Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Synthesize TLB refill handlers at runtime.
   7 *
   8 * Copyright (C) 2004, 2005, 2006, 2008  Thiemo Seufer
   9 * Copyright (C) 2005, 2007, 2008, 2009  Maciej W. Rozycki
  10 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
  11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
 
  12 *
  13 * ... and the days got worse and worse and now you see
  14 * I've gone completly out of my mind.
  15 *
  16 * They're coming to take me a away haha
  17 * they're coming to take me a away hoho hihi haha
  18 * to the funny farm where code is beautiful all the time ...
  19 *
  20 * (Condolences to Napoleon XIV)
  21 */
  22
  23#include <linux/bug.h>
  24#include <linux/kernel.h>
  25#include <linux/types.h>
  26#include <linux/smp.h>
  27#include <linux/string.h>
  28#include <linux/init.h>
  29#include <linux/cache.h>
  30
  31#include <asm/cacheflush.h>
 
  32#include <asm/pgtable.h>
  33#include <asm/war.h>
  34#include <asm/uasm.h>
 
  35
  36/*
  37 * TLB load/store/modify handlers.
  38 *
  39 * Only the fastpath gets synthesized at runtime, the slowpath for
  40 * do_page_fault remains normal asm.
  41 */
  42extern void tlb_do_page_fault_0(void);
  43extern void tlb_do_page_fault_1(void);
  44
  45struct work_registers {
  46	int r1;
  47	int r2;
  48	int r3;
  49};
  50
  51struct tlb_reg_save {
  52	unsigned long a;
  53	unsigned long b;
  54} ____cacheline_aligned_in_smp;
  55
  56static struct tlb_reg_save handler_reg_save[NR_CPUS];
  57
  58static inline int r45k_bvahwbug(void)
  59{
  60	/* XXX: We should probe for the presence of this bug, but we don't. */
  61	return 0;
  62}
  63
  64static inline int r4k_250MHZhwbug(void)
  65{
  66	/* XXX: We should probe for the presence of this bug, but we don't. */
  67	return 0;
  68}
  69
  70static inline int __maybe_unused bcm1250_m3_war(void)
  71{
  72	return BCM1250_M3_WAR;
  73}
  74
  75static inline int __maybe_unused r10000_llsc_war(void)
  76{
  77	return R10000_LLSC_WAR;
  78}
  79
  80static int use_bbit_insns(void)
  81{
  82	switch (current_cpu_type()) {
  83	case CPU_CAVIUM_OCTEON:
  84	case CPU_CAVIUM_OCTEON_PLUS:
  85	case CPU_CAVIUM_OCTEON2:
 
  86		return 1;
  87	default:
  88		return 0;
  89	}
  90}
  91
  92static int use_lwx_insns(void)
  93{
  94	switch (current_cpu_type()) {
  95	case CPU_CAVIUM_OCTEON2:
 
  96		return 1;
  97	default:
  98		return 0;
  99	}
 100}
 101#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
 102    CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
 103static bool scratchpad_available(void)
 104{
 105	return true;
 106}
 107static int scratchpad_offset(int i)
 108{
 109	/*
 110	 * CVMSEG starts at address -32768 and extends for
 111	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
 112	 */
 113	i += 1; /* Kernel use starts at the top and works down. */
 114	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
 115}
 116#else
 117static bool scratchpad_available(void)
 118{
 119	return false;
 120}
 121static int scratchpad_offset(int i)
 122{
 123	BUG();
 124	/* Really unreachable, but evidently some GCC want this. */
 125	return 0;
 126}
 127#endif
 128/*
 129 * Found by experiment: At least some revisions of the 4kc throw under
 130 * some circumstances a machine check exception, triggered by invalid
 131 * values in the index register.  Delaying the tlbp instruction until
 132 * after the next branch,  plus adding an additional nop in front of
 133 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
 134 * why; it's not an issue caused by the core RTL.
 135 *
 136 */
 137static int __cpuinit m4kc_tlbp_war(void)
 138{
 139	return (current_cpu_data.processor_id & 0xffff00) ==
 140	       (PRID_COMP_MIPS | PRID_IMP_4KC);
 141}
 142
 143/* Handle labels (which must be positive integers). */
 144enum label_id {
 145	label_second_part = 1,
 146	label_leave,
 147	label_vmalloc,
 148	label_vmalloc_done,
 149	label_tlbw_hazard,
 150	label_split,
 151	label_tlbl_goaround1,
 152	label_tlbl_goaround2,
 153	label_nopage_tlbl,
 154	label_nopage_tlbs,
 155	label_nopage_tlbm,
 156	label_smp_pgtable_change,
 157	label_r3000_write_probe_fail,
 158	label_large_segbits_fault,
 159#ifdef CONFIG_HUGETLB_PAGE
 160	label_tlb_huge_update,
 161#endif
 162};
 163
 164UASM_L_LA(_second_part)
 165UASM_L_LA(_leave)
 166UASM_L_LA(_vmalloc)
 167UASM_L_LA(_vmalloc_done)
 168UASM_L_LA(_tlbw_hazard)
 169UASM_L_LA(_split)
 170UASM_L_LA(_tlbl_goaround1)
 171UASM_L_LA(_tlbl_goaround2)
 172UASM_L_LA(_nopage_tlbl)
 173UASM_L_LA(_nopage_tlbs)
 174UASM_L_LA(_nopage_tlbm)
 175UASM_L_LA(_smp_pgtable_change)
 176UASM_L_LA(_r3000_write_probe_fail)
 177UASM_L_LA(_large_segbits_fault)
 178#ifdef CONFIG_HUGETLB_PAGE
 179UASM_L_LA(_tlb_huge_update)
 180#endif
 181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182/*
 183 * For debug purposes.
 
 
 
 184 */
 185static inline void dump_handler(const u32 *handler, int count)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186{
 187	int i;
 188
 
 
 189	pr_debug("\t.set push\n");
 190	pr_debug("\t.set noreorder\n");
 191
 192	for (i = 0; i < count; i++)
 193		pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
 
 
 194
 195	pr_debug("\t.set pop\n");
 196}
 197
 198/* The only general purpose registers allowed in TLB handlers. */
 199#define K0		26
 200#define K1		27
 201
 202/* Some CP0 registers */
 203#define C0_INDEX	0, 0
 204#define C0_ENTRYLO0	2, 0
 205#define C0_TCBIND	2, 2
 206#define C0_ENTRYLO1	3, 0
 207#define C0_CONTEXT	4, 0
 208#define C0_PAGEMASK	5, 0
 209#define C0_BADVADDR	8, 0
 210#define C0_ENTRYHI	10, 0
 211#define C0_EPC		14, 0
 212#define C0_XCONTEXT	20, 0
 213
 214#ifdef CONFIG_64BIT
 215# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
 216#else
 217# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
 218#endif
 219
 220/* The worst case length of the handler is around 18 instructions for
 221 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
 222 * Maximum space available is 32 instructions for R3000 and 64
 223 * instructions for R4000.
 224 *
 225 * We deliberately chose a buffer size of 128, so we won't scribble
 226 * over anything important on overflow before we panic.
 227 */
 228static u32 tlb_handler[128] __cpuinitdata;
 229
 230/* simply assume worst case size for labels and relocs */
 231static struct uasm_label labels[128] __cpuinitdata;
 232static struct uasm_reloc relocs[128] __cpuinitdata;
 233
 234#ifdef CONFIG_64BIT
 235static int check_for_high_segbits __cpuinitdata;
 236#endif
 237
 238static int check_for_high_segbits __cpuinitdata;
 239
 240static unsigned int kscratch_used_mask __cpuinitdata;
 
 
 
 
 
 
 
 
 
 241
 242static int __cpuinit allocate_kscratch(void)
 243{
 244	int r;
 245	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
 246
 247	r = ffs(a);
 248
 249	if (r == 0)
 250		return -1;
 251
 252	r--; /* make it zero based */
 253
 254	kscratch_used_mask |= (1 << r);
 255
 256	return r;
 257}
 258
 259static int scratch_reg __cpuinitdata;
 260static int pgd_reg __cpuinitdata;
 261enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
 262
 263static struct work_registers __cpuinit build_get_work_registers(u32 **p)
 264{
 265	struct work_registers r;
 266
 267	int smp_processor_id_reg;
 268	int smp_processor_id_sel;
 269	int smp_processor_id_shift;
 270
 271	if (scratch_reg > 0) {
 272		/* Save in CPU local C0_KScratch? */
 273		UASM_i_MTC0(p, 1, 31, scratch_reg);
 274		r.r1 = K0;
 275		r.r2 = K1;
 276		r.r3 = 1;
 277		return r;
 278	}
 279
 280	if (num_possible_cpus() > 1) {
 281#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
 282		smp_processor_id_shift = 51;
 283		smp_processor_id_reg = 20; /* XContext */
 284		smp_processor_id_sel = 0;
 285#else
 286# ifdef CONFIG_32BIT
 287		smp_processor_id_shift = 25;
 288		smp_processor_id_reg = 4; /* Context */
 289		smp_processor_id_sel = 0;
 290# endif
 291# ifdef CONFIG_64BIT
 292		smp_processor_id_shift = 26;
 293		smp_processor_id_reg = 4; /* Context */
 294		smp_processor_id_sel = 0;
 295# endif
 296#endif
 297		/* Get smp_processor_id */
 298		UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
 299		UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
 300
 301		/* handler_reg_save index in K0 */
 302		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
 303
 304		UASM_i_LA(p, K1, (long)&handler_reg_save);
 305		UASM_i_ADDU(p, K0, K0, K1);
 306	} else {
 307		UASM_i_LA(p, K0, (long)&handler_reg_save);
 308	}
 309	/* K0 now points to save area, save $1 and $2  */
 310	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
 311	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
 312
 313	r.r1 = K1;
 314	r.r2 = 1;
 315	r.r3 = 2;
 316	return r;
 317}
 318
 319static void __cpuinit build_restore_work_registers(u32 **p)
 320{
 321	if (scratch_reg > 0) {
 322		UASM_i_MFC0(p, 1, 31, scratch_reg);
 323		return;
 324	}
 325	/* K0 already points to save area, restore $1 and $2  */
 326	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
 327	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
 328}
 329
 330#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
 331
 332/*
 333 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
 334 * we cannot do r3000 under these circumstances.
 335 *
 336 * Declare pgd_current here instead of including mmu_context.h to avoid type
 337 * conflicts for tlbmiss_handler_setup_pgd
 338 */
 339extern unsigned long pgd_current[];
 340
 341/*
 342 * The R3000 TLB handler is simple.
 343 */
 344static void __cpuinit build_r3000_tlb_refill_handler(void)
 345{
 346	long pgdc = (long)pgd_current;
 347	u32 *p;
 348
 349	memset(tlb_handler, 0, sizeof(tlb_handler));
 350	p = tlb_handler;
 351
 352	uasm_i_mfc0(&p, K0, C0_BADVADDR);
 353	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
 354	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
 355	uasm_i_srl(&p, K0, K0, 22); /* load delay */
 356	uasm_i_sll(&p, K0, K0, 2);
 357	uasm_i_addu(&p, K1, K1, K0);
 358	uasm_i_mfc0(&p, K0, C0_CONTEXT);
 359	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
 360	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
 361	uasm_i_addu(&p, K1, K1, K0);
 362	uasm_i_lw(&p, K0, 0, K1);
 363	uasm_i_nop(&p); /* load delay */
 364	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
 365	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
 366	uasm_i_tlbwr(&p); /* cp0 delay */
 367	uasm_i_jr(&p, K1);
 368	uasm_i_rfe(&p); /* branch delay */
 369
 370	if (p > tlb_handler + 32)
 371		panic("TLB refill handler space exceeded");
 372
 373	pr_debug("Wrote TLB refill handler (%u instructions).\n",
 374		 (unsigned int)(p - tlb_handler));
 375
 376	memcpy((void *)ebase, tlb_handler, 0x80);
 377
 378	dump_handler((u32 *)ebase, 32);
 379}
 380#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
 381
 382/*
 383 * The R4000 TLB handler is much more complicated. We have two
 384 * consecutive handler areas with 32 instructions space each.
 385 * Since they aren't used at the same time, we can overflow in the
 386 * other one.To keep things simple, we first assume linear space,
 387 * then we relocate it to the final handler layout as needed.
 388 */
 389static u32 final_handler[64] __cpuinitdata;
 390
 391/*
 392 * Hazards
 393 *
 394 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
 395 * 2. A timing hazard exists for the TLBP instruction.
 396 *
 397 *      stalling_instruction
 398 *      TLBP
 399 *
 400 * The JTLB is being read for the TLBP throughout the stall generated by the
 401 * previous instruction. This is not really correct as the stalling instruction
 402 * can modify the address used to access the JTLB.  The failure symptom is that
 403 * the TLBP instruction will use an address created for the stalling instruction
 404 * and not the address held in C0_ENHI and thus report the wrong results.
 405 *
 406 * The software work-around is to not allow the instruction preceding the TLBP
 407 * to stall - make it an NOP or some other instruction guaranteed not to stall.
 408 *
 409 * Errata 2 will not be fixed.  This errata is also on the R5000.
 410 *
 411 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
 412 */
 413static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
 414{
 415	switch (current_cpu_type()) {
 416	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
 417	case CPU_R4600:
 418	case CPU_R4700:
 419	case CPU_R5000:
 420	case CPU_R5000A:
 421	case CPU_NEVADA:
 422		uasm_i_nop(p);
 423		uasm_i_tlbp(p);
 424		break;
 425
 426	default:
 427		uasm_i_tlbp(p);
 428		break;
 429	}
 430}
 431
 432/*
 433 * Write random or indexed TLB entry, and care about the hazards from
 434 * the preceding mtc0 and for the following eret.
 435 */
 436enum tlb_write_entry { tlb_random, tlb_indexed };
 437
 438static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
 439					 struct uasm_reloc **r,
 440					 enum tlb_write_entry wmode)
 441{
 442	void(*tlbw)(u32 **) = NULL;
 443
 444	switch (wmode) {
 445	case tlb_random: tlbw = uasm_i_tlbwr; break;
 446	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
 447	}
 448
 449	if (cpu_has_mips_r2) {
 450		if (cpu_has_mips_r2_exec_hazard)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451			uasm_i_ehb(p);
 
 
 452		tlbw(p);
 453		return;
 454	}
 455
 456	switch (current_cpu_type()) {
 457	case CPU_R4000PC:
 458	case CPU_R4000SC:
 459	case CPU_R4000MC:
 460	case CPU_R4400PC:
 461	case CPU_R4400SC:
 462	case CPU_R4400MC:
 463		/*
 464		 * This branch uses up a mtc0 hazard nop slot and saves
 465		 * two nops after the tlbw instruction.
 466		 */
 467		uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
 468		tlbw(p);
 469		uasm_l_tlbw_hazard(l, *p);
 
 470		uasm_i_nop(p);
 471		break;
 472
 473	case CPU_R4600:
 474	case CPU_R4700:
 475	case CPU_R5000:
 476	case CPU_R5000A:
 477		uasm_i_nop(p);
 478		tlbw(p);
 479		uasm_i_nop(p);
 480		break;
 481
 
 
 
 
 
 
 
 482	case CPU_R4300:
 483	case CPU_5KC:
 484	case CPU_TX49XX:
 485	case CPU_PR4450:
 486	case CPU_XLR:
 487		uasm_i_nop(p);
 488		tlbw(p);
 489		break;
 490
 491	case CPU_R10000:
 492	case CPU_R12000:
 493	case CPU_R14000:
 494	case CPU_4KC:
 495	case CPU_4KEC:
 
 
 496	case CPU_SB1:
 497	case CPU_SB1A:
 498	case CPU_4KSC:
 499	case CPU_20KC:
 500	case CPU_25KF:
 501	case CPU_BMIPS32:
 502	case CPU_BMIPS3300:
 503	case CPU_BMIPS4350:
 504	case CPU_BMIPS4380:
 505	case CPU_BMIPS5000:
 506	case CPU_LOONGSON2:
 
 507	case CPU_R5500:
 508		if (m4kc_tlbp_war())
 509			uasm_i_nop(p);
 510	case CPU_ALCHEMY:
 511		tlbw(p);
 512		break;
 513
 514	case CPU_NEVADA:
 515		uasm_i_nop(p); /* QED specifies 2 nops hazard */
 516		/*
 517		 * This branch uses up a mtc0 hazard nop slot and saves
 518		 * a nop after the tlbw instruction.
 519		 */
 520		uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
 521		tlbw(p);
 522		uasm_l_tlbw_hazard(l, *p);
 523		break;
 524
 525	case CPU_RM7000:
 526		uasm_i_nop(p);
 527		uasm_i_nop(p);
 528		uasm_i_nop(p);
 529		uasm_i_nop(p);
 530		tlbw(p);
 531		break;
 532
 533	case CPU_RM9000:
 534		/*
 535		 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
 536		 * use of the JTLB for instructions should not occur for 4
 537		 * cpu cycles and use for data translations should not occur
 538		 * for 3 cpu cycles.
 539		 */
 540		uasm_i_ssnop(p);
 541		uasm_i_ssnop(p);
 542		uasm_i_ssnop(p);
 543		uasm_i_ssnop(p);
 544		tlbw(p);
 545		uasm_i_ssnop(p);
 546		uasm_i_ssnop(p);
 547		uasm_i_ssnop(p);
 548		uasm_i_ssnop(p);
 549		break;
 550
 551	case CPU_VR4111:
 552	case CPU_VR4121:
 553	case CPU_VR4122:
 554	case CPU_VR4181:
 555	case CPU_VR4181A:
 556		uasm_i_nop(p);
 557		uasm_i_nop(p);
 558		tlbw(p);
 559		uasm_i_nop(p);
 560		uasm_i_nop(p);
 561		break;
 562
 563	case CPU_VR4131:
 564	case CPU_VR4133:
 565	case CPU_R5432:
 566		uasm_i_nop(p);
 567		uasm_i_nop(p);
 568		tlbw(p);
 569		break;
 570
 571	case CPU_JZRISC:
 572		tlbw(p);
 573		uasm_i_nop(p);
 574		break;
 575
 576	default:
 577		panic("No TLB refill handler yet (CPU type: %d)",
 578		      current_cpu_data.cputype);
 579		break;
 580	}
 581}
 582
 583static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
 584								  unsigned int reg)
 585{
 586	if (kernel_uses_smartmips_rixi) {
 587		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
 588		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
 589	} else {
 590#ifdef CONFIG_64BIT_PHYS_ADDR
 591		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
 592#else
 593		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
 594#endif
 595	}
 596}
 597
 598#ifdef CONFIG_HUGETLB_PAGE
 599
 600static __cpuinit void build_restore_pagemask(u32 **p,
 601					     struct uasm_reloc **r,
 602					     unsigned int tmp,
 603					     enum label_id lid,
 604					     int restore_scratch)
 605{
 606	if (restore_scratch) {
 607		/* Reset default page size */
 608		if (PM_DEFAULT_MASK >> 16) {
 609			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
 610			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
 611			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
 612			uasm_il_b(p, r, lid);
 613		} else if (PM_DEFAULT_MASK) {
 614			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
 615			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
 616			uasm_il_b(p, r, lid);
 617		} else {
 618			uasm_i_mtc0(p, 0, C0_PAGEMASK);
 619			uasm_il_b(p, r, lid);
 620		}
 621		if (scratch_reg > 0)
 622			UASM_i_MFC0(p, 1, 31, scratch_reg);
 623		else
 624			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
 625	} else {
 626		/* Reset default page size */
 627		if (PM_DEFAULT_MASK >> 16) {
 628			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
 629			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
 630			uasm_il_b(p, r, lid);
 631			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
 632		} else if (PM_DEFAULT_MASK) {
 633			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
 634			uasm_il_b(p, r, lid);
 635			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
 636		} else {
 637			uasm_il_b(p, r, lid);
 638			uasm_i_mtc0(p, 0, C0_PAGEMASK);
 639		}
 640	}
 641}
 642
 643static __cpuinit void build_huge_tlb_write_entry(u32 **p,
 644						 struct uasm_label **l,
 645						 struct uasm_reloc **r,
 646						 unsigned int tmp,
 647						 enum tlb_write_entry wmode,
 648						 int restore_scratch)
 649{
 650	/* Set huge page tlb entry size */
 651	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
 652	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
 653	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
 654
 655	build_tlb_write_entry(p, l, r, wmode);
 656
 657	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
 658}
 659
 660/*
 661 * Check if Huge PTE is present, if so then jump to LABEL.
 662 */
 663static void __cpuinit
 664build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
 665		unsigned int pmd, int lid)
 666{
 667	UASM_i_LW(p, tmp, 0, pmd);
 668	if (use_bbit_insns()) {
 669		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
 670	} else {
 671		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
 672		uasm_il_bnez(p, r, tmp, lid);
 673	}
 674}
 675
 676static __cpuinit void build_huge_update_entries(u32 **p,
 677						unsigned int pte,
 678						unsigned int tmp)
 679{
 680	int small_sequence;
 681
 682	/*
 683	 * A huge PTE describes an area the size of the
 684	 * configured huge page size. This is twice the
 685	 * of the large TLB entry size we intend to use.
 686	 * A TLB entry half the size of the configured
 687	 * huge page size is configured into entrylo0
 688	 * and entrylo1 to cover the contiguous huge PTE
 689	 * address space.
 690	 */
 691	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
 692
 693	/* We can clobber tmp.  It isn't used after this.*/
 694	if (!small_sequence)
 695		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
 696
 697	build_convert_pte_to_entrylo(p, pte);
 698	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
 699	/* convert to entrylo1 */
 700	if (small_sequence)
 701		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
 702	else
 703		UASM_i_ADDU(p, pte, pte, tmp);
 704
 705	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
 706}
 707
 708static __cpuinit void build_huge_handler_tail(u32 **p,
 709					      struct uasm_reloc **r,
 710					      struct uasm_label **l,
 711					      unsigned int pte,
 712					      unsigned int ptr)
 713{
 714#ifdef CONFIG_SMP
 715	UASM_i_SC(p, pte, 0, ptr);
 716	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
 717	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
 718#else
 719	UASM_i_SW(p, pte, 0, ptr);
 720#endif
 721	build_huge_update_entries(p, pte, ptr);
 722	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
 723}
 724#endif /* CONFIG_HUGETLB_PAGE */
 725
 726#ifdef CONFIG_64BIT
 727/*
 728 * TMP and PTR are scratch.
 729 * TMP will be clobbered, PTR will hold the pmd entry.
 730 */
 731static void __cpuinit
 732build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
 733		 unsigned int tmp, unsigned int ptr)
 734{
 735#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
 736	long pgdc = (long)pgd_current;
 737#endif
 738	/*
 739	 * The vmalloc handling is not in the hotpath.
 740	 */
 741	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
 742
 743	if (check_for_high_segbits) {
 744		/*
 745		 * The kernel currently implicitely assumes that the
 746		 * MIPS SEGBITS parameter for the processor is
 747		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
 748		 * allocate virtual addresses outside the maximum
 749		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
 750		 * that doesn't prevent user code from accessing the
 751		 * higher xuseg addresses.  Here, we make sure that
 752		 * everything but the lower xuseg addresses goes down
 753		 * the module_alloc/vmalloc path.
 754		 */
 755		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
 756		uasm_il_bnez(p, r, ptr, label_vmalloc);
 757	} else {
 758		uasm_il_bltz(p, r, tmp, label_vmalloc);
 759	}
 760	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
 761
 762#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
 763	if (pgd_reg != -1) {
 764		/* pgd is in pgd_reg */
 765		UASM_i_MFC0(p, ptr, 31, pgd_reg);
 766	} else {
 
 767		/*
 768		 * &pgd << 11 stored in CONTEXT [23..63].
 769		 */
 770		UASM_i_MFC0(p, ptr, C0_CONTEXT);
 771
 772		/* Clear lower 23 bits of context. */
 773		uasm_i_dins(p, ptr, 0, 0, 23);
 774
 775		/* 1 0  1 0 1  << 6  xkphys cached */
 776		uasm_i_ori(p, ptr, ptr, 0x540);
 777		uasm_i_drotr(p, ptr, ptr, 11);
 778	}
 779#elif defined(CONFIG_SMP)
 780# ifdef  CONFIG_MIPS_MT_SMTC
 781	/*
 782	 * SMTC uses TCBind value as "CPU" index
 783	 */
 784	uasm_i_mfc0(p, ptr, C0_TCBIND);
 785	uasm_i_dsrl_safe(p, ptr, ptr, 19);
 786# else
 787	/*
 788	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
 789	 * stored in CONTEXT.
 790	 */
 791	uasm_i_dmfc0(p, ptr, C0_CONTEXT);
 792	uasm_i_dsrl_safe(p, ptr, ptr, 23);
 793# endif
 794	UASM_i_LA_mostly(p, tmp, pgdc);
 795	uasm_i_daddu(p, ptr, ptr, tmp);
 796	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
 797	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
 798#else
 799	UASM_i_LA_mostly(p, ptr, pgdc);
 800	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
 801#endif
 
 802
 803	uasm_l_vmalloc_done(l, *p);
 804
 805	/* get pgd offset in bytes */
 806	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
 807
 808	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
 809	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
 810#ifndef __PAGETABLE_PMD_FOLDED
 811	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
 812	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
 813	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
 814	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
 815	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
 816#endif
 817}
 818
 819/*
 820 * BVADDR is the faulting address, PTR is scratch.
 821 * PTR will hold the pgd for vmalloc.
 822 */
 823static void __cpuinit
 824build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
 825			unsigned int bvaddr, unsigned int ptr,
 826			enum vmalloc64_mode mode)
 827{
 828	long swpd = (long)swapper_pg_dir;
 829	int single_insn_swpd;
 830	int did_vmalloc_branch = 0;
 831
 832	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
 833
 834	uasm_l_vmalloc(l, *p);
 835
 836	if (mode != not_refill && check_for_high_segbits) {
 837		if (single_insn_swpd) {
 838			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
 839			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
 840			did_vmalloc_branch = 1;
 841			/* fall through */
 842		} else {
 843			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
 844		}
 845	}
 846	if (!did_vmalloc_branch) {
 847		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
 848			uasm_il_b(p, r, label_vmalloc_done);
 849			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
 850		} else {
 851			UASM_i_LA_mostly(p, ptr, swpd);
 852			uasm_il_b(p, r, label_vmalloc_done);
 853			if (uasm_in_compat_space_p(swpd))
 854				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
 855			else
 856				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
 857		}
 858	}
 859	if (mode != not_refill && check_for_high_segbits) {
 860		uasm_l_large_segbits_fault(l, *p);
 861		/*
 862		 * We get here if we are an xsseg address, or if we are
 863		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
 864		 *
 865		 * Ignoring xsseg (assume disabled so would generate
 866		 * (address errors?), the only remaining possibility
 867		 * is the upper xuseg addresses.  On processors with
 868		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
 869		 * addresses would have taken an address error. We try
 870		 * to mimic that here by taking a load/istream page
 871		 * fault.
 872		 */
 873		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
 874		uasm_i_jr(p, ptr);
 875
 876		if (mode == refill_scratch) {
 877			if (scratch_reg > 0)
 878				UASM_i_MFC0(p, 1, 31, scratch_reg);
 879			else
 880				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
 881		} else {
 882			uasm_i_nop(p);
 883		}
 884	}
 885}
 886
 887#else /* !CONFIG_64BIT */
 888
 889/*
 890 * TMP and PTR are scratch.
 891 * TMP will be clobbered, PTR will hold the pgd entry.
 892 */
 893static void __cpuinit __maybe_unused
 894build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
 895{
 896	long pgdc = (long)pgd_current;
 
 
 
 
 
 897
 898	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
 899#ifdef CONFIG_SMP
 900#ifdef  CONFIG_MIPS_MT_SMTC
 901	/*
 902	 * SMTC uses TCBind value as "CPU" index
 903	 */
 904	uasm_i_mfc0(p, ptr, C0_TCBIND);
 905	UASM_i_LA_mostly(p, tmp, pgdc);
 906	uasm_i_srl(p, ptr, ptr, 19);
 907#else
 908	/*
 909	 * smp_processor_id() << 3 is stored in CONTEXT.
 910         */
 911	uasm_i_mfc0(p, ptr, C0_CONTEXT);
 912	UASM_i_LA_mostly(p, tmp, pgdc);
 913	uasm_i_srl(p, ptr, ptr, 23);
 914#endif
 915	uasm_i_addu(p, ptr, tmp, ptr);
 916#else
 917	UASM_i_LA_mostly(p, ptr, pgdc);
 918#endif
 919	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
 920	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
 921	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
 922	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
 923	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
 924}
 925
 926#endif /* !CONFIG_64BIT */
 927
 928static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
 929{
 930	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
 931	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
 932
 933	switch (current_cpu_type()) {
 934	case CPU_VR41XX:
 935	case CPU_VR4111:
 936	case CPU_VR4121:
 937	case CPU_VR4122:
 938	case CPU_VR4131:
 939	case CPU_VR4181:
 940	case CPU_VR4181A:
 941	case CPU_VR4133:
 942		shift += 2;
 943		break;
 944
 945	default:
 946		break;
 947	}
 948
 949	if (shift)
 950		UASM_i_SRL(p, ctx, ctx, shift);
 951	uasm_i_andi(p, ctx, ctx, mask);
 952}
 953
 954static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
 955{
 956	/*
 957	 * Bug workaround for the Nevada. It seems as if under certain
 958	 * circumstances the move from cp0_context might produce a
 959	 * bogus result when the mfc0 instruction and its consumer are
 960	 * in a different cacheline or a load instruction, probably any
 961	 * memory reference, is between them.
 962	 */
 963	switch (current_cpu_type()) {
 964	case CPU_NEVADA:
 965		UASM_i_LW(p, ptr, 0, ptr);
 966		GET_CONTEXT(p, tmp); /* get context reg */
 967		break;
 968
 969	default:
 970		GET_CONTEXT(p, tmp); /* get context reg */
 971		UASM_i_LW(p, ptr, 0, ptr);
 972		break;
 973	}
 974
 975	build_adjust_context(p, tmp);
 976	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
 977}
 978
 979static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
 980					unsigned int ptep)
 981{
 982	/*
 983	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
 984	 * Kernel is a special case. Only a few CPUs use it.
 985	 */
 986#ifdef CONFIG_64BIT_PHYS_ADDR
 987	if (cpu_has_64bits) {
 988		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
 989		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
 990		if (kernel_uses_smartmips_rixi) {
 991			UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
 992			UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
 993			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
 994			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
 995			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
 996		} else {
 997			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
 998			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
 999			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1000		}
1001		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1002	} else {
1003		int pte_off_even = sizeof(pte_t) / 2;
1004		int pte_off_odd = pte_off_even + sizeof(pte_t);
1005
1006		/* The pte entries are pre-shifted */
1007		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1008		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1009		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1010		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1011	}
1012#else
1013	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1014	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1015	if (r45k_bvahwbug())
1016		build_tlb_probe_entry(p);
1017	if (kernel_uses_smartmips_rixi) {
1018		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
1019		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
1020		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1021		if (r4k_250MHZhwbug())
1022			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1023		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1024		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1025	} else {
1026		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1027		if (r4k_250MHZhwbug())
1028			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1029		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1030		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1031		if (r45k_bvahwbug())
1032			uasm_i_mfc0(p, tmp, C0_INDEX);
1033	}
1034	if (r4k_250MHZhwbug())
1035		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1036	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1037#endif
1038}
1039
1040struct mips_huge_tlb_info {
1041	int huge_pte;
1042	int restore_scratch;
1043};
1044
1045static struct mips_huge_tlb_info __cpuinit
1046build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1047			       struct uasm_reloc **r, unsigned int tmp,
1048			       unsigned int ptr, int c0_scratch)
1049{
1050	struct mips_huge_tlb_info rv;
1051	unsigned int even, odd;
1052	int vmalloc_branch_delay_filled = 0;
1053	const int scratch = 1; /* Our extra working register */
1054
1055	rv.huge_pte = scratch;
1056	rv.restore_scratch = 0;
1057
1058	if (check_for_high_segbits) {
1059		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1060
1061		if (pgd_reg != -1)
1062			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1063		else
1064			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1065
1066		if (c0_scratch >= 0)
1067			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1068		else
1069			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1070
1071		uasm_i_dsrl_safe(p, scratch, tmp,
1072				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1073		uasm_il_bnez(p, r, scratch, label_vmalloc);
1074
1075		if (pgd_reg == -1) {
1076			vmalloc_branch_delay_filled = 1;
1077			/* Clear lower 23 bits of context. */
1078			uasm_i_dins(p, ptr, 0, 0, 23);
1079		}
1080	} else {
1081		if (pgd_reg != -1)
1082			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1083		else
1084			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1085
1086		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1087
1088		if (c0_scratch >= 0)
1089			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1090		else
1091			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1092
1093		if (pgd_reg == -1)
1094			/* Clear lower 23 bits of context. */
1095			uasm_i_dins(p, ptr, 0, 0, 23);
1096
1097		uasm_il_bltz(p, r, tmp, label_vmalloc);
1098	}
1099
1100	if (pgd_reg == -1) {
1101		vmalloc_branch_delay_filled = 1;
1102		/* 1 0  1 0 1  << 6  xkphys cached */
1103		uasm_i_ori(p, ptr, ptr, 0x540);
1104		uasm_i_drotr(p, ptr, ptr, 11);
1105	}
1106
1107#ifdef __PAGETABLE_PMD_FOLDED
1108#define LOC_PTEP scratch
1109#else
1110#define LOC_PTEP ptr
1111#endif
1112
1113	if (!vmalloc_branch_delay_filled)
1114		/* get pgd offset in bytes */
1115		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1116
1117	uasm_l_vmalloc_done(l, *p);
1118
1119	/*
1120	 *                         tmp          ptr
1121	 * fall-through case =   badvaddr  *pgd_current
1122	 * vmalloc case      =   badvaddr  swapper_pg_dir
1123	 */
1124
1125	if (vmalloc_branch_delay_filled)
1126		/* get pgd offset in bytes */
1127		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1128
1129#ifdef __PAGETABLE_PMD_FOLDED
1130	GET_CONTEXT(p, tmp); /* get context reg */
1131#endif
1132	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1133
1134	if (use_lwx_insns()) {
1135		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1136	} else {
1137		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1138		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1139	}
1140
1141#ifndef __PAGETABLE_PMD_FOLDED
1142	/* get pmd offset in bytes */
1143	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1144	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1145	GET_CONTEXT(p, tmp); /* get context reg */
1146
1147	if (use_lwx_insns()) {
1148		UASM_i_LWX(p, scratch, scratch, ptr);
1149	} else {
1150		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1151		UASM_i_LW(p, scratch, 0, ptr);
1152	}
1153#endif
1154	/* Adjust the context during the load latency. */
1155	build_adjust_context(p, tmp);
1156
1157#ifdef CONFIG_HUGETLB_PAGE
1158	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1159	/*
1160	 * The in the LWX case we don't want to do the load in the
1161	 * delay slot.  It cannot issue in the same cycle and may be
1162	 * speculative and unneeded.
1163	 */
1164	if (use_lwx_insns())
1165		uasm_i_nop(p);
1166#endif /* CONFIG_HUGETLB_PAGE */
1167
1168
1169	/* build_update_entries */
1170	if (use_lwx_insns()) {
1171		even = ptr;
1172		odd = tmp;
1173		UASM_i_LWX(p, even, scratch, tmp);
1174		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1175		UASM_i_LWX(p, odd, scratch, tmp);
1176	} else {
1177		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1178		even = tmp;
1179		odd = ptr;
1180		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1181		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1182	}
1183	if (kernel_uses_smartmips_rixi) {
1184		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_NO_EXEC));
1185		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_NO_EXEC));
1186		uasm_i_drotr(p, even, even,
1187			     ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1188		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1189		uasm_i_drotr(p, odd, odd,
1190			     ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1191	} else {
1192		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1193		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1194		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1195	}
1196	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1197
1198	if (c0_scratch >= 0) {
1199		UASM_i_MFC0(p, scratch, 31, c0_scratch);
1200		build_tlb_write_entry(p, l, r, tlb_random);
1201		uasm_l_leave(l, *p);
1202		rv.restore_scratch = 1;
1203	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1204		build_tlb_write_entry(p, l, r, tlb_random);
1205		uasm_l_leave(l, *p);
1206		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1207	} else {
1208		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1209		build_tlb_write_entry(p, l, r, tlb_random);
1210		uasm_l_leave(l, *p);
1211		rv.restore_scratch = 1;
1212	}
1213
1214	uasm_i_eret(p); /* return from trap */
1215
1216	return rv;
1217}
1218
1219/*
1220 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1221 * because EXL == 0.  If we wrap, we can also use the 32 instruction
1222 * slots before the XTLB refill exception handler which belong to the
1223 * unused TLB refill exception.
1224 */
1225#define MIPS64_REFILL_INSNS 32
1226
1227static void __cpuinit build_r4000_tlb_refill_handler(void)
1228{
1229	u32 *p = tlb_handler;
1230	struct uasm_label *l = labels;
1231	struct uasm_reloc *r = relocs;
1232	u32 *f;
1233	unsigned int final_len;
1234	struct mips_huge_tlb_info htlb_info __maybe_unused;
1235	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1236
1237	memset(tlb_handler, 0, sizeof(tlb_handler));
1238	memset(labels, 0, sizeof(labels));
1239	memset(relocs, 0, sizeof(relocs));
1240	memset(final_handler, 0, sizeof(final_handler));
1241
1242	if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1243		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1244							  scratch_reg);
1245		vmalloc_mode = refill_scratch;
1246	} else {
1247		htlb_info.huge_pte = K0;
1248		htlb_info.restore_scratch = 0;
1249		vmalloc_mode = refill_noscratch;
1250		/*
1251		 * create the plain linear handler
1252		 */
1253		if (bcm1250_m3_war()) {
1254			unsigned int segbits = 44;
1255
1256			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1257			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1258			uasm_i_xor(&p, K0, K0, K1);
1259			uasm_i_dsrl_safe(&p, K1, K0, 62);
1260			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1261			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1262			uasm_i_or(&p, K0, K0, K1);
1263			uasm_il_bnez(&p, &r, K0, label_leave);
1264			/* No need for uasm_i_nop */
1265		}
1266
1267#ifdef CONFIG_64BIT
1268		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1269#else
1270		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1271#endif
1272
1273#ifdef CONFIG_HUGETLB_PAGE
1274		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1275#endif
1276
1277		build_get_ptep(&p, K0, K1);
1278		build_update_entries(&p, K0, K1);
1279		build_tlb_write_entry(&p, &l, &r, tlb_random);
1280		uasm_l_leave(&l, p);
1281		uasm_i_eret(&p); /* return from trap */
1282	}
1283#ifdef CONFIG_HUGETLB_PAGE
1284	uasm_l_tlb_huge_update(&l, p);
1285	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1286	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1287				   htlb_info.restore_scratch);
1288#endif
1289
1290#ifdef CONFIG_64BIT
1291	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1292#endif
1293
1294	/*
1295	 * Overflow check: For the 64bit handler, we need at least one
1296	 * free instruction slot for the wrap-around branch. In worst
1297	 * case, if the intended insertion point is a delay slot, we
1298	 * need three, with the second nop'ed and the third being
1299	 * unused.
1300	 */
1301	/* Loongson2 ebase is different than r4k, we have more space */
1302#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1303	if ((p - tlb_handler) > 64)
1304		panic("TLB refill handler space exceeded");
1305#else
1306	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1307	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1308		&& uasm_insn_has_bdelay(relocs,
1309					tlb_handler + MIPS64_REFILL_INSNS - 3)))
1310		panic("TLB refill handler space exceeded");
1311#endif
1312
1313	/*
1314	 * Now fold the handler in the TLB refill handler space.
1315	 */
1316#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1317	f = final_handler;
1318	/* Simplest case, just copy the handler. */
1319	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1320	final_len = p - tlb_handler;
1321#else /* CONFIG_64BIT */
1322	f = final_handler + MIPS64_REFILL_INSNS;
1323	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1324		/* Just copy the handler. */
1325		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1326		final_len = p - tlb_handler;
1327	} else {
1328#if defined(CONFIG_HUGETLB_PAGE)
1329		const enum label_id ls = label_tlb_huge_update;
1330#else
1331		const enum label_id ls = label_vmalloc;
1332#endif
1333		u32 *split;
1334		int ov = 0;
1335		int i;
1336
1337		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1338			;
1339		BUG_ON(i == ARRAY_SIZE(labels));
1340		split = labels[i].addr;
1341
1342		/*
1343		 * See if we have overflown one way or the other.
1344		 */
1345		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1346		    split < p - MIPS64_REFILL_INSNS)
1347			ov = 1;
1348
1349		if (ov) {
1350			/*
1351			 * Split two instructions before the end.  One
1352			 * for the branch and one for the instruction
1353			 * in the delay slot.
1354			 */
1355			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1356
 
 
 
 
 
 
 
 
 
1357			/*
1358			 * If the branch would fall in a delay slot,
1359			 * we must back up an additional instruction
1360			 * so that it is no longer in a delay slot.
1361			 */
1362			if (uasm_insn_has_bdelay(relocs, split - 1))
1363				split--;
1364		}
1365		/* Copy first part of the handler. */
1366		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1367		f += split - tlb_handler;
1368
1369		if (ov) {
1370			/* Insert branch. */
1371			uasm_l_split(&l, final_handler);
1372			uasm_il_b(&f, &r, label_split);
1373			if (uasm_insn_has_bdelay(relocs, split))
1374				uasm_i_nop(&f);
1375			else {
1376				uasm_copy_handler(relocs, labels,
1377						  split, split + 1, f);
1378				uasm_move_labels(labels, f, f + 1, -1);
1379				f++;
1380				split++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381			}
1382		}
1383
1384		/* Copy the rest of the handler. */
1385		uasm_copy_handler(relocs, labels, split, p, final_handler);
1386		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1387			    (p - split);
1388	}
1389#endif /* CONFIG_64BIT */
1390
1391	uasm_resolve_relocs(relocs, labels);
1392	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1393		 final_len);
1394
1395	memcpy((void *)ebase, final_handler, 0x100);
1396
1397	dump_handler((u32 *)ebase, 64);
1398}
1399
1400/*
1401 * 128 instructions for the fastpath handler is generous and should
1402 * never be exceeded.
1403 */
1404#define FASTPATH_SIZE 128
1405
1406u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1407u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1408u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1409#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1410u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1411
1412static void __cpuinit build_r4000_setup_pgd(void)
1413{
1414	const int a0 = 4;
1415	const int a1 = 5;
1416	u32 *p = tlbmiss_handler_setup_pgd;
1417	struct uasm_label *l = labels;
1418	struct uasm_reloc *r = relocs;
 
 
 
 
1419
1420	memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
 
1421	memset(labels, 0, sizeof(labels));
1422	memset(relocs, 0, sizeof(relocs));
1423
1424	pgd_reg = allocate_kscratch();
1425
1426	if (pgd_reg == -1) {
 
 
 
1427		/* PGD << 11 in c0_Context */
1428		/*
1429		 * If it is a ckseg0 address, convert to a physical
1430		 * address.  Shifting right by 29 and adding 4 will
1431		 * result in zero for these addresses.
1432		 *
1433		 */
1434		UASM_i_SRA(&p, a1, a0, 29);
1435		UASM_i_ADDIU(&p, a1, a1, 4);
1436		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1437		uasm_i_nop(&p);
1438		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1439		uasm_l_tlbl_goaround1(&l, p);
1440		UASM_i_SLL(&p, a0, a0, 11);
1441		uasm_i_jr(&p, 31);
1442		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1443	} else {
1444		/* PGD in c0_KScratch */
1445		uasm_i_jr(&p, 31);
1446		UASM_i_MTC0(&p, a0, 31, pgd_reg);
1447	}
1448	if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449		panic("tlbmiss_handler_setup_pgd space exceeded");
 
1450	uasm_resolve_relocs(relocs, labels);
1451	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1452		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1453
1454	dump_handler(tlbmiss_handler_setup_pgd,
1455		     ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1456}
1457#endif
1458
1459static void __cpuinit
1460iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1461{
1462#ifdef CONFIG_SMP
1463# ifdef CONFIG_64BIT_PHYS_ADDR
1464	if (cpu_has_64bits)
1465		uasm_i_lld(p, pte, 0, ptr);
1466	else
1467# endif
1468		UASM_i_LL(p, pte, 0, ptr);
1469#else
1470# ifdef CONFIG_64BIT_PHYS_ADDR
1471	if (cpu_has_64bits)
1472		uasm_i_ld(p, pte, 0, ptr);
1473	else
1474# endif
1475		UASM_i_LW(p, pte, 0, ptr);
1476#endif
1477}
1478
1479static void __cpuinit
1480iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1481	unsigned int mode)
1482{
1483#ifdef CONFIG_64BIT_PHYS_ADDR
1484	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1485#endif
1486
1487	uasm_i_ori(p, pte, pte, mode);
1488#ifdef CONFIG_SMP
1489# ifdef CONFIG_64BIT_PHYS_ADDR
1490	if (cpu_has_64bits)
1491		uasm_i_scd(p, pte, 0, ptr);
1492	else
1493# endif
1494		UASM_i_SC(p, pte, 0, ptr);
1495
1496	if (r10000_llsc_war())
1497		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1498	else
1499		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1500
1501# ifdef CONFIG_64BIT_PHYS_ADDR
1502	if (!cpu_has_64bits) {
1503		/* no uasm_i_nop needed */
1504		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1505		uasm_i_ori(p, pte, pte, hwmode);
1506		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1507		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1508		/* no uasm_i_nop needed */
1509		uasm_i_lw(p, pte, 0, ptr);
1510	} else
1511		uasm_i_nop(p);
1512# else
1513	uasm_i_nop(p);
1514# endif
1515#else
1516# ifdef CONFIG_64BIT_PHYS_ADDR
1517	if (cpu_has_64bits)
1518		uasm_i_sd(p, pte, 0, ptr);
1519	else
1520# endif
1521		UASM_i_SW(p, pte, 0, ptr);
1522
1523# ifdef CONFIG_64BIT_PHYS_ADDR
1524	if (!cpu_has_64bits) {
1525		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1526		uasm_i_ori(p, pte, pte, hwmode);
1527		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1528		uasm_i_lw(p, pte, 0, ptr);
1529	}
1530# endif
1531#endif
1532}
1533
1534/*
1535 * Check if PTE is present, if not then jump to LABEL. PTR points to
1536 * the page table where this PTE is located, PTE will be re-loaded
1537 * with it's original value.
1538 */
1539static void __cpuinit
1540build_pte_present(u32 **p, struct uasm_reloc **r,
1541		  int pte, int ptr, int scratch, enum label_id lid)
1542{
1543	int t = scratch >= 0 ? scratch : pte;
1544
1545	if (kernel_uses_smartmips_rixi) {
1546		if (use_bbit_insns()) {
1547			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1548			uasm_i_nop(p);
1549		} else {
1550			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1551			uasm_il_beqz(p, r, t, lid);
1552			if (pte == t)
1553				/* You lose the SMP race :-(*/
1554				iPTE_LW(p, pte, ptr);
1555		}
1556	} else {
1557		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1558		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1559		uasm_il_bnez(p, r, t, lid);
1560		if (pte == t)
1561			/* You lose the SMP race :-(*/
1562			iPTE_LW(p, pte, ptr);
1563	}
1564}
1565
1566/* Make PTE valid, store result in PTR. */
1567static void __cpuinit
1568build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1569		 unsigned int ptr)
1570{
1571	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1572
1573	iPTE_SW(p, r, pte, ptr, mode);
1574}
1575
1576/*
1577 * Check if PTE can be written to, if not branch to LABEL. Regardless
1578 * restore PTE with value from PTR when done.
1579 */
1580static void __cpuinit
1581build_pte_writable(u32 **p, struct uasm_reloc **r,
1582		   unsigned int pte, unsigned int ptr, int scratch,
1583		   enum label_id lid)
1584{
1585	int t = scratch >= 0 ? scratch : pte;
1586
1587	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1588	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1589	uasm_il_bnez(p, r, t, lid);
1590	if (pte == t)
1591		/* You lose the SMP race :-(*/
1592		iPTE_LW(p, pte, ptr);
1593	else
1594		uasm_i_nop(p);
1595}
1596
1597/* Make PTE writable, update software status bits as well, then store
1598 * at PTR.
1599 */
1600static void __cpuinit
1601build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1602		 unsigned int ptr)
1603{
1604	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1605			     | _PAGE_DIRTY);
1606
1607	iPTE_SW(p, r, pte, ptr, mode);
1608}
1609
1610/*
1611 * Check if PTE can be modified, if not branch to LABEL. Regardless
1612 * restore PTE with value from PTR when done.
1613 */
1614static void __cpuinit
1615build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1616		     unsigned int pte, unsigned int ptr, int scratch,
1617		     enum label_id lid)
1618{
1619	if (use_bbit_insns()) {
1620		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1621		uasm_i_nop(p);
1622	} else {
1623		int t = scratch >= 0 ? scratch : pte;
1624		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1625		uasm_il_beqz(p, r, t, lid);
1626		if (pte == t)
1627			/* You lose the SMP race :-(*/
1628			iPTE_LW(p, pte, ptr);
1629	}
1630}
1631
1632#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1633
1634
1635/*
1636 * R3000 style TLB load/store/modify handlers.
1637 */
1638
1639/*
1640 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1641 * Then it returns.
1642 */
1643static void __cpuinit
1644build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1645{
1646	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1647	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1648	uasm_i_tlbwi(p);
1649	uasm_i_jr(p, tmp);
1650	uasm_i_rfe(p); /* branch delay */
1651}
1652
1653/*
1654 * This places the pte into ENTRYLO0 and writes it with tlbwi
1655 * or tlbwr as appropriate.  This is because the index register
1656 * may have the probe fail bit set as a result of a trap on a
1657 * kseg2 access, i.e. without refill.  Then it returns.
1658 */
1659static void __cpuinit
1660build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1661			     struct uasm_reloc **r, unsigned int pte,
1662			     unsigned int tmp)
1663{
1664	uasm_i_mfc0(p, tmp, C0_INDEX);
1665	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1666	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1667	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1668	uasm_i_tlbwi(p); /* cp0 delay */
1669	uasm_i_jr(p, tmp);
1670	uasm_i_rfe(p); /* branch delay */
1671	uasm_l_r3000_write_probe_fail(l, *p);
1672	uasm_i_tlbwr(p); /* cp0 delay */
1673	uasm_i_jr(p, tmp);
1674	uasm_i_rfe(p); /* branch delay */
1675}
1676
1677static void __cpuinit
1678build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1679				   unsigned int ptr)
1680{
1681	long pgdc = (long)pgd_current;
1682
1683	uasm_i_mfc0(p, pte, C0_BADVADDR);
1684	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1685	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1686	uasm_i_srl(p, pte, pte, 22); /* load delay */
1687	uasm_i_sll(p, pte, pte, 2);
1688	uasm_i_addu(p, ptr, ptr, pte);
1689	uasm_i_mfc0(p, pte, C0_CONTEXT);
1690	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1691	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1692	uasm_i_addu(p, ptr, ptr, pte);
1693	uasm_i_lw(p, pte, 0, ptr);
1694	uasm_i_tlbp(p); /* load delay */
1695}
1696
1697static void __cpuinit build_r3000_tlb_load_handler(void)
1698{
1699	u32 *p = handle_tlbl;
 
1700	struct uasm_label *l = labels;
1701	struct uasm_reloc *r = relocs;
1702
1703	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1704	memset(labels, 0, sizeof(labels));
1705	memset(relocs, 0, sizeof(relocs));
1706
1707	build_r3000_tlbchange_handler_head(&p, K0, K1);
1708	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1709	uasm_i_nop(&p); /* load delay */
1710	build_make_valid(&p, &r, K0, K1);
1711	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1712
1713	uasm_l_nopage_tlbl(&l, p);
1714	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1715	uasm_i_nop(&p);
1716
1717	if ((p - handle_tlbl) > FASTPATH_SIZE)
1718		panic("TLB load handler fastpath space exceeded");
1719
1720	uasm_resolve_relocs(relocs, labels);
1721	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1722		 (unsigned int)(p - handle_tlbl));
1723
1724	dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1725}
1726
1727static void __cpuinit build_r3000_tlb_store_handler(void)
1728{
1729	u32 *p = handle_tlbs;
 
1730	struct uasm_label *l = labels;
1731	struct uasm_reloc *r = relocs;
1732
1733	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1734	memset(labels, 0, sizeof(labels));
1735	memset(relocs, 0, sizeof(relocs));
1736
1737	build_r3000_tlbchange_handler_head(&p, K0, K1);
1738	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1739	uasm_i_nop(&p); /* load delay */
1740	build_make_write(&p, &r, K0, K1);
1741	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1742
1743	uasm_l_nopage_tlbs(&l, p);
1744	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1745	uasm_i_nop(&p);
1746
1747	if ((p - handle_tlbs) > FASTPATH_SIZE)
1748		panic("TLB store handler fastpath space exceeded");
1749
1750	uasm_resolve_relocs(relocs, labels);
1751	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1752		 (unsigned int)(p - handle_tlbs));
1753
1754	dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1755}
1756
1757static void __cpuinit build_r3000_tlb_modify_handler(void)
1758{
1759	u32 *p = handle_tlbm;
 
1760	struct uasm_label *l = labels;
1761	struct uasm_reloc *r = relocs;
1762
1763	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1764	memset(labels, 0, sizeof(labels));
1765	memset(relocs, 0, sizeof(relocs));
1766
1767	build_r3000_tlbchange_handler_head(&p, K0, K1);
1768	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1769	uasm_i_nop(&p); /* load delay */
1770	build_make_write(&p, &r, K0, K1);
1771	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1772
1773	uasm_l_nopage_tlbm(&l, p);
1774	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1775	uasm_i_nop(&p);
1776
1777	if ((p - handle_tlbm) > FASTPATH_SIZE)
1778		panic("TLB modify handler fastpath space exceeded");
1779
1780	uasm_resolve_relocs(relocs, labels);
1781	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1782		 (unsigned int)(p - handle_tlbm));
1783
1784	dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1785}
1786#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1787
1788/*
1789 * R4000 style TLB load/store/modify handlers.
1790 */
1791static struct work_registers __cpuinit
1792build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1793				   struct uasm_reloc **r)
1794{
1795	struct work_registers wr = build_get_work_registers(p);
1796
1797#ifdef CONFIG_64BIT
1798	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1799#else
1800	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1801#endif
1802
1803#ifdef CONFIG_HUGETLB_PAGE
1804	/*
1805	 * For huge tlb entries, pmd doesn't contain an address but
1806	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1807	 * see if we need to jump to huge tlb processing.
1808	 */
1809	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1810#endif
1811
1812	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1813	UASM_i_LW(p, wr.r2, 0, wr.r2);
1814	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1815	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1816	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1817
1818#ifdef CONFIG_SMP
1819	uasm_l_smp_pgtable_change(l, *p);
1820#endif
1821	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1822	if (!m4kc_tlbp_war())
1823		build_tlb_probe_entry(p);
1824	return wr;
1825}
1826
1827static void __cpuinit
1828build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1829				   struct uasm_reloc **r, unsigned int tmp,
1830				   unsigned int ptr)
1831{
1832	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1833	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1834	build_update_entries(p, tmp, ptr);
1835	build_tlb_write_entry(p, l, r, tlb_indexed);
1836	uasm_l_leave(l, *p);
1837	build_restore_work_registers(p);
1838	uasm_i_eret(p); /* return from trap */
1839
1840#ifdef CONFIG_64BIT
1841	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1842#endif
1843}
1844
1845static void __cpuinit build_r4000_tlb_load_handler(void)
1846{
1847	u32 *p = handle_tlbl;
 
1848	struct uasm_label *l = labels;
1849	struct uasm_reloc *r = relocs;
1850	struct work_registers wr;
1851
1852	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1853	memset(labels, 0, sizeof(labels));
1854	memset(relocs, 0, sizeof(relocs));
1855
1856	if (bcm1250_m3_war()) {
1857		unsigned int segbits = 44;
1858
1859		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1860		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1861		uasm_i_xor(&p, K0, K0, K1);
1862		uasm_i_dsrl_safe(&p, K1, K0, 62);
1863		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1864		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1865		uasm_i_or(&p, K0, K0, K1);
1866		uasm_il_bnez(&p, &r, K0, label_leave);
1867		/* No need for uasm_i_nop */
1868	}
1869
1870	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1871	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1872	if (m4kc_tlbp_war())
1873		build_tlb_probe_entry(&p);
1874
1875	if (kernel_uses_smartmips_rixi) {
1876		/*
1877		 * If the page is not _PAGE_VALID, RI or XI could not
1878		 * have triggered it.  Skip the expensive test..
1879		 */
1880		if (use_bbit_insns()) {
1881			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1882				      label_tlbl_goaround1);
1883		} else {
1884			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1885			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1886		}
1887		uasm_i_nop(&p);
1888
1889		uasm_i_tlbr(&p);
 
 
 
 
 
 
 
 
 
 
 
 
 
1890		/* Examine  entrylo 0 or 1 based on ptr. */
1891		if (use_bbit_insns()) {
1892			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1893		} else {
1894			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1895			uasm_i_beqz(&p, wr.r3, 8);
1896		}
1897		/* load it in the delay slot*/
1898		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1899		/* load it if ptr is odd */
1900		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1901		/*
1902		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1903		 * XI must have triggered it.
1904		 */
1905		if (use_bbit_insns()) {
1906			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1907			uasm_i_nop(&p);
1908			uasm_l_tlbl_goaround1(&l, p);
1909		} else {
1910			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1911			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1912			uasm_i_nop(&p);
1913		}
1914		uasm_l_tlbl_goaround1(&l, p);
1915	}
1916	build_make_valid(&p, &r, wr.r1, wr.r2);
1917	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1918
1919#ifdef CONFIG_HUGETLB_PAGE
1920	/*
1921	 * This is the entry point when build_r4000_tlbchange_handler_head
1922	 * spots a huge page.
1923	 */
1924	uasm_l_tlb_huge_update(&l, p);
1925	iPTE_LW(&p, wr.r1, wr.r2);
1926	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1927	build_tlb_probe_entry(&p);
1928
1929	if (kernel_uses_smartmips_rixi) {
1930		/*
1931		 * If the page is not _PAGE_VALID, RI or XI could not
1932		 * have triggered it.  Skip the expensive test..
1933		 */
1934		if (use_bbit_insns()) {
1935			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1936				      label_tlbl_goaround2);
1937		} else {
1938			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1939			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1940		}
1941		uasm_i_nop(&p);
1942
1943		uasm_i_tlbr(&p);
 
 
 
 
 
 
 
 
 
 
 
 
 
1944		/* Examine  entrylo 0 or 1 based on ptr. */
1945		if (use_bbit_insns()) {
1946			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1947		} else {
1948			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1949			uasm_i_beqz(&p, wr.r3, 8);
1950		}
1951		/* load it in the delay slot*/
1952		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1953		/* load it if ptr is odd */
1954		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1955		/*
1956		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1957		 * XI must have triggered it.
1958		 */
1959		if (use_bbit_insns()) {
1960			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
1961		} else {
1962			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1963			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1964		}
1965		if (PM_DEFAULT_MASK == 0)
1966			uasm_i_nop(&p);
1967		/*
1968		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
1969		 * it is restored in build_huge_tlb_write_entry.
1970		 */
1971		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
1972
1973		uasm_l_tlbl_goaround2(&l, p);
1974	}
1975	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
1976	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
1977#endif
1978
1979	uasm_l_nopage_tlbl(&l, p);
1980	build_restore_work_registers(&p);
 
 
 
 
 
 
 
1981	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1982	uasm_i_nop(&p);
1983
1984	if ((p - handle_tlbl) > FASTPATH_SIZE)
1985		panic("TLB load handler fastpath space exceeded");
1986
1987	uasm_resolve_relocs(relocs, labels);
1988	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1989		 (unsigned int)(p - handle_tlbl));
1990
1991	dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1992}
1993
1994static void __cpuinit build_r4000_tlb_store_handler(void)
1995{
1996	u32 *p = handle_tlbs;
 
1997	struct uasm_label *l = labels;
1998	struct uasm_reloc *r = relocs;
1999	struct work_registers wr;
2000
2001	memset(handle_tlbs, 0, sizeof(handle_tlbs));
2002	memset(labels, 0, sizeof(labels));
2003	memset(relocs, 0, sizeof(relocs));
2004
2005	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2006	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2007	if (m4kc_tlbp_war())
2008		build_tlb_probe_entry(&p);
2009	build_make_write(&p, &r, wr.r1, wr.r2);
2010	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2011
2012#ifdef CONFIG_HUGETLB_PAGE
2013	/*
2014	 * This is the entry point when
2015	 * build_r4000_tlbchange_handler_head spots a huge page.
2016	 */
2017	uasm_l_tlb_huge_update(&l, p);
2018	iPTE_LW(&p, wr.r1, wr.r2);
2019	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2020	build_tlb_probe_entry(&p);
2021	uasm_i_ori(&p, wr.r1, wr.r1,
2022		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2023	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2024#endif
2025
2026	uasm_l_nopage_tlbs(&l, p);
2027	build_restore_work_registers(&p);
 
 
 
 
 
 
 
2028	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2029	uasm_i_nop(&p);
2030
2031	if ((p - handle_tlbs) > FASTPATH_SIZE)
2032		panic("TLB store handler fastpath space exceeded");
2033
2034	uasm_resolve_relocs(relocs, labels);
2035	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2036		 (unsigned int)(p - handle_tlbs));
2037
2038	dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
2039}
2040
2041static void __cpuinit build_r4000_tlb_modify_handler(void)
2042{
2043	u32 *p = handle_tlbm;
 
2044	struct uasm_label *l = labels;
2045	struct uasm_reloc *r = relocs;
2046	struct work_registers wr;
2047
2048	memset(handle_tlbm, 0, sizeof(handle_tlbm));
2049	memset(labels, 0, sizeof(labels));
2050	memset(relocs, 0, sizeof(relocs));
2051
2052	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2053	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2054	if (m4kc_tlbp_war())
2055		build_tlb_probe_entry(&p);
2056	/* Present and writable bits set, set accessed and dirty bits. */
2057	build_make_write(&p, &r, wr.r1, wr.r2);
2058	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2059
2060#ifdef CONFIG_HUGETLB_PAGE
2061	/*
2062	 * This is the entry point when
2063	 * build_r4000_tlbchange_handler_head spots a huge page.
2064	 */
2065	uasm_l_tlb_huge_update(&l, p);
2066	iPTE_LW(&p, wr.r1, wr.r2);
2067	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2068	build_tlb_probe_entry(&p);
2069	uasm_i_ori(&p, wr.r1, wr.r1,
2070		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2071	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2072#endif
2073
2074	uasm_l_nopage_tlbm(&l, p);
2075	build_restore_work_registers(&p);
 
 
 
 
 
 
 
2076	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2077	uasm_i_nop(&p);
2078
2079	if ((p - handle_tlbm) > FASTPATH_SIZE)
2080		panic("TLB modify handler fastpath space exceeded");
2081
2082	uasm_resolve_relocs(relocs, labels);
2083	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2084		 (unsigned int)(p - handle_tlbm));
2085
2086	dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
 
 
 
 
 
 
 
 
 
 
 
 
2087}
2088
2089void __cpuinit build_tlb_refill_handler(void)
2090{
2091	/*
2092	 * The refill handler is generated per-CPU, multi-node systems
2093	 * may have local storage for it. The other handlers are only
2094	 * needed once.
2095	 */
2096	static int run_once = 0;
2097
 
 
2098#ifdef CONFIG_64BIT
2099	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2100#endif
2101
2102	switch (current_cpu_type()) {
2103	case CPU_R2000:
2104	case CPU_R3000:
2105	case CPU_R3000A:
2106	case CPU_R3081E:
2107	case CPU_TX3912:
2108	case CPU_TX3922:
2109	case CPU_TX3927:
2110#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2111		build_r3000_tlb_refill_handler();
 
2112		if (!run_once) {
 
 
 
2113			build_r3000_tlb_load_handler();
2114			build_r3000_tlb_store_handler();
2115			build_r3000_tlb_modify_handler();
 
2116			run_once++;
2117		}
2118#else
2119		panic("No R3000 TLB refill handler");
2120#endif
2121		break;
2122
2123	case CPU_R6000:
2124	case CPU_R6000A:
2125		panic("No R6000 TLB refill handler yet");
2126		break;
2127
2128	case CPU_R8000:
2129		panic("No R8000 TLB refill handler yet");
2130		break;
2131
2132	default:
2133		if (!run_once) {
2134			scratch_reg = allocate_kscratch();
2135#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2136			build_r4000_setup_pgd();
2137#endif
2138			build_r4000_tlb_load_handler();
2139			build_r4000_tlb_store_handler();
2140			build_r4000_tlb_modify_handler();
 
 
 
2141			run_once++;
2142		}
2143		build_r4000_tlb_refill_handler();
 
2144	}
2145}
2146
2147void __cpuinit flush_tlb_handlers(void)
2148{
2149	local_flush_icache_range((unsigned long)handle_tlbl,
2150			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2151	local_flush_icache_range((unsigned long)handle_tlbs,
2152			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2153	local_flush_icache_range((unsigned long)handle_tlbm,
2154			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2155#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2156	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2157			   (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2158#endif
2159}
v3.15
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Synthesize TLB refill handlers at runtime.
   7 *
   8 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
   9 * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
  10 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
  11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12 * Copyright (C) 2011  MIPS Technologies, Inc.
  13 *
  14 * ... and the days got worse and worse and now you see
  15 * I've gone completly out of my mind.
  16 *
  17 * They're coming to take me a away haha
  18 * they're coming to take me a away hoho hihi haha
  19 * to the funny farm where code is beautiful all the time ...
  20 *
  21 * (Condolences to Napoleon XIV)
  22 */
  23
  24#include <linux/bug.h>
  25#include <linux/kernel.h>
  26#include <linux/types.h>
  27#include <linux/smp.h>
  28#include <linux/string.h>
 
  29#include <linux/cache.h>
  30
  31#include <asm/cacheflush.h>
  32#include <asm/cpu-type.h>
  33#include <asm/pgtable.h>
  34#include <asm/war.h>
  35#include <asm/uasm.h>
  36#include <asm/setup.h>
  37
  38/*
  39 * TLB load/store/modify handlers.
  40 *
  41 * Only the fastpath gets synthesized at runtime, the slowpath for
  42 * do_page_fault remains normal asm.
  43 */
  44extern void tlb_do_page_fault_0(void);
  45extern void tlb_do_page_fault_1(void);
  46
  47struct work_registers {
  48	int r1;
  49	int r2;
  50	int r3;
  51};
  52
  53struct tlb_reg_save {
  54	unsigned long a;
  55	unsigned long b;
  56} ____cacheline_aligned_in_smp;
  57
  58static struct tlb_reg_save handler_reg_save[NR_CPUS];
  59
  60static inline int r45k_bvahwbug(void)
  61{
  62	/* XXX: We should probe for the presence of this bug, but we don't. */
  63	return 0;
  64}
  65
  66static inline int r4k_250MHZhwbug(void)
  67{
  68	/* XXX: We should probe for the presence of this bug, but we don't. */
  69	return 0;
  70}
  71
  72static inline int __maybe_unused bcm1250_m3_war(void)
  73{
  74	return BCM1250_M3_WAR;
  75}
  76
  77static inline int __maybe_unused r10000_llsc_war(void)
  78{
  79	return R10000_LLSC_WAR;
  80}
  81
  82static int use_bbit_insns(void)
  83{
  84	switch (current_cpu_type()) {
  85	case CPU_CAVIUM_OCTEON:
  86	case CPU_CAVIUM_OCTEON_PLUS:
  87	case CPU_CAVIUM_OCTEON2:
  88	case CPU_CAVIUM_OCTEON3:
  89		return 1;
  90	default:
  91		return 0;
  92	}
  93}
  94
  95static int use_lwx_insns(void)
  96{
  97	switch (current_cpu_type()) {
  98	case CPU_CAVIUM_OCTEON2:
  99	case CPU_CAVIUM_OCTEON3:
 100		return 1;
 101	default:
 102		return 0;
 103	}
 104}
 105#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
 106    CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
 107static bool scratchpad_available(void)
 108{
 109	return true;
 110}
 111static int scratchpad_offset(int i)
 112{
 113	/*
 114	 * CVMSEG starts at address -32768 and extends for
 115	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
 116	 */
 117	i += 1; /* Kernel use starts at the top and works down. */
 118	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
 119}
 120#else
 121static bool scratchpad_available(void)
 122{
 123	return false;
 124}
 125static int scratchpad_offset(int i)
 126{
 127	BUG();
 128	/* Really unreachable, but evidently some GCC want this. */
 129	return 0;
 130}
 131#endif
 132/*
 133 * Found by experiment: At least some revisions of the 4kc throw under
 134 * some circumstances a machine check exception, triggered by invalid
 135 * values in the index register.  Delaying the tlbp instruction until
 136 * after the next branch,  plus adding an additional nop in front of
 137 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
 138 * why; it's not an issue caused by the core RTL.
 139 *
 140 */
 141static int m4kc_tlbp_war(void)
 142{
 143	return (current_cpu_data.processor_id & 0xffff00) ==
 144	       (PRID_COMP_MIPS | PRID_IMP_4KC);
 145}
 146
 147/* Handle labels (which must be positive integers). */
 148enum label_id {
 149	label_second_part = 1,
 150	label_leave,
 151	label_vmalloc,
 152	label_vmalloc_done,
 153	label_tlbw_hazard_0,
 154	label_split = label_tlbw_hazard_0 + 8,
 155	label_tlbl_goaround1,
 156	label_tlbl_goaround2,
 157	label_nopage_tlbl,
 158	label_nopage_tlbs,
 159	label_nopage_tlbm,
 160	label_smp_pgtable_change,
 161	label_r3000_write_probe_fail,
 162	label_large_segbits_fault,
 163#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
 164	label_tlb_huge_update,
 165#endif
 166};
 167
 168UASM_L_LA(_second_part)
 169UASM_L_LA(_leave)
 170UASM_L_LA(_vmalloc)
 171UASM_L_LA(_vmalloc_done)
 172/* _tlbw_hazard_x is handled differently.  */
 173UASM_L_LA(_split)
 174UASM_L_LA(_tlbl_goaround1)
 175UASM_L_LA(_tlbl_goaround2)
 176UASM_L_LA(_nopage_tlbl)
 177UASM_L_LA(_nopage_tlbs)
 178UASM_L_LA(_nopage_tlbm)
 179UASM_L_LA(_smp_pgtable_change)
 180UASM_L_LA(_r3000_write_probe_fail)
 181UASM_L_LA(_large_segbits_fault)
 182#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
 183UASM_L_LA(_tlb_huge_update)
 184#endif
 185
 186static int hazard_instance;
 187
 188static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
 189{
 190	switch (instance) {
 191	case 0 ... 7:
 192		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
 193		return;
 194	default:
 195		BUG();
 196	}
 197}
 198
 199static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
 200{
 201	switch (instance) {
 202	case 0 ... 7:
 203		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
 204		break;
 205	default:
 206		BUG();
 207	}
 208}
 209
 210/*
 211 * pgtable bits are assigned dynamically depending on processor feature
 212 * and statically based on kernel configuration.  This spits out the actual
 213 * values the kernel is using.	Required to make sense from disassembled
 214 * TLB exception handlers.
 215 */
 216static void output_pgtable_bits_defines(void)
 217{
 218#define pr_define(fmt, ...)					\
 219	pr_debug("#define " fmt, ##__VA_ARGS__)
 220
 221	pr_debug("#include <asm/asm.h>\n");
 222	pr_debug("#include <asm/regdef.h>\n");
 223	pr_debug("\n");
 224
 225	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
 226	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
 227	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
 228	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
 229	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
 230#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
 231	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
 232	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
 233#endif
 234	if (cpu_has_rixi) {
 235#ifdef _PAGE_NO_EXEC_SHIFT
 236		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
 237#endif
 238#ifdef _PAGE_NO_READ_SHIFT
 239		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
 240#endif
 241	}
 242	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
 243	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
 244	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
 245	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
 246	pr_debug("\n");
 247}
 248
 249static inline void dump_handler(const char *symbol, const u32 *handler, int count)
 250{
 251	int i;
 252
 253	pr_debug("LEAF(%s)\n", symbol);
 254
 255	pr_debug("\t.set push\n");
 256	pr_debug("\t.set noreorder\n");
 257
 258	for (i = 0; i < count; i++)
 259		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
 260
 261	pr_debug("\t.set\tpop\n");
 262
 263	pr_debug("\tEND(%s)\n", symbol);
 264}
 265
 266/* The only general purpose registers allowed in TLB handlers. */
 267#define K0		26
 268#define K1		27
 269
 270/* Some CP0 registers */
 271#define C0_INDEX	0, 0
 272#define C0_ENTRYLO0	2, 0
 273#define C0_TCBIND	2, 2
 274#define C0_ENTRYLO1	3, 0
 275#define C0_CONTEXT	4, 0
 276#define C0_PAGEMASK	5, 0
 277#define C0_BADVADDR	8, 0
 278#define C0_ENTRYHI	10, 0
 279#define C0_EPC		14, 0
 280#define C0_XCONTEXT	20, 0
 281
 282#ifdef CONFIG_64BIT
 283# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
 284#else
 285# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
 286#endif
 287
 288/* The worst case length of the handler is around 18 instructions for
 289 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
 290 * Maximum space available is 32 instructions for R3000 and 64
 291 * instructions for R4000.
 292 *
 293 * We deliberately chose a buffer size of 128, so we won't scribble
 294 * over anything important on overflow before we panic.
 295 */
 296static u32 tlb_handler[128];
 297
 298/* simply assume worst case size for labels and relocs */
 299static struct uasm_label labels[128];
 300static struct uasm_reloc relocs[128];
 301
 302static int check_for_high_segbits;
 
 
 303
 304static unsigned int kscratch_used_mask;
 305
 306static inline int __maybe_unused c0_kscratch(void)
 307{
 308	switch (current_cpu_type()) {
 309	case CPU_XLP:
 310	case CPU_XLR:
 311		return 22;
 312	default:
 313		return 31;
 314	}
 315}
 316
 317static int allocate_kscratch(void)
 318{
 319	int r;
 320	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
 321
 322	r = ffs(a);
 323
 324	if (r == 0)
 325		return -1;
 326
 327	r--; /* make it zero based */
 328
 329	kscratch_used_mask |= (1 << r);
 330
 331	return r;
 332}
 333
 334static int scratch_reg;
 335static int pgd_reg;
 336enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
 337
 338static struct work_registers build_get_work_registers(u32 **p)
 339{
 340	struct work_registers r;
 341
 342	if (scratch_reg >= 0) {
 
 
 
 
 343		/* Save in CPU local C0_KScratch? */
 344		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
 345		r.r1 = K0;
 346		r.r2 = K1;
 347		r.r3 = 1;
 348		return r;
 349	}
 350
 351	if (num_possible_cpus() > 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352		/* Get smp_processor_id */
 353		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
 354		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
 355
 356		/* handler_reg_save index in K0 */
 357		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
 358
 359		UASM_i_LA(p, K1, (long)&handler_reg_save);
 360		UASM_i_ADDU(p, K0, K0, K1);
 361	} else {
 362		UASM_i_LA(p, K0, (long)&handler_reg_save);
 363	}
 364	/* K0 now points to save area, save $1 and $2  */
 365	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
 366	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
 367
 368	r.r1 = K1;
 369	r.r2 = 1;
 370	r.r3 = 2;
 371	return r;
 372}
 373
 374static void build_restore_work_registers(u32 **p)
 375{
 376	if (scratch_reg >= 0) {
 377		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
 378		return;
 379	}
 380	/* K0 already points to save area, restore $1 and $2  */
 381	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
 382	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
 383}
 384
 385#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
 386
 387/*
 388 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
 389 * we cannot do r3000 under these circumstances.
 390 *
 391 * Declare pgd_current here instead of including mmu_context.h to avoid type
 392 * conflicts for tlbmiss_handler_setup_pgd
 393 */
 394extern unsigned long pgd_current[];
 395
 396/*
 397 * The R3000 TLB handler is simple.
 398 */
 399static void build_r3000_tlb_refill_handler(void)
 400{
 401	long pgdc = (long)pgd_current;
 402	u32 *p;
 403
 404	memset(tlb_handler, 0, sizeof(tlb_handler));
 405	p = tlb_handler;
 406
 407	uasm_i_mfc0(&p, K0, C0_BADVADDR);
 408	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
 409	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
 410	uasm_i_srl(&p, K0, K0, 22); /* load delay */
 411	uasm_i_sll(&p, K0, K0, 2);
 412	uasm_i_addu(&p, K1, K1, K0);
 413	uasm_i_mfc0(&p, K0, C0_CONTEXT);
 414	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
 415	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
 416	uasm_i_addu(&p, K1, K1, K0);
 417	uasm_i_lw(&p, K0, 0, K1);
 418	uasm_i_nop(&p); /* load delay */
 419	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
 420	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
 421	uasm_i_tlbwr(&p); /* cp0 delay */
 422	uasm_i_jr(&p, K1);
 423	uasm_i_rfe(&p); /* branch delay */
 424
 425	if (p > tlb_handler + 32)
 426		panic("TLB refill handler space exceeded");
 427
 428	pr_debug("Wrote TLB refill handler (%u instructions).\n",
 429		 (unsigned int)(p - tlb_handler));
 430
 431	memcpy((void *)ebase, tlb_handler, 0x80);
 432
 433	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
 434}
 435#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
 436
 437/*
 438 * The R4000 TLB handler is much more complicated. We have two
 439 * consecutive handler areas with 32 instructions space each.
 440 * Since they aren't used at the same time, we can overflow in the
 441 * other one.To keep things simple, we first assume linear space,
 442 * then we relocate it to the final handler layout as needed.
 443 */
 444static u32 final_handler[64];
 445
 446/*
 447 * Hazards
 448 *
 449 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
 450 * 2. A timing hazard exists for the TLBP instruction.
 451 *
 452 *	stalling_instruction
 453 *	TLBP
 454 *
 455 * The JTLB is being read for the TLBP throughout the stall generated by the
 456 * previous instruction. This is not really correct as the stalling instruction
 457 * can modify the address used to access the JTLB.  The failure symptom is that
 458 * the TLBP instruction will use an address created for the stalling instruction
 459 * and not the address held in C0_ENHI and thus report the wrong results.
 460 *
 461 * The software work-around is to not allow the instruction preceding the TLBP
 462 * to stall - make it an NOP or some other instruction guaranteed not to stall.
 463 *
 464 * Errata 2 will not be fixed.	This errata is also on the R5000.
 465 *
 466 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
 467 */
 468static void __maybe_unused build_tlb_probe_entry(u32 **p)
 469{
 470	switch (current_cpu_type()) {
 471	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
 472	case CPU_R4600:
 473	case CPU_R4700:
 474	case CPU_R5000:
 
 475	case CPU_NEVADA:
 476		uasm_i_nop(p);
 477		uasm_i_tlbp(p);
 478		break;
 479
 480	default:
 481		uasm_i_tlbp(p);
 482		break;
 483	}
 484}
 485
 486/*
 487 * Write random or indexed TLB entry, and care about the hazards from
 488 * the preceding mtc0 and for the following eret.
 489 */
 490enum tlb_write_entry { tlb_random, tlb_indexed };
 491
 492static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
 493				  struct uasm_reloc **r,
 494				  enum tlb_write_entry wmode)
 495{
 496	void(*tlbw)(u32 **) = NULL;
 497
 498	switch (wmode) {
 499	case tlb_random: tlbw = uasm_i_tlbwr; break;
 500	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
 501	}
 502
 503	if (cpu_has_mips_r2) {
 504		/*
 505		 * The architecture spec says an ehb is required here,
 506		 * but a number of cores do not have the hazard and
 507		 * using an ehb causes an expensive pipeline stall.
 508		 */
 509		switch (current_cpu_type()) {
 510		case CPU_M14KC:
 511		case CPU_74K:
 512		case CPU_1074K:
 513		case CPU_PROAPTIV:
 514		case CPU_P5600:
 515		case CPU_M5150:
 516			break;
 517
 518		default:
 519			uasm_i_ehb(p);
 520			break;
 521		}
 522		tlbw(p);
 523		return;
 524	}
 525
 526	switch (current_cpu_type()) {
 527	case CPU_R4000PC:
 528	case CPU_R4000SC:
 529	case CPU_R4000MC:
 530	case CPU_R4400PC:
 531	case CPU_R4400SC:
 532	case CPU_R4400MC:
 533		/*
 534		 * This branch uses up a mtc0 hazard nop slot and saves
 535		 * two nops after the tlbw instruction.
 536		 */
 537		uasm_bgezl_hazard(p, r, hazard_instance);
 538		tlbw(p);
 539		uasm_bgezl_label(l, p, hazard_instance);
 540		hazard_instance++;
 541		uasm_i_nop(p);
 542		break;
 543
 544	case CPU_R4600:
 545	case CPU_R4700:
 
 
 546		uasm_i_nop(p);
 547		tlbw(p);
 548		uasm_i_nop(p);
 549		break;
 550
 551	case CPU_R5000:
 552	case CPU_NEVADA:
 553		uasm_i_nop(p); /* QED specifies 2 nops hazard */
 554		uasm_i_nop(p); /* QED specifies 2 nops hazard */
 555		tlbw(p);
 556		break;
 557
 558	case CPU_R4300:
 559	case CPU_5KC:
 560	case CPU_TX49XX:
 561	case CPU_PR4450:
 562	case CPU_XLR:
 563		uasm_i_nop(p);
 564		tlbw(p);
 565		break;
 566
 567	case CPU_R10000:
 568	case CPU_R12000:
 569	case CPU_R14000:
 570	case CPU_4KC:
 571	case CPU_4KEC:
 572	case CPU_M14KC:
 573	case CPU_M14KEC:
 574	case CPU_SB1:
 575	case CPU_SB1A:
 576	case CPU_4KSC:
 577	case CPU_20KC:
 578	case CPU_25KF:
 579	case CPU_BMIPS32:
 580	case CPU_BMIPS3300:
 581	case CPU_BMIPS4350:
 582	case CPU_BMIPS4380:
 583	case CPU_BMIPS5000:
 584	case CPU_LOONGSON2:
 585	case CPU_LOONGSON3:
 586	case CPU_R5500:
 587		if (m4kc_tlbp_war())
 588			uasm_i_nop(p);
 589	case CPU_ALCHEMY:
 590		tlbw(p);
 591		break;
 592
 
 
 
 
 
 
 
 
 
 
 
 593	case CPU_RM7000:
 594		uasm_i_nop(p);
 595		uasm_i_nop(p);
 596		uasm_i_nop(p);
 597		uasm_i_nop(p);
 598		tlbw(p);
 599		break;
 600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601	case CPU_VR4111:
 602	case CPU_VR4121:
 603	case CPU_VR4122:
 604	case CPU_VR4181:
 605	case CPU_VR4181A:
 606		uasm_i_nop(p);
 607		uasm_i_nop(p);
 608		tlbw(p);
 609		uasm_i_nop(p);
 610		uasm_i_nop(p);
 611		break;
 612
 613	case CPU_VR4131:
 614	case CPU_VR4133:
 615	case CPU_R5432:
 616		uasm_i_nop(p);
 617		uasm_i_nop(p);
 618		tlbw(p);
 619		break;
 620
 621	case CPU_JZRISC:
 622		tlbw(p);
 623		uasm_i_nop(p);
 624		break;
 625
 626	default:
 627		panic("No TLB refill handler yet (CPU type: %d)",
 628		      current_cpu_type());
 629		break;
 630	}
 631}
 632
 633static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
 634							unsigned int reg)
 635{
 636	if (cpu_has_rixi) {
 637		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
 
 638	} else {
 639#ifdef CONFIG_64BIT_PHYS_ADDR
 640		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
 641#else
 642		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
 643#endif
 644	}
 645}
 646
 647#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
 648
 649static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
 650				   unsigned int tmp, enum label_id lid,
 651				   int restore_scratch)
 
 
 652{
 653	if (restore_scratch) {
 654		/* Reset default page size */
 655		if (PM_DEFAULT_MASK >> 16) {
 656			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
 657			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
 658			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
 659			uasm_il_b(p, r, lid);
 660		} else if (PM_DEFAULT_MASK) {
 661			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
 662			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
 663			uasm_il_b(p, r, lid);
 664		} else {
 665			uasm_i_mtc0(p, 0, C0_PAGEMASK);
 666			uasm_il_b(p, r, lid);
 667		}
 668		if (scratch_reg >= 0)
 669			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
 670		else
 671			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
 672	} else {
 673		/* Reset default page size */
 674		if (PM_DEFAULT_MASK >> 16) {
 675			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
 676			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
 677			uasm_il_b(p, r, lid);
 678			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
 679		} else if (PM_DEFAULT_MASK) {
 680			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
 681			uasm_il_b(p, r, lid);
 682			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
 683		} else {
 684			uasm_il_b(p, r, lid);
 685			uasm_i_mtc0(p, 0, C0_PAGEMASK);
 686		}
 687	}
 688}
 689
 690static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
 691				       struct uasm_reloc **r,
 692				       unsigned int tmp,
 693				       enum tlb_write_entry wmode,
 694				       int restore_scratch)
 
 695{
 696	/* Set huge page tlb entry size */
 697	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
 698	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
 699	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
 700
 701	build_tlb_write_entry(p, l, r, wmode);
 702
 703	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
 704}
 705
 706/*
 707 * Check if Huge PTE is present, if so then jump to LABEL.
 708 */
 709static void
 710build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
 711		  unsigned int pmd, int lid)
 712{
 713	UASM_i_LW(p, tmp, 0, pmd);
 714	if (use_bbit_insns()) {
 715		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
 716	} else {
 717		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
 718		uasm_il_bnez(p, r, tmp, lid);
 719	}
 720}
 721
 722static void build_huge_update_entries(u32 **p, unsigned int pte,
 723				      unsigned int tmp)
 
 724{
 725	int small_sequence;
 726
 727	/*
 728	 * A huge PTE describes an area the size of the
 729	 * configured huge page size. This is twice the
 730	 * of the large TLB entry size we intend to use.
 731	 * A TLB entry half the size of the configured
 732	 * huge page size is configured into entrylo0
 733	 * and entrylo1 to cover the contiguous huge PTE
 734	 * address space.
 735	 */
 736	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
 737
 738	/* We can clobber tmp.	It isn't used after this.*/
 739	if (!small_sequence)
 740		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
 741
 742	build_convert_pte_to_entrylo(p, pte);
 743	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
 744	/* convert to entrylo1 */
 745	if (small_sequence)
 746		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
 747	else
 748		UASM_i_ADDU(p, pte, pte, tmp);
 749
 750	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
 751}
 752
 753static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
 754				    struct uasm_label **l,
 755				    unsigned int pte,
 756				    unsigned int ptr)
 
 757{
 758#ifdef CONFIG_SMP
 759	UASM_i_SC(p, pte, 0, ptr);
 760	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
 761	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
 762#else
 763	UASM_i_SW(p, pte, 0, ptr);
 764#endif
 765	build_huge_update_entries(p, pte, ptr);
 766	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
 767}
 768#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
 769
 770#ifdef CONFIG_64BIT
 771/*
 772 * TMP and PTR are scratch.
 773 * TMP will be clobbered, PTR will hold the pmd entry.
 774 */
 775static void
 776build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
 777		 unsigned int tmp, unsigned int ptr)
 778{
 779#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
 780	long pgdc = (long)pgd_current;
 781#endif
 782	/*
 783	 * The vmalloc handling is not in the hotpath.
 784	 */
 785	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
 786
 787	if (check_for_high_segbits) {
 788		/*
 789		 * The kernel currently implicitely assumes that the
 790		 * MIPS SEGBITS parameter for the processor is
 791		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
 792		 * allocate virtual addresses outside the maximum
 793		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
 794		 * that doesn't prevent user code from accessing the
 795		 * higher xuseg addresses.  Here, we make sure that
 796		 * everything but the lower xuseg addresses goes down
 797		 * the module_alloc/vmalloc path.
 798		 */
 799		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
 800		uasm_il_bnez(p, r, ptr, label_vmalloc);
 801	} else {
 802		uasm_il_bltz(p, r, tmp, label_vmalloc);
 803	}
 804	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
 805
 
 806	if (pgd_reg != -1) {
 807		/* pgd is in pgd_reg */
 808		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
 809	} else {
 810#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
 811		/*
 812		 * &pgd << 11 stored in CONTEXT [23..63].
 813		 */
 814		UASM_i_MFC0(p, ptr, C0_CONTEXT);
 815
 816		/* Clear lower 23 bits of context. */
 817		uasm_i_dins(p, ptr, 0, 0, 23);
 818
 819		/* 1 0	1 0 1  << 6  xkphys cached */
 820		uasm_i_ori(p, ptr, ptr, 0x540);
 821		uasm_i_drotr(p, ptr, ptr, 11);
 
 822#elif defined(CONFIG_SMP)
 823		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
 824		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
 825		UASM_i_LA_mostly(p, tmp, pgdc);
 826		uasm_i_daddu(p, ptr, ptr, tmp);
 827		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
 828		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 829#else
 830		UASM_i_LA_mostly(p, ptr, pgdc);
 831		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
 832#endif
 833	}
 834
 835	uasm_l_vmalloc_done(l, *p);
 836
 837	/* get pgd offset in bytes */
 838	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
 839
 840	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
 841	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
 842#ifndef __PAGETABLE_PMD_FOLDED
 843	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
 844	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
 845	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
 846	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
 847	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
 848#endif
 849}
 850
 851/*
 852 * BVADDR is the faulting address, PTR is scratch.
 853 * PTR will hold the pgd for vmalloc.
 854 */
 855static void
 856build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
 857			unsigned int bvaddr, unsigned int ptr,
 858			enum vmalloc64_mode mode)
 859{
 860	long swpd = (long)swapper_pg_dir;
 861	int single_insn_swpd;
 862	int did_vmalloc_branch = 0;
 863
 864	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
 865
 866	uasm_l_vmalloc(l, *p);
 867
 868	if (mode != not_refill && check_for_high_segbits) {
 869		if (single_insn_swpd) {
 870			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
 871			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
 872			did_vmalloc_branch = 1;
 873			/* fall through */
 874		} else {
 875			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
 876		}
 877	}
 878	if (!did_vmalloc_branch) {
 879		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
 880			uasm_il_b(p, r, label_vmalloc_done);
 881			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
 882		} else {
 883			UASM_i_LA_mostly(p, ptr, swpd);
 884			uasm_il_b(p, r, label_vmalloc_done);
 885			if (uasm_in_compat_space_p(swpd))
 886				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
 887			else
 888				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
 889		}
 890	}
 891	if (mode != not_refill && check_for_high_segbits) {
 892		uasm_l_large_segbits_fault(l, *p);
 893		/*
 894		 * We get here if we are an xsseg address, or if we are
 895		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
 896		 *
 897		 * Ignoring xsseg (assume disabled so would generate
 898		 * (address errors?), the only remaining possibility
 899		 * is the upper xuseg addresses.  On processors with
 900		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
 901		 * addresses would have taken an address error. We try
 902		 * to mimic that here by taking a load/istream page
 903		 * fault.
 904		 */
 905		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
 906		uasm_i_jr(p, ptr);
 907
 908		if (mode == refill_scratch) {
 909			if (scratch_reg >= 0)
 910				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
 911			else
 912				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
 913		} else {
 914			uasm_i_nop(p);
 915		}
 916	}
 917}
 918
 919#else /* !CONFIG_64BIT */
 920
 921/*
 922 * TMP and PTR are scratch.
 923 * TMP will be clobbered, PTR will hold the pgd entry.
 924 */
 925static void __maybe_unused
 926build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
 927{
 928	if (pgd_reg != -1) {
 929		/* pgd is in pgd_reg */
 930		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
 931		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
 932	} else {
 933		long pgdc = (long)pgd_current;
 934
 935		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
 936#ifdef CONFIG_SMP
 937		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
 938		UASM_i_LA_mostly(p, tmp, pgdc);
 939		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
 940		uasm_i_addu(p, ptr, tmp, ptr);
 
 
 
 941#else
 942		UASM_i_LA_mostly(p, ptr, pgdc);
 
 
 
 
 
 943#endif
 944		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
 945		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
 946	}
 
 
 
 947	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
 948	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
 949	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
 950}
 951
 952#endif /* !CONFIG_64BIT */
 953
 954static void build_adjust_context(u32 **p, unsigned int ctx)
 955{
 956	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
 957	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
 958
 959	switch (current_cpu_type()) {
 960	case CPU_VR41XX:
 961	case CPU_VR4111:
 962	case CPU_VR4121:
 963	case CPU_VR4122:
 964	case CPU_VR4131:
 965	case CPU_VR4181:
 966	case CPU_VR4181A:
 967	case CPU_VR4133:
 968		shift += 2;
 969		break;
 970
 971	default:
 972		break;
 973	}
 974
 975	if (shift)
 976		UASM_i_SRL(p, ctx, ctx, shift);
 977	uasm_i_andi(p, ctx, ctx, mask);
 978}
 979
 980static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
 981{
 982	/*
 983	 * Bug workaround for the Nevada. It seems as if under certain
 984	 * circumstances the move from cp0_context might produce a
 985	 * bogus result when the mfc0 instruction and its consumer are
 986	 * in a different cacheline or a load instruction, probably any
 987	 * memory reference, is between them.
 988	 */
 989	switch (current_cpu_type()) {
 990	case CPU_NEVADA:
 991		UASM_i_LW(p, ptr, 0, ptr);
 992		GET_CONTEXT(p, tmp); /* get context reg */
 993		break;
 994
 995	default:
 996		GET_CONTEXT(p, tmp); /* get context reg */
 997		UASM_i_LW(p, ptr, 0, ptr);
 998		break;
 999	}
1000
1001	build_adjust_context(p, tmp);
1002	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1003}
1004
1005static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
 
1006{
1007	/*
1008	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1009	 * Kernel is a special case. Only a few CPUs use it.
1010	 */
1011#ifdef CONFIG_64BIT_PHYS_ADDR
1012	if (cpu_has_64bits) {
1013		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1014		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1015		if (cpu_has_rixi) {
1016			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
 
 
1017			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1018			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1019		} else {
1020			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1021			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1022			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1023		}
1024		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1025	} else {
1026		int pte_off_even = sizeof(pte_t) / 2;
1027		int pte_off_odd = pte_off_even + sizeof(pte_t);
1028
1029		/* The pte entries are pre-shifted */
1030		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1031		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1032		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1033		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1034	}
1035#else
1036	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1037	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1038	if (r45k_bvahwbug())
1039		build_tlb_probe_entry(p);
1040	if (cpu_has_rixi) {
1041		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
 
 
1042		if (r4k_250MHZhwbug())
1043			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1044		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1045		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1046	} else {
1047		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1048		if (r4k_250MHZhwbug())
1049			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1050		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1051		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1052		if (r45k_bvahwbug())
1053			uasm_i_mfc0(p, tmp, C0_INDEX);
1054	}
1055	if (r4k_250MHZhwbug())
1056		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1057	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1058#endif
1059}
1060
1061struct mips_huge_tlb_info {
1062	int huge_pte;
1063	int restore_scratch;
1064};
1065
1066static struct mips_huge_tlb_info
1067build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1068			       struct uasm_reloc **r, unsigned int tmp,
1069			       unsigned int ptr, int c0_scratch_reg)
1070{
1071	struct mips_huge_tlb_info rv;
1072	unsigned int even, odd;
1073	int vmalloc_branch_delay_filled = 0;
1074	const int scratch = 1; /* Our extra working register */
1075
1076	rv.huge_pte = scratch;
1077	rv.restore_scratch = 0;
1078
1079	if (check_for_high_segbits) {
1080		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1081
1082		if (pgd_reg != -1)
1083			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1084		else
1085			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1086
1087		if (c0_scratch_reg >= 0)
1088			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1089		else
1090			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1091
1092		uasm_i_dsrl_safe(p, scratch, tmp,
1093				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1094		uasm_il_bnez(p, r, scratch, label_vmalloc);
1095
1096		if (pgd_reg == -1) {
1097			vmalloc_branch_delay_filled = 1;
1098			/* Clear lower 23 bits of context. */
1099			uasm_i_dins(p, ptr, 0, 0, 23);
1100		}
1101	} else {
1102		if (pgd_reg != -1)
1103			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1104		else
1105			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1106
1107		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1108
1109		if (c0_scratch_reg >= 0)
1110			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1111		else
1112			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1113
1114		if (pgd_reg == -1)
1115			/* Clear lower 23 bits of context. */
1116			uasm_i_dins(p, ptr, 0, 0, 23);
1117
1118		uasm_il_bltz(p, r, tmp, label_vmalloc);
1119	}
1120
1121	if (pgd_reg == -1) {
1122		vmalloc_branch_delay_filled = 1;
1123		/* 1 0	1 0 1  << 6  xkphys cached */
1124		uasm_i_ori(p, ptr, ptr, 0x540);
1125		uasm_i_drotr(p, ptr, ptr, 11);
1126	}
1127
1128#ifdef __PAGETABLE_PMD_FOLDED
1129#define LOC_PTEP scratch
1130#else
1131#define LOC_PTEP ptr
1132#endif
1133
1134	if (!vmalloc_branch_delay_filled)
1135		/* get pgd offset in bytes */
1136		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1137
1138	uasm_l_vmalloc_done(l, *p);
1139
1140	/*
1141	 *			   tmp		ptr
1142	 * fall-through case =	 badvaddr  *pgd_current
1143	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1144	 */
1145
1146	if (vmalloc_branch_delay_filled)
1147		/* get pgd offset in bytes */
1148		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1149
1150#ifdef __PAGETABLE_PMD_FOLDED
1151	GET_CONTEXT(p, tmp); /* get context reg */
1152#endif
1153	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1154
1155	if (use_lwx_insns()) {
1156		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1157	} else {
1158		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1159		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1160	}
1161
1162#ifndef __PAGETABLE_PMD_FOLDED
1163	/* get pmd offset in bytes */
1164	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1165	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1166	GET_CONTEXT(p, tmp); /* get context reg */
1167
1168	if (use_lwx_insns()) {
1169		UASM_i_LWX(p, scratch, scratch, ptr);
1170	} else {
1171		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1172		UASM_i_LW(p, scratch, 0, ptr);
1173	}
1174#endif
1175	/* Adjust the context during the load latency. */
1176	build_adjust_context(p, tmp);
1177
1178#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1179	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1180	/*
1181	 * The in the LWX case we don't want to do the load in the
1182	 * delay slot.	It cannot issue in the same cycle and may be
1183	 * speculative and unneeded.
1184	 */
1185	if (use_lwx_insns())
1186		uasm_i_nop(p);
1187#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1188
1189
1190	/* build_update_entries */
1191	if (use_lwx_insns()) {
1192		even = ptr;
1193		odd = tmp;
1194		UASM_i_LWX(p, even, scratch, tmp);
1195		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1196		UASM_i_LWX(p, odd, scratch, tmp);
1197	} else {
1198		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1199		even = tmp;
1200		odd = ptr;
1201		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1202		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1203	}
1204	if (cpu_has_rixi) {
1205		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
 
 
 
1206		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1207		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
 
1208	} else {
1209		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1210		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1211		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1212	}
1213	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1214
1215	if (c0_scratch_reg >= 0) {
1216		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1217		build_tlb_write_entry(p, l, r, tlb_random);
1218		uasm_l_leave(l, *p);
1219		rv.restore_scratch = 1;
1220	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1221		build_tlb_write_entry(p, l, r, tlb_random);
1222		uasm_l_leave(l, *p);
1223		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1224	} else {
1225		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1226		build_tlb_write_entry(p, l, r, tlb_random);
1227		uasm_l_leave(l, *p);
1228		rv.restore_scratch = 1;
1229	}
1230
1231	uasm_i_eret(p); /* return from trap */
1232
1233	return rv;
1234}
1235
1236/*
1237 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1238 * because EXL == 0.  If we wrap, we can also use the 32 instruction
1239 * slots before the XTLB refill exception handler which belong to the
1240 * unused TLB refill exception.
1241 */
1242#define MIPS64_REFILL_INSNS 32
1243
1244static void build_r4000_tlb_refill_handler(void)
1245{
1246	u32 *p = tlb_handler;
1247	struct uasm_label *l = labels;
1248	struct uasm_reloc *r = relocs;
1249	u32 *f;
1250	unsigned int final_len;
1251	struct mips_huge_tlb_info htlb_info __maybe_unused;
1252	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1253
1254	memset(tlb_handler, 0, sizeof(tlb_handler));
1255	memset(labels, 0, sizeof(labels));
1256	memset(relocs, 0, sizeof(relocs));
1257	memset(final_handler, 0, sizeof(final_handler));
1258
1259	if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1260		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1261							  scratch_reg);
1262		vmalloc_mode = refill_scratch;
1263	} else {
1264		htlb_info.huge_pte = K0;
1265		htlb_info.restore_scratch = 0;
1266		vmalloc_mode = refill_noscratch;
1267		/*
1268		 * create the plain linear handler
1269		 */
1270		if (bcm1250_m3_war()) {
1271			unsigned int segbits = 44;
1272
1273			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1274			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1275			uasm_i_xor(&p, K0, K0, K1);
1276			uasm_i_dsrl_safe(&p, K1, K0, 62);
1277			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1278			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1279			uasm_i_or(&p, K0, K0, K1);
1280			uasm_il_bnez(&p, &r, K0, label_leave);
1281			/* No need for uasm_i_nop */
1282		}
1283
1284#ifdef CONFIG_64BIT
1285		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1286#else
1287		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1288#endif
1289
1290#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1291		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1292#endif
1293
1294		build_get_ptep(&p, K0, K1);
1295		build_update_entries(&p, K0, K1);
1296		build_tlb_write_entry(&p, &l, &r, tlb_random);
1297		uasm_l_leave(&l, p);
1298		uasm_i_eret(&p); /* return from trap */
1299	}
1300#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1301	uasm_l_tlb_huge_update(&l, p);
1302	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1303	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1304				   htlb_info.restore_scratch);
1305#endif
1306
1307#ifdef CONFIG_64BIT
1308	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1309#endif
1310
1311	/*
1312	 * Overflow check: For the 64bit handler, we need at least one
1313	 * free instruction slot for the wrap-around branch. In worst
1314	 * case, if the intended insertion point is a delay slot, we
1315	 * need three, with the second nop'ed and the third being
1316	 * unused.
1317	 */
1318	switch (boot_cpu_type()) {
1319	default:
1320		if (sizeof(long) == 4) {
1321	case CPU_LOONGSON2:
1322		/* Loongson2 ebase is different than r4k, we have more space */
1323			if ((p - tlb_handler) > 64)
1324				panic("TLB refill handler space exceeded");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1325			/*
1326			 * Now fold the handler in the TLB refill handler space.
 
 
1327			 */
1328			f = final_handler;
1329			/* Simplest case, just copy the handler. */
1330			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1331			final_len = p - tlb_handler;
1332			break;
1333		} else {
1334			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1335			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1336				&& uasm_insn_has_bdelay(relocs,
1337							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1338				panic("TLB refill handler space exceeded");
1339			/*
1340			 * Now fold the handler in the TLB refill handler space.
 
 
1341			 */
1342			f = final_handler + MIPS64_REFILL_INSNS;
1343			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1344				/* Just copy the handler. */
1345				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1346				final_len = p - tlb_handler;
1347			} else {
1348#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1349				const enum label_id ls = label_tlb_huge_update;
1350#else
1351				const enum label_id ls = label_vmalloc;
1352#endif
1353				u32 *split;
1354				int ov = 0;
1355				int i;
1356
1357				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1358					;
1359				BUG_ON(i == ARRAY_SIZE(labels));
1360				split = labels[i].addr;
1361
1362				/*
1363				 * See if we have overflown one way or the other.
1364				 */
1365				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1366				    split < p - MIPS64_REFILL_INSNS)
1367					ov = 1;
1368
1369				if (ov) {
1370					/*
1371					 * Split two instructions before the end.  One
1372					 * for the branch and one for the instruction
1373					 * in the delay slot.
1374					 */
1375					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1376
1377					/*
1378					 * If the branch would fall in a delay slot,
1379					 * we must back up an additional instruction
1380					 * so that it is no longer in a delay slot.
1381					 */
1382					if (uasm_insn_has_bdelay(relocs, split - 1))
1383						split--;
1384				}
1385				/* Copy first part of the handler. */
1386				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1387				f += split - tlb_handler;
1388
1389				if (ov) {
1390					/* Insert branch. */
1391					uasm_l_split(&l, final_handler);
1392					uasm_il_b(&f, &r, label_split);
1393					if (uasm_insn_has_bdelay(relocs, split))
1394						uasm_i_nop(&f);
1395					else {
1396						uasm_copy_handler(relocs, labels,
1397								  split, split + 1, f);
1398						uasm_move_labels(labels, f, f + 1, -1);
1399						f++;
1400						split++;
1401					}
1402				}
1403
1404				/* Copy the rest of the handler. */
1405				uasm_copy_handler(relocs, labels, split, p, final_handler);
1406				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1407					    (p - split);
1408			}
1409		}
1410		break;
 
 
 
 
1411	}
 
1412
1413	uasm_resolve_relocs(relocs, labels);
1414	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1415		 final_len);
1416
1417	memcpy((void *)ebase, final_handler, 0x100);
1418
1419	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1420}
1421
1422extern u32 handle_tlbl[], handle_tlbl_end[];
1423extern u32 handle_tlbs[], handle_tlbs_end[];
1424extern u32 handle_tlbm[], handle_tlbm_end[];
1425extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1426extern u32 tlbmiss_handler_setup_pgd_end[];
 
 
 
 
 
 
1427
1428static void build_setup_pgd(void)
1429{
1430	const int a0 = 4;
1431	const int __maybe_unused a1 = 5;
1432	const int __maybe_unused a2 = 6;
1433	u32 *p = tlbmiss_handler_setup_pgd_start;
1434	const int tlbmiss_handler_setup_pgd_size =
1435		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1436#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1437	long pgdc = (long)pgd_current;
1438#endif
1439
1440	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1441					sizeof(tlbmiss_handler_setup_pgd[0]));
1442	memset(labels, 0, sizeof(labels));
1443	memset(relocs, 0, sizeof(relocs));
 
1444	pgd_reg = allocate_kscratch();
1445#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1446	if (pgd_reg == -1) {
1447		struct uasm_label *l = labels;
1448		struct uasm_reloc *r = relocs;
1449
1450		/* PGD << 11 in c0_Context */
1451		/*
1452		 * If it is a ckseg0 address, convert to a physical
1453		 * address.  Shifting right by 29 and adding 4 will
1454		 * result in zero for these addresses.
1455		 *
1456		 */
1457		UASM_i_SRA(&p, a1, a0, 29);
1458		UASM_i_ADDIU(&p, a1, a1, 4);
1459		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1460		uasm_i_nop(&p);
1461		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1462		uasm_l_tlbl_goaround1(&l, p);
1463		UASM_i_SLL(&p, a0, a0, 11);
1464		uasm_i_jr(&p, 31);
1465		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1466	} else {
1467		/* PGD in c0_KScratch */
1468		uasm_i_jr(&p, 31);
1469		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1470	}
1471#else
1472#ifdef CONFIG_SMP
1473	/* Save PGD to pgd_current[smp_processor_id()] */
1474	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1475	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1476	UASM_i_LA_mostly(&p, a2, pgdc);
1477	UASM_i_ADDU(&p, a2, a2, a1);
1478	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1479#else
1480	UASM_i_LA_mostly(&p, a2, pgdc);
1481	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1482#endif /* SMP */
1483	uasm_i_jr(&p, 31);
1484
1485	/* if pgd_reg is allocated, save PGD also to scratch register */
1486	if (pgd_reg != -1)
1487		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1488	else
1489		uasm_i_nop(&p);
1490#endif
1491	if (p >= tlbmiss_handler_setup_pgd_end)
1492		panic("tlbmiss_handler_setup_pgd space exceeded");
1493
1494	uasm_resolve_relocs(relocs, labels);
1495	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1496		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1497
1498	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1499					tlbmiss_handler_setup_pgd_size);
1500}
 
1501
1502static void
1503iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1504{
1505#ifdef CONFIG_SMP
1506# ifdef CONFIG_64BIT_PHYS_ADDR
1507	if (cpu_has_64bits)
1508		uasm_i_lld(p, pte, 0, ptr);
1509	else
1510# endif
1511		UASM_i_LL(p, pte, 0, ptr);
1512#else
1513# ifdef CONFIG_64BIT_PHYS_ADDR
1514	if (cpu_has_64bits)
1515		uasm_i_ld(p, pte, 0, ptr);
1516	else
1517# endif
1518		UASM_i_LW(p, pte, 0, ptr);
1519#endif
1520}
1521
1522static void
1523iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1524	unsigned int mode)
1525{
1526#ifdef CONFIG_64BIT_PHYS_ADDR
1527	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1528#endif
1529
1530	uasm_i_ori(p, pte, pte, mode);
1531#ifdef CONFIG_SMP
1532# ifdef CONFIG_64BIT_PHYS_ADDR
1533	if (cpu_has_64bits)
1534		uasm_i_scd(p, pte, 0, ptr);
1535	else
1536# endif
1537		UASM_i_SC(p, pte, 0, ptr);
1538
1539	if (r10000_llsc_war())
1540		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1541	else
1542		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1543
1544# ifdef CONFIG_64BIT_PHYS_ADDR
1545	if (!cpu_has_64bits) {
1546		/* no uasm_i_nop needed */
1547		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1548		uasm_i_ori(p, pte, pte, hwmode);
1549		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1550		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1551		/* no uasm_i_nop needed */
1552		uasm_i_lw(p, pte, 0, ptr);
1553	} else
1554		uasm_i_nop(p);
1555# else
1556	uasm_i_nop(p);
1557# endif
1558#else
1559# ifdef CONFIG_64BIT_PHYS_ADDR
1560	if (cpu_has_64bits)
1561		uasm_i_sd(p, pte, 0, ptr);
1562	else
1563# endif
1564		UASM_i_SW(p, pte, 0, ptr);
1565
1566# ifdef CONFIG_64BIT_PHYS_ADDR
1567	if (!cpu_has_64bits) {
1568		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1569		uasm_i_ori(p, pte, pte, hwmode);
1570		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1571		uasm_i_lw(p, pte, 0, ptr);
1572	}
1573# endif
1574#endif
1575}
1576
1577/*
1578 * Check if PTE is present, if not then jump to LABEL. PTR points to
1579 * the page table where this PTE is located, PTE will be re-loaded
1580 * with it's original value.
1581 */
1582static void
1583build_pte_present(u32 **p, struct uasm_reloc **r,
1584		  int pte, int ptr, int scratch, enum label_id lid)
1585{
1586	int t = scratch >= 0 ? scratch : pte;
1587
1588	if (cpu_has_rixi) {
1589		if (use_bbit_insns()) {
1590			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1591			uasm_i_nop(p);
1592		} else {
1593			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1594			uasm_il_beqz(p, r, t, lid);
1595			if (pte == t)
1596				/* You lose the SMP race :-(*/
1597				iPTE_LW(p, pte, ptr);
1598		}
1599	} else {
1600		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1601		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1602		uasm_il_bnez(p, r, t, lid);
1603		if (pte == t)
1604			/* You lose the SMP race :-(*/
1605			iPTE_LW(p, pte, ptr);
1606	}
1607}
1608
1609/* Make PTE valid, store result in PTR. */
1610static void
1611build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1612		 unsigned int ptr)
1613{
1614	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1615
1616	iPTE_SW(p, r, pte, ptr, mode);
1617}
1618
1619/*
1620 * Check if PTE can be written to, if not branch to LABEL. Regardless
1621 * restore PTE with value from PTR when done.
1622 */
1623static void
1624build_pte_writable(u32 **p, struct uasm_reloc **r,
1625		   unsigned int pte, unsigned int ptr, int scratch,
1626		   enum label_id lid)
1627{
1628	int t = scratch >= 0 ? scratch : pte;
1629
1630	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1631	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1632	uasm_il_bnez(p, r, t, lid);
1633	if (pte == t)
1634		/* You lose the SMP race :-(*/
1635		iPTE_LW(p, pte, ptr);
1636	else
1637		uasm_i_nop(p);
1638}
1639
1640/* Make PTE writable, update software status bits as well, then store
1641 * at PTR.
1642 */
1643static void
1644build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1645		 unsigned int ptr)
1646{
1647	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1648			     | _PAGE_DIRTY);
1649
1650	iPTE_SW(p, r, pte, ptr, mode);
1651}
1652
1653/*
1654 * Check if PTE can be modified, if not branch to LABEL. Regardless
1655 * restore PTE with value from PTR when done.
1656 */
1657static void
1658build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1659		     unsigned int pte, unsigned int ptr, int scratch,
1660		     enum label_id lid)
1661{
1662	if (use_bbit_insns()) {
1663		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1664		uasm_i_nop(p);
1665	} else {
1666		int t = scratch >= 0 ? scratch : pte;
1667		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1668		uasm_il_beqz(p, r, t, lid);
1669		if (pte == t)
1670			/* You lose the SMP race :-(*/
1671			iPTE_LW(p, pte, ptr);
1672	}
1673}
1674
1675#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1676
1677
1678/*
1679 * R3000 style TLB load/store/modify handlers.
1680 */
1681
1682/*
1683 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1684 * Then it returns.
1685 */
1686static void
1687build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1688{
1689	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1690	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1691	uasm_i_tlbwi(p);
1692	uasm_i_jr(p, tmp);
1693	uasm_i_rfe(p); /* branch delay */
1694}
1695
1696/*
1697 * This places the pte into ENTRYLO0 and writes it with tlbwi
1698 * or tlbwr as appropriate.  This is because the index register
1699 * may have the probe fail bit set as a result of a trap on a
1700 * kseg2 access, i.e. without refill.  Then it returns.
1701 */
1702static void
1703build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1704			     struct uasm_reloc **r, unsigned int pte,
1705			     unsigned int tmp)
1706{
1707	uasm_i_mfc0(p, tmp, C0_INDEX);
1708	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1709	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1710	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1711	uasm_i_tlbwi(p); /* cp0 delay */
1712	uasm_i_jr(p, tmp);
1713	uasm_i_rfe(p); /* branch delay */
1714	uasm_l_r3000_write_probe_fail(l, *p);
1715	uasm_i_tlbwr(p); /* cp0 delay */
1716	uasm_i_jr(p, tmp);
1717	uasm_i_rfe(p); /* branch delay */
1718}
1719
1720static void
1721build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1722				   unsigned int ptr)
1723{
1724	long pgdc = (long)pgd_current;
1725
1726	uasm_i_mfc0(p, pte, C0_BADVADDR);
1727	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1728	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1729	uasm_i_srl(p, pte, pte, 22); /* load delay */
1730	uasm_i_sll(p, pte, pte, 2);
1731	uasm_i_addu(p, ptr, ptr, pte);
1732	uasm_i_mfc0(p, pte, C0_CONTEXT);
1733	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1734	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1735	uasm_i_addu(p, ptr, ptr, pte);
1736	uasm_i_lw(p, pte, 0, ptr);
1737	uasm_i_tlbp(p); /* load delay */
1738}
1739
1740static void build_r3000_tlb_load_handler(void)
1741{
1742	u32 *p = handle_tlbl;
1743	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1744	struct uasm_label *l = labels;
1745	struct uasm_reloc *r = relocs;
1746
1747	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1748	memset(labels, 0, sizeof(labels));
1749	memset(relocs, 0, sizeof(relocs));
1750
1751	build_r3000_tlbchange_handler_head(&p, K0, K1);
1752	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1753	uasm_i_nop(&p); /* load delay */
1754	build_make_valid(&p, &r, K0, K1);
1755	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1756
1757	uasm_l_nopage_tlbl(&l, p);
1758	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1759	uasm_i_nop(&p);
1760
1761	if (p >= handle_tlbl_end)
1762		panic("TLB load handler fastpath space exceeded");
1763
1764	uasm_resolve_relocs(relocs, labels);
1765	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1766		 (unsigned int)(p - handle_tlbl));
1767
1768	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1769}
1770
1771static void build_r3000_tlb_store_handler(void)
1772{
1773	u32 *p = handle_tlbs;
1774	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1775	struct uasm_label *l = labels;
1776	struct uasm_reloc *r = relocs;
1777
1778	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1779	memset(labels, 0, sizeof(labels));
1780	memset(relocs, 0, sizeof(relocs));
1781
1782	build_r3000_tlbchange_handler_head(&p, K0, K1);
1783	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1784	uasm_i_nop(&p); /* load delay */
1785	build_make_write(&p, &r, K0, K1);
1786	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1787
1788	uasm_l_nopage_tlbs(&l, p);
1789	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1790	uasm_i_nop(&p);
1791
1792	if (p >= handle_tlbs_end)
1793		panic("TLB store handler fastpath space exceeded");
1794
1795	uasm_resolve_relocs(relocs, labels);
1796	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1797		 (unsigned int)(p - handle_tlbs));
1798
1799	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1800}
1801
1802static void build_r3000_tlb_modify_handler(void)
1803{
1804	u32 *p = handle_tlbm;
1805	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1806	struct uasm_label *l = labels;
1807	struct uasm_reloc *r = relocs;
1808
1809	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1810	memset(labels, 0, sizeof(labels));
1811	memset(relocs, 0, sizeof(relocs));
1812
1813	build_r3000_tlbchange_handler_head(&p, K0, K1);
1814	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1815	uasm_i_nop(&p); /* load delay */
1816	build_make_write(&p, &r, K0, K1);
1817	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1818
1819	uasm_l_nopage_tlbm(&l, p);
1820	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1821	uasm_i_nop(&p);
1822
1823	if (p >= handle_tlbm_end)
1824		panic("TLB modify handler fastpath space exceeded");
1825
1826	uasm_resolve_relocs(relocs, labels);
1827	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1828		 (unsigned int)(p - handle_tlbm));
1829
1830	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1831}
1832#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1833
1834/*
1835 * R4000 style TLB load/store/modify handlers.
1836 */
1837static struct work_registers
1838build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1839				   struct uasm_reloc **r)
1840{
1841	struct work_registers wr = build_get_work_registers(p);
1842
1843#ifdef CONFIG_64BIT
1844	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1845#else
1846	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1847#endif
1848
1849#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1850	/*
1851	 * For huge tlb entries, pmd doesn't contain an address but
1852	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1853	 * see if we need to jump to huge tlb processing.
1854	 */
1855	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1856#endif
1857
1858	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1859	UASM_i_LW(p, wr.r2, 0, wr.r2);
1860	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1861	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1862	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1863
1864#ifdef CONFIG_SMP
1865	uasm_l_smp_pgtable_change(l, *p);
1866#endif
1867	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1868	if (!m4kc_tlbp_war())
1869		build_tlb_probe_entry(p);
1870	return wr;
1871}
1872
1873static void
1874build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1875				   struct uasm_reloc **r, unsigned int tmp,
1876				   unsigned int ptr)
1877{
1878	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1879	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1880	build_update_entries(p, tmp, ptr);
1881	build_tlb_write_entry(p, l, r, tlb_indexed);
1882	uasm_l_leave(l, *p);
1883	build_restore_work_registers(p);
1884	uasm_i_eret(p); /* return from trap */
1885
1886#ifdef CONFIG_64BIT
1887	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1888#endif
1889}
1890
1891static void build_r4000_tlb_load_handler(void)
1892{
1893	u32 *p = handle_tlbl;
1894	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1895	struct uasm_label *l = labels;
1896	struct uasm_reloc *r = relocs;
1897	struct work_registers wr;
1898
1899	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1900	memset(labels, 0, sizeof(labels));
1901	memset(relocs, 0, sizeof(relocs));
1902
1903	if (bcm1250_m3_war()) {
1904		unsigned int segbits = 44;
1905
1906		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1907		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1908		uasm_i_xor(&p, K0, K0, K1);
1909		uasm_i_dsrl_safe(&p, K1, K0, 62);
1910		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1911		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1912		uasm_i_or(&p, K0, K0, K1);
1913		uasm_il_bnez(&p, &r, K0, label_leave);
1914		/* No need for uasm_i_nop */
1915	}
1916
1917	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1918	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1919	if (m4kc_tlbp_war())
1920		build_tlb_probe_entry(&p);
1921
1922	if (cpu_has_rixi) {
1923		/*
1924		 * If the page is not _PAGE_VALID, RI or XI could not
1925		 * have triggered it.  Skip the expensive test..
1926		 */
1927		if (use_bbit_insns()) {
1928			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1929				      label_tlbl_goaround1);
1930		} else {
1931			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1932			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1933		}
1934		uasm_i_nop(&p);
1935
1936		uasm_i_tlbr(&p);
1937
1938		switch (current_cpu_type()) {
1939		default:
1940			if (cpu_has_mips_r2) {
1941				uasm_i_ehb(&p);
1942
1943		case CPU_CAVIUM_OCTEON:
1944		case CPU_CAVIUM_OCTEON_PLUS:
1945		case CPU_CAVIUM_OCTEON2:
1946				break;
1947			}
1948		}
1949
1950		/* Examine  entrylo 0 or 1 based on ptr. */
1951		if (use_bbit_insns()) {
1952			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1953		} else {
1954			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1955			uasm_i_beqz(&p, wr.r3, 8);
1956		}
1957		/* load it in the delay slot*/
1958		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1959		/* load it if ptr is odd */
1960		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1961		/*
1962		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1963		 * XI must have triggered it.
1964		 */
1965		if (use_bbit_insns()) {
1966			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1967			uasm_i_nop(&p);
1968			uasm_l_tlbl_goaround1(&l, p);
1969		} else {
1970			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1971			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1972			uasm_i_nop(&p);
1973		}
1974		uasm_l_tlbl_goaround1(&l, p);
1975	}
1976	build_make_valid(&p, &r, wr.r1, wr.r2);
1977	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1978
1979#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1980	/*
1981	 * This is the entry point when build_r4000_tlbchange_handler_head
1982	 * spots a huge page.
1983	 */
1984	uasm_l_tlb_huge_update(&l, p);
1985	iPTE_LW(&p, wr.r1, wr.r2);
1986	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1987	build_tlb_probe_entry(&p);
1988
1989	if (cpu_has_rixi) {
1990		/*
1991		 * If the page is not _PAGE_VALID, RI or XI could not
1992		 * have triggered it.  Skip the expensive test..
1993		 */
1994		if (use_bbit_insns()) {
1995			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1996				      label_tlbl_goaround2);
1997		} else {
1998			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1999			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2000		}
2001		uasm_i_nop(&p);
2002
2003		uasm_i_tlbr(&p);
2004
2005		switch (current_cpu_type()) {
2006		default:
2007			if (cpu_has_mips_r2) {
2008				uasm_i_ehb(&p);
2009
2010		case CPU_CAVIUM_OCTEON:
2011		case CPU_CAVIUM_OCTEON_PLUS:
2012		case CPU_CAVIUM_OCTEON2:
2013				break;
2014			}
2015		}
2016
2017		/* Examine  entrylo 0 or 1 based on ptr. */
2018		if (use_bbit_insns()) {
2019			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2020		} else {
2021			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2022			uasm_i_beqz(&p, wr.r3, 8);
2023		}
2024		/* load it in the delay slot*/
2025		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2026		/* load it if ptr is odd */
2027		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2028		/*
2029		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2030		 * XI must have triggered it.
2031		 */
2032		if (use_bbit_insns()) {
2033			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2034		} else {
2035			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2036			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2037		}
2038		if (PM_DEFAULT_MASK == 0)
2039			uasm_i_nop(&p);
2040		/*
2041		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2042		 * it is restored in build_huge_tlb_write_entry.
2043		 */
2044		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2045
2046		uasm_l_tlbl_goaround2(&l, p);
2047	}
2048	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2049	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2050#endif
2051
2052	uasm_l_nopage_tlbl(&l, p);
2053	build_restore_work_registers(&p);
2054#ifdef CONFIG_CPU_MICROMIPS
2055	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2056		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2057		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2058		uasm_i_jr(&p, K0);
2059	} else
2060#endif
2061	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2062	uasm_i_nop(&p);
2063
2064	if (p >= handle_tlbl_end)
2065		panic("TLB load handler fastpath space exceeded");
2066
2067	uasm_resolve_relocs(relocs, labels);
2068	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2069		 (unsigned int)(p - handle_tlbl));
2070
2071	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2072}
2073
2074static void build_r4000_tlb_store_handler(void)
2075{
2076	u32 *p = handle_tlbs;
2077	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2078	struct uasm_label *l = labels;
2079	struct uasm_reloc *r = relocs;
2080	struct work_registers wr;
2081
2082	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2083	memset(labels, 0, sizeof(labels));
2084	memset(relocs, 0, sizeof(relocs));
2085
2086	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2087	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2088	if (m4kc_tlbp_war())
2089		build_tlb_probe_entry(&p);
2090	build_make_write(&p, &r, wr.r1, wr.r2);
2091	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2092
2093#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2094	/*
2095	 * This is the entry point when
2096	 * build_r4000_tlbchange_handler_head spots a huge page.
2097	 */
2098	uasm_l_tlb_huge_update(&l, p);
2099	iPTE_LW(&p, wr.r1, wr.r2);
2100	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2101	build_tlb_probe_entry(&p);
2102	uasm_i_ori(&p, wr.r1, wr.r1,
2103		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2104	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2105#endif
2106
2107	uasm_l_nopage_tlbs(&l, p);
2108	build_restore_work_registers(&p);
2109#ifdef CONFIG_CPU_MICROMIPS
2110	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2111		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2112		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2113		uasm_i_jr(&p, K0);
2114	} else
2115#endif
2116	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2117	uasm_i_nop(&p);
2118
2119	if (p >= handle_tlbs_end)
2120		panic("TLB store handler fastpath space exceeded");
2121
2122	uasm_resolve_relocs(relocs, labels);
2123	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2124		 (unsigned int)(p - handle_tlbs));
2125
2126	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2127}
2128
2129static void build_r4000_tlb_modify_handler(void)
2130{
2131	u32 *p = handle_tlbm;
2132	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2133	struct uasm_label *l = labels;
2134	struct uasm_reloc *r = relocs;
2135	struct work_registers wr;
2136
2137	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2138	memset(labels, 0, sizeof(labels));
2139	memset(relocs, 0, sizeof(relocs));
2140
2141	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2142	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2143	if (m4kc_tlbp_war())
2144		build_tlb_probe_entry(&p);
2145	/* Present and writable bits set, set accessed and dirty bits. */
2146	build_make_write(&p, &r, wr.r1, wr.r2);
2147	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2148
2149#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2150	/*
2151	 * This is the entry point when
2152	 * build_r4000_tlbchange_handler_head spots a huge page.
2153	 */
2154	uasm_l_tlb_huge_update(&l, p);
2155	iPTE_LW(&p, wr.r1, wr.r2);
2156	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2157	build_tlb_probe_entry(&p);
2158	uasm_i_ori(&p, wr.r1, wr.r1,
2159		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2160	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2161#endif
2162
2163	uasm_l_nopage_tlbm(&l, p);
2164	build_restore_work_registers(&p);
2165#ifdef CONFIG_CPU_MICROMIPS
2166	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2167		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2168		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2169		uasm_i_jr(&p, K0);
2170	} else
2171#endif
2172	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2173	uasm_i_nop(&p);
2174
2175	if (p >= handle_tlbm_end)
2176		panic("TLB modify handler fastpath space exceeded");
2177
2178	uasm_resolve_relocs(relocs, labels);
2179	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2180		 (unsigned int)(p - handle_tlbm));
2181
2182	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2183}
2184
2185static void flush_tlb_handlers(void)
2186{
2187	local_flush_icache_range((unsigned long)handle_tlbl,
2188			   (unsigned long)handle_tlbl_end);
2189	local_flush_icache_range((unsigned long)handle_tlbs,
2190			   (unsigned long)handle_tlbs_end);
2191	local_flush_icache_range((unsigned long)handle_tlbm,
2192			   (unsigned long)handle_tlbm_end);
2193	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2194			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2195}
2196
2197void build_tlb_refill_handler(void)
2198{
2199	/*
2200	 * The refill handler is generated per-CPU, multi-node systems
2201	 * may have local storage for it. The other handlers are only
2202	 * needed once.
2203	 */
2204	static int run_once = 0;
2205
2206	output_pgtable_bits_defines();
2207
2208#ifdef CONFIG_64BIT
2209	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2210#endif
2211
2212	switch (current_cpu_type()) {
2213	case CPU_R2000:
2214	case CPU_R3000:
2215	case CPU_R3000A:
2216	case CPU_R3081E:
2217	case CPU_TX3912:
2218	case CPU_TX3922:
2219	case CPU_TX3927:
2220#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2221		if (cpu_has_local_ebase)
2222			build_r3000_tlb_refill_handler();
2223		if (!run_once) {
2224			if (!cpu_has_local_ebase)
2225				build_r3000_tlb_refill_handler();
2226			build_setup_pgd();
2227			build_r3000_tlb_load_handler();
2228			build_r3000_tlb_store_handler();
2229			build_r3000_tlb_modify_handler();
2230			flush_tlb_handlers();
2231			run_once++;
2232		}
2233#else
2234		panic("No R3000 TLB refill handler");
2235#endif
2236		break;
2237
2238	case CPU_R6000:
2239	case CPU_R6000A:
2240		panic("No R6000 TLB refill handler yet");
2241		break;
2242
2243	case CPU_R8000:
2244		panic("No R8000 TLB refill handler yet");
2245		break;
2246
2247	default:
2248		if (!run_once) {
2249			scratch_reg = allocate_kscratch();
2250			build_setup_pgd();
 
 
2251			build_r4000_tlb_load_handler();
2252			build_r4000_tlb_store_handler();
2253			build_r4000_tlb_modify_handler();
2254			if (!cpu_has_local_ebase)
2255				build_r4000_tlb_refill_handler();
2256			flush_tlb_handlers();
2257			run_once++;
2258		}
2259		if (cpu_has_local_ebase)
2260			build_r4000_tlb_refill_handler();
2261	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2262}