Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 *
13 * ... and the days got worse and worse and now you see
14 * I've gone completly out of my mind.
15 *
16 * They're coming to take me a away haha
17 * they're coming to take me a away hoho hihi haha
18 * to the funny farm where code is beautiful all the time ...
19 *
20 * (Condolences to Napoleon XIV)
21 */
22
23#include <linux/bug.h>
24#include <linux/kernel.h>
25#include <linux/types.h>
26#include <linux/smp.h>
27#include <linux/string.h>
28#include <linux/init.h>
29#include <linux/cache.h>
30
31#include <asm/cacheflush.h>
32#include <asm/pgtable.h>
33#include <asm/war.h>
34#include <asm/uasm.h>
35
36/*
37 * TLB load/store/modify handlers.
38 *
39 * Only the fastpath gets synthesized at runtime, the slowpath for
40 * do_page_fault remains normal asm.
41 */
42extern void tlb_do_page_fault_0(void);
43extern void tlb_do_page_fault_1(void);
44
45struct work_registers {
46 int r1;
47 int r2;
48 int r3;
49};
50
51struct tlb_reg_save {
52 unsigned long a;
53 unsigned long b;
54} ____cacheline_aligned_in_smp;
55
56static struct tlb_reg_save handler_reg_save[NR_CPUS];
57
58static inline int r45k_bvahwbug(void)
59{
60 /* XXX: We should probe for the presence of this bug, but we don't. */
61 return 0;
62}
63
64static inline int r4k_250MHZhwbug(void)
65{
66 /* XXX: We should probe for the presence of this bug, but we don't. */
67 return 0;
68}
69
70static inline int __maybe_unused bcm1250_m3_war(void)
71{
72 return BCM1250_M3_WAR;
73}
74
75static inline int __maybe_unused r10000_llsc_war(void)
76{
77 return R10000_LLSC_WAR;
78}
79
80static int use_bbit_insns(void)
81{
82 switch (current_cpu_type()) {
83 case CPU_CAVIUM_OCTEON:
84 case CPU_CAVIUM_OCTEON_PLUS:
85 case CPU_CAVIUM_OCTEON2:
86 return 1;
87 default:
88 return 0;
89 }
90}
91
92static int use_lwx_insns(void)
93{
94 switch (current_cpu_type()) {
95 case CPU_CAVIUM_OCTEON2:
96 return 1;
97 default:
98 return 0;
99 }
100}
101#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
102 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
103static bool scratchpad_available(void)
104{
105 return true;
106}
107static int scratchpad_offset(int i)
108{
109 /*
110 * CVMSEG starts at address -32768 and extends for
111 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
112 */
113 i += 1; /* Kernel use starts at the top and works down. */
114 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
115}
116#else
117static bool scratchpad_available(void)
118{
119 return false;
120}
121static int scratchpad_offset(int i)
122{
123 BUG();
124 /* Really unreachable, but evidently some GCC want this. */
125 return 0;
126}
127#endif
128/*
129 * Found by experiment: At least some revisions of the 4kc throw under
130 * some circumstances a machine check exception, triggered by invalid
131 * values in the index register. Delaying the tlbp instruction until
132 * after the next branch, plus adding an additional nop in front of
133 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
134 * why; it's not an issue caused by the core RTL.
135 *
136 */
137static int __cpuinit m4kc_tlbp_war(void)
138{
139 return (current_cpu_data.processor_id & 0xffff00) ==
140 (PRID_COMP_MIPS | PRID_IMP_4KC);
141}
142
143/* Handle labels (which must be positive integers). */
144enum label_id {
145 label_second_part = 1,
146 label_leave,
147 label_vmalloc,
148 label_vmalloc_done,
149 label_tlbw_hazard,
150 label_split,
151 label_tlbl_goaround1,
152 label_tlbl_goaround2,
153 label_nopage_tlbl,
154 label_nopage_tlbs,
155 label_nopage_tlbm,
156 label_smp_pgtable_change,
157 label_r3000_write_probe_fail,
158 label_large_segbits_fault,
159#ifdef CONFIG_HUGETLB_PAGE
160 label_tlb_huge_update,
161#endif
162};
163
164UASM_L_LA(_second_part)
165UASM_L_LA(_leave)
166UASM_L_LA(_vmalloc)
167UASM_L_LA(_vmalloc_done)
168UASM_L_LA(_tlbw_hazard)
169UASM_L_LA(_split)
170UASM_L_LA(_tlbl_goaround1)
171UASM_L_LA(_tlbl_goaround2)
172UASM_L_LA(_nopage_tlbl)
173UASM_L_LA(_nopage_tlbs)
174UASM_L_LA(_nopage_tlbm)
175UASM_L_LA(_smp_pgtable_change)
176UASM_L_LA(_r3000_write_probe_fail)
177UASM_L_LA(_large_segbits_fault)
178#ifdef CONFIG_HUGETLB_PAGE
179UASM_L_LA(_tlb_huge_update)
180#endif
181
182/*
183 * For debug purposes.
184 */
185static inline void dump_handler(const u32 *handler, int count)
186{
187 int i;
188
189 pr_debug("\t.set push\n");
190 pr_debug("\t.set noreorder\n");
191
192 for (i = 0; i < count; i++)
193 pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
194
195 pr_debug("\t.set pop\n");
196}
197
198/* The only general purpose registers allowed in TLB handlers. */
199#define K0 26
200#define K1 27
201
202/* Some CP0 registers */
203#define C0_INDEX 0, 0
204#define C0_ENTRYLO0 2, 0
205#define C0_TCBIND 2, 2
206#define C0_ENTRYLO1 3, 0
207#define C0_CONTEXT 4, 0
208#define C0_PAGEMASK 5, 0
209#define C0_BADVADDR 8, 0
210#define C0_ENTRYHI 10, 0
211#define C0_EPC 14, 0
212#define C0_XCONTEXT 20, 0
213
214#ifdef CONFIG_64BIT
215# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
216#else
217# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
218#endif
219
220/* The worst case length of the handler is around 18 instructions for
221 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
222 * Maximum space available is 32 instructions for R3000 and 64
223 * instructions for R4000.
224 *
225 * We deliberately chose a buffer size of 128, so we won't scribble
226 * over anything important on overflow before we panic.
227 */
228static u32 tlb_handler[128] __cpuinitdata;
229
230/* simply assume worst case size for labels and relocs */
231static struct uasm_label labels[128] __cpuinitdata;
232static struct uasm_reloc relocs[128] __cpuinitdata;
233
234#ifdef CONFIG_64BIT
235static int check_for_high_segbits __cpuinitdata;
236#endif
237
238static int check_for_high_segbits __cpuinitdata;
239
240static unsigned int kscratch_used_mask __cpuinitdata;
241
242static int __cpuinit allocate_kscratch(void)
243{
244 int r;
245 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
246
247 r = ffs(a);
248
249 if (r == 0)
250 return -1;
251
252 r--; /* make it zero based */
253
254 kscratch_used_mask |= (1 << r);
255
256 return r;
257}
258
259static int scratch_reg __cpuinitdata;
260static int pgd_reg __cpuinitdata;
261enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
262
263static struct work_registers __cpuinit build_get_work_registers(u32 **p)
264{
265 struct work_registers r;
266
267 int smp_processor_id_reg;
268 int smp_processor_id_sel;
269 int smp_processor_id_shift;
270
271 if (scratch_reg > 0) {
272 /* Save in CPU local C0_KScratch? */
273 UASM_i_MTC0(p, 1, 31, scratch_reg);
274 r.r1 = K0;
275 r.r2 = K1;
276 r.r3 = 1;
277 return r;
278 }
279
280 if (num_possible_cpus() > 1) {
281#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
282 smp_processor_id_shift = 51;
283 smp_processor_id_reg = 20; /* XContext */
284 smp_processor_id_sel = 0;
285#else
286# ifdef CONFIG_32BIT
287 smp_processor_id_shift = 25;
288 smp_processor_id_reg = 4; /* Context */
289 smp_processor_id_sel = 0;
290# endif
291# ifdef CONFIG_64BIT
292 smp_processor_id_shift = 26;
293 smp_processor_id_reg = 4; /* Context */
294 smp_processor_id_sel = 0;
295# endif
296#endif
297 /* Get smp_processor_id */
298 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
299 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
300
301 /* handler_reg_save index in K0 */
302 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
303
304 UASM_i_LA(p, K1, (long)&handler_reg_save);
305 UASM_i_ADDU(p, K0, K0, K1);
306 } else {
307 UASM_i_LA(p, K0, (long)&handler_reg_save);
308 }
309 /* K0 now points to save area, save $1 and $2 */
310 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
311 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
312
313 r.r1 = K1;
314 r.r2 = 1;
315 r.r3 = 2;
316 return r;
317}
318
319static void __cpuinit build_restore_work_registers(u32 **p)
320{
321 if (scratch_reg > 0) {
322 UASM_i_MFC0(p, 1, 31, scratch_reg);
323 return;
324 }
325 /* K0 already points to save area, restore $1 and $2 */
326 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
327 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
328}
329
330#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
331
332/*
333 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
334 * we cannot do r3000 under these circumstances.
335 *
336 * Declare pgd_current here instead of including mmu_context.h to avoid type
337 * conflicts for tlbmiss_handler_setup_pgd
338 */
339extern unsigned long pgd_current[];
340
341/*
342 * The R3000 TLB handler is simple.
343 */
344static void __cpuinit build_r3000_tlb_refill_handler(void)
345{
346 long pgdc = (long)pgd_current;
347 u32 *p;
348
349 memset(tlb_handler, 0, sizeof(tlb_handler));
350 p = tlb_handler;
351
352 uasm_i_mfc0(&p, K0, C0_BADVADDR);
353 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
354 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
355 uasm_i_srl(&p, K0, K0, 22); /* load delay */
356 uasm_i_sll(&p, K0, K0, 2);
357 uasm_i_addu(&p, K1, K1, K0);
358 uasm_i_mfc0(&p, K0, C0_CONTEXT);
359 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
360 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
361 uasm_i_addu(&p, K1, K1, K0);
362 uasm_i_lw(&p, K0, 0, K1);
363 uasm_i_nop(&p); /* load delay */
364 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
365 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
366 uasm_i_tlbwr(&p); /* cp0 delay */
367 uasm_i_jr(&p, K1);
368 uasm_i_rfe(&p); /* branch delay */
369
370 if (p > tlb_handler + 32)
371 panic("TLB refill handler space exceeded");
372
373 pr_debug("Wrote TLB refill handler (%u instructions).\n",
374 (unsigned int)(p - tlb_handler));
375
376 memcpy((void *)ebase, tlb_handler, 0x80);
377
378 dump_handler((u32 *)ebase, 32);
379}
380#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
381
382/*
383 * The R4000 TLB handler is much more complicated. We have two
384 * consecutive handler areas with 32 instructions space each.
385 * Since they aren't used at the same time, we can overflow in the
386 * other one.To keep things simple, we first assume linear space,
387 * then we relocate it to the final handler layout as needed.
388 */
389static u32 final_handler[64] __cpuinitdata;
390
391/*
392 * Hazards
393 *
394 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
395 * 2. A timing hazard exists for the TLBP instruction.
396 *
397 * stalling_instruction
398 * TLBP
399 *
400 * The JTLB is being read for the TLBP throughout the stall generated by the
401 * previous instruction. This is not really correct as the stalling instruction
402 * can modify the address used to access the JTLB. The failure symptom is that
403 * the TLBP instruction will use an address created for the stalling instruction
404 * and not the address held in C0_ENHI and thus report the wrong results.
405 *
406 * The software work-around is to not allow the instruction preceding the TLBP
407 * to stall - make it an NOP or some other instruction guaranteed not to stall.
408 *
409 * Errata 2 will not be fixed. This errata is also on the R5000.
410 *
411 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
412 */
413static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
414{
415 switch (current_cpu_type()) {
416 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
417 case CPU_R4600:
418 case CPU_R4700:
419 case CPU_R5000:
420 case CPU_R5000A:
421 case CPU_NEVADA:
422 uasm_i_nop(p);
423 uasm_i_tlbp(p);
424 break;
425
426 default:
427 uasm_i_tlbp(p);
428 break;
429 }
430}
431
432/*
433 * Write random or indexed TLB entry, and care about the hazards from
434 * the preceding mtc0 and for the following eret.
435 */
436enum tlb_write_entry { tlb_random, tlb_indexed };
437
438static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
439 struct uasm_reloc **r,
440 enum tlb_write_entry wmode)
441{
442 void(*tlbw)(u32 **) = NULL;
443
444 switch (wmode) {
445 case tlb_random: tlbw = uasm_i_tlbwr; break;
446 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
447 }
448
449 if (cpu_has_mips_r2) {
450 if (cpu_has_mips_r2_exec_hazard)
451 uasm_i_ehb(p);
452 tlbw(p);
453 return;
454 }
455
456 switch (current_cpu_type()) {
457 case CPU_R4000PC:
458 case CPU_R4000SC:
459 case CPU_R4000MC:
460 case CPU_R4400PC:
461 case CPU_R4400SC:
462 case CPU_R4400MC:
463 /*
464 * This branch uses up a mtc0 hazard nop slot and saves
465 * two nops after the tlbw instruction.
466 */
467 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
468 tlbw(p);
469 uasm_l_tlbw_hazard(l, *p);
470 uasm_i_nop(p);
471 break;
472
473 case CPU_R4600:
474 case CPU_R4700:
475 case CPU_R5000:
476 case CPU_R5000A:
477 uasm_i_nop(p);
478 tlbw(p);
479 uasm_i_nop(p);
480 break;
481
482 case CPU_R4300:
483 case CPU_5KC:
484 case CPU_TX49XX:
485 case CPU_PR4450:
486 case CPU_XLR:
487 uasm_i_nop(p);
488 tlbw(p);
489 break;
490
491 case CPU_R10000:
492 case CPU_R12000:
493 case CPU_R14000:
494 case CPU_4KC:
495 case CPU_4KEC:
496 case CPU_SB1:
497 case CPU_SB1A:
498 case CPU_4KSC:
499 case CPU_20KC:
500 case CPU_25KF:
501 case CPU_BMIPS32:
502 case CPU_BMIPS3300:
503 case CPU_BMIPS4350:
504 case CPU_BMIPS4380:
505 case CPU_BMIPS5000:
506 case CPU_LOONGSON2:
507 case CPU_R5500:
508 if (m4kc_tlbp_war())
509 uasm_i_nop(p);
510 case CPU_ALCHEMY:
511 tlbw(p);
512 break;
513
514 case CPU_NEVADA:
515 uasm_i_nop(p); /* QED specifies 2 nops hazard */
516 /*
517 * This branch uses up a mtc0 hazard nop slot and saves
518 * a nop after the tlbw instruction.
519 */
520 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
521 tlbw(p);
522 uasm_l_tlbw_hazard(l, *p);
523 break;
524
525 case CPU_RM7000:
526 uasm_i_nop(p);
527 uasm_i_nop(p);
528 uasm_i_nop(p);
529 uasm_i_nop(p);
530 tlbw(p);
531 break;
532
533 case CPU_RM9000:
534 /*
535 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
536 * use of the JTLB for instructions should not occur for 4
537 * cpu cycles and use for data translations should not occur
538 * for 3 cpu cycles.
539 */
540 uasm_i_ssnop(p);
541 uasm_i_ssnop(p);
542 uasm_i_ssnop(p);
543 uasm_i_ssnop(p);
544 tlbw(p);
545 uasm_i_ssnop(p);
546 uasm_i_ssnop(p);
547 uasm_i_ssnop(p);
548 uasm_i_ssnop(p);
549 break;
550
551 case CPU_VR4111:
552 case CPU_VR4121:
553 case CPU_VR4122:
554 case CPU_VR4181:
555 case CPU_VR4181A:
556 uasm_i_nop(p);
557 uasm_i_nop(p);
558 tlbw(p);
559 uasm_i_nop(p);
560 uasm_i_nop(p);
561 break;
562
563 case CPU_VR4131:
564 case CPU_VR4133:
565 case CPU_R5432:
566 uasm_i_nop(p);
567 uasm_i_nop(p);
568 tlbw(p);
569 break;
570
571 case CPU_JZRISC:
572 tlbw(p);
573 uasm_i_nop(p);
574 break;
575
576 default:
577 panic("No TLB refill handler yet (CPU type: %d)",
578 current_cpu_data.cputype);
579 break;
580 }
581}
582
583static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
584 unsigned int reg)
585{
586 if (kernel_uses_smartmips_rixi) {
587 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
588 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
589 } else {
590#ifdef CONFIG_64BIT_PHYS_ADDR
591 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
592#else
593 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
594#endif
595 }
596}
597
598#ifdef CONFIG_HUGETLB_PAGE
599
600static __cpuinit void build_restore_pagemask(u32 **p,
601 struct uasm_reloc **r,
602 unsigned int tmp,
603 enum label_id lid,
604 int restore_scratch)
605{
606 if (restore_scratch) {
607 /* Reset default page size */
608 if (PM_DEFAULT_MASK >> 16) {
609 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
610 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
611 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
612 uasm_il_b(p, r, lid);
613 } else if (PM_DEFAULT_MASK) {
614 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
615 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
616 uasm_il_b(p, r, lid);
617 } else {
618 uasm_i_mtc0(p, 0, C0_PAGEMASK);
619 uasm_il_b(p, r, lid);
620 }
621 if (scratch_reg > 0)
622 UASM_i_MFC0(p, 1, 31, scratch_reg);
623 else
624 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
625 } else {
626 /* Reset default page size */
627 if (PM_DEFAULT_MASK >> 16) {
628 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
629 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
630 uasm_il_b(p, r, lid);
631 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
632 } else if (PM_DEFAULT_MASK) {
633 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
634 uasm_il_b(p, r, lid);
635 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
636 } else {
637 uasm_il_b(p, r, lid);
638 uasm_i_mtc0(p, 0, C0_PAGEMASK);
639 }
640 }
641}
642
643static __cpuinit void build_huge_tlb_write_entry(u32 **p,
644 struct uasm_label **l,
645 struct uasm_reloc **r,
646 unsigned int tmp,
647 enum tlb_write_entry wmode,
648 int restore_scratch)
649{
650 /* Set huge page tlb entry size */
651 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
652 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
653 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
654
655 build_tlb_write_entry(p, l, r, wmode);
656
657 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
658}
659
660/*
661 * Check if Huge PTE is present, if so then jump to LABEL.
662 */
663static void __cpuinit
664build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
665 unsigned int pmd, int lid)
666{
667 UASM_i_LW(p, tmp, 0, pmd);
668 if (use_bbit_insns()) {
669 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
670 } else {
671 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
672 uasm_il_bnez(p, r, tmp, lid);
673 }
674}
675
676static __cpuinit void build_huge_update_entries(u32 **p,
677 unsigned int pte,
678 unsigned int tmp)
679{
680 int small_sequence;
681
682 /*
683 * A huge PTE describes an area the size of the
684 * configured huge page size. This is twice the
685 * of the large TLB entry size we intend to use.
686 * A TLB entry half the size of the configured
687 * huge page size is configured into entrylo0
688 * and entrylo1 to cover the contiguous huge PTE
689 * address space.
690 */
691 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
692
693 /* We can clobber tmp. It isn't used after this.*/
694 if (!small_sequence)
695 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
696
697 build_convert_pte_to_entrylo(p, pte);
698 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
699 /* convert to entrylo1 */
700 if (small_sequence)
701 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
702 else
703 UASM_i_ADDU(p, pte, pte, tmp);
704
705 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
706}
707
708static __cpuinit void build_huge_handler_tail(u32 **p,
709 struct uasm_reloc **r,
710 struct uasm_label **l,
711 unsigned int pte,
712 unsigned int ptr)
713{
714#ifdef CONFIG_SMP
715 UASM_i_SC(p, pte, 0, ptr);
716 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
717 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
718#else
719 UASM_i_SW(p, pte, 0, ptr);
720#endif
721 build_huge_update_entries(p, pte, ptr);
722 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
723}
724#endif /* CONFIG_HUGETLB_PAGE */
725
726#ifdef CONFIG_64BIT
727/*
728 * TMP and PTR are scratch.
729 * TMP will be clobbered, PTR will hold the pmd entry.
730 */
731static void __cpuinit
732build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
733 unsigned int tmp, unsigned int ptr)
734{
735#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
736 long pgdc = (long)pgd_current;
737#endif
738 /*
739 * The vmalloc handling is not in the hotpath.
740 */
741 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
742
743 if (check_for_high_segbits) {
744 /*
745 * The kernel currently implicitely assumes that the
746 * MIPS SEGBITS parameter for the processor is
747 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
748 * allocate virtual addresses outside the maximum
749 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
750 * that doesn't prevent user code from accessing the
751 * higher xuseg addresses. Here, we make sure that
752 * everything but the lower xuseg addresses goes down
753 * the module_alloc/vmalloc path.
754 */
755 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
756 uasm_il_bnez(p, r, ptr, label_vmalloc);
757 } else {
758 uasm_il_bltz(p, r, tmp, label_vmalloc);
759 }
760 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
761
762#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
763 if (pgd_reg != -1) {
764 /* pgd is in pgd_reg */
765 UASM_i_MFC0(p, ptr, 31, pgd_reg);
766 } else {
767 /*
768 * &pgd << 11 stored in CONTEXT [23..63].
769 */
770 UASM_i_MFC0(p, ptr, C0_CONTEXT);
771
772 /* Clear lower 23 bits of context. */
773 uasm_i_dins(p, ptr, 0, 0, 23);
774
775 /* 1 0 1 0 1 << 6 xkphys cached */
776 uasm_i_ori(p, ptr, ptr, 0x540);
777 uasm_i_drotr(p, ptr, ptr, 11);
778 }
779#elif defined(CONFIG_SMP)
780# ifdef CONFIG_MIPS_MT_SMTC
781 /*
782 * SMTC uses TCBind value as "CPU" index
783 */
784 uasm_i_mfc0(p, ptr, C0_TCBIND);
785 uasm_i_dsrl_safe(p, ptr, ptr, 19);
786# else
787 /*
788 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
789 * stored in CONTEXT.
790 */
791 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
792 uasm_i_dsrl_safe(p, ptr, ptr, 23);
793# endif
794 UASM_i_LA_mostly(p, tmp, pgdc);
795 uasm_i_daddu(p, ptr, ptr, tmp);
796 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
797 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
798#else
799 UASM_i_LA_mostly(p, ptr, pgdc);
800 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
801#endif
802
803 uasm_l_vmalloc_done(l, *p);
804
805 /* get pgd offset in bytes */
806 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
807
808 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
809 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
810#ifndef __PAGETABLE_PMD_FOLDED
811 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
812 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
813 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
814 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
815 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
816#endif
817}
818
819/*
820 * BVADDR is the faulting address, PTR is scratch.
821 * PTR will hold the pgd for vmalloc.
822 */
823static void __cpuinit
824build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
825 unsigned int bvaddr, unsigned int ptr,
826 enum vmalloc64_mode mode)
827{
828 long swpd = (long)swapper_pg_dir;
829 int single_insn_swpd;
830 int did_vmalloc_branch = 0;
831
832 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
833
834 uasm_l_vmalloc(l, *p);
835
836 if (mode != not_refill && check_for_high_segbits) {
837 if (single_insn_swpd) {
838 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
839 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
840 did_vmalloc_branch = 1;
841 /* fall through */
842 } else {
843 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
844 }
845 }
846 if (!did_vmalloc_branch) {
847 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
848 uasm_il_b(p, r, label_vmalloc_done);
849 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
850 } else {
851 UASM_i_LA_mostly(p, ptr, swpd);
852 uasm_il_b(p, r, label_vmalloc_done);
853 if (uasm_in_compat_space_p(swpd))
854 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
855 else
856 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
857 }
858 }
859 if (mode != not_refill && check_for_high_segbits) {
860 uasm_l_large_segbits_fault(l, *p);
861 /*
862 * We get here if we are an xsseg address, or if we are
863 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
864 *
865 * Ignoring xsseg (assume disabled so would generate
866 * (address errors?), the only remaining possibility
867 * is the upper xuseg addresses. On processors with
868 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
869 * addresses would have taken an address error. We try
870 * to mimic that here by taking a load/istream page
871 * fault.
872 */
873 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
874 uasm_i_jr(p, ptr);
875
876 if (mode == refill_scratch) {
877 if (scratch_reg > 0)
878 UASM_i_MFC0(p, 1, 31, scratch_reg);
879 else
880 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
881 } else {
882 uasm_i_nop(p);
883 }
884 }
885}
886
887#else /* !CONFIG_64BIT */
888
889/*
890 * TMP and PTR are scratch.
891 * TMP will be clobbered, PTR will hold the pgd entry.
892 */
893static void __cpuinit __maybe_unused
894build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
895{
896 long pgdc = (long)pgd_current;
897
898 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
899#ifdef CONFIG_SMP
900#ifdef CONFIG_MIPS_MT_SMTC
901 /*
902 * SMTC uses TCBind value as "CPU" index
903 */
904 uasm_i_mfc0(p, ptr, C0_TCBIND);
905 UASM_i_LA_mostly(p, tmp, pgdc);
906 uasm_i_srl(p, ptr, ptr, 19);
907#else
908 /*
909 * smp_processor_id() << 3 is stored in CONTEXT.
910 */
911 uasm_i_mfc0(p, ptr, C0_CONTEXT);
912 UASM_i_LA_mostly(p, tmp, pgdc);
913 uasm_i_srl(p, ptr, ptr, 23);
914#endif
915 uasm_i_addu(p, ptr, tmp, ptr);
916#else
917 UASM_i_LA_mostly(p, ptr, pgdc);
918#endif
919 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
920 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
921 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
922 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
923 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
924}
925
926#endif /* !CONFIG_64BIT */
927
928static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
929{
930 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
931 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
932
933 switch (current_cpu_type()) {
934 case CPU_VR41XX:
935 case CPU_VR4111:
936 case CPU_VR4121:
937 case CPU_VR4122:
938 case CPU_VR4131:
939 case CPU_VR4181:
940 case CPU_VR4181A:
941 case CPU_VR4133:
942 shift += 2;
943 break;
944
945 default:
946 break;
947 }
948
949 if (shift)
950 UASM_i_SRL(p, ctx, ctx, shift);
951 uasm_i_andi(p, ctx, ctx, mask);
952}
953
954static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
955{
956 /*
957 * Bug workaround for the Nevada. It seems as if under certain
958 * circumstances the move from cp0_context might produce a
959 * bogus result when the mfc0 instruction and its consumer are
960 * in a different cacheline or a load instruction, probably any
961 * memory reference, is between them.
962 */
963 switch (current_cpu_type()) {
964 case CPU_NEVADA:
965 UASM_i_LW(p, ptr, 0, ptr);
966 GET_CONTEXT(p, tmp); /* get context reg */
967 break;
968
969 default:
970 GET_CONTEXT(p, tmp); /* get context reg */
971 UASM_i_LW(p, ptr, 0, ptr);
972 break;
973 }
974
975 build_adjust_context(p, tmp);
976 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
977}
978
979static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
980 unsigned int ptep)
981{
982 /*
983 * 64bit address support (36bit on a 32bit CPU) in a 32bit
984 * Kernel is a special case. Only a few CPUs use it.
985 */
986#ifdef CONFIG_64BIT_PHYS_ADDR
987 if (cpu_has_64bits) {
988 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
989 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
990 if (kernel_uses_smartmips_rixi) {
991 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
992 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
993 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
994 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
995 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
996 } else {
997 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
998 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
999 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1000 }
1001 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1002 } else {
1003 int pte_off_even = sizeof(pte_t) / 2;
1004 int pte_off_odd = pte_off_even + sizeof(pte_t);
1005
1006 /* The pte entries are pre-shifted */
1007 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1008 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1009 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1010 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1011 }
1012#else
1013 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1014 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1015 if (r45k_bvahwbug())
1016 build_tlb_probe_entry(p);
1017 if (kernel_uses_smartmips_rixi) {
1018 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
1019 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
1020 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1021 if (r4k_250MHZhwbug())
1022 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1023 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1024 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1025 } else {
1026 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1027 if (r4k_250MHZhwbug())
1028 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1029 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1030 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1031 if (r45k_bvahwbug())
1032 uasm_i_mfc0(p, tmp, C0_INDEX);
1033 }
1034 if (r4k_250MHZhwbug())
1035 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1036 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1037#endif
1038}
1039
1040struct mips_huge_tlb_info {
1041 int huge_pte;
1042 int restore_scratch;
1043};
1044
1045static struct mips_huge_tlb_info __cpuinit
1046build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1047 struct uasm_reloc **r, unsigned int tmp,
1048 unsigned int ptr, int c0_scratch)
1049{
1050 struct mips_huge_tlb_info rv;
1051 unsigned int even, odd;
1052 int vmalloc_branch_delay_filled = 0;
1053 const int scratch = 1; /* Our extra working register */
1054
1055 rv.huge_pte = scratch;
1056 rv.restore_scratch = 0;
1057
1058 if (check_for_high_segbits) {
1059 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1060
1061 if (pgd_reg != -1)
1062 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1063 else
1064 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1065
1066 if (c0_scratch >= 0)
1067 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1068 else
1069 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1070
1071 uasm_i_dsrl_safe(p, scratch, tmp,
1072 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1073 uasm_il_bnez(p, r, scratch, label_vmalloc);
1074
1075 if (pgd_reg == -1) {
1076 vmalloc_branch_delay_filled = 1;
1077 /* Clear lower 23 bits of context. */
1078 uasm_i_dins(p, ptr, 0, 0, 23);
1079 }
1080 } else {
1081 if (pgd_reg != -1)
1082 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1083 else
1084 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1085
1086 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1087
1088 if (c0_scratch >= 0)
1089 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1090 else
1091 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1092
1093 if (pgd_reg == -1)
1094 /* Clear lower 23 bits of context. */
1095 uasm_i_dins(p, ptr, 0, 0, 23);
1096
1097 uasm_il_bltz(p, r, tmp, label_vmalloc);
1098 }
1099
1100 if (pgd_reg == -1) {
1101 vmalloc_branch_delay_filled = 1;
1102 /* 1 0 1 0 1 << 6 xkphys cached */
1103 uasm_i_ori(p, ptr, ptr, 0x540);
1104 uasm_i_drotr(p, ptr, ptr, 11);
1105 }
1106
1107#ifdef __PAGETABLE_PMD_FOLDED
1108#define LOC_PTEP scratch
1109#else
1110#define LOC_PTEP ptr
1111#endif
1112
1113 if (!vmalloc_branch_delay_filled)
1114 /* get pgd offset in bytes */
1115 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1116
1117 uasm_l_vmalloc_done(l, *p);
1118
1119 /*
1120 * tmp ptr
1121 * fall-through case = badvaddr *pgd_current
1122 * vmalloc case = badvaddr swapper_pg_dir
1123 */
1124
1125 if (vmalloc_branch_delay_filled)
1126 /* get pgd offset in bytes */
1127 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1128
1129#ifdef __PAGETABLE_PMD_FOLDED
1130 GET_CONTEXT(p, tmp); /* get context reg */
1131#endif
1132 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1133
1134 if (use_lwx_insns()) {
1135 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1136 } else {
1137 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1138 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1139 }
1140
1141#ifndef __PAGETABLE_PMD_FOLDED
1142 /* get pmd offset in bytes */
1143 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1144 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1145 GET_CONTEXT(p, tmp); /* get context reg */
1146
1147 if (use_lwx_insns()) {
1148 UASM_i_LWX(p, scratch, scratch, ptr);
1149 } else {
1150 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1151 UASM_i_LW(p, scratch, 0, ptr);
1152 }
1153#endif
1154 /* Adjust the context during the load latency. */
1155 build_adjust_context(p, tmp);
1156
1157#ifdef CONFIG_HUGETLB_PAGE
1158 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1159 /*
1160 * The in the LWX case we don't want to do the load in the
1161 * delay slot. It cannot issue in the same cycle and may be
1162 * speculative and unneeded.
1163 */
1164 if (use_lwx_insns())
1165 uasm_i_nop(p);
1166#endif /* CONFIG_HUGETLB_PAGE */
1167
1168
1169 /* build_update_entries */
1170 if (use_lwx_insns()) {
1171 even = ptr;
1172 odd = tmp;
1173 UASM_i_LWX(p, even, scratch, tmp);
1174 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1175 UASM_i_LWX(p, odd, scratch, tmp);
1176 } else {
1177 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1178 even = tmp;
1179 odd = ptr;
1180 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1181 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1182 }
1183 if (kernel_uses_smartmips_rixi) {
1184 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_NO_EXEC));
1185 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_NO_EXEC));
1186 uasm_i_drotr(p, even, even,
1187 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1188 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1189 uasm_i_drotr(p, odd, odd,
1190 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1191 } else {
1192 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1193 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1194 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1195 }
1196 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1197
1198 if (c0_scratch >= 0) {
1199 UASM_i_MFC0(p, scratch, 31, c0_scratch);
1200 build_tlb_write_entry(p, l, r, tlb_random);
1201 uasm_l_leave(l, *p);
1202 rv.restore_scratch = 1;
1203 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1204 build_tlb_write_entry(p, l, r, tlb_random);
1205 uasm_l_leave(l, *p);
1206 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1207 } else {
1208 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1209 build_tlb_write_entry(p, l, r, tlb_random);
1210 uasm_l_leave(l, *p);
1211 rv.restore_scratch = 1;
1212 }
1213
1214 uasm_i_eret(p); /* return from trap */
1215
1216 return rv;
1217}
1218
1219/*
1220 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1221 * because EXL == 0. If we wrap, we can also use the 32 instruction
1222 * slots before the XTLB refill exception handler which belong to the
1223 * unused TLB refill exception.
1224 */
1225#define MIPS64_REFILL_INSNS 32
1226
1227static void __cpuinit build_r4000_tlb_refill_handler(void)
1228{
1229 u32 *p = tlb_handler;
1230 struct uasm_label *l = labels;
1231 struct uasm_reloc *r = relocs;
1232 u32 *f;
1233 unsigned int final_len;
1234 struct mips_huge_tlb_info htlb_info __maybe_unused;
1235 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1236
1237 memset(tlb_handler, 0, sizeof(tlb_handler));
1238 memset(labels, 0, sizeof(labels));
1239 memset(relocs, 0, sizeof(relocs));
1240 memset(final_handler, 0, sizeof(final_handler));
1241
1242 if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1243 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1244 scratch_reg);
1245 vmalloc_mode = refill_scratch;
1246 } else {
1247 htlb_info.huge_pte = K0;
1248 htlb_info.restore_scratch = 0;
1249 vmalloc_mode = refill_noscratch;
1250 /*
1251 * create the plain linear handler
1252 */
1253 if (bcm1250_m3_war()) {
1254 unsigned int segbits = 44;
1255
1256 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1257 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1258 uasm_i_xor(&p, K0, K0, K1);
1259 uasm_i_dsrl_safe(&p, K1, K0, 62);
1260 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1261 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1262 uasm_i_or(&p, K0, K0, K1);
1263 uasm_il_bnez(&p, &r, K0, label_leave);
1264 /* No need for uasm_i_nop */
1265 }
1266
1267#ifdef CONFIG_64BIT
1268 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1269#else
1270 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1271#endif
1272
1273#ifdef CONFIG_HUGETLB_PAGE
1274 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1275#endif
1276
1277 build_get_ptep(&p, K0, K1);
1278 build_update_entries(&p, K0, K1);
1279 build_tlb_write_entry(&p, &l, &r, tlb_random);
1280 uasm_l_leave(&l, p);
1281 uasm_i_eret(&p); /* return from trap */
1282 }
1283#ifdef CONFIG_HUGETLB_PAGE
1284 uasm_l_tlb_huge_update(&l, p);
1285 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1286 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1287 htlb_info.restore_scratch);
1288#endif
1289
1290#ifdef CONFIG_64BIT
1291 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1292#endif
1293
1294 /*
1295 * Overflow check: For the 64bit handler, we need at least one
1296 * free instruction slot for the wrap-around branch. In worst
1297 * case, if the intended insertion point is a delay slot, we
1298 * need three, with the second nop'ed and the third being
1299 * unused.
1300 */
1301 /* Loongson2 ebase is different than r4k, we have more space */
1302#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1303 if ((p - tlb_handler) > 64)
1304 panic("TLB refill handler space exceeded");
1305#else
1306 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1307 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1308 && uasm_insn_has_bdelay(relocs,
1309 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1310 panic("TLB refill handler space exceeded");
1311#endif
1312
1313 /*
1314 * Now fold the handler in the TLB refill handler space.
1315 */
1316#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1317 f = final_handler;
1318 /* Simplest case, just copy the handler. */
1319 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1320 final_len = p - tlb_handler;
1321#else /* CONFIG_64BIT */
1322 f = final_handler + MIPS64_REFILL_INSNS;
1323 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1324 /* Just copy the handler. */
1325 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1326 final_len = p - tlb_handler;
1327 } else {
1328#if defined(CONFIG_HUGETLB_PAGE)
1329 const enum label_id ls = label_tlb_huge_update;
1330#else
1331 const enum label_id ls = label_vmalloc;
1332#endif
1333 u32 *split;
1334 int ov = 0;
1335 int i;
1336
1337 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1338 ;
1339 BUG_ON(i == ARRAY_SIZE(labels));
1340 split = labels[i].addr;
1341
1342 /*
1343 * See if we have overflown one way or the other.
1344 */
1345 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1346 split < p - MIPS64_REFILL_INSNS)
1347 ov = 1;
1348
1349 if (ov) {
1350 /*
1351 * Split two instructions before the end. One
1352 * for the branch and one for the instruction
1353 * in the delay slot.
1354 */
1355 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1356
1357 /*
1358 * If the branch would fall in a delay slot,
1359 * we must back up an additional instruction
1360 * so that it is no longer in a delay slot.
1361 */
1362 if (uasm_insn_has_bdelay(relocs, split - 1))
1363 split--;
1364 }
1365 /* Copy first part of the handler. */
1366 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1367 f += split - tlb_handler;
1368
1369 if (ov) {
1370 /* Insert branch. */
1371 uasm_l_split(&l, final_handler);
1372 uasm_il_b(&f, &r, label_split);
1373 if (uasm_insn_has_bdelay(relocs, split))
1374 uasm_i_nop(&f);
1375 else {
1376 uasm_copy_handler(relocs, labels,
1377 split, split + 1, f);
1378 uasm_move_labels(labels, f, f + 1, -1);
1379 f++;
1380 split++;
1381 }
1382 }
1383
1384 /* Copy the rest of the handler. */
1385 uasm_copy_handler(relocs, labels, split, p, final_handler);
1386 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1387 (p - split);
1388 }
1389#endif /* CONFIG_64BIT */
1390
1391 uasm_resolve_relocs(relocs, labels);
1392 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1393 final_len);
1394
1395 memcpy((void *)ebase, final_handler, 0x100);
1396
1397 dump_handler((u32 *)ebase, 64);
1398}
1399
1400/*
1401 * 128 instructions for the fastpath handler is generous and should
1402 * never be exceeded.
1403 */
1404#define FASTPATH_SIZE 128
1405
1406u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1407u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1408u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1409#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1410u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1411
1412static void __cpuinit build_r4000_setup_pgd(void)
1413{
1414 const int a0 = 4;
1415 const int a1 = 5;
1416 u32 *p = tlbmiss_handler_setup_pgd;
1417 struct uasm_label *l = labels;
1418 struct uasm_reloc *r = relocs;
1419
1420 memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
1421 memset(labels, 0, sizeof(labels));
1422 memset(relocs, 0, sizeof(relocs));
1423
1424 pgd_reg = allocate_kscratch();
1425
1426 if (pgd_reg == -1) {
1427 /* PGD << 11 in c0_Context */
1428 /*
1429 * If it is a ckseg0 address, convert to a physical
1430 * address. Shifting right by 29 and adding 4 will
1431 * result in zero for these addresses.
1432 *
1433 */
1434 UASM_i_SRA(&p, a1, a0, 29);
1435 UASM_i_ADDIU(&p, a1, a1, 4);
1436 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1437 uasm_i_nop(&p);
1438 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1439 uasm_l_tlbl_goaround1(&l, p);
1440 UASM_i_SLL(&p, a0, a0, 11);
1441 uasm_i_jr(&p, 31);
1442 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1443 } else {
1444 /* PGD in c0_KScratch */
1445 uasm_i_jr(&p, 31);
1446 UASM_i_MTC0(&p, a0, 31, pgd_reg);
1447 }
1448 if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
1449 panic("tlbmiss_handler_setup_pgd space exceeded");
1450 uasm_resolve_relocs(relocs, labels);
1451 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1452 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1453
1454 dump_handler(tlbmiss_handler_setup_pgd,
1455 ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1456}
1457#endif
1458
1459static void __cpuinit
1460iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1461{
1462#ifdef CONFIG_SMP
1463# ifdef CONFIG_64BIT_PHYS_ADDR
1464 if (cpu_has_64bits)
1465 uasm_i_lld(p, pte, 0, ptr);
1466 else
1467# endif
1468 UASM_i_LL(p, pte, 0, ptr);
1469#else
1470# ifdef CONFIG_64BIT_PHYS_ADDR
1471 if (cpu_has_64bits)
1472 uasm_i_ld(p, pte, 0, ptr);
1473 else
1474# endif
1475 UASM_i_LW(p, pte, 0, ptr);
1476#endif
1477}
1478
1479static void __cpuinit
1480iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1481 unsigned int mode)
1482{
1483#ifdef CONFIG_64BIT_PHYS_ADDR
1484 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1485#endif
1486
1487 uasm_i_ori(p, pte, pte, mode);
1488#ifdef CONFIG_SMP
1489# ifdef CONFIG_64BIT_PHYS_ADDR
1490 if (cpu_has_64bits)
1491 uasm_i_scd(p, pte, 0, ptr);
1492 else
1493# endif
1494 UASM_i_SC(p, pte, 0, ptr);
1495
1496 if (r10000_llsc_war())
1497 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1498 else
1499 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1500
1501# ifdef CONFIG_64BIT_PHYS_ADDR
1502 if (!cpu_has_64bits) {
1503 /* no uasm_i_nop needed */
1504 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1505 uasm_i_ori(p, pte, pte, hwmode);
1506 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1507 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1508 /* no uasm_i_nop needed */
1509 uasm_i_lw(p, pte, 0, ptr);
1510 } else
1511 uasm_i_nop(p);
1512# else
1513 uasm_i_nop(p);
1514# endif
1515#else
1516# ifdef CONFIG_64BIT_PHYS_ADDR
1517 if (cpu_has_64bits)
1518 uasm_i_sd(p, pte, 0, ptr);
1519 else
1520# endif
1521 UASM_i_SW(p, pte, 0, ptr);
1522
1523# ifdef CONFIG_64BIT_PHYS_ADDR
1524 if (!cpu_has_64bits) {
1525 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1526 uasm_i_ori(p, pte, pte, hwmode);
1527 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1528 uasm_i_lw(p, pte, 0, ptr);
1529 }
1530# endif
1531#endif
1532}
1533
1534/*
1535 * Check if PTE is present, if not then jump to LABEL. PTR points to
1536 * the page table where this PTE is located, PTE will be re-loaded
1537 * with it's original value.
1538 */
1539static void __cpuinit
1540build_pte_present(u32 **p, struct uasm_reloc **r,
1541 int pte, int ptr, int scratch, enum label_id lid)
1542{
1543 int t = scratch >= 0 ? scratch : pte;
1544
1545 if (kernel_uses_smartmips_rixi) {
1546 if (use_bbit_insns()) {
1547 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1548 uasm_i_nop(p);
1549 } else {
1550 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1551 uasm_il_beqz(p, r, t, lid);
1552 if (pte == t)
1553 /* You lose the SMP race :-(*/
1554 iPTE_LW(p, pte, ptr);
1555 }
1556 } else {
1557 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1558 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1559 uasm_il_bnez(p, r, t, lid);
1560 if (pte == t)
1561 /* You lose the SMP race :-(*/
1562 iPTE_LW(p, pte, ptr);
1563 }
1564}
1565
1566/* Make PTE valid, store result in PTR. */
1567static void __cpuinit
1568build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1569 unsigned int ptr)
1570{
1571 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1572
1573 iPTE_SW(p, r, pte, ptr, mode);
1574}
1575
1576/*
1577 * Check if PTE can be written to, if not branch to LABEL. Regardless
1578 * restore PTE with value from PTR when done.
1579 */
1580static void __cpuinit
1581build_pte_writable(u32 **p, struct uasm_reloc **r,
1582 unsigned int pte, unsigned int ptr, int scratch,
1583 enum label_id lid)
1584{
1585 int t = scratch >= 0 ? scratch : pte;
1586
1587 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1588 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1589 uasm_il_bnez(p, r, t, lid);
1590 if (pte == t)
1591 /* You lose the SMP race :-(*/
1592 iPTE_LW(p, pte, ptr);
1593 else
1594 uasm_i_nop(p);
1595}
1596
1597/* Make PTE writable, update software status bits as well, then store
1598 * at PTR.
1599 */
1600static void __cpuinit
1601build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1602 unsigned int ptr)
1603{
1604 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1605 | _PAGE_DIRTY);
1606
1607 iPTE_SW(p, r, pte, ptr, mode);
1608}
1609
1610/*
1611 * Check if PTE can be modified, if not branch to LABEL. Regardless
1612 * restore PTE with value from PTR when done.
1613 */
1614static void __cpuinit
1615build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1616 unsigned int pte, unsigned int ptr, int scratch,
1617 enum label_id lid)
1618{
1619 if (use_bbit_insns()) {
1620 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1621 uasm_i_nop(p);
1622 } else {
1623 int t = scratch >= 0 ? scratch : pte;
1624 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1625 uasm_il_beqz(p, r, t, lid);
1626 if (pte == t)
1627 /* You lose the SMP race :-(*/
1628 iPTE_LW(p, pte, ptr);
1629 }
1630}
1631
1632#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1633
1634
1635/*
1636 * R3000 style TLB load/store/modify handlers.
1637 */
1638
1639/*
1640 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1641 * Then it returns.
1642 */
1643static void __cpuinit
1644build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1645{
1646 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1647 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1648 uasm_i_tlbwi(p);
1649 uasm_i_jr(p, tmp);
1650 uasm_i_rfe(p); /* branch delay */
1651}
1652
1653/*
1654 * This places the pte into ENTRYLO0 and writes it with tlbwi
1655 * or tlbwr as appropriate. This is because the index register
1656 * may have the probe fail bit set as a result of a trap on a
1657 * kseg2 access, i.e. without refill. Then it returns.
1658 */
1659static void __cpuinit
1660build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1661 struct uasm_reloc **r, unsigned int pte,
1662 unsigned int tmp)
1663{
1664 uasm_i_mfc0(p, tmp, C0_INDEX);
1665 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1666 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1667 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1668 uasm_i_tlbwi(p); /* cp0 delay */
1669 uasm_i_jr(p, tmp);
1670 uasm_i_rfe(p); /* branch delay */
1671 uasm_l_r3000_write_probe_fail(l, *p);
1672 uasm_i_tlbwr(p); /* cp0 delay */
1673 uasm_i_jr(p, tmp);
1674 uasm_i_rfe(p); /* branch delay */
1675}
1676
1677static void __cpuinit
1678build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1679 unsigned int ptr)
1680{
1681 long pgdc = (long)pgd_current;
1682
1683 uasm_i_mfc0(p, pte, C0_BADVADDR);
1684 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1685 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1686 uasm_i_srl(p, pte, pte, 22); /* load delay */
1687 uasm_i_sll(p, pte, pte, 2);
1688 uasm_i_addu(p, ptr, ptr, pte);
1689 uasm_i_mfc0(p, pte, C0_CONTEXT);
1690 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1691 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1692 uasm_i_addu(p, ptr, ptr, pte);
1693 uasm_i_lw(p, pte, 0, ptr);
1694 uasm_i_tlbp(p); /* load delay */
1695}
1696
1697static void __cpuinit build_r3000_tlb_load_handler(void)
1698{
1699 u32 *p = handle_tlbl;
1700 struct uasm_label *l = labels;
1701 struct uasm_reloc *r = relocs;
1702
1703 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1704 memset(labels, 0, sizeof(labels));
1705 memset(relocs, 0, sizeof(relocs));
1706
1707 build_r3000_tlbchange_handler_head(&p, K0, K1);
1708 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1709 uasm_i_nop(&p); /* load delay */
1710 build_make_valid(&p, &r, K0, K1);
1711 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1712
1713 uasm_l_nopage_tlbl(&l, p);
1714 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1715 uasm_i_nop(&p);
1716
1717 if ((p - handle_tlbl) > FASTPATH_SIZE)
1718 panic("TLB load handler fastpath space exceeded");
1719
1720 uasm_resolve_relocs(relocs, labels);
1721 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1722 (unsigned int)(p - handle_tlbl));
1723
1724 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1725}
1726
1727static void __cpuinit build_r3000_tlb_store_handler(void)
1728{
1729 u32 *p = handle_tlbs;
1730 struct uasm_label *l = labels;
1731 struct uasm_reloc *r = relocs;
1732
1733 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1734 memset(labels, 0, sizeof(labels));
1735 memset(relocs, 0, sizeof(relocs));
1736
1737 build_r3000_tlbchange_handler_head(&p, K0, K1);
1738 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1739 uasm_i_nop(&p); /* load delay */
1740 build_make_write(&p, &r, K0, K1);
1741 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1742
1743 uasm_l_nopage_tlbs(&l, p);
1744 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1745 uasm_i_nop(&p);
1746
1747 if ((p - handle_tlbs) > FASTPATH_SIZE)
1748 panic("TLB store handler fastpath space exceeded");
1749
1750 uasm_resolve_relocs(relocs, labels);
1751 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1752 (unsigned int)(p - handle_tlbs));
1753
1754 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1755}
1756
1757static void __cpuinit build_r3000_tlb_modify_handler(void)
1758{
1759 u32 *p = handle_tlbm;
1760 struct uasm_label *l = labels;
1761 struct uasm_reloc *r = relocs;
1762
1763 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1764 memset(labels, 0, sizeof(labels));
1765 memset(relocs, 0, sizeof(relocs));
1766
1767 build_r3000_tlbchange_handler_head(&p, K0, K1);
1768 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1769 uasm_i_nop(&p); /* load delay */
1770 build_make_write(&p, &r, K0, K1);
1771 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1772
1773 uasm_l_nopage_tlbm(&l, p);
1774 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1775 uasm_i_nop(&p);
1776
1777 if ((p - handle_tlbm) > FASTPATH_SIZE)
1778 panic("TLB modify handler fastpath space exceeded");
1779
1780 uasm_resolve_relocs(relocs, labels);
1781 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1782 (unsigned int)(p - handle_tlbm));
1783
1784 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1785}
1786#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1787
1788/*
1789 * R4000 style TLB load/store/modify handlers.
1790 */
1791static struct work_registers __cpuinit
1792build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1793 struct uasm_reloc **r)
1794{
1795 struct work_registers wr = build_get_work_registers(p);
1796
1797#ifdef CONFIG_64BIT
1798 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1799#else
1800 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1801#endif
1802
1803#ifdef CONFIG_HUGETLB_PAGE
1804 /*
1805 * For huge tlb entries, pmd doesn't contain an address but
1806 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1807 * see if we need to jump to huge tlb processing.
1808 */
1809 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1810#endif
1811
1812 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1813 UASM_i_LW(p, wr.r2, 0, wr.r2);
1814 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1815 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1816 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1817
1818#ifdef CONFIG_SMP
1819 uasm_l_smp_pgtable_change(l, *p);
1820#endif
1821 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1822 if (!m4kc_tlbp_war())
1823 build_tlb_probe_entry(p);
1824 return wr;
1825}
1826
1827static void __cpuinit
1828build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1829 struct uasm_reloc **r, unsigned int tmp,
1830 unsigned int ptr)
1831{
1832 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1833 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1834 build_update_entries(p, tmp, ptr);
1835 build_tlb_write_entry(p, l, r, tlb_indexed);
1836 uasm_l_leave(l, *p);
1837 build_restore_work_registers(p);
1838 uasm_i_eret(p); /* return from trap */
1839
1840#ifdef CONFIG_64BIT
1841 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1842#endif
1843}
1844
1845static void __cpuinit build_r4000_tlb_load_handler(void)
1846{
1847 u32 *p = handle_tlbl;
1848 struct uasm_label *l = labels;
1849 struct uasm_reloc *r = relocs;
1850 struct work_registers wr;
1851
1852 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1853 memset(labels, 0, sizeof(labels));
1854 memset(relocs, 0, sizeof(relocs));
1855
1856 if (bcm1250_m3_war()) {
1857 unsigned int segbits = 44;
1858
1859 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1860 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1861 uasm_i_xor(&p, K0, K0, K1);
1862 uasm_i_dsrl_safe(&p, K1, K0, 62);
1863 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1864 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1865 uasm_i_or(&p, K0, K0, K1);
1866 uasm_il_bnez(&p, &r, K0, label_leave);
1867 /* No need for uasm_i_nop */
1868 }
1869
1870 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1871 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1872 if (m4kc_tlbp_war())
1873 build_tlb_probe_entry(&p);
1874
1875 if (kernel_uses_smartmips_rixi) {
1876 /*
1877 * If the page is not _PAGE_VALID, RI or XI could not
1878 * have triggered it. Skip the expensive test..
1879 */
1880 if (use_bbit_insns()) {
1881 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1882 label_tlbl_goaround1);
1883 } else {
1884 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1885 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1886 }
1887 uasm_i_nop(&p);
1888
1889 uasm_i_tlbr(&p);
1890 /* Examine entrylo 0 or 1 based on ptr. */
1891 if (use_bbit_insns()) {
1892 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1893 } else {
1894 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1895 uasm_i_beqz(&p, wr.r3, 8);
1896 }
1897 /* load it in the delay slot*/
1898 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1899 /* load it if ptr is odd */
1900 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1901 /*
1902 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1903 * XI must have triggered it.
1904 */
1905 if (use_bbit_insns()) {
1906 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1907 uasm_i_nop(&p);
1908 uasm_l_tlbl_goaround1(&l, p);
1909 } else {
1910 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1911 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1912 uasm_i_nop(&p);
1913 }
1914 uasm_l_tlbl_goaround1(&l, p);
1915 }
1916 build_make_valid(&p, &r, wr.r1, wr.r2);
1917 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1918
1919#ifdef CONFIG_HUGETLB_PAGE
1920 /*
1921 * This is the entry point when build_r4000_tlbchange_handler_head
1922 * spots a huge page.
1923 */
1924 uasm_l_tlb_huge_update(&l, p);
1925 iPTE_LW(&p, wr.r1, wr.r2);
1926 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1927 build_tlb_probe_entry(&p);
1928
1929 if (kernel_uses_smartmips_rixi) {
1930 /*
1931 * If the page is not _PAGE_VALID, RI or XI could not
1932 * have triggered it. Skip the expensive test..
1933 */
1934 if (use_bbit_insns()) {
1935 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1936 label_tlbl_goaround2);
1937 } else {
1938 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1939 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1940 }
1941 uasm_i_nop(&p);
1942
1943 uasm_i_tlbr(&p);
1944 /* Examine entrylo 0 or 1 based on ptr. */
1945 if (use_bbit_insns()) {
1946 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1947 } else {
1948 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1949 uasm_i_beqz(&p, wr.r3, 8);
1950 }
1951 /* load it in the delay slot*/
1952 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1953 /* load it if ptr is odd */
1954 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1955 /*
1956 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1957 * XI must have triggered it.
1958 */
1959 if (use_bbit_insns()) {
1960 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
1961 } else {
1962 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1963 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1964 }
1965 if (PM_DEFAULT_MASK == 0)
1966 uasm_i_nop(&p);
1967 /*
1968 * We clobbered C0_PAGEMASK, restore it. On the other branch
1969 * it is restored in build_huge_tlb_write_entry.
1970 */
1971 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
1972
1973 uasm_l_tlbl_goaround2(&l, p);
1974 }
1975 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
1976 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
1977#endif
1978
1979 uasm_l_nopage_tlbl(&l, p);
1980 build_restore_work_registers(&p);
1981 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1982 uasm_i_nop(&p);
1983
1984 if ((p - handle_tlbl) > FASTPATH_SIZE)
1985 panic("TLB load handler fastpath space exceeded");
1986
1987 uasm_resolve_relocs(relocs, labels);
1988 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1989 (unsigned int)(p - handle_tlbl));
1990
1991 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1992}
1993
1994static void __cpuinit build_r4000_tlb_store_handler(void)
1995{
1996 u32 *p = handle_tlbs;
1997 struct uasm_label *l = labels;
1998 struct uasm_reloc *r = relocs;
1999 struct work_registers wr;
2000
2001 memset(handle_tlbs, 0, sizeof(handle_tlbs));
2002 memset(labels, 0, sizeof(labels));
2003 memset(relocs, 0, sizeof(relocs));
2004
2005 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2006 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2007 if (m4kc_tlbp_war())
2008 build_tlb_probe_entry(&p);
2009 build_make_write(&p, &r, wr.r1, wr.r2);
2010 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2011
2012#ifdef CONFIG_HUGETLB_PAGE
2013 /*
2014 * This is the entry point when
2015 * build_r4000_tlbchange_handler_head spots a huge page.
2016 */
2017 uasm_l_tlb_huge_update(&l, p);
2018 iPTE_LW(&p, wr.r1, wr.r2);
2019 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2020 build_tlb_probe_entry(&p);
2021 uasm_i_ori(&p, wr.r1, wr.r1,
2022 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2023 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2024#endif
2025
2026 uasm_l_nopage_tlbs(&l, p);
2027 build_restore_work_registers(&p);
2028 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2029 uasm_i_nop(&p);
2030
2031 if ((p - handle_tlbs) > FASTPATH_SIZE)
2032 panic("TLB store handler fastpath space exceeded");
2033
2034 uasm_resolve_relocs(relocs, labels);
2035 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2036 (unsigned int)(p - handle_tlbs));
2037
2038 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
2039}
2040
2041static void __cpuinit build_r4000_tlb_modify_handler(void)
2042{
2043 u32 *p = handle_tlbm;
2044 struct uasm_label *l = labels;
2045 struct uasm_reloc *r = relocs;
2046 struct work_registers wr;
2047
2048 memset(handle_tlbm, 0, sizeof(handle_tlbm));
2049 memset(labels, 0, sizeof(labels));
2050 memset(relocs, 0, sizeof(relocs));
2051
2052 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2053 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2054 if (m4kc_tlbp_war())
2055 build_tlb_probe_entry(&p);
2056 /* Present and writable bits set, set accessed and dirty bits. */
2057 build_make_write(&p, &r, wr.r1, wr.r2);
2058 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2059
2060#ifdef CONFIG_HUGETLB_PAGE
2061 /*
2062 * This is the entry point when
2063 * build_r4000_tlbchange_handler_head spots a huge page.
2064 */
2065 uasm_l_tlb_huge_update(&l, p);
2066 iPTE_LW(&p, wr.r1, wr.r2);
2067 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2068 build_tlb_probe_entry(&p);
2069 uasm_i_ori(&p, wr.r1, wr.r1,
2070 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2071 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2072#endif
2073
2074 uasm_l_nopage_tlbm(&l, p);
2075 build_restore_work_registers(&p);
2076 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2077 uasm_i_nop(&p);
2078
2079 if ((p - handle_tlbm) > FASTPATH_SIZE)
2080 panic("TLB modify handler fastpath space exceeded");
2081
2082 uasm_resolve_relocs(relocs, labels);
2083 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2084 (unsigned int)(p - handle_tlbm));
2085
2086 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
2087}
2088
2089void __cpuinit build_tlb_refill_handler(void)
2090{
2091 /*
2092 * The refill handler is generated per-CPU, multi-node systems
2093 * may have local storage for it. The other handlers are only
2094 * needed once.
2095 */
2096 static int run_once = 0;
2097
2098#ifdef CONFIG_64BIT
2099 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2100#endif
2101
2102 switch (current_cpu_type()) {
2103 case CPU_R2000:
2104 case CPU_R3000:
2105 case CPU_R3000A:
2106 case CPU_R3081E:
2107 case CPU_TX3912:
2108 case CPU_TX3922:
2109 case CPU_TX3927:
2110#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2111 build_r3000_tlb_refill_handler();
2112 if (!run_once) {
2113 build_r3000_tlb_load_handler();
2114 build_r3000_tlb_store_handler();
2115 build_r3000_tlb_modify_handler();
2116 run_once++;
2117 }
2118#else
2119 panic("No R3000 TLB refill handler");
2120#endif
2121 break;
2122
2123 case CPU_R6000:
2124 case CPU_R6000A:
2125 panic("No R6000 TLB refill handler yet");
2126 break;
2127
2128 case CPU_R8000:
2129 panic("No R8000 TLB refill handler yet");
2130 break;
2131
2132 default:
2133 if (!run_once) {
2134 scratch_reg = allocate_kscratch();
2135#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2136 build_r4000_setup_pgd();
2137#endif
2138 build_r4000_tlb_load_handler();
2139 build_r4000_tlb_store_handler();
2140 build_r4000_tlb_modify_handler();
2141 run_once++;
2142 }
2143 build_r4000_tlb_refill_handler();
2144 }
2145}
2146
2147void __cpuinit flush_tlb_handlers(void)
2148{
2149 local_flush_icache_range((unsigned long)handle_tlbl,
2150 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2151 local_flush_icache_range((unsigned long)handle_tlbs,
2152 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2153 local_flush_icache_range((unsigned long)handle_tlbm,
2154 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2155#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2156 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2157 (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2158#endif
2159}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completely out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/export.h>
26#include <linux/kernel.h>
27#include <linux/types.h>
28#include <linux/smp.h>
29#include <linux/string.h>
30#include <linux/cache.h>
31#include <linux/pgtable.h>
32
33#include <asm/cacheflush.h>
34#include <asm/cpu-type.h>
35#include <asm/mmu_context.h>
36#include <asm/war.h>
37#include <asm/uasm.h>
38#include <asm/setup.h>
39#include <asm/tlbex.h>
40
41static int mips_xpa_disabled;
42
43static int __init xpa_disable(char *s)
44{
45 mips_xpa_disabled = 1;
46
47 return 1;
48}
49
50__setup("noxpa", xpa_disable);
51
52/*
53 * TLB load/store/modify handlers.
54 *
55 * Only the fastpath gets synthesized at runtime, the slowpath for
56 * do_page_fault remains normal asm.
57 */
58extern void tlb_do_page_fault_0(void);
59extern void tlb_do_page_fault_1(void);
60
61struct work_registers {
62 int r1;
63 int r2;
64 int r3;
65};
66
67struct tlb_reg_save {
68 unsigned long a;
69 unsigned long b;
70} ____cacheline_aligned_in_smp;
71
72static struct tlb_reg_save handler_reg_save[NR_CPUS];
73
74static inline int r45k_bvahwbug(void)
75{
76 /* XXX: We should probe for the presence of this bug, but we don't. */
77 return 0;
78}
79
80static inline int r4k_250MHZhwbug(void)
81{
82 /* XXX: We should probe for the presence of this bug, but we don't. */
83 return 0;
84}
85
86extern int sb1250_m3_workaround_needed(void);
87
88static inline int __maybe_unused bcm1250_m3_war(void)
89{
90 if (IS_ENABLED(CONFIG_SB1_PASS_2_WORKAROUNDS))
91 return sb1250_m3_workaround_needed();
92 return 0;
93}
94
95static inline int __maybe_unused r10000_llsc_war(void)
96{
97 return IS_ENABLED(CONFIG_WAR_R10000_LLSC);
98}
99
100static int use_bbit_insns(void)
101{
102 switch (current_cpu_type()) {
103 case CPU_CAVIUM_OCTEON:
104 case CPU_CAVIUM_OCTEON_PLUS:
105 case CPU_CAVIUM_OCTEON2:
106 case CPU_CAVIUM_OCTEON3:
107 return 1;
108 default:
109 return 0;
110 }
111}
112
113static int use_lwx_insns(void)
114{
115 switch (current_cpu_type()) {
116 case CPU_CAVIUM_OCTEON2:
117 case CPU_CAVIUM_OCTEON3:
118 return 1;
119 default:
120 return 0;
121 }
122}
123#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
124 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
125static bool scratchpad_available(void)
126{
127 return true;
128}
129static int scratchpad_offset(int i)
130{
131 /*
132 * CVMSEG starts at address -32768 and extends for
133 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
134 */
135 i += 1; /* Kernel use starts at the top and works down. */
136 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
137}
138#else
139static bool scratchpad_available(void)
140{
141 return false;
142}
143static int scratchpad_offset(int i)
144{
145 BUG();
146 /* Really unreachable, but evidently some GCC want this. */
147 return 0;
148}
149#endif
150/*
151 * Found by experiment: At least some revisions of the 4kc throw under
152 * some circumstances a machine check exception, triggered by invalid
153 * values in the index register. Delaying the tlbp instruction until
154 * after the next branch, plus adding an additional nop in front of
155 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
156 * why; it's not an issue caused by the core RTL.
157 *
158 */
159static int m4kc_tlbp_war(void)
160{
161 return current_cpu_type() == CPU_4KC;
162}
163
164/* Handle labels (which must be positive integers). */
165enum label_id {
166 label_second_part = 1,
167 label_leave,
168 label_vmalloc,
169 label_vmalloc_done,
170 label_tlbw_hazard_0,
171 label_split = label_tlbw_hazard_0 + 8,
172 label_tlbl_goaround1,
173 label_tlbl_goaround2,
174 label_nopage_tlbl,
175 label_nopage_tlbs,
176 label_nopage_tlbm,
177 label_smp_pgtable_change,
178 label_r3000_write_probe_fail,
179 label_large_segbits_fault,
180#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 label_tlb_huge_update,
182#endif
183};
184
185UASM_L_LA(_second_part)
186UASM_L_LA(_leave)
187UASM_L_LA(_vmalloc)
188UASM_L_LA(_vmalloc_done)
189/* _tlbw_hazard_x is handled differently. */
190UASM_L_LA(_split)
191UASM_L_LA(_tlbl_goaround1)
192UASM_L_LA(_tlbl_goaround2)
193UASM_L_LA(_nopage_tlbl)
194UASM_L_LA(_nopage_tlbs)
195UASM_L_LA(_nopage_tlbm)
196UASM_L_LA(_smp_pgtable_change)
197UASM_L_LA(_r3000_write_probe_fail)
198UASM_L_LA(_large_segbits_fault)
199#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
200UASM_L_LA(_tlb_huge_update)
201#endif
202
203static int hazard_instance;
204
205static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
206{
207 switch (instance) {
208 case 0 ... 7:
209 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
210 return;
211 default:
212 BUG();
213 }
214}
215
216static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
217{
218 switch (instance) {
219 case 0 ... 7:
220 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
221 break;
222 default:
223 BUG();
224 }
225}
226
227/*
228 * pgtable bits are assigned dynamically depending on processor feature
229 * and statically based on kernel configuration. This spits out the actual
230 * values the kernel is using. Required to make sense from disassembled
231 * TLB exception handlers.
232 */
233static void output_pgtable_bits_defines(void)
234{
235#define pr_define(fmt, ...) \
236 pr_debug("#define " fmt, ##__VA_ARGS__)
237
238 pr_debug("#include <asm/asm.h>\n");
239 pr_debug("#include <asm/regdef.h>\n");
240 pr_debug("\n");
241
242 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
243 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
244 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
245 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
246 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
247#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
248 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
249#endif
250#ifdef _PAGE_NO_EXEC_SHIFT
251 if (cpu_has_rixi)
252 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
253#endif
254 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
255 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
256 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
257 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
258 pr_debug("\n");
259}
260
261static inline void dump_handler(const char *symbol, const void *start, const void *end)
262{
263 unsigned int count = (end - start) / sizeof(u32);
264 const u32 *handler = start;
265 int i;
266
267 pr_debug("LEAF(%s)\n", symbol);
268
269 pr_debug("\t.set push\n");
270 pr_debug("\t.set noreorder\n");
271
272 for (i = 0; i < count; i++)
273 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
274
275 pr_debug("\t.set\tpop\n");
276
277 pr_debug("\tEND(%s)\n", symbol);
278}
279
280/* The only general purpose registers allowed in TLB handlers. */
281#define K0 26
282#define K1 27
283
284/* Some CP0 registers */
285#define C0_INDEX 0, 0
286#define C0_ENTRYLO0 2, 0
287#define C0_TCBIND 2, 2
288#define C0_ENTRYLO1 3, 0
289#define C0_CONTEXT 4, 0
290#define C0_PAGEMASK 5, 0
291#define C0_PWBASE 5, 5
292#define C0_PWFIELD 5, 6
293#define C0_PWSIZE 5, 7
294#define C0_PWCTL 6, 6
295#define C0_BADVADDR 8, 0
296#define C0_PGD 9, 7
297#define C0_ENTRYHI 10, 0
298#define C0_EPC 14, 0
299#define C0_XCONTEXT 20, 0
300
301#ifdef CONFIG_64BIT
302# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
303#else
304# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
305#endif
306
307/* The worst case length of the handler is around 18 instructions for
308 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
309 * Maximum space available is 32 instructions for R3000 and 64
310 * instructions for R4000.
311 *
312 * We deliberately chose a buffer size of 128, so we won't scribble
313 * over anything important on overflow before we panic.
314 */
315static u32 tlb_handler[128];
316
317/* simply assume worst case size for labels and relocs */
318static struct uasm_label labels[128];
319static struct uasm_reloc relocs[128];
320
321static int check_for_high_segbits;
322static bool fill_includes_sw_bits;
323
324static unsigned int kscratch_used_mask;
325
326static inline int __maybe_unused c0_kscratch(void)
327{
328 switch (current_cpu_type()) {
329 case CPU_XLP:
330 case CPU_XLR:
331 return 22;
332 default:
333 return 31;
334 }
335}
336
337static int allocate_kscratch(void)
338{
339 int r;
340 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
341
342 r = ffs(a);
343
344 if (r == 0)
345 return -1;
346
347 r--; /* make it zero based */
348
349 kscratch_used_mask |= (1 << r);
350
351 return r;
352}
353
354static int scratch_reg;
355int pgd_reg;
356EXPORT_SYMBOL_GPL(pgd_reg);
357enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
358
359static struct work_registers build_get_work_registers(u32 **p)
360{
361 struct work_registers r;
362
363 if (scratch_reg >= 0) {
364 /* Save in CPU local C0_KScratch? */
365 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
366 r.r1 = K0;
367 r.r2 = K1;
368 r.r3 = 1;
369 return r;
370 }
371
372 if (num_possible_cpus() > 1) {
373 /* Get smp_processor_id */
374 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
375 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
376
377 /* handler_reg_save index in K0 */
378 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
379
380 UASM_i_LA(p, K1, (long)&handler_reg_save);
381 UASM_i_ADDU(p, K0, K0, K1);
382 } else {
383 UASM_i_LA(p, K0, (long)&handler_reg_save);
384 }
385 /* K0 now points to save area, save $1 and $2 */
386 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
387 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
388
389 r.r1 = K1;
390 r.r2 = 1;
391 r.r3 = 2;
392 return r;
393}
394
395static void build_restore_work_registers(u32 **p)
396{
397 if (scratch_reg >= 0) {
398 uasm_i_ehb(p);
399 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
400 return;
401 }
402 /* K0 already points to save area, restore $1 and $2 */
403 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
404 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
405}
406
407#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
408
409/*
410 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
411 * we cannot do r3000 under these circumstances.
412 *
413 * The R3000 TLB handler is simple.
414 */
415static void build_r3000_tlb_refill_handler(void)
416{
417 long pgdc = (long)pgd_current;
418 u32 *p;
419
420 memset(tlb_handler, 0, sizeof(tlb_handler));
421 p = tlb_handler;
422
423 uasm_i_mfc0(&p, K0, C0_BADVADDR);
424 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
425 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
426 uasm_i_srl(&p, K0, K0, 22); /* load delay */
427 uasm_i_sll(&p, K0, K0, 2);
428 uasm_i_addu(&p, K1, K1, K0);
429 uasm_i_mfc0(&p, K0, C0_CONTEXT);
430 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
431 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
432 uasm_i_addu(&p, K1, K1, K0);
433 uasm_i_lw(&p, K0, 0, K1);
434 uasm_i_nop(&p); /* load delay */
435 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
436 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
437 uasm_i_tlbwr(&p); /* cp0 delay */
438 uasm_i_jr(&p, K1);
439 uasm_i_rfe(&p); /* branch delay */
440
441 if (p > tlb_handler + 32)
442 panic("TLB refill handler space exceeded");
443
444 pr_debug("Wrote TLB refill handler (%u instructions).\n",
445 (unsigned int)(p - tlb_handler));
446
447 memcpy((void *)ebase, tlb_handler, 0x80);
448 local_flush_icache_range(ebase, ebase + 0x80);
449 dump_handler("r3000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x80));
450}
451#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
452
453/*
454 * The R4000 TLB handler is much more complicated. We have two
455 * consecutive handler areas with 32 instructions space each.
456 * Since they aren't used at the same time, we can overflow in the
457 * other one.To keep things simple, we first assume linear space,
458 * then we relocate it to the final handler layout as needed.
459 */
460static u32 final_handler[64];
461
462/*
463 * Hazards
464 *
465 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
466 * 2. A timing hazard exists for the TLBP instruction.
467 *
468 * stalling_instruction
469 * TLBP
470 *
471 * The JTLB is being read for the TLBP throughout the stall generated by the
472 * previous instruction. This is not really correct as the stalling instruction
473 * can modify the address used to access the JTLB. The failure symptom is that
474 * the TLBP instruction will use an address created for the stalling instruction
475 * and not the address held in C0_ENHI and thus report the wrong results.
476 *
477 * The software work-around is to not allow the instruction preceding the TLBP
478 * to stall - make it an NOP or some other instruction guaranteed not to stall.
479 *
480 * Errata 2 will not be fixed. This errata is also on the R5000.
481 *
482 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
483 */
484static void __maybe_unused build_tlb_probe_entry(u32 **p)
485{
486 switch (current_cpu_type()) {
487 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
488 case CPU_R4600:
489 case CPU_R4700:
490 case CPU_R5000:
491 case CPU_NEVADA:
492 uasm_i_nop(p);
493 uasm_i_tlbp(p);
494 break;
495
496 default:
497 uasm_i_tlbp(p);
498 break;
499 }
500}
501
502void build_tlb_write_entry(u32 **p, struct uasm_label **l,
503 struct uasm_reloc **r,
504 enum tlb_write_entry wmode)
505{
506 void(*tlbw)(u32 **) = NULL;
507
508 switch (wmode) {
509 case tlb_random: tlbw = uasm_i_tlbwr; break;
510 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
511 }
512
513 if (cpu_has_mips_r2_r6) {
514 if (cpu_has_mips_r2_exec_hazard)
515 uasm_i_ehb(p);
516 tlbw(p);
517 return;
518 }
519
520 switch (current_cpu_type()) {
521 case CPU_R4000PC:
522 case CPU_R4000SC:
523 case CPU_R4000MC:
524 case CPU_R4400PC:
525 case CPU_R4400SC:
526 case CPU_R4400MC:
527 /*
528 * This branch uses up a mtc0 hazard nop slot and saves
529 * two nops after the tlbw instruction.
530 */
531 uasm_bgezl_hazard(p, r, hazard_instance);
532 tlbw(p);
533 uasm_bgezl_label(l, p, hazard_instance);
534 hazard_instance++;
535 uasm_i_nop(p);
536 break;
537
538 case CPU_R4600:
539 case CPU_R4700:
540 uasm_i_nop(p);
541 tlbw(p);
542 uasm_i_nop(p);
543 break;
544
545 case CPU_R5000:
546 case CPU_NEVADA:
547 uasm_i_nop(p); /* QED specifies 2 nops hazard */
548 uasm_i_nop(p); /* QED specifies 2 nops hazard */
549 tlbw(p);
550 break;
551
552 case CPU_R4300:
553 case CPU_5KC:
554 case CPU_TX49XX:
555 case CPU_PR4450:
556 case CPU_XLR:
557 uasm_i_nop(p);
558 tlbw(p);
559 break;
560
561 case CPU_R10000:
562 case CPU_R12000:
563 case CPU_R14000:
564 case CPU_R16000:
565 case CPU_4KC:
566 case CPU_4KEC:
567 case CPU_M14KC:
568 case CPU_M14KEC:
569 case CPU_SB1:
570 case CPU_SB1A:
571 case CPU_4KSC:
572 case CPU_20KC:
573 case CPU_25KF:
574 case CPU_BMIPS32:
575 case CPU_BMIPS3300:
576 case CPU_BMIPS4350:
577 case CPU_BMIPS4380:
578 case CPU_BMIPS5000:
579 case CPU_LOONGSON2EF:
580 case CPU_LOONGSON64:
581 case CPU_R5500:
582 if (m4kc_tlbp_war())
583 uasm_i_nop(p);
584 fallthrough;
585 case CPU_ALCHEMY:
586 tlbw(p);
587 break;
588
589 case CPU_RM7000:
590 uasm_i_nop(p);
591 uasm_i_nop(p);
592 uasm_i_nop(p);
593 uasm_i_nop(p);
594 tlbw(p);
595 break;
596
597 case CPU_VR4111:
598 case CPU_VR4121:
599 case CPU_VR4122:
600 case CPU_VR4181:
601 case CPU_VR4181A:
602 uasm_i_nop(p);
603 uasm_i_nop(p);
604 tlbw(p);
605 uasm_i_nop(p);
606 uasm_i_nop(p);
607 break;
608
609 case CPU_VR4131:
610 case CPU_VR4133:
611 uasm_i_nop(p);
612 uasm_i_nop(p);
613 tlbw(p);
614 break;
615
616 case CPU_XBURST:
617 tlbw(p);
618 uasm_i_nop(p);
619 break;
620
621 default:
622 panic("No TLB refill handler yet (CPU type: %d)",
623 current_cpu_type());
624 break;
625 }
626}
627EXPORT_SYMBOL_GPL(build_tlb_write_entry);
628
629static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
630 unsigned int reg)
631{
632 if (_PAGE_GLOBAL_SHIFT == 0) {
633 /* pte_t is already in EntryLo format */
634 return;
635 }
636
637 if (cpu_has_rixi && !!_PAGE_NO_EXEC) {
638 if (fill_includes_sw_bits) {
639 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
640 } else {
641 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
642 UASM_i_ROTR(p, reg, reg,
643 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
644 }
645 } else {
646#ifdef CONFIG_PHYS_ADDR_T_64BIT
647 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
648#else
649 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
650#endif
651 }
652}
653
654#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
655
656static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
657 unsigned int tmp, enum label_id lid,
658 int restore_scratch)
659{
660 if (restore_scratch) {
661 /*
662 * Ensure the MFC0 below observes the value written to the
663 * KScratch register by the prior MTC0.
664 */
665 if (scratch_reg >= 0)
666 uasm_i_ehb(p);
667
668 /* Reset default page size */
669 if (PM_DEFAULT_MASK >> 16) {
670 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
671 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
672 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
673 uasm_il_b(p, r, lid);
674 } else if (PM_DEFAULT_MASK) {
675 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
676 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
677 uasm_il_b(p, r, lid);
678 } else {
679 uasm_i_mtc0(p, 0, C0_PAGEMASK);
680 uasm_il_b(p, r, lid);
681 }
682 if (scratch_reg >= 0)
683 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
684 else
685 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
686 } else {
687 /* Reset default page size */
688 if (PM_DEFAULT_MASK >> 16) {
689 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
690 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
691 uasm_il_b(p, r, lid);
692 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
693 } else if (PM_DEFAULT_MASK) {
694 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
695 uasm_il_b(p, r, lid);
696 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
697 } else {
698 uasm_il_b(p, r, lid);
699 uasm_i_mtc0(p, 0, C0_PAGEMASK);
700 }
701 }
702}
703
704static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
705 struct uasm_reloc **r,
706 unsigned int tmp,
707 enum tlb_write_entry wmode,
708 int restore_scratch)
709{
710 /* Set huge page tlb entry size */
711 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
712 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
713 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
714
715 build_tlb_write_entry(p, l, r, wmode);
716
717 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
718}
719
720/*
721 * Check if Huge PTE is present, if so then jump to LABEL.
722 */
723static void
724build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
725 unsigned int pmd, int lid)
726{
727 UASM_i_LW(p, tmp, 0, pmd);
728 if (use_bbit_insns()) {
729 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
730 } else {
731 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
732 uasm_il_bnez(p, r, tmp, lid);
733 }
734}
735
736static void build_huge_update_entries(u32 **p, unsigned int pte,
737 unsigned int tmp)
738{
739 int small_sequence;
740
741 /*
742 * A huge PTE describes an area the size of the
743 * configured huge page size. This is twice the
744 * of the large TLB entry size we intend to use.
745 * A TLB entry half the size of the configured
746 * huge page size is configured into entrylo0
747 * and entrylo1 to cover the contiguous huge PTE
748 * address space.
749 */
750 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
751
752 /* We can clobber tmp. It isn't used after this.*/
753 if (!small_sequence)
754 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
755
756 build_convert_pte_to_entrylo(p, pte);
757 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
758 /* convert to entrylo1 */
759 if (small_sequence)
760 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
761 else
762 UASM_i_ADDU(p, pte, pte, tmp);
763
764 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
765}
766
767static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
768 struct uasm_label **l,
769 unsigned int pte,
770 unsigned int ptr,
771 unsigned int flush)
772{
773#ifdef CONFIG_SMP
774 UASM_i_SC(p, pte, 0, ptr);
775 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
776 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
777#else
778 UASM_i_SW(p, pte, 0, ptr);
779#endif
780 if (cpu_has_ftlb && flush) {
781 BUG_ON(!cpu_has_tlbinv);
782
783 UASM_i_MFC0(p, ptr, C0_ENTRYHI);
784 uasm_i_ori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
785 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
786 build_tlb_write_entry(p, l, r, tlb_indexed);
787
788 uasm_i_xori(p, ptr, ptr, MIPS_ENTRYHI_EHINV);
789 UASM_i_MTC0(p, ptr, C0_ENTRYHI);
790 build_huge_update_entries(p, pte, ptr);
791 build_huge_tlb_write_entry(p, l, r, pte, tlb_random, 0);
792
793 return;
794 }
795
796 build_huge_update_entries(p, pte, ptr);
797 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
798}
799#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
800
801#ifdef CONFIG_64BIT
802/*
803 * TMP and PTR are scratch.
804 * TMP will be clobbered, PTR will hold the pmd entry.
805 */
806void build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
807 unsigned int tmp, unsigned int ptr)
808{
809#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
810 long pgdc = (long)pgd_current;
811#endif
812 /*
813 * The vmalloc handling is not in the hotpath.
814 */
815 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
816
817 if (check_for_high_segbits) {
818 /*
819 * The kernel currently implicitely assumes that the
820 * MIPS SEGBITS parameter for the processor is
821 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
822 * allocate virtual addresses outside the maximum
823 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
824 * that doesn't prevent user code from accessing the
825 * higher xuseg addresses. Here, we make sure that
826 * everything but the lower xuseg addresses goes down
827 * the module_alloc/vmalloc path.
828 */
829 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
830 uasm_il_bnez(p, r, ptr, label_vmalloc);
831 } else {
832 uasm_il_bltz(p, r, tmp, label_vmalloc);
833 }
834 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
835
836 if (pgd_reg != -1) {
837 /* pgd is in pgd_reg */
838 if (cpu_has_ldpte)
839 UASM_i_MFC0(p, ptr, C0_PWBASE);
840 else
841 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
842 } else {
843#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
844 /*
845 * &pgd << 11 stored in CONTEXT [23..63].
846 */
847 UASM_i_MFC0(p, ptr, C0_CONTEXT);
848
849 /* Clear lower 23 bits of context. */
850 uasm_i_dins(p, ptr, 0, 0, 23);
851
852 /* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
853 uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
854 uasm_i_drotr(p, ptr, ptr, 11);
855#elif defined(CONFIG_SMP)
856 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
857 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
858 UASM_i_LA_mostly(p, tmp, pgdc);
859 uasm_i_daddu(p, ptr, ptr, tmp);
860 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
861 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
862#else
863 UASM_i_LA_mostly(p, ptr, pgdc);
864 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
865#endif
866 }
867
868 uasm_l_vmalloc_done(l, *p);
869
870 /* get pgd offset in bytes */
871 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
872
873 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
874 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
875#ifndef __PAGETABLE_PUD_FOLDED
876 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
877 uasm_i_ld(p, ptr, 0, ptr); /* get pud pointer */
878 uasm_i_dsrl_safe(p, tmp, tmp, PUD_SHIFT - 3); /* get pud offset in bytes */
879 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PUD - 1) << 3);
880 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pud offset */
881#endif
882#ifndef __PAGETABLE_PMD_FOLDED
883 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
884 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
885 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
886 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
887 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
888#endif
889}
890EXPORT_SYMBOL_GPL(build_get_pmde64);
891
892/*
893 * BVADDR is the faulting address, PTR is scratch.
894 * PTR will hold the pgd for vmalloc.
895 */
896static void
897build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
898 unsigned int bvaddr, unsigned int ptr,
899 enum vmalloc64_mode mode)
900{
901 long swpd = (long)swapper_pg_dir;
902 int single_insn_swpd;
903 int did_vmalloc_branch = 0;
904
905 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
906
907 uasm_l_vmalloc(l, *p);
908
909 if (mode != not_refill && check_for_high_segbits) {
910 if (single_insn_swpd) {
911 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
912 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
913 did_vmalloc_branch = 1;
914 /* fall through */
915 } else {
916 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
917 }
918 }
919 if (!did_vmalloc_branch) {
920 if (single_insn_swpd) {
921 uasm_il_b(p, r, label_vmalloc_done);
922 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
923 } else {
924 UASM_i_LA_mostly(p, ptr, swpd);
925 uasm_il_b(p, r, label_vmalloc_done);
926 if (uasm_in_compat_space_p(swpd))
927 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
928 else
929 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
930 }
931 }
932 if (mode != not_refill && check_for_high_segbits) {
933 uasm_l_large_segbits_fault(l, *p);
934
935 if (mode == refill_scratch && scratch_reg >= 0)
936 uasm_i_ehb(p);
937
938 /*
939 * We get here if we are an xsseg address, or if we are
940 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
941 *
942 * Ignoring xsseg (assume disabled so would generate
943 * (address errors?), the only remaining possibility
944 * is the upper xuseg addresses. On processors with
945 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
946 * addresses would have taken an address error. We try
947 * to mimic that here by taking a load/istream page
948 * fault.
949 */
950 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
951 uasm_i_sync(p, 0);
952 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
953 uasm_i_jr(p, ptr);
954
955 if (mode == refill_scratch) {
956 if (scratch_reg >= 0)
957 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
958 else
959 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
960 } else {
961 uasm_i_nop(p);
962 }
963 }
964}
965
966#else /* !CONFIG_64BIT */
967
968/*
969 * TMP and PTR are scratch.
970 * TMP will be clobbered, PTR will hold the pgd entry.
971 */
972void build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
973{
974 if (pgd_reg != -1) {
975 /* pgd is in pgd_reg */
976 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
977 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
978 } else {
979 long pgdc = (long)pgd_current;
980
981 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
982#ifdef CONFIG_SMP
983 uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
984 UASM_i_LA_mostly(p, tmp, pgdc);
985 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
986 uasm_i_addu(p, ptr, tmp, ptr);
987#else
988 UASM_i_LA_mostly(p, ptr, pgdc);
989#endif
990 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
991 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
992 }
993 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
994 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
995 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
996}
997EXPORT_SYMBOL_GPL(build_get_pgde32);
998
999#endif /* !CONFIG_64BIT */
1000
1001static void build_adjust_context(u32 **p, unsigned int ctx)
1002{
1003 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
1004 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1005
1006 switch (current_cpu_type()) {
1007 case CPU_VR41XX:
1008 case CPU_VR4111:
1009 case CPU_VR4121:
1010 case CPU_VR4122:
1011 case CPU_VR4131:
1012 case CPU_VR4181:
1013 case CPU_VR4181A:
1014 case CPU_VR4133:
1015 shift += 2;
1016 break;
1017
1018 default:
1019 break;
1020 }
1021
1022 if (shift)
1023 UASM_i_SRL(p, ctx, ctx, shift);
1024 uasm_i_andi(p, ctx, ctx, mask);
1025}
1026
1027void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1028{
1029 /*
1030 * Bug workaround for the Nevada. It seems as if under certain
1031 * circumstances the move from cp0_context might produce a
1032 * bogus result when the mfc0 instruction and its consumer are
1033 * in a different cacheline or a load instruction, probably any
1034 * memory reference, is between them.
1035 */
1036 switch (current_cpu_type()) {
1037 case CPU_NEVADA:
1038 UASM_i_LW(p, ptr, 0, ptr);
1039 GET_CONTEXT(p, tmp); /* get context reg */
1040 break;
1041
1042 default:
1043 GET_CONTEXT(p, tmp); /* get context reg */
1044 UASM_i_LW(p, ptr, 0, ptr);
1045 break;
1046 }
1047
1048 build_adjust_context(p, tmp);
1049 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1050}
1051EXPORT_SYMBOL_GPL(build_get_ptep);
1052
1053void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1054{
1055 int pte_off_even = 0;
1056 int pte_off_odd = sizeof(pte_t);
1057
1058#if defined(CONFIG_CPU_MIPS32) && defined(CONFIG_PHYS_ADDR_T_64BIT)
1059 /* The low 32 bits of EntryLo is stored in pte_high */
1060 pte_off_even += offsetof(pte_t, pte_high);
1061 pte_off_odd += offsetof(pte_t, pte_high);
1062#endif
1063
1064 if (IS_ENABLED(CONFIG_XPA)) {
1065 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1066 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1067 UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1068
1069 if (cpu_has_xpa && !mips_xpa_disabled) {
1070 uasm_i_lw(p, tmp, 0, ptep);
1071 uasm_i_ext(p, tmp, tmp, 0, 24);
1072 uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1073 }
1074
1075 uasm_i_lw(p, tmp, pte_off_odd, ptep); /* odd pte */
1076 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1077 UASM_i_MTC0(p, tmp, C0_ENTRYLO1);
1078
1079 if (cpu_has_xpa && !mips_xpa_disabled) {
1080 uasm_i_lw(p, tmp, sizeof(pte_t), ptep);
1081 uasm_i_ext(p, tmp, tmp, 0, 24);
1082 uasm_i_mthc0(p, tmp, C0_ENTRYLO1);
1083 }
1084 return;
1085 }
1086
1087 UASM_i_LW(p, tmp, pte_off_even, ptep); /* get even pte */
1088 UASM_i_LW(p, ptep, pte_off_odd, ptep); /* get odd pte */
1089 if (r45k_bvahwbug())
1090 build_tlb_probe_entry(p);
1091 build_convert_pte_to_entrylo(p, tmp);
1092 if (r4k_250MHZhwbug())
1093 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1094 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1095 build_convert_pte_to_entrylo(p, ptep);
1096 if (r45k_bvahwbug())
1097 uasm_i_mfc0(p, tmp, C0_INDEX);
1098 if (r4k_250MHZhwbug())
1099 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1100 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1101}
1102EXPORT_SYMBOL_GPL(build_update_entries);
1103
1104struct mips_huge_tlb_info {
1105 int huge_pte;
1106 int restore_scratch;
1107 bool need_reload_pte;
1108};
1109
1110static struct mips_huge_tlb_info
1111build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1112 struct uasm_reloc **r, unsigned int tmp,
1113 unsigned int ptr, int c0_scratch_reg)
1114{
1115 struct mips_huge_tlb_info rv;
1116 unsigned int even, odd;
1117 int vmalloc_branch_delay_filled = 0;
1118 const int scratch = 1; /* Our extra working register */
1119
1120 rv.huge_pte = scratch;
1121 rv.restore_scratch = 0;
1122 rv.need_reload_pte = false;
1123
1124 if (check_for_high_segbits) {
1125 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1126
1127 if (pgd_reg != -1)
1128 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1129 else
1130 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1131
1132 if (c0_scratch_reg >= 0)
1133 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1134 else
1135 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1136
1137 uasm_i_dsrl_safe(p, scratch, tmp,
1138 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1139 uasm_il_bnez(p, r, scratch, label_vmalloc);
1140
1141 if (pgd_reg == -1) {
1142 vmalloc_branch_delay_filled = 1;
1143 /* Clear lower 23 bits of context. */
1144 uasm_i_dins(p, ptr, 0, 0, 23);
1145 }
1146 } else {
1147 if (pgd_reg != -1)
1148 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1149 else
1150 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1151
1152 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1153
1154 if (c0_scratch_reg >= 0)
1155 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1156 else
1157 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1158
1159 if (pgd_reg == -1)
1160 /* Clear lower 23 bits of context. */
1161 uasm_i_dins(p, ptr, 0, 0, 23);
1162
1163 uasm_il_bltz(p, r, tmp, label_vmalloc);
1164 }
1165
1166 if (pgd_reg == -1) {
1167 vmalloc_branch_delay_filled = 1;
1168 /* insert bit[63:59] of CAC_BASE into bit[11:6] of ptr */
1169 uasm_i_ori(p, ptr, ptr, ((u64)(CAC_BASE) >> 53));
1170
1171 uasm_i_drotr(p, ptr, ptr, 11);
1172 }
1173
1174#ifdef __PAGETABLE_PMD_FOLDED
1175#define LOC_PTEP scratch
1176#else
1177#define LOC_PTEP ptr
1178#endif
1179
1180 if (!vmalloc_branch_delay_filled)
1181 /* get pgd offset in bytes */
1182 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1183
1184 uasm_l_vmalloc_done(l, *p);
1185
1186 /*
1187 * tmp ptr
1188 * fall-through case = badvaddr *pgd_current
1189 * vmalloc case = badvaddr swapper_pg_dir
1190 */
1191
1192 if (vmalloc_branch_delay_filled)
1193 /* get pgd offset in bytes */
1194 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1195
1196#ifdef __PAGETABLE_PMD_FOLDED
1197 GET_CONTEXT(p, tmp); /* get context reg */
1198#endif
1199 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1200
1201 if (use_lwx_insns()) {
1202 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1203 } else {
1204 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1205 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1206 }
1207
1208#ifndef __PAGETABLE_PUD_FOLDED
1209 /* get pud offset in bytes */
1210 uasm_i_dsrl_safe(p, scratch, tmp, PUD_SHIFT - 3);
1211 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PUD - 1) << 3);
1212
1213 if (use_lwx_insns()) {
1214 UASM_i_LWX(p, ptr, scratch, ptr);
1215 } else {
1216 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1217 UASM_i_LW(p, ptr, 0, ptr);
1218 }
1219 /* ptr contains a pointer to PMD entry */
1220 /* tmp contains the address */
1221#endif
1222
1223#ifndef __PAGETABLE_PMD_FOLDED
1224 /* get pmd offset in bytes */
1225 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1226 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1227 GET_CONTEXT(p, tmp); /* get context reg */
1228
1229 if (use_lwx_insns()) {
1230 UASM_i_LWX(p, scratch, scratch, ptr);
1231 } else {
1232 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1233 UASM_i_LW(p, scratch, 0, ptr);
1234 }
1235#endif
1236 /* Adjust the context during the load latency. */
1237 build_adjust_context(p, tmp);
1238
1239#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1240 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1241 /*
1242 * The in the LWX case we don't want to do the load in the
1243 * delay slot. It cannot issue in the same cycle and may be
1244 * speculative and unneeded.
1245 */
1246 if (use_lwx_insns())
1247 uasm_i_nop(p);
1248#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1249
1250
1251 /* build_update_entries */
1252 if (use_lwx_insns()) {
1253 even = ptr;
1254 odd = tmp;
1255 UASM_i_LWX(p, even, scratch, tmp);
1256 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1257 UASM_i_LWX(p, odd, scratch, tmp);
1258 } else {
1259 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1260 even = tmp;
1261 odd = ptr;
1262 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1263 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1264 }
1265 if (cpu_has_rixi) {
1266 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1267 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1268 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1269 } else {
1270 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1271 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1272 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1273 }
1274 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1275
1276 if (c0_scratch_reg >= 0) {
1277 uasm_i_ehb(p);
1278 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1279 build_tlb_write_entry(p, l, r, tlb_random);
1280 uasm_l_leave(l, *p);
1281 rv.restore_scratch = 1;
1282 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1283 build_tlb_write_entry(p, l, r, tlb_random);
1284 uasm_l_leave(l, *p);
1285 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1286 } else {
1287 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1288 build_tlb_write_entry(p, l, r, tlb_random);
1289 uasm_l_leave(l, *p);
1290 rv.restore_scratch = 1;
1291 }
1292
1293 uasm_i_eret(p); /* return from trap */
1294
1295 return rv;
1296}
1297
1298/*
1299 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1300 * because EXL == 0. If we wrap, we can also use the 32 instruction
1301 * slots before the XTLB refill exception handler which belong to the
1302 * unused TLB refill exception.
1303 */
1304#define MIPS64_REFILL_INSNS 32
1305
1306static void build_r4000_tlb_refill_handler(void)
1307{
1308 u32 *p = tlb_handler;
1309 struct uasm_label *l = labels;
1310 struct uasm_reloc *r = relocs;
1311 u32 *f;
1312 unsigned int final_len;
1313 struct mips_huge_tlb_info htlb_info __maybe_unused;
1314 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1315
1316 memset(tlb_handler, 0, sizeof(tlb_handler));
1317 memset(labels, 0, sizeof(labels));
1318 memset(relocs, 0, sizeof(relocs));
1319 memset(final_handler, 0, sizeof(final_handler));
1320
1321 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1322 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1323 scratch_reg);
1324 vmalloc_mode = refill_scratch;
1325 } else {
1326 htlb_info.huge_pte = K0;
1327 htlb_info.restore_scratch = 0;
1328 htlb_info.need_reload_pte = true;
1329 vmalloc_mode = refill_noscratch;
1330 /*
1331 * create the plain linear handler
1332 */
1333 if (bcm1250_m3_war()) {
1334 unsigned int segbits = 44;
1335
1336 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1337 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1338 uasm_i_xor(&p, K0, K0, K1);
1339 uasm_i_dsrl_safe(&p, K1, K0, 62);
1340 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1341 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1342 uasm_i_or(&p, K0, K0, K1);
1343 uasm_il_bnez(&p, &r, K0, label_leave);
1344 /* No need for uasm_i_nop */
1345 }
1346
1347#ifdef CONFIG_64BIT
1348 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1349#else
1350 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1351#endif
1352
1353#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1354 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1355#endif
1356
1357 build_get_ptep(&p, K0, K1);
1358 build_update_entries(&p, K0, K1);
1359 build_tlb_write_entry(&p, &l, &r, tlb_random);
1360 uasm_l_leave(&l, p);
1361 uasm_i_eret(&p); /* return from trap */
1362 }
1363#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1364 uasm_l_tlb_huge_update(&l, p);
1365 if (htlb_info.need_reload_pte)
1366 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1367 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1368 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1369 htlb_info.restore_scratch);
1370#endif
1371
1372#ifdef CONFIG_64BIT
1373 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1374#endif
1375
1376 /*
1377 * Overflow check: For the 64bit handler, we need at least one
1378 * free instruction slot for the wrap-around branch. In worst
1379 * case, if the intended insertion point is a delay slot, we
1380 * need three, with the second nop'ed and the third being
1381 * unused.
1382 */
1383 switch (boot_cpu_type()) {
1384 default:
1385 if (sizeof(long) == 4) {
1386 fallthrough;
1387 case CPU_LOONGSON2EF:
1388 /* Loongson2 ebase is different than r4k, we have more space */
1389 if ((p - tlb_handler) > 64)
1390 panic("TLB refill handler space exceeded");
1391 /*
1392 * Now fold the handler in the TLB refill handler space.
1393 */
1394 f = final_handler;
1395 /* Simplest case, just copy the handler. */
1396 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1397 final_len = p - tlb_handler;
1398 break;
1399 } else {
1400 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1401 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1402 && uasm_insn_has_bdelay(relocs,
1403 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1404 panic("TLB refill handler space exceeded");
1405 /*
1406 * Now fold the handler in the TLB refill handler space.
1407 */
1408 f = final_handler + MIPS64_REFILL_INSNS;
1409 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1410 /* Just copy the handler. */
1411 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1412 final_len = p - tlb_handler;
1413 } else {
1414#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1415 const enum label_id ls = label_tlb_huge_update;
1416#else
1417 const enum label_id ls = label_vmalloc;
1418#endif
1419 u32 *split;
1420 int ov = 0;
1421 int i;
1422
1423 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1424 ;
1425 BUG_ON(i == ARRAY_SIZE(labels));
1426 split = labels[i].addr;
1427
1428 /*
1429 * See if we have overflown one way or the other.
1430 */
1431 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1432 split < p - MIPS64_REFILL_INSNS)
1433 ov = 1;
1434
1435 if (ov) {
1436 /*
1437 * Split two instructions before the end. One
1438 * for the branch and one for the instruction
1439 * in the delay slot.
1440 */
1441 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1442
1443 /*
1444 * If the branch would fall in a delay slot,
1445 * we must back up an additional instruction
1446 * so that it is no longer in a delay slot.
1447 */
1448 if (uasm_insn_has_bdelay(relocs, split - 1))
1449 split--;
1450 }
1451 /* Copy first part of the handler. */
1452 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1453 f += split - tlb_handler;
1454
1455 if (ov) {
1456 /* Insert branch. */
1457 uasm_l_split(&l, final_handler);
1458 uasm_il_b(&f, &r, label_split);
1459 if (uasm_insn_has_bdelay(relocs, split))
1460 uasm_i_nop(&f);
1461 else {
1462 uasm_copy_handler(relocs, labels,
1463 split, split + 1, f);
1464 uasm_move_labels(labels, f, f + 1, -1);
1465 f++;
1466 split++;
1467 }
1468 }
1469
1470 /* Copy the rest of the handler. */
1471 uasm_copy_handler(relocs, labels, split, p, final_handler);
1472 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1473 (p - split);
1474 }
1475 }
1476 break;
1477 }
1478
1479 uasm_resolve_relocs(relocs, labels);
1480 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1481 final_len);
1482
1483 memcpy((void *)ebase, final_handler, 0x100);
1484 local_flush_icache_range(ebase, ebase + 0x100);
1485 dump_handler("r4000_tlb_refill", (u32 *)ebase, (u32 *)(ebase + 0x100));
1486}
1487
1488static void setup_pw(void)
1489{
1490 unsigned int pwctl;
1491 unsigned long pgd_i, pgd_w;
1492#ifndef __PAGETABLE_PMD_FOLDED
1493 unsigned long pmd_i, pmd_w;
1494#endif
1495 unsigned long pt_i, pt_w;
1496 unsigned long pte_i, pte_w;
1497#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1498 unsigned long psn;
1499
1500 psn = ilog2(_PAGE_HUGE); /* bit used to indicate huge page */
1501#endif
1502 pgd_i = PGDIR_SHIFT; /* 1st level PGD */
1503#ifndef __PAGETABLE_PMD_FOLDED
1504 pgd_w = PGDIR_SHIFT - PMD_SHIFT + PGD_ORDER;
1505
1506 pmd_i = PMD_SHIFT; /* 2nd level PMD */
1507 pmd_w = PMD_SHIFT - PAGE_SHIFT;
1508#else
1509 pgd_w = PGDIR_SHIFT - PAGE_SHIFT + PGD_ORDER;
1510#endif
1511
1512 pt_i = PAGE_SHIFT; /* 3rd level PTE */
1513 pt_w = PAGE_SHIFT - 3;
1514
1515 pte_i = ilog2(_PAGE_GLOBAL);
1516 pte_w = 0;
1517 pwctl = 1 << 30; /* Set PWDirExt */
1518
1519#ifndef __PAGETABLE_PMD_FOLDED
1520 write_c0_pwfield(pgd_i << 24 | pmd_i << 12 | pt_i << 6 | pte_i);
1521 write_c0_pwsize(1 << 30 | pgd_w << 24 | pmd_w << 12 | pt_w << 6 | pte_w);
1522#else
1523 write_c0_pwfield(pgd_i << 24 | pt_i << 6 | pte_i);
1524 write_c0_pwsize(1 << 30 | pgd_w << 24 | pt_w << 6 | pte_w);
1525#endif
1526
1527#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1528 pwctl |= (1 << 6 | psn);
1529#endif
1530 write_c0_pwctl(pwctl);
1531 write_c0_kpgd((long)swapper_pg_dir);
1532 kscratch_used_mask |= (1 << 7); /* KScratch6 is used for KPGD */
1533}
1534
1535static void build_loongson3_tlb_refill_handler(void)
1536{
1537 u32 *p = tlb_handler;
1538 struct uasm_label *l = labels;
1539 struct uasm_reloc *r = relocs;
1540
1541 memset(labels, 0, sizeof(labels));
1542 memset(relocs, 0, sizeof(relocs));
1543 memset(tlb_handler, 0, sizeof(tlb_handler));
1544
1545 if (check_for_high_segbits) {
1546 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1547 uasm_i_dsrl_safe(&p, K1, K0, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1548 uasm_il_beqz(&p, &r, K1, label_vmalloc);
1549 uasm_i_nop(&p);
1550
1551 uasm_il_bgez(&p, &r, K0, label_large_segbits_fault);
1552 uasm_i_nop(&p);
1553 uasm_l_vmalloc(&l, p);
1554 }
1555
1556 uasm_i_dmfc0(&p, K1, C0_PGD);
1557
1558 uasm_i_lddir(&p, K0, K1, 3); /* global page dir */
1559#ifndef __PAGETABLE_PMD_FOLDED
1560 uasm_i_lddir(&p, K1, K0, 1); /* middle page dir */
1561#endif
1562 uasm_i_ldpte(&p, K1, 0); /* even */
1563 uasm_i_ldpte(&p, K1, 1); /* odd */
1564 uasm_i_tlbwr(&p);
1565
1566 /* restore page mask */
1567 if (PM_DEFAULT_MASK >> 16) {
1568 uasm_i_lui(&p, K0, PM_DEFAULT_MASK >> 16);
1569 uasm_i_ori(&p, K0, K0, PM_DEFAULT_MASK & 0xffff);
1570 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1571 } else if (PM_DEFAULT_MASK) {
1572 uasm_i_ori(&p, K0, 0, PM_DEFAULT_MASK);
1573 uasm_i_mtc0(&p, K0, C0_PAGEMASK);
1574 } else {
1575 uasm_i_mtc0(&p, 0, C0_PAGEMASK);
1576 }
1577
1578 uasm_i_eret(&p);
1579
1580 if (check_for_high_segbits) {
1581 uasm_l_large_segbits_fault(&l, p);
1582 UASM_i_LA(&p, K1, (unsigned long)tlb_do_page_fault_0);
1583 uasm_i_jr(&p, K1);
1584 uasm_i_nop(&p);
1585 }
1586
1587 uasm_resolve_relocs(relocs, labels);
1588 memcpy((void *)(ebase + 0x80), tlb_handler, 0x80);
1589 local_flush_icache_range(ebase + 0x80, ebase + 0x100);
1590 dump_handler("loongson3_tlb_refill",
1591 (u32 *)(ebase + 0x80), (u32 *)(ebase + 0x100));
1592}
1593
1594static void build_setup_pgd(void)
1595{
1596 const int a0 = 4;
1597 const int __maybe_unused a1 = 5;
1598 const int __maybe_unused a2 = 6;
1599 u32 *p = (u32 *)msk_isa16_mode((ulong)tlbmiss_handler_setup_pgd);
1600#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1601 long pgdc = (long)pgd_current;
1602#endif
1603
1604 memset(p, 0, tlbmiss_handler_setup_pgd_end - (char *)p);
1605 memset(labels, 0, sizeof(labels));
1606 memset(relocs, 0, sizeof(relocs));
1607 pgd_reg = allocate_kscratch();
1608#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1609 if (pgd_reg == -1) {
1610 struct uasm_label *l = labels;
1611 struct uasm_reloc *r = relocs;
1612
1613 /* PGD << 11 in c0_Context */
1614 /*
1615 * If it is a ckseg0 address, convert to a physical
1616 * address. Shifting right by 29 and adding 4 will
1617 * result in zero for these addresses.
1618 *
1619 */
1620 UASM_i_SRA(&p, a1, a0, 29);
1621 UASM_i_ADDIU(&p, a1, a1, 4);
1622 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1623 uasm_i_nop(&p);
1624 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1625 uasm_l_tlbl_goaround1(&l, p);
1626 UASM_i_SLL(&p, a0, a0, 11);
1627 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1628 uasm_i_jr(&p, 31);
1629 uasm_i_ehb(&p);
1630 } else {
1631 /* PGD in c0_KScratch */
1632 if (cpu_has_ldpte)
1633 UASM_i_MTC0(&p, a0, C0_PWBASE);
1634 else
1635 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1636 uasm_i_jr(&p, 31);
1637 uasm_i_ehb(&p);
1638 }
1639#else
1640#ifdef CONFIG_SMP
1641 /* Save PGD to pgd_current[smp_processor_id()] */
1642 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1643 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1644 UASM_i_LA_mostly(&p, a2, pgdc);
1645 UASM_i_ADDU(&p, a2, a2, a1);
1646 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1647#else
1648 UASM_i_LA_mostly(&p, a2, pgdc);
1649 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1650#endif /* SMP */
1651
1652 /* if pgd_reg is allocated, save PGD also to scratch register */
1653 if (pgd_reg != -1) {
1654 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1655 uasm_i_jr(&p, 31);
1656 uasm_i_ehb(&p);
1657 } else {
1658 uasm_i_jr(&p, 31);
1659 uasm_i_nop(&p);
1660 }
1661#endif
1662 if (p >= (u32 *)tlbmiss_handler_setup_pgd_end)
1663 panic("tlbmiss_handler_setup_pgd space exceeded");
1664
1665 uasm_resolve_relocs(relocs, labels);
1666 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1667 (unsigned int)(p - (u32 *)tlbmiss_handler_setup_pgd));
1668
1669 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1670 tlbmiss_handler_setup_pgd_end);
1671}
1672
1673static void
1674iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1675{
1676#ifdef CONFIG_SMP
1677 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
1678 uasm_i_sync(p, 0);
1679# ifdef CONFIG_PHYS_ADDR_T_64BIT
1680 if (cpu_has_64bits)
1681 uasm_i_lld(p, pte, 0, ptr);
1682 else
1683# endif
1684 UASM_i_LL(p, pte, 0, ptr);
1685#else
1686# ifdef CONFIG_PHYS_ADDR_T_64BIT
1687 if (cpu_has_64bits)
1688 uasm_i_ld(p, pte, 0, ptr);
1689 else
1690# endif
1691 UASM_i_LW(p, pte, 0, ptr);
1692#endif
1693}
1694
1695static void
1696iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1697 unsigned int mode, unsigned int scratch)
1698{
1699 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1700 unsigned int swmode = mode & ~hwmode;
1701
1702 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_64bits) {
1703 uasm_i_lui(p, scratch, swmode >> 16);
1704 uasm_i_or(p, pte, pte, scratch);
1705 BUG_ON(swmode & 0xffff);
1706 } else {
1707 uasm_i_ori(p, pte, pte, mode);
1708 }
1709
1710#ifdef CONFIG_SMP
1711# ifdef CONFIG_PHYS_ADDR_T_64BIT
1712 if (cpu_has_64bits)
1713 uasm_i_scd(p, pte, 0, ptr);
1714 else
1715# endif
1716 UASM_i_SC(p, pte, 0, ptr);
1717
1718 if (r10000_llsc_war())
1719 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1720 else
1721 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1722
1723# ifdef CONFIG_PHYS_ADDR_T_64BIT
1724 if (!cpu_has_64bits) {
1725 /* no uasm_i_nop needed */
1726 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1727 uasm_i_ori(p, pte, pte, hwmode);
1728 BUG_ON(hwmode & ~0xffff);
1729 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1730 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1731 /* no uasm_i_nop needed */
1732 uasm_i_lw(p, pte, 0, ptr);
1733 } else
1734 uasm_i_nop(p);
1735# else
1736 uasm_i_nop(p);
1737# endif
1738#else
1739# ifdef CONFIG_PHYS_ADDR_T_64BIT
1740 if (cpu_has_64bits)
1741 uasm_i_sd(p, pte, 0, ptr);
1742 else
1743# endif
1744 UASM_i_SW(p, pte, 0, ptr);
1745
1746# ifdef CONFIG_PHYS_ADDR_T_64BIT
1747 if (!cpu_has_64bits) {
1748 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1749 uasm_i_ori(p, pte, pte, hwmode);
1750 BUG_ON(hwmode & ~0xffff);
1751 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1752 uasm_i_lw(p, pte, 0, ptr);
1753 }
1754# endif
1755#endif
1756}
1757
1758/*
1759 * Check if PTE is present, if not then jump to LABEL. PTR points to
1760 * the page table where this PTE is located, PTE will be re-loaded
1761 * with it's original value.
1762 */
1763static void
1764build_pte_present(u32 **p, struct uasm_reloc **r,
1765 int pte, int ptr, int scratch, enum label_id lid)
1766{
1767 int t = scratch >= 0 ? scratch : pte;
1768 int cur = pte;
1769
1770 if (cpu_has_rixi) {
1771 if (use_bbit_insns()) {
1772 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1773 uasm_i_nop(p);
1774 } else {
1775 if (_PAGE_PRESENT_SHIFT) {
1776 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1777 cur = t;
1778 }
1779 uasm_i_andi(p, t, cur, 1);
1780 uasm_il_beqz(p, r, t, lid);
1781 if (pte == t)
1782 /* You lose the SMP race :-(*/
1783 iPTE_LW(p, pte, ptr);
1784 }
1785 } else {
1786 if (_PAGE_PRESENT_SHIFT) {
1787 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1788 cur = t;
1789 }
1790 uasm_i_andi(p, t, cur,
1791 (_PAGE_PRESENT | _PAGE_NO_READ) >> _PAGE_PRESENT_SHIFT);
1792 uasm_i_xori(p, t, t, _PAGE_PRESENT >> _PAGE_PRESENT_SHIFT);
1793 uasm_il_bnez(p, r, t, lid);
1794 if (pte == t)
1795 /* You lose the SMP race :-(*/
1796 iPTE_LW(p, pte, ptr);
1797 }
1798}
1799
1800/* Make PTE valid, store result in PTR. */
1801static void
1802build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1803 unsigned int ptr, unsigned int scratch)
1804{
1805 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1806
1807 iPTE_SW(p, r, pte, ptr, mode, scratch);
1808}
1809
1810/*
1811 * Check if PTE can be written to, if not branch to LABEL. Regardless
1812 * restore PTE with value from PTR when done.
1813 */
1814static void
1815build_pte_writable(u32 **p, struct uasm_reloc **r,
1816 unsigned int pte, unsigned int ptr, int scratch,
1817 enum label_id lid)
1818{
1819 int t = scratch >= 0 ? scratch : pte;
1820 int cur = pte;
1821
1822 if (_PAGE_PRESENT_SHIFT) {
1823 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1824 cur = t;
1825 }
1826 uasm_i_andi(p, t, cur,
1827 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1828 uasm_i_xori(p, t, t,
1829 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1830 uasm_il_bnez(p, r, t, lid);
1831 if (pte == t)
1832 /* You lose the SMP race :-(*/
1833 iPTE_LW(p, pte, ptr);
1834 else
1835 uasm_i_nop(p);
1836}
1837
1838/* Make PTE writable, update software status bits as well, then store
1839 * at PTR.
1840 */
1841static void
1842build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1843 unsigned int ptr, unsigned int scratch)
1844{
1845 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1846 | _PAGE_DIRTY);
1847
1848 iPTE_SW(p, r, pte, ptr, mode, scratch);
1849}
1850
1851/*
1852 * Check if PTE can be modified, if not branch to LABEL. Regardless
1853 * restore PTE with value from PTR when done.
1854 */
1855static void
1856build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1857 unsigned int pte, unsigned int ptr, int scratch,
1858 enum label_id lid)
1859{
1860 if (use_bbit_insns()) {
1861 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1862 uasm_i_nop(p);
1863 } else {
1864 int t = scratch >= 0 ? scratch : pte;
1865 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1866 uasm_i_andi(p, t, t, 1);
1867 uasm_il_beqz(p, r, t, lid);
1868 if (pte == t)
1869 /* You lose the SMP race :-(*/
1870 iPTE_LW(p, pte, ptr);
1871 }
1872}
1873
1874#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1875
1876
1877/*
1878 * R3000 style TLB load/store/modify handlers.
1879 */
1880
1881/*
1882 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1883 * Then it returns.
1884 */
1885static void
1886build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1887{
1888 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1889 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1890 uasm_i_tlbwi(p);
1891 uasm_i_jr(p, tmp);
1892 uasm_i_rfe(p); /* branch delay */
1893}
1894
1895/*
1896 * This places the pte into ENTRYLO0 and writes it with tlbwi
1897 * or tlbwr as appropriate. This is because the index register
1898 * may have the probe fail bit set as a result of a trap on a
1899 * kseg2 access, i.e. without refill. Then it returns.
1900 */
1901static void
1902build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1903 struct uasm_reloc **r, unsigned int pte,
1904 unsigned int tmp)
1905{
1906 uasm_i_mfc0(p, tmp, C0_INDEX);
1907 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1908 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1909 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1910 uasm_i_tlbwi(p); /* cp0 delay */
1911 uasm_i_jr(p, tmp);
1912 uasm_i_rfe(p); /* branch delay */
1913 uasm_l_r3000_write_probe_fail(l, *p);
1914 uasm_i_tlbwr(p); /* cp0 delay */
1915 uasm_i_jr(p, tmp);
1916 uasm_i_rfe(p); /* branch delay */
1917}
1918
1919static void
1920build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1921 unsigned int ptr)
1922{
1923 long pgdc = (long)pgd_current;
1924
1925 uasm_i_mfc0(p, pte, C0_BADVADDR);
1926 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1927 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1928 uasm_i_srl(p, pte, pte, 22); /* load delay */
1929 uasm_i_sll(p, pte, pte, 2);
1930 uasm_i_addu(p, ptr, ptr, pte);
1931 uasm_i_mfc0(p, pte, C0_CONTEXT);
1932 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1933 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1934 uasm_i_addu(p, ptr, ptr, pte);
1935 uasm_i_lw(p, pte, 0, ptr);
1936 uasm_i_tlbp(p); /* load delay */
1937}
1938
1939static void build_r3000_tlb_load_handler(void)
1940{
1941 u32 *p = (u32 *)handle_tlbl;
1942 struct uasm_label *l = labels;
1943 struct uasm_reloc *r = relocs;
1944
1945 memset(p, 0, handle_tlbl_end - (char *)p);
1946 memset(labels, 0, sizeof(labels));
1947 memset(relocs, 0, sizeof(relocs));
1948
1949 build_r3000_tlbchange_handler_head(&p, K0, K1);
1950 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1951 uasm_i_nop(&p); /* load delay */
1952 build_make_valid(&p, &r, K0, K1, -1);
1953 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1954
1955 uasm_l_nopage_tlbl(&l, p);
1956 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1957 uasm_i_nop(&p);
1958
1959 if (p >= (u32 *)handle_tlbl_end)
1960 panic("TLB load handler fastpath space exceeded");
1961
1962 uasm_resolve_relocs(relocs, labels);
1963 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1964 (unsigned int)(p - (u32 *)handle_tlbl));
1965
1966 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_end);
1967}
1968
1969static void build_r3000_tlb_store_handler(void)
1970{
1971 u32 *p = (u32 *)handle_tlbs;
1972 struct uasm_label *l = labels;
1973 struct uasm_reloc *r = relocs;
1974
1975 memset(p, 0, handle_tlbs_end - (char *)p);
1976 memset(labels, 0, sizeof(labels));
1977 memset(relocs, 0, sizeof(relocs));
1978
1979 build_r3000_tlbchange_handler_head(&p, K0, K1);
1980 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1981 uasm_i_nop(&p); /* load delay */
1982 build_make_write(&p, &r, K0, K1, -1);
1983 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1984
1985 uasm_l_nopage_tlbs(&l, p);
1986 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1987 uasm_i_nop(&p);
1988
1989 if (p >= (u32 *)handle_tlbs_end)
1990 panic("TLB store handler fastpath space exceeded");
1991
1992 uasm_resolve_relocs(relocs, labels);
1993 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1994 (unsigned int)(p - (u32 *)handle_tlbs));
1995
1996 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_end);
1997}
1998
1999static void build_r3000_tlb_modify_handler(void)
2000{
2001 u32 *p = (u32 *)handle_tlbm;
2002 struct uasm_label *l = labels;
2003 struct uasm_reloc *r = relocs;
2004
2005 memset(p, 0, handle_tlbm_end - (char *)p);
2006 memset(labels, 0, sizeof(labels));
2007 memset(relocs, 0, sizeof(relocs));
2008
2009 build_r3000_tlbchange_handler_head(&p, K0, K1);
2010 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
2011 uasm_i_nop(&p); /* load delay */
2012 build_make_write(&p, &r, K0, K1, -1);
2013 build_r3000_pte_reload_tlbwi(&p, K0, K1);
2014
2015 uasm_l_nopage_tlbm(&l, p);
2016 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2017 uasm_i_nop(&p);
2018
2019 if (p >= (u32 *)handle_tlbm_end)
2020 panic("TLB modify handler fastpath space exceeded");
2021
2022 uasm_resolve_relocs(relocs, labels);
2023 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2024 (unsigned int)(p - (u32 *)handle_tlbm));
2025
2026 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_end);
2027}
2028#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
2029
2030static bool cpu_has_tlbex_tlbp_race(void)
2031{
2032 /*
2033 * When a Hardware Table Walker is running it can replace TLB entries
2034 * at any time, leading to a race between it & the CPU.
2035 */
2036 if (cpu_has_htw)
2037 return true;
2038
2039 /*
2040 * If the CPU shares FTLB RAM with its siblings then our entry may be
2041 * replaced at any time by a sibling performing a write to the FTLB.
2042 */
2043 if (cpu_has_shared_ftlb_ram)
2044 return true;
2045
2046 /* In all other cases there ought to be no race condition to handle */
2047 return false;
2048}
2049
2050/*
2051 * R4000 style TLB load/store/modify handlers.
2052 */
2053static struct work_registers
2054build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
2055 struct uasm_reloc **r)
2056{
2057 struct work_registers wr = build_get_work_registers(p);
2058
2059#ifdef CONFIG_64BIT
2060 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
2061#else
2062 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
2063#endif
2064
2065#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2066 /*
2067 * For huge tlb entries, pmd doesn't contain an address but
2068 * instead contains the tlb pte. Check the PAGE_HUGE bit and
2069 * see if we need to jump to huge tlb processing.
2070 */
2071 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
2072#endif
2073
2074 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
2075 UASM_i_LW(p, wr.r2, 0, wr.r2);
2076 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
2077 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
2078 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
2079
2080#ifdef CONFIG_SMP
2081 uasm_l_smp_pgtable_change(l, *p);
2082#endif
2083 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
2084 if (!m4kc_tlbp_war()) {
2085 build_tlb_probe_entry(p);
2086 if (cpu_has_tlbex_tlbp_race()) {
2087 /* race condition happens, leaving */
2088 uasm_i_ehb(p);
2089 uasm_i_mfc0(p, wr.r3, C0_INDEX);
2090 uasm_il_bltz(p, r, wr.r3, label_leave);
2091 uasm_i_nop(p);
2092 }
2093 }
2094 return wr;
2095}
2096
2097static void
2098build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
2099 struct uasm_reloc **r, unsigned int tmp,
2100 unsigned int ptr)
2101{
2102 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
2103 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
2104 build_update_entries(p, tmp, ptr);
2105 build_tlb_write_entry(p, l, r, tlb_indexed);
2106 uasm_l_leave(l, *p);
2107 build_restore_work_registers(p);
2108 uasm_i_eret(p); /* return from trap */
2109
2110#ifdef CONFIG_64BIT
2111 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
2112#endif
2113}
2114
2115static void build_r4000_tlb_load_handler(void)
2116{
2117 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbl);
2118 struct uasm_label *l = labels;
2119 struct uasm_reloc *r = relocs;
2120 struct work_registers wr;
2121
2122 memset(p, 0, handle_tlbl_end - (char *)p);
2123 memset(labels, 0, sizeof(labels));
2124 memset(relocs, 0, sizeof(relocs));
2125
2126 if (bcm1250_m3_war()) {
2127 unsigned int segbits = 44;
2128
2129 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
2130 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
2131 uasm_i_xor(&p, K0, K0, K1);
2132 uasm_i_dsrl_safe(&p, K1, K0, 62);
2133 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
2134 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
2135 uasm_i_or(&p, K0, K0, K1);
2136 uasm_il_bnez(&p, &r, K0, label_leave);
2137 /* No need for uasm_i_nop */
2138 }
2139
2140 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2141 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2142 if (m4kc_tlbp_war())
2143 build_tlb_probe_entry(&p);
2144
2145 if (cpu_has_rixi && !cpu_has_rixiex) {
2146 /*
2147 * If the page is not _PAGE_VALID, RI or XI could not
2148 * have triggered it. Skip the expensive test..
2149 */
2150 if (use_bbit_insns()) {
2151 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2152 label_tlbl_goaround1);
2153 } else {
2154 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2155 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
2156 }
2157 uasm_i_nop(&p);
2158
2159 /*
2160 * Warn if something may race with us & replace the TLB entry
2161 * before we read it here. Everything with such races should
2162 * also have dedicated RiXi exception handlers, so this
2163 * shouldn't be hit.
2164 */
2165 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2166
2167 uasm_i_tlbr(&p);
2168
2169 switch (current_cpu_type()) {
2170 default:
2171 if (cpu_has_mips_r2_exec_hazard) {
2172 uasm_i_ehb(&p);
2173 fallthrough;
2174
2175 case CPU_CAVIUM_OCTEON:
2176 case CPU_CAVIUM_OCTEON_PLUS:
2177 case CPU_CAVIUM_OCTEON2:
2178 break;
2179 }
2180 }
2181
2182 /* Examine entrylo 0 or 1 based on ptr. */
2183 if (use_bbit_insns()) {
2184 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2185 } else {
2186 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2187 uasm_i_beqz(&p, wr.r3, 8);
2188 }
2189 /* load it in the delay slot*/
2190 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2191 /* load it if ptr is odd */
2192 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2193 /*
2194 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2195 * XI must have triggered it.
2196 */
2197 if (use_bbit_insns()) {
2198 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2199 uasm_i_nop(&p);
2200 uasm_l_tlbl_goaround1(&l, p);
2201 } else {
2202 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2203 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2204 uasm_i_nop(&p);
2205 }
2206 uasm_l_tlbl_goaround1(&l, p);
2207 }
2208 build_make_valid(&p, &r, wr.r1, wr.r2, wr.r3);
2209 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2210
2211#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2212 /*
2213 * This is the entry point when build_r4000_tlbchange_handler_head
2214 * spots a huge page.
2215 */
2216 uasm_l_tlb_huge_update(&l, p);
2217 iPTE_LW(&p, wr.r1, wr.r2);
2218 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2219 build_tlb_probe_entry(&p);
2220
2221 if (cpu_has_rixi && !cpu_has_rixiex) {
2222 /*
2223 * If the page is not _PAGE_VALID, RI or XI could not
2224 * have triggered it. Skip the expensive test..
2225 */
2226 if (use_bbit_insns()) {
2227 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2228 label_tlbl_goaround2);
2229 } else {
2230 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2231 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2232 }
2233 uasm_i_nop(&p);
2234
2235 /*
2236 * Warn if something may race with us & replace the TLB entry
2237 * before we read it here. Everything with such races should
2238 * also have dedicated RiXi exception handlers, so this
2239 * shouldn't be hit.
2240 */
2241 WARN(cpu_has_tlbex_tlbp_race(), "Unhandled race in RiXi path");
2242
2243 uasm_i_tlbr(&p);
2244
2245 switch (current_cpu_type()) {
2246 default:
2247 if (cpu_has_mips_r2_exec_hazard) {
2248 uasm_i_ehb(&p);
2249
2250 case CPU_CAVIUM_OCTEON:
2251 case CPU_CAVIUM_OCTEON_PLUS:
2252 case CPU_CAVIUM_OCTEON2:
2253 break;
2254 }
2255 }
2256
2257 /* Examine entrylo 0 or 1 based on ptr. */
2258 if (use_bbit_insns()) {
2259 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2260 } else {
2261 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2262 uasm_i_beqz(&p, wr.r3, 8);
2263 }
2264 /* load it in the delay slot*/
2265 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2266 /* load it if ptr is odd */
2267 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2268 /*
2269 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2270 * XI must have triggered it.
2271 */
2272 if (use_bbit_insns()) {
2273 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2274 } else {
2275 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2276 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2277 }
2278 if (PM_DEFAULT_MASK == 0)
2279 uasm_i_nop(&p);
2280 /*
2281 * We clobbered C0_PAGEMASK, restore it. On the other branch
2282 * it is restored in build_huge_tlb_write_entry.
2283 */
2284 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2285
2286 uasm_l_tlbl_goaround2(&l, p);
2287 }
2288 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2289 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2290#endif
2291
2292 uasm_l_nopage_tlbl(&l, p);
2293 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2294 uasm_i_sync(&p, 0);
2295 build_restore_work_registers(&p);
2296#ifdef CONFIG_CPU_MICROMIPS
2297 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2298 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2299 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2300 uasm_i_jr(&p, K0);
2301 } else
2302#endif
2303 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2304 uasm_i_nop(&p);
2305
2306 if (p >= (u32 *)handle_tlbl_end)
2307 panic("TLB load handler fastpath space exceeded");
2308
2309 uasm_resolve_relocs(relocs, labels);
2310 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2311 (unsigned int)(p - (u32 *)handle_tlbl));
2312
2313 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_end);
2314}
2315
2316static void build_r4000_tlb_store_handler(void)
2317{
2318 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbs);
2319 struct uasm_label *l = labels;
2320 struct uasm_reloc *r = relocs;
2321 struct work_registers wr;
2322
2323 memset(p, 0, handle_tlbs_end - (char *)p);
2324 memset(labels, 0, sizeof(labels));
2325 memset(relocs, 0, sizeof(relocs));
2326
2327 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2328 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2329 if (m4kc_tlbp_war())
2330 build_tlb_probe_entry(&p);
2331 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2332 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2333
2334#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2335 /*
2336 * This is the entry point when
2337 * build_r4000_tlbchange_handler_head spots a huge page.
2338 */
2339 uasm_l_tlb_huge_update(&l, p);
2340 iPTE_LW(&p, wr.r1, wr.r2);
2341 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2342 build_tlb_probe_entry(&p);
2343 uasm_i_ori(&p, wr.r1, wr.r1,
2344 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2345 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 1);
2346#endif
2347
2348 uasm_l_nopage_tlbs(&l, p);
2349 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2350 uasm_i_sync(&p, 0);
2351 build_restore_work_registers(&p);
2352#ifdef CONFIG_CPU_MICROMIPS
2353 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2354 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2355 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2356 uasm_i_jr(&p, K0);
2357 } else
2358#endif
2359 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2360 uasm_i_nop(&p);
2361
2362 if (p >= (u32 *)handle_tlbs_end)
2363 panic("TLB store handler fastpath space exceeded");
2364
2365 uasm_resolve_relocs(relocs, labels);
2366 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2367 (unsigned int)(p - (u32 *)handle_tlbs));
2368
2369 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_end);
2370}
2371
2372static void build_r4000_tlb_modify_handler(void)
2373{
2374 u32 *p = (u32 *)msk_isa16_mode((ulong)handle_tlbm);
2375 struct uasm_label *l = labels;
2376 struct uasm_reloc *r = relocs;
2377 struct work_registers wr;
2378
2379 memset(p, 0, handle_tlbm_end - (char *)p);
2380 memset(labels, 0, sizeof(labels));
2381 memset(relocs, 0, sizeof(relocs));
2382
2383 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2384 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2385 if (m4kc_tlbp_war())
2386 build_tlb_probe_entry(&p);
2387 /* Present and writable bits set, set accessed and dirty bits. */
2388 build_make_write(&p, &r, wr.r1, wr.r2, wr.r3);
2389 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2390
2391#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2392 /*
2393 * This is the entry point when
2394 * build_r4000_tlbchange_handler_head spots a huge page.
2395 */
2396 uasm_l_tlb_huge_update(&l, p);
2397 iPTE_LW(&p, wr.r1, wr.r2);
2398 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2399 build_tlb_probe_entry(&p);
2400 uasm_i_ori(&p, wr.r1, wr.r1,
2401 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2402 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2, 0);
2403#endif
2404
2405 uasm_l_nopage_tlbm(&l, p);
2406 if (IS_ENABLED(CONFIG_CPU_LOONGSON3_WORKAROUNDS))
2407 uasm_i_sync(&p, 0);
2408 build_restore_work_registers(&p);
2409#ifdef CONFIG_CPU_MICROMIPS
2410 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2411 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2412 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2413 uasm_i_jr(&p, K0);
2414 } else
2415#endif
2416 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2417 uasm_i_nop(&p);
2418
2419 if (p >= (u32 *)handle_tlbm_end)
2420 panic("TLB modify handler fastpath space exceeded");
2421
2422 uasm_resolve_relocs(relocs, labels);
2423 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2424 (unsigned int)(p - (u32 *)handle_tlbm));
2425
2426 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_end);
2427}
2428
2429static void flush_tlb_handlers(void)
2430{
2431 local_flush_icache_range((unsigned long)handle_tlbl,
2432 (unsigned long)handle_tlbl_end);
2433 local_flush_icache_range((unsigned long)handle_tlbs,
2434 (unsigned long)handle_tlbs_end);
2435 local_flush_icache_range((unsigned long)handle_tlbm,
2436 (unsigned long)handle_tlbm_end);
2437 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2438 (unsigned long)tlbmiss_handler_setup_pgd_end);
2439}
2440
2441static void print_htw_config(void)
2442{
2443 unsigned long config;
2444 unsigned int pwctl;
2445 const int field = 2 * sizeof(unsigned long);
2446
2447 config = read_c0_pwfield();
2448 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n",
2449 field, config,
2450 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2451 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2452 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2453 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2454 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2455
2456 config = read_c0_pwsize();
2457 pr_debug("PWSize (0x%0*lx): PS: 0x%lx GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n",
2458 field, config,
2459 (config & MIPS_PWSIZE_PS_MASK) >> MIPS_PWSIZE_PS_SHIFT,
2460 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2461 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2462 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2463 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2464 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2465
2466 pwctl = read_c0_pwctl();
2467 pr_debug("PWCtl (0x%x): PWEn: 0x%x XK: 0x%x XS: 0x%x XU: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n",
2468 pwctl,
2469 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2470 (pwctl & MIPS_PWCTL_XK_MASK) >> MIPS_PWCTL_XK_SHIFT,
2471 (pwctl & MIPS_PWCTL_XS_MASK) >> MIPS_PWCTL_XS_SHIFT,
2472 (pwctl & MIPS_PWCTL_XU_MASK) >> MIPS_PWCTL_XU_SHIFT,
2473 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2474 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2475 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2476}
2477
2478static void config_htw_params(void)
2479{
2480 unsigned long pwfield, pwsize, ptei;
2481 unsigned int config;
2482
2483 /*
2484 * We are using 2-level page tables, so we only need to
2485 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2486 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2487 * write values less than 0xc in these fields because the entire
2488 * write will be dropped. As a result of which, we must preserve
2489 * the original reset values and overwrite only what we really want.
2490 */
2491
2492 pwfield = read_c0_pwfield();
2493 /* re-initialize the GDI field */
2494 pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2495 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2496 /* re-initialize the PTI field including the even/odd bit */
2497 pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2498 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2499 if (CONFIG_PGTABLE_LEVELS >= 3) {
2500 pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2501 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2502 }
2503 /* Set the PTEI right shift */
2504 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2505 pwfield |= ptei;
2506 write_c0_pwfield(pwfield);
2507 /* Check whether the PTEI value is supported */
2508 back_to_back_c0_hazard();
2509 pwfield = read_c0_pwfield();
2510 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2511 != ptei) {
2512 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2513 ptei);
2514 /*
2515 * Drop option to avoid HTW being enabled via another path
2516 * (eg htw_reset())
2517 */
2518 current_cpu_data.options &= ~MIPS_CPU_HTW;
2519 return;
2520 }
2521
2522 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2523 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2524 if (CONFIG_PGTABLE_LEVELS >= 3)
2525 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2526
2527 /* Set pointer size to size of directory pointers */
2528 if (IS_ENABLED(CONFIG_64BIT))
2529 pwsize |= MIPS_PWSIZE_PS_MASK;
2530 /* PTEs may be multiple pointers long (e.g. with XPA) */
2531 pwsize |= ((PTE_T_LOG2 - PGD_T_LOG2) << MIPS_PWSIZE_PTEW_SHIFT)
2532 & MIPS_PWSIZE_PTEW_MASK;
2533
2534 write_c0_pwsize(pwsize);
2535
2536 /* Make sure everything is set before we enable the HTW */
2537 back_to_back_c0_hazard();
2538
2539 /*
2540 * Enable HTW (and only for XUSeg on 64-bit), and disable the rest of
2541 * the pwctl fields.
2542 */
2543 config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2544 if (IS_ENABLED(CONFIG_64BIT))
2545 config |= MIPS_PWCTL_XU_MASK;
2546 write_c0_pwctl(config);
2547 pr_info("Hardware Page Table Walker enabled\n");
2548
2549 print_htw_config();
2550}
2551
2552static void config_xpa_params(void)
2553{
2554#ifdef CONFIG_XPA
2555 unsigned int pagegrain;
2556
2557 if (mips_xpa_disabled) {
2558 pr_info("Extended Physical Addressing (XPA) disabled\n");
2559 return;
2560 }
2561
2562 pagegrain = read_c0_pagegrain();
2563 write_c0_pagegrain(pagegrain | PG_ELPA);
2564 back_to_back_c0_hazard();
2565 pagegrain = read_c0_pagegrain();
2566
2567 if (pagegrain & PG_ELPA)
2568 pr_info("Extended Physical Addressing (XPA) enabled\n");
2569 else
2570 panic("Extended Physical Addressing (XPA) disabled");
2571#endif
2572}
2573
2574static void check_pabits(void)
2575{
2576 unsigned long entry;
2577 unsigned pabits, fillbits;
2578
2579 if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2580 /*
2581 * We'll only be making use of the fact that we can rotate bits
2582 * into the fill if the CPU supports RIXI, so don't bother
2583 * probing this for CPUs which don't.
2584 */
2585 return;
2586 }
2587
2588 write_c0_entrylo0(~0ul);
2589 back_to_back_c0_hazard();
2590 entry = read_c0_entrylo0();
2591
2592 /* clear all non-PFN bits */
2593 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2594 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2595
2596 /* find a lower bound on PABITS, and upper bound on fill bits */
2597 pabits = fls_long(entry) + 6;
2598 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2599
2600 /* minus the RI & XI bits */
2601 fillbits -= min_t(unsigned, fillbits, 2);
2602
2603 if (fillbits >= ilog2(_PAGE_NO_EXEC))
2604 fill_includes_sw_bits = true;
2605
2606 pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2607}
2608
2609void build_tlb_refill_handler(void)
2610{
2611 /*
2612 * The refill handler is generated per-CPU, multi-node systems
2613 * may have local storage for it. The other handlers are only
2614 * needed once.
2615 */
2616 static int run_once = 0;
2617
2618 if (IS_ENABLED(CONFIG_XPA) && !cpu_has_rixi)
2619 panic("Kernels supporting XPA currently require CPUs with RIXI");
2620
2621 output_pgtable_bits_defines();
2622 check_pabits();
2623
2624#ifdef CONFIG_64BIT
2625 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2626#endif
2627
2628 if (cpu_has_3kex) {
2629#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2630 if (!run_once) {
2631 build_setup_pgd();
2632 build_r3000_tlb_refill_handler();
2633 build_r3000_tlb_load_handler();
2634 build_r3000_tlb_store_handler();
2635 build_r3000_tlb_modify_handler();
2636 flush_tlb_handlers();
2637 run_once++;
2638 }
2639#else
2640 panic("No R3000 TLB refill handler");
2641#endif
2642 return;
2643 }
2644
2645 if (cpu_has_ldpte)
2646 setup_pw();
2647
2648 if (!run_once) {
2649 scratch_reg = allocate_kscratch();
2650 build_setup_pgd();
2651 build_r4000_tlb_load_handler();
2652 build_r4000_tlb_store_handler();
2653 build_r4000_tlb_modify_handler();
2654 if (cpu_has_ldpte)
2655 build_loongson3_tlb_refill_handler();
2656 else
2657 build_r4000_tlb_refill_handler();
2658 flush_tlb_handlers();
2659 run_once++;
2660 }
2661 if (cpu_has_xpa)
2662 config_xpa_params();
2663 if (cpu_has_htw)
2664 config_htw_params();
2665}