_irq_disable();
1494	}
1495}
1496
1497DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1498{
1499	unsigned long address = read_cr2();
1500	irqentry_state_t state;
1501
1502	prefetchw(&current->mm->mmap_lock);
1503
1504	/*
1505	 * KVM uses #PF vector to deliver 'page not present' events to guests
1506	 * (asynchronous page fault mechanism). The event happens when a
1507	 * userspace task is trying to access some valid (from guest's point of
1508	 * view) memory which is not currently mapped by the host (e.g. the
1509	 * memory is swapped out). Note, the corresponding "page ready" event
1510	 * which is injected when the memory becomes available, is delivered via
1511	 * an interrupt mechanism and not a #PF exception
1512	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1513	 *
1514	 * We are relying on the interrupted context being sane (valid RSP,
1515	 * relevant locks not held, etc.), which is fine as long as the
1516	 * interrupted context had IF=1.  We are also relying on the KVM
1517	 * async pf type field and CR2 being read consistently instead of
1518	 * getting values from real and async page faults mixed up.
1519	 *
1520	 * Fingers crossed.
1521	 *
1522	 * The async #PF handling code takes care of idtentry handling
1523	 * itself.
1524	 */
1525	if (kvm_handle_async_pf(regs, (u32)address))
1526		return;
1527
1528	/*
1529	 * Entry handling for valid #PF from kernel mode is slightly
1530	 * different: RCU is already watching and rcu_irq_enter() must not
1531	 * be invoked because a kernel fault on a user space address might
1532	 * sleep.
1533	 *
1534	 * In case the fault hit a RCU idle region the conditional entry
1535	 * code reenabled RCU to avoid subsequent wreckage which helps
1536	 * debuggability.
1537	 */
1538	state = irqentry_enter(regs);
1539
1540	instrumentation_begin();
1541	handle_page_fault(regs, error_code, address);
1542	instrumentation_end();
1543
1544	irqentry_exit(regs, state);
1545}