Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100#include <asm/system.h>
 101
 102#include <linux/kbd_kern.h>
 103#include <linux/vt_kern.h>
 104#include <linux/selection.h>
 105
 106#include <linux/kmod.h>
 107#include <linux/nsproxy.h>
 108
 109#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 110
 111#define TTY_PARANOIA_CHECK 1
 112#define CHECK_TTY_COUNT 1
 113
 114struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 115	.c_iflag = ICRNL | IXON,
 116	.c_oflag = OPOST | ONLCR,
 117	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 118	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 119		   ECHOCTL | ECHOKE | IEXTEN,
 120	.c_cc = INIT_C_CC,
 121	.c_ispeed = 38400,
 122	.c_ospeed = 38400
 
 123};
 124
 125EXPORT_SYMBOL(tty_std_termios);
 126
 127/* This list gets poked at by procfs and various bits of boot up code. This
 128   could do with some rationalisation such as pulling the tty proc function
 129   into this file */
 130
 131LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 132
 133/* Mutex to protect creating and releasing a tty. This is shared with
 134   vt.c for deeply disgusting hack reasons */
 135DEFINE_MUTEX(tty_mutex);
 136EXPORT_SYMBOL(tty_mutex);
 137
 138/* Spinlock to protect the tty->tty_files list */
 139DEFINE_SPINLOCK(tty_files_lock);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 159
 160/**
 161 *	alloc_tty_struct	-	allocate a tty object
 162 *
 163 *	Return a new empty tty structure. The data fields have not
 164 *	been initialized in any way but has been zeroed
 165 *
 166 *	Locking: none
 167 */
 168
 169struct tty_struct *alloc_tty_struct(void)
 170{
 171	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 172}
 173
 174/**
 175 *	free_tty_struct		-	free a disused tty
 176 *	@tty: tty struct to free
 177 *
 178 *	Free the write buffers, tty queue and tty memory itself.
 179 *
 180 *	Locking: none. Must be called after tty is definitely unused
 181 */
 182
 183void free_tty_struct(struct tty_struct *tty)
 184{
 185	if (tty->dev)
 186		put_device(tty->dev);
 187	kfree(tty->write_buf);
 188	tty_buffer_free_all(tty);
 189	kfree(tty);
 190}
 191
 192static inline struct tty_struct *file_tty(struct file *file)
 193{
 194	return ((struct tty_file_private *)file->private_data)->tty;
 195}
 196
 197/* Associate a new file with the tty structure */
 198int tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv;
 201
 202	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203	if (!priv)
 204		return -ENOMEM;
 205
 
 
 
 
 
 
 
 
 
 
 206	priv->tty = tty;
 207	priv->file = file;
 208	file->private_data = priv;
 209
 210	spin_lock(&tty_files_lock);
 211	list_add(&priv->list, &tty->tty_files);
 212	spin_unlock(&tty_files_lock);
 
 213
 214	return 0;
 
 
 
 
 
 
 
 
 
 
 
 215}
 216
 217/* Delete file from its tty */
 218void tty_del_file(struct file *file)
 219{
 220	struct tty_file_private *priv = file->private_data;
 
 221
 222	spin_lock(&tty_files_lock);
 223	list_del(&priv->list);
 224	spin_unlock(&tty_files_lock);
 225	file->private_data = NULL;
 226	kfree(priv);
 227}
 228
 229
 230#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 231
 232/**
 233 *	tty_name	-	return tty naming
 234 *	@tty: tty structure
 235 *	@buf: buffer for output
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243char *tty_name(struct tty_struct *tty, char *buf)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		strcpy(buf, "NULL tty");
 247	else
 248		strcpy(buf, tty->name);
 249	return buf;
 250}
 251
 252EXPORT_SYMBOL(tty_name);
 253
 254int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 
 
 
 
 
 
 
 255			      const char *routine)
 256{
 257#ifdef TTY_PARANOIA_CHECK
 258	if (!tty) {
 259		printk(KERN_WARNING
 260			"null TTY for (%d:%d) in %s\n",
 261			imajor(inode), iminor(inode), routine);
 262		return 1;
 263	}
 264	if (tty->magic != TTY_MAGIC) {
 265		printk(KERN_WARNING
 266			"bad magic number for tty struct (%d:%d) in %s\n",
 267			imajor(inode), iminor(inode), routine);
 268		return 1;
 269	}
 270#endif
 271	return 0;
 272}
 273
 
 274static int check_tty_count(struct tty_struct *tty, const char *routine)
 275{
 276#ifdef CHECK_TTY_COUNT
 277	struct list_head *p;
 278	int count = 0;
 279
 280	spin_lock(&tty_files_lock);
 281	list_for_each(p, &tty->tty_files) {
 282		count++;
 283	}
 284	spin_unlock(&tty_files_lock);
 285	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 286	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 287	    tty->link && tty->link->count)
 288		count++;
 289	if (tty->count != count) {
 290		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 291				    "!= #fd's(%d) in %s\n",
 292		       tty->name, tty->count, count, routine);
 293		return count;
 294	}
 295#endif
 296	return 0;
 297}
 298
 299/**
 300 *	get_tty_driver		-	find device of a tty
 301 *	@dev_t: device identifier
 302 *	@index: returns the index of the tty
 303 *
 304 *	This routine returns a tty driver structure, given a device number
 305 *	and also passes back the index number.
 306 *
 307 *	Locking: caller must hold tty_mutex
 308 */
 309
 310static struct tty_driver *get_tty_driver(dev_t device, int *index)
 311{
 312	struct tty_driver *p;
 313
 314	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 315		dev_t base = MKDEV(p->major, p->minor_start);
 316		if (device < base || device >= base + p->num)
 317			continue;
 318		*index = device - base;
 319		return tty_driver_kref_get(p);
 320	}
 321	return NULL;
 322}
 323
 324#ifdef CONFIG_CONSOLE_POLL
 325
 326/**
 327 *	tty_find_polling_driver	-	find device of a polled tty
 328 *	@name: name string to match
 329 *	@line: pointer to resulting tty line nr
 330 *
 331 *	This routine returns a tty driver structure, given a name
 332 *	and the condition that the tty driver is capable of polled
 333 *	operation.
 334 */
 335struct tty_driver *tty_find_polling_driver(char *name, int *line)
 336{
 337	struct tty_driver *p, *res = NULL;
 338	int tty_line = 0;
 339	int len;
 340	char *str, *stp;
 341
 342	for (str = name; *str; str++)
 343		if ((*str >= '0' && *str <= '9') || *str == ',')
 344			break;
 345	if (!*str)
 346		return NULL;
 347
 348	len = str - name;
 349	tty_line = simple_strtoul(str, &str, 10);
 350
 351	mutex_lock(&tty_mutex);
 352	/* Search through the tty devices to look for a match */
 353	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 354		if (strncmp(name, p->name, len) != 0)
 355			continue;
 356		stp = str;
 357		if (*stp == ',')
 358			stp++;
 359		if (*stp == '\0')
 360			stp = NULL;
 361
 362		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 363		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 364			res = tty_driver_kref_get(p);
 365			*line = tty_line;
 366			break;
 367		}
 368	}
 369	mutex_unlock(&tty_mutex);
 370
 371	return res;
 372}
 373EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 374#endif
 375
 
 
 
 
 
 
 376/**
 377 *	tty_check_change	-	check for POSIX terminal changes
 378 *	@tty: tty to check
 379 *
 380 *	If we try to write to, or set the state of, a terminal and we're
 381 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 382 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 383 *
 384 *	Locking: ctrl_lock
 385 */
 386
 387int tty_check_change(struct tty_struct *tty)
 388{
 389	unsigned long flags;
 
 390	int ret = 0;
 391
 392	if (current->signal->tty != tty)
 393		return 0;
 394
 395	spin_lock_irqsave(&tty->ctrl_lock, flags);
 
 396
 397	if (!tty->pgrp) {
 398		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 399		goto out_unlock;
 400	}
 401	if (task_pgrp(current) == tty->pgrp)
 402		goto out_unlock;
 403	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 404	if (is_ignored(SIGTTOU))
 405		goto out;
 406	if (is_current_pgrp_orphaned()) {
 407		ret = -EIO;
 408		goto out;
 
 
 
 
 
 
 
 409	}
 410	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 411	set_thread_flag(TIF_SIGPENDING);
 412	ret = -ERESTARTSYS;
 413out:
 414	return ret;
 415out_unlock:
 416	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 417	return ret;
 418}
 419
 
 
 
 
 420EXPORT_SYMBOL(tty_check_change);
 421
 422static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 423				size_t count, loff_t *ppos)
 424{
 425	return 0;
 426}
 427
 428static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 429				 size_t count, loff_t *ppos)
 430{
 431	return -EIO;
 432}
 433
 434/* No kernel lock held - none needed ;) */
 435static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 436{
 437	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 438}
 439
 440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 441		unsigned long arg)
 442{
 443	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 444}
 445
 446static long hung_up_tty_compat_ioctl(struct file *file,
 447				     unsigned int cmd, unsigned long arg)
 448{
 449	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 450}
 451
 
 
 
 
 
 452static const struct file_operations tty_fops = {
 453	.llseek		= no_llseek,
 454	.read		= tty_read,
 455	.write		= tty_write,
 456	.poll		= tty_poll,
 457	.unlocked_ioctl	= tty_ioctl,
 458	.compat_ioctl	= tty_compat_ioctl,
 459	.open		= tty_open,
 460	.release	= tty_release,
 461	.fasync		= tty_fasync,
 462};
 463
 464static const struct file_operations console_fops = {
 465	.llseek		= no_llseek,
 466	.read		= tty_read,
 467	.write		= redirected_tty_write,
 468	.poll		= tty_poll,
 469	.unlocked_ioctl	= tty_ioctl,
 470	.compat_ioctl	= tty_compat_ioctl,
 471	.open		= tty_open,
 472	.release	= tty_release,
 473	.fasync		= tty_fasync,
 474};
 475
 476static const struct file_operations hung_up_tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= hung_up_tty_read,
 479	.write		= hung_up_tty_write,
 480	.poll		= hung_up_tty_poll,
 481	.unlocked_ioctl	= hung_up_tty_ioctl,
 482	.compat_ioctl	= hung_up_tty_compat_ioctl,
 483	.release	= tty_release,
 
 484};
 485
 486static DEFINE_SPINLOCK(redirect_lock);
 487static struct file *redirect;
 488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489/**
 490 *	tty_wakeup	-	request more data
 491 *	@tty: terminal
 492 *
 493 *	Internal and external helper for wakeups of tty. This function
 494 *	informs the line discipline if present that the driver is ready
 495 *	to receive more output data.
 496 */
 497
 498void tty_wakeup(struct tty_struct *tty)
 499{
 500	struct tty_ldisc *ld;
 501
 502	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 503		ld = tty_ldisc_ref(tty);
 504		if (ld) {
 505			if (ld->ops->write_wakeup)
 506				ld->ops->write_wakeup(tty);
 507			tty_ldisc_deref(ld);
 508		}
 509	}
 510	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 511}
 512
 513EXPORT_SYMBOL_GPL(tty_wakeup);
 514
 515/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516 *	__tty_hangup		-	actual handler for hangup events
 517 *	@work: tty device
 518 *
 519 *	This can be called by the "eventd" kernel thread.  That is process
 520 *	synchronous but doesn't hold any locks, so we need to make sure we
 521 *	have the appropriate locks for what we're doing.
 522 *
 523 *	The hangup event clears any pending redirections onto the hung up
 524 *	device. It ensures future writes will error and it does the needed
 525 *	line discipline hangup and signal delivery. The tty object itself
 526 *	remains intact.
 527 *
 528 *	Locking:
 529 *		BTM
 530 *		  redirect lock for undoing redirection
 531 *		  file list lock for manipulating list of ttys
 532 *		  tty_ldisc_lock from called functions
 533 *		  termios_mutex resetting termios data
 534 *		  tasklist_lock to walk task list for hangup event
 535 *		    ->siglock to protect ->signal/->sighand
 536 */
 537void __tty_hangup(struct tty_struct *tty)
 538{
 539	struct file *cons_filp = NULL;
 540	struct file *filp, *f = NULL;
 541	struct task_struct *p;
 542	struct tty_file_private *priv;
 543	int    closecount = 0, n;
 544	unsigned long flags;
 545	int refs = 0;
 546
 547	if (!tty)
 548		return;
 549
 550
 551	spin_lock(&redirect_lock);
 552	if (redirect && file_tty(redirect) == tty) {
 553		f = redirect;
 554		redirect = NULL;
 555	}
 556	spin_unlock(&redirect_lock);
 557
 558	tty_lock();
 559
 560	/* some functions below drop BTM, so we need this bit */
 561	set_bit(TTY_HUPPING, &tty->flags);
 
 
 562
 563	/* inuse_filps is protected by the single tty lock,
 564	   this really needs to change if we want to flush the
 565	   workqueue with the lock held */
 566	check_tty_count(tty, "tty_hangup");
 567
 568	spin_lock(&tty_files_lock);
 569	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 570	list_for_each_entry(priv, &tty->tty_files, list) {
 571		filp = priv->file;
 572		if (filp->f_op->write == redirected_tty_write)
 573			cons_filp = filp;
 574		if (filp->f_op->write != tty_write)
 575			continue;
 576		closecount++;
 577		__tty_fasync(-1, filp, 0);	/* can't block */
 578		filp->f_op = &hung_up_tty_fops;
 579	}
 580	spin_unlock(&tty_files_lock);
 581
 582	/*
 583	 * it drops BTM and thus races with reopen
 584	 * we protect the race by TTY_HUPPING
 585	 */
 586	tty_ldisc_hangup(tty);
 587
 588	read_lock(&tasklist_lock);
 589	if (tty->session) {
 590		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 591			spin_lock_irq(&p->sighand->siglock);
 592			if (p->signal->tty == tty) {
 593				p->signal->tty = NULL;
 594				/* We defer the dereferences outside fo
 595				   the tasklist lock */
 596				refs++;
 597			}
 598			if (!p->signal->leader) {
 599				spin_unlock_irq(&p->sighand->siglock);
 600				continue;
 601			}
 602			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 603			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 604			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 605			spin_lock_irqsave(&tty->ctrl_lock, flags);
 606			if (tty->pgrp)
 607				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 608			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 609			spin_unlock_irq(&p->sighand->siglock);
 610		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 611	}
 612	read_unlock(&tasklist_lock);
 613
 614	spin_lock_irqsave(&tty->ctrl_lock, flags);
 615	clear_bit(TTY_THROTTLED, &tty->flags);
 616	clear_bit(TTY_PUSH, &tty->flags);
 617	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 618	put_pid(tty->session);
 619	put_pid(tty->pgrp);
 620	tty->session = NULL;
 621	tty->pgrp = NULL;
 622	tty->ctrl_status = 0;
 623	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 624
 625	/* Account for the p->signal references we killed */
 626	while (refs--)
 627		tty_kref_put(tty);
 628
 629	/*
 630	 * If one of the devices matches a console pointer, we
 631	 * cannot just call hangup() because that will cause
 632	 * tty->count and state->count to go out of sync.
 633	 * So we just call close() the right number of times.
 634	 */
 635	if (cons_filp) {
 636		if (tty->ops->close)
 637			for (n = 0; n < closecount; n++)
 638				tty->ops->close(tty, cons_filp);
 639	} else if (tty->ops->hangup)
 640		(tty->ops->hangup)(tty);
 641	/*
 642	 * We don't want to have driver/ldisc interactions beyond
 643	 * the ones we did here. The driver layer expects no
 644	 * calls after ->hangup() from the ldisc side. However we
 645	 * can't yet guarantee all that.
 646	 */
 647	set_bit(TTY_HUPPED, &tty->flags);
 648	clear_bit(TTY_HUPPING, &tty->flags);
 649	tty_ldisc_enable(tty);
 650
 651	tty_unlock();
 652
 653	if (f)
 654		fput(f);
 655}
 656
 657static void do_tty_hangup(struct work_struct *work)
 658{
 659	struct tty_struct *tty =
 660		container_of(work, struct tty_struct, hangup_work);
 661
 662	__tty_hangup(tty);
 663}
 664
 665/**
 666 *	tty_hangup		-	trigger a hangup event
 667 *	@tty: tty to hangup
 668 *
 669 *	A carrier loss (virtual or otherwise) has occurred on this like
 670 *	schedule a hangup sequence to run after this event.
 671 */
 672
 673void tty_hangup(struct tty_struct *tty)
 674{
 675#ifdef TTY_DEBUG_HANGUP
 676	char	buf[64];
 677	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 678#endif
 679	schedule_work(&tty->hangup_work);
 680}
 681
 682EXPORT_SYMBOL(tty_hangup);
 683
 684/**
 685 *	tty_vhangup		-	process vhangup
 686 *	@tty: tty to hangup
 687 *
 688 *	The user has asked via system call for the terminal to be hung up.
 689 *	We do this synchronously so that when the syscall returns the process
 690 *	is complete. That guarantee is necessary for security reasons.
 691 */
 692
 693void tty_vhangup(struct tty_struct *tty)
 694{
 695#ifdef TTY_DEBUG_HANGUP
 696	char	buf[64];
 697
 698	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 699#endif
 700	__tty_hangup(tty);
 701}
 702
 703EXPORT_SYMBOL(tty_vhangup);
 704
 705
 706/**
 707 *	tty_vhangup_self	-	process vhangup for own ctty
 708 *
 709 *	Perform a vhangup on the current controlling tty
 710 */
 711
 712void tty_vhangup_self(void)
 713{
 714	struct tty_struct *tty;
 715
 716	tty = get_current_tty();
 717	if (tty) {
 718		tty_vhangup(tty);
 719		tty_kref_put(tty);
 720	}
 721}
 722
 723/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724 *	tty_hung_up_p		-	was tty hung up
 725 *	@filp: file pointer of tty
 726 *
 727 *	Return true if the tty has been subject to a vhangup or a carrier
 728 *	loss
 729 */
 730
 731int tty_hung_up_p(struct file *filp)
 732{
 733	return (filp->f_op == &hung_up_tty_fops);
 734}
 735
 736EXPORT_SYMBOL(tty_hung_up_p);
 737
 738static void session_clear_tty(struct pid *session)
 739{
 740	struct task_struct *p;
 741	do_each_pid_task(session, PIDTYPE_SID, p) {
 742		proc_clear_tty(p);
 743	} while_each_pid_task(session, PIDTYPE_SID, p);
 744}
 745
 746/**
 747 *	disassociate_ctty	-	disconnect controlling tty
 748 *	@on_exit: true if exiting so need to "hang up" the session
 749 *
 750 *	This function is typically called only by the session leader, when
 751 *	it wants to disassociate itself from its controlling tty.
 752 *
 753 *	It performs the following functions:
 754 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 755 * 	(2)  Clears the tty from being controlling the session
 756 * 	(3)  Clears the controlling tty for all processes in the
 757 * 		session group.
 758 *
 759 *	The argument on_exit is set to 1 if called when a process is
 760 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 761 *
 762 *	Locking:
 763 *		BTM is taken for hysterical raisins, and held when
 764 *		  called from no_tty().
 765 *		  tty_mutex is taken to protect tty
 766 *		  ->siglock is taken to protect ->signal/->sighand
 767 *		  tasklist_lock is taken to walk process list for sessions
 768 *		    ->siglock is taken to protect ->signal/->sighand
 769 */
 770
 771void disassociate_ctty(int on_exit)
 772{
 773	struct tty_struct *tty;
 774	struct pid *tty_pgrp = NULL;
 775
 776	if (!current->signal->leader)
 777		return;
 778
 779	tty = get_current_tty();
 780	if (tty) {
 781		tty_pgrp = get_pid(tty->pgrp);
 782		if (on_exit) {
 783			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 784				tty_vhangup(tty);
 
 
 
 
 
 
 785		}
 786		tty_kref_put(tty);
 
 787	} else if (on_exit) {
 788		struct pid *old_pgrp;
 789		spin_lock_irq(&current->sighand->siglock);
 790		old_pgrp = current->signal->tty_old_pgrp;
 791		current->signal->tty_old_pgrp = NULL;
 792		spin_unlock_irq(&current->sighand->siglock);
 793		if (old_pgrp) {
 794			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 795			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 796			put_pid(old_pgrp);
 797		}
 798		return;
 799	}
 800	if (tty_pgrp) {
 801		kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 802		if (!on_exit)
 803			kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 804		put_pid(tty_pgrp);
 805	}
 806
 807	spin_lock_irq(&current->sighand->siglock);
 808	put_pid(current->signal->tty_old_pgrp);
 809	current->signal->tty_old_pgrp = NULL;
 810	spin_unlock_irq(&current->sighand->siglock);
 811
 812	tty = get_current_tty();
 813	if (tty) {
 814		unsigned long flags;
 815		spin_lock_irqsave(&tty->ctrl_lock, flags);
 816		put_pid(tty->session);
 817		put_pid(tty->pgrp);
 818		tty->session = NULL;
 819		tty->pgrp = NULL;
 820		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 821		tty_kref_put(tty);
 822	} else {
 823#ifdef TTY_DEBUG_HANGUP
 824		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 825		       " = NULL", tty);
 826#endif
 827	}
 828
 
 829	/* Now clear signal->tty under the lock */
 830	read_lock(&tasklist_lock);
 831	session_clear_tty(task_session(current));
 832	read_unlock(&tasklist_lock);
 833}
 834
 835/**
 836 *
 837 *	no_tty	- Ensure the current process does not have a controlling tty
 838 */
 839void no_tty(void)
 840{
 
 
 
 841	struct task_struct *tsk = current;
 842	tty_lock();
 843	disassociate_ctty(0);
 844	tty_unlock();
 845	proc_clear_tty(tsk);
 846}
 847
 848
 849/**
 850 *	stop_tty	-	propagate flow control
 851 *	@tty: tty to stop
 852 *
 853 *	Perform flow control to the driver. For PTY/TTY pairs we
 854 *	must also propagate the TIOCKPKT status. May be called
 855 *	on an already stopped device and will not re-call the driver
 856 *	method.
 857 *
 858 *	This functionality is used by both the line disciplines for
 859 *	halting incoming flow and by the driver. It may therefore be
 860 *	called from any context, may be under the tty atomic_write_lock
 861 *	but not always.
 862 *
 863 *	Locking:
 864 *		Uses the tty control lock internally
 865 */
 866
 867void stop_tty(struct tty_struct *tty)
 868{
 869	unsigned long flags;
 870	spin_lock_irqsave(&tty->ctrl_lock, flags);
 871	if (tty->stopped) {
 872		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 873		return;
 874	}
 875	tty->stopped = 1;
 876	if (tty->link && tty->link->packet) {
 877		tty->ctrl_status &= ~TIOCPKT_START;
 878		tty->ctrl_status |= TIOCPKT_STOP;
 879		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 880	}
 881	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 882	if (tty->ops->stop)
 883		(tty->ops->stop)(tty);
 884}
 885
 
 
 
 
 
 
 
 
 886EXPORT_SYMBOL(stop_tty);
 887
 888/**
 889 *	start_tty	-	propagate flow control
 890 *	@tty: tty to start
 891 *
 892 *	Start a tty that has been stopped if at all possible. Perform
 893 *	any necessary wakeups and propagate the TIOCPKT status. If this
 894 *	is the tty was previous stopped and is being started then the
 895 *	driver start method is invoked and the line discipline woken.
 896 *
 897 *	Locking:
 898 *		ctrl_lock
 899 */
 900
 901void start_tty(struct tty_struct *tty)
 902{
 903	unsigned long flags;
 904	spin_lock_irqsave(&tty->ctrl_lock, flags);
 905	if (!tty->stopped || tty->flow_stopped) {
 906		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 907		return;
 908	}
 909	tty->stopped = 0;
 910	if (tty->link && tty->link->packet) {
 911		tty->ctrl_status &= ~TIOCPKT_STOP;
 912		tty->ctrl_status |= TIOCPKT_START;
 913		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 914	}
 915	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 916	if (tty->ops->start)
 917		(tty->ops->start)(tty);
 918	/* If we have a running line discipline it may need kicking */
 919	tty_wakeup(tty);
 920}
 921
 
 
 
 
 
 
 
 
 922EXPORT_SYMBOL(start_tty);
 923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924/**
 925 *	tty_read	-	read method for tty device files
 926 *	@file: pointer to tty file
 927 *	@buf: user buffer
 928 *	@count: size of user buffer
 929 *	@ppos: unused
 930 *
 931 *	Perform the read system call function on this terminal device. Checks
 932 *	for hung up devices before calling the line discipline method.
 933 *
 934 *	Locking:
 935 *		Locks the line discipline internally while needed. Multiple
 936 *	read calls may be outstanding in parallel.
 937 */
 938
 939static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 940			loff_t *ppos)
 941{
 942	int i;
 943	struct inode *inode = file->f_path.dentry->d_inode;
 944	struct tty_struct *tty = file_tty(file);
 945	struct tty_ldisc *ld;
 946
 947	if (tty_paranoia_check(tty, inode, "tty_read"))
 948		return -EIO;
 949	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 950		return -EIO;
 951
 952	/* We want to wait for the line discipline to sort out in this
 953	   situation */
 954	ld = tty_ldisc_ref_wait(tty);
 
 
 955	if (ld->ops->read)
 956		i = (ld->ops->read)(tty, file, buf, count);
 957	else
 958		i = -EIO;
 959	tty_ldisc_deref(ld);
 
 960	if (i > 0)
 961		inode->i_atime = current_fs_time(inode->i_sb);
 
 962	return i;
 963}
 964
 965void tty_write_unlock(struct tty_struct *tty)
 966	__releases(&tty->atomic_write_lock)
 967{
 968	mutex_unlock(&tty->atomic_write_lock);
 969	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 970}
 971
 972int tty_write_lock(struct tty_struct *tty, int ndelay)
 973	__acquires(&tty->atomic_write_lock)
 974{
 975	if (!mutex_trylock(&tty->atomic_write_lock)) {
 976		if (ndelay)
 977			return -EAGAIN;
 978		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 979			return -ERESTARTSYS;
 980	}
 981	return 0;
 982}
 983
 984/*
 985 * Split writes up in sane blocksizes to avoid
 986 * denial-of-service type attacks
 987 */
 988static inline ssize_t do_tty_write(
 989	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 990	struct tty_struct *tty,
 991	struct file *file,
 992	const char __user *buf,
 993	size_t count)
 994{
 995	ssize_t ret, written = 0;
 996	unsigned int chunk;
 997
 998	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 999	if (ret < 0)
1000		return ret;
1001
1002	/*
1003	 * We chunk up writes into a temporary buffer. This
1004	 * simplifies low-level drivers immensely, since they
1005	 * don't have locking issues and user mode accesses.
1006	 *
1007	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1008	 * big chunk-size..
1009	 *
1010	 * The default chunk-size is 2kB, because the NTTY
1011	 * layer has problems with bigger chunks. It will
1012	 * claim to be able to handle more characters than
1013	 * it actually does.
1014	 *
1015	 * FIXME: This can probably go away now except that 64K chunks
1016	 * are too likely to fail unless switched to vmalloc...
1017	 */
1018	chunk = 2048;
1019	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1020		chunk = 65536;
1021	if (count < chunk)
1022		chunk = count;
1023
1024	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1025	if (tty->write_cnt < chunk) {
1026		unsigned char *buf_chunk;
1027
1028		if (chunk < 1024)
1029			chunk = 1024;
1030
1031		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1032		if (!buf_chunk) {
1033			ret = -ENOMEM;
1034			goto out;
1035		}
1036		kfree(tty->write_buf);
1037		tty->write_cnt = chunk;
1038		tty->write_buf = buf_chunk;
1039	}
1040
1041	/* Do the write .. */
1042	for (;;) {
1043		size_t size = count;
1044		if (size > chunk)
1045			size = chunk;
1046		ret = -EFAULT;
1047		if (copy_from_user(tty->write_buf, buf, size))
1048			break;
1049		ret = write(tty, file, tty->write_buf, size);
1050		if (ret <= 0)
1051			break;
1052		written += ret;
1053		buf += ret;
1054		count -= ret;
1055		if (!count)
1056			break;
1057		ret = -ERESTARTSYS;
1058		if (signal_pending(current))
1059			break;
1060		cond_resched();
1061	}
1062	if (written) {
1063		struct inode *inode = file->f_path.dentry->d_inode;
1064		inode->i_mtime = current_fs_time(inode->i_sb);
1065		ret = written;
1066	}
1067out:
1068	tty_write_unlock(tty);
1069	return ret;
1070}
1071
1072/**
1073 * tty_write_message - write a message to a certain tty, not just the console.
1074 * @tty: the destination tty_struct
1075 * @msg: the message to write
1076 *
1077 * This is used for messages that need to be redirected to a specific tty.
1078 * We don't put it into the syslog queue right now maybe in the future if
1079 * really needed.
1080 *
1081 * We must still hold the BTM and test the CLOSING flag for the moment.
1082 */
1083
1084void tty_write_message(struct tty_struct *tty, char *msg)
1085{
1086	if (tty) {
1087		mutex_lock(&tty->atomic_write_lock);
1088		tty_lock();
1089		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1090			tty_unlock();
1091			tty->ops->write(tty, msg, strlen(msg));
1092		} else
1093			tty_unlock();
1094		tty_write_unlock(tty);
1095	}
1096	return;
1097}
1098
1099
1100/**
1101 *	tty_write		-	write method for tty device file
1102 *	@file: tty file pointer
1103 *	@buf: user data to write
1104 *	@count: bytes to write
1105 *	@ppos: unused
1106 *
1107 *	Write data to a tty device via the line discipline.
1108 *
1109 *	Locking:
1110 *		Locks the line discipline as required
1111 *		Writes to the tty driver are serialized by the atomic_write_lock
1112 *	and are then processed in chunks to the device. The line discipline
1113 *	write method will not be invoked in parallel for each device.
1114 */
1115
1116static ssize_t tty_write(struct file *file, const char __user *buf,
1117						size_t count, loff_t *ppos)
1118{
1119	struct inode *inode = file->f_path.dentry->d_inode;
1120	struct tty_struct *tty = file_tty(file);
1121 	struct tty_ldisc *ld;
1122	ssize_t ret;
1123
1124	if (tty_paranoia_check(tty, inode, "tty_write"))
1125		return -EIO;
1126	if (!tty || !tty->ops->write ||
1127		(test_bit(TTY_IO_ERROR, &tty->flags)))
1128			return -EIO;
1129	/* Short term debug to catch buggy drivers */
1130	if (tty->ops->write_room == NULL)
1131		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1132			tty->driver->name);
1133	ld = tty_ldisc_ref_wait(tty);
 
 
1134	if (!ld->ops->write)
1135		ret = -EIO;
1136	else
1137		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1138	tty_ldisc_deref(ld);
1139	return ret;
1140}
1141
1142ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1143						size_t count, loff_t *ppos)
1144{
1145	struct file *p = NULL;
1146
1147	spin_lock(&redirect_lock);
1148	if (redirect) {
1149		get_file(redirect);
1150		p = redirect;
1151	}
1152	spin_unlock(&redirect_lock);
1153
1154	if (p) {
1155		ssize_t res;
1156		res = vfs_write(p, buf, count, &p->f_pos);
1157		fput(p);
1158		return res;
1159	}
1160	return tty_write(file, buf, count, ppos);
1161}
1162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163static char ptychar[] = "pqrstuvwxyzabcde";
1164
1165/**
1166 *	pty_line_name	-	generate name for a pty
1167 *	@driver: the tty driver in use
1168 *	@index: the minor number
1169 *	@p: output buffer of at least 6 bytes
1170 *
1171 *	Generate a name from a driver reference and write it to the output
1172 *	buffer.
1173 *
1174 *	Locking: None
1175 */
1176static void pty_line_name(struct tty_driver *driver, int index, char *p)
1177{
1178	int i = index + driver->name_base;
1179	/* ->name is initialized to "ttyp", but "tty" is expected */
1180	sprintf(p, "%s%c%x",
1181		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1182		ptychar[i >> 4 & 0xf], i & 0xf);
1183}
1184
1185/**
1186 *	tty_line_name	-	generate name for a tty
1187 *	@driver: the tty driver in use
1188 *	@index: the minor number
1189 *	@p: output buffer of at least 7 bytes
1190 *
1191 *	Generate a name from a driver reference and write it to the output
1192 *	buffer.
1193 *
1194 *	Locking: None
1195 */
1196static void tty_line_name(struct tty_driver *driver, int index, char *p)
1197{
1198	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1199}
1200
1201/**
1202 *	tty_driver_lookup_tty() - find an existing tty, if any
1203 *	@driver: the driver for the tty
1204 *	@idx:	 the minor number
1205 *
1206 *	Return the tty, if found or ERR_PTR() otherwise.
 
1207 *
1208 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1209 *	be held until the 'fast-open' is also done. Will change once we
1210 *	have refcounting in the driver and per driver locking
1211 */
1212static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1213		struct inode *inode, int idx)
1214{
1215	struct tty_struct *tty;
1216
1217	if (driver->ops->lookup)
1218		return driver->ops->lookup(driver, inode, idx);
 
 
1219
1220	tty = driver->ttys[idx];
 
1221	return tty;
1222}
1223
1224/**
1225 *	tty_init_termios	-  helper for termios setup
1226 *	@tty: the tty to set up
1227 *
1228 *	Initialise the termios structures for this tty. Thus runs under
1229 *	the tty_mutex currently so we can be relaxed about ordering.
1230 */
1231
1232int tty_init_termios(struct tty_struct *tty)
1233{
1234	struct ktermios *tp;
1235	int idx = tty->index;
1236
1237	tp = tty->driver->termios[idx];
1238	if (tp == NULL) {
1239		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1240		if (tp == NULL)
1241			return -ENOMEM;
1242		memcpy(tp, &tty->driver->init_termios,
1243						sizeof(struct ktermios));
1244		tty->driver->termios[idx] = tp;
 
 
1245	}
1246	tty->termios = tp;
1247	tty->termios_locked = tp + 1;
1248
1249	/* Compatibility until drivers always set this */
1250	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1251	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1252	return 0;
1253}
1254EXPORT_SYMBOL_GPL(tty_init_termios);
1255
 
 
 
 
 
 
 
 
 
 
1256/**
1257 *	tty_driver_install_tty() - install a tty entry in the driver
1258 *	@driver: the driver for the tty
1259 *	@tty: the tty
1260 *
1261 *	Install a tty object into the driver tables. The tty->index field
1262 *	will be set by the time this is called. This method is responsible
1263 *	for ensuring any need additional structures are allocated and
1264 *	configured.
1265 *
1266 *	Locking: tty_mutex for now
1267 */
1268static int tty_driver_install_tty(struct tty_driver *driver,
1269						struct tty_struct *tty)
1270{
1271	int idx = tty->index;
1272	int ret;
1273
1274	if (driver->ops->install) {
1275		ret = driver->ops->install(driver, tty);
1276		return ret;
1277	}
1278
1279	if (tty_init_termios(tty) == 0) {
1280		tty_driver_kref_get(driver);
1281		tty->count++;
1282		driver->ttys[idx] = tty;
1283		return 0;
1284	}
1285	return -ENOMEM;
1286}
1287
1288/**
1289 *	tty_driver_remove_tty() - remove a tty from the driver tables
1290 *	@driver: the driver for the tty
1291 *	@idx:	 the minor number
1292 *
1293 *	Remvoe a tty object from the driver tables. The tty->index field
1294 *	will be set by the time this is called.
1295 *
1296 *	Locking: tty_mutex for now
1297 */
1298void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1299{
1300	if (driver->ops->remove)
1301		driver->ops->remove(driver, tty);
1302	else
1303		driver->ttys[tty->index] = NULL;
1304}
1305
1306/*
1307 * 	tty_reopen()	- fast re-open of an open tty
1308 * 	@tty	- the tty to open
1309 *
1310 *	Return 0 on success, -errno on error.
 
1311 *
1312 *	Locking: tty_mutex must be held from the time the tty was found
1313 *		 till this open completes.
1314 */
1315static int tty_reopen(struct tty_struct *tty)
1316{
1317	struct tty_driver *driver = tty->driver;
1318
1319	if (test_bit(TTY_CLOSING, &tty->flags) ||
1320			test_bit(TTY_HUPPING, &tty->flags) ||
1321			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1322		return -EIO;
1323
1324	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1325	    driver->subtype == PTY_TYPE_MASTER) {
1326		/*
1327		 * special case for PTY masters: only one open permitted,
1328		 * and the slave side open count is incremented as well.
1329		 */
1330		if (tty->count)
1331			return -EIO;
1332
1333		tty->link->count++;
1334	}
1335	tty->count++;
1336	tty->driver = driver; /* N.B. why do this every time?? */
1337
1338	mutex_lock(&tty->ldisc_mutex);
1339	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1340	mutex_unlock(&tty->ldisc_mutex);
1341
1342	return 0;
1343}
1344
1345/**
1346 *	tty_init_dev		-	initialise a tty device
1347 *	@driver: tty driver we are opening a device on
1348 *	@idx: device index
1349 *	@ret_tty: returned tty structure
1350 *	@first_ok: ok to open a new device (used by ptmx)
1351 *
1352 *	Prepare a tty device. This may not be a "new" clean device but
1353 *	could also be an active device. The pty drivers require special
1354 *	handling because of this.
1355 *
1356 *	Locking:
1357 *		The function is called under the tty_mutex, which
1358 *	protects us from the tty struct or driver itself going away.
1359 *
1360 *	On exit the tty device has the line discipline attached and
1361 *	a reference count of 1. If a pair was created for pty/tty use
1362 *	and the other was a pty master then it too has a reference count of 1.
1363 *
1364 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1365 * failed open.  The new code protects the open with a mutex, so it's
1366 * really quite straightforward.  The mutex locking can probably be
1367 * relaxed for the (most common) case of reopening a tty.
1368 */
1369
1370struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1371								int first_ok)
1372{
1373	struct tty_struct *tty;
1374	int retval;
1375
1376	/* Check if pty master is being opened multiple times */
1377	if (driver->subtype == PTY_TYPE_MASTER &&
1378		(driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1379		return ERR_PTR(-EIO);
1380	}
1381
1382	/*
1383	 * First time open is complex, especially for PTY devices.
1384	 * This code guarantees that either everything succeeds and the
1385	 * TTY is ready for operation, or else the table slots are vacated
1386	 * and the allocated memory released.  (Except that the termios
1387	 * and locked termios may be retained.)
1388	 */
1389
1390	if (!try_module_get(driver->owner))
1391		return ERR_PTR(-ENODEV);
1392
1393	tty = alloc_tty_struct();
1394	if (!tty) {
1395		retval = -ENOMEM;
1396		goto err_module_put;
1397	}
1398	initialize_tty_struct(tty, driver, idx);
1399
 
1400	retval = tty_driver_install_tty(driver, tty);
1401	if (retval < 0)
1402		goto err_deinit_tty;
 
 
 
 
 
 
 
 
 
1403
1404	/*
1405	 * Structures all installed ... call the ldisc open routines.
1406	 * If we fail here just call release_tty to clean up.  No need
1407	 * to decrement the use counts, as release_tty doesn't care.
1408	 */
1409	retval = tty_ldisc_setup(tty, tty->link);
1410	if (retval)
1411		goto err_release_tty;
 
1412	return tty;
1413
1414err_deinit_tty:
1415	deinitialize_tty_struct(tty);
1416	free_tty_struct(tty);
1417err_module_put:
1418	module_put(driver->owner);
1419	return ERR_PTR(retval);
1420
1421	/* call the tty release_tty routine to clean out this slot */
1422err_release_tty:
1423	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1424				 "clearing slot %d\n", idx);
 
1425	release_tty(tty, idx);
1426	return ERR_PTR(retval);
1427}
1428
1429void tty_free_termios(struct tty_struct *tty)
1430{
1431	struct ktermios *tp;
1432	int idx = tty->index;
1433	/* Kill this flag and push into drivers for locking etc */
1434	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1435		/* FIXME: Locking on ->termios array */
1436		tp = tty->termios;
1437		tty->driver->termios[idx] = NULL;
1438		kfree(tp);
 
 
 
 
 
 
1439	}
 
1440}
1441EXPORT_SYMBOL(tty_free_termios);
1442
1443void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1444{
1445	tty_driver_remove_tty(tty->driver, tty);
1446	tty_free_termios(tty);
 
 
 
 
1447}
1448EXPORT_SYMBOL(tty_shutdown);
1449
1450/**
1451 *	release_one_tty		-	release tty structure memory
1452 *	@kref: kref of tty we are obliterating
1453 *
1454 *	Releases memory associated with a tty structure, and clears out the
1455 *	driver table slots. This function is called when a device is no longer
1456 *	in use. It also gets called when setup of a device fails.
1457 *
1458 *	Locking:
1459 *		tty_mutex - sometimes only
1460 *		takes the file list lock internally when working on the list
1461 *	of ttys that the driver keeps.
1462 *
1463 *	This method gets called from a work queue so that the driver private
1464 *	cleanup ops can sleep (needed for USB at least)
1465 */
1466static void release_one_tty(struct work_struct *work)
1467{
1468	struct tty_struct *tty =
1469		container_of(work, struct tty_struct, hangup_work);
1470	struct tty_driver *driver = tty->driver;
 
1471
1472	if (tty->ops->cleanup)
1473		tty->ops->cleanup(tty);
1474
1475	tty->magic = 0;
1476	tty_driver_kref_put(driver);
1477	module_put(driver->owner);
1478
1479	spin_lock(&tty_files_lock);
1480	list_del_init(&tty->tty_files);
1481	spin_unlock(&tty_files_lock);
1482
1483	put_pid(tty->pgrp);
1484	put_pid(tty->session);
1485	free_tty_struct(tty);
1486}
1487
1488static void queue_release_one_tty(struct kref *kref)
1489{
1490	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1491
1492	if (tty->ops->shutdown)
1493		tty->ops->shutdown(tty);
1494	else
1495		tty_shutdown(tty);
1496
1497	/* The hangup queue is now free so we can reuse it rather than
1498	   waste a chunk of memory for each port */
1499	INIT_WORK(&tty->hangup_work, release_one_tty);
1500	schedule_work(&tty->hangup_work);
1501}
1502
1503/**
1504 *	tty_kref_put		-	release a tty kref
1505 *	@tty: tty device
1506 *
1507 *	Release a reference to a tty device and if need be let the kref
1508 *	layer destruct the object for us
1509 */
1510
1511void tty_kref_put(struct tty_struct *tty)
1512{
1513	if (tty)
1514		kref_put(&tty->kref, queue_release_one_tty);
1515}
1516EXPORT_SYMBOL(tty_kref_put);
1517
1518/**
1519 *	release_tty		-	release tty structure memory
1520 *
1521 *	Release both @tty and a possible linked partner (think pty pair),
1522 *	and decrement the refcount of the backing module.
1523 *
1524 *	Locking:
1525 *		tty_mutex - sometimes only
1526 *		takes the file list lock internally when working on the list
1527 *	of ttys that the driver keeps.
1528 *		FIXME: should we require tty_mutex is held here ??
1529 *
1530 */
1531static void release_tty(struct tty_struct *tty, int idx)
1532{
1533	/* This should always be true but check for the moment */
1534	WARN_ON(tty->index != idx);
1535
 
 
 
 
 
1536	if (tty->link)
1537		tty_kref_put(tty->link);
 
 
 
1538	tty_kref_put(tty);
1539}
1540
1541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1542 *	tty_release		-	vfs callback for close
1543 *	@inode: inode of tty
1544 *	@filp: file pointer for handle to tty
1545 *
1546 *	Called the last time each file handle is closed that references
1547 *	this tty. There may however be several such references.
1548 *
1549 *	Locking:
1550 *		Takes bkl. See tty_release_dev
1551 *
1552 * Even releasing the tty structures is a tricky business.. We have
1553 * to be very careful that the structures are all released at the
1554 * same time, as interrupts might otherwise get the wrong pointers.
1555 *
1556 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1557 * lead to double frees or releasing memory still in use.
1558 */
1559
1560int tty_release(struct inode *inode, struct file *filp)
1561{
1562	struct tty_struct *tty = file_tty(filp);
1563	struct tty_struct *o_tty;
1564	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1565	int	devpts;
1566	int	idx;
1567	char	buf[64];
 
1568
1569	if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1570		return 0;
1571
1572	tty_lock();
1573	check_tty_count(tty, "tty_release_dev");
1574
1575	__tty_fasync(-1, filp, 0);
1576
1577	idx = tty->index;
1578	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1579		      tty->driver->subtype == PTY_TYPE_MASTER);
1580	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1581	o_tty = tty->link;
1582
1583#ifdef TTY_PARANOIA_CHECK
1584	if (idx < 0 || idx >= tty->driver->num) {
1585		printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1586				  "free (%s)\n", tty->name);
1587		tty_unlock();
1588		return 0;
1589	}
1590	if (!devpts) {
1591		if (tty != tty->driver->ttys[idx]) {
1592			tty_unlock();
1593			printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1594			       "for (%s)\n", idx, tty->name);
1595			return 0;
1596		}
1597		if (tty->termios != tty->driver->termios[idx]) {
1598			tty_unlock();
1599			printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1600			       "for (%s)\n",
1601			       idx, tty->name);
1602			return 0;
1603		}
1604	}
1605#endif
1606
1607#ifdef TTY_DEBUG_HANGUP
1608	printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1609	       tty_name(tty, buf), tty->count);
1610#endif
1611
1612#ifdef TTY_PARANOIA_CHECK
1613	if (tty->driver->other &&
1614	     !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1615		if (o_tty != tty->driver->other->ttys[idx]) {
1616			tty_unlock();
1617			printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1618					  "not o_tty for (%s)\n",
1619			       idx, tty->name);
1620			return 0 ;
1621		}
1622		if (o_tty->termios != tty->driver->other->termios[idx]) {
1623			tty_unlock();
1624			printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1625					  "not o_termios for (%s)\n",
1626			       idx, tty->name);
1627			return 0;
1628		}
1629		if (o_tty->link != tty) {
1630			tty_unlock();
1631			printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1632			return 0;
1633		}
1634	}
1635#endif
1636	if (tty->ops->close)
1637		tty->ops->close(tty, filp);
1638
1639	tty_unlock();
 
 
1640	/*
1641	 * Sanity check: if tty->count is going to zero, there shouldn't be
1642	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1643	 * wait queues and kick everyone out _before_ actually starting to
1644	 * close.  This ensures that we won't block while releasing the tty
1645	 * structure.
1646	 *
1647	 * The test for the o_tty closing is necessary, since the master and
1648	 * slave sides may close in any order.  If the slave side closes out
1649	 * first, its count will be one, since the master side holds an open.
1650	 * Thus this test wouldn't be triggered at the time the slave closes,
1651	 * so we do it now.
1652	 *
1653	 * Note that it's possible for the tty to be opened again while we're
1654	 * flushing out waiters.  By recalculating the closing flags before
1655	 * each iteration we avoid any problems.
1656	 */
1657	while (1) {
1658		/* Guard against races with tty->count changes elsewhere and
1659		   opens on /dev/tty */
1660
1661		mutex_lock(&tty_mutex);
1662		tty_lock();
1663		tty_closing = tty->count <= 1;
1664		o_tty_closing = o_tty &&
1665			(o_tty->count <= (pty_master ? 1 : 0));
1666		do_sleep = 0;
1667
1668		if (tty_closing) {
1669			if (waitqueue_active(&tty->read_wait)) {
1670				wake_up_poll(&tty->read_wait, POLLIN);
1671				do_sleep++;
1672			}
1673			if (waitqueue_active(&tty->write_wait)) {
1674				wake_up_poll(&tty->write_wait, POLLOUT);
1675				do_sleep++;
1676			}
1677		}
1678		if (o_tty_closing) {
1679			if (waitqueue_active(&o_tty->read_wait)) {
1680				wake_up_poll(&o_tty->read_wait, POLLIN);
1681				do_sleep++;
1682			}
1683			if (waitqueue_active(&o_tty->write_wait)) {
1684				wake_up_poll(&o_tty->write_wait, POLLOUT);
1685				do_sleep++;
1686			}
1687		}
1688		if (!do_sleep)
1689			break;
1690
1691		printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1692				    "active!\n", tty_name(tty, buf));
1693		tty_unlock();
1694		mutex_unlock(&tty_mutex);
1695		schedule();
 
 
 
 
1696	}
1697
1698	/*
1699	 * The closing flags are now consistent with the open counts on
1700	 * both sides, and we've completed the last operation that could
1701	 * block, so it's safe to proceed with closing.
1702	 */
1703	if (pty_master) {
1704		if (--o_tty->count < 0) {
1705			printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1706					    "(%d) for %s\n",
1707			       o_tty->count, tty_name(o_tty, buf));
1708			o_tty->count = 0;
1709		}
1710	}
1711	if (--tty->count < 0) {
1712		printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1713		       tty->count, tty_name(tty, buf));
1714		tty->count = 0;
1715	}
1716
1717	/*
1718	 * We've decremented tty->count, so we need to remove this file
1719	 * descriptor off the tty->tty_files list; this serves two
1720	 * purposes:
1721	 *  - check_tty_count sees the correct number of file descriptors
1722	 *    associated with this tty.
1723	 *  - do_tty_hangup no longer sees this file descriptor as
1724	 *    something that needs to be handled for hangups.
1725	 */
1726	tty_del_file(filp);
1727
1728	/*
1729	 * Perform some housekeeping before deciding whether to return.
1730	 *
1731	 * Set the TTY_CLOSING flag if this was the last open.  In the
1732	 * case of a pty we may have to wait around for the other side
1733	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1734	 */
1735	if (tty_closing)
1736		set_bit(TTY_CLOSING, &tty->flags);
1737	if (o_tty_closing)
1738		set_bit(TTY_CLOSING, &o_tty->flags);
1739
1740	/*
1741	 * If _either_ side is closing, make sure there aren't any
1742	 * processes that still think tty or o_tty is their controlling
1743	 * tty.
1744	 */
1745	if (tty_closing || o_tty_closing) {
1746		read_lock(&tasklist_lock);
1747		session_clear_tty(tty->session);
1748		if (o_tty)
1749			session_clear_tty(o_tty->session);
1750		read_unlock(&tasklist_lock);
1751	}
1752
1753	mutex_unlock(&tty_mutex);
1754
1755	/* check whether both sides are closing ... */
1756	if (!tty_closing || (o_tty && !o_tty_closing)) {
1757		tty_unlock();
 
 
 
 
 
 
 
1758		return 0;
1759	}
1760
1761#ifdef TTY_DEBUG_HANGUP
1762	printk(KERN_DEBUG "freeing tty structure...");
1763#endif
1764	/*
1765	 * Ask the line discipline code to release its structures
1766	 */
1767	tty_ldisc_release(tty, o_tty);
 
 
 
 
 
1768	/*
1769	 * The release_tty function takes care of the details of clearing
1770	 * the slots and preserving the termios structure.
 
 
1771	 */
 
1772	release_tty(tty, idx);
 
1773
1774	/* Make this pty number available for reallocation */
1775	if (devpts)
1776		devpts_kill_index(inode, idx);
1777	tty_unlock();
1778	return 0;
1779}
1780
1781/**
1782 *	tty_open		-	open a tty device
1783 *	@inode: inode of device file
1784 *	@filp: file pointer to tty
 
1785 *
1786 *	tty_open and tty_release keep up the tty count that contains the
1787 *	number of opens done on a tty. We cannot use the inode-count, as
1788 *	different inodes might point to the same tty.
1789 *
1790 *	Open-counting is needed for pty masters, as well as for keeping
1791 *	track of serial lines: DTR is dropped when the last close happens.
1792 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1793 *
1794 *	The termios state of a pty is reset on first open so that
1795 *	settings don't persist across reuse.
1796 *
1797 *	Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1798 *		 tty->count should protect the rest.
1799 *		 ->siglock protects ->signal/->sighand
1800 */
1801
1802static int tty_open(struct inode *inode, struct file *filp)
1803{
1804	struct tty_struct *tty = NULL;
1805	int noctty, retval;
1806	struct tty_driver *driver;
1807	int index;
1808	dev_t device = inode->i_rdev;
1809	unsigned saved_flags = filp->f_flags;
1810
1811	nonseekable_open(inode, filp);
1812
1813retry_open:
1814	noctty = filp->f_flags & O_NOCTTY;
1815	index  = -1;
1816	retval = 0;
1817
1818	mutex_lock(&tty_mutex);
1819	tty_lock();
 
1820
1821	if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1822		tty = get_current_tty();
1823		if (!tty) {
1824			tty_unlock();
1825			mutex_unlock(&tty_mutex);
1826			return -ENXIO;
1827		}
1828		driver = tty_driver_kref_get(tty->driver);
1829		index = tty->index;
1830		filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1831		/* noctty = 1; */
1832		/* FIXME: Should we take a driver reference ? */
1833		tty_kref_put(tty);
1834		goto got_driver;
1835	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836#ifdef CONFIG_VT
1837	if (device == MKDEV(TTY_MAJOR, 0)) {
1838		extern struct tty_driver *console_driver;
1839		driver = tty_driver_kref_get(console_driver);
1840		index = fg_console;
1841		noctty = 1;
1842		goto got_driver;
1843	}
1844#endif
1845	if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1846		struct tty_driver *console_driver = console_device(&index);
1847		if (console_driver) {
1848			driver = tty_driver_kref_get(console_driver);
1849			if (driver) {
1850				/* Don't let /dev/console block */
1851				filp->f_flags |= O_NONBLOCK;
1852				noctty = 1;
1853				goto got_driver;
1854			}
1855		}
1856		tty_unlock();
1857		mutex_unlock(&tty_mutex);
1858		return -ENODEV;
1859	}
 
 
 
 
 
 
 
 
1860
1861	driver = get_tty_driver(device, &index);
1862	if (!driver) {
1863		tty_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1864		mutex_unlock(&tty_mutex);
1865		return -ENODEV;
1866	}
1867got_driver:
1868	if (!tty) {
1869		/* check whether we're reopening an existing tty */
1870		tty = tty_driver_lookup_tty(driver, inode, index);
1871
1872		if (IS_ERR(tty)) {
1873			tty_unlock();
1874			mutex_unlock(&tty_mutex);
1875			return PTR_ERR(tty);
1876		}
1877	}
1878
1879	if (tty) {
 
 
 
 
 
 
 
 
 
1880		retval = tty_reopen(tty);
1881		if (retval)
 
1882			tty = ERR_PTR(retval);
1883	} else
1884		tty = tty_init_dev(driver, index, 0);
1885
1886	mutex_unlock(&tty_mutex);
 
 
1887	tty_driver_kref_put(driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1888	if (IS_ERR(tty)) {
1889		tty_unlock();
1890		return PTR_ERR(tty);
 
 
 
 
1891	}
1892
1893	retval = tty_add_file(tty, filp);
1894	if (retval) {
1895		tty_unlock();
1896		tty_release(inode, filp);
1897		return retval;
1898	}
1899
1900	check_tty_count(tty, "tty_open");
1901	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1902	    tty->driver->subtype == PTY_TYPE_MASTER)
1903		noctty = 1;
1904#ifdef TTY_DEBUG_HANGUP
1905	printk(KERN_DEBUG "opening %s...", tty->name);
1906#endif
1907	if (tty->ops->open)
1908		retval = tty->ops->open(tty, filp);
1909	else
1910		retval = -ENODEV;
1911	filp->f_flags = saved_flags;
1912
1913	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1914						!capable(CAP_SYS_ADMIN))
1915		retval = -EBUSY;
1916
1917	if (retval) {
1918#ifdef TTY_DEBUG_HANGUP
1919		printk(KERN_DEBUG "error %d in opening %s...", retval,
1920		       tty->name);
1921#endif
1922		tty_unlock(); /* need to call tty_release without BTM */
1923		tty_release(inode, filp);
1924		if (retval != -ERESTARTSYS)
1925			return retval;
1926
1927		if (signal_pending(current))
1928			return retval;
1929
1930		schedule();
1931		/*
1932		 * Need to reset f_op in case a hangup happened.
1933		 */
1934		tty_lock();
1935		if (filp->f_op == &hung_up_tty_fops)
1936			filp->f_op = &tty_fops;
1937		tty_unlock();
1938		goto retry_open;
1939	}
1940	tty_unlock();
1941
1942
1943	mutex_lock(&tty_mutex);
1944	tty_lock();
1945	spin_lock_irq(&current->sighand->siglock);
 
 
 
 
 
 
1946	if (!noctty &&
1947	    current->signal->leader &&
1948	    !current->signal->tty &&
1949	    tty->session == NULL)
1950		__proc_set_tty(current, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1951	spin_unlock_irq(&current->sighand->siglock);
1952	tty_unlock();
1953	mutex_unlock(&tty_mutex);
1954	return 0;
1955}
1956
1957
1958
1959/**
1960 *	tty_poll	-	check tty status
1961 *	@filp: file being polled
1962 *	@wait: poll wait structures to update
1963 *
1964 *	Call the line discipline polling method to obtain the poll
1965 *	status of the device.
1966 *
1967 *	Locking: locks called line discipline but ldisc poll method
1968 *	may be re-entered freely by other callers.
1969 */
1970
1971static unsigned int tty_poll(struct file *filp, poll_table *wait)
1972{
1973	struct tty_struct *tty = file_tty(filp);
1974	struct tty_ldisc *ld;
1975	int ret = 0;
1976
1977	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1978		return 0;
1979
1980	ld = tty_ldisc_ref_wait(tty);
 
 
1981	if (ld->ops->poll)
1982		ret = (ld->ops->poll)(tty, filp, wait);
1983	tty_ldisc_deref(ld);
1984	return ret;
1985}
1986
1987static int __tty_fasync(int fd, struct file *filp, int on)
1988{
1989	struct tty_struct *tty = file_tty(filp);
1990	unsigned long flags;
1991	int retval = 0;
1992
1993	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1994		goto out;
1995
1996	retval = fasync_helper(fd, filp, on, &tty->fasync);
1997	if (retval <= 0)
1998		goto out;
1999
2000	if (on) {
2001		enum pid_type type;
2002		struct pid *pid;
2003		if (!waitqueue_active(&tty->read_wait))
2004			tty->minimum_to_wake = 1;
2005		spin_lock_irqsave(&tty->ctrl_lock, flags);
2006		if (tty->pgrp) {
2007			pid = tty->pgrp;
2008			type = PIDTYPE_PGID;
2009		} else {
2010			pid = task_pid(current);
2011			type = PIDTYPE_PID;
2012		}
2013		get_pid(pid);
2014		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2015		retval = __f_setown(filp, pid, type, 0);
2016		put_pid(pid);
2017		if (retval)
2018			goto out;
2019	} else {
2020		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2021			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2022	}
2023	retval = 0;
2024out:
2025	return retval;
2026}
2027
2028static int tty_fasync(int fd, struct file *filp, int on)
2029{
2030	int retval;
2031	tty_lock();
2032	retval = __tty_fasync(fd, filp, on);
2033	tty_unlock();
 
 
 
 
2034	return retval;
2035}
2036
2037/**
2038 *	tiocsti			-	fake input character
2039 *	@tty: tty to fake input into
2040 *	@p: pointer to character
2041 *
2042 *	Fake input to a tty device. Does the necessary locking and
2043 *	input management.
2044 *
2045 *	FIXME: does not honour flow control ??
2046 *
2047 *	Locking:
2048 *		Called functions take tty_ldisc_lock
2049 *		current->signal->tty check is safe without locks
2050 *
2051 *	FIXME: may race normal receive processing
2052 */
2053
2054static int tiocsti(struct tty_struct *tty, char __user *p)
2055{
2056	char ch, mbz = 0;
2057	struct tty_ldisc *ld;
2058
2059	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2060		return -EPERM;
2061	if (get_user(ch, p))
2062		return -EFAULT;
2063	tty_audit_tiocsti(tty, ch);
2064	ld = tty_ldisc_ref_wait(tty);
 
 
2065	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2066	tty_ldisc_deref(ld);
2067	return 0;
2068}
2069
2070/**
2071 *	tiocgwinsz		-	implement window query ioctl
2072 *	@tty; tty
2073 *	@arg: user buffer for result
2074 *
2075 *	Copies the kernel idea of the window size into the user buffer.
2076 *
2077 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2078 *		is consistent.
2079 */
2080
2081static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2082{
2083	int err;
2084
2085	mutex_lock(&tty->termios_mutex);
2086	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2087	mutex_unlock(&tty->termios_mutex);
2088
2089	return err ? -EFAULT: 0;
2090}
2091
2092/**
2093 *	tty_do_resize		-	resize event
2094 *	@tty: tty being resized
2095 *	@rows: rows (character)
2096 *	@cols: cols (character)
2097 *
2098 *	Update the termios variables and send the necessary signals to
2099 *	peform a terminal resize correctly
2100 */
2101
2102int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2103{
2104	struct pid *pgrp;
2105	unsigned long flags;
2106
2107	/* Lock the tty */
2108	mutex_lock(&tty->termios_mutex);
2109	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2110		goto done;
2111	/* Get the PID values and reference them so we can
2112	   avoid holding the tty ctrl lock while sending signals */
2113	spin_lock_irqsave(&tty->ctrl_lock, flags);
2114	pgrp = get_pid(tty->pgrp);
2115	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2116
 
 
2117	if (pgrp)
2118		kill_pgrp(pgrp, SIGWINCH, 1);
2119	put_pid(pgrp);
2120
2121	tty->winsize = *ws;
2122done:
2123	mutex_unlock(&tty->termios_mutex);
2124	return 0;
2125}
 
2126
2127/**
2128 *	tiocswinsz		-	implement window size set ioctl
2129 *	@tty; tty side of tty
2130 *	@arg: user buffer for result
2131 *
2132 *	Copies the user idea of the window size to the kernel. Traditionally
2133 *	this is just advisory information but for the Linux console it
2134 *	actually has driver level meaning and triggers a VC resize.
2135 *
2136 *	Locking:
2137 *		Driver dependent. The default do_resize method takes the
2138 *	tty termios mutex and ctrl_lock. The console takes its own lock
2139 *	then calls into the default method.
2140 */
2141
2142static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2143{
2144	struct winsize tmp_ws;
2145	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2146		return -EFAULT;
2147
2148	if (tty->ops->resize)
2149		return tty->ops->resize(tty, &tmp_ws);
2150	else
2151		return tty_do_resize(tty, &tmp_ws);
2152}
2153
2154/**
2155 *	tioccons	-	allow admin to move logical console
2156 *	@file: the file to become console
2157 *
2158 *	Allow the administrator to move the redirected console device
2159 *
2160 *	Locking: uses redirect_lock to guard the redirect information
2161 */
2162
2163static int tioccons(struct file *file)
2164{
2165	if (!capable(CAP_SYS_ADMIN))
2166		return -EPERM;
2167	if (file->f_op->write == redirected_tty_write) {
2168		struct file *f;
2169		spin_lock(&redirect_lock);
2170		f = redirect;
2171		redirect = NULL;
2172		spin_unlock(&redirect_lock);
2173		if (f)
2174			fput(f);
2175		return 0;
2176	}
2177	spin_lock(&redirect_lock);
2178	if (redirect) {
2179		spin_unlock(&redirect_lock);
2180		return -EBUSY;
2181	}
2182	get_file(file);
2183	redirect = file;
2184	spin_unlock(&redirect_lock);
2185	return 0;
2186}
2187
2188/**
2189 *	fionbio		-	non blocking ioctl
2190 *	@file: file to set blocking value
2191 *	@p: user parameter
2192 *
2193 *	Historical tty interfaces had a blocking control ioctl before
2194 *	the generic functionality existed. This piece of history is preserved
2195 *	in the expected tty API of posix OS's.
2196 *
2197 *	Locking: none, the open file handle ensures it won't go away.
2198 */
2199
2200static int fionbio(struct file *file, int __user *p)
2201{
2202	int nonblock;
2203
2204	if (get_user(nonblock, p))
2205		return -EFAULT;
2206
2207	spin_lock(&file->f_lock);
2208	if (nonblock)
2209		file->f_flags |= O_NONBLOCK;
2210	else
2211		file->f_flags &= ~O_NONBLOCK;
2212	spin_unlock(&file->f_lock);
2213	return 0;
2214}
2215
2216/**
2217 *	tiocsctty	-	set controlling tty
2218 *	@tty: tty structure
2219 *	@arg: user argument
2220 *
2221 *	This ioctl is used to manage job control. It permits a session
2222 *	leader to set this tty as the controlling tty for the session.
2223 *
2224 *	Locking:
2225 *		Takes tty_mutex() to protect tty instance
2226 *		Takes tasklist_lock internally to walk sessions
2227 *		Takes ->siglock() when updating signal->tty
2228 */
2229
2230static int tiocsctty(struct tty_struct *tty, int arg)
2231{
2232	int ret = 0;
 
 
 
 
2233	if (current->signal->leader && (task_session(current) == tty->session))
2234		return ret;
2235
2236	mutex_lock(&tty_mutex);
2237	/*
2238	 * The process must be a session leader and
2239	 * not have a controlling tty already.
2240	 */
2241	if (!current->signal->leader || current->signal->tty) {
2242		ret = -EPERM;
2243		goto unlock;
2244	}
2245
2246	if (tty->session) {
2247		/*
2248		 * This tty is already the controlling
2249		 * tty for another session group!
2250		 */
2251		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2252			/*
2253			 * Steal it away
2254			 */
2255			read_lock(&tasklist_lock);
2256			session_clear_tty(tty->session);
2257			read_unlock(&tasklist_lock);
2258		} else {
2259			ret = -EPERM;
2260			goto unlock;
2261		}
2262	}
2263	proc_set_tty(current, tty);
 
 
 
 
 
 
 
2264unlock:
2265	mutex_unlock(&tty_mutex);
 
2266	return ret;
2267}
2268
2269/**
2270 *	tty_get_pgrp	-	return a ref counted pgrp pid
2271 *	@tty: tty to read
2272 *
2273 *	Returns a refcounted instance of the pid struct for the process
2274 *	group controlling the tty.
2275 */
2276
2277struct pid *tty_get_pgrp(struct tty_struct *tty)
2278{
2279	unsigned long flags;
2280	struct pid *pgrp;
2281
2282	spin_lock_irqsave(&tty->ctrl_lock, flags);
2283	pgrp = get_pid(tty->pgrp);
2284	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285
2286	return pgrp;
2287}
2288EXPORT_SYMBOL_GPL(tty_get_pgrp);
2289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2290/**
2291 *	tiocgpgrp		-	get process group
2292 *	@tty: tty passed by user
2293 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2294 *	@p: returned pid
2295 *
2296 *	Obtain the process group of the tty. If there is no process group
2297 *	return an error.
2298 *
2299 *	Locking: none. Reference to current->signal->tty is safe.
2300 */
2301
2302static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2303{
2304	struct pid *pid;
2305	int ret;
2306	/*
2307	 * (tty == real_tty) is a cheap way of
2308	 * testing if the tty is NOT a master pty.
2309	 */
2310	if (tty == real_tty && current->signal->tty != real_tty)
2311		return -ENOTTY;
2312	pid = tty_get_pgrp(real_tty);
2313	ret =  put_user(pid_vnr(pid), p);
2314	put_pid(pid);
2315	return ret;
2316}
2317
2318/**
2319 *	tiocspgrp		-	attempt to set process group
2320 *	@tty: tty passed by user
2321 *	@real_tty: tty side device matching tty passed by user
2322 *	@p: pid pointer
2323 *
2324 *	Set the process group of the tty to the session passed. Only
2325 *	permitted where the tty session is our session.
2326 *
2327 *	Locking: RCU, ctrl lock
2328 */
2329
2330static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2331{
2332	struct pid *pgrp;
2333	pid_t pgrp_nr;
2334	int retval = tty_check_change(real_tty);
2335	unsigned long flags;
2336
2337	if (retval == -EIO)
2338		return -ENOTTY;
2339	if (retval)
2340		return retval;
2341	if (!current->signal->tty ||
2342	    (current->signal->tty != real_tty) ||
2343	    (real_tty->session != task_session(current)))
2344		return -ENOTTY;
2345	if (get_user(pgrp_nr, p))
2346		return -EFAULT;
2347	if (pgrp_nr < 0)
2348		return -EINVAL;
2349	rcu_read_lock();
2350	pgrp = find_vpid(pgrp_nr);
2351	retval = -ESRCH;
2352	if (!pgrp)
2353		goto out_unlock;
2354	retval = -EPERM;
2355	if (session_of_pgrp(pgrp) != task_session(current))
2356		goto out_unlock;
2357	retval = 0;
2358	spin_lock_irqsave(&tty->ctrl_lock, flags);
2359	put_pid(real_tty->pgrp);
2360	real_tty->pgrp = get_pid(pgrp);
2361	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2362out_unlock:
2363	rcu_read_unlock();
2364	return retval;
2365}
2366
2367/**
2368 *	tiocgsid		-	get session id
2369 *	@tty: tty passed by user
2370 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2371 *	@p: pointer to returned session id
2372 *
2373 *	Obtain the session id of the tty. If there is no session
2374 *	return an error.
2375 *
2376 *	Locking: none. Reference to current->signal->tty is safe.
2377 */
2378
2379static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2380{
2381	/*
2382	 * (tty == real_tty) is a cheap way of
2383	 * testing if the tty is NOT a master pty.
2384	*/
2385	if (tty == real_tty && current->signal->tty != real_tty)
2386		return -ENOTTY;
2387	if (!real_tty->session)
2388		return -ENOTTY;
2389	return put_user(pid_vnr(real_tty->session), p);
2390}
2391
2392/**
2393 *	tiocsetd	-	set line discipline
2394 *	@tty: tty device
2395 *	@p: pointer to user data
2396 *
2397 *	Set the line discipline according to user request.
2398 *
2399 *	Locking: see tty_set_ldisc, this function is just a helper
2400 */
2401
2402static int tiocsetd(struct tty_struct *tty, int __user *p)
2403{
2404	int ldisc;
2405	int ret;
2406
2407	if (get_user(ldisc, p))
2408		return -EFAULT;
2409
2410	ret = tty_set_ldisc(tty, ldisc);
2411
2412	return ret;
2413}
2414
2415/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2416 *	send_break	-	performed time break
2417 *	@tty: device to break on
2418 *	@duration: timeout in mS
2419 *
2420 *	Perform a timed break on hardware that lacks its own driver level
2421 *	timed break functionality.
2422 *
2423 *	Locking:
2424 *		atomic_write_lock serializes
2425 *
2426 */
2427
2428static int send_break(struct tty_struct *tty, unsigned int duration)
2429{
2430	int retval;
2431
2432	if (tty->ops->break_ctl == NULL)
2433		return 0;
2434
2435	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2436		retval = tty->ops->break_ctl(tty, duration);
2437	else {
2438		/* Do the work ourselves */
2439		if (tty_write_lock(tty, 0) < 0)
2440			return -EINTR;
2441		retval = tty->ops->break_ctl(tty, -1);
2442		if (retval)
2443			goto out;
2444		if (!signal_pending(current))
2445			msleep_interruptible(duration);
2446		retval = tty->ops->break_ctl(tty, 0);
2447out:
2448		tty_write_unlock(tty);
2449		if (signal_pending(current))
2450			retval = -EINTR;
2451	}
2452	return retval;
2453}
2454
2455/**
2456 *	tty_tiocmget		-	get modem status
2457 *	@tty: tty device
2458 *	@file: user file pointer
2459 *	@p: pointer to result
2460 *
2461 *	Obtain the modem status bits from the tty driver if the feature
2462 *	is supported. Return -EINVAL if it is not available.
2463 *
2464 *	Locking: none (up to the driver)
2465 */
2466
2467static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2468{
2469	int retval = -EINVAL;
2470
2471	if (tty->ops->tiocmget) {
2472		retval = tty->ops->tiocmget(tty);
2473
2474		if (retval >= 0)
2475			retval = put_user(retval, p);
2476	}
2477	return retval;
2478}
2479
2480/**
2481 *	tty_tiocmset		-	set modem status
2482 *	@tty: tty device
2483 *	@cmd: command - clear bits, set bits or set all
2484 *	@p: pointer to desired bits
2485 *
2486 *	Set the modem status bits from the tty driver if the feature
2487 *	is supported. Return -EINVAL if it is not available.
2488 *
2489 *	Locking: none (up to the driver)
2490 */
2491
2492static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2493	     unsigned __user *p)
2494{
2495	int retval;
2496	unsigned int set, clear, val;
2497
2498	if (tty->ops->tiocmset == NULL)
2499		return -EINVAL;
2500
2501	retval = get_user(val, p);
2502	if (retval)
2503		return retval;
2504	set = clear = 0;
2505	switch (cmd) {
2506	case TIOCMBIS:
2507		set = val;
2508		break;
2509	case TIOCMBIC:
2510		clear = val;
2511		break;
2512	case TIOCMSET:
2513		set = val;
2514		clear = ~val;
2515		break;
2516	}
2517	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2518	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2519	return tty->ops->tiocmset(tty, set, clear);
2520}
2521
2522static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2523{
2524	int retval = -EINVAL;
2525	struct serial_icounter_struct icount;
2526	memset(&icount, 0, sizeof(icount));
2527	if (tty->ops->get_icount)
2528		retval = tty->ops->get_icount(tty, &icount);
2529	if (retval != 0)
2530		return retval;
2531	if (copy_to_user(arg, &icount, sizeof(icount)))
2532		return -EFAULT;
2533	return 0;
2534}
2535
2536struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2537{
2538	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2539	    tty->driver->subtype == PTY_TYPE_MASTER)
2540		tty = tty->link;
2541	return tty;
 
 
 
 
 
 
 
 
 
 
2542}
2543EXPORT_SYMBOL(tty_pair_get_tty);
2544
2545struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
2546{
2547	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2548	    tty->driver->subtype == PTY_TYPE_MASTER)
2549	    return tty;
2550	return tty->link;
2551}
2552EXPORT_SYMBOL(tty_pair_get_pty);
2553
2554/*
2555 * Split this up, as gcc can choke on it otherwise..
2556 */
2557long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2558{
2559	struct tty_struct *tty = file_tty(file);
2560	struct tty_struct *real_tty;
2561	void __user *p = (void __user *)arg;
2562	int retval;
2563	struct tty_ldisc *ld;
2564	struct inode *inode = file->f_dentry->d_inode;
2565
2566	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2567		return -EINVAL;
2568
2569	real_tty = tty_pair_get_tty(tty);
2570
2571	/*
2572	 * Factor out some common prep work
2573	 */
2574	switch (cmd) {
2575	case TIOCSETD:
2576	case TIOCSBRK:
2577	case TIOCCBRK:
2578	case TCSBRK:
2579	case TCSBRKP:
2580		retval = tty_check_change(tty);
2581		if (retval)
2582			return retval;
2583		if (cmd != TIOCCBRK) {
2584			tty_wait_until_sent(tty, 0);
2585			if (signal_pending(current))
2586				return -EINTR;
2587		}
2588		break;
2589	}
2590
2591	/*
2592	 *	Now do the stuff.
2593	 */
2594	switch (cmd) {
2595	case TIOCSTI:
2596		return tiocsti(tty, p);
2597	case TIOCGWINSZ:
2598		return tiocgwinsz(real_tty, p);
2599	case TIOCSWINSZ:
2600		return tiocswinsz(real_tty, p);
2601	case TIOCCONS:
2602		return real_tty != tty ? -EINVAL : tioccons(file);
2603	case FIONBIO:
2604		return fionbio(file, p);
2605	case TIOCEXCL:
2606		set_bit(TTY_EXCLUSIVE, &tty->flags);
2607		return 0;
2608	case TIOCNXCL:
2609		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2610		return 0;
 
 
 
 
 
2611	case TIOCNOTTY:
2612		if (current->signal->tty != tty)
2613			return -ENOTTY;
2614		no_tty();
2615		return 0;
2616	case TIOCSCTTY:
2617		return tiocsctty(tty, arg);
2618	case TIOCGPGRP:
2619		return tiocgpgrp(tty, real_tty, p);
2620	case TIOCSPGRP:
2621		return tiocspgrp(tty, real_tty, p);
2622	case TIOCGSID:
2623		return tiocgsid(tty, real_tty, p);
2624	case TIOCGETD:
2625		return put_user(tty->ldisc->ops->num, (int __user *)p);
2626	case TIOCSETD:
2627		return tiocsetd(tty, p);
2628	case TIOCVHANGUP:
2629		if (!capable(CAP_SYS_ADMIN))
2630			return -EPERM;
2631		tty_vhangup(tty);
2632		return 0;
2633	case TIOCGDEV:
2634	{
2635		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2636		return put_user(ret, (unsigned int __user *)p);
2637	}
2638	/*
2639	 * Break handling
2640	 */
2641	case TIOCSBRK:	/* Turn break on, unconditionally */
2642		if (tty->ops->break_ctl)
2643			return tty->ops->break_ctl(tty, -1);
2644		return 0;
2645	case TIOCCBRK:	/* Turn break off, unconditionally */
2646		if (tty->ops->break_ctl)
2647			return tty->ops->break_ctl(tty, 0);
2648		return 0;
2649	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2650		/* non-zero arg means wait for all output data
2651		 * to be sent (performed above) but don't send break.
2652		 * This is used by the tcdrain() termios function.
2653		 */
2654		if (!arg)
2655			return send_break(tty, 250);
2656		return 0;
2657	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2658		return send_break(tty, arg ? arg*100 : 250);
2659
2660	case TIOCMGET:
2661		return tty_tiocmget(tty, p);
2662	case TIOCMSET:
2663	case TIOCMBIC:
2664	case TIOCMBIS:
2665		return tty_tiocmset(tty, cmd, p);
2666	case TIOCGICOUNT:
2667		retval = tty_tiocgicount(tty, p);
2668		/* For the moment allow fall through to the old method */
2669        	if (retval != -EINVAL)
2670			return retval;
2671		break;
2672	case TCFLSH:
2673		switch (arg) {
2674		case TCIFLUSH:
2675		case TCIOFLUSH:
2676		/* flush tty buffer and allow ldisc to process ioctl */
2677			tty_buffer_flush(tty);
2678			break;
2679		}
2680		break;
 
 
 
2681	}
2682	if (tty->ops->ioctl) {
2683		retval = (tty->ops->ioctl)(tty, cmd, arg);
2684		if (retval != -ENOIOCTLCMD)
2685			return retval;
2686	}
2687	ld = tty_ldisc_ref_wait(tty);
 
 
2688	retval = -EINVAL;
2689	if (ld->ops->ioctl) {
2690		retval = ld->ops->ioctl(tty, file, cmd, arg);
2691		if (retval == -ENOIOCTLCMD)
2692			retval = -EINVAL;
2693	}
2694	tty_ldisc_deref(ld);
2695	return retval;
2696}
2697
2698#ifdef CONFIG_COMPAT
2699static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2700				unsigned long arg)
2701{
2702	struct inode *inode = file->f_dentry->d_inode;
2703	struct tty_struct *tty = file_tty(file);
2704	struct tty_ldisc *ld;
2705	int retval = -ENOIOCTLCMD;
2706
2707	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2708		return -EINVAL;
2709
2710	if (tty->ops->compat_ioctl) {
2711		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2712		if (retval != -ENOIOCTLCMD)
2713			return retval;
2714	}
2715
2716	ld = tty_ldisc_ref_wait(tty);
 
 
2717	if (ld->ops->compat_ioctl)
2718		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
 
 
2719	tty_ldisc_deref(ld);
2720
2721	return retval;
2722}
2723#endif
2724
 
 
 
 
 
 
 
2725/*
2726 * This implements the "Secure Attention Key" ---  the idea is to
2727 * prevent trojan horses by killing all processes associated with this
2728 * tty when the user hits the "Secure Attention Key".  Required for
2729 * super-paranoid applications --- see the Orange Book for more details.
2730 *
2731 * This code could be nicer; ideally it should send a HUP, wait a few
2732 * seconds, then send a INT, and then a KILL signal.  But you then
2733 * have to coordinate with the init process, since all processes associated
2734 * with the current tty must be dead before the new getty is allowed
2735 * to spawn.
2736 *
2737 * Now, if it would be correct ;-/ The current code has a nasty hole -
2738 * it doesn't catch files in flight. We may send the descriptor to ourselves
2739 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2740 *
2741 * Nasty bug: do_SAK is being called in interrupt context.  This can
2742 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2743 */
2744void __do_SAK(struct tty_struct *tty)
2745{
2746#ifdef TTY_SOFT_SAK
2747	tty_hangup(tty);
2748#else
2749	struct task_struct *g, *p;
2750	struct pid *session;
2751	int		i;
2752	struct file	*filp;
2753	struct fdtable *fdt;
2754
2755	if (!tty)
2756		return;
2757	session = tty->session;
2758
2759	tty_ldisc_flush(tty);
2760
2761	tty_driver_flush_buffer(tty);
2762
2763	read_lock(&tasklist_lock);
2764	/* Kill the entire session */
2765	do_each_pid_task(session, PIDTYPE_SID, p) {
2766		printk(KERN_NOTICE "SAK: killed process %d"
2767			" (%s): task_session(p)==tty->session\n",
2768			task_pid_nr(p), p->comm);
2769		send_sig(SIGKILL, p, 1);
2770	} while_each_pid_task(session, PIDTYPE_SID, p);
2771	/* Now kill any processes that happen to have the
2772	 * tty open.
2773	 */
2774	do_each_thread(g, p) {
2775		if (p->signal->tty == tty) {
2776			printk(KERN_NOTICE "SAK: killed process %d"
2777			    " (%s): task_session(p)==tty->session\n",
2778			    task_pid_nr(p), p->comm);
2779			send_sig(SIGKILL, p, 1);
2780			continue;
2781		}
2782		task_lock(p);
2783		if (p->files) {
2784			/*
2785			 * We don't take a ref to the file, so we must
2786			 * hold ->file_lock instead.
2787			 */
2788			spin_lock(&p->files->file_lock);
2789			fdt = files_fdtable(p->files);
2790			for (i = 0; i < fdt->max_fds; i++) {
2791				filp = fcheck_files(p->files, i);
2792				if (!filp)
2793					continue;
2794				if (filp->f_op->read == tty_read &&
2795				    file_tty(filp) == tty) {
2796					printk(KERN_NOTICE "SAK: killed process %d"
2797					    " (%s): fd#%d opened to the tty\n",
2798					    task_pid_nr(p), p->comm, i);
2799					force_sig(SIGKILL, p);
2800					break;
2801				}
2802			}
2803			spin_unlock(&p->files->file_lock);
2804		}
2805		task_unlock(p);
2806	} while_each_thread(g, p);
2807	read_unlock(&tasklist_lock);
2808#endif
2809}
2810
2811static void do_SAK_work(struct work_struct *work)
2812{
2813	struct tty_struct *tty =
2814		container_of(work, struct tty_struct, SAK_work);
2815	__do_SAK(tty);
2816}
2817
2818/*
2819 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2820 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2821 * the values which we write to it will be identical to the values which it
2822 * already has. --akpm
2823 */
2824void do_SAK(struct tty_struct *tty)
2825{
2826	if (!tty)
2827		return;
2828	schedule_work(&tty->SAK_work);
2829}
2830
2831EXPORT_SYMBOL(do_SAK);
2832
2833static int dev_match_devt(struct device *dev, void *data)
2834{
2835	dev_t *devt = data;
2836	return dev->devt == *devt;
2837}
2838
2839/* Must put_device() after it's unused! */
2840static struct device *tty_get_device(struct tty_struct *tty)
2841{
2842	dev_t devt = tty_devnum(tty);
2843	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2844}
2845
2846
2847/**
2848 *	initialize_tty_struct
2849 *	@tty: tty to initialize
2850 *
2851 *	This subroutine initializes a tty structure that has been newly
2852 *	allocated.
2853 *
2854 *	Locking: none - tty in question must not be exposed at this point
2855 */
2856
2857void initialize_tty_struct(struct tty_struct *tty,
2858		struct tty_driver *driver, int idx)
2859{
2860	memset(tty, 0, sizeof(struct tty_struct));
 
 
 
 
 
2861	kref_init(&tty->kref);
2862	tty->magic = TTY_MAGIC;
2863	tty_ldisc_init(tty);
2864	tty->session = NULL;
2865	tty->pgrp = NULL;
2866	tty->overrun_time = jiffies;
2867	tty->buf.head = tty->buf.tail = NULL;
2868	tty_buffer_init(tty);
2869	mutex_init(&tty->termios_mutex);
2870	mutex_init(&tty->ldisc_mutex);
2871	init_waitqueue_head(&tty->write_wait);
2872	init_waitqueue_head(&tty->read_wait);
2873	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2874	mutex_init(&tty->atomic_read_lock);
2875	mutex_init(&tty->atomic_write_lock);
2876	mutex_init(&tty->output_lock);
2877	mutex_init(&tty->echo_lock);
2878	spin_lock_init(&tty->read_lock);
2879	spin_lock_init(&tty->ctrl_lock);
 
 
2880	INIT_LIST_HEAD(&tty->tty_files);
2881	INIT_WORK(&tty->SAK_work, do_SAK_work);
2882
2883	tty->driver = driver;
2884	tty->ops = driver->ops;
2885	tty->index = idx;
2886	tty_line_name(driver, idx, tty->name);
2887	tty->dev = tty_get_device(tty);
2888}
2889
2890/**
2891 *	deinitialize_tty_struct
2892 *	@tty: tty to deinitialize
2893 *
2894 *	This subroutine deinitializes a tty structure that has been newly
2895 *	allocated but tty_release cannot be called on that yet.
2896 *
2897 *	Locking: none - tty in question must not be exposed at this point
2898 */
2899void deinitialize_tty_struct(struct tty_struct *tty)
2900{
2901	tty_ldisc_deinit(tty);
2902}
2903
2904/**
2905 *	tty_put_char	-	write one character to a tty
2906 *	@tty: tty
2907 *	@ch: character
2908 *
2909 *	Write one byte to the tty using the provided put_char method
2910 *	if present. Returns the number of characters successfully output.
2911 *
2912 *	Note: the specific put_char operation in the driver layer may go
2913 *	away soon. Don't call it directly, use this method
2914 */
2915
2916int tty_put_char(struct tty_struct *tty, unsigned char ch)
2917{
2918	if (tty->ops->put_char)
2919		return tty->ops->put_char(tty, ch);
2920	return tty->ops->write(tty, &ch, 1);
2921}
2922EXPORT_SYMBOL_GPL(tty_put_char);
2923
2924struct class *tty_class;
2925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2926/**
2927 *	tty_register_device - register a tty device
2928 *	@driver: the tty driver that describes the tty device
2929 *	@index: the index in the tty driver for this tty device
2930 *	@device: a struct device that is associated with this tty device.
2931 *		This field is optional, if there is no known struct device
2932 *		for this tty device it can be set to NULL safely.
2933 *
2934 *	Returns a pointer to the struct device for this tty device
2935 *	(or ERR_PTR(-EFOO) on error).
2936 *
2937 *	This call is required to be made to register an individual tty device
2938 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2939 *	that bit is not set, this function should not be called by a tty
2940 *	driver.
2941 *
2942 *	Locking: ??
2943 */
2944
2945struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2946				   struct device *device)
2947{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948	char name[64];
2949	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
2950
2951	if (index >= driver->num) {
2952		printk(KERN_ERR "Attempt to register invalid tty line number "
2953		       " (%d).\n", index);
2954		return ERR_PTR(-EINVAL);
2955	}
2956
2957	if (driver->type == TTY_DRIVER_TYPE_PTY)
2958		pty_line_name(driver, index, name);
2959	else
2960		tty_line_name(driver, index, name);
2961
2962	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2963}
2964EXPORT_SYMBOL(tty_register_device);
2965
2966/**
2967 * 	tty_unregister_device - unregister a tty device
2968 * 	@driver: the tty driver that describes the tty device
2969 * 	@index: the index in the tty driver for this tty device
2970 *
2971 * 	If a tty device is registered with a call to tty_register_device() then
2972 *	this function must be called when the tty device is gone.
2973 *
2974 *	Locking: ??
2975 */
2976
2977void tty_unregister_device(struct tty_driver *driver, unsigned index)
2978{
2979	device_destroy(tty_class,
2980		MKDEV(driver->major, driver->minor_start) + index);
 
 
 
 
2981}
2982EXPORT_SYMBOL(tty_unregister_device);
2983
2984struct tty_driver *alloc_tty_driver(int lines)
 
 
 
 
 
 
 
 
 
 
2985{
2986	struct tty_driver *driver;
 
 
 
 
 
2987
2988	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2989	if (driver) {
2990		kref_init(&driver->kref);
2991		driver->magic = TTY_DRIVER_MAGIC;
2992		driver->num = lines;
2993		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
 
 
 
 
 
2994	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995	return driver;
 
 
 
 
 
 
 
2996}
2997EXPORT_SYMBOL(alloc_tty_driver);
2998
2999static void destruct_tty_driver(struct kref *kref)
3000{
3001	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3002	int i;
3003	struct ktermios *tp;
3004	void *p;
3005
3006	if (driver->flags & TTY_DRIVER_INSTALLED) {
3007		/*
3008		 * Free the termios and termios_locked structures because
3009		 * we don't want to get memory leaks when modular tty
3010		 * drivers are removed from the kernel.
3011		 */
3012		for (i = 0; i < driver->num; i++) {
3013			tp = driver->termios[i];
3014			if (tp) {
3015				driver->termios[i] = NULL;
3016				kfree(tp);
3017			}
3018			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3019				tty_unregister_device(driver, i);
3020		}
3021		p = driver->ttys;
3022		proc_tty_unregister_driver(driver);
3023		driver->ttys = NULL;
3024		driver->termios = NULL;
3025		kfree(p);
3026		cdev_del(&driver->cdev);
3027	}
 
 
 
 
3028	kfree(driver);
3029}
3030
3031void tty_driver_kref_put(struct tty_driver *driver)
3032{
3033	kref_put(&driver->kref, destruct_tty_driver);
3034}
3035EXPORT_SYMBOL(tty_driver_kref_put);
3036
3037void tty_set_operations(struct tty_driver *driver,
3038			const struct tty_operations *op)
3039{
3040	driver->ops = op;
3041};
3042EXPORT_SYMBOL(tty_set_operations);
3043
3044void put_tty_driver(struct tty_driver *d)
3045{
3046	tty_driver_kref_put(d);
3047}
3048EXPORT_SYMBOL(put_tty_driver);
3049
3050/*
3051 * Called by a tty driver to register itself.
3052 */
3053int tty_register_driver(struct tty_driver *driver)
3054{
3055	int error;
3056	int i;
3057	dev_t dev;
3058	void **p = NULL;
3059	struct device *d;
3060
3061	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3062		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3063		if (!p)
3064			return -ENOMEM;
3065	}
3066
3067	if (!driver->major) {
3068		error = alloc_chrdev_region(&dev, driver->minor_start,
3069						driver->num, driver->name);
3070		if (!error) {
3071			driver->major = MAJOR(dev);
3072			driver->minor_start = MINOR(dev);
3073		}
3074	} else {
3075		dev = MKDEV(driver->major, driver->minor_start);
3076		error = register_chrdev_region(dev, driver->num, driver->name);
3077	}
3078	if (error < 0) {
3079		kfree(p);
3080		return error;
3081	}
3082
3083	if (p) {
3084		driver->ttys = (struct tty_struct **)p;
3085		driver->termios = (struct ktermios **)(p + driver->num);
3086	} else {
3087		driver->ttys = NULL;
3088		driver->termios = NULL;
3089	}
3090
3091	cdev_init(&driver->cdev, &tty_fops);
3092	driver->cdev.owner = driver->owner;
3093	error = cdev_add(&driver->cdev, dev, driver->num);
3094	if (error) {
3095		unregister_chrdev_region(dev, driver->num);
3096		driver->ttys = NULL;
3097		driver->termios = NULL;
3098		kfree(p);
3099		return error;
3100	}
3101
3102	mutex_lock(&tty_mutex);
3103	list_add(&driver->tty_drivers, &tty_drivers);
3104	mutex_unlock(&tty_mutex);
3105
3106	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3107		for (i = 0; i < driver->num; i++) {
3108			d = tty_register_device(driver, i, NULL);
3109			if (IS_ERR(d)) {
3110				error = PTR_ERR(d);
3111				goto err;
3112			}
3113		}
3114	}
3115	proc_tty_register_driver(driver);
3116	driver->flags |= TTY_DRIVER_INSTALLED;
3117	return 0;
3118
3119err:
3120	for (i--; i >= 0; i--)
3121		tty_unregister_device(driver, i);
3122
3123	mutex_lock(&tty_mutex);
3124	list_del(&driver->tty_drivers);
3125	mutex_unlock(&tty_mutex);
3126
 
3127	unregister_chrdev_region(dev, driver->num);
3128	driver->ttys = NULL;
3129	driver->termios = NULL;
3130	kfree(p);
3131	return error;
3132}
3133
3134EXPORT_SYMBOL(tty_register_driver);
3135
3136/*
3137 * Called by a tty driver to unregister itself.
3138 */
3139int tty_unregister_driver(struct tty_driver *driver)
3140{
3141#if 0
3142	/* FIXME */
3143	if (driver->refcount)
3144		return -EBUSY;
3145#endif
3146	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3147				driver->num);
3148	mutex_lock(&tty_mutex);
3149	list_del(&driver->tty_drivers);
3150	mutex_unlock(&tty_mutex);
3151	return 0;
3152}
3153
3154EXPORT_SYMBOL(tty_unregister_driver);
3155
3156dev_t tty_devnum(struct tty_struct *tty)
3157{
3158	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3159}
3160EXPORT_SYMBOL(tty_devnum);
3161
3162void proc_clear_tty(struct task_struct *p)
3163{
3164	unsigned long flags;
3165	struct tty_struct *tty;
3166	spin_lock_irqsave(&p->sighand->siglock, flags);
3167	tty = p->signal->tty;
3168	p->signal->tty = NULL;
3169	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3170	tty_kref_put(tty);
3171}
3172
3173/* Called under the sighand lock */
3174
3175static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3176{
3177	if (tty) {
3178		unsigned long flags;
3179		/* We should not have a session or pgrp to put here but.... */
3180		spin_lock_irqsave(&tty->ctrl_lock, flags);
3181		put_pid(tty->session);
3182		put_pid(tty->pgrp);
3183		tty->pgrp = get_pid(task_pgrp(tsk));
3184		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3185		tty->session = get_pid(task_session(tsk));
3186		if (tsk->signal->tty) {
3187			printk(KERN_DEBUG "tty not NULL!!\n");
3188			tty_kref_put(tsk->signal->tty);
3189		}
3190	}
3191	put_pid(tsk->signal->tty_old_pgrp);
3192	tsk->signal->tty = tty_kref_get(tty);
3193	tsk->signal->tty_old_pgrp = NULL;
3194}
3195
3196static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3197{
3198	spin_lock_irq(&tsk->sighand->siglock);
3199	__proc_set_tty(tsk, tty);
3200	spin_unlock_irq(&tsk->sighand->siglock);
3201}
3202
3203struct tty_struct *get_current_tty(void)
3204{
3205	struct tty_struct *tty;
3206	unsigned long flags;
3207
3208	spin_lock_irqsave(&current->sighand->siglock, flags);
3209	tty = tty_kref_get(current->signal->tty);
3210	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3211	return tty;
3212}
3213EXPORT_SYMBOL_GPL(get_current_tty);
3214
3215void tty_default_fops(struct file_operations *fops)
3216{
3217	*fops = tty_fops;
3218}
3219
3220/*
3221 * Initialize the console device. This is called *early*, so
3222 * we can't necessarily depend on lots of kernel help here.
3223 * Just do some early initializations, and do the complex setup
3224 * later.
3225 */
3226void __init console_init(void)
3227{
3228	initcall_t *call;
3229
3230	/* Setup the default TTY line discipline. */
3231	tty_ldisc_begin();
3232
3233	/*
3234	 * set up the console device so that later boot sequences can
3235	 * inform about problems etc..
3236	 */
3237	call = __con_initcall_start;
3238	while (call < __con_initcall_end) {
3239		(*call)();
3240		call++;
3241	}
3242}
3243
3244static char *tty_devnode(struct device *dev, mode_t *mode)
3245{
3246	if (!mode)
3247		return NULL;
3248	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3249	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3250		*mode = 0666;
3251	return NULL;
3252}
3253
3254static int __init tty_class_init(void)
3255{
3256	tty_class = class_create(THIS_MODULE, "tty");
3257	if (IS_ERR(tty_class))
3258		return PTR_ERR(tty_class);
3259	tty_class->devnode = tty_devnode;
3260	return 0;
3261}
3262
3263postcore_initcall(tty_class_init);
3264
3265/* 3/2004 jmc: why do these devices exist? */
3266static struct cdev tty_cdev, console_cdev;
3267
3268static ssize_t show_cons_active(struct device *dev,
3269				struct device_attribute *attr, char *buf)
3270{
3271	struct console *cs[16];
3272	int i = 0;
3273	struct console *c;
3274	ssize_t count = 0;
3275
3276	console_lock();
3277	for_each_console(c) {
3278		if (!c->device)
3279			continue;
3280		if (!c->write)
3281			continue;
3282		if ((c->flags & CON_ENABLED) == 0)
3283			continue;
3284		cs[i++] = c;
3285		if (i >= ARRAY_SIZE(cs))
3286			break;
3287	}
3288	while (i--)
3289		count += sprintf(buf + count, "%s%d%c",
3290				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
3291	console_unlock();
3292
3293	return count;
3294}
3295static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3296
 
 
 
 
 
 
 
3297static struct device *consdev;
3298
3299void console_sysfs_notify(void)
3300{
3301	if (consdev)
3302		sysfs_notify(&consdev->kobj, NULL, "active");
3303}
3304
3305/*
3306 * Ok, now we can initialize the rest of the tty devices and can count
3307 * on memory allocations, interrupts etc..
3308 */
3309int __init tty_init(void)
3310{
3311	cdev_init(&tty_cdev, &tty_fops);
3312	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3313	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3314		panic("Couldn't register /dev/tty driver\n");
3315	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3316
3317	cdev_init(&console_cdev, &console_fops);
3318	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3319	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3320		panic("Couldn't register /dev/console driver\n");
3321	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3322			      "console");
 
3323	if (IS_ERR(consdev))
3324		consdev = NULL;
3325	else
3326		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3327
3328#ifdef CONFIG_VT
3329	vty_init(&console_fops);
3330#endif
3331	return 0;
3332}
3333
v4.6
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 
 139DEFINE_MUTEX(tty_mutex);
 
 
 
 
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 
 231}
 232
 233
 234#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 235
 236/**
 237 *	tty_name	-	return tty naming
 238 *	@tty: tty structure
 
 239 *
 240 *	Convert a tty structure into a name. The name reflects the kernel
 241 *	naming policy and if udev is in use may not reflect user space
 242 *
 243 *	Locking: none
 244 */
 245
 246const char *tty_name(const struct tty_struct *tty)
 247{
 248	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 249		return "NULL tty";
 250	return tty->name;
 
 
 251}
 252
 253EXPORT_SYMBOL(tty_name);
 254
 255const char *tty_driver_name(const struct tty_struct *tty)
 256{
 257	if (!tty || !tty->driver)
 258		return "";
 259	return tty->driver->name;
 260}
 261
 262static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 263			      const char *routine)
 264{
 265#ifdef TTY_PARANOIA_CHECK
 266	if (!tty) {
 267		pr_warn("(%d:%d): %s: NULL tty\n",
 
 268			imajor(inode), iminor(inode), routine);
 269		return 1;
 270	}
 271	if (tty->magic != TTY_MAGIC) {
 272		pr_warn("(%d:%d): %s: bad magic number\n",
 
 273			imajor(inode), iminor(inode), routine);
 274		return 1;
 275	}
 276#endif
 277	return 0;
 278}
 279
 280/* Caller must hold tty_lock */
 281static int check_tty_count(struct tty_struct *tty, const char *routine)
 282{
 283#ifdef CHECK_TTY_COUNT
 284	struct list_head *p;
 285	int count = 0;
 286
 287	spin_lock(&tty->files_lock);
 288	list_for_each(p, &tty->tty_files) {
 289		count++;
 290	}
 291	spin_unlock(&tty->files_lock);
 292	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 293	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 294	    tty->link && tty->link->count)
 295		count++;
 296	if (tty->count != count) {
 297		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 298			 routine, tty->count, count);
 
 299		return count;
 300	}
 301#endif
 302	return 0;
 303}
 304
 305/**
 306 *	get_tty_driver		-	find device of a tty
 307 *	@dev_t: device identifier
 308 *	@index: returns the index of the tty
 309 *
 310 *	This routine returns a tty driver structure, given a device number
 311 *	and also passes back the index number.
 312 *
 313 *	Locking: caller must hold tty_mutex
 314 */
 315
 316static struct tty_driver *get_tty_driver(dev_t device, int *index)
 317{
 318	struct tty_driver *p;
 319
 320	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 321		dev_t base = MKDEV(p->major, p->minor_start);
 322		if (device < base || device >= base + p->num)
 323			continue;
 324		*index = device - base;
 325		return tty_driver_kref_get(p);
 326	}
 327	return NULL;
 328}
 329
 330#ifdef CONFIG_CONSOLE_POLL
 331
 332/**
 333 *	tty_find_polling_driver	-	find device of a polled tty
 334 *	@name: name string to match
 335 *	@line: pointer to resulting tty line nr
 336 *
 337 *	This routine returns a tty driver structure, given a name
 338 *	and the condition that the tty driver is capable of polled
 339 *	operation.
 340 */
 341struct tty_driver *tty_find_polling_driver(char *name, int *line)
 342{
 343	struct tty_driver *p, *res = NULL;
 344	int tty_line = 0;
 345	int len;
 346	char *str, *stp;
 347
 348	for (str = name; *str; str++)
 349		if ((*str >= '0' && *str <= '9') || *str == ',')
 350			break;
 351	if (!*str)
 352		return NULL;
 353
 354	len = str - name;
 355	tty_line = simple_strtoul(str, &str, 10);
 356
 357	mutex_lock(&tty_mutex);
 358	/* Search through the tty devices to look for a match */
 359	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 360		if (strncmp(name, p->name, len) != 0)
 361			continue;
 362		stp = str;
 363		if (*stp == ',')
 364			stp++;
 365		if (*stp == '\0')
 366			stp = NULL;
 367
 368		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 369		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 370			res = tty_driver_kref_get(p);
 371			*line = tty_line;
 372			break;
 373		}
 374	}
 375	mutex_unlock(&tty_mutex);
 376
 377	return res;
 378}
 379EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 380#endif
 381
 382static int is_ignored(int sig)
 383{
 384	return (sigismember(&current->blocked, sig) ||
 385		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 386}
 387
 388/**
 389 *	tty_check_change	-	check for POSIX terminal changes
 390 *	@tty: tty to check
 391 *
 392 *	If we try to write to, or set the state of, a terminal and we're
 393 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 394 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 395 *
 396 *	Locking: ctrl_lock
 397 */
 398
 399int __tty_check_change(struct tty_struct *tty, int sig)
 400{
 401	unsigned long flags;
 402	struct pid *pgrp, *tty_pgrp;
 403	int ret = 0;
 404
 405	if (current->signal->tty != tty)
 406		return 0;
 407
 408	rcu_read_lock();
 409	pgrp = task_pgrp(current);
 410
 411	spin_lock_irqsave(&tty->ctrl_lock, flags);
 412	tty_pgrp = tty->pgrp;
 
 
 
 
 413	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 414
 415	if (tty_pgrp && pgrp != tty->pgrp) {
 416		if (is_ignored(sig)) {
 417			if (sig == SIGTTIN)
 418				ret = -EIO;
 419		} else if (is_current_pgrp_orphaned())
 420			ret = -EIO;
 421		else {
 422			kill_pgrp(pgrp, sig, 1);
 423			set_thread_flag(TIF_SIGPENDING);
 424			ret = -ERESTARTSYS;
 425		}
 426	}
 427	rcu_read_unlock();
 428
 429	if (!tty_pgrp)
 430		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 431
 
 
 432	return ret;
 433}
 434
 435int tty_check_change(struct tty_struct *tty)
 436{
 437	return __tty_check_change(tty, SIGTTOU);
 438}
 439EXPORT_SYMBOL(tty_check_change);
 440
 441static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 442				size_t count, loff_t *ppos)
 443{
 444	return 0;
 445}
 446
 447static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 448				 size_t count, loff_t *ppos)
 449{
 450	return -EIO;
 451}
 452
 453/* No kernel lock held - none needed ;) */
 454static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 455{
 456	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 457}
 458
 459static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 460		unsigned long arg)
 461{
 462	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 463}
 464
 465static long hung_up_tty_compat_ioctl(struct file *file,
 466				     unsigned int cmd, unsigned long arg)
 467{
 468	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 469}
 470
 471static int hung_up_tty_fasync(int fd, struct file *file, int on)
 472{
 473	return -ENOTTY;
 474}
 475
 476static const struct file_operations tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= tty_read,
 479	.write		= tty_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486};
 487
 488static const struct file_operations console_fops = {
 489	.llseek		= no_llseek,
 490	.read		= tty_read,
 491	.write		= redirected_tty_write,
 492	.poll		= tty_poll,
 493	.unlocked_ioctl	= tty_ioctl,
 494	.compat_ioctl	= tty_compat_ioctl,
 495	.open		= tty_open,
 496	.release	= tty_release,
 497	.fasync		= tty_fasync,
 498};
 499
 500static const struct file_operations hung_up_tty_fops = {
 501	.llseek		= no_llseek,
 502	.read		= hung_up_tty_read,
 503	.write		= hung_up_tty_write,
 504	.poll		= hung_up_tty_poll,
 505	.unlocked_ioctl	= hung_up_tty_ioctl,
 506	.compat_ioctl	= hung_up_tty_compat_ioctl,
 507	.release	= tty_release,
 508	.fasync		= hung_up_tty_fasync,
 509};
 510
 511static DEFINE_SPINLOCK(redirect_lock);
 512static struct file *redirect;
 513
 514
 515void proc_clear_tty(struct task_struct *p)
 516{
 517	unsigned long flags;
 518	struct tty_struct *tty;
 519	spin_lock_irqsave(&p->sighand->siglock, flags);
 520	tty = p->signal->tty;
 521	p->signal->tty = NULL;
 522	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 523	tty_kref_put(tty);
 524}
 525
 526/**
 527 * proc_set_tty -  set the controlling terminal
 528 *
 529 * Only callable by the session leader and only if it does not already have
 530 * a controlling terminal.
 531 *
 532 * Caller must hold:  tty_lock()
 533 *		      a readlock on tasklist_lock
 534 *		      sighand lock
 535 */
 536static void __proc_set_tty(struct tty_struct *tty)
 537{
 538	unsigned long flags;
 539
 540	spin_lock_irqsave(&tty->ctrl_lock, flags);
 541	/*
 542	 * The session and fg pgrp references will be non-NULL if
 543	 * tiocsctty() is stealing the controlling tty
 544	 */
 545	put_pid(tty->session);
 546	put_pid(tty->pgrp);
 547	tty->pgrp = get_pid(task_pgrp(current));
 548	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 549	tty->session = get_pid(task_session(current));
 550	if (current->signal->tty) {
 551		tty_debug(tty, "current tty %s not NULL!!\n",
 552			  current->signal->tty->name);
 553		tty_kref_put(current->signal->tty);
 554	}
 555	put_pid(current->signal->tty_old_pgrp);
 556	current->signal->tty = tty_kref_get(tty);
 557	current->signal->tty_old_pgrp = NULL;
 558}
 559
 560static void proc_set_tty(struct tty_struct *tty)
 561{
 562	spin_lock_irq(&current->sighand->siglock);
 563	__proc_set_tty(tty);
 564	spin_unlock_irq(&current->sighand->siglock);
 565}
 566
 567struct tty_struct *get_current_tty(void)
 568{
 569	struct tty_struct *tty;
 570	unsigned long flags;
 571
 572	spin_lock_irqsave(&current->sighand->siglock, flags);
 573	tty = tty_kref_get(current->signal->tty);
 574	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 575	return tty;
 576}
 577EXPORT_SYMBOL_GPL(get_current_tty);
 578
 579static void session_clear_tty(struct pid *session)
 580{
 581	struct task_struct *p;
 582	do_each_pid_task(session, PIDTYPE_SID, p) {
 583		proc_clear_tty(p);
 584	} while_each_pid_task(session, PIDTYPE_SID, p);
 585}
 586
 587/**
 588 *	tty_wakeup	-	request more data
 589 *	@tty: terminal
 590 *
 591 *	Internal and external helper for wakeups of tty. This function
 592 *	informs the line discipline if present that the driver is ready
 593 *	to receive more output data.
 594 */
 595
 596void tty_wakeup(struct tty_struct *tty)
 597{
 598	struct tty_ldisc *ld;
 599
 600	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 601		ld = tty_ldisc_ref(tty);
 602		if (ld) {
 603			if (ld->ops->write_wakeup)
 604				ld->ops->write_wakeup(tty);
 605			tty_ldisc_deref(ld);
 606		}
 607	}
 608	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 609}
 610
 611EXPORT_SYMBOL_GPL(tty_wakeup);
 612
 613/**
 614 *	tty_signal_session_leader	- sends SIGHUP to session leader
 615 *	@tty		controlling tty
 616 *	@exit_session	if non-zero, signal all foreground group processes
 617 *
 618 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 619 *	Optionally, signal all processes in the foreground process group.
 620 *
 621 *	Returns the number of processes in the session with this tty
 622 *	as their controlling terminal. This value is used to drop
 623 *	tty references for those processes.
 624 */
 625static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 626{
 627	struct task_struct *p;
 628	int refs = 0;
 629	struct pid *tty_pgrp = NULL;
 630
 631	read_lock(&tasklist_lock);
 632	if (tty->session) {
 633		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 634			spin_lock_irq(&p->sighand->siglock);
 635			if (p->signal->tty == tty) {
 636				p->signal->tty = NULL;
 637				/* We defer the dereferences outside fo
 638				   the tasklist lock */
 639				refs++;
 640			}
 641			if (!p->signal->leader) {
 642				spin_unlock_irq(&p->sighand->siglock);
 643				continue;
 644			}
 645			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 646			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 647			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 648			spin_lock(&tty->ctrl_lock);
 649			tty_pgrp = get_pid(tty->pgrp);
 650			if (tty->pgrp)
 651				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 652			spin_unlock(&tty->ctrl_lock);
 653			spin_unlock_irq(&p->sighand->siglock);
 654		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 655	}
 656	read_unlock(&tasklist_lock);
 657
 658	if (tty_pgrp) {
 659		if (exit_session)
 660			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 661		put_pid(tty_pgrp);
 662	}
 663
 664	return refs;
 665}
 666
 667/**
 668 *	__tty_hangup		-	actual handler for hangup events
 669 *	@work: tty device
 670 *
 671 *	This can be called by a "kworker" kernel thread.  That is process
 672 *	synchronous but doesn't hold any locks, so we need to make sure we
 673 *	have the appropriate locks for what we're doing.
 674 *
 675 *	The hangup event clears any pending redirections onto the hung up
 676 *	device. It ensures future writes will error and it does the needed
 677 *	line discipline hangup and signal delivery. The tty object itself
 678 *	remains intact.
 679 *
 680 *	Locking:
 681 *		BTM
 682 *		  redirect lock for undoing redirection
 683 *		  file list lock for manipulating list of ttys
 684 *		  tty_ldiscs_lock from called functions
 685 *		  termios_rwsem resetting termios data
 686 *		  tasklist_lock to walk task list for hangup event
 687 *		    ->siglock to protect ->signal/->sighand
 688 */
 689static void __tty_hangup(struct tty_struct *tty, int exit_session)
 690{
 691	struct file *cons_filp = NULL;
 692	struct file *filp, *f = NULL;
 
 693	struct tty_file_private *priv;
 694	int    closecount = 0, n;
 695	int refs;
 
 696
 697	if (!tty)
 698		return;
 699
 700
 701	spin_lock(&redirect_lock);
 702	if (redirect && file_tty(redirect) == tty) {
 703		f = redirect;
 704		redirect = NULL;
 705	}
 706	spin_unlock(&redirect_lock);
 707
 708	tty_lock(tty);
 709
 710	if (test_bit(TTY_HUPPED, &tty->flags)) {
 711		tty_unlock(tty);
 712		return;
 713	}
 714
 715	/* inuse_filps is protected by the single tty lock,
 716	   this really needs to change if we want to flush the
 717	   workqueue with the lock held */
 718	check_tty_count(tty, "tty_hangup");
 719
 720	spin_lock(&tty->files_lock);
 721	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 722	list_for_each_entry(priv, &tty->tty_files, list) {
 723		filp = priv->file;
 724		if (filp->f_op->write == redirected_tty_write)
 725			cons_filp = filp;
 726		if (filp->f_op->write != tty_write)
 727			continue;
 728		closecount++;
 729		__tty_fasync(-1, filp, 0);	/* can't block */
 730		filp->f_op = &hung_up_tty_fops;
 731	}
 732	spin_unlock(&tty->files_lock);
 733
 734	refs = tty_signal_session_leader(tty, exit_session);
 735	/* Account for the p->signal references we killed */
 736	while (refs--)
 737		tty_kref_put(tty);
 
 738
 739	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741	spin_lock_irq(&tty->ctrl_lock);
 742	clear_bit(TTY_THROTTLED, &tty->flags);
 
 743	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 744	put_pid(tty->session);
 745	put_pid(tty->pgrp);
 746	tty->session = NULL;
 747	tty->pgrp = NULL;
 748	tty->ctrl_status = 0;
 749	spin_unlock_irq(&tty->ctrl_lock);
 
 
 
 
 750
 751	/*
 752	 * If one of the devices matches a console pointer, we
 753	 * cannot just call hangup() because that will cause
 754	 * tty->count and state->count to go out of sync.
 755	 * So we just call close() the right number of times.
 756	 */
 757	if (cons_filp) {
 758		if (tty->ops->close)
 759			for (n = 0; n < closecount; n++)
 760				tty->ops->close(tty, cons_filp);
 761	} else if (tty->ops->hangup)
 762		tty->ops->hangup(tty);
 763	/*
 764	 * We don't want to have driver/ldisc interactions beyond the ones
 765	 * we did here. The driver layer expects no calls after ->hangup()
 766	 * from the ldisc side, which is now guaranteed.
 
 767	 */
 768	set_bit(TTY_HUPPED, &tty->flags);
 769	tty_unlock(tty);
 
 
 
 770
 771	if (f)
 772		fput(f);
 773}
 774
 775static void do_tty_hangup(struct work_struct *work)
 776{
 777	struct tty_struct *tty =
 778		container_of(work, struct tty_struct, hangup_work);
 779
 780	__tty_hangup(tty, 0);
 781}
 782
 783/**
 784 *	tty_hangup		-	trigger a hangup event
 785 *	@tty: tty to hangup
 786 *
 787 *	A carrier loss (virtual or otherwise) has occurred on this like
 788 *	schedule a hangup sequence to run after this event.
 789 */
 790
 791void tty_hangup(struct tty_struct *tty)
 792{
 793	tty_debug_hangup(tty, "hangup\n");
 
 
 
 794	schedule_work(&tty->hangup_work);
 795}
 796
 797EXPORT_SYMBOL(tty_hangup);
 798
 799/**
 800 *	tty_vhangup		-	process vhangup
 801 *	@tty: tty to hangup
 802 *
 803 *	The user has asked via system call for the terminal to be hung up.
 804 *	We do this synchronously so that when the syscall returns the process
 805 *	is complete. That guarantee is necessary for security reasons.
 806 */
 807
 808void tty_vhangup(struct tty_struct *tty)
 809{
 810	tty_debug_hangup(tty, "vhangup\n");
 811	__tty_hangup(tty, 0);
 
 
 
 
 812}
 813
 814EXPORT_SYMBOL(tty_vhangup);
 815
 816
 817/**
 818 *	tty_vhangup_self	-	process vhangup for own ctty
 819 *
 820 *	Perform a vhangup on the current controlling tty
 821 */
 822
 823void tty_vhangup_self(void)
 824{
 825	struct tty_struct *tty;
 826
 827	tty = get_current_tty();
 828	if (tty) {
 829		tty_vhangup(tty);
 830		tty_kref_put(tty);
 831	}
 832}
 833
 834/**
 835 *	tty_vhangup_session		-	hangup session leader exit
 836 *	@tty: tty to hangup
 837 *
 838 *	The session leader is exiting and hanging up its controlling terminal.
 839 *	Every process in the foreground process group is signalled SIGHUP.
 840 *
 841 *	We do this synchronously so that when the syscall returns the process
 842 *	is complete. That guarantee is necessary for security reasons.
 843 */
 844
 845static void tty_vhangup_session(struct tty_struct *tty)
 846{
 847	tty_debug_hangup(tty, "session hangup\n");
 848	__tty_hangup(tty, 1);
 849}
 850
 851/**
 852 *	tty_hung_up_p		-	was tty hung up
 853 *	@filp: file pointer of tty
 854 *
 855 *	Return true if the tty has been subject to a vhangup or a carrier
 856 *	loss
 857 */
 858
 859int tty_hung_up_p(struct file *filp)
 860{
 861	return (filp->f_op == &hung_up_tty_fops);
 862}
 863
 864EXPORT_SYMBOL(tty_hung_up_p);
 865
 
 
 
 
 
 
 
 
 866/**
 867 *	disassociate_ctty	-	disconnect controlling tty
 868 *	@on_exit: true if exiting so need to "hang up" the session
 869 *
 870 *	This function is typically called only by the session leader, when
 871 *	it wants to disassociate itself from its controlling tty.
 872 *
 873 *	It performs the following functions:
 874 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 875 * 	(2)  Clears the tty from being controlling the session
 876 * 	(3)  Clears the controlling tty for all processes in the
 877 * 		session group.
 878 *
 879 *	The argument on_exit is set to 1 if called when a process is
 880 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 881 *
 882 *	Locking:
 883 *		BTM is taken for hysterical raisins, and held when
 884 *		  called from no_tty().
 885 *		  tty_mutex is taken to protect tty
 886 *		  ->siglock is taken to protect ->signal/->sighand
 887 *		  tasklist_lock is taken to walk process list for sessions
 888 *		    ->siglock is taken to protect ->signal/->sighand
 889 */
 890
 891void disassociate_ctty(int on_exit)
 892{
 893	struct tty_struct *tty;
 
 894
 895	if (!current->signal->leader)
 896		return;
 897
 898	tty = get_current_tty();
 899	if (tty) {
 900		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 901			tty_vhangup_session(tty);
 902		} else {
 903			struct pid *tty_pgrp = tty_get_pgrp(tty);
 904			if (tty_pgrp) {
 905				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 906				if (!on_exit)
 907					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 908				put_pid(tty_pgrp);
 909			}
 910		}
 911		tty_kref_put(tty);
 912
 913	} else if (on_exit) {
 914		struct pid *old_pgrp;
 915		spin_lock_irq(&current->sighand->siglock);
 916		old_pgrp = current->signal->tty_old_pgrp;
 917		current->signal->tty_old_pgrp = NULL;
 918		spin_unlock_irq(&current->sighand->siglock);
 919		if (old_pgrp) {
 920			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 921			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 922			put_pid(old_pgrp);
 923		}
 924		return;
 925	}
 
 
 
 
 
 
 926
 927	spin_lock_irq(&current->sighand->siglock);
 928	put_pid(current->signal->tty_old_pgrp);
 929	current->signal->tty_old_pgrp = NULL;
 
 930
 931	tty = tty_kref_get(current->signal->tty);
 932	if (tty) {
 933		unsigned long flags;
 934		spin_lock_irqsave(&tty->ctrl_lock, flags);
 935		put_pid(tty->session);
 936		put_pid(tty->pgrp);
 937		tty->session = NULL;
 938		tty->pgrp = NULL;
 939		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 940		tty_kref_put(tty);
 941	} else
 942		tty_debug_hangup(tty, "no current tty\n");
 
 
 
 
 943
 944	spin_unlock_irq(&current->sighand->siglock);
 945	/* Now clear signal->tty under the lock */
 946	read_lock(&tasklist_lock);
 947	session_clear_tty(task_session(current));
 948	read_unlock(&tasklist_lock);
 949}
 950
 951/**
 952 *
 953 *	no_tty	- Ensure the current process does not have a controlling tty
 954 */
 955void no_tty(void)
 956{
 957	/* FIXME: Review locking here. The tty_lock never covered any race
 958	   between a new association and proc_clear_tty but possible we need
 959	   to protect against this anyway */
 960	struct task_struct *tsk = current;
 
 961	disassociate_ctty(0);
 
 962	proc_clear_tty(tsk);
 963}
 964
 965
 966/**
 967 *	stop_tty	-	propagate flow control
 968 *	@tty: tty to stop
 969 *
 970 *	Perform flow control to the driver. May be called
 
 971 *	on an already stopped device and will not re-call the driver
 972 *	method.
 973 *
 974 *	This functionality is used by both the line disciplines for
 975 *	halting incoming flow and by the driver. It may therefore be
 976 *	called from any context, may be under the tty atomic_write_lock
 977 *	but not always.
 978 *
 979 *	Locking:
 980 *		flow_lock
 981 */
 982
 983void __stop_tty(struct tty_struct *tty)
 984{
 985	if (tty->stopped)
 
 
 
 986		return;
 
 987	tty->stopped = 1;
 
 
 
 
 
 
 988	if (tty->ops->stop)
 989		tty->ops->stop(tty);
 990}
 991
 992void stop_tty(struct tty_struct *tty)
 993{
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&tty->flow_lock, flags);
 997	__stop_tty(tty);
 998	spin_unlock_irqrestore(&tty->flow_lock, flags);
 999}
1000EXPORT_SYMBOL(stop_tty);
1001
1002/**
1003 *	start_tty	-	propagate flow control
1004 *	@tty: tty to start
1005 *
1006 *	Start a tty that has been stopped if at all possible. If this
1007 *	tty was previous stopped and is now being started, the driver
1008 *	start method is invoked and the line discipline woken.
 
1009 *
1010 *	Locking:
1011 *		flow_lock
1012 */
1013
1014void __start_tty(struct tty_struct *tty)
1015{
1016	if (!tty->stopped || tty->flow_stopped)
 
 
 
1017		return;
 
1018	tty->stopped = 0;
 
 
 
 
 
 
1019	if (tty->ops->start)
1020		tty->ops->start(tty);
 
1021	tty_wakeup(tty);
1022}
1023
1024void start_tty(struct tty_struct *tty)
1025{
1026	unsigned long flags;
1027
1028	spin_lock_irqsave(&tty->flow_lock, flags);
1029	__start_tty(tty);
1030	spin_unlock_irqrestore(&tty->flow_lock, flags);
1031}
1032EXPORT_SYMBOL(start_tty);
1033
1034static void tty_update_time(struct timespec *time)
1035{
1036	unsigned long sec = get_seconds();
1037
1038	/*
1039	 * We only care if the two values differ in anything other than the
1040	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1041	 * the time of the tty device, otherwise it could be construded as a
1042	 * security leak to let userspace know the exact timing of the tty.
1043	 */
1044	if ((sec ^ time->tv_sec) & ~7)
1045		time->tv_sec = sec;
1046}
1047
1048/**
1049 *	tty_read	-	read method for tty device files
1050 *	@file: pointer to tty file
1051 *	@buf: user buffer
1052 *	@count: size of user buffer
1053 *	@ppos: unused
1054 *
1055 *	Perform the read system call function on this terminal device. Checks
1056 *	for hung up devices before calling the line discipline method.
1057 *
1058 *	Locking:
1059 *		Locks the line discipline internally while needed. Multiple
1060 *	read calls may be outstanding in parallel.
1061 */
1062
1063static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1064			loff_t *ppos)
1065{
1066	int i;
1067	struct inode *inode = file_inode(file);
1068	struct tty_struct *tty = file_tty(file);
1069	struct tty_ldisc *ld;
1070
1071	if (tty_paranoia_check(tty, inode, "tty_read"))
1072		return -EIO;
1073	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1074		return -EIO;
1075
1076	/* We want to wait for the line discipline to sort out in this
1077	   situation */
1078	ld = tty_ldisc_ref_wait(tty);
1079	if (!ld)
1080		return hung_up_tty_read(file, buf, count, ppos);
1081	if (ld->ops->read)
1082		i = ld->ops->read(tty, file, buf, count);
1083	else
1084		i = -EIO;
1085	tty_ldisc_deref(ld);
1086
1087	if (i > 0)
1088		tty_update_time(&inode->i_atime);
1089
1090	return i;
1091}
1092
1093static void tty_write_unlock(struct tty_struct *tty)
 
1094{
1095	mutex_unlock(&tty->atomic_write_lock);
1096	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1097}
1098
1099static int tty_write_lock(struct tty_struct *tty, int ndelay)
 
1100{
1101	if (!mutex_trylock(&tty->atomic_write_lock)) {
1102		if (ndelay)
1103			return -EAGAIN;
1104		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1105			return -ERESTARTSYS;
1106	}
1107	return 0;
1108}
1109
1110/*
1111 * Split writes up in sane blocksizes to avoid
1112 * denial-of-service type attacks
1113 */
1114static inline ssize_t do_tty_write(
1115	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1116	struct tty_struct *tty,
1117	struct file *file,
1118	const char __user *buf,
1119	size_t count)
1120{
1121	ssize_t ret, written = 0;
1122	unsigned int chunk;
1123
1124	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1125	if (ret < 0)
1126		return ret;
1127
1128	/*
1129	 * We chunk up writes into a temporary buffer. This
1130	 * simplifies low-level drivers immensely, since they
1131	 * don't have locking issues and user mode accesses.
1132	 *
1133	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1134	 * big chunk-size..
1135	 *
1136	 * The default chunk-size is 2kB, because the NTTY
1137	 * layer has problems with bigger chunks. It will
1138	 * claim to be able to handle more characters than
1139	 * it actually does.
1140	 *
1141	 * FIXME: This can probably go away now except that 64K chunks
1142	 * are too likely to fail unless switched to vmalloc...
1143	 */
1144	chunk = 2048;
1145	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1146		chunk = 65536;
1147	if (count < chunk)
1148		chunk = count;
1149
1150	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1151	if (tty->write_cnt < chunk) {
1152		unsigned char *buf_chunk;
1153
1154		if (chunk < 1024)
1155			chunk = 1024;
1156
1157		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1158		if (!buf_chunk) {
1159			ret = -ENOMEM;
1160			goto out;
1161		}
1162		kfree(tty->write_buf);
1163		tty->write_cnt = chunk;
1164		tty->write_buf = buf_chunk;
1165	}
1166
1167	/* Do the write .. */
1168	for (;;) {
1169		size_t size = count;
1170		if (size > chunk)
1171			size = chunk;
1172		ret = -EFAULT;
1173		if (copy_from_user(tty->write_buf, buf, size))
1174			break;
1175		ret = write(tty, file, tty->write_buf, size);
1176		if (ret <= 0)
1177			break;
1178		written += ret;
1179		buf += ret;
1180		count -= ret;
1181		if (!count)
1182			break;
1183		ret = -ERESTARTSYS;
1184		if (signal_pending(current))
1185			break;
1186		cond_resched();
1187	}
1188	if (written) {
1189		tty_update_time(&file_inode(file)->i_mtime);
 
1190		ret = written;
1191	}
1192out:
1193	tty_write_unlock(tty);
1194	return ret;
1195}
1196
1197/**
1198 * tty_write_message - write a message to a certain tty, not just the console.
1199 * @tty: the destination tty_struct
1200 * @msg: the message to write
1201 *
1202 * This is used for messages that need to be redirected to a specific tty.
1203 * We don't put it into the syslog queue right now maybe in the future if
1204 * really needed.
1205 *
1206 * We must still hold the BTM and test the CLOSING flag for the moment.
1207 */
1208
1209void tty_write_message(struct tty_struct *tty, char *msg)
1210{
1211	if (tty) {
1212		mutex_lock(&tty->atomic_write_lock);
1213		tty_lock(tty);
1214		if (tty->ops->write && tty->count > 0)
 
1215			tty->ops->write(tty, msg, strlen(msg));
1216		tty_unlock(tty);
 
1217		tty_write_unlock(tty);
1218	}
1219	return;
1220}
1221
1222
1223/**
1224 *	tty_write		-	write method for tty device file
1225 *	@file: tty file pointer
1226 *	@buf: user data to write
1227 *	@count: bytes to write
1228 *	@ppos: unused
1229 *
1230 *	Write data to a tty device via the line discipline.
1231 *
1232 *	Locking:
1233 *		Locks the line discipline as required
1234 *		Writes to the tty driver are serialized by the atomic_write_lock
1235 *	and are then processed in chunks to the device. The line discipline
1236 *	write method will not be invoked in parallel for each device.
1237 */
1238
1239static ssize_t tty_write(struct file *file, const char __user *buf,
1240						size_t count, loff_t *ppos)
1241{
 
1242	struct tty_struct *tty = file_tty(file);
1243 	struct tty_ldisc *ld;
1244	ssize_t ret;
1245
1246	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1247		return -EIO;
1248	if (!tty || !tty->ops->write ||
1249		(test_bit(TTY_IO_ERROR, &tty->flags)))
1250			return -EIO;
1251	/* Short term debug to catch buggy drivers */
1252	if (tty->ops->write_room == NULL)
1253		tty_err(tty, "missing write_room method\n");
 
1254	ld = tty_ldisc_ref_wait(tty);
1255	if (!ld)
1256		return hung_up_tty_write(file, buf, count, ppos);
1257	if (!ld->ops->write)
1258		ret = -EIO;
1259	else
1260		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1261	tty_ldisc_deref(ld);
1262	return ret;
1263}
1264
1265ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1266						size_t count, loff_t *ppos)
1267{
1268	struct file *p = NULL;
1269
1270	spin_lock(&redirect_lock);
1271	if (redirect)
1272		p = get_file(redirect);
 
 
1273	spin_unlock(&redirect_lock);
1274
1275	if (p) {
1276		ssize_t res;
1277		res = vfs_write(p, buf, count, &p->f_pos);
1278		fput(p);
1279		return res;
1280	}
1281	return tty_write(file, buf, count, ppos);
1282}
1283
1284/**
1285 *	tty_send_xchar	-	send priority character
1286 *
1287 *	Send a high priority character to the tty even if stopped
1288 *
1289 *	Locking: none for xchar method, write ordering for write method.
1290 */
1291
1292int tty_send_xchar(struct tty_struct *tty, char ch)
1293{
1294	int	was_stopped = tty->stopped;
1295
1296	if (tty->ops->send_xchar) {
1297		down_read(&tty->termios_rwsem);
1298		tty->ops->send_xchar(tty, ch);
1299		up_read(&tty->termios_rwsem);
1300		return 0;
1301	}
1302
1303	if (tty_write_lock(tty, 0) < 0)
1304		return -ERESTARTSYS;
1305
1306	down_read(&tty->termios_rwsem);
1307	if (was_stopped)
1308		start_tty(tty);
1309	tty->ops->write(tty, &ch, 1);
1310	if (was_stopped)
1311		stop_tty(tty);
1312	up_read(&tty->termios_rwsem);
1313	tty_write_unlock(tty);
1314	return 0;
1315}
1316
1317static char ptychar[] = "pqrstuvwxyzabcde";
1318
1319/**
1320 *	pty_line_name	-	generate name for a pty
1321 *	@driver: the tty driver in use
1322 *	@index: the minor number
1323 *	@p: output buffer of at least 6 bytes
1324 *
1325 *	Generate a name from a driver reference and write it to the output
1326 *	buffer.
1327 *
1328 *	Locking: None
1329 */
1330static void pty_line_name(struct tty_driver *driver, int index, char *p)
1331{
1332	int i = index + driver->name_base;
1333	/* ->name is initialized to "ttyp", but "tty" is expected */
1334	sprintf(p, "%s%c%x",
1335		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1336		ptychar[i >> 4 & 0xf], i & 0xf);
1337}
1338
1339/**
1340 *	tty_line_name	-	generate name for a tty
1341 *	@driver: the tty driver in use
1342 *	@index: the minor number
1343 *	@p: output buffer of at least 7 bytes
1344 *
1345 *	Generate a name from a driver reference and write it to the output
1346 *	buffer.
1347 *
1348 *	Locking: None
1349 */
1350static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1351{
1352	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1353		return sprintf(p, "%s", driver->name);
1354	else
1355		return sprintf(p, "%s%d", driver->name,
1356			       index + driver->name_base);
1357}
1358
1359/**
1360 *	tty_driver_lookup_tty() - find an existing tty, if any
1361 *	@driver: the driver for the tty
1362 *	@idx:	 the minor number
1363 *
1364 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1365 *	driver lookup() method returns an error.
1366 *
1367 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1368 */
1369static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1370		struct file *file, int idx)
1371{
1372	struct tty_struct *tty;
1373
1374	if (driver->ops->lookup)
1375		tty = driver->ops->lookup(driver, file, idx);
1376	else
1377		tty = driver->ttys[idx];
1378
1379	if (!IS_ERR(tty))
1380		tty_kref_get(tty);
1381	return tty;
1382}
1383
1384/**
1385 *	tty_init_termios	-  helper for termios setup
1386 *	@tty: the tty to set up
1387 *
1388 *	Initialise the termios structures for this tty. Thus runs under
1389 *	the tty_mutex currently so we can be relaxed about ordering.
1390 */
1391
1392void tty_init_termios(struct tty_struct *tty)
1393{
1394	struct ktermios *tp;
1395	int idx = tty->index;
1396
1397	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1398		tty->termios = tty->driver->init_termios;
1399	else {
1400		/* Check for lazy saved data */
1401		tp = tty->driver->termios[idx];
1402		if (tp != NULL) {
1403			tty->termios = *tp;
1404			tty->termios.c_line  = tty->driver->init_termios.c_line;
1405		} else
1406			tty->termios = tty->driver->init_termios;
1407	}
 
 
 
1408	/* Compatibility until drivers always set this */
1409	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1410	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1411}
1412EXPORT_SYMBOL_GPL(tty_init_termios);
1413
1414int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1415{
1416	tty_init_termios(tty);
1417	tty_driver_kref_get(driver);
1418	tty->count++;
1419	driver->ttys[tty->index] = tty;
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(tty_standard_install);
1423
1424/**
1425 *	tty_driver_install_tty() - install a tty entry in the driver
1426 *	@driver: the driver for the tty
1427 *	@tty: the tty
1428 *
1429 *	Install a tty object into the driver tables. The tty->index field
1430 *	will be set by the time this is called. This method is responsible
1431 *	for ensuring any need additional structures are allocated and
1432 *	configured.
1433 *
1434 *	Locking: tty_mutex for now
1435 */
1436static int tty_driver_install_tty(struct tty_driver *driver,
1437						struct tty_struct *tty)
1438{
1439	return driver->ops->install ? driver->ops->install(driver, tty) :
1440		tty_standard_install(driver, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
1441}
1442
1443/**
1444 *	tty_driver_remove_tty() - remove a tty from the driver tables
1445 *	@driver: the driver for the tty
1446 *	@idx:	 the minor number
1447 *
1448 *	Remvoe a tty object from the driver tables. The tty->index field
1449 *	will be set by the time this is called.
1450 *
1451 *	Locking: tty_mutex for now
1452 */
1453static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1454{
1455	if (driver->ops->remove)
1456		driver->ops->remove(driver, tty);
1457	else
1458		driver->ttys[tty->index] = NULL;
1459}
1460
1461/*
1462 * 	tty_reopen()	- fast re-open of an open tty
1463 * 	@tty	- the tty to open
1464 *
1465 *	Return 0 on success, -errno on error.
1466 *	Re-opens on master ptys are not allowed and return -EIO.
1467 *
1468 *	Locking: Caller must hold tty_lock
 
1469 */
1470static int tty_reopen(struct tty_struct *tty)
1471{
1472	struct tty_driver *driver = tty->driver;
1473
1474	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1475	    driver->subtype == PTY_TYPE_MASTER)
 
1476		return -EIO;
1477
1478	if (!tty->count)
1479		return -EAGAIN;
1480
1481	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1482		return -EBUSY;
 
 
 
1483
 
 
1484	tty->count++;
 
1485
1486	if (!tty->ldisc)
1487		return tty_ldisc_reinit(tty, tty->termios.c_line);
 
1488
1489	return 0;
1490}
1491
1492/**
1493 *	tty_init_dev		-	initialise a tty device
1494 *	@driver: tty driver we are opening a device on
1495 *	@idx: device index
1496 *	@ret_tty: returned tty structure
 
1497 *
1498 *	Prepare a tty device. This may not be a "new" clean device but
1499 *	could also be an active device. The pty drivers require special
1500 *	handling because of this.
1501 *
1502 *	Locking:
1503 *		The function is called under the tty_mutex, which
1504 *	protects us from the tty struct or driver itself going away.
1505 *
1506 *	On exit the tty device has the line discipline attached and
1507 *	a reference count of 1. If a pair was created for pty/tty use
1508 *	and the other was a pty master then it too has a reference count of 1.
1509 *
1510 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1511 * failed open.  The new code protects the open with a mutex, so it's
1512 * really quite straightforward.  The mutex locking can probably be
1513 * relaxed for the (most common) case of reopening a tty.
1514 */
1515
1516struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
 
1517{
1518	struct tty_struct *tty;
1519	int retval;
1520
 
 
 
 
 
 
1521	/*
1522	 * First time open is complex, especially for PTY devices.
1523	 * This code guarantees that either everything succeeds and the
1524	 * TTY is ready for operation, or else the table slots are vacated
1525	 * and the allocated memory released.  (Except that the termios
1526	 * and locked termios may be retained.)
1527	 */
1528
1529	if (!try_module_get(driver->owner))
1530		return ERR_PTR(-ENODEV);
1531
1532	tty = alloc_tty_struct(driver, idx);
1533	if (!tty) {
1534		retval = -ENOMEM;
1535		goto err_module_put;
1536	}
 
1537
1538	tty_lock(tty);
1539	retval = tty_driver_install_tty(driver, tty);
1540	if (retval < 0)
1541		goto err_free_tty;
1542
1543	if (!tty->port)
1544		tty->port = driver->ports[idx];
1545
1546	WARN_RATELIMIT(!tty->port,
1547			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1548			__func__, tty->driver->name);
1549
1550	tty->port->itty = tty;
1551
1552	/*
1553	 * Structures all installed ... call the ldisc open routines.
1554	 * If we fail here just call release_tty to clean up.  No need
1555	 * to decrement the use counts, as release_tty doesn't care.
1556	 */
1557	retval = tty_ldisc_setup(tty, tty->link);
1558	if (retval)
1559		goto err_release_tty;
1560	/* Return the tty locked so that it cannot vanish under the caller */
1561	return tty;
1562
1563err_free_tty:
1564	tty_unlock(tty);
1565	free_tty_struct(tty);
1566err_module_put:
1567	module_put(driver->owner);
1568	return ERR_PTR(retval);
1569
1570	/* call the tty release_tty routine to clean out this slot */
1571err_release_tty:
1572	tty_unlock(tty);
1573	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1574			     retval, idx);
1575	release_tty(tty, idx);
1576	return ERR_PTR(retval);
1577}
1578
1579static void tty_free_termios(struct tty_struct *tty)
1580{
1581	struct ktermios *tp;
1582	int idx = tty->index;
1583
1584	/* If the port is going to reset then it has no termios to save */
1585	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1586		return;
1587
1588	/* Stash the termios data */
1589	tp = tty->driver->termios[idx];
1590	if (tp == NULL) {
1591		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1592		if (tp == NULL)
1593			return;
1594		tty->driver->termios[idx] = tp;
1595	}
1596	*tp = tty->termios;
1597}
 
1598
1599/**
1600 *	tty_flush_works		-	flush all works of a tty/pty pair
1601 *	@tty: tty device to flush works for (or either end of a pty pair)
1602 *
1603 *	Sync flush all works belonging to @tty (and the 'other' tty).
1604 */
1605static void tty_flush_works(struct tty_struct *tty)
1606{
1607	flush_work(&tty->SAK_work);
1608	flush_work(&tty->hangup_work);
1609	if (tty->link) {
1610		flush_work(&tty->link->SAK_work);
1611		flush_work(&tty->link->hangup_work);
1612	}
1613}
 
1614
1615/**
1616 *	release_one_tty		-	release tty structure memory
1617 *	@kref: kref of tty we are obliterating
1618 *
1619 *	Releases memory associated with a tty structure, and clears out the
1620 *	driver table slots. This function is called when a device is no longer
1621 *	in use. It also gets called when setup of a device fails.
1622 *
1623 *	Locking:
 
1624 *		takes the file list lock internally when working on the list
1625 *	of ttys that the driver keeps.
1626 *
1627 *	This method gets called from a work queue so that the driver private
1628 *	cleanup ops can sleep (needed for USB at least)
1629 */
1630static void release_one_tty(struct work_struct *work)
1631{
1632	struct tty_struct *tty =
1633		container_of(work, struct tty_struct, hangup_work);
1634	struct tty_driver *driver = tty->driver;
1635	struct module *owner = driver->owner;
1636
1637	if (tty->ops->cleanup)
1638		tty->ops->cleanup(tty);
1639
1640	tty->magic = 0;
1641	tty_driver_kref_put(driver);
1642	module_put(owner);
1643
1644	spin_lock(&tty->files_lock);
1645	list_del_init(&tty->tty_files);
1646	spin_unlock(&tty->files_lock);
1647
1648	put_pid(tty->pgrp);
1649	put_pid(tty->session);
1650	free_tty_struct(tty);
1651}
1652
1653static void queue_release_one_tty(struct kref *kref)
1654{
1655	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1656
 
 
 
 
 
1657	/* The hangup queue is now free so we can reuse it rather than
1658	   waste a chunk of memory for each port */
1659	INIT_WORK(&tty->hangup_work, release_one_tty);
1660	schedule_work(&tty->hangup_work);
1661}
1662
1663/**
1664 *	tty_kref_put		-	release a tty kref
1665 *	@tty: tty device
1666 *
1667 *	Release a reference to a tty device and if need be let the kref
1668 *	layer destruct the object for us
1669 */
1670
1671void tty_kref_put(struct tty_struct *tty)
1672{
1673	if (tty)
1674		kref_put(&tty->kref, queue_release_one_tty);
1675}
1676EXPORT_SYMBOL(tty_kref_put);
1677
1678/**
1679 *	release_tty		-	release tty structure memory
1680 *
1681 *	Release both @tty and a possible linked partner (think pty pair),
1682 *	and decrement the refcount of the backing module.
1683 *
1684 *	Locking:
1685 *		tty_mutex
1686 *		takes the file list lock internally when working on the list
1687 *	of ttys that the driver keeps.
 
1688 *
1689 */
1690static void release_tty(struct tty_struct *tty, int idx)
1691{
1692	/* This should always be true but check for the moment */
1693	WARN_ON(tty->index != idx);
1694	WARN_ON(!mutex_is_locked(&tty_mutex));
1695	if (tty->ops->shutdown)
1696		tty->ops->shutdown(tty);
1697	tty_free_termios(tty);
1698	tty_driver_remove_tty(tty->driver, tty);
1699	tty->port->itty = NULL;
1700	if (tty->link)
1701		tty->link->port->itty = NULL;
1702	tty_buffer_cancel_work(tty->port);
1703
1704	tty_kref_put(tty->link);
1705	tty_kref_put(tty);
1706}
1707
1708/**
1709 *	tty_release_checks - check a tty before real release
1710 *	@tty: tty to check
1711 *	@o_tty: link of @tty (if any)
1712 *	@idx: index of the tty
1713 *
1714 *	Performs some paranoid checking before true release of the @tty.
1715 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1716 */
1717static int tty_release_checks(struct tty_struct *tty, int idx)
1718{
1719#ifdef TTY_PARANOIA_CHECK
1720	if (idx < 0 || idx >= tty->driver->num) {
1721		tty_debug(tty, "bad idx %d\n", idx);
1722		return -1;
1723	}
1724
1725	/* not much to check for devpts */
1726	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1727		return 0;
1728
1729	if (tty != tty->driver->ttys[idx]) {
1730		tty_debug(tty, "bad driver table[%d] = %p\n",
1731			  idx, tty->driver->ttys[idx]);
1732		return -1;
1733	}
1734	if (tty->driver->other) {
1735		struct tty_struct *o_tty = tty->link;
1736
1737		if (o_tty != tty->driver->other->ttys[idx]) {
1738			tty_debug(tty, "bad other table[%d] = %p\n",
1739				  idx, tty->driver->other->ttys[idx]);
1740			return -1;
1741		}
1742		if (o_tty->link != tty) {
1743			tty_debug(tty, "bad link = %p\n", o_tty->link);
1744			return -1;
1745		}
1746	}
1747#endif
1748	return 0;
1749}
1750
1751/**
1752 *	tty_release		-	vfs callback for close
1753 *	@inode: inode of tty
1754 *	@filp: file pointer for handle to tty
1755 *
1756 *	Called the last time each file handle is closed that references
1757 *	this tty. There may however be several such references.
1758 *
1759 *	Locking:
1760 *		Takes bkl. See tty_release_dev
1761 *
1762 * Even releasing the tty structures is a tricky business.. We have
1763 * to be very careful that the structures are all released at the
1764 * same time, as interrupts might otherwise get the wrong pointers.
1765 *
1766 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1767 * lead to double frees or releasing memory still in use.
1768 */
1769
1770int tty_release(struct inode *inode, struct file *filp)
1771{
1772	struct tty_struct *tty = file_tty(filp);
1773	struct tty_struct *o_tty = NULL;
1774	int	do_sleep, final;
 
1775	int	idx;
1776	long	timeout = 0;
1777	int	once = 1;
1778
1779	if (tty_paranoia_check(tty, inode, __func__))
1780		return 0;
1781
1782	tty_lock(tty);
1783	check_tty_count(tty, __func__);
1784
1785	__tty_fasync(-1, filp, 0);
1786
1787	idx = tty->index;
1788	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1789	    tty->driver->subtype == PTY_TYPE_MASTER)
1790		o_tty = tty->link;
 
1791
1792	if (tty_release_checks(tty, idx)) {
1793		tty_unlock(tty);
 
 
 
1794		return 0;
1795	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1796
1797	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799	if (tty->ops->close)
1800		tty->ops->close(tty, filp);
1801
1802	/* If tty is pty master, lock the slave pty (stable lock order) */
1803	tty_lock_slave(o_tty);
1804
1805	/*
1806	 * Sanity check: if tty->count is going to zero, there shouldn't be
1807	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1808	 * wait queues and kick everyone out _before_ actually starting to
1809	 * close.  This ensures that we won't block while releasing the tty
1810	 * structure.
1811	 *
1812	 * The test for the o_tty closing is necessary, since the master and
1813	 * slave sides may close in any order.  If the slave side closes out
1814	 * first, its count will be one, since the master side holds an open.
1815	 * Thus this test wouldn't be triggered at the time the slave closed,
1816	 * so we do it now.
 
 
 
 
1817	 */
1818	while (1) {
 
 
 
 
 
 
 
 
1819		do_sleep = 0;
1820
1821		if (tty->count <= 1) {
1822			if (waitqueue_active(&tty->read_wait)) {
1823				wake_up_poll(&tty->read_wait, POLLIN);
1824				do_sleep++;
1825			}
1826			if (waitqueue_active(&tty->write_wait)) {
1827				wake_up_poll(&tty->write_wait, POLLOUT);
1828				do_sleep++;
1829			}
1830		}
1831		if (o_tty && o_tty->count <= 1) {
1832			if (waitqueue_active(&o_tty->read_wait)) {
1833				wake_up_poll(&o_tty->read_wait, POLLIN);
1834				do_sleep++;
1835			}
1836			if (waitqueue_active(&o_tty->write_wait)) {
1837				wake_up_poll(&o_tty->write_wait, POLLOUT);
1838				do_sleep++;
1839			}
1840		}
1841		if (!do_sleep)
1842			break;
1843
1844		if (once) {
1845			once = 0;
1846			tty_warn(tty, "read/write wait queue active!\n");
1847		}
1848		schedule_timeout_killable(timeout);
1849		if (timeout < 120 * HZ)
1850			timeout = 2 * timeout + 1;
1851		else
1852			timeout = MAX_SCHEDULE_TIMEOUT;
1853	}
1854
1855	if (o_tty) {
 
 
 
 
 
1856		if (--o_tty->count < 0) {
1857			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
 
1858			o_tty->count = 0;
1859		}
1860	}
1861	if (--tty->count < 0) {
1862		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1863		tty->count = 0;
1864	}
1865
1866	/*
1867	 * We've decremented tty->count, so we need to remove this file
1868	 * descriptor off the tty->tty_files list; this serves two
1869	 * purposes:
1870	 *  - check_tty_count sees the correct number of file descriptors
1871	 *    associated with this tty.
1872	 *  - do_tty_hangup no longer sees this file descriptor as
1873	 *    something that needs to be handled for hangups.
1874	 */
1875	tty_del_file(filp);
1876
1877	/*
1878	 * Perform some housekeeping before deciding whether to return.
1879	 *
 
 
 
 
 
 
 
 
 
 
1880	 * If _either_ side is closing, make sure there aren't any
1881	 * processes that still think tty or o_tty is their controlling
1882	 * tty.
1883	 */
1884	if (!tty->count) {
1885		read_lock(&tasklist_lock);
1886		session_clear_tty(tty->session);
1887		if (o_tty)
1888			session_clear_tty(o_tty->session);
1889		read_unlock(&tasklist_lock);
1890	}
1891
 
 
1892	/* check whether both sides are closing ... */
1893	final = !tty->count && !(o_tty && o_tty->count);
1894
1895	tty_unlock_slave(o_tty);
1896	tty_unlock(tty);
1897
1898	/* At this point, the tty->count == 0 should ensure a dead tty
1899	   cannot be re-opened by a racing opener */
1900
1901	if (!final)
1902		return 0;
 
1903
1904	tty_debug_hangup(tty, "final close\n");
 
 
1905	/*
1906	 * Ask the line discipline code to release its structures
1907	 */
1908	tty_ldisc_release(tty);
1909
1910	/* Wait for pending work before tty destruction commmences */
1911	tty_flush_works(tty);
1912
1913	tty_debug_hangup(tty, "freeing structure\n");
1914	/*
1915	 * The release_tty function takes care of the details of clearing
1916	 * the slots and preserving the termios structure. The tty_unlock_pair
1917	 * should be safe as we keep a kref while the tty is locked (so the
1918	 * unlock never unlocks a freed tty).
1919	 */
1920	mutex_lock(&tty_mutex);
1921	release_tty(tty, idx);
1922	mutex_unlock(&tty_mutex);
1923
 
 
 
 
1924	return 0;
1925}
1926
1927/**
1928 *	tty_open_current_tty - get locked tty of current task
1929 *	@device: device number
1930 *	@filp: file pointer to tty
1931 *	@return: locked tty of the current task iff @device is /dev/tty
1932 *
1933 *	Performs a re-open of the current task's controlling tty.
 
 
 
 
 
 
 
 
 
1934 *
1935 *	We cannot return driver and index like for the other nodes because
1936 *	devpts will not work then. It expects inodes to be from devpts FS.
 
1937 */
1938static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
 
1939{
1940	struct tty_struct *tty;
1941	int retval;
 
 
 
 
 
 
1942
1943	if (device != MKDEV(TTYAUX_MAJOR, 0))
1944		return NULL;
 
 
1945
1946	tty = get_current_tty();
1947	if (!tty)
1948		return ERR_PTR(-ENXIO);
1949
1950	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1951	/* noctty = 1; */
1952	tty_lock(tty);
1953	tty_kref_put(tty);	/* safe to drop the kref now */
1954
1955	retval = tty_reopen(tty);
1956	if (retval < 0) {
1957		tty_unlock(tty);
1958		tty = ERR_PTR(retval);
 
 
 
 
 
1959	}
1960	return tty;
1961}
1962
1963/**
1964 *	tty_lookup_driver - lookup a tty driver for a given device file
1965 *	@device: device number
1966 *	@filp: file pointer to tty
1967 *	@noctty: set if the device should not become a controlling tty
1968 *	@index: index for the device in the @return driver
1969 *	@return: driver for this inode (with increased refcount)
1970 *
1971 * 	If @return is not erroneous, the caller is responsible to decrement the
1972 * 	refcount by tty_driver_kref_put.
1973 *
1974 *	Locking: tty_mutex protects get_tty_driver
1975 */
1976static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1977		int *index)
1978{
1979	struct tty_driver *driver;
1980
1981	switch (device) {
1982#ifdef CONFIG_VT
1983	case MKDEV(TTY_MAJOR, 0): {
1984		extern struct tty_driver *console_driver;
1985		driver = tty_driver_kref_get(console_driver);
1986		*index = fg_console;
1987		break;
 
1988	}
1989#endif
1990	case MKDEV(TTYAUX_MAJOR, 1): {
1991		struct tty_driver *console_driver = console_device(index);
1992		if (console_driver) {
1993			driver = tty_driver_kref_get(console_driver);
1994			if (driver) {
1995				/* Don't let /dev/console block */
1996				filp->f_flags |= O_NONBLOCK;
1997				break;
 
1998			}
1999		}
2000		return ERR_PTR(-ENODEV);
 
 
2001	}
2002	default:
2003		driver = get_tty_driver(device, index);
2004		if (!driver)
2005			return ERR_PTR(-ENODEV);
2006		break;
2007	}
2008	return driver;
2009}
2010
2011/**
2012 *	tty_open_by_driver	-	open a tty device
2013 *	@device: dev_t of device to open
2014 *	@inode: inode of device file
2015 *	@filp: file pointer to tty
2016 *
2017 *	Performs the driver lookup, checks for a reopen, or otherwise
2018 *	performs the first-time tty initialization.
2019 *
2020 *	Returns the locked initialized or re-opened &tty_struct
2021 *
2022 *	Claims the global tty_mutex to serialize:
2023 *	  - concurrent first-time tty initialization
2024 *	  - concurrent tty driver removal w/ lookup
2025 *	  - concurrent tty removal from driver table
2026 */
2027static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2028					     struct file *filp)
2029{
2030	struct tty_struct *tty;
2031	struct tty_driver *driver = NULL;
2032	int index = -1;
2033	int retval;
2034
2035	mutex_lock(&tty_mutex);
2036	driver = tty_lookup_driver(device, filp, &index);
2037	if (IS_ERR(driver)) {
2038		mutex_unlock(&tty_mutex);
2039		return ERR_CAST(driver);
2040	}
 
 
 
 
2041
2042	/* check whether we're reopening an existing tty */
2043	tty = tty_driver_lookup_tty(driver, filp, index);
2044	if (IS_ERR(tty)) {
2045		mutex_unlock(&tty_mutex);
2046		goto out;
2047	}
2048
2049	if (tty) {
2050		mutex_unlock(&tty_mutex);
2051		retval = tty_lock_interruptible(tty);
2052		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2053		if (retval) {
2054			if (retval == -EINTR)
2055				retval = -ERESTARTSYS;
2056			tty = ERR_PTR(retval);
2057			goto out;
2058		}
2059		retval = tty_reopen(tty);
2060		if (retval < 0) {
2061			tty_unlock(tty);
2062			tty = ERR_PTR(retval);
2063		}
2064	} else { /* Returns with the tty_lock held for now */
2065		tty = tty_init_dev(driver, index);
2066		mutex_unlock(&tty_mutex);
2067	}
2068out:
2069	tty_driver_kref_put(driver);
2070	return tty;
2071}
2072
2073/**
2074 *	tty_open		-	open a tty device
2075 *	@inode: inode of device file
2076 *	@filp: file pointer to tty
2077 *
2078 *	tty_open and tty_release keep up the tty count that contains the
2079 *	number of opens done on a tty. We cannot use the inode-count, as
2080 *	different inodes might point to the same tty.
2081 *
2082 *	Open-counting is needed for pty masters, as well as for keeping
2083 *	track of serial lines: DTR is dropped when the last close happens.
2084 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2085 *
2086 *	The termios state of a pty is reset on first open so that
2087 *	settings don't persist across reuse.
2088 *
2089 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2090 *		 tty->count should protect the rest.
2091 *		 ->siglock protects ->signal/->sighand
2092 *
2093 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2094 *	tty_mutex
2095 */
2096
2097static int tty_open(struct inode *inode, struct file *filp)
2098{
2099	struct tty_struct *tty;
2100	int noctty, retval;
2101	dev_t device = inode->i_rdev;
2102	unsigned saved_flags = filp->f_flags;
2103
2104	nonseekable_open(inode, filp);
2105
2106retry_open:
2107	retval = tty_alloc_file(filp);
2108	if (retval)
2109		return -ENOMEM;
2110
2111	tty = tty_open_current_tty(device, filp);
2112	if (!tty)
2113		tty = tty_open_by_driver(device, inode, filp);
2114
2115	if (IS_ERR(tty)) {
2116		tty_free_file(filp);
2117		retval = PTR_ERR(tty);
2118		if (retval != -EAGAIN || signal_pending(current))
2119			return retval;
2120		schedule();
2121		goto retry_open;
2122	}
2123
2124	tty_add_file(tty, filp);
2125
2126	check_tty_count(tty, __func__);
2127	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
 
 
2128
 
 
 
 
 
 
 
2129	if (tty->ops->open)
2130		retval = tty->ops->open(tty, filp);
2131	else
2132		retval = -ENODEV;
2133	filp->f_flags = saved_flags;
2134
 
 
 
 
2135	if (retval) {
2136		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2137
2138		tty_unlock(tty); /* need to call tty_release without BTM */
 
 
2139		tty_release(inode, filp);
2140		if (retval != -ERESTARTSYS)
2141			return retval;
2142
2143		if (signal_pending(current))
2144			return retval;
2145
2146		schedule();
2147		/*
2148		 * Need to reset f_op in case a hangup happened.
2149		 */
2150		if (tty_hung_up_p(filp))
 
2151			filp->f_op = &tty_fops;
 
2152		goto retry_open;
2153	}
2154	clear_bit(TTY_HUPPED, &tty->flags);
2155
2156
2157	read_lock(&tasklist_lock);
 
2158	spin_lock_irq(&current->sighand->siglock);
2159	noctty = (filp->f_flags & O_NOCTTY) ||
2160			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2161			device == MKDEV(TTYAUX_MAJOR, 1) ||
2162			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2163			 tty->driver->subtype == PTY_TYPE_MASTER);
2164
2165	if (!noctty &&
2166	    current->signal->leader &&
2167	    !current->signal->tty &&
2168	    tty->session == NULL) {
2169		/*
2170		 * Don't let a process that only has write access to the tty
2171		 * obtain the privileges associated with having a tty as
2172		 * controlling terminal (being able to reopen it with full
2173		 * access through /dev/tty, being able to perform pushback).
2174		 * Many distributions set the group of all ttys to "tty" and
2175		 * grant write-only access to all terminals for setgid tty
2176		 * binaries, which should not imply full privileges on all ttys.
2177		 *
2178		 * This could theoretically break old code that performs open()
2179		 * on a write-only file descriptor. In that case, it might be
2180		 * necessary to also permit this if
2181		 * inode_permission(inode, MAY_READ) == 0.
2182		 */
2183		if (filp->f_mode & FMODE_READ)
2184			__proc_set_tty(tty);
2185	}
2186	spin_unlock_irq(&current->sighand->siglock);
2187	read_unlock(&tasklist_lock);
2188	tty_unlock(tty);
2189	return 0;
2190}
2191
2192
2193
2194/**
2195 *	tty_poll	-	check tty status
2196 *	@filp: file being polled
2197 *	@wait: poll wait structures to update
2198 *
2199 *	Call the line discipline polling method to obtain the poll
2200 *	status of the device.
2201 *
2202 *	Locking: locks called line discipline but ldisc poll method
2203 *	may be re-entered freely by other callers.
2204 */
2205
2206static unsigned int tty_poll(struct file *filp, poll_table *wait)
2207{
2208	struct tty_struct *tty = file_tty(filp);
2209	struct tty_ldisc *ld;
2210	int ret = 0;
2211
2212	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2213		return 0;
2214
2215	ld = tty_ldisc_ref_wait(tty);
2216	if (!ld)
2217		return hung_up_tty_poll(filp, wait);
2218	if (ld->ops->poll)
2219		ret = ld->ops->poll(tty, filp, wait);
2220	tty_ldisc_deref(ld);
2221	return ret;
2222}
2223
2224static int __tty_fasync(int fd, struct file *filp, int on)
2225{
2226	struct tty_struct *tty = file_tty(filp);
2227	unsigned long flags;
2228	int retval = 0;
2229
2230	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2231		goto out;
2232
2233	retval = fasync_helper(fd, filp, on, &tty->fasync);
2234	if (retval <= 0)
2235		goto out;
2236
2237	if (on) {
2238		enum pid_type type;
2239		struct pid *pid;
2240
 
2241		spin_lock_irqsave(&tty->ctrl_lock, flags);
2242		if (tty->pgrp) {
2243			pid = tty->pgrp;
2244			type = PIDTYPE_PGID;
2245		} else {
2246			pid = task_pid(current);
2247			type = PIDTYPE_PID;
2248		}
2249		get_pid(pid);
2250		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2251		__f_setown(filp, pid, type, 0);
2252		put_pid(pid);
2253		retval = 0;
 
 
 
 
2254	}
 
2255out:
2256	return retval;
2257}
2258
2259static int tty_fasync(int fd, struct file *filp, int on)
2260{
2261	struct tty_struct *tty = file_tty(filp);
2262	int retval = -ENOTTY;
2263
2264	tty_lock(tty);
2265	if (!tty_hung_up_p(filp))
2266		retval = __tty_fasync(fd, filp, on);
2267	tty_unlock(tty);
2268
2269	return retval;
2270}
2271
2272/**
2273 *	tiocsti			-	fake input character
2274 *	@tty: tty to fake input into
2275 *	@p: pointer to character
2276 *
2277 *	Fake input to a tty device. Does the necessary locking and
2278 *	input management.
2279 *
2280 *	FIXME: does not honour flow control ??
2281 *
2282 *	Locking:
2283 *		Called functions take tty_ldiscs_lock
2284 *		current->signal->tty check is safe without locks
2285 *
2286 *	FIXME: may race normal receive processing
2287 */
2288
2289static int tiocsti(struct tty_struct *tty, char __user *p)
2290{
2291	char ch, mbz = 0;
2292	struct tty_ldisc *ld;
2293
2294	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2295		return -EPERM;
2296	if (get_user(ch, p))
2297		return -EFAULT;
2298	tty_audit_tiocsti(tty, ch);
2299	ld = tty_ldisc_ref_wait(tty);
2300	if (!ld)
2301		return -EIO;
2302	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2303	tty_ldisc_deref(ld);
2304	return 0;
2305}
2306
2307/**
2308 *	tiocgwinsz		-	implement window query ioctl
2309 *	@tty; tty
2310 *	@arg: user buffer for result
2311 *
2312 *	Copies the kernel idea of the window size into the user buffer.
2313 *
2314 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2315 *		is consistent.
2316 */
2317
2318static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2319{
2320	int err;
2321
2322	mutex_lock(&tty->winsize_mutex);
2323	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2324	mutex_unlock(&tty->winsize_mutex);
2325
2326	return err ? -EFAULT: 0;
2327}
2328
2329/**
2330 *	tty_do_resize		-	resize event
2331 *	@tty: tty being resized
2332 *	@rows: rows (character)
2333 *	@cols: cols (character)
2334 *
2335 *	Update the termios variables and send the necessary signals to
2336 *	peform a terminal resize correctly
2337 */
2338
2339int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2340{
2341	struct pid *pgrp;
 
2342
2343	/* Lock the tty */
2344	mutex_lock(&tty->winsize_mutex);
2345	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2346		goto done;
 
 
 
 
 
2347
2348	/* Signal the foreground process group */
2349	pgrp = tty_get_pgrp(tty);
2350	if (pgrp)
2351		kill_pgrp(pgrp, SIGWINCH, 1);
2352	put_pid(pgrp);
2353
2354	tty->winsize = *ws;
2355done:
2356	mutex_unlock(&tty->winsize_mutex);
2357	return 0;
2358}
2359EXPORT_SYMBOL(tty_do_resize);
2360
2361/**
2362 *	tiocswinsz		-	implement window size set ioctl
2363 *	@tty; tty side of tty
2364 *	@arg: user buffer for result
2365 *
2366 *	Copies the user idea of the window size to the kernel. Traditionally
2367 *	this is just advisory information but for the Linux console it
2368 *	actually has driver level meaning and triggers a VC resize.
2369 *
2370 *	Locking:
2371 *		Driver dependent. The default do_resize method takes the
2372 *	tty termios mutex and ctrl_lock. The console takes its own lock
2373 *	then calls into the default method.
2374 */
2375
2376static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2377{
2378	struct winsize tmp_ws;
2379	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2380		return -EFAULT;
2381
2382	if (tty->ops->resize)
2383		return tty->ops->resize(tty, &tmp_ws);
2384	else
2385		return tty_do_resize(tty, &tmp_ws);
2386}
2387
2388/**
2389 *	tioccons	-	allow admin to move logical console
2390 *	@file: the file to become console
2391 *
2392 *	Allow the administrator to move the redirected console device
2393 *
2394 *	Locking: uses redirect_lock to guard the redirect information
2395 */
2396
2397static int tioccons(struct file *file)
2398{
2399	if (!capable(CAP_SYS_ADMIN))
2400		return -EPERM;
2401	if (file->f_op->write == redirected_tty_write) {
2402		struct file *f;
2403		spin_lock(&redirect_lock);
2404		f = redirect;
2405		redirect = NULL;
2406		spin_unlock(&redirect_lock);
2407		if (f)
2408			fput(f);
2409		return 0;
2410	}
2411	spin_lock(&redirect_lock);
2412	if (redirect) {
2413		spin_unlock(&redirect_lock);
2414		return -EBUSY;
2415	}
2416	redirect = get_file(file);
 
2417	spin_unlock(&redirect_lock);
2418	return 0;
2419}
2420
2421/**
2422 *	fionbio		-	non blocking ioctl
2423 *	@file: file to set blocking value
2424 *	@p: user parameter
2425 *
2426 *	Historical tty interfaces had a blocking control ioctl before
2427 *	the generic functionality existed. This piece of history is preserved
2428 *	in the expected tty API of posix OS's.
2429 *
2430 *	Locking: none, the open file handle ensures it won't go away.
2431 */
2432
2433static int fionbio(struct file *file, int __user *p)
2434{
2435	int nonblock;
2436
2437	if (get_user(nonblock, p))
2438		return -EFAULT;
2439
2440	spin_lock(&file->f_lock);
2441	if (nonblock)
2442		file->f_flags |= O_NONBLOCK;
2443	else
2444		file->f_flags &= ~O_NONBLOCK;
2445	spin_unlock(&file->f_lock);
2446	return 0;
2447}
2448
2449/**
2450 *	tiocsctty	-	set controlling tty
2451 *	@tty: tty structure
2452 *	@arg: user argument
2453 *
2454 *	This ioctl is used to manage job control. It permits a session
2455 *	leader to set this tty as the controlling tty for the session.
2456 *
2457 *	Locking:
2458 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2459 *		Takes tasklist_lock internally to walk sessions
2460 *		Takes ->siglock() when updating signal->tty
2461 */
2462
2463static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2464{
2465	int ret = 0;
2466
2467	tty_lock(tty);
2468	read_lock(&tasklist_lock);
2469
2470	if (current->signal->leader && (task_session(current) == tty->session))
2471		goto unlock;
2472
 
2473	/*
2474	 * The process must be a session leader and
2475	 * not have a controlling tty already.
2476	 */
2477	if (!current->signal->leader || current->signal->tty) {
2478		ret = -EPERM;
2479		goto unlock;
2480	}
2481
2482	if (tty->session) {
2483		/*
2484		 * This tty is already the controlling
2485		 * tty for another session group!
2486		 */
2487		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2488			/*
2489			 * Steal it away
2490			 */
 
2491			session_clear_tty(tty->session);
 
2492		} else {
2493			ret = -EPERM;
2494			goto unlock;
2495		}
2496	}
2497
2498	/* See the comment in tty_open(). */
2499	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2500		ret = -EPERM;
2501		goto unlock;
2502	}
2503
2504	proc_set_tty(tty);
2505unlock:
2506	read_unlock(&tasklist_lock);
2507	tty_unlock(tty);
2508	return ret;
2509}
2510
2511/**
2512 *	tty_get_pgrp	-	return a ref counted pgrp pid
2513 *	@tty: tty to read
2514 *
2515 *	Returns a refcounted instance of the pid struct for the process
2516 *	group controlling the tty.
2517 */
2518
2519struct pid *tty_get_pgrp(struct tty_struct *tty)
2520{
2521	unsigned long flags;
2522	struct pid *pgrp;
2523
2524	spin_lock_irqsave(&tty->ctrl_lock, flags);
2525	pgrp = get_pid(tty->pgrp);
2526	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2527
2528	return pgrp;
2529}
2530EXPORT_SYMBOL_GPL(tty_get_pgrp);
2531
2532/*
2533 * This checks not only the pgrp, but falls back on the pid if no
2534 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2535 * without this...
2536 *
2537 * The caller must hold rcu lock or the tasklist lock.
2538 */
2539static struct pid *session_of_pgrp(struct pid *pgrp)
2540{
2541	struct task_struct *p;
2542	struct pid *sid = NULL;
2543
2544	p = pid_task(pgrp, PIDTYPE_PGID);
2545	if (p == NULL)
2546		p = pid_task(pgrp, PIDTYPE_PID);
2547	if (p != NULL)
2548		sid = task_session(p);
2549
2550	return sid;
2551}
2552
2553/**
2554 *	tiocgpgrp		-	get process group
2555 *	@tty: tty passed by user
2556 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2557 *	@p: returned pid
2558 *
2559 *	Obtain the process group of the tty. If there is no process group
2560 *	return an error.
2561 *
2562 *	Locking: none. Reference to current->signal->tty is safe.
2563 */
2564
2565static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2566{
2567	struct pid *pid;
2568	int ret;
2569	/*
2570	 * (tty == real_tty) is a cheap way of
2571	 * testing if the tty is NOT a master pty.
2572	 */
2573	if (tty == real_tty && current->signal->tty != real_tty)
2574		return -ENOTTY;
2575	pid = tty_get_pgrp(real_tty);
2576	ret =  put_user(pid_vnr(pid), p);
2577	put_pid(pid);
2578	return ret;
2579}
2580
2581/**
2582 *	tiocspgrp		-	attempt to set process group
2583 *	@tty: tty passed by user
2584 *	@real_tty: tty side device matching tty passed by user
2585 *	@p: pid pointer
2586 *
2587 *	Set the process group of the tty to the session passed. Only
2588 *	permitted where the tty session is our session.
2589 *
2590 *	Locking: RCU, ctrl lock
2591 */
2592
2593static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2594{
2595	struct pid *pgrp;
2596	pid_t pgrp_nr;
2597	int retval = tty_check_change(real_tty);
 
2598
2599	if (retval == -EIO)
2600		return -ENOTTY;
2601	if (retval)
2602		return retval;
2603	if (!current->signal->tty ||
2604	    (current->signal->tty != real_tty) ||
2605	    (real_tty->session != task_session(current)))
2606		return -ENOTTY;
2607	if (get_user(pgrp_nr, p))
2608		return -EFAULT;
2609	if (pgrp_nr < 0)
2610		return -EINVAL;
2611	rcu_read_lock();
2612	pgrp = find_vpid(pgrp_nr);
2613	retval = -ESRCH;
2614	if (!pgrp)
2615		goto out_unlock;
2616	retval = -EPERM;
2617	if (session_of_pgrp(pgrp) != task_session(current))
2618		goto out_unlock;
2619	retval = 0;
2620	spin_lock_irq(&tty->ctrl_lock);
2621	put_pid(real_tty->pgrp);
2622	real_tty->pgrp = get_pid(pgrp);
2623	spin_unlock_irq(&tty->ctrl_lock);
2624out_unlock:
2625	rcu_read_unlock();
2626	return retval;
2627}
2628
2629/**
2630 *	tiocgsid		-	get session id
2631 *	@tty: tty passed by user
2632 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2633 *	@p: pointer to returned session id
2634 *
2635 *	Obtain the session id of the tty. If there is no session
2636 *	return an error.
2637 *
2638 *	Locking: none. Reference to current->signal->tty is safe.
2639 */
2640
2641static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2642{
2643	/*
2644	 * (tty == real_tty) is a cheap way of
2645	 * testing if the tty is NOT a master pty.
2646	*/
2647	if (tty == real_tty && current->signal->tty != real_tty)
2648		return -ENOTTY;
2649	if (!real_tty->session)
2650		return -ENOTTY;
2651	return put_user(pid_vnr(real_tty->session), p);
2652}
2653
2654/**
2655 *	tiocsetd	-	set line discipline
2656 *	@tty: tty device
2657 *	@p: pointer to user data
2658 *
2659 *	Set the line discipline according to user request.
2660 *
2661 *	Locking: see tty_set_ldisc, this function is just a helper
2662 */
2663
2664static int tiocsetd(struct tty_struct *tty, int __user *p)
2665{
2666	int disc;
2667	int ret;
2668
2669	if (get_user(disc, p))
2670		return -EFAULT;
2671
2672	ret = tty_set_ldisc(tty, disc);
2673
2674	return ret;
2675}
2676
2677/**
2678 *	tiocgetd	-	get line discipline
2679 *	@tty: tty device
2680 *	@p: pointer to user data
2681 *
2682 *	Retrieves the line discipline id directly from the ldisc.
2683 *
2684 *	Locking: waits for ldisc reference (in case the line discipline
2685 *		is changing or the tty is being hungup)
2686 */
2687
2688static int tiocgetd(struct tty_struct *tty, int __user *p)
2689{
2690	struct tty_ldisc *ld;
2691	int ret;
2692
2693	ld = tty_ldisc_ref_wait(tty);
2694	if (!ld)
2695		return -EIO;
2696	ret = put_user(ld->ops->num, p);
2697	tty_ldisc_deref(ld);
2698	return ret;
2699}
2700
2701/**
2702 *	send_break	-	performed time break
2703 *	@tty: device to break on
2704 *	@duration: timeout in mS
2705 *
2706 *	Perform a timed break on hardware that lacks its own driver level
2707 *	timed break functionality.
2708 *
2709 *	Locking:
2710 *		atomic_write_lock serializes
2711 *
2712 */
2713
2714static int send_break(struct tty_struct *tty, unsigned int duration)
2715{
2716	int retval;
2717
2718	if (tty->ops->break_ctl == NULL)
2719		return 0;
2720
2721	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2722		retval = tty->ops->break_ctl(tty, duration);
2723	else {
2724		/* Do the work ourselves */
2725		if (tty_write_lock(tty, 0) < 0)
2726			return -EINTR;
2727		retval = tty->ops->break_ctl(tty, -1);
2728		if (retval)
2729			goto out;
2730		if (!signal_pending(current))
2731			msleep_interruptible(duration);
2732		retval = tty->ops->break_ctl(tty, 0);
2733out:
2734		tty_write_unlock(tty);
2735		if (signal_pending(current))
2736			retval = -EINTR;
2737	}
2738	return retval;
2739}
2740
2741/**
2742 *	tty_tiocmget		-	get modem status
2743 *	@tty: tty device
2744 *	@file: user file pointer
2745 *	@p: pointer to result
2746 *
2747 *	Obtain the modem status bits from the tty driver if the feature
2748 *	is supported. Return -EINVAL if it is not available.
2749 *
2750 *	Locking: none (up to the driver)
2751 */
2752
2753static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2754{
2755	int retval = -EINVAL;
2756
2757	if (tty->ops->tiocmget) {
2758		retval = tty->ops->tiocmget(tty);
2759
2760		if (retval >= 0)
2761			retval = put_user(retval, p);
2762	}
2763	return retval;
2764}
2765
2766/**
2767 *	tty_tiocmset		-	set modem status
2768 *	@tty: tty device
2769 *	@cmd: command - clear bits, set bits or set all
2770 *	@p: pointer to desired bits
2771 *
2772 *	Set the modem status bits from the tty driver if the feature
2773 *	is supported. Return -EINVAL if it is not available.
2774 *
2775 *	Locking: none (up to the driver)
2776 */
2777
2778static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2779	     unsigned __user *p)
2780{
2781	int retval;
2782	unsigned int set, clear, val;
2783
2784	if (tty->ops->tiocmset == NULL)
2785		return -EINVAL;
2786
2787	retval = get_user(val, p);
2788	if (retval)
2789		return retval;
2790	set = clear = 0;
2791	switch (cmd) {
2792	case TIOCMBIS:
2793		set = val;
2794		break;
2795	case TIOCMBIC:
2796		clear = val;
2797		break;
2798	case TIOCMSET:
2799		set = val;
2800		clear = ~val;
2801		break;
2802	}
2803	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2804	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2805	return tty->ops->tiocmset(tty, set, clear);
2806}
2807
2808static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2809{
2810	int retval = -EINVAL;
2811	struct serial_icounter_struct icount;
2812	memset(&icount, 0, sizeof(icount));
2813	if (tty->ops->get_icount)
2814		retval = tty->ops->get_icount(tty, &icount);
2815	if (retval != 0)
2816		return retval;
2817	if (copy_to_user(arg, &icount, sizeof(icount)))
2818		return -EFAULT;
2819	return 0;
2820}
2821
2822static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2823{
2824	static DEFINE_RATELIMIT_STATE(depr_flags,
2825			DEFAULT_RATELIMIT_INTERVAL,
2826			DEFAULT_RATELIMIT_BURST);
2827	char comm[TASK_COMM_LEN];
2828	int flags;
2829
2830	if (get_user(flags, &ss->flags))
2831		return;
2832
2833	flags &= ASYNC_DEPRECATED;
2834
2835	if (flags && __ratelimit(&depr_flags))
2836		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2837				__func__, get_task_comm(comm, current), flags);
2838}
 
2839
2840/*
2841 * if pty, return the slave side (real_tty)
2842 * otherwise, return self
2843 */
2844static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2845{
2846	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2847	    tty->driver->subtype == PTY_TYPE_MASTER)
2848		tty = tty->link;
2849	return tty;
2850}
 
2851
2852/*
2853 * Split this up, as gcc can choke on it otherwise..
2854 */
2855long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2856{
2857	struct tty_struct *tty = file_tty(file);
2858	struct tty_struct *real_tty;
2859	void __user *p = (void __user *)arg;
2860	int retval;
2861	struct tty_ldisc *ld;
 
2862
2863	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2864		return -EINVAL;
2865
2866	real_tty = tty_pair_get_tty(tty);
2867
2868	/*
2869	 * Factor out some common prep work
2870	 */
2871	switch (cmd) {
2872	case TIOCSETD:
2873	case TIOCSBRK:
2874	case TIOCCBRK:
2875	case TCSBRK:
2876	case TCSBRKP:
2877		retval = tty_check_change(tty);
2878		if (retval)
2879			return retval;
2880		if (cmd != TIOCCBRK) {
2881			tty_wait_until_sent(tty, 0);
2882			if (signal_pending(current))
2883				return -EINTR;
2884		}
2885		break;
2886	}
2887
2888	/*
2889	 *	Now do the stuff.
2890	 */
2891	switch (cmd) {
2892	case TIOCSTI:
2893		return tiocsti(tty, p);
2894	case TIOCGWINSZ:
2895		return tiocgwinsz(real_tty, p);
2896	case TIOCSWINSZ:
2897		return tiocswinsz(real_tty, p);
2898	case TIOCCONS:
2899		return real_tty != tty ? -EINVAL : tioccons(file);
2900	case FIONBIO:
2901		return fionbio(file, p);
2902	case TIOCEXCL:
2903		set_bit(TTY_EXCLUSIVE, &tty->flags);
2904		return 0;
2905	case TIOCNXCL:
2906		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2907		return 0;
2908	case TIOCGEXCL:
2909	{
2910		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2911		return put_user(excl, (int __user *)p);
2912	}
2913	case TIOCNOTTY:
2914		if (current->signal->tty != tty)
2915			return -ENOTTY;
2916		no_tty();
2917		return 0;
2918	case TIOCSCTTY:
2919		return tiocsctty(real_tty, file, arg);
2920	case TIOCGPGRP:
2921		return tiocgpgrp(tty, real_tty, p);
2922	case TIOCSPGRP:
2923		return tiocspgrp(tty, real_tty, p);
2924	case TIOCGSID:
2925		return tiocgsid(tty, real_tty, p);
2926	case TIOCGETD:
2927		return tiocgetd(tty, p);
2928	case TIOCSETD:
2929		return tiocsetd(tty, p);
2930	case TIOCVHANGUP:
2931		if (!capable(CAP_SYS_ADMIN))
2932			return -EPERM;
2933		tty_vhangup(tty);
2934		return 0;
2935	case TIOCGDEV:
2936	{
2937		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2938		return put_user(ret, (unsigned int __user *)p);
2939	}
2940	/*
2941	 * Break handling
2942	 */
2943	case TIOCSBRK:	/* Turn break on, unconditionally */
2944		if (tty->ops->break_ctl)
2945			return tty->ops->break_ctl(tty, -1);
2946		return 0;
2947	case TIOCCBRK:	/* Turn break off, unconditionally */
2948		if (tty->ops->break_ctl)
2949			return tty->ops->break_ctl(tty, 0);
2950		return 0;
2951	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2952		/* non-zero arg means wait for all output data
2953		 * to be sent (performed above) but don't send break.
2954		 * This is used by the tcdrain() termios function.
2955		 */
2956		if (!arg)
2957			return send_break(tty, 250);
2958		return 0;
2959	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2960		return send_break(tty, arg ? arg*100 : 250);
2961
2962	case TIOCMGET:
2963		return tty_tiocmget(tty, p);
2964	case TIOCMSET:
2965	case TIOCMBIC:
2966	case TIOCMBIS:
2967		return tty_tiocmset(tty, cmd, p);
2968	case TIOCGICOUNT:
2969		retval = tty_tiocgicount(tty, p);
2970		/* For the moment allow fall through to the old method */
2971        	if (retval != -EINVAL)
2972			return retval;
2973		break;
2974	case TCFLSH:
2975		switch (arg) {
2976		case TCIFLUSH:
2977		case TCIOFLUSH:
2978		/* flush tty buffer and allow ldisc to process ioctl */
2979			tty_buffer_flush(tty, NULL);
2980			break;
2981		}
2982		break;
2983	case TIOCSSERIAL:
2984		tty_warn_deprecated_flags(p);
2985		break;
2986	}
2987	if (tty->ops->ioctl) {
2988		retval = tty->ops->ioctl(tty, cmd, arg);
2989		if (retval != -ENOIOCTLCMD)
2990			return retval;
2991	}
2992	ld = tty_ldisc_ref_wait(tty);
2993	if (!ld)
2994		return hung_up_tty_ioctl(file, cmd, arg);
2995	retval = -EINVAL;
2996	if (ld->ops->ioctl) {
2997		retval = ld->ops->ioctl(tty, file, cmd, arg);
2998		if (retval == -ENOIOCTLCMD)
2999			retval = -ENOTTY;
3000	}
3001	tty_ldisc_deref(ld);
3002	return retval;
3003}
3004
3005#ifdef CONFIG_COMPAT
3006static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3007				unsigned long arg)
3008{
 
3009	struct tty_struct *tty = file_tty(file);
3010	struct tty_ldisc *ld;
3011	int retval = -ENOIOCTLCMD;
3012
3013	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3014		return -EINVAL;
3015
3016	if (tty->ops->compat_ioctl) {
3017		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3018		if (retval != -ENOIOCTLCMD)
3019			return retval;
3020	}
3021
3022	ld = tty_ldisc_ref_wait(tty);
3023	if (!ld)
3024		return hung_up_tty_compat_ioctl(file, cmd, arg);
3025	if (ld->ops->compat_ioctl)
3026		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3027	else
3028		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3029	tty_ldisc_deref(ld);
3030
3031	return retval;
3032}
3033#endif
3034
3035static int this_tty(const void *t, struct file *file, unsigned fd)
3036{
3037	if (likely(file->f_op->read != tty_read))
3038		return 0;
3039	return file_tty(file) != t ? 0 : fd + 1;
3040}
3041	
3042/*
3043 * This implements the "Secure Attention Key" ---  the idea is to
3044 * prevent trojan horses by killing all processes associated with this
3045 * tty when the user hits the "Secure Attention Key".  Required for
3046 * super-paranoid applications --- see the Orange Book for more details.
3047 *
3048 * This code could be nicer; ideally it should send a HUP, wait a few
3049 * seconds, then send a INT, and then a KILL signal.  But you then
3050 * have to coordinate with the init process, since all processes associated
3051 * with the current tty must be dead before the new getty is allowed
3052 * to spawn.
3053 *
3054 * Now, if it would be correct ;-/ The current code has a nasty hole -
3055 * it doesn't catch files in flight. We may send the descriptor to ourselves
3056 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3057 *
3058 * Nasty bug: do_SAK is being called in interrupt context.  This can
3059 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3060 */
3061void __do_SAK(struct tty_struct *tty)
3062{
3063#ifdef TTY_SOFT_SAK
3064	tty_hangup(tty);
3065#else
3066	struct task_struct *g, *p;
3067	struct pid *session;
3068	int		i;
 
 
3069
3070	if (!tty)
3071		return;
3072	session = tty->session;
3073
3074	tty_ldisc_flush(tty);
3075
3076	tty_driver_flush_buffer(tty);
3077
3078	read_lock(&tasklist_lock);
3079	/* Kill the entire session */
3080	do_each_pid_task(session, PIDTYPE_SID, p) {
3081		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3082			   task_pid_nr(p), p->comm);
 
3083		send_sig(SIGKILL, p, 1);
3084	} while_each_pid_task(session, PIDTYPE_SID, p);
3085
3086	/* Now kill any processes that happen to have the tty open */
 
3087	do_each_thread(g, p) {
3088		if (p->signal->tty == tty) {
3089			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3090				   task_pid_nr(p), p->comm);
 
3091			send_sig(SIGKILL, p, 1);
3092			continue;
3093		}
3094		task_lock(p);
3095		i = iterate_fd(p->files, 0, this_tty, tty);
3096		if (i != 0) {
3097			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3098				   task_pid_nr(p), p->comm, i - 1);
3099			force_sig(SIGKILL, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3100		}
3101		task_unlock(p);
3102	} while_each_thread(g, p);
3103	read_unlock(&tasklist_lock);
3104#endif
3105}
3106
3107static void do_SAK_work(struct work_struct *work)
3108{
3109	struct tty_struct *tty =
3110		container_of(work, struct tty_struct, SAK_work);
3111	__do_SAK(tty);
3112}
3113
3114/*
3115 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3116 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3117 * the values which we write to it will be identical to the values which it
3118 * already has. --akpm
3119 */
3120void do_SAK(struct tty_struct *tty)
3121{
3122	if (!tty)
3123		return;
3124	schedule_work(&tty->SAK_work);
3125}
3126
3127EXPORT_SYMBOL(do_SAK);
3128
3129static int dev_match_devt(struct device *dev, const void *data)
3130{
3131	const dev_t *devt = data;
3132	return dev->devt == *devt;
3133}
3134
3135/* Must put_device() after it's unused! */
3136static struct device *tty_get_device(struct tty_struct *tty)
3137{
3138	dev_t devt = tty_devnum(tty);
3139	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3140}
3141
3142
3143/**
3144 *	alloc_tty_struct
 
3145 *
3146 *	This subroutine allocates and initializes a tty structure.
 
3147 *
3148 *	Locking: none - tty in question is not exposed at this point
3149 */
3150
3151struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
 
3152{
3153	struct tty_struct *tty;
3154
3155	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3156	if (!tty)
3157		return NULL;
3158
3159	kref_init(&tty->kref);
3160	tty->magic = TTY_MAGIC;
3161	tty_ldisc_init(tty);
3162	tty->session = NULL;
3163	tty->pgrp = NULL;
3164	mutex_init(&tty->legacy_mutex);
3165	mutex_init(&tty->throttle_mutex);
3166	init_rwsem(&tty->termios_rwsem);
3167	mutex_init(&tty->winsize_mutex);
3168	init_ldsem(&tty->ldisc_sem);
3169	init_waitqueue_head(&tty->write_wait);
3170	init_waitqueue_head(&tty->read_wait);
3171	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
3172	mutex_init(&tty->atomic_write_lock);
 
 
 
3173	spin_lock_init(&tty->ctrl_lock);
3174	spin_lock_init(&tty->flow_lock);
3175	spin_lock_init(&tty->files_lock);
3176	INIT_LIST_HEAD(&tty->tty_files);
3177	INIT_WORK(&tty->SAK_work, do_SAK_work);
3178
3179	tty->driver = driver;
3180	tty->ops = driver->ops;
3181	tty->index = idx;
3182	tty_line_name(driver, idx, tty->name);
3183	tty->dev = tty_get_device(tty);
 
3184
3185	return tty;
 
 
 
 
 
 
 
 
 
 
 
3186}
3187
3188/**
3189 *	tty_put_char	-	write one character to a tty
3190 *	@tty: tty
3191 *	@ch: character
3192 *
3193 *	Write one byte to the tty using the provided put_char method
3194 *	if present. Returns the number of characters successfully output.
3195 *
3196 *	Note: the specific put_char operation in the driver layer may go
3197 *	away soon. Don't call it directly, use this method
3198 */
3199
3200int tty_put_char(struct tty_struct *tty, unsigned char ch)
3201{
3202	if (tty->ops->put_char)
3203		return tty->ops->put_char(tty, ch);
3204	return tty->ops->write(tty, &ch, 1);
3205}
3206EXPORT_SYMBOL_GPL(tty_put_char);
3207
3208struct class *tty_class;
3209
3210static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3211		unsigned int index, unsigned int count)
3212{
3213	int err;
3214
3215	/* init here, since reused cdevs cause crashes */
3216	driver->cdevs[index] = cdev_alloc();
3217	if (!driver->cdevs[index])
3218		return -ENOMEM;
3219	driver->cdevs[index]->ops = &tty_fops;
3220	driver->cdevs[index]->owner = driver->owner;
3221	err = cdev_add(driver->cdevs[index], dev, count);
3222	if (err)
3223		kobject_put(&driver->cdevs[index]->kobj);
3224	return err;
3225}
3226
3227/**
3228 *	tty_register_device - register a tty device
3229 *	@driver: the tty driver that describes the tty device
3230 *	@index: the index in the tty driver for this tty device
3231 *	@device: a struct device that is associated with this tty device.
3232 *		This field is optional, if there is no known struct device
3233 *		for this tty device it can be set to NULL safely.
3234 *
3235 *	Returns a pointer to the struct device for this tty device
3236 *	(or ERR_PTR(-EFOO) on error).
3237 *
3238 *	This call is required to be made to register an individual tty device
3239 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3240 *	that bit is not set, this function should not be called by a tty
3241 *	driver.
3242 *
3243 *	Locking: ??
3244 */
3245
3246struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3247				   struct device *device)
3248{
3249	return tty_register_device_attr(driver, index, device, NULL, NULL);
3250}
3251EXPORT_SYMBOL(tty_register_device);
3252
3253static void tty_device_create_release(struct device *dev)
3254{
3255	dev_dbg(dev, "releasing...\n");
3256	kfree(dev);
3257}
3258
3259/**
3260 *	tty_register_device_attr - register a tty device
3261 *	@driver: the tty driver that describes the tty device
3262 *	@index: the index in the tty driver for this tty device
3263 *	@device: a struct device that is associated with this tty device.
3264 *		This field is optional, if there is no known struct device
3265 *		for this tty device it can be set to NULL safely.
3266 *	@drvdata: Driver data to be set to device.
3267 *	@attr_grp: Attribute group to be set on device.
3268 *
3269 *	Returns a pointer to the struct device for this tty device
3270 *	(or ERR_PTR(-EFOO) on error).
3271 *
3272 *	This call is required to be made to register an individual tty device
3273 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3274 *	that bit is not set, this function should not be called by a tty
3275 *	driver.
3276 *
3277 *	Locking: ??
3278 */
3279struct device *tty_register_device_attr(struct tty_driver *driver,
3280				   unsigned index, struct device *device,
3281				   void *drvdata,
3282				   const struct attribute_group **attr_grp)
3283{
3284	char name[64];
3285	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3286	struct device *dev = NULL;
3287	int retval = -ENODEV;
3288	bool cdev = false;
3289
3290	if (index >= driver->num) {
3291		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3292		       driver->name, index);
3293		return ERR_PTR(-EINVAL);
3294	}
3295
3296	if (driver->type == TTY_DRIVER_TYPE_PTY)
3297		pty_line_name(driver, index, name);
3298	else
3299		tty_line_name(driver, index, name);
3300
3301	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3302		retval = tty_cdev_add(driver, devt, index, 1);
3303		if (retval)
3304			goto error;
3305		cdev = true;
3306	}
3307
3308	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3309	if (!dev) {
3310		retval = -ENOMEM;
3311		goto error;
3312	}
3313
3314	dev->devt = devt;
3315	dev->class = tty_class;
3316	dev->parent = device;
3317	dev->release = tty_device_create_release;
3318	dev_set_name(dev, "%s", name);
3319	dev->groups = attr_grp;
3320	dev_set_drvdata(dev, drvdata);
3321
3322	retval = device_register(dev);
3323	if (retval)
3324		goto error;
3325
3326	return dev;
3327
3328error:
3329	put_device(dev);
3330	if (cdev) {
3331		cdev_del(driver->cdevs[index]);
3332		driver->cdevs[index] = NULL;
3333	}
3334	return ERR_PTR(retval);
3335}
3336EXPORT_SYMBOL_GPL(tty_register_device_attr);
3337
3338/**
3339 * 	tty_unregister_device - unregister a tty device
3340 * 	@driver: the tty driver that describes the tty device
3341 * 	@index: the index in the tty driver for this tty device
3342 *
3343 * 	If a tty device is registered with a call to tty_register_device() then
3344 *	this function must be called when the tty device is gone.
3345 *
3346 *	Locking: ??
3347 */
3348
3349void tty_unregister_device(struct tty_driver *driver, unsigned index)
3350{
3351	device_destroy(tty_class,
3352		MKDEV(driver->major, driver->minor_start) + index);
3353	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3354		cdev_del(driver->cdevs[index]);
3355		driver->cdevs[index] = NULL;
3356	}
3357}
3358EXPORT_SYMBOL(tty_unregister_device);
3359
3360/**
3361 * __tty_alloc_driver -- allocate tty driver
3362 * @lines: count of lines this driver can handle at most
3363 * @owner: module which is repsonsible for this driver
3364 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3365 *
3366 * This should not be called directly, some of the provided macros should be
3367 * used instead. Use IS_ERR and friends on @retval.
3368 */
3369struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3370		unsigned long flags)
3371{
3372	struct tty_driver *driver;
3373	unsigned int cdevs = 1;
3374	int err;
3375
3376	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3377		return ERR_PTR(-EINVAL);
3378
3379	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3380	if (!driver)
3381		return ERR_PTR(-ENOMEM);
3382
3383	kref_init(&driver->kref);
3384	driver->magic = TTY_DRIVER_MAGIC;
3385	driver->num = lines;
3386	driver->owner = owner;
3387	driver->flags = flags;
3388
3389	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3390		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3391				GFP_KERNEL);
3392		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3393				GFP_KERNEL);
3394		if (!driver->ttys || !driver->termios) {
3395			err = -ENOMEM;
3396			goto err_free_all;
3397		}
3398	}
3399
3400	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3401		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3402				GFP_KERNEL);
3403		if (!driver->ports) {
3404			err = -ENOMEM;
3405			goto err_free_all;
3406		}
3407		cdevs = lines;
3408	}
3409
3410	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3411	if (!driver->cdevs) {
3412		err = -ENOMEM;
3413		goto err_free_all;
3414	}
3415
3416	return driver;
3417err_free_all:
3418	kfree(driver->ports);
3419	kfree(driver->ttys);
3420	kfree(driver->termios);
3421	kfree(driver->cdevs);
3422	kfree(driver);
3423	return ERR_PTR(err);
3424}
3425EXPORT_SYMBOL(__tty_alloc_driver);
3426
3427static void destruct_tty_driver(struct kref *kref)
3428{
3429	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3430	int i;
3431	struct ktermios *tp;
 
3432
3433	if (driver->flags & TTY_DRIVER_INSTALLED) {
3434		/*
3435		 * Free the termios and termios_locked structures because
3436		 * we don't want to get memory leaks when modular tty
3437		 * drivers are removed from the kernel.
3438		 */
3439		for (i = 0; i < driver->num; i++) {
3440			tp = driver->termios[i];
3441			if (tp) {
3442				driver->termios[i] = NULL;
3443				kfree(tp);
3444			}
3445			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3446				tty_unregister_device(driver, i);
3447		}
 
3448		proc_tty_unregister_driver(driver);
3449		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3450			cdev_del(driver->cdevs[0]);
 
 
3451	}
3452	kfree(driver->cdevs);
3453	kfree(driver->ports);
3454	kfree(driver->termios);
3455	kfree(driver->ttys);
3456	kfree(driver);
3457}
3458
3459void tty_driver_kref_put(struct tty_driver *driver)
3460{
3461	kref_put(&driver->kref, destruct_tty_driver);
3462}
3463EXPORT_SYMBOL(tty_driver_kref_put);
3464
3465void tty_set_operations(struct tty_driver *driver,
3466			const struct tty_operations *op)
3467{
3468	driver->ops = op;
3469};
3470EXPORT_SYMBOL(tty_set_operations);
3471
3472void put_tty_driver(struct tty_driver *d)
3473{
3474	tty_driver_kref_put(d);
3475}
3476EXPORT_SYMBOL(put_tty_driver);
3477
3478/*
3479 * Called by a tty driver to register itself.
3480 */
3481int tty_register_driver(struct tty_driver *driver)
3482{
3483	int error;
3484	int i;
3485	dev_t dev;
 
3486	struct device *d;
3487
 
 
 
 
 
 
3488	if (!driver->major) {
3489		error = alloc_chrdev_region(&dev, driver->minor_start,
3490						driver->num, driver->name);
3491		if (!error) {
3492			driver->major = MAJOR(dev);
3493			driver->minor_start = MINOR(dev);
3494		}
3495	} else {
3496		dev = MKDEV(driver->major, driver->minor_start);
3497		error = register_chrdev_region(dev, driver->num, driver->name);
3498	}
3499	if (error < 0)
3500		goto err;
 
 
 
 
 
 
 
 
 
 
3501
3502	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3503		error = tty_cdev_add(driver, dev, 0, driver->num);
3504		if (error)
3505			goto err_unreg_char;
 
 
 
 
 
3506	}
3507
3508	mutex_lock(&tty_mutex);
3509	list_add(&driver->tty_drivers, &tty_drivers);
3510	mutex_unlock(&tty_mutex);
3511
3512	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3513		for (i = 0; i < driver->num; i++) {
3514			d = tty_register_device(driver, i, NULL);
3515			if (IS_ERR(d)) {
3516				error = PTR_ERR(d);
3517				goto err_unreg_devs;
3518			}
3519		}
3520	}
3521	proc_tty_register_driver(driver);
3522	driver->flags |= TTY_DRIVER_INSTALLED;
3523	return 0;
3524
3525err_unreg_devs:
3526	for (i--; i >= 0; i--)
3527		tty_unregister_device(driver, i);
3528
3529	mutex_lock(&tty_mutex);
3530	list_del(&driver->tty_drivers);
3531	mutex_unlock(&tty_mutex);
3532
3533err_unreg_char:
3534	unregister_chrdev_region(dev, driver->num);
3535err:
 
 
3536	return error;
3537}
 
3538EXPORT_SYMBOL(tty_register_driver);
3539
3540/*
3541 * Called by a tty driver to unregister itself.
3542 */
3543int tty_unregister_driver(struct tty_driver *driver)
3544{
3545#if 0
3546	/* FIXME */
3547	if (driver->refcount)
3548		return -EBUSY;
3549#endif
3550	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3551				driver->num);
3552	mutex_lock(&tty_mutex);
3553	list_del(&driver->tty_drivers);
3554	mutex_unlock(&tty_mutex);
3555	return 0;
3556}
3557
3558EXPORT_SYMBOL(tty_unregister_driver);
3559
3560dev_t tty_devnum(struct tty_struct *tty)
3561{
3562	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3563}
3564EXPORT_SYMBOL(tty_devnum);
3565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3566void tty_default_fops(struct file_operations *fops)
3567{
3568	*fops = tty_fops;
3569}
3570
3571/*
3572 * Initialize the console device. This is called *early*, so
3573 * we can't necessarily depend on lots of kernel help here.
3574 * Just do some early initializations, and do the complex setup
3575 * later.
3576 */
3577void __init console_init(void)
3578{
3579	initcall_t *call;
3580
3581	/* Setup the default TTY line discipline. */
3582	n_tty_init();
3583
3584	/*
3585	 * set up the console device so that later boot sequences can
3586	 * inform about problems etc..
3587	 */
3588	call = __con_initcall_start;
3589	while (call < __con_initcall_end) {
3590		(*call)();
3591		call++;
3592	}
3593}
3594
3595static char *tty_devnode(struct device *dev, umode_t *mode)
3596{
3597	if (!mode)
3598		return NULL;
3599	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3600	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3601		*mode = 0666;
3602	return NULL;
3603}
3604
3605static int __init tty_class_init(void)
3606{
3607	tty_class = class_create(THIS_MODULE, "tty");
3608	if (IS_ERR(tty_class))
3609		return PTR_ERR(tty_class);
3610	tty_class->devnode = tty_devnode;
3611	return 0;
3612}
3613
3614postcore_initcall(tty_class_init);
3615
3616/* 3/2004 jmc: why do these devices exist? */
3617static struct cdev tty_cdev, console_cdev;
3618
3619static ssize_t show_cons_active(struct device *dev,
3620				struct device_attribute *attr, char *buf)
3621{
3622	struct console *cs[16];
3623	int i = 0;
3624	struct console *c;
3625	ssize_t count = 0;
3626
3627	console_lock();
3628	for_each_console(c) {
3629		if (!c->device)
3630			continue;
3631		if (!c->write)
3632			continue;
3633		if ((c->flags & CON_ENABLED) == 0)
3634			continue;
3635		cs[i++] = c;
3636		if (i >= ARRAY_SIZE(cs))
3637			break;
3638	}
3639	while (i--) {
3640		int index = cs[i]->index;
3641		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3642
3643		/* don't resolve tty0 as some programs depend on it */
3644		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3645			count += tty_line_name(drv, index, buf + count);
3646		else
3647			count += sprintf(buf + count, "%s%d",
3648					 cs[i]->name, cs[i]->index);
3649
3650		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3651	}
3652	console_unlock();
3653
3654	return count;
3655}
3656static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3657
3658static struct attribute *cons_dev_attrs[] = {
3659	&dev_attr_active.attr,
3660	NULL
3661};
3662
3663ATTRIBUTE_GROUPS(cons_dev);
3664
3665static struct device *consdev;
3666
3667void console_sysfs_notify(void)
3668{
3669	if (consdev)
3670		sysfs_notify(&consdev->kobj, NULL, "active");
3671}
3672
3673/*
3674 * Ok, now we can initialize the rest of the tty devices and can count
3675 * on memory allocations, interrupts etc..
3676 */
3677int __init tty_init(void)
3678{
3679	cdev_init(&tty_cdev, &tty_fops);
3680	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3681	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3682		panic("Couldn't register /dev/tty driver\n");
3683	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3684
3685	cdev_init(&console_cdev, &console_fops);
3686	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3687	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3688		panic("Couldn't register /dev/console driver\n");
3689	consdev = device_create_with_groups(tty_class, NULL,
3690					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3691					    cons_dev_groups, "console");
3692	if (IS_ERR(consdev))
3693		consdev = NULL;
 
 
3694
3695#ifdef CONFIG_VT
3696	vty_init(&console_fops);
3697#endif
3698	return 0;
3699}
3700