Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 *
13 * ... and the days got worse and worse and now you see
14 * I've gone completly out of my mind.
15 *
16 * They're coming to take me a away haha
17 * they're coming to take me a away hoho hihi haha
18 * to the funny farm where code is beautiful all the time ...
19 *
20 * (Condolences to Napoleon XIV)
21 */
22
23#include <linux/bug.h>
24#include <linux/kernel.h>
25#include <linux/types.h>
26#include <linux/smp.h>
27#include <linux/string.h>
28#include <linux/init.h>
29#include <linux/cache.h>
30
31#include <asm/cacheflush.h>
32#include <asm/pgtable.h>
33#include <asm/war.h>
34#include <asm/uasm.h>
35
36/*
37 * TLB load/store/modify handlers.
38 *
39 * Only the fastpath gets synthesized at runtime, the slowpath for
40 * do_page_fault remains normal asm.
41 */
42extern void tlb_do_page_fault_0(void);
43extern void tlb_do_page_fault_1(void);
44
45struct work_registers {
46 int r1;
47 int r2;
48 int r3;
49};
50
51struct tlb_reg_save {
52 unsigned long a;
53 unsigned long b;
54} ____cacheline_aligned_in_smp;
55
56static struct tlb_reg_save handler_reg_save[NR_CPUS];
57
58static inline int r45k_bvahwbug(void)
59{
60 /* XXX: We should probe for the presence of this bug, but we don't. */
61 return 0;
62}
63
64static inline int r4k_250MHZhwbug(void)
65{
66 /* XXX: We should probe for the presence of this bug, but we don't. */
67 return 0;
68}
69
70static inline int __maybe_unused bcm1250_m3_war(void)
71{
72 return BCM1250_M3_WAR;
73}
74
75static inline int __maybe_unused r10000_llsc_war(void)
76{
77 return R10000_LLSC_WAR;
78}
79
80static int use_bbit_insns(void)
81{
82 switch (current_cpu_type()) {
83 case CPU_CAVIUM_OCTEON:
84 case CPU_CAVIUM_OCTEON_PLUS:
85 case CPU_CAVIUM_OCTEON2:
86 return 1;
87 default:
88 return 0;
89 }
90}
91
92static int use_lwx_insns(void)
93{
94 switch (current_cpu_type()) {
95 case CPU_CAVIUM_OCTEON2:
96 return 1;
97 default:
98 return 0;
99 }
100}
101#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
102 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
103static bool scratchpad_available(void)
104{
105 return true;
106}
107static int scratchpad_offset(int i)
108{
109 /*
110 * CVMSEG starts at address -32768 and extends for
111 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
112 */
113 i += 1; /* Kernel use starts at the top and works down. */
114 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
115}
116#else
117static bool scratchpad_available(void)
118{
119 return false;
120}
121static int scratchpad_offset(int i)
122{
123 BUG();
124 /* Really unreachable, but evidently some GCC want this. */
125 return 0;
126}
127#endif
128/*
129 * Found by experiment: At least some revisions of the 4kc throw under
130 * some circumstances a machine check exception, triggered by invalid
131 * values in the index register. Delaying the tlbp instruction until
132 * after the next branch, plus adding an additional nop in front of
133 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
134 * why; it's not an issue caused by the core RTL.
135 *
136 */
137static int __cpuinit m4kc_tlbp_war(void)
138{
139 return (current_cpu_data.processor_id & 0xffff00) ==
140 (PRID_COMP_MIPS | PRID_IMP_4KC);
141}
142
143/* Handle labels (which must be positive integers). */
144enum label_id {
145 label_second_part = 1,
146 label_leave,
147 label_vmalloc,
148 label_vmalloc_done,
149 label_tlbw_hazard,
150 label_split,
151 label_tlbl_goaround1,
152 label_tlbl_goaround2,
153 label_nopage_tlbl,
154 label_nopage_tlbs,
155 label_nopage_tlbm,
156 label_smp_pgtable_change,
157 label_r3000_write_probe_fail,
158 label_large_segbits_fault,
159#ifdef CONFIG_HUGETLB_PAGE
160 label_tlb_huge_update,
161#endif
162};
163
164UASM_L_LA(_second_part)
165UASM_L_LA(_leave)
166UASM_L_LA(_vmalloc)
167UASM_L_LA(_vmalloc_done)
168UASM_L_LA(_tlbw_hazard)
169UASM_L_LA(_split)
170UASM_L_LA(_tlbl_goaround1)
171UASM_L_LA(_tlbl_goaround2)
172UASM_L_LA(_nopage_tlbl)
173UASM_L_LA(_nopage_tlbs)
174UASM_L_LA(_nopage_tlbm)
175UASM_L_LA(_smp_pgtable_change)
176UASM_L_LA(_r3000_write_probe_fail)
177UASM_L_LA(_large_segbits_fault)
178#ifdef CONFIG_HUGETLB_PAGE
179UASM_L_LA(_tlb_huge_update)
180#endif
181
182/*
183 * For debug purposes.
184 */
185static inline void dump_handler(const u32 *handler, int count)
186{
187 int i;
188
189 pr_debug("\t.set push\n");
190 pr_debug("\t.set noreorder\n");
191
192 for (i = 0; i < count; i++)
193 pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
194
195 pr_debug("\t.set pop\n");
196}
197
198/* The only general purpose registers allowed in TLB handlers. */
199#define K0 26
200#define K1 27
201
202/* Some CP0 registers */
203#define C0_INDEX 0, 0
204#define C0_ENTRYLO0 2, 0
205#define C0_TCBIND 2, 2
206#define C0_ENTRYLO1 3, 0
207#define C0_CONTEXT 4, 0
208#define C0_PAGEMASK 5, 0
209#define C0_BADVADDR 8, 0
210#define C0_ENTRYHI 10, 0
211#define C0_EPC 14, 0
212#define C0_XCONTEXT 20, 0
213
214#ifdef CONFIG_64BIT
215# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
216#else
217# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
218#endif
219
220/* The worst case length of the handler is around 18 instructions for
221 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
222 * Maximum space available is 32 instructions for R3000 and 64
223 * instructions for R4000.
224 *
225 * We deliberately chose a buffer size of 128, so we won't scribble
226 * over anything important on overflow before we panic.
227 */
228static u32 tlb_handler[128] __cpuinitdata;
229
230/* simply assume worst case size for labels and relocs */
231static struct uasm_label labels[128] __cpuinitdata;
232static struct uasm_reloc relocs[128] __cpuinitdata;
233
234#ifdef CONFIG_64BIT
235static int check_for_high_segbits __cpuinitdata;
236#endif
237
238static int check_for_high_segbits __cpuinitdata;
239
240static unsigned int kscratch_used_mask __cpuinitdata;
241
242static int __cpuinit allocate_kscratch(void)
243{
244 int r;
245 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
246
247 r = ffs(a);
248
249 if (r == 0)
250 return -1;
251
252 r--; /* make it zero based */
253
254 kscratch_used_mask |= (1 << r);
255
256 return r;
257}
258
259static int scratch_reg __cpuinitdata;
260static int pgd_reg __cpuinitdata;
261enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
262
263static struct work_registers __cpuinit build_get_work_registers(u32 **p)
264{
265 struct work_registers r;
266
267 int smp_processor_id_reg;
268 int smp_processor_id_sel;
269 int smp_processor_id_shift;
270
271 if (scratch_reg > 0) {
272 /* Save in CPU local C0_KScratch? */
273 UASM_i_MTC0(p, 1, 31, scratch_reg);
274 r.r1 = K0;
275 r.r2 = K1;
276 r.r3 = 1;
277 return r;
278 }
279
280 if (num_possible_cpus() > 1) {
281#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
282 smp_processor_id_shift = 51;
283 smp_processor_id_reg = 20; /* XContext */
284 smp_processor_id_sel = 0;
285#else
286# ifdef CONFIG_32BIT
287 smp_processor_id_shift = 25;
288 smp_processor_id_reg = 4; /* Context */
289 smp_processor_id_sel = 0;
290# endif
291# ifdef CONFIG_64BIT
292 smp_processor_id_shift = 26;
293 smp_processor_id_reg = 4; /* Context */
294 smp_processor_id_sel = 0;
295# endif
296#endif
297 /* Get smp_processor_id */
298 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
299 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
300
301 /* handler_reg_save index in K0 */
302 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
303
304 UASM_i_LA(p, K1, (long)&handler_reg_save);
305 UASM_i_ADDU(p, K0, K0, K1);
306 } else {
307 UASM_i_LA(p, K0, (long)&handler_reg_save);
308 }
309 /* K0 now points to save area, save $1 and $2 */
310 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
311 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
312
313 r.r1 = K1;
314 r.r2 = 1;
315 r.r3 = 2;
316 return r;
317}
318
319static void __cpuinit build_restore_work_registers(u32 **p)
320{
321 if (scratch_reg > 0) {
322 UASM_i_MFC0(p, 1, 31, scratch_reg);
323 return;
324 }
325 /* K0 already points to save area, restore $1 and $2 */
326 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
327 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
328}
329
330#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
331
332/*
333 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
334 * we cannot do r3000 under these circumstances.
335 *
336 * Declare pgd_current here instead of including mmu_context.h to avoid type
337 * conflicts for tlbmiss_handler_setup_pgd
338 */
339extern unsigned long pgd_current[];
340
341/*
342 * The R3000 TLB handler is simple.
343 */
344static void __cpuinit build_r3000_tlb_refill_handler(void)
345{
346 long pgdc = (long)pgd_current;
347 u32 *p;
348
349 memset(tlb_handler, 0, sizeof(tlb_handler));
350 p = tlb_handler;
351
352 uasm_i_mfc0(&p, K0, C0_BADVADDR);
353 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
354 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
355 uasm_i_srl(&p, K0, K0, 22); /* load delay */
356 uasm_i_sll(&p, K0, K0, 2);
357 uasm_i_addu(&p, K1, K1, K0);
358 uasm_i_mfc0(&p, K0, C0_CONTEXT);
359 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
360 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
361 uasm_i_addu(&p, K1, K1, K0);
362 uasm_i_lw(&p, K0, 0, K1);
363 uasm_i_nop(&p); /* load delay */
364 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
365 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
366 uasm_i_tlbwr(&p); /* cp0 delay */
367 uasm_i_jr(&p, K1);
368 uasm_i_rfe(&p); /* branch delay */
369
370 if (p > tlb_handler + 32)
371 panic("TLB refill handler space exceeded");
372
373 pr_debug("Wrote TLB refill handler (%u instructions).\n",
374 (unsigned int)(p - tlb_handler));
375
376 memcpy((void *)ebase, tlb_handler, 0x80);
377
378 dump_handler((u32 *)ebase, 32);
379}
380#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
381
382/*
383 * The R4000 TLB handler is much more complicated. We have two
384 * consecutive handler areas with 32 instructions space each.
385 * Since they aren't used at the same time, we can overflow in the
386 * other one.To keep things simple, we first assume linear space,
387 * then we relocate it to the final handler layout as needed.
388 */
389static u32 final_handler[64] __cpuinitdata;
390
391/*
392 * Hazards
393 *
394 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
395 * 2. A timing hazard exists for the TLBP instruction.
396 *
397 * stalling_instruction
398 * TLBP
399 *
400 * The JTLB is being read for the TLBP throughout the stall generated by the
401 * previous instruction. This is not really correct as the stalling instruction
402 * can modify the address used to access the JTLB. The failure symptom is that
403 * the TLBP instruction will use an address created for the stalling instruction
404 * and not the address held in C0_ENHI and thus report the wrong results.
405 *
406 * The software work-around is to not allow the instruction preceding the TLBP
407 * to stall - make it an NOP or some other instruction guaranteed not to stall.
408 *
409 * Errata 2 will not be fixed. This errata is also on the R5000.
410 *
411 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
412 */
413static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
414{
415 switch (current_cpu_type()) {
416 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
417 case CPU_R4600:
418 case CPU_R4700:
419 case CPU_R5000:
420 case CPU_R5000A:
421 case CPU_NEVADA:
422 uasm_i_nop(p);
423 uasm_i_tlbp(p);
424 break;
425
426 default:
427 uasm_i_tlbp(p);
428 break;
429 }
430}
431
432/*
433 * Write random or indexed TLB entry, and care about the hazards from
434 * the preceding mtc0 and for the following eret.
435 */
436enum tlb_write_entry { tlb_random, tlb_indexed };
437
438static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
439 struct uasm_reloc **r,
440 enum tlb_write_entry wmode)
441{
442 void(*tlbw)(u32 **) = NULL;
443
444 switch (wmode) {
445 case tlb_random: tlbw = uasm_i_tlbwr; break;
446 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
447 }
448
449 if (cpu_has_mips_r2) {
450 if (cpu_has_mips_r2_exec_hazard)
451 uasm_i_ehb(p);
452 tlbw(p);
453 return;
454 }
455
456 switch (current_cpu_type()) {
457 case CPU_R4000PC:
458 case CPU_R4000SC:
459 case CPU_R4000MC:
460 case CPU_R4400PC:
461 case CPU_R4400SC:
462 case CPU_R4400MC:
463 /*
464 * This branch uses up a mtc0 hazard nop slot and saves
465 * two nops after the tlbw instruction.
466 */
467 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
468 tlbw(p);
469 uasm_l_tlbw_hazard(l, *p);
470 uasm_i_nop(p);
471 break;
472
473 case CPU_R4600:
474 case CPU_R4700:
475 case CPU_R5000:
476 case CPU_R5000A:
477 uasm_i_nop(p);
478 tlbw(p);
479 uasm_i_nop(p);
480 break;
481
482 case CPU_R4300:
483 case CPU_5KC:
484 case CPU_TX49XX:
485 case CPU_PR4450:
486 case CPU_XLR:
487 uasm_i_nop(p);
488 tlbw(p);
489 break;
490
491 case CPU_R10000:
492 case CPU_R12000:
493 case CPU_R14000:
494 case CPU_4KC:
495 case CPU_4KEC:
496 case CPU_SB1:
497 case CPU_SB1A:
498 case CPU_4KSC:
499 case CPU_20KC:
500 case CPU_25KF:
501 case CPU_BMIPS32:
502 case CPU_BMIPS3300:
503 case CPU_BMIPS4350:
504 case CPU_BMIPS4380:
505 case CPU_BMIPS5000:
506 case CPU_LOONGSON2:
507 case CPU_R5500:
508 if (m4kc_tlbp_war())
509 uasm_i_nop(p);
510 case CPU_ALCHEMY:
511 tlbw(p);
512 break;
513
514 case CPU_NEVADA:
515 uasm_i_nop(p); /* QED specifies 2 nops hazard */
516 /*
517 * This branch uses up a mtc0 hazard nop slot and saves
518 * a nop after the tlbw instruction.
519 */
520 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
521 tlbw(p);
522 uasm_l_tlbw_hazard(l, *p);
523 break;
524
525 case CPU_RM7000:
526 uasm_i_nop(p);
527 uasm_i_nop(p);
528 uasm_i_nop(p);
529 uasm_i_nop(p);
530 tlbw(p);
531 break;
532
533 case CPU_RM9000:
534 /*
535 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
536 * use of the JTLB for instructions should not occur for 4
537 * cpu cycles and use for data translations should not occur
538 * for 3 cpu cycles.
539 */
540 uasm_i_ssnop(p);
541 uasm_i_ssnop(p);
542 uasm_i_ssnop(p);
543 uasm_i_ssnop(p);
544 tlbw(p);
545 uasm_i_ssnop(p);
546 uasm_i_ssnop(p);
547 uasm_i_ssnop(p);
548 uasm_i_ssnop(p);
549 break;
550
551 case CPU_VR4111:
552 case CPU_VR4121:
553 case CPU_VR4122:
554 case CPU_VR4181:
555 case CPU_VR4181A:
556 uasm_i_nop(p);
557 uasm_i_nop(p);
558 tlbw(p);
559 uasm_i_nop(p);
560 uasm_i_nop(p);
561 break;
562
563 case CPU_VR4131:
564 case CPU_VR4133:
565 case CPU_R5432:
566 uasm_i_nop(p);
567 uasm_i_nop(p);
568 tlbw(p);
569 break;
570
571 case CPU_JZRISC:
572 tlbw(p);
573 uasm_i_nop(p);
574 break;
575
576 default:
577 panic("No TLB refill handler yet (CPU type: %d)",
578 current_cpu_data.cputype);
579 break;
580 }
581}
582
583static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
584 unsigned int reg)
585{
586 if (kernel_uses_smartmips_rixi) {
587 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
588 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
589 } else {
590#ifdef CONFIG_64BIT_PHYS_ADDR
591 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
592#else
593 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
594#endif
595 }
596}
597
598#ifdef CONFIG_HUGETLB_PAGE
599
600static __cpuinit void build_restore_pagemask(u32 **p,
601 struct uasm_reloc **r,
602 unsigned int tmp,
603 enum label_id lid,
604 int restore_scratch)
605{
606 if (restore_scratch) {
607 /* Reset default page size */
608 if (PM_DEFAULT_MASK >> 16) {
609 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
610 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
611 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
612 uasm_il_b(p, r, lid);
613 } else if (PM_DEFAULT_MASK) {
614 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
615 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
616 uasm_il_b(p, r, lid);
617 } else {
618 uasm_i_mtc0(p, 0, C0_PAGEMASK);
619 uasm_il_b(p, r, lid);
620 }
621 if (scratch_reg > 0)
622 UASM_i_MFC0(p, 1, 31, scratch_reg);
623 else
624 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
625 } else {
626 /* Reset default page size */
627 if (PM_DEFAULT_MASK >> 16) {
628 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
629 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
630 uasm_il_b(p, r, lid);
631 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
632 } else if (PM_DEFAULT_MASK) {
633 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
634 uasm_il_b(p, r, lid);
635 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
636 } else {
637 uasm_il_b(p, r, lid);
638 uasm_i_mtc0(p, 0, C0_PAGEMASK);
639 }
640 }
641}
642
643static __cpuinit void build_huge_tlb_write_entry(u32 **p,
644 struct uasm_label **l,
645 struct uasm_reloc **r,
646 unsigned int tmp,
647 enum tlb_write_entry wmode,
648 int restore_scratch)
649{
650 /* Set huge page tlb entry size */
651 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
652 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
653 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
654
655 build_tlb_write_entry(p, l, r, wmode);
656
657 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
658}
659
660/*
661 * Check if Huge PTE is present, if so then jump to LABEL.
662 */
663static void __cpuinit
664build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
665 unsigned int pmd, int lid)
666{
667 UASM_i_LW(p, tmp, 0, pmd);
668 if (use_bbit_insns()) {
669 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
670 } else {
671 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
672 uasm_il_bnez(p, r, tmp, lid);
673 }
674}
675
676static __cpuinit void build_huge_update_entries(u32 **p,
677 unsigned int pte,
678 unsigned int tmp)
679{
680 int small_sequence;
681
682 /*
683 * A huge PTE describes an area the size of the
684 * configured huge page size. This is twice the
685 * of the large TLB entry size we intend to use.
686 * A TLB entry half the size of the configured
687 * huge page size is configured into entrylo0
688 * and entrylo1 to cover the contiguous huge PTE
689 * address space.
690 */
691 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
692
693 /* We can clobber tmp. It isn't used after this.*/
694 if (!small_sequence)
695 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
696
697 build_convert_pte_to_entrylo(p, pte);
698 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
699 /* convert to entrylo1 */
700 if (small_sequence)
701 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
702 else
703 UASM_i_ADDU(p, pte, pte, tmp);
704
705 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
706}
707
708static __cpuinit void build_huge_handler_tail(u32 **p,
709 struct uasm_reloc **r,
710 struct uasm_label **l,
711 unsigned int pte,
712 unsigned int ptr)
713{
714#ifdef CONFIG_SMP
715 UASM_i_SC(p, pte, 0, ptr);
716 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
717 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
718#else
719 UASM_i_SW(p, pte, 0, ptr);
720#endif
721 build_huge_update_entries(p, pte, ptr);
722 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
723}
724#endif /* CONFIG_HUGETLB_PAGE */
725
726#ifdef CONFIG_64BIT
727/*
728 * TMP and PTR are scratch.
729 * TMP will be clobbered, PTR will hold the pmd entry.
730 */
731static void __cpuinit
732build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
733 unsigned int tmp, unsigned int ptr)
734{
735#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
736 long pgdc = (long)pgd_current;
737#endif
738 /*
739 * The vmalloc handling is not in the hotpath.
740 */
741 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
742
743 if (check_for_high_segbits) {
744 /*
745 * The kernel currently implicitely assumes that the
746 * MIPS SEGBITS parameter for the processor is
747 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
748 * allocate virtual addresses outside the maximum
749 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
750 * that doesn't prevent user code from accessing the
751 * higher xuseg addresses. Here, we make sure that
752 * everything but the lower xuseg addresses goes down
753 * the module_alloc/vmalloc path.
754 */
755 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
756 uasm_il_bnez(p, r, ptr, label_vmalloc);
757 } else {
758 uasm_il_bltz(p, r, tmp, label_vmalloc);
759 }
760 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
761
762#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
763 if (pgd_reg != -1) {
764 /* pgd is in pgd_reg */
765 UASM_i_MFC0(p, ptr, 31, pgd_reg);
766 } else {
767 /*
768 * &pgd << 11 stored in CONTEXT [23..63].
769 */
770 UASM_i_MFC0(p, ptr, C0_CONTEXT);
771
772 /* Clear lower 23 bits of context. */
773 uasm_i_dins(p, ptr, 0, 0, 23);
774
775 /* 1 0 1 0 1 << 6 xkphys cached */
776 uasm_i_ori(p, ptr, ptr, 0x540);
777 uasm_i_drotr(p, ptr, ptr, 11);
778 }
779#elif defined(CONFIG_SMP)
780# ifdef CONFIG_MIPS_MT_SMTC
781 /*
782 * SMTC uses TCBind value as "CPU" index
783 */
784 uasm_i_mfc0(p, ptr, C0_TCBIND);
785 uasm_i_dsrl_safe(p, ptr, ptr, 19);
786# else
787 /*
788 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
789 * stored in CONTEXT.
790 */
791 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
792 uasm_i_dsrl_safe(p, ptr, ptr, 23);
793# endif
794 UASM_i_LA_mostly(p, tmp, pgdc);
795 uasm_i_daddu(p, ptr, ptr, tmp);
796 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
797 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
798#else
799 UASM_i_LA_mostly(p, ptr, pgdc);
800 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
801#endif
802
803 uasm_l_vmalloc_done(l, *p);
804
805 /* get pgd offset in bytes */
806 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
807
808 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
809 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
810#ifndef __PAGETABLE_PMD_FOLDED
811 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
812 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
813 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
814 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
815 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
816#endif
817}
818
819/*
820 * BVADDR is the faulting address, PTR is scratch.
821 * PTR will hold the pgd for vmalloc.
822 */
823static void __cpuinit
824build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
825 unsigned int bvaddr, unsigned int ptr,
826 enum vmalloc64_mode mode)
827{
828 long swpd = (long)swapper_pg_dir;
829 int single_insn_swpd;
830 int did_vmalloc_branch = 0;
831
832 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
833
834 uasm_l_vmalloc(l, *p);
835
836 if (mode != not_refill && check_for_high_segbits) {
837 if (single_insn_swpd) {
838 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
839 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
840 did_vmalloc_branch = 1;
841 /* fall through */
842 } else {
843 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
844 }
845 }
846 if (!did_vmalloc_branch) {
847 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
848 uasm_il_b(p, r, label_vmalloc_done);
849 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
850 } else {
851 UASM_i_LA_mostly(p, ptr, swpd);
852 uasm_il_b(p, r, label_vmalloc_done);
853 if (uasm_in_compat_space_p(swpd))
854 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
855 else
856 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
857 }
858 }
859 if (mode != not_refill && check_for_high_segbits) {
860 uasm_l_large_segbits_fault(l, *p);
861 /*
862 * We get here if we are an xsseg address, or if we are
863 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
864 *
865 * Ignoring xsseg (assume disabled so would generate
866 * (address errors?), the only remaining possibility
867 * is the upper xuseg addresses. On processors with
868 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
869 * addresses would have taken an address error. We try
870 * to mimic that here by taking a load/istream page
871 * fault.
872 */
873 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
874 uasm_i_jr(p, ptr);
875
876 if (mode == refill_scratch) {
877 if (scratch_reg > 0)
878 UASM_i_MFC0(p, 1, 31, scratch_reg);
879 else
880 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
881 } else {
882 uasm_i_nop(p);
883 }
884 }
885}
886
887#else /* !CONFIG_64BIT */
888
889/*
890 * TMP and PTR are scratch.
891 * TMP will be clobbered, PTR will hold the pgd entry.
892 */
893static void __cpuinit __maybe_unused
894build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
895{
896 long pgdc = (long)pgd_current;
897
898 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
899#ifdef CONFIG_SMP
900#ifdef CONFIG_MIPS_MT_SMTC
901 /*
902 * SMTC uses TCBind value as "CPU" index
903 */
904 uasm_i_mfc0(p, ptr, C0_TCBIND);
905 UASM_i_LA_mostly(p, tmp, pgdc);
906 uasm_i_srl(p, ptr, ptr, 19);
907#else
908 /*
909 * smp_processor_id() << 3 is stored in CONTEXT.
910 */
911 uasm_i_mfc0(p, ptr, C0_CONTEXT);
912 UASM_i_LA_mostly(p, tmp, pgdc);
913 uasm_i_srl(p, ptr, ptr, 23);
914#endif
915 uasm_i_addu(p, ptr, tmp, ptr);
916#else
917 UASM_i_LA_mostly(p, ptr, pgdc);
918#endif
919 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
920 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
921 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
922 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
923 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
924}
925
926#endif /* !CONFIG_64BIT */
927
928static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
929{
930 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
931 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
932
933 switch (current_cpu_type()) {
934 case CPU_VR41XX:
935 case CPU_VR4111:
936 case CPU_VR4121:
937 case CPU_VR4122:
938 case CPU_VR4131:
939 case CPU_VR4181:
940 case CPU_VR4181A:
941 case CPU_VR4133:
942 shift += 2;
943 break;
944
945 default:
946 break;
947 }
948
949 if (shift)
950 UASM_i_SRL(p, ctx, ctx, shift);
951 uasm_i_andi(p, ctx, ctx, mask);
952}
953
954static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
955{
956 /*
957 * Bug workaround for the Nevada. It seems as if under certain
958 * circumstances the move from cp0_context might produce a
959 * bogus result when the mfc0 instruction and its consumer are
960 * in a different cacheline or a load instruction, probably any
961 * memory reference, is between them.
962 */
963 switch (current_cpu_type()) {
964 case CPU_NEVADA:
965 UASM_i_LW(p, ptr, 0, ptr);
966 GET_CONTEXT(p, tmp); /* get context reg */
967 break;
968
969 default:
970 GET_CONTEXT(p, tmp); /* get context reg */
971 UASM_i_LW(p, ptr, 0, ptr);
972 break;
973 }
974
975 build_adjust_context(p, tmp);
976 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
977}
978
979static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
980 unsigned int ptep)
981{
982 /*
983 * 64bit address support (36bit on a 32bit CPU) in a 32bit
984 * Kernel is a special case. Only a few CPUs use it.
985 */
986#ifdef CONFIG_64BIT_PHYS_ADDR
987 if (cpu_has_64bits) {
988 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
989 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
990 if (kernel_uses_smartmips_rixi) {
991 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
992 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
993 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
994 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
995 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
996 } else {
997 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
998 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
999 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1000 }
1001 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1002 } else {
1003 int pte_off_even = sizeof(pte_t) / 2;
1004 int pte_off_odd = pte_off_even + sizeof(pte_t);
1005
1006 /* The pte entries are pre-shifted */
1007 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1008 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1009 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1010 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1011 }
1012#else
1013 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1014 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1015 if (r45k_bvahwbug())
1016 build_tlb_probe_entry(p);
1017 if (kernel_uses_smartmips_rixi) {
1018 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
1019 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
1020 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1021 if (r4k_250MHZhwbug())
1022 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1023 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1024 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1025 } else {
1026 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1027 if (r4k_250MHZhwbug())
1028 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1029 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1030 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1031 if (r45k_bvahwbug())
1032 uasm_i_mfc0(p, tmp, C0_INDEX);
1033 }
1034 if (r4k_250MHZhwbug())
1035 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1036 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1037#endif
1038}
1039
1040struct mips_huge_tlb_info {
1041 int huge_pte;
1042 int restore_scratch;
1043};
1044
1045static struct mips_huge_tlb_info __cpuinit
1046build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1047 struct uasm_reloc **r, unsigned int tmp,
1048 unsigned int ptr, int c0_scratch)
1049{
1050 struct mips_huge_tlb_info rv;
1051 unsigned int even, odd;
1052 int vmalloc_branch_delay_filled = 0;
1053 const int scratch = 1; /* Our extra working register */
1054
1055 rv.huge_pte = scratch;
1056 rv.restore_scratch = 0;
1057
1058 if (check_for_high_segbits) {
1059 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1060
1061 if (pgd_reg != -1)
1062 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1063 else
1064 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1065
1066 if (c0_scratch >= 0)
1067 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1068 else
1069 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1070
1071 uasm_i_dsrl_safe(p, scratch, tmp,
1072 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1073 uasm_il_bnez(p, r, scratch, label_vmalloc);
1074
1075 if (pgd_reg == -1) {
1076 vmalloc_branch_delay_filled = 1;
1077 /* Clear lower 23 bits of context. */
1078 uasm_i_dins(p, ptr, 0, 0, 23);
1079 }
1080 } else {
1081 if (pgd_reg != -1)
1082 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1083 else
1084 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1085
1086 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1087
1088 if (c0_scratch >= 0)
1089 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1090 else
1091 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1092
1093 if (pgd_reg == -1)
1094 /* Clear lower 23 bits of context. */
1095 uasm_i_dins(p, ptr, 0, 0, 23);
1096
1097 uasm_il_bltz(p, r, tmp, label_vmalloc);
1098 }
1099
1100 if (pgd_reg == -1) {
1101 vmalloc_branch_delay_filled = 1;
1102 /* 1 0 1 0 1 << 6 xkphys cached */
1103 uasm_i_ori(p, ptr, ptr, 0x540);
1104 uasm_i_drotr(p, ptr, ptr, 11);
1105 }
1106
1107#ifdef __PAGETABLE_PMD_FOLDED
1108#define LOC_PTEP scratch
1109#else
1110#define LOC_PTEP ptr
1111#endif
1112
1113 if (!vmalloc_branch_delay_filled)
1114 /* get pgd offset in bytes */
1115 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1116
1117 uasm_l_vmalloc_done(l, *p);
1118
1119 /*
1120 * tmp ptr
1121 * fall-through case = badvaddr *pgd_current
1122 * vmalloc case = badvaddr swapper_pg_dir
1123 */
1124
1125 if (vmalloc_branch_delay_filled)
1126 /* get pgd offset in bytes */
1127 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1128
1129#ifdef __PAGETABLE_PMD_FOLDED
1130 GET_CONTEXT(p, tmp); /* get context reg */
1131#endif
1132 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1133
1134 if (use_lwx_insns()) {
1135 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1136 } else {
1137 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1138 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1139 }
1140
1141#ifndef __PAGETABLE_PMD_FOLDED
1142 /* get pmd offset in bytes */
1143 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1144 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1145 GET_CONTEXT(p, tmp); /* get context reg */
1146
1147 if (use_lwx_insns()) {
1148 UASM_i_LWX(p, scratch, scratch, ptr);
1149 } else {
1150 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1151 UASM_i_LW(p, scratch, 0, ptr);
1152 }
1153#endif
1154 /* Adjust the context during the load latency. */
1155 build_adjust_context(p, tmp);
1156
1157#ifdef CONFIG_HUGETLB_PAGE
1158 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1159 /*
1160 * The in the LWX case we don't want to do the load in the
1161 * delay slot. It cannot issue in the same cycle and may be
1162 * speculative and unneeded.
1163 */
1164 if (use_lwx_insns())
1165 uasm_i_nop(p);
1166#endif /* CONFIG_HUGETLB_PAGE */
1167
1168
1169 /* build_update_entries */
1170 if (use_lwx_insns()) {
1171 even = ptr;
1172 odd = tmp;
1173 UASM_i_LWX(p, even, scratch, tmp);
1174 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1175 UASM_i_LWX(p, odd, scratch, tmp);
1176 } else {
1177 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1178 even = tmp;
1179 odd = ptr;
1180 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1181 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1182 }
1183 if (kernel_uses_smartmips_rixi) {
1184 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_NO_EXEC));
1185 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_NO_EXEC));
1186 uasm_i_drotr(p, even, even,
1187 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1188 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1189 uasm_i_drotr(p, odd, odd,
1190 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1191 } else {
1192 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1193 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1194 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1195 }
1196 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1197
1198 if (c0_scratch >= 0) {
1199 UASM_i_MFC0(p, scratch, 31, c0_scratch);
1200 build_tlb_write_entry(p, l, r, tlb_random);
1201 uasm_l_leave(l, *p);
1202 rv.restore_scratch = 1;
1203 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1204 build_tlb_write_entry(p, l, r, tlb_random);
1205 uasm_l_leave(l, *p);
1206 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1207 } else {
1208 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1209 build_tlb_write_entry(p, l, r, tlb_random);
1210 uasm_l_leave(l, *p);
1211 rv.restore_scratch = 1;
1212 }
1213
1214 uasm_i_eret(p); /* return from trap */
1215
1216 return rv;
1217}
1218
1219/*
1220 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1221 * because EXL == 0. If we wrap, we can also use the 32 instruction
1222 * slots before the XTLB refill exception handler which belong to the
1223 * unused TLB refill exception.
1224 */
1225#define MIPS64_REFILL_INSNS 32
1226
1227static void __cpuinit build_r4000_tlb_refill_handler(void)
1228{
1229 u32 *p = tlb_handler;
1230 struct uasm_label *l = labels;
1231 struct uasm_reloc *r = relocs;
1232 u32 *f;
1233 unsigned int final_len;
1234 struct mips_huge_tlb_info htlb_info __maybe_unused;
1235 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1236
1237 memset(tlb_handler, 0, sizeof(tlb_handler));
1238 memset(labels, 0, sizeof(labels));
1239 memset(relocs, 0, sizeof(relocs));
1240 memset(final_handler, 0, sizeof(final_handler));
1241
1242 if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1243 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1244 scratch_reg);
1245 vmalloc_mode = refill_scratch;
1246 } else {
1247 htlb_info.huge_pte = K0;
1248 htlb_info.restore_scratch = 0;
1249 vmalloc_mode = refill_noscratch;
1250 /*
1251 * create the plain linear handler
1252 */
1253 if (bcm1250_m3_war()) {
1254 unsigned int segbits = 44;
1255
1256 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1257 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1258 uasm_i_xor(&p, K0, K0, K1);
1259 uasm_i_dsrl_safe(&p, K1, K0, 62);
1260 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1261 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1262 uasm_i_or(&p, K0, K0, K1);
1263 uasm_il_bnez(&p, &r, K0, label_leave);
1264 /* No need for uasm_i_nop */
1265 }
1266
1267#ifdef CONFIG_64BIT
1268 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1269#else
1270 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1271#endif
1272
1273#ifdef CONFIG_HUGETLB_PAGE
1274 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1275#endif
1276
1277 build_get_ptep(&p, K0, K1);
1278 build_update_entries(&p, K0, K1);
1279 build_tlb_write_entry(&p, &l, &r, tlb_random);
1280 uasm_l_leave(&l, p);
1281 uasm_i_eret(&p); /* return from trap */
1282 }
1283#ifdef CONFIG_HUGETLB_PAGE
1284 uasm_l_tlb_huge_update(&l, p);
1285 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1286 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1287 htlb_info.restore_scratch);
1288#endif
1289
1290#ifdef CONFIG_64BIT
1291 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1292#endif
1293
1294 /*
1295 * Overflow check: For the 64bit handler, we need at least one
1296 * free instruction slot for the wrap-around branch. In worst
1297 * case, if the intended insertion point is a delay slot, we
1298 * need three, with the second nop'ed and the third being
1299 * unused.
1300 */
1301 /* Loongson2 ebase is different than r4k, we have more space */
1302#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1303 if ((p - tlb_handler) > 64)
1304 panic("TLB refill handler space exceeded");
1305#else
1306 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1307 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1308 && uasm_insn_has_bdelay(relocs,
1309 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1310 panic("TLB refill handler space exceeded");
1311#endif
1312
1313 /*
1314 * Now fold the handler in the TLB refill handler space.
1315 */
1316#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1317 f = final_handler;
1318 /* Simplest case, just copy the handler. */
1319 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1320 final_len = p - tlb_handler;
1321#else /* CONFIG_64BIT */
1322 f = final_handler + MIPS64_REFILL_INSNS;
1323 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1324 /* Just copy the handler. */
1325 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1326 final_len = p - tlb_handler;
1327 } else {
1328#if defined(CONFIG_HUGETLB_PAGE)
1329 const enum label_id ls = label_tlb_huge_update;
1330#else
1331 const enum label_id ls = label_vmalloc;
1332#endif
1333 u32 *split;
1334 int ov = 0;
1335 int i;
1336
1337 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1338 ;
1339 BUG_ON(i == ARRAY_SIZE(labels));
1340 split = labels[i].addr;
1341
1342 /*
1343 * See if we have overflown one way or the other.
1344 */
1345 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1346 split < p - MIPS64_REFILL_INSNS)
1347 ov = 1;
1348
1349 if (ov) {
1350 /*
1351 * Split two instructions before the end. One
1352 * for the branch and one for the instruction
1353 * in the delay slot.
1354 */
1355 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1356
1357 /*
1358 * If the branch would fall in a delay slot,
1359 * we must back up an additional instruction
1360 * so that it is no longer in a delay slot.
1361 */
1362 if (uasm_insn_has_bdelay(relocs, split - 1))
1363 split--;
1364 }
1365 /* Copy first part of the handler. */
1366 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1367 f += split - tlb_handler;
1368
1369 if (ov) {
1370 /* Insert branch. */
1371 uasm_l_split(&l, final_handler);
1372 uasm_il_b(&f, &r, label_split);
1373 if (uasm_insn_has_bdelay(relocs, split))
1374 uasm_i_nop(&f);
1375 else {
1376 uasm_copy_handler(relocs, labels,
1377 split, split + 1, f);
1378 uasm_move_labels(labels, f, f + 1, -1);
1379 f++;
1380 split++;
1381 }
1382 }
1383
1384 /* Copy the rest of the handler. */
1385 uasm_copy_handler(relocs, labels, split, p, final_handler);
1386 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1387 (p - split);
1388 }
1389#endif /* CONFIG_64BIT */
1390
1391 uasm_resolve_relocs(relocs, labels);
1392 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1393 final_len);
1394
1395 memcpy((void *)ebase, final_handler, 0x100);
1396
1397 dump_handler((u32 *)ebase, 64);
1398}
1399
1400/*
1401 * 128 instructions for the fastpath handler is generous and should
1402 * never be exceeded.
1403 */
1404#define FASTPATH_SIZE 128
1405
1406u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1407u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1408u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1409#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1410u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1411
1412static void __cpuinit build_r4000_setup_pgd(void)
1413{
1414 const int a0 = 4;
1415 const int a1 = 5;
1416 u32 *p = tlbmiss_handler_setup_pgd;
1417 struct uasm_label *l = labels;
1418 struct uasm_reloc *r = relocs;
1419
1420 memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
1421 memset(labels, 0, sizeof(labels));
1422 memset(relocs, 0, sizeof(relocs));
1423
1424 pgd_reg = allocate_kscratch();
1425
1426 if (pgd_reg == -1) {
1427 /* PGD << 11 in c0_Context */
1428 /*
1429 * If it is a ckseg0 address, convert to a physical
1430 * address. Shifting right by 29 and adding 4 will
1431 * result in zero for these addresses.
1432 *
1433 */
1434 UASM_i_SRA(&p, a1, a0, 29);
1435 UASM_i_ADDIU(&p, a1, a1, 4);
1436 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1437 uasm_i_nop(&p);
1438 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1439 uasm_l_tlbl_goaround1(&l, p);
1440 UASM_i_SLL(&p, a0, a0, 11);
1441 uasm_i_jr(&p, 31);
1442 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1443 } else {
1444 /* PGD in c0_KScratch */
1445 uasm_i_jr(&p, 31);
1446 UASM_i_MTC0(&p, a0, 31, pgd_reg);
1447 }
1448 if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
1449 panic("tlbmiss_handler_setup_pgd space exceeded");
1450 uasm_resolve_relocs(relocs, labels);
1451 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1452 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1453
1454 dump_handler(tlbmiss_handler_setup_pgd,
1455 ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1456}
1457#endif
1458
1459static void __cpuinit
1460iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1461{
1462#ifdef CONFIG_SMP
1463# ifdef CONFIG_64BIT_PHYS_ADDR
1464 if (cpu_has_64bits)
1465 uasm_i_lld(p, pte, 0, ptr);
1466 else
1467# endif
1468 UASM_i_LL(p, pte, 0, ptr);
1469#else
1470# ifdef CONFIG_64BIT_PHYS_ADDR
1471 if (cpu_has_64bits)
1472 uasm_i_ld(p, pte, 0, ptr);
1473 else
1474# endif
1475 UASM_i_LW(p, pte, 0, ptr);
1476#endif
1477}
1478
1479static void __cpuinit
1480iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1481 unsigned int mode)
1482{
1483#ifdef CONFIG_64BIT_PHYS_ADDR
1484 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1485#endif
1486
1487 uasm_i_ori(p, pte, pte, mode);
1488#ifdef CONFIG_SMP
1489# ifdef CONFIG_64BIT_PHYS_ADDR
1490 if (cpu_has_64bits)
1491 uasm_i_scd(p, pte, 0, ptr);
1492 else
1493# endif
1494 UASM_i_SC(p, pte, 0, ptr);
1495
1496 if (r10000_llsc_war())
1497 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1498 else
1499 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1500
1501# ifdef CONFIG_64BIT_PHYS_ADDR
1502 if (!cpu_has_64bits) {
1503 /* no uasm_i_nop needed */
1504 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1505 uasm_i_ori(p, pte, pte, hwmode);
1506 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1507 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1508 /* no uasm_i_nop needed */
1509 uasm_i_lw(p, pte, 0, ptr);
1510 } else
1511 uasm_i_nop(p);
1512# else
1513 uasm_i_nop(p);
1514# endif
1515#else
1516# ifdef CONFIG_64BIT_PHYS_ADDR
1517 if (cpu_has_64bits)
1518 uasm_i_sd(p, pte, 0, ptr);
1519 else
1520# endif
1521 UASM_i_SW(p, pte, 0, ptr);
1522
1523# ifdef CONFIG_64BIT_PHYS_ADDR
1524 if (!cpu_has_64bits) {
1525 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1526 uasm_i_ori(p, pte, pte, hwmode);
1527 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1528 uasm_i_lw(p, pte, 0, ptr);
1529 }
1530# endif
1531#endif
1532}
1533
1534/*
1535 * Check if PTE is present, if not then jump to LABEL. PTR points to
1536 * the page table where this PTE is located, PTE will be re-loaded
1537 * with it's original value.
1538 */
1539static void __cpuinit
1540build_pte_present(u32 **p, struct uasm_reloc **r,
1541 int pte, int ptr, int scratch, enum label_id lid)
1542{
1543 int t = scratch >= 0 ? scratch : pte;
1544
1545 if (kernel_uses_smartmips_rixi) {
1546 if (use_bbit_insns()) {
1547 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1548 uasm_i_nop(p);
1549 } else {
1550 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1551 uasm_il_beqz(p, r, t, lid);
1552 if (pte == t)
1553 /* You lose the SMP race :-(*/
1554 iPTE_LW(p, pte, ptr);
1555 }
1556 } else {
1557 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1558 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1559 uasm_il_bnez(p, r, t, lid);
1560 if (pte == t)
1561 /* You lose the SMP race :-(*/
1562 iPTE_LW(p, pte, ptr);
1563 }
1564}
1565
1566/* Make PTE valid, store result in PTR. */
1567static void __cpuinit
1568build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1569 unsigned int ptr)
1570{
1571 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1572
1573 iPTE_SW(p, r, pte, ptr, mode);
1574}
1575
1576/*
1577 * Check if PTE can be written to, if not branch to LABEL. Regardless
1578 * restore PTE with value from PTR when done.
1579 */
1580static void __cpuinit
1581build_pte_writable(u32 **p, struct uasm_reloc **r,
1582 unsigned int pte, unsigned int ptr, int scratch,
1583 enum label_id lid)
1584{
1585 int t = scratch >= 0 ? scratch : pte;
1586
1587 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1588 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1589 uasm_il_bnez(p, r, t, lid);
1590 if (pte == t)
1591 /* You lose the SMP race :-(*/
1592 iPTE_LW(p, pte, ptr);
1593 else
1594 uasm_i_nop(p);
1595}
1596
1597/* Make PTE writable, update software status bits as well, then store
1598 * at PTR.
1599 */
1600static void __cpuinit
1601build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1602 unsigned int ptr)
1603{
1604 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1605 | _PAGE_DIRTY);
1606
1607 iPTE_SW(p, r, pte, ptr, mode);
1608}
1609
1610/*
1611 * Check if PTE can be modified, if not branch to LABEL. Regardless
1612 * restore PTE with value from PTR when done.
1613 */
1614static void __cpuinit
1615build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1616 unsigned int pte, unsigned int ptr, int scratch,
1617 enum label_id lid)
1618{
1619 if (use_bbit_insns()) {
1620 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1621 uasm_i_nop(p);
1622 } else {
1623 int t = scratch >= 0 ? scratch : pte;
1624 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1625 uasm_il_beqz(p, r, t, lid);
1626 if (pte == t)
1627 /* You lose the SMP race :-(*/
1628 iPTE_LW(p, pte, ptr);
1629 }
1630}
1631
1632#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1633
1634
1635/*
1636 * R3000 style TLB load/store/modify handlers.
1637 */
1638
1639/*
1640 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1641 * Then it returns.
1642 */
1643static void __cpuinit
1644build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1645{
1646 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1647 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1648 uasm_i_tlbwi(p);
1649 uasm_i_jr(p, tmp);
1650 uasm_i_rfe(p); /* branch delay */
1651}
1652
1653/*
1654 * This places the pte into ENTRYLO0 and writes it with tlbwi
1655 * or tlbwr as appropriate. This is because the index register
1656 * may have the probe fail bit set as a result of a trap on a
1657 * kseg2 access, i.e. without refill. Then it returns.
1658 */
1659static void __cpuinit
1660build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1661 struct uasm_reloc **r, unsigned int pte,
1662 unsigned int tmp)
1663{
1664 uasm_i_mfc0(p, tmp, C0_INDEX);
1665 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1666 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1667 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1668 uasm_i_tlbwi(p); /* cp0 delay */
1669 uasm_i_jr(p, tmp);
1670 uasm_i_rfe(p); /* branch delay */
1671 uasm_l_r3000_write_probe_fail(l, *p);
1672 uasm_i_tlbwr(p); /* cp0 delay */
1673 uasm_i_jr(p, tmp);
1674 uasm_i_rfe(p); /* branch delay */
1675}
1676
1677static void __cpuinit
1678build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1679 unsigned int ptr)
1680{
1681 long pgdc = (long)pgd_current;
1682
1683 uasm_i_mfc0(p, pte, C0_BADVADDR);
1684 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1685 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1686 uasm_i_srl(p, pte, pte, 22); /* load delay */
1687 uasm_i_sll(p, pte, pte, 2);
1688 uasm_i_addu(p, ptr, ptr, pte);
1689 uasm_i_mfc0(p, pte, C0_CONTEXT);
1690 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1691 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1692 uasm_i_addu(p, ptr, ptr, pte);
1693 uasm_i_lw(p, pte, 0, ptr);
1694 uasm_i_tlbp(p); /* load delay */
1695}
1696
1697static void __cpuinit build_r3000_tlb_load_handler(void)
1698{
1699 u32 *p = handle_tlbl;
1700 struct uasm_label *l = labels;
1701 struct uasm_reloc *r = relocs;
1702
1703 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1704 memset(labels, 0, sizeof(labels));
1705 memset(relocs, 0, sizeof(relocs));
1706
1707 build_r3000_tlbchange_handler_head(&p, K0, K1);
1708 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1709 uasm_i_nop(&p); /* load delay */
1710 build_make_valid(&p, &r, K0, K1);
1711 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1712
1713 uasm_l_nopage_tlbl(&l, p);
1714 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1715 uasm_i_nop(&p);
1716
1717 if ((p - handle_tlbl) > FASTPATH_SIZE)
1718 panic("TLB load handler fastpath space exceeded");
1719
1720 uasm_resolve_relocs(relocs, labels);
1721 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1722 (unsigned int)(p - handle_tlbl));
1723
1724 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1725}
1726
1727static void __cpuinit build_r3000_tlb_store_handler(void)
1728{
1729 u32 *p = handle_tlbs;
1730 struct uasm_label *l = labels;
1731 struct uasm_reloc *r = relocs;
1732
1733 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1734 memset(labels, 0, sizeof(labels));
1735 memset(relocs, 0, sizeof(relocs));
1736
1737 build_r3000_tlbchange_handler_head(&p, K0, K1);
1738 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1739 uasm_i_nop(&p); /* load delay */
1740 build_make_write(&p, &r, K0, K1);
1741 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1742
1743 uasm_l_nopage_tlbs(&l, p);
1744 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1745 uasm_i_nop(&p);
1746
1747 if ((p - handle_tlbs) > FASTPATH_SIZE)
1748 panic("TLB store handler fastpath space exceeded");
1749
1750 uasm_resolve_relocs(relocs, labels);
1751 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1752 (unsigned int)(p - handle_tlbs));
1753
1754 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1755}
1756
1757static void __cpuinit build_r3000_tlb_modify_handler(void)
1758{
1759 u32 *p = handle_tlbm;
1760 struct uasm_label *l = labels;
1761 struct uasm_reloc *r = relocs;
1762
1763 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1764 memset(labels, 0, sizeof(labels));
1765 memset(relocs, 0, sizeof(relocs));
1766
1767 build_r3000_tlbchange_handler_head(&p, K0, K1);
1768 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1769 uasm_i_nop(&p); /* load delay */
1770 build_make_write(&p, &r, K0, K1);
1771 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1772
1773 uasm_l_nopage_tlbm(&l, p);
1774 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1775 uasm_i_nop(&p);
1776
1777 if ((p - handle_tlbm) > FASTPATH_SIZE)
1778 panic("TLB modify handler fastpath space exceeded");
1779
1780 uasm_resolve_relocs(relocs, labels);
1781 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1782 (unsigned int)(p - handle_tlbm));
1783
1784 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1785}
1786#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1787
1788/*
1789 * R4000 style TLB load/store/modify handlers.
1790 */
1791static struct work_registers __cpuinit
1792build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1793 struct uasm_reloc **r)
1794{
1795 struct work_registers wr = build_get_work_registers(p);
1796
1797#ifdef CONFIG_64BIT
1798 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1799#else
1800 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1801#endif
1802
1803#ifdef CONFIG_HUGETLB_PAGE
1804 /*
1805 * For huge tlb entries, pmd doesn't contain an address but
1806 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1807 * see if we need to jump to huge tlb processing.
1808 */
1809 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1810#endif
1811
1812 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1813 UASM_i_LW(p, wr.r2, 0, wr.r2);
1814 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1815 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1816 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1817
1818#ifdef CONFIG_SMP
1819 uasm_l_smp_pgtable_change(l, *p);
1820#endif
1821 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1822 if (!m4kc_tlbp_war())
1823 build_tlb_probe_entry(p);
1824 return wr;
1825}
1826
1827static void __cpuinit
1828build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1829 struct uasm_reloc **r, unsigned int tmp,
1830 unsigned int ptr)
1831{
1832 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1833 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1834 build_update_entries(p, tmp, ptr);
1835 build_tlb_write_entry(p, l, r, tlb_indexed);
1836 uasm_l_leave(l, *p);
1837 build_restore_work_registers(p);
1838 uasm_i_eret(p); /* return from trap */
1839
1840#ifdef CONFIG_64BIT
1841 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1842#endif
1843}
1844
1845static void __cpuinit build_r4000_tlb_load_handler(void)
1846{
1847 u32 *p = handle_tlbl;
1848 struct uasm_label *l = labels;
1849 struct uasm_reloc *r = relocs;
1850 struct work_registers wr;
1851
1852 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1853 memset(labels, 0, sizeof(labels));
1854 memset(relocs, 0, sizeof(relocs));
1855
1856 if (bcm1250_m3_war()) {
1857 unsigned int segbits = 44;
1858
1859 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1860 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1861 uasm_i_xor(&p, K0, K0, K1);
1862 uasm_i_dsrl_safe(&p, K1, K0, 62);
1863 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1864 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1865 uasm_i_or(&p, K0, K0, K1);
1866 uasm_il_bnez(&p, &r, K0, label_leave);
1867 /* No need for uasm_i_nop */
1868 }
1869
1870 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1871 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1872 if (m4kc_tlbp_war())
1873 build_tlb_probe_entry(&p);
1874
1875 if (kernel_uses_smartmips_rixi) {
1876 /*
1877 * If the page is not _PAGE_VALID, RI or XI could not
1878 * have triggered it. Skip the expensive test..
1879 */
1880 if (use_bbit_insns()) {
1881 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1882 label_tlbl_goaround1);
1883 } else {
1884 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1885 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1886 }
1887 uasm_i_nop(&p);
1888
1889 uasm_i_tlbr(&p);
1890 /* Examine entrylo 0 or 1 based on ptr. */
1891 if (use_bbit_insns()) {
1892 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1893 } else {
1894 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1895 uasm_i_beqz(&p, wr.r3, 8);
1896 }
1897 /* load it in the delay slot*/
1898 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1899 /* load it if ptr is odd */
1900 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1901 /*
1902 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1903 * XI must have triggered it.
1904 */
1905 if (use_bbit_insns()) {
1906 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1907 uasm_i_nop(&p);
1908 uasm_l_tlbl_goaround1(&l, p);
1909 } else {
1910 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1911 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1912 uasm_i_nop(&p);
1913 }
1914 uasm_l_tlbl_goaround1(&l, p);
1915 }
1916 build_make_valid(&p, &r, wr.r1, wr.r2);
1917 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1918
1919#ifdef CONFIG_HUGETLB_PAGE
1920 /*
1921 * This is the entry point when build_r4000_tlbchange_handler_head
1922 * spots a huge page.
1923 */
1924 uasm_l_tlb_huge_update(&l, p);
1925 iPTE_LW(&p, wr.r1, wr.r2);
1926 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1927 build_tlb_probe_entry(&p);
1928
1929 if (kernel_uses_smartmips_rixi) {
1930 /*
1931 * If the page is not _PAGE_VALID, RI or XI could not
1932 * have triggered it. Skip the expensive test..
1933 */
1934 if (use_bbit_insns()) {
1935 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1936 label_tlbl_goaround2);
1937 } else {
1938 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1939 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1940 }
1941 uasm_i_nop(&p);
1942
1943 uasm_i_tlbr(&p);
1944 /* Examine entrylo 0 or 1 based on ptr. */
1945 if (use_bbit_insns()) {
1946 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1947 } else {
1948 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1949 uasm_i_beqz(&p, wr.r3, 8);
1950 }
1951 /* load it in the delay slot*/
1952 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1953 /* load it if ptr is odd */
1954 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1955 /*
1956 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1957 * XI must have triggered it.
1958 */
1959 if (use_bbit_insns()) {
1960 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
1961 } else {
1962 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1963 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1964 }
1965 if (PM_DEFAULT_MASK == 0)
1966 uasm_i_nop(&p);
1967 /*
1968 * We clobbered C0_PAGEMASK, restore it. On the other branch
1969 * it is restored in build_huge_tlb_write_entry.
1970 */
1971 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
1972
1973 uasm_l_tlbl_goaround2(&l, p);
1974 }
1975 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
1976 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
1977#endif
1978
1979 uasm_l_nopage_tlbl(&l, p);
1980 build_restore_work_registers(&p);
1981 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1982 uasm_i_nop(&p);
1983
1984 if ((p - handle_tlbl) > FASTPATH_SIZE)
1985 panic("TLB load handler fastpath space exceeded");
1986
1987 uasm_resolve_relocs(relocs, labels);
1988 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1989 (unsigned int)(p - handle_tlbl));
1990
1991 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1992}
1993
1994static void __cpuinit build_r4000_tlb_store_handler(void)
1995{
1996 u32 *p = handle_tlbs;
1997 struct uasm_label *l = labels;
1998 struct uasm_reloc *r = relocs;
1999 struct work_registers wr;
2000
2001 memset(handle_tlbs, 0, sizeof(handle_tlbs));
2002 memset(labels, 0, sizeof(labels));
2003 memset(relocs, 0, sizeof(relocs));
2004
2005 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2006 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2007 if (m4kc_tlbp_war())
2008 build_tlb_probe_entry(&p);
2009 build_make_write(&p, &r, wr.r1, wr.r2);
2010 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2011
2012#ifdef CONFIG_HUGETLB_PAGE
2013 /*
2014 * This is the entry point when
2015 * build_r4000_tlbchange_handler_head spots a huge page.
2016 */
2017 uasm_l_tlb_huge_update(&l, p);
2018 iPTE_LW(&p, wr.r1, wr.r2);
2019 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2020 build_tlb_probe_entry(&p);
2021 uasm_i_ori(&p, wr.r1, wr.r1,
2022 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2023 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2024#endif
2025
2026 uasm_l_nopage_tlbs(&l, p);
2027 build_restore_work_registers(&p);
2028 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2029 uasm_i_nop(&p);
2030
2031 if ((p - handle_tlbs) > FASTPATH_SIZE)
2032 panic("TLB store handler fastpath space exceeded");
2033
2034 uasm_resolve_relocs(relocs, labels);
2035 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2036 (unsigned int)(p - handle_tlbs));
2037
2038 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
2039}
2040
2041static void __cpuinit build_r4000_tlb_modify_handler(void)
2042{
2043 u32 *p = handle_tlbm;
2044 struct uasm_label *l = labels;
2045 struct uasm_reloc *r = relocs;
2046 struct work_registers wr;
2047
2048 memset(handle_tlbm, 0, sizeof(handle_tlbm));
2049 memset(labels, 0, sizeof(labels));
2050 memset(relocs, 0, sizeof(relocs));
2051
2052 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2053 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2054 if (m4kc_tlbp_war())
2055 build_tlb_probe_entry(&p);
2056 /* Present and writable bits set, set accessed and dirty bits. */
2057 build_make_write(&p, &r, wr.r1, wr.r2);
2058 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2059
2060#ifdef CONFIG_HUGETLB_PAGE
2061 /*
2062 * This is the entry point when
2063 * build_r4000_tlbchange_handler_head spots a huge page.
2064 */
2065 uasm_l_tlb_huge_update(&l, p);
2066 iPTE_LW(&p, wr.r1, wr.r2);
2067 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2068 build_tlb_probe_entry(&p);
2069 uasm_i_ori(&p, wr.r1, wr.r1,
2070 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2071 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2072#endif
2073
2074 uasm_l_nopage_tlbm(&l, p);
2075 build_restore_work_registers(&p);
2076 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2077 uasm_i_nop(&p);
2078
2079 if ((p - handle_tlbm) > FASTPATH_SIZE)
2080 panic("TLB modify handler fastpath space exceeded");
2081
2082 uasm_resolve_relocs(relocs, labels);
2083 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2084 (unsigned int)(p - handle_tlbm));
2085
2086 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
2087}
2088
2089void __cpuinit build_tlb_refill_handler(void)
2090{
2091 /*
2092 * The refill handler is generated per-CPU, multi-node systems
2093 * may have local storage for it. The other handlers are only
2094 * needed once.
2095 */
2096 static int run_once = 0;
2097
2098#ifdef CONFIG_64BIT
2099 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2100#endif
2101
2102 switch (current_cpu_type()) {
2103 case CPU_R2000:
2104 case CPU_R3000:
2105 case CPU_R3000A:
2106 case CPU_R3081E:
2107 case CPU_TX3912:
2108 case CPU_TX3922:
2109 case CPU_TX3927:
2110#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2111 build_r3000_tlb_refill_handler();
2112 if (!run_once) {
2113 build_r3000_tlb_load_handler();
2114 build_r3000_tlb_store_handler();
2115 build_r3000_tlb_modify_handler();
2116 run_once++;
2117 }
2118#else
2119 panic("No R3000 TLB refill handler");
2120#endif
2121 break;
2122
2123 case CPU_R6000:
2124 case CPU_R6000A:
2125 panic("No R6000 TLB refill handler yet");
2126 break;
2127
2128 case CPU_R8000:
2129 panic("No R8000 TLB refill handler yet");
2130 break;
2131
2132 default:
2133 if (!run_once) {
2134 scratch_reg = allocate_kscratch();
2135#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2136 build_r4000_setup_pgd();
2137#endif
2138 build_r4000_tlb_load_handler();
2139 build_r4000_tlb_store_handler();
2140 build_r4000_tlb_modify_handler();
2141 run_once++;
2142 }
2143 build_r4000_tlb_refill_handler();
2144 }
2145}
2146
2147void __cpuinit flush_tlb_handlers(void)
2148{
2149 local_flush_icache_range((unsigned long)handle_tlbl,
2150 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2151 local_flush_icache_range((unsigned long)handle_tlbs,
2152 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2153 local_flush_icache_range((unsigned long)handle_tlbm,
2154 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2155#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2156 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2157 (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2158#endif
2159}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/smp.h>
28#include <linux/string.h>
29#include <linux/init.h>
30#include <linux/cache.h>
31
32#include <asm/cacheflush.h>
33#include <asm/pgtable.h>
34#include <asm/war.h>
35#include <asm/uasm.h>
36#include <asm/setup.h>
37
38/*
39 * TLB load/store/modify handlers.
40 *
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
43 */
44extern void tlb_do_page_fault_0(void);
45extern void tlb_do_page_fault_1(void);
46
47struct work_registers {
48 int r1;
49 int r2;
50 int r3;
51};
52
53struct tlb_reg_save {
54 unsigned long a;
55 unsigned long b;
56} ____cacheline_aligned_in_smp;
57
58static struct tlb_reg_save handler_reg_save[NR_CPUS];
59
60static inline int r45k_bvahwbug(void)
61{
62 /* XXX: We should probe for the presence of this bug, but we don't. */
63 return 0;
64}
65
66static inline int r4k_250MHZhwbug(void)
67{
68 /* XXX: We should probe for the presence of this bug, but we don't. */
69 return 0;
70}
71
72static inline int __maybe_unused bcm1250_m3_war(void)
73{
74 return BCM1250_M3_WAR;
75}
76
77static inline int __maybe_unused r10000_llsc_war(void)
78{
79 return R10000_LLSC_WAR;
80}
81
82static int use_bbit_insns(void)
83{
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON:
86 case CPU_CAVIUM_OCTEON_PLUS:
87 case CPU_CAVIUM_OCTEON2:
88 return 1;
89 default:
90 return 0;
91 }
92}
93
94static int use_lwx_insns(void)
95{
96 switch (current_cpu_type()) {
97 case CPU_CAVIUM_OCTEON2:
98 return 1;
99 default:
100 return 0;
101 }
102}
103#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105static bool scratchpad_available(void)
106{
107 return true;
108}
109static int scratchpad_offset(int i)
110{
111 /*
112 * CVMSEG starts at address -32768 and extends for
113 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
114 */
115 i += 1; /* Kernel use starts at the top and works down. */
116 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
117}
118#else
119static bool scratchpad_available(void)
120{
121 return false;
122}
123static int scratchpad_offset(int i)
124{
125 BUG();
126 /* Really unreachable, but evidently some GCC want this. */
127 return 0;
128}
129#endif
130/*
131 * Found by experiment: At least some revisions of the 4kc throw under
132 * some circumstances a machine check exception, triggered by invalid
133 * values in the index register. Delaying the tlbp instruction until
134 * after the next branch, plus adding an additional nop in front of
135 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136 * why; it's not an issue caused by the core RTL.
137 *
138 */
139static int __cpuinit m4kc_tlbp_war(void)
140{
141 return (current_cpu_data.processor_id & 0xffff00) ==
142 (PRID_COMP_MIPS | PRID_IMP_4KC);
143}
144
145/* Handle labels (which must be positive integers). */
146enum label_id {
147 label_second_part = 1,
148 label_leave,
149 label_vmalloc,
150 label_vmalloc_done,
151 label_tlbw_hazard,
152 label_split,
153 label_tlbl_goaround1,
154 label_tlbl_goaround2,
155 label_nopage_tlbl,
156 label_nopage_tlbs,
157 label_nopage_tlbm,
158 label_smp_pgtable_change,
159 label_r3000_write_probe_fail,
160 label_large_segbits_fault,
161#ifdef CONFIG_HUGETLB_PAGE
162 label_tlb_huge_update,
163#endif
164};
165
166UASM_L_LA(_second_part)
167UASM_L_LA(_leave)
168UASM_L_LA(_vmalloc)
169UASM_L_LA(_vmalloc_done)
170UASM_L_LA(_tlbw_hazard)
171UASM_L_LA(_split)
172UASM_L_LA(_tlbl_goaround1)
173UASM_L_LA(_tlbl_goaround2)
174UASM_L_LA(_nopage_tlbl)
175UASM_L_LA(_nopage_tlbs)
176UASM_L_LA(_nopage_tlbm)
177UASM_L_LA(_smp_pgtable_change)
178UASM_L_LA(_r3000_write_probe_fail)
179UASM_L_LA(_large_segbits_fault)
180#ifdef CONFIG_HUGETLB_PAGE
181UASM_L_LA(_tlb_huge_update)
182#endif
183
184/*
185 * For debug purposes.
186 */
187static inline void dump_handler(const u32 *handler, int count)
188{
189 int i;
190
191 pr_debug("\t.set push\n");
192 pr_debug("\t.set noreorder\n");
193
194 for (i = 0; i < count; i++)
195 pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
196
197 pr_debug("\t.set pop\n");
198}
199
200/* The only general purpose registers allowed in TLB handlers. */
201#define K0 26
202#define K1 27
203
204/* Some CP0 registers */
205#define C0_INDEX 0, 0
206#define C0_ENTRYLO0 2, 0
207#define C0_TCBIND 2, 2
208#define C0_ENTRYLO1 3, 0
209#define C0_CONTEXT 4, 0
210#define C0_PAGEMASK 5, 0
211#define C0_BADVADDR 8, 0
212#define C0_ENTRYHI 10, 0
213#define C0_EPC 14, 0
214#define C0_XCONTEXT 20, 0
215
216#ifdef CONFIG_64BIT
217# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
218#else
219# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
220#endif
221
222/* The worst case length of the handler is around 18 instructions for
223 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
224 * Maximum space available is 32 instructions for R3000 and 64
225 * instructions for R4000.
226 *
227 * We deliberately chose a buffer size of 128, so we won't scribble
228 * over anything important on overflow before we panic.
229 */
230static u32 tlb_handler[128] __cpuinitdata;
231
232/* simply assume worst case size for labels and relocs */
233static struct uasm_label labels[128] __cpuinitdata;
234static struct uasm_reloc relocs[128] __cpuinitdata;
235
236#ifdef CONFIG_64BIT
237static int check_for_high_segbits __cpuinitdata;
238#endif
239
240static int check_for_high_segbits __cpuinitdata;
241
242static unsigned int kscratch_used_mask __cpuinitdata;
243
244static int __cpuinit allocate_kscratch(void)
245{
246 int r;
247 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
248
249 r = ffs(a);
250
251 if (r == 0)
252 return -1;
253
254 r--; /* make it zero based */
255
256 kscratch_used_mask |= (1 << r);
257
258 return r;
259}
260
261static int scratch_reg __cpuinitdata;
262static int pgd_reg __cpuinitdata;
263enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
264
265static struct work_registers __cpuinit build_get_work_registers(u32 **p)
266{
267 struct work_registers r;
268
269 int smp_processor_id_reg;
270 int smp_processor_id_sel;
271 int smp_processor_id_shift;
272
273 if (scratch_reg > 0) {
274 /* Save in CPU local C0_KScratch? */
275 UASM_i_MTC0(p, 1, 31, scratch_reg);
276 r.r1 = K0;
277 r.r2 = K1;
278 r.r3 = 1;
279 return r;
280 }
281
282 if (num_possible_cpus() > 1) {
283#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
284 smp_processor_id_shift = 51;
285 smp_processor_id_reg = 20; /* XContext */
286 smp_processor_id_sel = 0;
287#else
288# ifdef CONFIG_32BIT
289 smp_processor_id_shift = 25;
290 smp_processor_id_reg = 4; /* Context */
291 smp_processor_id_sel = 0;
292# endif
293# ifdef CONFIG_64BIT
294 smp_processor_id_shift = 26;
295 smp_processor_id_reg = 4; /* Context */
296 smp_processor_id_sel = 0;
297# endif
298#endif
299 /* Get smp_processor_id */
300 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
301 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
302
303 /* handler_reg_save index in K0 */
304 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
305
306 UASM_i_LA(p, K1, (long)&handler_reg_save);
307 UASM_i_ADDU(p, K0, K0, K1);
308 } else {
309 UASM_i_LA(p, K0, (long)&handler_reg_save);
310 }
311 /* K0 now points to save area, save $1 and $2 */
312 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
313 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
314
315 r.r1 = K1;
316 r.r2 = 1;
317 r.r3 = 2;
318 return r;
319}
320
321static void __cpuinit build_restore_work_registers(u32 **p)
322{
323 if (scratch_reg > 0) {
324 UASM_i_MFC0(p, 1, 31, scratch_reg);
325 return;
326 }
327 /* K0 already points to save area, restore $1 and $2 */
328 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
329 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
330}
331
332#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
333
334/*
335 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
336 * we cannot do r3000 under these circumstances.
337 *
338 * Declare pgd_current here instead of including mmu_context.h to avoid type
339 * conflicts for tlbmiss_handler_setup_pgd
340 */
341extern unsigned long pgd_current[];
342
343/*
344 * The R3000 TLB handler is simple.
345 */
346static void __cpuinit build_r3000_tlb_refill_handler(void)
347{
348 long pgdc = (long)pgd_current;
349 u32 *p;
350
351 memset(tlb_handler, 0, sizeof(tlb_handler));
352 p = tlb_handler;
353
354 uasm_i_mfc0(&p, K0, C0_BADVADDR);
355 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
356 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
357 uasm_i_srl(&p, K0, K0, 22); /* load delay */
358 uasm_i_sll(&p, K0, K0, 2);
359 uasm_i_addu(&p, K1, K1, K0);
360 uasm_i_mfc0(&p, K0, C0_CONTEXT);
361 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
362 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
363 uasm_i_addu(&p, K1, K1, K0);
364 uasm_i_lw(&p, K0, 0, K1);
365 uasm_i_nop(&p); /* load delay */
366 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
367 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
368 uasm_i_tlbwr(&p); /* cp0 delay */
369 uasm_i_jr(&p, K1);
370 uasm_i_rfe(&p); /* branch delay */
371
372 if (p > tlb_handler + 32)
373 panic("TLB refill handler space exceeded");
374
375 pr_debug("Wrote TLB refill handler (%u instructions).\n",
376 (unsigned int)(p - tlb_handler));
377
378 memcpy((void *)ebase, tlb_handler, 0x80);
379
380 dump_handler((u32 *)ebase, 32);
381}
382#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
383
384/*
385 * The R4000 TLB handler is much more complicated. We have two
386 * consecutive handler areas with 32 instructions space each.
387 * Since they aren't used at the same time, we can overflow in the
388 * other one.To keep things simple, we first assume linear space,
389 * then we relocate it to the final handler layout as needed.
390 */
391static u32 final_handler[64] __cpuinitdata;
392
393/*
394 * Hazards
395 *
396 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
397 * 2. A timing hazard exists for the TLBP instruction.
398 *
399 * stalling_instruction
400 * TLBP
401 *
402 * The JTLB is being read for the TLBP throughout the stall generated by the
403 * previous instruction. This is not really correct as the stalling instruction
404 * can modify the address used to access the JTLB. The failure symptom is that
405 * the TLBP instruction will use an address created for the stalling instruction
406 * and not the address held in C0_ENHI and thus report the wrong results.
407 *
408 * The software work-around is to not allow the instruction preceding the TLBP
409 * to stall - make it an NOP or some other instruction guaranteed not to stall.
410 *
411 * Errata 2 will not be fixed. This errata is also on the R5000.
412 *
413 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
414 */
415static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
416{
417 switch (current_cpu_type()) {
418 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
419 case CPU_R4600:
420 case CPU_R4700:
421 case CPU_R5000:
422 case CPU_R5000A:
423 case CPU_NEVADA:
424 uasm_i_nop(p);
425 uasm_i_tlbp(p);
426 break;
427
428 default:
429 uasm_i_tlbp(p);
430 break;
431 }
432}
433
434/*
435 * Write random or indexed TLB entry, and care about the hazards from
436 * the preceding mtc0 and for the following eret.
437 */
438enum tlb_write_entry { tlb_random, tlb_indexed };
439
440static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
441 struct uasm_reloc **r,
442 enum tlb_write_entry wmode)
443{
444 void(*tlbw)(u32 **) = NULL;
445
446 switch (wmode) {
447 case tlb_random: tlbw = uasm_i_tlbwr; break;
448 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
449 }
450
451 if (cpu_has_mips_r2) {
452 if (cpu_has_mips_r2_exec_hazard)
453 uasm_i_ehb(p);
454 tlbw(p);
455 return;
456 }
457
458 switch (current_cpu_type()) {
459 case CPU_R4000PC:
460 case CPU_R4000SC:
461 case CPU_R4000MC:
462 case CPU_R4400PC:
463 case CPU_R4400SC:
464 case CPU_R4400MC:
465 /*
466 * This branch uses up a mtc0 hazard nop slot and saves
467 * two nops after the tlbw instruction.
468 */
469 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
470 tlbw(p);
471 uasm_l_tlbw_hazard(l, *p);
472 uasm_i_nop(p);
473 break;
474
475 case CPU_R4600:
476 case CPU_R4700:
477 case CPU_R5000:
478 case CPU_R5000A:
479 uasm_i_nop(p);
480 tlbw(p);
481 uasm_i_nop(p);
482 break;
483
484 case CPU_R4300:
485 case CPU_5KC:
486 case CPU_TX49XX:
487 case CPU_PR4450:
488 case CPU_XLR:
489 uasm_i_nop(p);
490 tlbw(p);
491 break;
492
493 case CPU_R10000:
494 case CPU_R12000:
495 case CPU_R14000:
496 case CPU_4KC:
497 case CPU_4KEC:
498 case CPU_M14KC:
499 case CPU_SB1:
500 case CPU_SB1A:
501 case CPU_4KSC:
502 case CPU_20KC:
503 case CPU_25KF:
504 case CPU_BMIPS32:
505 case CPU_BMIPS3300:
506 case CPU_BMIPS4350:
507 case CPU_BMIPS4380:
508 case CPU_BMIPS5000:
509 case CPU_LOONGSON2:
510 case CPU_R5500:
511 if (m4kc_tlbp_war())
512 uasm_i_nop(p);
513 case CPU_ALCHEMY:
514 tlbw(p);
515 break;
516
517 case CPU_NEVADA:
518 uasm_i_nop(p); /* QED specifies 2 nops hazard */
519 /*
520 * This branch uses up a mtc0 hazard nop slot and saves
521 * a nop after the tlbw instruction.
522 */
523 uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
524 tlbw(p);
525 uasm_l_tlbw_hazard(l, *p);
526 break;
527
528 case CPU_RM7000:
529 uasm_i_nop(p);
530 uasm_i_nop(p);
531 uasm_i_nop(p);
532 uasm_i_nop(p);
533 tlbw(p);
534 break;
535
536 case CPU_RM9000:
537 /*
538 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
539 * use of the JTLB for instructions should not occur for 4
540 * cpu cycles and use for data translations should not occur
541 * for 3 cpu cycles.
542 */
543 uasm_i_ssnop(p);
544 uasm_i_ssnop(p);
545 uasm_i_ssnop(p);
546 uasm_i_ssnop(p);
547 tlbw(p);
548 uasm_i_ssnop(p);
549 uasm_i_ssnop(p);
550 uasm_i_ssnop(p);
551 uasm_i_ssnop(p);
552 break;
553
554 case CPU_VR4111:
555 case CPU_VR4121:
556 case CPU_VR4122:
557 case CPU_VR4181:
558 case CPU_VR4181A:
559 uasm_i_nop(p);
560 uasm_i_nop(p);
561 tlbw(p);
562 uasm_i_nop(p);
563 uasm_i_nop(p);
564 break;
565
566 case CPU_VR4131:
567 case CPU_VR4133:
568 case CPU_R5432:
569 uasm_i_nop(p);
570 uasm_i_nop(p);
571 tlbw(p);
572 break;
573
574 case CPU_JZRISC:
575 tlbw(p);
576 uasm_i_nop(p);
577 break;
578
579 default:
580 panic("No TLB refill handler yet (CPU type: %d)",
581 current_cpu_data.cputype);
582 break;
583 }
584}
585
586static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
587 unsigned int reg)
588{
589 if (kernel_uses_smartmips_rixi) {
590 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
591 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
592 } else {
593#ifdef CONFIG_64BIT_PHYS_ADDR
594 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
595#else
596 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
597#endif
598 }
599}
600
601#ifdef CONFIG_HUGETLB_PAGE
602
603static __cpuinit void build_restore_pagemask(u32 **p,
604 struct uasm_reloc **r,
605 unsigned int tmp,
606 enum label_id lid,
607 int restore_scratch)
608{
609 if (restore_scratch) {
610 /* Reset default page size */
611 if (PM_DEFAULT_MASK >> 16) {
612 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
613 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
614 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
615 uasm_il_b(p, r, lid);
616 } else if (PM_DEFAULT_MASK) {
617 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
618 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
619 uasm_il_b(p, r, lid);
620 } else {
621 uasm_i_mtc0(p, 0, C0_PAGEMASK);
622 uasm_il_b(p, r, lid);
623 }
624 if (scratch_reg > 0)
625 UASM_i_MFC0(p, 1, 31, scratch_reg);
626 else
627 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
628 } else {
629 /* Reset default page size */
630 if (PM_DEFAULT_MASK >> 16) {
631 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
632 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
633 uasm_il_b(p, r, lid);
634 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
635 } else if (PM_DEFAULT_MASK) {
636 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
637 uasm_il_b(p, r, lid);
638 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
639 } else {
640 uasm_il_b(p, r, lid);
641 uasm_i_mtc0(p, 0, C0_PAGEMASK);
642 }
643 }
644}
645
646static __cpuinit void build_huge_tlb_write_entry(u32 **p,
647 struct uasm_label **l,
648 struct uasm_reloc **r,
649 unsigned int tmp,
650 enum tlb_write_entry wmode,
651 int restore_scratch)
652{
653 /* Set huge page tlb entry size */
654 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
655 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
656 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
657
658 build_tlb_write_entry(p, l, r, wmode);
659
660 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
661}
662
663/*
664 * Check if Huge PTE is present, if so then jump to LABEL.
665 */
666static void __cpuinit
667build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
668 unsigned int pmd, int lid)
669{
670 UASM_i_LW(p, tmp, 0, pmd);
671 if (use_bbit_insns()) {
672 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
673 } else {
674 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
675 uasm_il_bnez(p, r, tmp, lid);
676 }
677}
678
679static __cpuinit void build_huge_update_entries(u32 **p,
680 unsigned int pte,
681 unsigned int tmp)
682{
683 int small_sequence;
684
685 /*
686 * A huge PTE describes an area the size of the
687 * configured huge page size. This is twice the
688 * of the large TLB entry size we intend to use.
689 * A TLB entry half the size of the configured
690 * huge page size is configured into entrylo0
691 * and entrylo1 to cover the contiguous huge PTE
692 * address space.
693 */
694 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
695
696 /* We can clobber tmp. It isn't used after this.*/
697 if (!small_sequence)
698 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
699
700 build_convert_pte_to_entrylo(p, pte);
701 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
702 /* convert to entrylo1 */
703 if (small_sequence)
704 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
705 else
706 UASM_i_ADDU(p, pte, pte, tmp);
707
708 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
709}
710
711static __cpuinit void build_huge_handler_tail(u32 **p,
712 struct uasm_reloc **r,
713 struct uasm_label **l,
714 unsigned int pte,
715 unsigned int ptr)
716{
717#ifdef CONFIG_SMP
718 UASM_i_SC(p, pte, 0, ptr);
719 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
720 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
721#else
722 UASM_i_SW(p, pte, 0, ptr);
723#endif
724 build_huge_update_entries(p, pte, ptr);
725 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
726}
727#endif /* CONFIG_HUGETLB_PAGE */
728
729#ifdef CONFIG_64BIT
730/*
731 * TMP and PTR are scratch.
732 * TMP will be clobbered, PTR will hold the pmd entry.
733 */
734static void __cpuinit
735build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
736 unsigned int tmp, unsigned int ptr)
737{
738#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
739 long pgdc = (long)pgd_current;
740#endif
741 /*
742 * The vmalloc handling is not in the hotpath.
743 */
744 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
745
746 if (check_for_high_segbits) {
747 /*
748 * The kernel currently implicitely assumes that the
749 * MIPS SEGBITS parameter for the processor is
750 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
751 * allocate virtual addresses outside the maximum
752 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
753 * that doesn't prevent user code from accessing the
754 * higher xuseg addresses. Here, we make sure that
755 * everything but the lower xuseg addresses goes down
756 * the module_alloc/vmalloc path.
757 */
758 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
759 uasm_il_bnez(p, r, ptr, label_vmalloc);
760 } else {
761 uasm_il_bltz(p, r, tmp, label_vmalloc);
762 }
763 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
764
765#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
766 if (pgd_reg != -1) {
767 /* pgd is in pgd_reg */
768 UASM_i_MFC0(p, ptr, 31, pgd_reg);
769 } else {
770 /*
771 * &pgd << 11 stored in CONTEXT [23..63].
772 */
773 UASM_i_MFC0(p, ptr, C0_CONTEXT);
774
775 /* Clear lower 23 bits of context. */
776 uasm_i_dins(p, ptr, 0, 0, 23);
777
778 /* 1 0 1 0 1 << 6 xkphys cached */
779 uasm_i_ori(p, ptr, ptr, 0x540);
780 uasm_i_drotr(p, ptr, ptr, 11);
781 }
782#elif defined(CONFIG_SMP)
783# ifdef CONFIG_MIPS_MT_SMTC
784 /*
785 * SMTC uses TCBind value as "CPU" index
786 */
787 uasm_i_mfc0(p, ptr, C0_TCBIND);
788 uasm_i_dsrl_safe(p, ptr, ptr, 19);
789# else
790 /*
791 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
792 * stored in CONTEXT.
793 */
794 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
795 uasm_i_dsrl_safe(p, ptr, ptr, 23);
796# endif
797 UASM_i_LA_mostly(p, tmp, pgdc);
798 uasm_i_daddu(p, ptr, ptr, tmp);
799 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
800 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
801#else
802 UASM_i_LA_mostly(p, ptr, pgdc);
803 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
804#endif
805
806 uasm_l_vmalloc_done(l, *p);
807
808 /* get pgd offset in bytes */
809 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
810
811 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
812 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
813#ifndef __PAGETABLE_PMD_FOLDED
814 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
815 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
816 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
817 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
818 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
819#endif
820}
821
822/*
823 * BVADDR is the faulting address, PTR is scratch.
824 * PTR will hold the pgd for vmalloc.
825 */
826static void __cpuinit
827build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
828 unsigned int bvaddr, unsigned int ptr,
829 enum vmalloc64_mode mode)
830{
831 long swpd = (long)swapper_pg_dir;
832 int single_insn_swpd;
833 int did_vmalloc_branch = 0;
834
835 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
836
837 uasm_l_vmalloc(l, *p);
838
839 if (mode != not_refill && check_for_high_segbits) {
840 if (single_insn_swpd) {
841 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
842 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
843 did_vmalloc_branch = 1;
844 /* fall through */
845 } else {
846 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
847 }
848 }
849 if (!did_vmalloc_branch) {
850 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
851 uasm_il_b(p, r, label_vmalloc_done);
852 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
853 } else {
854 UASM_i_LA_mostly(p, ptr, swpd);
855 uasm_il_b(p, r, label_vmalloc_done);
856 if (uasm_in_compat_space_p(swpd))
857 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
858 else
859 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
860 }
861 }
862 if (mode != not_refill && check_for_high_segbits) {
863 uasm_l_large_segbits_fault(l, *p);
864 /*
865 * We get here if we are an xsseg address, or if we are
866 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
867 *
868 * Ignoring xsseg (assume disabled so would generate
869 * (address errors?), the only remaining possibility
870 * is the upper xuseg addresses. On processors with
871 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
872 * addresses would have taken an address error. We try
873 * to mimic that here by taking a load/istream page
874 * fault.
875 */
876 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
877 uasm_i_jr(p, ptr);
878
879 if (mode == refill_scratch) {
880 if (scratch_reg > 0)
881 UASM_i_MFC0(p, 1, 31, scratch_reg);
882 else
883 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
884 } else {
885 uasm_i_nop(p);
886 }
887 }
888}
889
890#else /* !CONFIG_64BIT */
891
892/*
893 * TMP and PTR are scratch.
894 * TMP will be clobbered, PTR will hold the pgd entry.
895 */
896static void __cpuinit __maybe_unused
897build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
898{
899 long pgdc = (long)pgd_current;
900
901 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
902#ifdef CONFIG_SMP
903#ifdef CONFIG_MIPS_MT_SMTC
904 /*
905 * SMTC uses TCBind value as "CPU" index
906 */
907 uasm_i_mfc0(p, ptr, C0_TCBIND);
908 UASM_i_LA_mostly(p, tmp, pgdc);
909 uasm_i_srl(p, ptr, ptr, 19);
910#else
911 /*
912 * smp_processor_id() << 3 is stored in CONTEXT.
913 */
914 uasm_i_mfc0(p, ptr, C0_CONTEXT);
915 UASM_i_LA_mostly(p, tmp, pgdc);
916 uasm_i_srl(p, ptr, ptr, 23);
917#endif
918 uasm_i_addu(p, ptr, tmp, ptr);
919#else
920 UASM_i_LA_mostly(p, ptr, pgdc);
921#endif
922 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
923 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
924 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
925 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
926 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
927}
928
929#endif /* !CONFIG_64BIT */
930
931static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
932{
933 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
934 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
935
936 switch (current_cpu_type()) {
937 case CPU_VR41XX:
938 case CPU_VR4111:
939 case CPU_VR4121:
940 case CPU_VR4122:
941 case CPU_VR4131:
942 case CPU_VR4181:
943 case CPU_VR4181A:
944 case CPU_VR4133:
945 shift += 2;
946 break;
947
948 default:
949 break;
950 }
951
952 if (shift)
953 UASM_i_SRL(p, ctx, ctx, shift);
954 uasm_i_andi(p, ctx, ctx, mask);
955}
956
957static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
958{
959 /*
960 * Bug workaround for the Nevada. It seems as if under certain
961 * circumstances the move from cp0_context might produce a
962 * bogus result when the mfc0 instruction and its consumer are
963 * in a different cacheline or a load instruction, probably any
964 * memory reference, is between them.
965 */
966 switch (current_cpu_type()) {
967 case CPU_NEVADA:
968 UASM_i_LW(p, ptr, 0, ptr);
969 GET_CONTEXT(p, tmp); /* get context reg */
970 break;
971
972 default:
973 GET_CONTEXT(p, tmp); /* get context reg */
974 UASM_i_LW(p, ptr, 0, ptr);
975 break;
976 }
977
978 build_adjust_context(p, tmp);
979 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
980}
981
982static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
983 unsigned int ptep)
984{
985 /*
986 * 64bit address support (36bit on a 32bit CPU) in a 32bit
987 * Kernel is a special case. Only a few CPUs use it.
988 */
989#ifdef CONFIG_64BIT_PHYS_ADDR
990 if (cpu_has_64bits) {
991 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
992 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
993 if (kernel_uses_smartmips_rixi) {
994 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
995 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
996 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
997 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
998 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
999 } else {
1000 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1001 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1002 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1003 }
1004 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1005 } else {
1006 int pte_off_even = sizeof(pte_t) / 2;
1007 int pte_off_odd = pte_off_even + sizeof(pte_t);
1008
1009 /* The pte entries are pre-shifted */
1010 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1011 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1012 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1013 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1014 }
1015#else
1016 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1017 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1018 if (r45k_bvahwbug())
1019 build_tlb_probe_entry(p);
1020 if (kernel_uses_smartmips_rixi) {
1021 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
1022 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
1023 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1024 if (r4k_250MHZhwbug())
1025 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1026 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1027 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1028 } else {
1029 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1030 if (r4k_250MHZhwbug())
1031 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1032 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1033 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1034 if (r45k_bvahwbug())
1035 uasm_i_mfc0(p, tmp, C0_INDEX);
1036 }
1037 if (r4k_250MHZhwbug())
1038 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1039 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1040#endif
1041}
1042
1043struct mips_huge_tlb_info {
1044 int huge_pte;
1045 int restore_scratch;
1046};
1047
1048static struct mips_huge_tlb_info __cpuinit
1049build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1050 struct uasm_reloc **r, unsigned int tmp,
1051 unsigned int ptr, int c0_scratch)
1052{
1053 struct mips_huge_tlb_info rv;
1054 unsigned int even, odd;
1055 int vmalloc_branch_delay_filled = 0;
1056 const int scratch = 1; /* Our extra working register */
1057
1058 rv.huge_pte = scratch;
1059 rv.restore_scratch = 0;
1060
1061 if (check_for_high_segbits) {
1062 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1063
1064 if (pgd_reg != -1)
1065 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1066 else
1067 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1068
1069 if (c0_scratch >= 0)
1070 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1071 else
1072 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1073
1074 uasm_i_dsrl_safe(p, scratch, tmp,
1075 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1076 uasm_il_bnez(p, r, scratch, label_vmalloc);
1077
1078 if (pgd_reg == -1) {
1079 vmalloc_branch_delay_filled = 1;
1080 /* Clear lower 23 bits of context. */
1081 uasm_i_dins(p, ptr, 0, 0, 23);
1082 }
1083 } else {
1084 if (pgd_reg != -1)
1085 UASM_i_MFC0(p, ptr, 31, pgd_reg);
1086 else
1087 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1088
1089 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1090
1091 if (c0_scratch >= 0)
1092 UASM_i_MTC0(p, scratch, 31, c0_scratch);
1093 else
1094 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1095
1096 if (pgd_reg == -1)
1097 /* Clear lower 23 bits of context. */
1098 uasm_i_dins(p, ptr, 0, 0, 23);
1099
1100 uasm_il_bltz(p, r, tmp, label_vmalloc);
1101 }
1102
1103 if (pgd_reg == -1) {
1104 vmalloc_branch_delay_filled = 1;
1105 /* 1 0 1 0 1 << 6 xkphys cached */
1106 uasm_i_ori(p, ptr, ptr, 0x540);
1107 uasm_i_drotr(p, ptr, ptr, 11);
1108 }
1109
1110#ifdef __PAGETABLE_PMD_FOLDED
1111#define LOC_PTEP scratch
1112#else
1113#define LOC_PTEP ptr
1114#endif
1115
1116 if (!vmalloc_branch_delay_filled)
1117 /* get pgd offset in bytes */
1118 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1119
1120 uasm_l_vmalloc_done(l, *p);
1121
1122 /*
1123 * tmp ptr
1124 * fall-through case = badvaddr *pgd_current
1125 * vmalloc case = badvaddr swapper_pg_dir
1126 */
1127
1128 if (vmalloc_branch_delay_filled)
1129 /* get pgd offset in bytes */
1130 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1131
1132#ifdef __PAGETABLE_PMD_FOLDED
1133 GET_CONTEXT(p, tmp); /* get context reg */
1134#endif
1135 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1136
1137 if (use_lwx_insns()) {
1138 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1139 } else {
1140 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1141 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1142 }
1143
1144#ifndef __PAGETABLE_PMD_FOLDED
1145 /* get pmd offset in bytes */
1146 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1147 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1148 GET_CONTEXT(p, tmp); /* get context reg */
1149
1150 if (use_lwx_insns()) {
1151 UASM_i_LWX(p, scratch, scratch, ptr);
1152 } else {
1153 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1154 UASM_i_LW(p, scratch, 0, ptr);
1155 }
1156#endif
1157 /* Adjust the context during the load latency. */
1158 build_adjust_context(p, tmp);
1159
1160#ifdef CONFIG_HUGETLB_PAGE
1161 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1162 /*
1163 * The in the LWX case we don't want to do the load in the
1164 * delay slot. It cannot issue in the same cycle and may be
1165 * speculative and unneeded.
1166 */
1167 if (use_lwx_insns())
1168 uasm_i_nop(p);
1169#endif /* CONFIG_HUGETLB_PAGE */
1170
1171
1172 /* build_update_entries */
1173 if (use_lwx_insns()) {
1174 even = ptr;
1175 odd = tmp;
1176 UASM_i_LWX(p, even, scratch, tmp);
1177 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1178 UASM_i_LWX(p, odd, scratch, tmp);
1179 } else {
1180 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1181 even = tmp;
1182 odd = ptr;
1183 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1184 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1185 }
1186 if (kernel_uses_smartmips_rixi) {
1187 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_NO_EXEC));
1188 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_NO_EXEC));
1189 uasm_i_drotr(p, even, even,
1190 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1191 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1192 uasm_i_drotr(p, odd, odd,
1193 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
1194 } else {
1195 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1196 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1197 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1198 }
1199 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1200
1201 if (c0_scratch >= 0) {
1202 UASM_i_MFC0(p, scratch, 31, c0_scratch);
1203 build_tlb_write_entry(p, l, r, tlb_random);
1204 uasm_l_leave(l, *p);
1205 rv.restore_scratch = 1;
1206 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1207 build_tlb_write_entry(p, l, r, tlb_random);
1208 uasm_l_leave(l, *p);
1209 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1210 } else {
1211 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1212 build_tlb_write_entry(p, l, r, tlb_random);
1213 uasm_l_leave(l, *p);
1214 rv.restore_scratch = 1;
1215 }
1216
1217 uasm_i_eret(p); /* return from trap */
1218
1219 return rv;
1220}
1221
1222/*
1223 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1224 * because EXL == 0. If we wrap, we can also use the 32 instruction
1225 * slots before the XTLB refill exception handler which belong to the
1226 * unused TLB refill exception.
1227 */
1228#define MIPS64_REFILL_INSNS 32
1229
1230static void __cpuinit build_r4000_tlb_refill_handler(void)
1231{
1232 u32 *p = tlb_handler;
1233 struct uasm_label *l = labels;
1234 struct uasm_reloc *r = relocs;
1235 u32 *f;
1236 unsigned int final_len;
1237 struct mips_huge_tlb_info htlb_info __maybe_unused;
1238 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1239
1240 memset(tlb_handler, 0, sizeof(tlb_handler));
1241 memset(labels, 0, sizeof(labels));
1242 memset(relocs, 0, sizeof(relocs));
1243 memset(final_handler, 0, sizeof(final_handler));
1244
1245 if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1246 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1247 scratch_reg);
1248 vmalloc_mode = refill_scratch;
1249 } else {
1250 htlb_info.huge_pte = K0;
1251 htlb_info.restore_scratch = 0;
1252 vmalloc_mode = refill_noscratch;
1253 /*
1254 * create the plain linear handler
1255 */
1256 if (bcm1250_m3_war()) {
1257 unsigned int segbits = 44;
1258
1259 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1260 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1261 uasm_i_xor(&p, K0, K0, K1);
1262 uasm_i_dsrl_safe(&p, K1, K0, 62);
1263 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1264 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1265 uasm_i_or(&p, K0, K0, K1);
1266 uasm_il_bnez(&p, &r, K0, label_leave);
1267 /* No need for uasm_i_nop */
1268 }
1269
1270#ifdef CONFIG_64BIT
1271 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1272#else
1273 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1274#endif
1275
1276#ifdef CONFIG_HUGETLB_PAGE
1277 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1278#endif
1279
1280 build_get_ptep(&p, K0, K1);
1281 build_update_entries(&p, K0, K1);
1282 build_tlb_write_entry(&p, &l, &r, tlb_random);
1283 uasm_l_leave(&l, p);
1284 uasm_i_eret(&p); /* return from trap */
1285 }
1286#ifdef CONFIG_HUGETLB_PAGE
1287 uasm_l_tlb_huge_update(&l, p);
1288 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1289 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1290 htlb_info.restore_scratch);
1291#endif
1292
1293#ifdef CONFIG_64BIT
1294 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1295#endif
1296
1297 /*
1298 * Overflow check: For the 64bit handler, we need at least one
1299 * free instruction slot for the wrap-around branch. In worst
1300 * case, if the intended insertion point is a delay slot, we
1301 * need three, with the second nop'ed and the third being
1302 * unused.
1303 */
1304 /* Loongson2 ebase is different than r4k, we have more space */
1305#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1306 if ((p - tlb_handler) > 64)
1307 panic("TLB refill handler space exceeded");
1308#else
1309 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1310 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1311 && uasm_insn_has_bdelay(relocs,
1312 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1313 panic("TLB refill handler space exceeded");
1314#endif
1315
1316 /*
1317 * Now fold the handler in the TLB refill handler space.
1318 */
1319#if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1320 f = final_handler;
1321 /* Simplest case, just copy the handler. */
1322 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1323 final_len = p - tlb_handler;
1324#else /* CONFIG_64BIT */
1325 f = final_handler + MIPS64_REFILL_INSNS;
1326 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1327 /* Just copy the handler. */
1328 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1329 final_len = p - tlb_handler;
1330 } else {
1331#if defined(CONFIG_HUGETLB_PAGE)
1332 const enum label_id ls = label_tlb_huge_update;
1333#else
1334 const enum label_id ls = label_vmalloc;
1335#endif
1336 u32 *split;
1337 int ov = 0;
1338 int i;
1339
1340 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1341 ;
1342 BUG_ON(i == ARRAY_SIZE(labels));
1343 split = labels[i].addr;
1344
1345 /*
1346 * See if we have overflown one way or the other.
1347 */
1348 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1349 split < p - MIPS64_REFILL_INSNS)
1350 ov = 1;
1351
1352 if (ov) {
1353 /*
1354 * Split two instructions before the end. One
1355 * for the branch and one for the instruction
1356 * in the delay slot.
1357 */
1358 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1359
1360 /*
1361 * If the branch would fall in a delay slot,
1362 * we must back up an additional instruction
1363 * so that it is no longer in a delay slot.
1364 */
1365 if (uasm_insn_has_bdelay(relocs, split - 1))
1366 split--;
1367 }
1368 /* Copy first part of the handler. */
1369 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1370 f += split - tlb_handler;
1371
1372 if (ov) {
1373 /* Insert branch. */
1374 uasm_l_split(&l, final_handler);
1375 uasm_il_b(&f, &r, label_split);
1376 if (uasm_insn_has_bdelay(relocs, split))
1377 uasm_i_nop(&f);
1378 else {
1379 uasm_copy_handler(relocs, labels,
1380 split, split + 1, f);
1381 uasm_move_labels(labels, f, f + 1, -1);
1382 f++;
1383 split++;
1384 }
1385 }
1386
1387 /* Copy the rest of the handler. */
1388 uasm_copy_handler(relocs, labels, split, p, final_handler);
1389 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1390 (p - split);
1391 }
1392#endif /* CONFIG_64BIT */
1393
1394 uasm_resolve_relocs(relocs, labels);
1395 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1396 final_len);
1397
1398 memcpy((void *)ebase, final_handler, 0x100);
1399
1400 dump_handler((u32 *)ebase, 64);
1401}
1402
1403/*
1404 * 128 instructions for the fastpath handler is generous and should
1405 * never be exceeded.
1406 */
1407#define FASTPATH_SIZE 128
1408
1409u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1410u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1411u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1412#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1413u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1414
1415static void __cpuinit build_r4000_setup_pgd(void)
1416{
1417 const int a0 = 4;
1418 const int a1 = 5;
1419 u32 *p = tlbmiss_handler_setup_pgd;
1420 struct uasm_label *l = labels;
1421 struct uasm_reloc *r = relocs;
1422
1423 memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
1424 memset(labels, 0, sizeof(labels));
1425 memset(relocs, 0, sizeof(relocs));
1426
1427 pgd_reg = allocate_kscratch();
1428
1429 if (pgd_reg == -1) {
1430 /* PGD << 11 in c0_Context */
1431 /*
1432 * If it is a ckseg0 address, convert to a physical
1433 * address. Shifting right by 29 and adding 4 will
1434 * result in zero for these addresses.
1435 *
1436 */
1437 UASM_i_SRA(&p, a1, a0, 29);
1438 UASM_i_ADDIU(&p, a1, a1, 4);
1439 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1440 uasm_i_nop(&p);
1441 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1442 uasm_l_tlbl_goaround1(&l, p);
1443 UASM_i_SLL(&p, a0, a0, 11);
1444 uasm_i_jr(&p, 31);
1445 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1446 } else {
1447 /* PGD in c0_KScratch */
1448 uasm_i_jr(&p, 31);
1449 UASM_i_MTC0(&p, a0, 31, pgd_reg);
1450 }
1451 if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
1452 panic("tlbmiss_handler_setup_pgd space exceeded");
1453 uasm_resolve_relocs(relocs, labels);
1454 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1455 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1456
1457 dump_handler(tlbmiss_handler_setup_pgd,
1458 ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1459}
1460#endif
1461
1462static void __cpuinit
1463iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1464{
1465#ifdef CONFIG_SMP
1466# ifdef CONFIG_64BIT_PHYS_ADDR
1467 if (cpu_has_64bits)
1468 uasm_i_lld(p, pte, 0, ptr);
1469 else
1470# endif
1471 UASM_i_LL(p, pte, 0, ptr);
1472#else
1473# ifdef CONFIG_64BIT_PHYS_ADDR
1474 if (cpu_has_64bits)
1475 uasm_i_ld(p, pte, 0, ptr);
1476 else
1477# endif
1478 UASM_i_LW(p, pte, 0, ptr);
1479#endif
1480}
1481
1482static void __cpuinit
1483iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1484 unsigned int mode)
1485{
1486#ifdef CONFIG_64BIT_PHYS_ADDR
1487 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1488#endif
1489
1490 uasm_i_ori(p, pte, pte, mode);
1491#ifdef CONFIG_SMP
1492# ifdef CONFIG_64BIT_PHYS_ADDR
1493 if (cpu_has_64bits)
1494 uasm_i_scd(p, pte, 0, ptr);
1495 else
1496# endif
1497 UASM_i_SC(p, pte, 0, ptr);
1498
1499 if (r10000_llsc_war())
1500 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1501 else
1502 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1503
1504# ifdef CONFIG_64BIT_PHYS_ADDR
1505 if (!cpu_has_64bits) {
1506 /* no uasm_i_nop needed */
1507 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1508 uasm_i_ori(p, pte, pte, hwmode);
1509 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1510 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1511 /* no uasm_i_nop needed */
1512 uasm_i_lw(p, pte, 0, ptr);
1513 } else
1514 uasm_i_nop(p);
1515# else
1516 uasm_i_nop(p);
1517# endif
1518#else
1519# ifdef CONFIG_64BIT_PHYS_ADDR
1520 if (cpu_has_64bits)
1521 uasm_i_sd(p, pte, 0, ptr);
1522 else
1523# endif
1524 UASM_i_SW(p, pte, 0, ptr);
1525
1526# ifdef CONFIG_64BIT_PHYS_ADDR
1527 if (!cpu_has_64bits) {
1528 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1529 uasm_i_ori(p, pte, pte, hwmode);
1530 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1531 uasm_i_lw(p, pte, 0, ptr);
1532 }
1533# endif
1534#endif
1535}
1536
1537/*
1538 * Check if PTE is present, if not then jump to LABEL. PTR points to
1539 * the page table where this PTE is located, PTE will be re-loaded
1540 * with it's original value.
1541 */
1542static void __cpuinit
1543build_pte_present(u32 **p, struct uasm_reloc **r,
1544 int pte, int ptr, int scratch, enum label_id lid)
1545{
1546 int t = scratch >= 0 ? scratch : pte;
1547
1548 if (kernel_uses_smartmips_rixi) {
1549 if (use_bbit_insns()) {
1550 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1551 uasm_i_nop(p);
1552 } else {
1553 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1554 uasm_il_beqz(p, r, t, lid);
1555 if (pte == t)
1556 /* You lose the SMP race :-(*/
1557 iPTE_LW(p, pte, ptr);
1558 }
1559 } else {
1560 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1561 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1562 uasm_il_bnez(p, r, t, lid);
1563 if (pte == t)
1564 /* You lose the SMP race :-(*/
1565 iPTE_LW(p, pte, ptr);
1566 }
1567}
1568
1569/* Make PTE valid, store result in PTR. */
1570static void __cpuinit
1571build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1572 unsigned int ptr)
1573{
1574 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1575
1576 iPTE_SW(p, r, pte, ptr, mode);
1577}
1578
1579/*
1580 * Check if PTE can be written to, if not branch to LABEL. Regardless
1581 * restore PTE with value from PTR when done.
1582 */
1583static void __cpuinit
1584build_pte_writable(u32 **p, struct uasm_reloc **r,
1585 unsigned int pte, unsigned int ptr, int scratch,
1586 enum label_id lid)
1587{
1588 int t = scratch >= 0 ? scratch : pte;
1589
1590 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1591 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1592 uasm_il_bnez(p, r, t, lid);
1593 if (pte == t)
1594 /* You lose the SMP race :-(*/
1595 iPTE_LW(p, pte, ptr);
1596 else
1597 uasm_i_nop(p);
1598}
1599
1600/* Make PTE writable, update software status bits as well, then store
1601 * at PTR.
1602 */
1603static void __cpuinit
1604build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1605 unsigned int ptr)
1606{
1607 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1608 | _PAGE_DIRTY);
1609
1610 iPTE_SW(p, r, pte, ptr, mode);
1611}
1612
1613/*
1614 * Check if PTE can be modified, if not branch to LABEL. Regardless
1615 * restore PTE with value from PTR when done.
1616 */
1617static void __cpuinit
1618build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1619 unsigned int pte, unsigned int ptr, int scratch,
1620 enum label_id lid)
1621{
1622 if (use_bbit_insns()) {
1623 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1624 uasm_i_nop(p);
1625 } else {
1626 int t = scratch >= 0 ? scratch : pte;
1627 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1628 uasm_il_beqz(p, r, t, lid);
1629 if (pte == t)
1630 /* You lose the SMP race :-(*/
1631 iPTE_LW(p, pte, ptr);
1632 }
1633}
1634
1635#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1636
1637
1638/*
1639 * R3000 style TLB load/store/modify handlers.
1640 */
1641
1642/*
1643 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1644 * Then it returns.
1645 */
1646static void __cpuinit
1647build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1648{
1649 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1650 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1651 uasm_i_tlbwi(p);
1652 uasm_i_jr(p, tmp);
1653 uasm_i_rfe(p); /* branch delay */
1654}
1655
1656/*
1657 * This places the pte into ENTRYLO0 and writes it with tlbwi
1658 * or tlbwr as appropriate. This is because the index register
1659 * may have the probe fail bit set as a result of a trap on a
1660 * kseg2 access, i.e. without refill. Then it returns.
1661 */
1662static void __cpuinit
1663build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1664 struct uasm_reloc **r, unsigned int pte,
1665 unsigned int tmp)
1666{
1667 uasm_i_mfc0(p, tmp, C0_INDEX);
1668 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1669 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1670 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1671 uasm_i_tlbwi(p); /* cp0 delay */
1672 uasm_i_jr(p, tmp);
1673 uasm_i_rfe(p); /* branch delay */
1674 uasm_l_r3000_write_probe_fail(l, *p);
1675 uasm_i_tlbwr(p); /* cp0 delay */
1676 uasm_i_jr(p, tmp);
1677 uasm_i_rfe(p); /* branch delay */
1678}
1679
1680static void __cpuinit
1681build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1682 unsigned int ptr)
1683{
1684 long pgdc = (long)pgd_current;
1685
1686 uasm_i_mfc0(p, pte, C0_BADVADDR);
1687 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1688 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1689 uasm_i_srl(p, pte, pte, 22); /* load delay */
1690 uasm_i_sll(p, pte, pte, 2);
1691 uasm_i_addu(p, ptr, ptr, pte);
1692 uasm_i_mfc0(p, pte, C0_CONTEXT);
1693 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1694 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1695 uasm_i_addu(p, ptr, ptr, pte);
1696 uasm_i_lw(p, pte, 0, ptr);
1697 uasm_i_tlbp(p); /* load delay */
1698}
1699
1700static void __cpuinit build_r3000_tlb_load_handler(void)
1701{
1702 u32 *p = handle_tlbl;
1703 struct uasm_label *l = labels;
1704 struct uasm_reloc *r = relocs;
1705
1706 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1707 memset(labels, 0, sizeof(labels));
1708 memset(relocs, 0, sizeof(relocs));
1709
1710 build_r3000_tlbchange_handler_head(&p, K0, K1);
1711 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1712 uasm_i_nop(&p); /* load delay */
1713 build_make_valid(&p, &r, K0, K1);
1714 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1715
1716 uasm_l_nopage_tlbl(&l, p);
1717 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1718 uasm_i_nop(&p);
1719
1720 if ((p - handle_tlbl) > FASTPATH_SIZE)
1721 panic("TLB load handler fastpath space exceeded");
1722
1723 uasm_resolve_relocs(relocs, labels);
1724 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1725 (unsigned int)(p - handle_tlbl));
1726
1727 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1728}
1729
1730static void __cpuinit build_r3000_tlb_store_handler(void)
1731{
1732 u32 *p = handle_tlbs;
1733 struct uasm_label *l = labels;
1734 struct uasm_reloc *r = relocs;
1735
1736 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1737 memset(labels, 0, sizeof(labels));
1738 memset(relocs, 0, sizeof(relocs));
1739
1740 build_r3000_tlbchange_handler_head(&p, K0, K1);
1741 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1742 uasm_i_nop(&p); /* load delay */
1743 build_make_write(&p, &r, K0, K1);
1744 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1745
1746 uasm_l_nopage_tlbs(&l, p);
1747 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1748 uasm_i_nop(&p);
1749
1750 if ((p - handle_tlbs) > FASTPATH_SIZE)
1751 panic("TLB store handler fastpath space exceeded");
1752
1753 uasm_resolve_relocs(relocs, labels);
1754 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1755 (unsigned int)(p - handle_tlbs));
1756
1757 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
1758}
1759
1760static void __cpuinit build_r3000_tlb_modify_handler(void)
1761{
1762 u32 *p = handle_tlbm;
1763 struct uasm_label *l = labels;
1764 struct uasm_reloc *r = relocs;
1765
1766 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1767 memset(labels, 0, sizeof(labels));
1768 memset(relocs, 0, sizeof(relocs));
1769
1770 build_r3000_tlbchange_handler_head(&p, K0, K1);
1771 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1772 uasm_i_nop(&p); /* load delay */
1773 build_make_write(&p, &r, K0, K1);
1774 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1775
1776 uasm_l_nopage_tlbm(&l, p);
1777 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1778 uasm_i_nop(&p);
1779
1780 if ((p - handle_tlbm) > FASTPATH_SIZE)
1781 panic("TLB modify handler fastpath space exceeded");
1782
1783 uasm_resolve_relocs(relocs, labels);
1784 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1785 (unsigned int)(p - handle_tlbm));
1786
1787 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
1788}
1789#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1790
1791/*
1792 * R4000 style TLB load/store/modify handlers.
1793 */
1794static struct work_registers __cpuinit
1795build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1796 struct uasm_reloc **r)
1797{
1798 struct work_registers wr = build_get_work_registers(p);
1799
1800#ifdef CONFIG_64BIT
1801 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1802#else
1803 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1804#endif
1805
1806#ifdef CONFIG_HUGETLB_PAGE
1807 /*
1808 * For huge tlb entries, pmd doesn't contain an address but
1809 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1810 * see if we need to jump to huge tlb processing.
1811 */
1812 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1813#endif
1814
1815 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1816 UASM_i_LW(p, wr.r2, 0, wr.r2);
1817 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1818 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1819 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1820
1821#ifdef CONFIG_SMP
1822 uasm_l_smp_pgtable_change(l, *p);
1823#endif
1824 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1825 if (!m4kc_tlbp_war())
1826 build_tlb_probe_entry(p);
1827 return wr;
1828}
1829
1830static void __cpuinit
1831build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1832 struct uasm_reloc **r, unsigned int tmp,
1833 unsigned int ptr)
1834{
1835 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1836 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1837 build_update_entries(p, tmp, ptr);
1838 build_tlb_write_entry(p, l, r, tlb_indexed);
1839 uasm_l_leave(l, *p);
1840 build_restore_work_registers(p);
1841 uasm_i_eret(p); /* return from trap */
1842
1843#ifdef CONFIG_64BIT
1844 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1845#endif
1846}
1847
1848static void __cpuinit build_r4000_tlb_load_handler(void)
1849{
1850 u32 *p = handle_tlbl;
1851 struct uasm_label *l = labels;
1852 struct uasm_reloc *r = relocs;
1853 struct work_registers wr;
1854
1855 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1856 memset(labels, 0, sizeof(labels));
1857 memset(relocs, 0, sizeof(relocs));
1858
1859 if (bcm1250_m3_war()) {
1860 unsigned int segbits = 44;
1861
1862 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1863 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1864 uasm_i_xor(&p, K0, K0, K1);
1865 uasm_i_dsrl_safe(&p, K1, K0, 62);
1866 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1867 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1868 uasm_i_or(&p, K0, K0, K1);
1869 uasm_il_bnez(&p, &r, K0, label_leave);
1870 /* No need for uasm_i_nop */
1871 }
1872
1873 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1874 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1875 if (m4kc_tlbp_war())
1876 build_tlb_probe_entry(&p);
1877
1878 if (kernel_uses_smartmips_rixi) {
1879 /*
1880 * If the page is not _PAGE_VALID, RI or XI could not
1881 * have triggered it. Skip the expensive test..
1882 */
1883 if (use_bbit_insns()) {
1884 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1885 label_tlbl_goaround1);
1886 } else {
1887 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1888 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1889 }
1890 uasm_i_nop(&p);
1891
1892 uasm_i_tlbr(&p);
1893 /* Examine entrylo 0 or 1 based on ptr. */
1894 if (use_bbit_insns()) {
1895 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1896 } else {
1897 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1898 uasm_i_beqz(&p, wr.r3, 8);
1899 }
1900 /* load it in the delay slot*/
1901 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1902 /* load it if ptr is odd */
1903 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1904 /*
1905 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1906 * XI must have triggered it.
1907 */
1908 if (use_bbit_insns()) {
1909 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1910 uasm_i_nop(&p);
1911 uasm_l_tlbl_goaround1(&l, p);
1912 } else {
1913 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1914 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1915 uasm_i_nop(&p);
1916 }
1917 uasm_l_tlbl_goaround1(&l, p);
1918 }
1919 build_make_valid(&p, &r, wr.r1, wr.r2);
1920 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1921
1922#ifdef CONFIG_HUGETLB_PAGE
1923 /*
1924 * This is the entry point when build_r4000_tlbchange_handler_head
1925 * spots a huge page.
1926 */
1927 uasm_l_tlb_huge_update(&l, p);
1928 iPTE_LW(&p, wr.r1, wr.r2);
1929 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1930 build_tlb_probe_entry(&p);
1931
1932 if (kernel_uses_smartmips_rixi) {
1933 /*
1934 * If the page is not _PAGE_VALID, RI or XI could not
1935 * have triggered it. Skip the expensive test..
1936 */
1937 if (use_bbit_insns()) {
1938 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1939 label_tlbl_goaround2);
1940 } else {
1941 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1942 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1943 }
1944 uasm_i_nop(&p);
1945
1946 uasm_i_tlbr(&p);
1947 /* Examine entrylo 0 or 1 based on ptr. */
1948 if (use_bbit_insns()) {
1949 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1950 } else {
1951 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1952 uasm_i_beqz(&p, wr.r3, 8);
1953 }
1954 /* load it in the delay slot*/
1955 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1956 /* load it if ptr is odd */
1957 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1958 /*
1959 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1960 * XI must have triggered it.
1961 */
1962 if (use_bbit_insns()) {
1963 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
1964 } else {
1965 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1966 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
1967 }
1968 if (PM_DEFAULT_MASK == 0)
1969 uasm_i_nop(&p);
1970 /*
1971 * We clobbered C0_PAGEMASK, restore it. On the other branch
1972 * it is restored in build_huge_tlb_write_entry.
1973 */
1974 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
1975
1976 uasm_l_tlbl_goaround2(&l, p);
1977 }
1978 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
1979 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
1980#endif
1981
1982 uasm_l_nopage_tlbl(&l, p);
1983 build_restore_work_registers(&p);
1984 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1985 uasm_i_nop(&p);
1986
1987 if ((p - handle_tlbl) > FASTPATH_SIZE)
1988 panic("TLB load handler fastpath space exceeded");
1989
1990 uasm_resolve_relocs(relocs, labels);
1991 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1992 (unsigned int)(p - handle_tlbl));
1993
1994 dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
1995}
1996
1997static void __cpuinit build_r4000_tlb_store_handler(void)
1998{
1999 u32 *p = handle_tlbs;
2000 struct uasm_label *l = labels;
2001 struct uasm_reloc *r = relocs;
2002 struct work_registers wr;
2003
2004 memset(handle_tlbs, 0, sizeof(handle_tlbs));
2005 memset(labels, 0, sizeof(labels));
2006 memset(relocs, 0, sizeof(relocs));
2007
2008 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2009 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2010 if (m4kc_tlbp_war())
2011 build_tlb_probe_entry(&p);
2012 build_make_write(&p, &r, wr.r1, wr.r2);
2013 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2014
2015#ifdef CONFIG_HUGETLB_PAGE
2016 /*
2017 * This is the entry point when
2018 * build_r4000_tlbchange_handler_head spots a huge page.
2019 */
2020 uasm_l_tlb_huge_update(&l, p);
2021 iPTE_LW(&p, wr.r1, wr.r2);
2022 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2023 build_tlb_probe_entry(&p);
2024 uasm_i_ori(&p, wr.r1, wr.r1,
2025 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2026 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2027#endif
2028
2029 uasm_l_nopage_tlbs(&l, p);
2030 build_restore_work_registers(&p);
2031 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2032 uasm_i_nop(&p);
2033
2034 if ((p - handle_tlbs) > FASTPATH_SIZE)
2035 panic("TLB store handler fastpath space exceeded");
2036
2037 uasm_resolve_relocs(relocs, labels);
2038 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2039 (unsigned int)(p - handle_tlbs));
2040
2041 dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
2042}
2043
2044static void __cpuinit build_r4000_tlb_modify_handler(void)
2045{
2046 u32 *p = handle_tlbm;
2047 struct uasm_label *l = labels;
2048 struct uasm_reloc *r = relocs;
2049 struct work_registers wr;
2050
2051 memset(handle_tlbm, 0, sizeof(handle_tlbm));
2052 memset(labels, 0, sizeof(labels));
2053 memset(relocs, 0, sizeof(relocs));
2054
2055 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2056 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2057 if (m4kc_tlbp_war())
2058 build_tlb_probe_entry(&p);
2059 /* Present and writable bits set, set accessed and dirty bits. */
2060 build_make_write(&p, &r, wr.r1, wr.r2);
2061 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2062
2063#ifdef CONFIG_HUGETLB_PAGE
2064 /*
2065 * This is the entry point when
2066 * build_r4000_tlbchange_handler_head spots a huge page.
2067 */
2068 uasm_l_tlb_huge_update(&l, p);
2069 iPTE_LW(&p, wr.r1, wr.r2);
2070 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2071 build_tlb_probe_entry(&p);
2072 uasm_i_ori(&p, wr.r1, wr.r1,
2073 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2074 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2075#endif
2076
2077 uasm_l_nopage_tlbm(&l, p);
2078 build_restore_work_registers(&p);
2079 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2080 uasm_i_nop(&p);
2081
2082 if ((p - handle_tlbm) > FASTPATH_SIZE)
2083 panic("TLB modify handler fastpath space exceeded");
2084
2085 uasm_resolve_relocs(relocs, labels);
2086 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2087 (unsigned int)(p - handle_tlbm));
2088
2089 dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
2090}
2091
2092void __cpuinit build_tlb_refill_handler(void)
2093{
2094 /*
2095 * The refill handler is generated per-CPU, multi-node systems
2096 * may have local storage for it. The other handlers are only
2097 * needed once.
2098 */
2099 static int run_once = 0;
2100
2101#ifdef CONFIG_64BIT
2102 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2103#endif
2104
2105 switch (current_cpu_type()) {
2106 case CPU_R2000:
2107 case CPU_R3000:
2108 case CPU_R3000A:
2109 case CPU_R3081E:
2110 case CPU_TX3912:
2111 case CPU_TX3922:
2112 case CPU_TX3927:
2113#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2114 build_r3000_tlb_refill_handler();
2115 if (!run_once) {
2116 build_r3000_tlb_load_handler();
2117 build_r3000_tlb_store_handler();
2118 build_r3000_tlb_modify_handler();
2119 run_once++;
2120 }
2121#else
2122 panic("No R3000 TLB refill handler");
2123#endif
2124 break;
2125
2126 case CPU_R6000:
2127 case CPU_R6000A:
2128 panic("No R6000 TLB refill handler yet");
2129 break;
2130
2131 case CPU_R8000:
2132 panic("No R8000 TLB refill handler yet");
2133 break;
2134
2135 default:
2136 if (!run_once) {
2137 scratch_reg = allocate_kscratch();
2138#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2139 build_r4000_setup_pgd();
2140#endif
2141 build_r4000_tlb_load_handler();
2142 build_r4000_tlb_store_handler();
2143 build_r4000_tlb_modify_handler();
2144 run_once++;
2145 }
2146 build_r4000_tlb_refill_handler();
2147 }
2148}
2149
2150void __cpuinit flush_tlb_handlers(void)
2151{
2152 local_flush_icache_range((unsigned long)handle_tlbl,
2153 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2154 local_flush_icache_range((unsigned long)handle_tlbs,
2155 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2156 local_flush_icache_range((unsigned long)handle_tlbm,
2157 (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2158#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2159 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2160 (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2161#endif
2162}