Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   4 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   5 */
   6#include <linux/magic.h>		/* STACK_END_MAGIC		*/
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
 
   8#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
   9#include <linux/module.h>		/* search_exception_table	*/
  10#include <linux/bootmem.h>		/* max_low_pfn			*/
  11#include <linux/kprobes.h>		/* __kprobes, ...		*/
  12#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  13#include <linux/perf_event.h>		/* perf_sw_event		*/
  14#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  15#include <linux/prefetch.h>		/* prefetchw			*/
 
 
  16
 
  17#include <asm/traps.h>			/* dotraplinkage, ...		*/
  18#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
  19#include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
  20#include <asm/vsyscall.h>
 
 
  21
  22/*
  23 * Page fault error code bits:
  24 *
  25 *   bit 0 ==	 0: no page found	1: protection fault
  26 *   bit 1 ==	 0: read access		1: write access
  27 *   bit 2 ==	 0: kernel-mode access	1: user-mode access
  28 *   bit 3 ==				1: use of reserved bit detected
  29 *   bit 4 ==				1: fault was an instruction fetch
  30 */
  31enum x86_pf_error_code {
  32
  33	PF_PROT		=		1 << 0,
  34	PF_WRITE	=		1 << 1,
  35	PF_USER		=		1 << 2,
  36	PF_RSVD		=		1 << 3,
  37	PF_INSTR	=		1 << 4,
  38};
  39
  40/*
  41 * Returns 0 if mmiotrace is disabled, or if the fault is not
  42 * handled by mmiotrace:
  43 */
  44static inline int __kprobes
  45kmmio_fault(struct pt_regs *regs, unsigned long addr)
  46{
  47	if (unlikely(is_kmmio_active()))
  48		if (kmmio_handler(regs, addr) == 1)
  49			return -1;
  50	return 0;
  51}
  52
  53static inline int __kprobes notify_page_fault(struct pt_regs *regs)
  54{
  55	int ret = 0;
  56
  57	/* kprobe_running() needs smp_processor_id() */
  58	if (kprobes_built_in() && !user_mode_vm(regs)) {
  59		preempt_disable();
  60		if (kprobe_running() && kprobe_fault_handler(regs, 14))
  61			ret = 1;
  62		preempt_enable();
  63	}
  64
  65	return ret;
  66}
  67
  68/*
  69 * Prefetch quirks:
  70 *
  71 * 32-bit mode:
  72 *
  73 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  74 *   Check that here and ignore it.
  75 *
  76 * 64-bit mode:
  77 *
  78 *   Sometimes the CPU reports invalid exceptions on prefetch.
  79 *   Check that here and ignore it.
  80 *
  81 * Opcode checker based on code by Richard Brunner.
  82 */
  83static inline int
  84check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  85		      unsigned char opcode, int *prefetch)
  86{
  87	unsigned char instr_hi = opcode & 0xf0;
  88	unsigned char instr_lo = opcode & 0x0f;
  89
  90	switch (instr_hi) {
  91	case 0x20:
  92	case 0x30:
  93		/*
  94		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  95		 * In X86_64 long mode, the CPU will signal invalid
  96		 * opcode if some of these prefixes are present so
  97		 * X86_64 will never get here anyway
  98		 */
  99		return ((instr_lo & 7) == 0x6);
 100#ifdef CONFIG_X86_64
 101	case 0x40:
 102		/*
 103		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 104		 * Need to figure out under what instruction mode the
 105		 * instruction was issued. Could check the LDT for lm,
 106		 * but for now it's good enough to assume that long
 107		 * mode only uses well known segments or kernel.
 108		 */
 109		return (!user_mode(regs) || user_64bit_mode(regs));
 110#endif
 111	case 0x60:
 112		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 113		return (instr_lo & 0xC) == 0x4;
 114	case 0xF0:
 115		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 116		return !instr_lo || (instr_lo>>1) == 1;
 117	case 0x00:
 118		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 119		if (probe_kernel_address(instr, opcode))
 120			return 0;
 121
 122		*prefetch = (instr_lo == 0xF) &&
 123			(opcode == 0x0D || opcode == 0x18);
 124		return 0;
 125	default:
 126		return 0;
 127	}
 128}
 129
 130static int
 131is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 132{
 133	unsigned char *max_instr;
 134	unsigned char *instr;
 135	int prefetch = 0;
 136
 137	/*
 138	 * If it was a exec (instruction fetch) fault on NX page, then
 139	 * do not ignore the fault:
 140	 */
 141	if (error_code & PF_INSTR)
 142		return 0;
 143
 144	instr = (void *)convert_ip_to_linear(current, regs);
 145	max_instr = instr + 15;
 146
 147	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
 148		return 0;
 149
 150	while (instr < max_instr) {
 151		unsigned char opcode;
 152
 153		if (probe_kernel_address(instr, opcode))
 154			break;
 155
 156		instr++;
 157
 158		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 159			break;
 160	}
 161	return prefetch;
 162}
 163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164static void
 165force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 166		     struct task_struct *tsk, int fault)
 167{
 168	unsigned lsb = 0;
 169	siginfo_t info;
 170
 171	info.si_signo	= si_signo;
 172	info.si_errno	= 0;
 173	info.si_code	= si_code;
 174	info.si_addr	= (void __user *)address;
 175	if (fault & VM_FAULT_HWPOISON_LARGE)
 176		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 177	if (fault & VM_FAULT_HWPOISON)
 178		lsb = PAGE_SHIFT;
 179	info.si_addr_lsb = lsb;
 180
 
 
 181	force_sig_info(si_signo, &info, tsk);
 182}
 183
 184DEFINE_SPINLOCK(pgd_lock);
 185LIST_HEAD(pgd_list);
 186
 187#ifdef CONFIG_X86_32
 188static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 189{
 190	unsigned index = pgd_index(address);
 191	pgd_t *pgd_k;
 
 192	pud_t *pud, *pud_k;
 193	pmd_t *pmd, *pmd_k;
 194
 195	pgd += index;
 196	pgd_k = init_mm.pgd + index;
 197
 198	if (!pgd_present(*pgd_k))
 199		return NULL;
 200
 201	/*
 202	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 203	 * and redundant with the set_pmd() on non-PAE. As would
 204	 * set_pud.
 205	 */
 206	pud = pud_offset(pgd, address);
 207	pud_k = pud_offset(pgd_k, address);
 
 
 
 
 
 208	if (!pud_present(*pud_k))
 209		return NULL;
 210
 211	pmd = pmd_offset(pud, address);
 212	pmd_k = pmd_offset(pud_k, address);
 213	if (!pmd_present(*pmd_k))
 214		return NULL;
 215
 216	if (!pmd_present(*pmd))
 217		set_pmd(pmd, *pmd_k);
 218	else
 219		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 220
 221	return pmd_k;
 222}
 223
 224void vmalloc_sync_all(void)
 225{
 226	unsigned long address;
 227
 228	if (SHARED_KERNEL_PMD)
 229		return;
 230
 231	for (address = VMALLOC_START & PMD_MASK;
 232	     address >= TASK_SIZE && address < FIXADDR_TOP;
 233	     address += PMD_SIZE) {
 234		struct page *page;
 235
 236		spin_lock(&pgd_lock);
 237		list_for_each_entry(page, &pgd_list, lru) {
 238			spinlock_t *pgt_lock;
 239			pmd_t *ret;
 240
 241			/* the pgt_lock only for Xen */
 242			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 243
 244			spin_lock(pgt_lock);
 245			ret = vmalloc_sync_one(page_address(page), address);
 246			spin_unlock(pgt_lock);
 247
 248			if (!ret)
 249				break;
 250		}
 251		spin_unlock(&pgd_lock);
 252	}
 253}
 254
 255/*
 256 * 32-bit:
 257 *
 258 *   Handle a fault on the vmalloc or module mapping area
 259 */
 260static noinline __kprobes int vmalloc_fault(unsigned long address)
 261{
 262	unsigned long pgd_paddr;
 263	pmd_t *pmd_k;
 264	pte_t *pte_k;
 265
 266	/* Make sure we are in vmalloc area: */
 267	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 268		return -1;
 269
 270	WARN_ON_ONCE(in_nmi());
 271
 272	/*
 273	 * Synchronize this task's top level page-table
 274	 * with the 'reference' page table.
 275	 *
 276	 * Do _not_ use "current" here. We might be inside
 277	 * an interrupt in the middle of a task switch..
 278	 */
 279	pgd_paddr = read_cr3();
 280	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 281	if (!pmd_k)
 282		return -1;
 283
 
 
 
 284	pte_k = pte_offset_kernel(pmd_k, address);
 285	if (!pte_present(*pte_k))
 286		return -1;
 287
 288	return 0;
 289}
 
 290
 291/*
 292 * Did it hit the DOS screen memory VA from vm86 mode?
 293 */
 294static inline void
 295check_v8086_mode(struct pt_regs *regs, unsigned long address,
 296		 struct task_struct *tsk)
 297{
 
 298	unsigned long bit;
 299
 300	if (!v8086_mode(regs))
 301		return;
 302
 303	bit = (address - 0xA0000) >> PAGE_SHIFT;
 304	if (bit < 32)
 305		tsk->thread.screen_bitmap |= 1 << bit;
 
 306}
 307
 308static bool low_pfn(unsigned long pfn)
 309{
 310	return pfn < max_low_pfn;
 311}
 312
 313static void dump_pagetable(unsigned long address)
 314{
 315	pgd_t *base = __va(read_cr3());
 316	pgd_t *pgd = &base[pgd_index(address)];
 
 
 317	pmd_t *pmd;
 318	pte_t *pte;
 319
 320#ifdef CONFIG_X86_PAE
 321	printk("*pdpt = %016Lx ", pgd_val(*pgd));
 322	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 323		goto out;
 
 
 
 324#endif
 325	pmd = pmd_offset(pud_offset(pgd, address), address);
 326	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 
 
 
 327
 328	/*
 329	 * We must not directly access the pte in the highpte
 330	 * case if the page table is located in highmem.
 331	 * And let's rather not kmap-atomic the pte, just in case
 332	 * it's allocated already:
 333	 */
 334	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 335		goto out;
 336
 337	pte = pte_offset_kernel(pmd, address);
 338	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 339out:
 340	printk("\n");
 341}
 342
 343#else /* CONFIG_X86_64: */
 344
 345void vmalloc_sync_all(void)
 346{
 347	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 348}
 349
 350/*
 351 * 64-bit:
 352 *
 353 *   Handle a fault on the vmalloc area
 354 *
 355 * This assumes no large pages in there.
 356 */
 357static noinline __kprobes int vmalloc_fault(unsigned long address)
 358{
 359	pgd_t *pgd, *pgd_ref;
 360	pud_t *pud, *pud_ref;
 361	pmd_t *pmd, *pmd_ref;
 362	pte_t *pte, *pte_ref;
 
 363
 364	/* Make sure we are in vmalloc area: */
 365	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 366		return -1;
 367
 368	WARN_ON_ONCE(in_nmi());
 369
 370	/*
 371	 * Copy kernel mappings over when needed. This can also
 372	 * happen within a race in page table update. In the later
 373	 * case just flush:
 374	 */
 375	pgd = pgd_offset(current->active_mm, address);
 376	pgd_ref = pgd_offset_k(address);
 377	if (pgd_none(*pgd_ref))
 378		return -1;
 379
 380	if (pgd_none(*pgd))
 381		set_pgd(pgd, *pgd_ref);
 382	else
 383		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 384
 385	/*
 386	 * Below here mismatches are bugs because these lower tables
 387	 * are shared:
 388	 */
 389
 390	pud = pud_offset(pgd, address);
 391	pud_ref = pud_offset(pgd_ref, address);
 392	if (pud_none(*pud_ref))
 
 393		return -1;
 394
 395	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
 396		BUG();
 
 
 
 
 
 
 397
 398	pmd = pmd_offset(pud, address);
 399	pmd_ref = pmd_offset(pud_ref, address);
 400	if (pmd_none(*pmd_ref))
 401		return -1;
 402
 403	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
 404		BUG();
 405
 406	pte_ref = pte_offset_kernel(pmd_ref, address);
 407	if (!pte_present(*pte_ref))
 408		return -1;
 409
 410	pte = pte_offset_kernel(pmd, address);
 
 411
 412	/*
 413	 * Don't use pte_page here, because the mappings can point
 414	 * outside mem_map, and the NUMA hash lookup cannot handle
 415	 * that:
 416	 */
 417	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 418		BUG();
 419
 420	return 0;
 421}
 
 422
 
 423static const char errata93_warning[] =
 424KERN_ERR 
 425"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 426"******* Working around it, but it may cause SEGVs or burn power.\n"
 427"******* Please consider a BIOS update.\n"
 428"******* Disabling USB legacy in the BIOS may also help.\n";
 
 429
 430/*
 431 * No vm86 mode in 64-bit mode:
 432 */
 433static inline void
 434check_v8086_mode(struct pt_regs *regs, unsigned long address,
 435		 struct task_struct *tsk)
 436{
 437}
 438
 439static int bad_address(void *p)
 440{
 441	unsigned long dummy;
 442
 443	return probe_kernel_address((unsigned long *)p, dummy);
 444}
 445
 446static void dump_pagetable(unsigned long address)
 447{
 448	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 449	pgd_t *pgd = base + pgd_index(address);
 
 450	pud_t *pud;
 451	pmd_t *pmd;
 452	pte_t *pte;
 453
 454	if (bad_address(pgd))
 455		goto bad;
 456
 457	printk("PGD %lx ", pgd_val(*pgd));
 458
 459	if (!pgd_present(*pgd))
 460		goto out;
 461
 462	pud = pud_offset(pgd, address);
 
 
 
 
 
 
 
 
 463	if (bad_address(pud))
 464		goto bad;
 465
 466	printk("PUD %lx ", pud_val(*pud));
 467	if (!pud_present(*pud) || pud_large(*pud))
 468		goto out;
 469
 470	pmd = pmd_offset(pud, address);
 471	if (bad_address(pmd))
 472		goto bad;
 473
 474	printk("PMD %lx ", pmd_val(*pmd));
 475	if (!pmd_present(*pmd) || pmd_large(*pmd))
 476		goto out;
 477
 478	pte = pte_offset_kernel(pmd, address);
 479	if (bad_address(pte))
 480		goto bad;
 481
 482	printk("PTE %lx", pte_val(*pte));
 483out:
 484	printk("\n");
 485	return;
 486bad:
 487	printk("BAD\n");
 488}
 489
 490#endif /* CONFIG_X86_64 */
 491
 492/*
 493 * Workaround for K8 erratum #93 & buggy BIOS.
 494 *
 495 * BIOS SMM functions are required to use a specific workaround
 496 * to avoid corruption of the 64bit RIP register on C stepping K8.
 497 *
 498 * A lot of BIOS that didn't get tested properly miss this.
 499 *
 500 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 501 * Try to work around it here.
 502 *
 503 * Note we only handle faults in kernel here.
 504 * Does nothing on 32-bit.
 505 */
 506static int is_errata93(struct pt_regs *regs, unsigned long address)
 507{
 508#ifdef CONFIG_X86_64
 
 
 
 
 509	if (address != regs->ip)
 510		return 0;
 511
 512	if ((address >> 32) != 0)
 513		return 0;
 514
 515	address |= 0xffffffffUL << 32;
 516	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 517	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 518		printk_once(errata93_warning);
 519		regs->ip = address;
 520		return 1;
 521	}
 522#endif
 523	return 0;
 524}
 525
 526/*
 527 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 528 * to illegal addresses >4GB.
 529 *
 530 * We catch this in the page fault handler because these addresses
 531 * are not reachable. Just detect this case and return.  Any code
 532 * segment in LDT is compatibility mode.
 533 */
 534static int is_errata100(struct pt_regs *regs, unsigned long address)
 535{
 536#ifdef CONFIG_X86_64
 537	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 538		return 1;
 539#endif
 540	return 0;
 541}
 542
 543static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 544{
 545#ifdef CONFIG_X86_F00F_BUG
 546	unsigned long nr;
 547
 548	/*
 549	 * Pentium F0 0F C7 C8 bug workaround:
 550	 */
 551	if (boot_cpu_data.f00f_bug) {
 552		nr = (address - idt_descr.address) >> 3;
 553
 554		if (nr == 6) {
 555			do_invalid_op(regs, 0);
 556			return 1;
 557		}
 558	}
 559#endif
 560	return 0;
 561}
 562
 563static const char nx_warning[] = KERN_CRIT
 564"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 
 
 565
 566static void
 567show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 568		unsigned long address)
 569{
 570	if (!oops_may_print())
 571		return;
 572
 573	if (error_code & PF_INSTR) {
 574		unsigned int level;
 
 
 575
 576		pte_t *pte = lookup_address(address, &level);
 
 
 
 577
 578		if (pte && pte_present(*pte) && !pte_exec(*pte))
 579			printk(nx_warning, current_uid());
 
 
 
 
 580	}
 581
 582	printk(KERN_ALERT "BUG: unable to handle kernel ");
 583	if (address < PAGE_SIZE)
 584		printk(KERN_CONT "NULL pointer dereference");
 585	else
 586		printk(KERN_CONT "paging request");
 587
 588	printk(KERN_CONT " at %p\n", (void *) address);
 589	printk(KERN_ALERT "IP:");
 590	printk_address(regs->ip, 1);
 591
 592	dump_pagetable(address);
 593}
 594
 595static noinline void
 596pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 597	    unsigned long address)
 598{
 599	struct task_struct *tsk;
 600	unsigned long flags;
 601	int sig;
 602
 603	flags = oops_begin();
 604	tsk = current;
 605	sig = SIGKILL;
 606
 607	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 608	       tsk->comm, address);
 609	dump_pagetable(address);
 610
 611	tsk->thread.cr2		= address;
 612	tsk->thread.trap_no	= 14;
 613	tsk->thread.error_code	= error_code;
 614
 615	if (__die("Bad pagetable", regs, error_code))
 616		sig = 0;
 617
 618	oops_end(flags, regs, sig);
 619}
 620
 621static noinline void
 622no_context(struct pt_regs *regs, unsigned long error_code,
 623	   unsigned long address)
 624{
 625	struct task_struct *tsk = current;
 626	unsigned long *stackend;
 627	unsigned long flags;
 628	int sig;
 629
 630	/* Are we prepared to handle this kernel fault? */
 631	if (fixup_exception(regs))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633
 634	/*
 635	 * 32-bit:
 636	 *
 637	 *   Valid to do another page fault here, because if this fault
 638	 *   had been triggered by is_prefetch fixup_exception would have
 639	 *   handled it.
 640	 *
 641	 * 64-bit:
 642	 *
 643	 *   Hall of shame of CPU/BIOS bugs.
 644	 */
 645	if (is_prefetch(regs, error_code, address))
 646		return;
 647
 648	if (is_errata93(regs, address))
 649		return;
 650
 651	/*
 652	 * Oops. The kernel tried to access some bad page. We'll have to
 653	 * terminate things with extreme prejudice:
 654	 */
 655	flags = oops_begin();
 656
 657	show_fault_oops(regs, error_code, address);
 658
 659	stackend = end_of_stack(tsk);
 660	if (tsk != &init_task && *stackend != STACK_END_MAGIC)
 661		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 662
 663	tsk->thread.cr2		= address;
 664	tsk->thread.trap_no	= 14;
 665	tsk->thread.error_code	= error_code;
 666
 667	sig = SIGKILL;
 668	if (__die("Oops", regs, error_code))
 669		sig = 0;
 670
 671	/* Executive summary in case the body of the oops scrolled away */
 672	printk(KERN_EMERG "CR2: %016lx\n", address);
 673
 674	oops_end(flags, regs, sig);
 675}
 676
 677/*
 678 * Print out info about fatal segfaults, if the show_unhandled_signals
 679 * sysctl is set:
 680 */
 681static inline void
 682show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 683		unsigned long address, struct task_struct *tsk)
 684{
 685	if (!unhandled_signal(tsk, SIGSEGV))
 686		return;
 687
 688	if (!printk_ratelimit())
 689		return;
 690
 691	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 692		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 693		tsk->comm, task_pid_nr(tsk), address,
 694		(void *)regs->ip, (void *)regs->sp, error_code);
 695
 696	print_vma_addr(KERN_CONT " in ", regs->ip);
 697
 698	printk(KERN_CONT "\n");
 699}
 700
 701static void
 702__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 703		       unsigned long address, int si_code)
 704{
 705	struct task_struct *tsk = current;
 706
 707	/* User mode accesses just cause a SIGSEGV */
 708	if (error_code & PF_USER) {
 709		/*
 710		 * It's possible to have interrupts off here:
 711		 */
 712		local_irq_enable();
 713
 714		/*
 715		 * Valid to do another page fault here because this one came
 716		 * from user space:
 717		 */
 718		if (is_prefetch(regs, error_code, address))
 719			return;
 720
 721		if (is_errata100(regs, address))
 722			return;
 723
 724#ifdef CONFIG_X86_64
 725		/*
 726		 * Instruction fetch faults in the vsyscall page might need
 727		 * emulation.
 728		 */
 729		if (unlikely((error_code & PF_INSTR) &&
 730			     ((address & ~0xfff) == VSYSCALL_START))) {
 731			if (emulate_vsyscall(regs, address))
 732				return;
 733		}
 734#endif
 735
 736		if (unlikely(show_unhandled_signals))
 
 
 
 
 
 
 
 
 737			show_signal_msg(regs, error_code, address, tsk);
 738
 739		/* Kernel addresses are always protection faults: */
 740		tsk->thread.cr2		= address;
 741		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
 742		tsk->thread.trap_no	= 14;
 743
 744		force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
 745
 746		return;
 747	}
 748
 749	if (is_f00f_bug(regs, address))
 750		return;
 751
 752	no_context(regs, error_code, address);
 753}
 754
 755static noinline void
 756bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 757		     unsigned long address)
 758{
 759	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
 760}
 761
 762static void
 763__bad_area(struct pt_regs *regs, unsigned long error_code,
 764	   unsigned long address, int si_code)
 765{
 766	struct mm_struct *mm = current->mm;
 
 
 
 
 767
 768	/*
 769	 * Something tried to access memory that isn't in our memory map..
 770	 * Fix it, but check if it's kernel or user first..
 771	 */
 772	up_read(&mm->mmap_sem);
 773
 774	__bad_area_nosemaphore(regs, error_code, address, si_code);
 
 775}
 776
 777static noinline void
 778bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 779{
 780	__bad_area(regs, error_code, address, SEGV_MAPERR);
 781}
 782
 783static noinline void
 784bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 785		      unsigned long address)
 786{
 787	__bad_area(regs, error_code, address, SEGV_ACCERR);
 
 
 
 
 
 
 
 
 
 
 
 788}
 789
 790/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
 791static void
 792out_of_memory(struct pt_regs *regs, unsigned long error_code,
 793	      unsigned long address)
 794{
 795	/*
 796	 * We ran out of memory, call the OOM killer, and return the userspace
 797	 * (which will retry the fault, or kill us if we got oom-killed):
 
 798	 */
 799	up_read(&current->mm->mmap_sem);
 800
 801	pagefault_out_of_memory();
 
 802}
 803
 804static void
 805do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 806	  unsigned int fault)
 807{
 808	struct task_struct *tsk = current;
 809	struct mm_struct *mm = tsk->mm;
 810	int code = BUS_ADRERR;
 811
 812	up_read(&mm->mmap_sem);
 813
 814	/* Kernel mode? Handle exceptions or die: */
 815	if (!(error_code & PF_USER)) {
 816		no_context(regs, error_code, address);
 817		return;
 818	}
 819
 820	/* User-space => ok to do another page fault: */
 821	if (is_prefetch(regs, error_code, address))
 822		return;
 823
 824	tsk->thread.cr2		= address;
 825	tsk->thread.error_code	= error_code;
 826	tsk->thread.trap_no	= 14;
 827
 828#ifdef CONFIG_MEMORY_FAILURE
 829	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 830		printk(KERN_ERR
 831	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 832			tsk->comm, tsk->pid, address);
 833		code = BUS_MCEERR_AR;
 834	}
 835#endif
 836	force_sig_info_fault(SIGBUS, code, address, tsk, fault);
 837}
 838
 839static noinline int
 840mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 841	       unsigned long address, unsigned int fault)
 842{
 843	/*
 844	 * Pagefault was interrupted by SIGKILL. We have no reason to
 845	 * continue pagefault.
 846	 */
 847	if (fatal_signal_pending(current)) {
 848		if (!(fault & VM_FAULT_RETRY))
 849			up_read(&current->mm->mmap_sem);
 850		if (!(error_code & PF_USER))
 851			no_context(regs, error_code, address);
 852		return 1;
 853	}
 854	if (!(fault & VM_FAULT_ERROR))
 855		return 0;
 856
 857	if (fault & VM_FAULT_OOM) {
 858		/* Kernel mode? Handle exceptions or die: */
 859		if (!(error_code & PF_USER)) {
 860			up_read(&current->mm->mmap_sem);
 861			no_context(regs, error_code, address);
 862			return 1;
 863		}
 864
 865		out_of_memory(regs, error_code, address);
 
 
 
 
 
 866	} else {
 867		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 868			     VM_FAULT_HWPOISON_LARGE))
 869			do_sigbus(regs, error_code, address, fault);
 
 
 870		else
 871			BUG();
 872	}
 873	return 1;
 874}
 875
 876static int spurious_fault_check(unsigned long error_code, pte_t *pte)
 877{
 878	if ((error_code & PF_WRITE) && !pte_write(*pte))
 879		return 0;
 880
 881	if ((error_code & PF_INSTR) && !pte_exec(*pte))
 882		return 0;
 
 
 
 
 
 
 883
 884	return 1;
 885}
 886
 887/*
 888 * Handle a spurious fault caused by a stale TLB entry.
 889 *
 890 * This allows us to lazily refresh the TLB when increasing the
 891 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 892 * eagerly is very expensive since that implies doing a full
 893 * cross-processor TLB flush, even if no stale TLB entries exist
 894 * on other processors.
 895 *
 
 
 
 
 896 * There are no security implications to leaving a stale TLB when
 897 * increasing the permissions on a page.
 
 
 
 
 
 898 */
 899static noinline __kprobes int
 900spurious_fault(unsigned long error_code, unsigned long address)
 901{
 902	pgd_t *pgd;
 
 903	pud_t *pud;
 904	pmd_t *pmd;
 905	pte_t *pte;
 906	int ret;
 907
 908	/* Reserved-bit violation or user access to kernel space? */
 909	if (error_code & (PF_USER | PF_RSVD))
 
 
 
 
 
 
 
 
 
 910		return 0;
 911
 912	pgd = init_mm.pgd + pgd_index(address);
 913	if (!pgd_present(*pgd))
 914		return 0;
 915
 916	pud = pud_offset(pgd, address);
 
 
 
 
 
 
 
 917	if (!pud_present(*pud))
 918		return 0;
 919
 920	if (pud_large(*pud))
 921		return spurious_fault_check(error_code, (pte_t *) pud);
 922
 923	pmd = pmd_offset(pud, address);
 924	if (!pmd_present(*pmd))
 925		return 0;
 926
 927	if (pmd_large(*pmd))
 928		return spurious_fault_check(error_code, (pte_t *) pmd);
 929
 930	/*
 931	 * Note: don't use pte_present() here, since it returns true
 932	 * if the _PAGE_PROTNONE bit is set.  However, this aliases the
 933	 * _PAGE_GLOBAL bit, which for kernel pages give false positives
 934	 * when CONFIG_DEBUG_PAGEALLOC is used.
 935	 */
 936	pte = pte_offset_kernel(pmd, address);
 937	if (!(pte_flags(*pte) & _PAGE_PRESENT))
 938		return 0;
 939
 940	ret = spurious_fault_check(error_code, pte);
 941	if (!ret)
 942		return 0;
 943
 944	/*
 945	 * Make sure we have permissions in PMD.
 946	 * If not, then there's a bug in the page tables:
 947	 */
 948	ret = spurious_fault_check(error_code, (pte_t *) pmd);
 949	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
 950
 951	return ret;
 952}
 
 953
 954int show_unhandled_signals = 1;
 955
 956static inline int
 957access_error(unsigned long error_code, struct vm_area_struct *vma)
 958{
 959	if (error_code & PF_WRITE) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960		/* write, present and write, not present: */
 961		if (unlikely(!(vma->vm_flags & VM_WRITE)))
 962			return 1;
 963		return 0;
 964	}
 965
 966	/* read, present: */
 967	if (unlikely(error_code & PF_PROT))
 968		return 1;
 969
 970	/* read, not present: */
 971	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 972		return 1;
 973
 974	return 0;
 975}
 976
 977static int fault_in_kernel_space(unsigned long address)
 978{
 979	return address >= TASK_SIZE_MAX;
 980}
 981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982/*
 983 * This routine handles page faults.  It determines the address,
 984 * and the problem, and then passes it off to one of the appropriate
 985 * routines.
 986 */
 987dotraplinkage void __kprobes
 988do_page_fault(struct pt_regs *regs, unsigned long error_code)
 
 989{
 990	struct vm_area_struct *vma;
 991	struct task_struct *tsk;
 992	unsigned long address;
 993	struct mm_struct *mm;
 994	int fault;
 995	int write = error_code & PF_WRITE;
 996	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
 997					(write ? FAULT_FLAG_WRITE : 0);
 998
 999	tsk = current;
1000	mm = tsk->mm;
1001
1002	/* Get the faulting address: */
1003	address = read_cr2();
1004
1005	/*
1006	 * Detect and handle instructions that would cause a page fault for
1007	 * both a tracked kernel page and a userspace page.
1008	 */
1009	if (kmemcheck_active(regs))
1010		kmemcheck_hide(regs);
1011	prefetchw(&mm->mmap_sem);
1012
1013	if (unlikely(kmmio_fault(regs, address)))
1014		return;
1015
1016	/*
1017	 * We fault-in kernel-space virtual memory on-demand. The
1018	 * 'reference' page table is init_mm.pgd.
1019	 *
1020	 * NOTE! We MUST NOT take any locks for this case. We may
1021	 * be in an interrupt or a critical region, and should
1022	 * only copy the information from the master page table,
1023	 * nothing more.
1024	 *
1025	 * This verifies that the fault happens in kernel space
1026	 * (error_code & 4) == 0, and that the fault was not a
1027	 * protection error (error_code & 9) == 0.
1028	 */
1029	if (unlikely(fault_in_kernel_space(address))) {
1030		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1031			if (vmalloc_fault(address) >= 0)
1032				return;
1033
1034			if (kmemcheck_fault(regs, address, error_code))
1035				return;
1036		}
1037
1038		/* Can handle a stale RO->RW TLB: */
1039		if (spurious_fault(error_code, address))
1040			return;
1041
1042		/* kprobes don't want to hook the spurious faults: */
1043		if (notify_page_fault(regs))
1044			return;
1045		/*
1046		 * Don't take the mm semaphore here. If we fixup a prefetch
1047		 * fault we could otherwise deadlock:
1048		 */
1049		bad_area_nosemaphore(regs, error_code, address);
1050
1051		return;
1052	}
1053
1054	/* kprobes don't want to hook the spurious faults: */
1055	if (unlikely(notify_page_fault(regs)))
1056		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	/*
1058	 * It's safe to allow irq's after cr2 has been saved and the
1059	 * vmalloc fault has been handled.
1060	 *
1061	 * User-mode registers count as a user access even for any
1062	 * potential system fault or CPU buglet:
1063	 */
1064	if (user_mode_vm(regs)) {
1065		local_irq_enable();
1066		error_code |= PF_USER;
 
1067	} else {
1068		if (regs->flags & X86_EFLAGS_IF)
1069			local_irq_enable();
1070	}
1071
1072	if (unlikely(error_code & PF_RSVD))
1073		pgtable_bad(regs, error_code, address);
1074
1075	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1076
1077	/*
1078	 * If we're in an interrupt, have no user context or are running
1079	 * in an atomic region then we must not take the fault:
1080	 */
1081	if (unlikely(in_atomic() || !mm)) {
1082		bad_area_nosemaphore(regs, error_code, address);
1083		return;
1084	}
1085
1086	/*
1087	 * When running in the kernel we expect faults to occur only to
1088	 * addresses in user space.  All other faults represent errors in
1089	 * the kernel and should generate an OOPS.  Unfortunately, in the
1090	 * case of an erroneous fault occurring in a code path which already
1091	 * holds mmap_sem we will deadlock attempting to validate the fault
1092	 * against the address space.  Luckily the kernel only validly
1093	 * references user space from well defined areas of code, which are
1094	 * listed in the exceptions table.
1095	 *
1096	 * As the vast majority of faults will be valid we will only perform
1097	 * the source reference check when there is a possibility of a
1098	 * deadlock. Attempt to lock the address space, if we cannot we then
1099	 * validate the source. If this is invalid we can skip the address
1100	 * space check, thus avoiding the deadlock:
1101	 */
1102	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1103		if ((error_code & PF_USER) == 0 &&
1104		    !search_exception_tables(regs->ip)) {
1105			bad_area_nosemaphore(regs, error_code, address);
1106			return;
1107		}
1108retry:
1109		down_read(&mm->mmap_sem);
1110	} else {
1111		/*
1112		 * The above down_read_trylock() might have succeeded in
1113		 * which case we'll have missed the might_sleep() from
1114		 * down_read():
1115		 */
1116		might_sleep();
1117	}
1118
1119	vma = find_vma(mm, address);
1120	if (unlikely(!vma)) {
1121		bad_area(regs, error_code, address);
1122		return;
1123	}
1124	if (likely(vma->vm_start <= address))
1125		goto good_area;
1126	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1127		bad_area(regs, error_code, address);
1128		return;
1129	}
1130	if (error_code & PF_USER) {
1131		/*
1132		 * Accessing the stack below %sp is always a bug.
1133		 * The large cushion allows instructions like enter
1134		 * and pusha to work. ("enter $65535, $31" pushes
1135		 * 32 pointers and then decrements %sp by 65535.)
1136		 */
1137		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1138			bad_area(regs, error_code, address);
1139			return;
1140		}
1141	}
1142	if (unlikely(expand_stack(vma, address))) {
1143		bad_area(regs, error_code, address);
1144		return;
1145	}
1146
1147	/*
1148	 * Ok, we have a good vm_area for this memory access, so
1149	 * we can handle it..
1150	 */
1151good_area:
1152	if (unlikely(access_error(error_code, vma))) {
1153		bad_area_access_error(regs, error_code, address);
1154		return;
1155	}
1156
1157	/*
1158	 * If for any reason at all we couldn't handle the fault,
1159	 * make sure we exit gracefully rather than endlessly redo
1160	 * the fault:
1161	 */
1162	fault = handle_mm_fault(mm, vma, address, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163
1164	if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1165		if (mm_fault_error(regs, error_code, address, fault))
1166			return;
 
 
 
 
 
 
 
 
 
 
1167	}
1168
1169	/*
1170	 * Major/minor page fault accounting is only done on the
1171	 * initial attempt. If we go through a retry, it is extremely
1172	 * likely that the page will be found in page cache at that point.
1173	 */
1174	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1175		if (fault & VM_FAULT_MAJOR) {
1176			tsk->maj_flt++;
1177			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1178				      regs, address);
1179		} else {
1180			tsk->min_flt++;
1181			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1182				      regs, address);
1183		}
1184		if (fault & VM_FAULT_RETRY) {
1185			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1186			 * of starvation. */
1187			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1188			goto retry;
1189		}
1190	}
1191
1192	check_v8086_mode(regs, address, tsk);
 
 
1193
1194	up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
 
   7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
   8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
   9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
  10#include <linux/extable.h>		/* search_exception_tables	*/
  11#include <linux/bootmem.h>		/* max_low_pfn			*/
  12#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
  13#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
  14#include <linux/perf_event.h>		/* perf_sw_event		*/
  15#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
  16#include <linux/prefetch.h>		/* prefetchw			*/
  17#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
  18#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
  19
  20#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
  21#include <asm/traps.h>			/* dotraplinkage, ...		*/
  22#include <asm/pgalloc.h>		/* pgd_*(), ...			*/
  23#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
  24#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
  25#include <asm/vm86.h>			/* struct vm86			*/
  26#include <asm/mmu_context.h>		/* vma_pkey()			*/
  27
  28#define CREATE_TRACE_POINTS
  29#include <asm/trace/exceptions.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30
  31/*
  32 * Returns 0 if mmiotrace is disabled, or if the fault is not
  33 * handled by mmiotrace:
  34 */
  35static nokprobe_inline int
  36kmmio_fault(struct pt_regs *regs, unsigned long addr)
  37{
  38	if (unlikely(is_kmmio_active()))
  39		if (kmmio_handler(regs, addr) == 1)
  40			return -1;
  41	return 0;
  42}
  43
  44static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
  45{
  46	int ret = 0;
  47
  48	/* kprobe_running() needs smp_processor_id() */
  49	if (kprobes_built_in() && !user_mode(regs)) {
  50		preempt_disable();
  51		if (kprobe_running() && kprobe_fault_handler(regs, 14))
  52			ret = 1;
  53		preempt_enable();
  54	}
  55
  56	return ret;
  57}
  58
  59/*
  60 * Prefetch quirks:
  61 *
  62 * 32-bit mode:
  63 *
  64 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  65 *   Check that here and ignore it.
  66 *
  67 * 64-bit mode:
  68 *
  69 *   Sometimes the CPU reports invalid exceptions on prefetch.
  70 *   Check that here and ignore it.
  71 *
  72 * Opcode checker based on code by Richard Brunner.
  73 */
  74static inline int
  75check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  76		      unsigned char opcode, int *prefetch)
  77{
  78	unsigned char instr_hi = opcode & 0xf0;
  79	unsigned char instr_lo = opcode & 0x0f;
  80
  81	switch (instr_hi) {
  82	case 0x20:
  83	case 0x30:
  84		/*
  85		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  86		 * In X86_64 long mode, the CPU will signal invalid
  87		 * opcode if some of these prefixes are present so
  88		 * X86_64 will never get here anyway
  89		 */
  90		return ((instr_lo & 7) == 0x6);
  91#ifdef CONFIG_X86_64
  92	case 0x40:
  93		/*
  94		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
  95		 * Need to figure out under what instruction mode the
  96		 * instruction was issued. Could check the LDT for lm,
  97		 * but for now it's good enough to assume that long
  98		 * mode only uses well known segments or kernel.
  99		 */
 100		return (!user_mode(regs) || user_64bit_mode(regs));
 101#endif
 102	case 0x60:
 103		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 104		return (instr_lo & 0xC) == 0x4;
 105	case 0xF0:
 106		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 107		return !instr_lo || (instr_lo>>1) == 1;
 108	case 0x00:
 109		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 110		if (probe_kernel_address(instr, opcode))
 111			return 0;
 112
 113		*prefetch = (instr_lo == 0xF) &&
 114			(opcode == 0x0D || opcode == 0x18);
 115		return 0;
 116	default:
 117		return 0;
 118	}
 119}
 120
 121static int
 122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 123{
 124	unsigned char *max_instr;
 125	unsigned char *instr;
 126	int prefetch = 0;
 127
 128	/*
 129	 * If it was a exec (instruction fetch) fault on NX page, then
 130	 * do not ignore the fault:
 131	 */
 132	if (error_code & X86_PF_INSTR)
 133		return 0;
 134
 135	instr = (void *)convert_ip_to_linear(current, regs);
 136	max_instr = instr + 15;
 137
 138	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
 139		return 0;
 140
 141	while (instr < max_instr) {
 142		unsigned char opcode;
 143
 144		if (probe_kernel_address(instr, opcode))
 145			break;
 146
 147		instr++;
 148
 149		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 150			break;
 151	}
 152	return prefetch;
 153}
 154
 155/*
 156 * A protection key fault means that the PKRU value did not allow
 157 * access to some PTE.  Userspace can figure out what PKRU was
 158 * from the XSAVE state, and this function fills out a field in
 159 * siginfo so userspace can discover which protection key was set
 160 * on the PTE.
 161 *
 162 * If we get here, we know that the hardware signaled a X86_PF_PK
 163 * fault and that there was a VMA once we got in the fault
 164 * handler.  It does *not* guarantee that the VMA we find here
 165 * was the one that we faulted on.
 166 *
 167 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 168 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 169 * 3. T1   : faults...
 170 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 171 * 5. T1   : enters fault handler, takes mmap_sem, etc...
 172 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 173 *	     faulted on a pte with its pkey=4.
 174 */
 175static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
 176		u32 *pkey)
 177{
 178	/* This is effectively an #ifdef */
 179	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 180		return;
 181
 182	/* Fault not from Protection Keys: nothing to do */
 183	if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
 184		return;
 185	/*
 186	 * force_sig_info_fault() is called from a number of
 187	 * contexts, some of which have a VMA and some of which
 188	 * do not.  The X86_PF_PK handing happens after we have a
 189	 * valid VMA, so we should never reach this without a
 190	 * valid VMA.
 191	 */
 192	if (!pkey) {
 193		WARN_ONCE(1, "PKU fault with no VMA passed in");
 194		info->si_pkey = 0;
 195		return;
 196	}
 197	/*
 198	 * si_pkey should be thought of as a strong hint, but not
 199	 * absolutely guranteed to be 100% accurate because of
 200	 * the race explained above.
 201	 */
 202	info->si_pkey = *pkey;
 203}
 204
 205static void
 206force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 207		     struct task_struct *tsk, u32 *pkey, int fault)
 208{
 209	unsigned lsb = 0;
 210	siginfo_t info;
 211
 212	info.si_signo	= si_signo;
 213	info.si_errno	= 0;
 214	info.si_code	= si_code;
 215	info.si_addr	= (void __user *)address;
 216	if (fault & VM_FAULT_HWPOISON_LARGE)
 217		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 
 218	if (fault & VM_FAULT_HWPOISON)
 219		lsb = PAGE_SHIFT;
 220	info.si_addr_lsb = lsb;
 221
 222	fill_sig_info_pkey(si_signo, si_code, &info, pkey);
 223
 224	force_sig_info(si_signo, &info, tsk);
 225}
 226
 227DEFINE_SPINLOCK(pgd_lock);
 228LIST_HEAD(pgd_list);
 229
 230#ifdef CONFIG_X86_32
 231static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 232{
 233	unsigned index = pgd_index(address);
 234	pgd_t *pgd_k;
 235	p4d_t *p4d, *p4d_k;
 236	pud_t *pud, *pud_k;
 237	pmd_t *pmd, *pmd_k;
 238
 239	pgd += index;
 240	pgd_k = init_mm.pgd + index;
 241
 242	if (!pgd_present(*pgd_k))
 243		return NULL;
 244
 245	/*
 246	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 247	 * and redundant with the set_pmd() on non-PAE. As would
 248	 * set_p4d/set_pud.
 249	 */
 250	p4d = p4d_offset(pgd, address);
 251	p4d_k = p4d_offset(pgd_k, address);
 252	if (!p4d_present(*p4d_k))
 253		return NULL;
 254
 255	pud = pud_offset(p4d, address);
 256	pud_k = pud_offset(p4d_k, address);
 257	if (!pud_present(*pud_k))
 258		return NULL;
 259
 260	pmd = pmd_offset(pud, address);
 261	pmd_k = pmd_offset(pud_k, address);
 262	if (!pmd_present(*pmd_k))
 263		return NULL;
 264
 265	if (!pmd_present(*pmd))
 266		set_pmd(pmd, *pmd_k);
 267	else
 268		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 269
 270	return pmd_k;
 271}
 272
 273void vmalloc_sync_all(void)
 274{
 275	unsigned long address;
 276
 277	if (SHARED_KERNEL_PMD)
 278		return;
 279
 280	for (address = VMALLOC_START & PMD_MASK;
 281	     address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
 282	     address += PMD_SIZE) {
 283		struct page *page;
 284
 285		spin_lock(&pgd_lock);
 286		list_for_each_entry(page, &pgd_list, lru) {
 287			spinlock_t *pgt_lock;
 288			pmd_t *ret;
 289
 290			/* the pgt_lock only for Xen */
 291			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 292
 293			spin_lock(pgt_lock);
 294			ret = vmalloc_sync_one(page_address(page), address);
 295			spin_unlock(pgt_lock);
 296
 297			if (!ret)
 298				break;
 299		}
 300		spin_unlock(&pgd_lock);
 301	}
 302}
 303
 304/*
 305 * 32-bit:
 306 *
 307 *   Handle a fault on the vmalloc or module mapping area
 308 */
 309static noinline int vmalloc_fault(unsigned long address)
 310{
 311	unsigned long pgd_paddr;
 312	pmd_t *pmd_k;
 313	pte_t *pte_k;
 314
 315	/* Make sure we are in vmalloc area: */
 316	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 317		return -1;
 318
 319	WARN_ON_ONCE(in_nmi());
 320
 321	/*
 322	 * Synchronize this task's top level page-table
 323	 * with the 'reference' page table.
 324	 *
 325	 * Do _not_ use "current" here. We might be inside
 326	 * an interrupt in the middle of a task switch..
 327	 */
 328	pgd_paddr = read_cr3_pa();
 329	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 330	if (!pmd_k)
 331		return -1;
 332
 333	if (pmd_large(*pmd_k))
 334		return 0;
 335
 336	pte_k = pte_offset_kernel(pmd_k, address);
 337	if (!pte_present(*pte_k))
 338		return -1;
 339
 340	return 0;
 341}
 342NOKPROBE_SYMBOL(vmalloc_fault);
 343
 344/*
 345 * Did it hit the DOS screen memory VA from vm86 mode?
 346 */
 347static inline void
 348check_v8086_mode(struct pt_regs *regs, unsigned long address,
 349		 struct task_struct *tsk)
 350{
 351#ifdef CONFIG_VM86
 352	unsigned long bit;
 353
 354	if (!v8086_mode(regs) || !tsk->thread.vm86)
 355		return;
 356
 357	bit = (address - 0xA0000) >> PAGE_SHIFT;
 358	if (bit < 32)
 359		tsk->thread.vm86->screen_bitmap |= 1 << bit;
 360#endif
 361}
 362
 363static bool low_pfn(unsigned long pfn)
 364{
 365	return pfn < max_low_pfn;
 366}
 367
 368static void dump_pagetable(unsigned long address)
 369{
 370	pgd_t *base = __va(read_cr3_pa());
 371	pgd_t *pgd = &base[pgd_index(address)];
 372	p4d_t *p4d;
 373	pud_t *pud;
 374	pmd_t *pmd;
 375	pte_t *pte;
 376
 377#ifdef CONFIG_X86_PAE
 378	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 379	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 380		goto out;
 381#define pr_pde pr_cont
 382#else
 383#define pr_pde pr_info
 384#endif
 385	p4d = p4d_offset(pgd, address);
 386	pud = pud_offset(p4d, address);
 387	pmd = pmd_offset(pud, address);
 388	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 389#undef pr_pde
 390
 391	/*
 392	 * We must not directly access the pte in the highpte
 393	 * case if the page table is located in highmem.
 394	 * And let's rather not kmap-atomic the pte, just in case
 395	 * it's allocated already:
 396	 */
 397	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 398		goto out;
 399
 400	pte = pte_offset_kernel(pmd, address);
 401	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 402out:
 403	pr_cont("\n");
 404}
 405
 406#else /* CONFIG_X86_64: */
 407
 408void vmalloc_sync_all(void)
 409{
 410	sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
 411}
 412
 413/*
 414 * 64-bit:
 415 *
 416 *   Handle a fault on the vmalloc area
 
 
 417 */
 418static noinline int vmalloc_fault(unsigned long address)
 419{
 420	pgd_t *pgd, *pgd_k;
 421	p4d_t *p4d, *p4d_k;
 422	pud_t *pud;
 423	pmd_t *pmd;
 424	pte_t *pte;
 425
 426	/* Make sure we are in vmalloc area: */
 427	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 428		return -1;
 429
 430	WARN_ON_ONCE(in_nmi());
 431
 432	/*
 433	 * Copy kernel mappings over when needed. This can also
 434	 * happen within a race in page table update. In the later
 435	 * case just flush:
 436	 */
 437	pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
 438	pgd_k = pgd_offset_k(address);
 439	if (pgd_none(*pgd_k))
 440		return -1;
 441
 442	if (pgtable_l5_enabled) {
 443		if (pgd_none(*pgd)) {
 444			set_pgd(pgd, *pgd_k);
 445			arch_flush_lazy_mmu_mode();
 446		} else {
 447			BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
 448		}
 449	}
 
 450
 451	/* With 4-level paging, copying happens on the p4d level. */
 452	p4d = p4d_offset(pgd, address);
 453	p4d_k = p4d_offset(pgd_k, address);
 454	if (p4d_none(*p4d_k))
 455		return -1;
 456
 457	if (p4d_none(*p4d) && !pgtable_l5_enabled) {
 458		set_p4d(p4d, *p4d_k);
 459		arch_flush_lazy_mmu_mode();
 460	} else {
 461		BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
 462	}
 463
 464	BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
 465
 466	pud = pud_offset(p4d, address);
 467	if (pud_none(*pud))
 
 468		return -1;
 469
 470	if (pud_large(*pud))
 471		return 0;
 472
 473	pmd = pmd_offset(pud, address);
 474	if (pmd_none(*pmd))
 475		return -1;
 476
 477	if (pmd_large(*pmd))
 478		return 0;
 479
 480	pte = pte_offset_kernel(pmd, address);
 481	if (!pte_present(*pte))
 482		return -1;
 
 
 
 
 483
 484	return 0;
 485}
 486NOKPROBE_SYMBOL(vmalloc_fault);
 487
 488#ifdef CONFIG_CPU_SUP_AMD
 489static const char errata93_warning[] =
 490KERN_ERR 
 491"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 492"******* Working around it, but it may cause SEGVs or burn power.\n"
 493"******* Please consider a BIOS update.\n"
 494"******* Disabling USB legacy in the BIOS may also help.\n";
 495#endif
 496
 497/*
 498 * No vm86 mode in 64-bit mode:
 499 */
 500static inline void
 501check_v8086_mode(struct pt_regs *regs, unsigned long address,
 502		 struct task_struct *tsk)
 503{
 504}
 505
 506static int bad_address(void *p)
 507{
 508	unsigned long dummy;
 509
 510	return probe_kernel_address((unsigned long *)p, dummy);
 511}
 512
 513static void dump_pagetable(unsigned long address)
 514{
 515	pgd_t *base = __va(read_cr3_pa());
 516	pgd_t *pgd = base + pgd_index(address);
 517	p4d_t *p4d;
 518	pud_t *pud;
 519	pmd_t *pmd;
 520	pte_t *pte;
 521
 522	if (bad_address(pgd))
 523		goto bad;
 524
 525	pr_info("PGD %lx ", pgd_val(*pgd));
 526
 527	if (!pgd_present(*pgd))
 528		goto out;
 529
 530	p4d = p4d_offset(pgd, address);
 531	if (bad_address(p4d))
 532		goto bad;
 533
 534	pr_cont("P4D %lx ", p4d_val(*p4d));
 535	if (!p4d_present(*p4d) || p4d_large(*p4d))
 536		goto out;
 537
 538	pud = pud_offset(p4d, address);
 539	if (bad_address(pud))
 540		goto bad;
 541
 542	pr_cont("PUD %lx ", pud_val(*pud));
 543	if (!pud_present(*pud) || pud_large(*pud))
 544		goto out;
 545
 546	pmd = pmd_offset(pud, address);
 547	if (bad_address(pmd))
 548		goto bad;
 549
 550	pr_cont("PMD %lx ", pmd_val(*pmd));
 551	if (!pmd_present(*pmd) || pmd_large(*pmd))
 552		goto out;
 553
 554	pte = pte_offset_kernel(pmd, address);
 555	if (bad_address(pte))
 556		goto bad;
 557
 558	pr_cont("PTE %lx", pte_val(*pte));
 559out:
 560	pr_cont("\n");
 561	return;
 562bad:
 563	pr_info("BAD\n");
 564}
 565
 566#endif /* CONFIG_X86_64 */
 567
 568/*
 569 * Workaround for K8 erratum #93 & buggy BIOS.
 570 *
 571 * BIOS SMM functions are required to use a specific workaround
 572 * to avoid corruption of the 64bit RIP register on C stepping K8.
 573 *
 574 * A lot of BIOS that didn't get tested properly miss this.
 575 *
 576 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 577 * Try to work around it here.
 578 *
 579 * Note we only handle faults in kernel here.
 580 * Does nothing on 32-bit.
 581 */
 582static int is_errata93(struct pt_regs *regs, unsigned long address)
 583{
 584#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 585	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 586	    || boot_cpu_data.x86 != 0xf)
 587		return 0;
 588
 589	if (address != regs->ip)
 590		return 0;
 591
 592	if ((address >> 32) != 0)
 593		return 0;
 594
 595	address |= 0xffffffffUL << 32;
 596	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 597	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 598		printk_once(errata93_warning);
 599		regs->ip = address;
 600		return 1;
 601	}
 602#endif
 603	return 0;
 604}
 605
 606/*
 607 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 608 * to illegal addresses >4GB.
 609 *
 610 * We catch this in the page fault handler because these addresses
 611 * are not reachable. Just detect this case and return.  Any code
 612 * segment in LDT is compatibility mode.
 613 */
 614static int is_errata100(struct pt_regs *regs, unsigned long address)
 615{
 616#ifdef CONFIG_X86_64
 617	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 618		return 1;
 619#endif
 620	return 0;
 621}
 622
 623static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 624{
 625#ifdef CONFIG_X86_F00F_BUG
 626	unsigned long nr;
 627
 628	/*
 629	 * Pentium F0 0F C7 C8 bug workaround:
 630	 */
 631	if (boot_cpu_has_bug(X86_BUG_F00F)) {
 632		nr = (address - idt_descr.address) >> 3;
 633
 634		if (nr == 6) {
 635			do_invalid_op(regs, 0);
 636			return 1;
 637		}
 638	}
 639#endif
 640	return 0;
 641}
 642
 643static const char nx_warning[] = KERN_CRIT
 644"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 645static const char smep_warning[] = KERN_CRIT
 646"unable to execute userspace code (SMEP?) (uid: %d)\n";
 647
 648static void
 649show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 650		unsigned long address)
 651{
 652	if (!oops_may_print())
 653		return;
 654
 655	if (error_code & X86_PF_INSTR) {
 656		unsigned int level;
 657		pgd_t *pgd;
 658		pte_t *pte;
 659
 660		pgd = __va(read_cr3_pa());
 661		pgd += pgd_index(address);
 662
 663		pte = lookup_address_in_pgd(pgd, address, &level);
 664
 665		if (pte && pte_present(*pte) && !pte_exec(*pte))
 666			printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
 667		if (pte && pte_present(*pte) && pte_exec(*pte) &&
 668				(pgd_flags(*pgd) & _PAGE_USER) &&
 669				(__read_cr4() & X86_CR4_SMEP))
 670			printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
 671	}
 672
 673	printk(KERN_ALERT "BUG: unable to handle kernel ");
 674	if (address < PAGE_SIZE)
 675		printk(KERN_CONT "NULL pointer dereference");
 676	else
 677		printk(KERN_CONT "paging request");
 678
 679	printk(KERN_CONT " at %px\n", (void *) address);
 
 
 680
 681	dump_pagetable(address);
 682}
 683
 684static noinline void
 685pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 686	    unsigned long address)
 687{
 688	struct task_struct *tsk;
 689	unsigned long flags;
 690	int sig;
 691
 692	flags = oops_begin();
 693	tsk = current;
 694	sig = SIGKILL;
 695
 696	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 697	       tsk->comm, address);
 698	dump_pagetable(address);
 699
 700	tsk->thread.cr2		= address;
 701	tsk->thread.trap_nr	= X86_TRAP_PF;
 702	tsk->thread.error_code	= error_code;
 703
 704	if (__die("Bad pagetable", regs, error_code))
 705		sig = 0;
 706
 707	oops_end(flags, regs, sig);
 708}
 709
 710static noinline void
 711no_context(struct pt_regs *regs, unsigned long error_code,
 712	   unsigned long address, int signal, int si_code)
 713{
 714	struct task_struct *tsk = current;
 
 715	unsigned long flags;
 716	int sig;
 717
 718	/* Are we prepared to handle this kernel fault? */
 719	if (fixup_exception(regs, X86_TRAP_PF)) {
 720		/*
 721		 * Any interrupt that takes a fault gets the fixup. This makes
 722		 * the below recursive fault logic only apply to a faults from
 723		 * task context.
 724		 */
 725		if (in_interrupt())
 726			return;
 727
 728		/*
 729		 * Per the above we're !in_interrupt(), aka. task context.
 730		 *
 731		 * In this case we need to make sure we're not recursively
 732		 * faulting through the emulate_vsyscall() logic.
 733		 */
 734		if (current->thread.sig_on_uaccess_err && signal) {
 735			tsk->thread.trap_nr = X86_TRAP_PF;
 736			tsk->thread.error_code = error_code | X86_PF_USER;
 737			tsk->thread.cr2 = address;
 738
 739			/* XXX: hwpoison faults will set the wrong code. */
 740			force_sig_info_fault(signal, si_code, address,
 741					     tsk, NULL, 0);
 742		}
 743
 744		/*
 745		 * Barring that, we can do the fixup and be happy.
 746		 */
 747		return;
 748	}
 749
 750#ifdef CONFIG_VMAP_STACK
 751	/*
 752	 * Stack overflow?  During boot, we can fault near the initial
 753	 * stack in the direct map, but that's not an overflow -- check
 754	 * that we're in vmalloc space to avoid this.
 755	 */
 756	if (is_vmalloc_addr((void *)address) &&
 757	    (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
 758	     address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
 759		unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
 760		/*
 761		 * We're likely to be running with very little stack space
 762		 * left.  It's plausible that we'd hit this condition but
 763		 * double-fault even before we get this far, in which case
 764		 * we're fine: the double-fault handler will deal with it.
 765		 *
 766		 * We don't want to make it all the way into the oops code
 767		 * and then double-fault, though, because we're likely to
 768		 * break the console driver and lose most of the stack dump.
 769		 */
 770		asm volatile ("movq %[stack], %%rsp\n\t"
 771			      "call handle_stack_overflow\n\t"
 772			      "1: jmp 1b"
 773			      : ASM_CALL_CONSTRAINT
 774			      : "D" ("kernel stack overflow (page fault)"),
 775				"S" (regs), "d" (address),
 776				[stack] "rm" (stack));
 777		unreachable();
 778	}
 779#endif
 780
 781	/*
 782	 * 32-bit:
 783	 *
 784	 *   Valid to do another page fault here, because if this fault
 785	 *   had been triggered by is_prefetch fixup_exception would have
 786	 *   handled it.
 787	 *
 788	 * 64-bit:
 789	 *
 790	 *   Hall of shame of CPU/BIOS bugs.
 791	 */
 792	if (is_prefetch(regs, error_code, address))
 793		return;
 794
 795	if (is_errata93(regs, address))
 796		return;
 797
 798	/*
 799	 * Oops. The kernel tried to access some bad page. We'll have to
 800	 * terminate things with extreme prejudice:
 801	 */
 802	flags = oops_begin();
 803
 804	show_fault_oops(regs, error_code, address);
 805
 806	if (task_stack_end_corrupted(tsk))
 807		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 
 808
 809	tsk->thread.cr2		= address;
 810	tsk->thread.trap_nr	= X86_TRAP_PF;
 811	tsk->thread.error_code	= error_code;
 812
 813	sig = SIGKILL;
 814	if (__die("Oops", regs, error_code))
 815		sig = 0;
 816
 817	/* Executive summary in case the body of the oops scrolled away */
 818	printk(KERN_DEFAULT "CR2: %016lx\n", address);
 819
 820	oops_end(flags, regs, sig);
 821}
 822
 823/*
 824 * Print out info about fatal segfaults, if the show_unhandled_signals
 825 * sysctl is set:
 826 */
 827static inline void
 828show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 829		unsigned long address, struct task_struct *tsk)
 830{
 831	if (!unhandled_signal(tsk, SIGSEGV))
 832		return;
 833
 834	if (!printk_ratelimit())
 835		return;
 836
 837	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 838		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 839		tsk->comm, task_pid_nr(tsk), address,
 840		(void *)regs->ip, (void *)regs->sp, error_code);
 841
 842	print_vma_addr(KERN_CONT " in ", regs->ip);
 843
 844	printk(KERN_CONT "\n");
 845}
 846
 847static void
 848__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 849		       unsigned long address, u32 *pkey, int si_code)
 850{
 851	struct task_struct *tsk = current;
 852
 853	/* User mode accesses just cause a SIGSEGV */
 854	if (error_code & X86_PF_USER) {
 855		/*
 856		 * It's possible to have interrupts off here:
 857		 */
 858		local_irq_enable();
 859
 860		/*
 861		 * Valid to do another page fault here because this one came
 862		 * from user space:
 863		 */
 864		if (is_prefetch(regs, error_code, address))
 865			return;
 866
 867		if (is_errata100(regs, address))
 868			return;
 869
 870#ifdef CONFIG_X86_64
 871		/*
 872		 * Instruction fetch faults in the vsyscall page might need
 873		 * emulation.
 874		 */
 875		if (unlikely((error_code & X86_PF_INSTR) &&
 876			     ((address & ~0xfff) == VSYSCALL_ADDR))) {
 877			if (emulate_vsyscall(regs, address))
 878				return;
 879		}
 880#endif
 881
 882		/*
 883		 * To avoid leaking information about the kernel page table
 884		 * layout, pretend that user-mode accesses to kernel addresses
 885		 * are always protection faults.
 886		 */
 887		if (address >= TASK_SIZE_MAX)
 888			error_code |= X86_PF_PROT;
 889
 890		if (likely(show_unhandled_signals))
 891			show_signal_msg(regs, error_code, address, tsk);
 892
 
 893		tsk->thread.cr2		= address;
 894		tsk->thread.error_code	= error_code;
 895		tsk->thread.trap_nr	= X86_TRAP_PF;
 896
 897		force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
 898
 899		return;
 900	}
 901
 902	if (is_f00f_bug(regs, address))
 903		return;
 904
 905	no_context(regs, error_code, address, SIGSEGV, si_code);
 906}
 907
 908static noinline void
 909bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 910		     unsigned long address, u32 *pkey)
 911{
 912	__bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
 913}
 914
 915static void
 916__bad_area(struct pt_regs *regs, unsigned long error_code,
 917	   unsigned long address,  struct vm_area_struct *vma, int si_code)
 918{
 919	struct mm_struct *mm = current->mm;
 920	u32 pkey;
 921
 922	if (vma)
 923		pkey = vma_pkey(vma);
 924
 925	/*
 926	 * Something tried to access memory that isn't in our memory map..
 927	 * Fix it, but check if it's kernel or user first..
 928	 */
 929	up_read(&mm->mmap_sem);
 930
 931	__bad_area_nosemaphore(regs, error_code, address,
 932			       (vma) ? &pkey : NULL, si_code);
 933}
 934
 935static noinline void
 936bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 937{
 938	__bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
 939}
 940
 941static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 942		struct vm_area_struct *vma)
 
 943{
 944	/* This code is always called on the current mm */
 945	bool foreign = false;
 946
 947	if (!boot_cpu_has(X86_FEATURE_OSPKE))
 948		return false;
 949	if (error_code & X86_PF_PK)
 950		return true;
 951	/* this checks permission keys on the VMA: */
 952	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 953				       (error_code & X86_PF_INSTR), foreign))
 954		return true;
 955	return false;
 956}
 957
 958static noinline void
 959bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 960		      unsigned long address, struct vm_area_struct *vma)
 
 961{
 962	/*
 963	 * This OSPKE check is not strictly necessary at runtime.
 964	 * But, doing it this way allows compiler optimizations
 965	 * if pkeys are compiled out.
 966	 */
 967	if (bad_area_access_from_pkeys(error_code, vma))
 968		__bad_area(regs, error_code, address, vma, SEGV_PKUERR);
 969	else
 970		__bad_area(regs, error_code, address, vma, SEGV_ACCERR);
 971}
 972
 973static void
 974do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 975	  u32 *pkey, unsigned int fault)
 976{
 977	struct task_struct *tsk = current;
 
 978	int code = BUS_ADRERR;
 979
 
 
 980	/* Kernel mode? Handle exceptions or die: */
 981	if (!(error_code & X86_PF_USER)) {
 982		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 983		return;
 984	}
 985
 986	/* User-space => ok to do another page fault: */
 987	if (is_prefetch(regs, error_code, address))
 988		return;
 989
 990	tsk->thread.cr2		= address;
 991	tsk->thread.error_code	= error_code;
 992	tsk->thread.trap_nr	= X86_TRAP_PF;
 993
 994#ifdef CONFIG_MEMORY_FAILURE
 995	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 996		printk(KERN_ERR
 997	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 998			tsk->comm, tsk->pid, address);
 999		code = BUS_MCEERR_AR;
1000	}
1001#endif
1002	force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1003}
1004
1005static noinline void
1006mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1007	       unsigned long address, u32 *pkey, unsigned int fault)
1008{
1009	if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1010		no_context(regs, error_code, address, 0, 0);
1011		return;
 
 
 
 
 
 
 
1012	}
 
 
1013
1014	if (fault & VM_FAULT_OOM) {
1015		/* Kernel mode? Handle exceptions or die: */
1016		if (!(error_code & X86_PF_USER)) {
1017			no_context(regs, error_code, address,
1018				   SIGSEGV, SEGV_MAPERR);
1019			return;
1020		}
1021
1022		/*
1023		 * We ran out of memory, call the OOM killer, and return the
1024		 * userspace (which will retry the fault, or kill us if we got
1025		 * oom-killed):
1026		 */
1027		pagefault_out_of_memory();
1028	} else {
1029		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1030			     VM_FAULT_HWPOISON_LARGE))
1031			do_sigbus(regs, error_code, address, pkey, fault);
1032		else if (fault & VM_FAULT_SIGSEGV)
1033			bad_area_nosemaphore(regs, error_code, address, pkey);
1034		else
1035			BUG();
1036	}
 
1037}
1038
1039static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1040{
1041	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1042		return 0;
1043
1044	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1045		return 0;
1046	/*
1047	 * Note: We do not do lazy flushing on protection key
1048	 * changes, so no spurious fault will ever set X86_PF_PK.
1049	 */
1050	if ((error_code & X86_PF_PK))
1051		return 1;
1052
1053	return 1;
1054}
1055
1056/*
1057 * Handle a spurious fault caused by a stale TLB entry.
1058 *
1059 * This allows us to lazily refresh the TLB when increasing the
1060 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1061 * eagerly is very expensive since that implies doing a full
1062 * cross-processor TLB flush, even if no stale TLB entries exist
1063 * on other processors.
1064 *
1065 * Spurious faults may only occur if the TLB contains an entry with
1066 * fewer permission than the page table entry.  Non-present (P = 0)
1067 * and reserved bit (R = 1) faults are never spurious.
1068 *
1069 * There are no security implications to leaving a stale TLB when
1070 * increasing the permissions on a page.
1071 *
1072 * Returns non-zero if a spurious fault was handled, zero otherwise.
1073 *
1074 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1075 * (Optional Invalidation).
1076 */
1077static noinline int
1078spurious_fault(unsigned long error_code, unsigned long address)
1079{
1080	pgd_t *pgd;
1081	p4d_t *p4d;
1082	pud_t *pud;
1083	pmd_t *pmd;
1084	pte_t *pte;
1085	int ret;
1086
1087	/*
1088	 * Only writes to RO or instruction fetches from NX may cause
1089	 * spurious faults.
1090	 *
1091	 * These could be from user or supervisor accesses but the TLB
1092	 * is only lazily flushed after a kernel mapping protection
1093	 * change, so user accesses are not expected to cause spurious
1094	 * faults.
1095	 */
1096	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1097	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1098		return 0;
1099
1100	pgd = init_mm.pgd + pgd_index(address);
1101	if (!pgd_present(*pgd))
1102		return 0;
1103
1104	p4d = p4d_offset(pgd, address);
1105	if (!p4d_present(*p4d))
1106		return 0;
1107
1108	if (p4d_large(*p4d))
1109		return spurious_fault_check(error_code, (pte_t *) p4d);
1110
1111	pud = pud_offset(p4d, address);
1112	if (!pud_present(*pud))
1113		return 0;
1114
1115	if (pud_large(*pud))
1116		return spurious_fault_check(error_code, (pte_t *) pud);
1117
1118	pmd = pmd_offset(pud, address);
1119	if (!pmd_present(*pmd))
1120		return 0;
1121
1122	if (pmd_large(*pmd))
1123		return spurious_fault_check(error_code, (pte_t *) pmd);
1124
 
 
 
 
 
 
1125	pte = pte_offset_kernel(pmd, address);
1126	if (!pte_present(*pte))
1127		return 0;
1128
1129	ret = spurious_fault_check(error_code, pte);
1130	if (!ret)
1131		return 0;
1132
1133	/*
1134	 * Make sure we have permissions in PMD.
1135	 * If not, then there's a bug in the page tables:
1136	 */
1137	ret = spurious_fault_check(error_code, (pte_t *) pmd);
1138	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1139
1140	return ret;
1141}
1142NOKPROBE_SYMBOL(spurious_fault);
1143
1144int show_unhandled_signals = 1;
1145
1146static inline int
1147access_error(unsigned long error_code, struct vm_area_struct *vma)
1148{
1149	/* This is only called for the current mm, so: */
1150	bool foreign = false;
1151
1152	/*
1153	 * Read or write was blocked by protection keys.  This is
1154	 * always an unconditional error and can never result in
1155	 * a follow-up action to resolve the fault, like a COW.
1156	 */
1157	if (error_code & X86_PF_PK)
1158		return 1;
1159
1160	/*
1161	 * Make sure to check the VMA so that we do not perform
1162	 * faults just to hit a X86_PF_PK as soon as we fill in a
1163	 * page.
1164	 */
1165	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1166				       (error_code & X86_PF_INSTR), foreign))
1167		return 1;
1168
1169	if (error_code & X86_PF_WRITE) {
1170		/* write, present and write, not present: */
1171		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1172			return 1;
1173		return 0;
1174	}
1175
1176	/* read, present: */
1177	if (unlikely(error_code & X86_PF_PROT))
1178		return 1;
1179
1180	/* read, not present: */
1181	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1182		return 1;
1183
1184	return 0;
1185}
1186
1187static int fault_in_kernel_space(unsigned long address)
1188{
1189	return address >= TASK_SIZE_MAX;
1190}
1191
1192static inline bool smap_violation(int error_code, struct pt_regs *regs)
1193{
1194	if (!IS_ENABLED(CONFIG_X86_SMAP))
1195		return false;
1196
1197	if (!static_cpu_has(X86_FEATURE_SMAP))
1198		return false;
1199
1200	if (error_code & X86_PF_USER)
1201		return false;
1202
1203	if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1204		return false;
1205
1206	return true;
1207}
1208
1209/*
1210 * This routine handles page faults.  It determines the address,
1211 * and the problem, and then passes it off to one of the appropriate
1212 * routines.
1213 */
1214static noinline void
1215__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1216		unsigned long address)
1217{
1218	struct vm_area_struct *vma;
1219	struct task_struct *tsk;
 
1220	struct mm_struct *mm;
1221	int fault, major = 0;
1222	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1223	u32 pkey;
 
1224
1225	tsk = current;
1226	mm = tsk->mm;
1227
 
 
 
 
 
 
 
 
 
1228	prefetchw(&mm->mmap_sem);
1229
1230	if (unlikely(kmmio_fault(regs, address)))
1231		return;
1232
1233	/*
1234	 * We fault-in kernel-space virtual memory on-demand. The
1235	 * 'reference' page table is init_mm.pgd.
1236	 *
1237	 * NOTE! We MUST NOT take any locks for this case. We may
1238	 * be in an interrupt or a critical region, and should
1239	 * only copy the information from the master page table,
1240	 * nothing more.
1241	 *
1242	 * This verifies that the fault happens in kernel space
1243	 * (error_code & 4) == 0, and that the fault was not a
1244	 * protection error (error_code & 9) == 0.
1245	 */
1246	if (unlikely(fault_in_kernel_space(address))) {
1247		if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1248			if (vmalloc_fault(address) >= 0)
1249				return;
 
 
 
1250		}
1251
1252		/* Can handle a stale RO->RW TLB: */
1253		if (spurious_fault(error_code, address))
1254			return;
1255
1256		/* kprobes don't want to hook the spurious faults: */
1257		if (kprobes_fault(regs))
1258			return;
1259		/*
1260		 * Don't take the mm semaphore here. If we fixup a prefetch
1261		 * fault we could otherwise deadlock:
1262		 */
1263		bad_area_nosemaphore(regs, error_code, address, NULL);
1264
1265		return;
1266	}
1267
1268	/* kprobes don't want to hook the spurious faults: */
1269	if (unlikely(kprobes_fault(regs)))
1270		return;
1271
1272	if (unlikely(error_code & X86_PF_RSVD))
1273		pgtable_bad(regs, error_code, address);
1274
1275	if (unlikely(smap_violation(error_code, regs))) {
1276		bad_area_nosemaphore(regs, error_code, address, NULL);
1277		return;
1278	}
1279
1280	/*
1281	 * If we're in an interrupt, have no user context or are running
1282	 * in a region with pagefaults disabled then we must not take the fault
1283	 */
1284	if (unlikely(faulthandler_disabled() || !mm)) {
1285		bad_area_nosemaphore(regs, error_code, address, NULL);
1286		return;
1287	}
1288
1289	/*
1290	 * It's safe to allow irq's after cr2 has been saved and the
1291	 * vmalloc fault has been handled.
1292	 *
1293	 * User-mode registers count as a user access even for any
1294	 * potential system fault or CPU buglet:
1295	 */
1296	if (user_mode(regs)) {
1297		local_irq_enable();
1298		error_code |= X86_PF_USER;
1299		flags |= FAULT_FLAG_USER;
1300	} else {
1301		if (regs->flags & X86_EFLAGS_IF)
1302			local_irq_enable();
1303	}
1304
 
 
 
1305	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1306
1307	if (error_code & X86_PF_WRITE)
1308		flags |= FAULT_FLAG_WRITE;
1309	if (error_code & X86_PF_INSTR)
1310		flags |= FAULT_FLAG_INSTRUCTION;
 
 
 
 
1311
1312	/*
1313	 * When running in the kernel we expect faults to occur only to
1314	 * addresses in user space.  All other faults represent errors in
1315	 * the kernel and should generate an OOPS.  Unfortunately, in the
1316	 * case of an erroneous fault occurring in a code path which already
1317	 * holds mmap_sem we will deadlock attempting to validate the fault
1318	 * against the address space.  Luckily the kernel only validly
1319	 * references user space from well defined areas of code, which are
1320	 * listed in the exceptions table.
1321	 *
1322	 * As the vast majority of faults will be valid we will only perform
1323	 * the source reference check when there is a possibility of a
1324	 * deadlock. Attempt to lock the address space, if we cannot we then
1325	 * validate the source. If this is invalid we can skip the address
1326	 * space check, thus avoiding the deadlock:
1327	 */
1328	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1329		if (!(error_code & X86_PF_USER) &&
1330		    !search_exception_tables(regs->ip)) {
1331			bad_area_nosemaphore(regs, error_code, address, NULL);
1332			return;
1333		}
1334retry:
1335		down_read(&mm->mmap_sem);
1336	} else {
1337		/*
1338		 * The above down_read_trylock() might have succeeded in
1339		 * which case we'll have missed the might_sleep() from
1340		 * down_read():
1341		 */
1342		might_sleep();
1343	}
1344
1345	vma = find_vma(mm, address);
1346	if (unlikely(!vma)) {
1347		bad_area(regs, error_code, address);
1348		return;
1349	}
1350	if (likely(vma->vm_start <= address))
1351		goto good_area;
1352	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1353		bad_area(regs, error_code, address);
1354		return;
1355	}
1356	if (error_code & X86_PF_USER) {
1357		/*
1358		 * Accessing the stack below %sp is always a bug.
1359		 * The large cushion allows instructions like enter
1360		 * and pusha to work. ("enter $65535, $31" pushes
1361		 * 32 pointers and then decrements %sp by 65535.)
1362		 */
1363		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1364			bad_area(regs, error_code, address);
1365			return;
1366		}
1367	}
1368	if (unlikely(expand_stack(vma, address))) {
1369		bad_area(regs, error_code, address);
1370		return;
1371	}
1372
1373	/*
1374	 * Ok, we have a good vm_area for this memory access, so
1375	 * we can handle it..
1376	 */
1377good_area:
1378	if (unlikely(access_error(error_code, vma))) {
1379		bad_area_access_error(regs, error_code, address, vma);
1380		return;
1381	}
1382
1383	/*
1384	 * If for any reason at all we couldn't handle the fault,
1385	 * make sure we exit gracefully rather than endlessly redo
1386	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1387	 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1388	 *
1389	 * Note that handle_userfault() may also release and reacquire mmap_sem
1390	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1391	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1392	 * (potentially after handling any pending signal during the return to
1393	 * userland). The return to userland is identified whenever
1394	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1395	 * Thus we have to be careful about not touching vma after handling the
1396	 * fault, so we read the pkey beforehand.
1397	 */
1398	pkey = vma_pkey(vma);
1399	fault = handle_mm_fault(vma, address, flags);
1400	major |= fault & VM_FAULT_MAJOR;
1401
1402	/*
1403	 * If we need to retry the mmap_sem has already been released,
1404	 * and if there is a fatal signal pending there is no guarantee
1405	 * that we made any progress. Handle this case first.
1406	 */
1407	if (unlikely(fault & VM_FAULT_RETRY)) {
1408		/* Retry at most once */
1409		if (flags & FAULT_FLAG_ALLOW_RETRY) {
1410			flags &= ~FAULT_FLAG_ALLOW_RETRY;
1411			flags |= FAULT_FLAG_TRIED;
1412			if (!fatal_signal_pending(tsk))
1413				goto retry;
1414		}
1415
1416		/* User mode? Just return to handle the fatal exception */
1417		if (flags & FAULT_FLAG_USER)
1418			return;
1419
1420		/* Not returning to user mode? Handle exceptions or die: */
1421		no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1422		return;
1423	}
1424
1425	up_read(&mm->mmap_sem);
1426	if (unlikely(fault & VM_FAULT_ERROR)) {
1427		mm_fault_error(regs, error_code, address, &pkey, fault);
1428		return;
1429	}
1430
1431	/*
1432	 * Major/minor page fault accounting. If any of the events
1433	 * returned VM_FAULT_MAJOR, we account it as a major fault.
1434	 */
1435	if (major) {
1436		tsk->maj_flt++;
1437		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1438	} else {
1439		tsk->min_flt++;
1440		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
 
 
 
 
 
 
 
 
 
 
 
1441	}
1442
1443	check_v8086_mode(regs, address, tsk);
1444}
1445NOKPROBE_SYMBOL(__do_page_fault);
1446
1447static nokprobe_inline void
1448trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1449			 unsigned long error_code)
1450{
1451	if (user_mode(regs))
1452		trace_page_fault_user(address, regs, error_code);
1453	else
1454		trace_page_fault_kernel(address, regs, error_code);
1455}
1456
1457/*
1458 * We must have this function blacklisted from kprobes, tagged with notrace
1459 * and call read_cr2() before calling anything else. To avoid calling any
1460 * kind of tracing machinery before we've observed the CR2 value.
1461 *
1462 * exception_{enter,exit}() contains all sorts of tracepoints.
1463 */
1464dotraplinkage void notrace
1465do_page_fault(struct pt_regs *regs, unsigned long error_code)
1466{
1467	unsigned long address = read_cr2(); /* Get the faulting address */
1468	enum ctx_state prev_state;
1469
1470	prev_state = exception_enter();
1471	if (trace_pagefault_enabled())
1472		trace_page_fault_entries(address, regs, error_code);
1473
1474	__do_page_fault(regs, error_code, address);
1475	exception_exit(prev_state);
1476}
1477NOKPROBE_SYMBOL(do_page_fault);