Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include "hw.h"
 18
 19static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
 20{
 21	if (fbin == AR5416_BCHAN_UNUSED)
 22		return fbin;
 23
 24	return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
 25}
 26
 27void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
 28{
 29        REG_WRITE(ah, reg, val);
 30
 31        if (ah->config.analog_shiftreg)
 32		udelay(100);
 33}
 34
 35void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
 36			       u32 shift, u32 val)
 37{
 38	u32 regVal;
 39
 40	regVal = REG_READ(ah, reg) & ~mask;
 41	regVal |= (val << shift) & mask;
 42
 43	REG_WRITE(ah, reg, regVal);
 44
 45	if (ah->config.analog_shiftreg)
 46		udelay(100);
 47}
 48
 49int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
 50			     int16_t targetLeft, int16_t targetRight)
 51{
 52	int16_t rv;
 53
 54	if (srcRight == srcLeft) {
 55		rv = targetLeft;
 56	} else {
 57		rv = (int16_t) (((target - srcLeft) * targetRight +
 58				 (srcRight - target) * targetLeft) /
 59				(srcRight - srcLeft));
 60	}
 61	return rv;
 62}
 63
 64bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
 65				    u16 *indexL, u16 *indexR)
 66{
 67	u16 i;
 68
 69	if (target <= pList[0]) {
 70		*indexL = *indexR = 0;
 71		return true;
 72	}
 73	if (target >= pList[listSize - 1]) {
 74		*indexL = *indexR = (u16) (listSize - 1);
 75		return true;
 76	}
 77
 78	for (i = 0; i < listSize - 1; i++) {
 79		if (pList[i] == target) {
 80			*indexL = *indexR = i;
 81			return true;
 82		}
 83		if (target < pList[i + 1]) {
 84			*indexL = i;
 85			*indexR = (u16) (i + 1);
 86			return false;
 87		}
 88	}
 89	return false;
 90}
 91
 92void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
 93				  int eep_start_loc, int size)
 94{
 95	int i = 0, j, addr;
 96	u32 addrdata[8];
 97	u32 data[8];
 98
 99	for (addr = 0; addr < size; addr++) {
100		addrdata[i] = AR5416_EEPROM_OFFSET +
101			((addr + eep_start_loc) << AR5416_EEPROM_S);
102		i++;
103		if (i == 8) {
104			REG_READ_MULTI(ah, addrdata, data, i);
105
106			for (j = 0; j < i; j++) {
107				*eep_data = data[j];
108				eep_data++;
109			}
110			i = 0;
111		}
112	}
113
114	if (i != 0) {
115		REG_READ_MULTI(ah, addrdata, data, i);
116
117		for (j = 0; j < i; j++) {
118			*eep_data = data[j];
119			eep_data++;
120		}
121	}
122}
123
124bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
 
125{
126	return common->bus_ops->eeprom_read(common, off, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127}
128
129void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
130			     u8 *pVpdList, u16 numIntercepts,
131			     u8 *pRetVpdList)
132{
133	u16 i, k;
134	u8 currPwr = pwrMin;
135	u16 idxL = 0, idxR = 0;
136
137	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
138		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
139					       numIntercepts, &(idxL),
140					       &(idxR));
141		if (idxR < 1)
142			idxR = 1;
143		if (idxL == numIntercepts - 1)
144			idxL = (u16) (numIntercepts - 2);
145		if (pPwrList[idxL] == pPwrList[idxR])
146			k = pVpdList[idxL];
147		else
148			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
149				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
150				  (pPwrList[idxR] - pPwrList[idxL]));
151		pRetVpdList[i] = (u8) k;
152		currPwr += 2;
153	}
154}
155
156void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
157				       struct ath9k_channel *chan,
158				       struct cal_target_power_leg *powInfo,
159				       u16 numChannels,
160				       struct cal_target_power_leg *pNewPower,
161				       u16 numRates, bool isExtTarget)
162{
163	struct chan_centers centers;
164	u16 clo, chi;
165	int i;
166	int matchIndex = -1, lowIndex = -1;
167	u16 freq;
168
169	ath9k_hw_get_channel_centers(ah, chan, &centers);
170	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
171
172	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
173				       IS_CHAN_2GHZ(chan))) {
174		matchIndex = 0;
175	} else {
176		for (i = 0; (i < numChannels) &&
177			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
178			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
179						       IS_CHAN_2GHZ(chan))) {
180				matchIndex = i;
181				break;
182			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
183						IS_CHAN_2GHZ(chan)) && i > 0 &&
184				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
185						IS_CHAN_2GHZ(chan))) {
186				lowIndex = i - 1;
187				break;
188			}
189		}
190		if ((matchIndex == -1) && (lowIndex == -1))
191			matchIndex = i - 1;
192	}
193
194	if (matchIndex != -1) {
195		*pNewPower = powInfo[matchIndex];
196	} else {
197		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
198					 IS_CHAN_2GHZ(chan));
199		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
200					 IS_CHAN_2GHZ(chan));
201
202		for (i = 0; i < numRates; i++) {
203			pNewPower->tPow2x[i] =
204				(u8)ath9k_hw_interpolate(freq, clo, chi,
205						powInfo[lowIndex].tPow2x[i],
206						powInfo[lowIndex + 1].tPow2x[i]);
207		}
208	}
209}
210
211void ath9k_hw_get_target_powers(struct ath_hw *ah,
212				struct ath9k_channel *chan,
213				struct cal_target_power_ht *powInfo,
214				u16 numChannels,
215				struct cal_target_power_ht *pNewPower,
216				u16 numRates, bool isHt40Target)
217{
218	struct chan_centers centers;
219	u16 clo, chi;
220	int i;
221	int matchIndex = -1, lowIndex = -1;
222	u16 freq;
223
224	ath9k_hw_get_channel_centers(ah, chan, &centers);
225	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
226
227	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
228		matchIndex = 0;
229	} else {
230		for (i = 0; (i < numChannels) &&
231			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
232			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
233						       IS_CHAN_2GHZ(chan))) {
234				matchIndex = i;
235				break;
236			} else
237				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
238						IS_CHAN_2GHZ(chan)) && i > 0 &&
239				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
240						IS_CHAN_2GHZ(chan))) {
241					lowIndex = i - 1;
242					break;
243				}
244		}
245		if ((matchIndex == -1) && (lowIndex == -1))
246			matchIndex = i - 1;
247	}
248
249	if (matchIndex != -1) {
250		*pNewPower = powInfo[matchIndex];
251	} else {
252		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
253					 IS_CHAN_2GHZ(chan));
254		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
255					 IS_CHAN_2GHZ(chan));
256
257		for (i = 0; i < numRates; i++) {
258			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
259						clo, chi,
260						powInfo[lowIndex].tPow2x[i],
261						powInfo[lowIndex + 1].tPow2x[i]);
262		}
263	}
264}
265
266u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
267				bool is2GHz, int num_band_edges)
268{
269	u16 twiceMaxEdgePower = MAX_RATE_POWER;
270	int i;
271
272	for (i = 0; (i < num_band_edges) &&
273		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
274		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
275			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
276			break;
277		} else if ((i > 0) &&
278			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
279						      is2GHz))) {
280			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
281					       is2GHz) < freq &&
282			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
283				twiceMaxEdgePower =
284					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
285			}
286			break;
287		}
288	}
289
290	return twiceMaxEdgePower;
291}
292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
294{
295	struct ath_common *common = ath9k_hw_common(ah);
296	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
297
298	switch (ar5416_get_ntxchains(ah->txchainmask)) {
299	case 1:
300		break;
301	case 2:
302		regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
303		break;
304	case 3:
305		regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
306		break;
307	default:
308		ath_dbg(common, ATH_DBG_EEPROM,
309			"Invalid chainmask configuration\n");
310		break;
311	}
312}
313
314void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
315				struct ath9k_channel *chan,
316				void *pRawDataSet,
317				u8 *bChans, u16 availPiers,
318				u16 tPdGainOverlap,
319				u16 *pPdGainBoundaries, u8 *pPDADCValues,
320				u16 numXpdGains)
321{
322	int i, j, k;
323	int16_t ss;
324	u16 idxL = 0, idxR = 0, numPiers;
325	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
326		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
327	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
328		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
329	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
330		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
331
332	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
333	u8 minPwrT4[AR5416_NUM_PD_GAINS];
334	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
335	int16_t vpdStep;
336	int16_t tmpVal;
337	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
338	bool match;
339	int16_t minDelta = 0;
340	struct chan_centers centers;
341	int pdgain_boundary_default;
342	struct cal_data_per_freq *data_def = pRawDataSet;
343	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
344	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
345	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
346	int intercepts;
347
348	if (AR_SREV_9287(ah))
349		intercepts = AR9287_PD_GAIN_ICEPTS;
350	else
351		intercepts = AR5416_PD_GAIN_ICEPTS;
352
353	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
354	ath9k_hw_get_channel_centers(ah, chan, &centers);
355
356	for (numPiers = 0; numPiers < availPiers; numPiers++) {
357		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
358			break;
359	}
360
361	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
362							     IS_CHAN_2GHZ(chan)),
363					       bChans, numPiers, &idxL, &idxR);
364
365	if (match) {
366		if (AR_SREV_9287(ah)) {
367			/* FIXME: array overrun? */
368			for (i = 0; i < numXpdGains; i++) {
369				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
370				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
371				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
372						data_9287[idxL].pwrPdg[i],
373						data_9287[idxL].vpdPdg[i],
374						intercepts,
375						vpdTableI[i]);
376			}
377		} else if (eeprom_4k) {
378			for (i = 0; i < numXpdGains; i++) {
379				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
380				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
381				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
382						data_4k[idxL].pwrPdg[i],
383						data_4k[idxL].vpdPdg[i],
384						intercepts,
385						vpdTableI[i]);
386			}
387		} else {
388			for (i = 0; i < numXpdGains; i++) {
389				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
390				maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
391				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
392						data_def[idxL].pwrPdg[i],
393						data_def[idxL].vpdPdg[i],
394						intercepts,
395						vpdTableI[i]);
396			}
397		}
398	} else {
399		for (i = 0; i < numXpdGains; i++) {
400			if (AR_SREV_9287(ah)) {
401				pVpdL = data_9287[idxL].vpdPdg[i];
402				pPwrL = data_9287[idxL].pwrPdg[i];
403				pVpdR = data_9287[idxR].vpdPdg[i];
404				pPwrR = data_9287[idxR].pwrPdg[i];
405			} else if (eeprom_4k) {
406				pVpdL = data_4k[idxL].vpdPdg[i];
407				pPwrL = data_4k[idxL].pwrPdg[i];
408				pVpdR = data_4k[idxR].vpdPdg[i];
409				pPwrR = data_4k[idxR].pwrPdg[i];
410			} else {
411				pVpdL = data_def[idxL].vpdPdg[i];
412				pPwrL = data_def[idxL].pwrPdg[i];
413				pVpdR = data_def[idxR].vpdPdg[i];
414				pPwrR = data_def[idxR].pwrPdg[i];
415			}
416
417			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
418
419			maxPwrT4[i] =
420				min(pPwrL[intercepts - 1],
421				    pPwrR[intercepts - 1]);
422
423
424			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
425						pPwrL, pVpdL,
426						intercepts,
427						vpdTableL[i]);
428			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
429						pPwrR, pVpdR,
430						intercepts,
431						vpdTableR[i]);
432
433			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
434				vpdTableI[i][j] =
435					(u8)(ath9k_hw_interpolate((u16)
436					     FREQ2FBIN(centers.
437						       synth_center,
438						       IS_CHAN_2GHZ
439						       (chan)),
440					     bChans[idxL], bChans[idxR],
441					     vpdTableL[i][j], vpdTableR[i][j]));
442			}
443		}
444	}
445
446	k = 0;
447
448	for (i = 0; i < numXpdGains; i++) {
449		if (i == (numXpdGains - 1))
450			pPdGainBoundaries[i] =
451				(u16)(maxPwrT4[i] / 2);
452		else
453			pPdGainBoundaries[i] =
454				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
455
456		pPdGainBoundaries[i] =
457			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
458
459		if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
460			minDelta = pPdGainBoundaries[0] - 23;
461			pPdGainBoundaries[0] = 23;
462		} else {
463			minDelta = 0;
464		}
465
466		if (i == 0) {
467			if (AR_SREV_9280_20_OR_LATER(ah))
468				ss = (int16_t)(0 - (minPwrT4[i] / 2));
469			else
470				ss = 0;
471		} else {
472			ss = (int16_t)((pPdGainBoundaries[i - 1] -
473					(minPwrT4[i] / 2)) -
474				       tPdGainOverlap + 1 + minDelta);
475		}
476		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
477		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
478
479		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
480			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
481			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
482			ss++;
483		}
484
485		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
486		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
487				(minPwrT4[i] / 2));
488		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
489			tgtIndex : sizeCurrVpdTable;
490
491		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
492			pPDADCValues[k++] = vpdTableI[i][ss++];
493		}
494
495		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
496				    vpdTableI[i][sizeCurrVpdTable - 2]);
497		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
498
499		if (tgtIndex >= maxIndex) {
500			while ((ss <= tgtIndex) &&
501			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
502				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
503						    (ss - maxIndex + 1) * vpdStep));
504				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
505							 255 : tmpVal);
506				ss++;
507			}
508		}
509	}
510
511	if (eeprom_4k)
512		pdgain_boundary_default = 58;
513	else
514		pdgain_boundary_default = pPdGainBoundaries[i - 1];
515
516	while (i < AR5416_PD_GAINS_IN_MASK) {
517		pPdGainBoundaries[i] = pdgain_boundary_default;
518		i++;
519	}
520
521	while (k < AR5416_NUM_PDADC_VALUES) {
522		pPDADCValues[k] = pPDADCValues[k - 1];
523		k++;
524	}
525}
526
527int ath9k_hw_eeprom_init(struct ath_hw *ah)
528{
529	int status;
530
531	if (AR_SREV_9300_20_OR_LATER(ah))
532		ah->eep_ops = &eep_ar9300_ops;
533	else if (AR_SREV_9287(ah)) {
534		ah->eep_ops = &eep_ar9287_ops;
535	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
536		ah->eep_ops = &eep_4k_ops;
537	} else {
538		ah->eep_ops = &eep_def_ops;
539	}
540
541	if (!ah->eep_ops->fill_eeprom(ah))
542		return -EIO;
543
544	status = ah->eep_ops->check_eeprom(ah);
545
546	return status;
547}
v4.6
  1/*
  2 * Copyright (c) 2008-2011 Atheros Communications Inc.
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include "hw.h"
 18
 
 
 
 
 
 
 
 
 19void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
 20{
 21        REG_WRITE(ah, reg, val);
 22
 23        if (ah->config.analog_shiftreg)
 24		udelay(100);
 25}
 26
 27void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
 28			       u32 shift, u32 val)
 29{
 30	REG_RMW(ah, reg, ((val << shift) & mask), mask);
 
 
 
 
 
 31
 32	if (ah->config.analog_shiftreg)
 33		udelay(100);
 34}
 35
 36int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
 37			     int16_t targetLeft, int16_t targetRight)
 38{
 39	int16_t rv;
 40
 41	if (srcRight == srcLeft) {
 42		rv = targetLeft;
 43	} else {
 44		rv = (int16_t) (((target - srcLeft) * targetRight +
 45				 (srcRight - target) * targetLeft) /
 46				(srcRight - srcLeft));
 47	}
 48	return rv;
 49}
 50
 51bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
 52				    u16 *indexL, u16 *indexR)
 53{
 54	u16 i;
 55
 56	if (target <= pList[0]) {
 57		*indexL = *indexR = 0;
 58		return true;
 59	}
 60	if (target >= pList[listSize - 1]) {
 61		*indexL = *indexR = (u16) (listSize - 1);
 62		return true;
 63	}
 64
 65	for (i = 0; i < listSize - 1; i++) {
 66		if (pList[i] == target) {
 67			*indexL = *indexR = i;
 68			return true;
 69		}
 70		if (target < pList[i + 1]) {
 71			*indexL = i;
 72			*indexR = (u16) (i + 1);
 73			return false;
 74		}
 75	}
 76	return false;
 77}
 78
 79void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
 80				  int eep_start_loc, int size)
 81{
 82	int i = 0, j, addr;
 83	u32 addrdata[8];
 84	u32 data[8];
 85
 86	for (addr = 0; addr < size; addr++) {
 87		addrdata[i] = AR5416_EEPROM_OFFSET +
 88			((addr + eep_start_loc) << AR5416_EEPROM_S);
 89		i++;
 90		if (i == 8) {
 91			REG_READ_MULTI(ah, addrdata, data, i);
 92
 93			for (j = 0; j < i; j++) {
 94				*eep_data = data[j];
 95				eep_data++;
 96			}
 97			i = 0;
 98		}
 99	}
100
101	if (i != 0) {
102		REG_READ_MULTI(ah, addrdata, data, i);
103
104		for (j = 0; j < i; j++) {
105			*eep_data = data[j];
106			eep_data++;
107		}
108	}
109}
110
111static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
112				     u16 *data)
113{
114	u16 *blob_data;
115
116	if (off * sizeof(u16) > ah->eeprom_blob->size)
117		return false;
118
119	blob_data = (u16 *)ah->eeprom_blob->data;
120	*data =  blob_data[off];
121	return true;
122}
123
124bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
125{
126	struct ath_common *common = ath9k_hw_common(ah);
127	bool ret;
128
129	if (ah->eeprom_blob)
130		ret = ath9k_hw_nvram_read_blob(ah, off, data);
131	else
132		ret = common->bus_ops->eeprom_read(common, off, data);
133
134	if (!ret)
135		ath_dbg(common, EEPROM,
136			"unable to read eeprom region at offset %u\n", off);
137
138	return ret;
139}
140
141int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
142{
143	u16 magic;
144	u16 *eepdata;
145	int i;
146	struct ath_common *common = ath9k_hw_common(ah);
147
148	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
149		ath_err(common, "Reading Magic # failed\n");
150		return -EIO;
151	}
152
153	*swap_needed = false;
154	if (swab16(magic) == AR5416_EEPROM_MAGIC) {
155		if (ah->ah_flags & AH_NO_EEP_SWAP) {
156			ath_info(common,
157				 "Ignoring endianness difference in EEPROM magic bytes.\n");
158		} else {
159			*swap_needed = true;
160		}
161	} else if (magic != AR5416_EEPROM_MAGIC) {
162		if (ath9k_hw_use_flash(ah))
163			return 0;
164
165		ath_err(common,
166			"Invalid EEPROM Magic (0x%04x).\n", magic);
167		return -EINVAL;
168	}
169
170	eepdata = (u16 *)(&ah->eeprom);
171
172	if (*swap_needed) {
173		ath_dbg(common, EEPROM,
174			"EEPROM Endianness is not native.. Changing.\n");
175
176		for (i = 0; i < size; i++)
177			eepdata[i] = swab16(eepdata[i]);
178	}
179
180	return 0;
181}
182
183bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
184{
185	u32 i, sum = 0;
186	u16 *eepdata = (u16 *)(&ah->eeprom);
187	struct ath_common *common = ath9k_hw_common(ah);
188
189	for (i = 0; i < size; i++)
190		sum ^= eepdata[i];
191
192	if (sum != 0xffff) {
193		ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
194		return false;
195	}
196
197	return true;
198}
199
200bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
201{
202	struct ath_common *common = ath9k_hw_common(ah);
203
204	if (ah->eep_ops->get_eeprom_ver(ah) != version ||
205	    ah->eep_ops->get_eeprom_rev(ah) < minrev) {
206		ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
207			ah->eep_ops->get_eeprom_ver(ah),
208			ah->eep_ops->get_eeprom_rev(ah));
209		return false;
210	}
211
212	return true;
213}
214
215void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
216			     u8 *pVpdList, u16 numIntercepts,
217			     u8 *pRetVpdList)
218{
219	u16 i, k;
220	u8 currPwr = pwrMin;
221	u16 idxL = 0, idxR = 0;
222
223	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
224		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
225					       numIntercepts, &(idxL),
226					       &(idxR));
227		if (idxR < 1)
228			idxR = 1;
229		if (idxL == numIntercepts - 1)
230			idxL = (u16) (numIntercepts - 2);
231		if (pPwrList[idxL] == pPwrList[idxR])
232			k = pVpdList[idxL];
233		else
234			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
235				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
236				  (pPwrList[idxR] - pPwrList[idxL]));
237		pRetVpdList[i] = (u8) k;
238		currPwr += 2;
239	}
240}
241
242void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
243				       struct ath9k_channel *chan,
244				       struct cal_target_power_leg *powInfo,
245				       u16 numChannels,
246				       struct cal_target_power_leg *pNewPower,
247				       u16 numRates, bool isExtTarget)
248{
249	struct chan_centers centers;
250	u16 clo, chi;
251	int i;
252	int matchIndex = -1, lowIndex = -1;
253	u16 freq;
254
255	ath9k_hw_get_channel_centers(ah, chan, &centers);
256	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
257
258	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
259				       IS_CHAN_2GHZ(chan))) {
260		matchIndex = 0;
261	} else {
262		for (i = 0; (i < numChannels) &&
263			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
264			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
265						       IS_CHAN_2GHZ(chan))) {
266				matchIndex = i;
267				break;
268			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
269						IS_CHAN_2GHZ(chan)) && i > 0 &&
270				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
271						IS_CHAN_2GHZ(chan))) {
272				lowIndex = i - 1;
273				break;
274			}
275		}
276		if ((matchIndex == -1) && (lowIndex == -1))
277			matchIndex = i - 1;
278	}
279
280	if (matchIndex != -1) {
281		*pNewPower = powInfo[matchIndex];
282	} else {
283		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
284					 IS_CHAN_2GHZ(chan));
285		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
286					 IS_CHAN_2GHZ(chan));
287
288		for (i = 0; i < numRates; i++) {
289			pNewPower->tPow2x[i] =
290				(u8)ath9k_hw_interpolate(freq, clo, chi,
291						powInfo[lowIndex].tPow2x[i],
292						powInfo[lowIndex + 1].tPow2x[i]);
293		}
294	}
295}
296
297void ath9k_hw_get_target_powers(struct ath_hw *ah,
298				struct ath9k_channel *chan,
299				struct cal_target_power_ht *powInfo,
300				u16 numChannels,
301				struct cal_target_power_ht *pNewPower,
302				u16 numRates, bool isHt40Target)
303{
304	struct chan_centers centers;
305	u16 clo, chi;
306	int i;
307	int matchIndex = -1, lowIndex = -1;
308	u16 freq;
309
310	ath9k_hw_get_channel_centers(ah, chan, &centers);
311	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
312
313	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
314		matchIndex = 0;
315	} else {
316		for (i = 0; (i < numChannels) &&
317			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
318			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
319						       IS_CHAN_2GHZ(chan))) {
320				matchIndex = i;
321				break;
322			} else
323				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
324						IS_CHAN_2GHZ(chan)) && i > 0 &&
325				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
326						IS_CHAN_2GHZ(chan))) {
327					lowIndex = i - 1;
328					break;
329				}
330		}
331		if ((matchIndex == -1) && (lowIndex == -1))
332			matchIndex = i - 1;
333	}
334
335	if (matchIndex != -1) {
336		*pNewPower = powInfo[matchIndex];
337	} else {
338		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
339					 IS_CHAN_2GHZ(chan));
340		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
341					 IS_CHAN_2GHZ(chan));
342
343		for (i = 0; i < numRates; i++) {
344			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
345						clo, chi,
346						powInfo[lowIndex].tPow2x[i],
347						powInfo[lowIndex + 1].tPow2x[i]);
348		}
349	}
350}
351
352u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
353				bool is2GHz, int num_band_edges)
354{
355	u16 twiceMaxEdgePower = MAX_RATE_POWER;
356	int i;
357
358	for (i = 0; (i < num_band_edges) &&
359		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
360		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
361			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
362			break;
363		} else if ((i > 0) &&
364			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
365						      is2GHz))) {
366			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
367					       is2GHz) < freq &&
368			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
369				twiceMaxEdgePower =
370					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
371			}
372			break;
373		}
374	}
375
376	return twiceMaxEdgePower;
377}
378
379u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
380			      u8 antenna_reduction)
381{
382	u16 reduction = antenna_reduction;
383
384	/*
385	 * Reduce scaled Power by number of chains active
386	 * to get the per chain tx power level.
387	 */
388	switch (ar5416_get_ntxchains(ah->txchainmask)) {
389	case 1:
390		break;
391	case 2:
392		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
393		break;
394	case 3:
395		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
396		break;
397	}
398
399	if (power_limit > reduction)
400		power_limit -= reduction;
401	else
402		power_limit = 0;
403
404	return power_limit;
405}
406
407void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
408{
409	struct ath_common *common = ath9k_hw_common(ah);
410	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
411
412	switch (ar5416_get_ntxchains(ah->txchainmask)) {
413	case 1:
414		break;
415	case 2:
416		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
417		break;
418	case 3:
419		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
420		break;
421	default:
422		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
 
423		break;
424	}
425}
426
427void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
428				struct ath9k_channel *chan,
429				void *pRawDataSet,
430				u8 *bChans, u16 availPiers,
431				u16 tPdGainOverlap,
432				u16 *pPdGainBoundaries, u8 *pPDADCValues,
433				u16 numXpdGains)
434{
435	int i, j, k;
436	int16_t ss;
437	u16 idxL = 0, idxR = 0, numPiers;
438	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
439		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
440	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
441		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
442	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
443		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
444
445	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
446	u8 minPwrT4[AR5416_NUM_PD_GAINS];
447	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
448	int16_t vpdStep;
449	int16_t tmpVal;
450	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
451	bool match;
452	int16_t minDelta = 0;
453	struct chan_centers centers;
454	int pdgain_boundary_default;
455	struct cal_data_per_freq *data_def = pRawDataSet;
456	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
457	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
458	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
459	int intercepts;
460
461	if (AR_SREV_9287(ah))
462		intercepts = AR9287_PD_GAIN_ICEPTS;
463	else
464		intercepts = AR5416_PD_GAIN_ICEPTS;
465
466	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
467	ath9k_hw_get_channel_centers(ah, chan, &centers);
468
469	for (numPiers = 0; numPiers < availPiers; numPiers++) {
470		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
471			break;
472	}
473
474	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
475							     IS_CHAN_2GHZ(chan)),
476					       bChans, numPiers, &idxL, &idxR);
477
478	if (match) {
479		if (AR_SREV_9287(ah)) {
 
480			for (i = 0; i < numXpdGains; i++) {
481				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
482				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
483				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
484						data_9287[idxL].pwrPdg[i],
485						data_9287[idxL].vpdPdg[i],
486						intercepts,
487						vpdTableI[i]);
488			}
489		} else if (eeprom_4k) {
490			for (i = 0; i < numXpdGains; i++) {
491				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
492				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
493				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
494						data_4k[idxL].pwrPdg[i],
495						data_4k[idxL].vpdPdg[i],
496						intercepts,
497						vpdTableI[i]);
498			}
499		} else {
500			for (i = 0; i < numXpdGains; i++) {
501				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
502				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
503				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
504						data_def[idxL].pwrPdg[i],
505						data_def[idxL].vpdPdg[i],
506						intercepts,
507						vpdTableI[i]);
508			}
509		}
510	} else {
511		for (i = 0; i < numXpdGains; i++) {
512			if (AR_SREV_9287(ah)) {
513				pVpdL = data_9287[idxL].vpdPdg[i];
514				pPwrL = data_9287[idxL].pwrPdg[i];
515				pVpdR = data_9287[idxR].vpdPdg[i];
516				pPwrR = data_9287[idxR].pwrPdg[i];
517			} else if (eeprom_4k) {
518				pVpdL = data_4k[idxL].vpdPdg[i];
519				pPwrL = data_4k[idxL].pwrPdg[i];
520				pVpdR = data_4k[idxR].vpdPdg[i];
521				pPwrR = data_4k[idxR].pwrPdg[i];
522			} else {
523				pVpdL = data_def[idxL].vpdPdg[i];
524				pPwrL = data_def[idxL].pwrPdg[i];
525				pVpdR = data_def[idxR].vpdPdg[i];
526				pPwrR = data_def[idxR].pwrPdg[i];
527			}
528
529			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
530
531			maxPwrT4[i] =
532				min(pPwrL[intercepts - 1],
533				    pPwrR[intercepts - 1]);
534
535
536			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
537						pPwrL, pVpdL,
538						intercepts,
539						vpdTableL[i]);
540			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
541						pPwrR, pVpdR,
542						intercepts,
543						vpdTableR[i]);
544
545			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
546				vpdTableI[i][j] =
547					(u8)(ath9k_hw_interpolate((u16)
548					     FREQ2FBIN(centers.
549						       synth_center,
550						       IS_CHAN_2GHZ
551						       (chan)),
552					     bChans[idxL], bChans[idxR],
553					     vpdTableL[i][j], vpdTableR[i][j]));
554			}
555		}
556	}
557
558	k = 0;
559
560	for (i = 0; i < numXpdGains; i++) {
561		if (i == (numXpdGains - 1))
562			pPdGainBoundaries[i] =
563				(u16)(maxPwrT4[i] / 2);
564		else
565			pPdGainBoundaries[i] =
566				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
567
568		pPdGainBoundaries[i] =
569			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
570
571		minDelta = 0;
 
 
 
 
 
572
573		if (i == 0) {
574			if (AR_SREV_9280_20_OR_LATER(ah))
575				ss = (int16_t)(0 - (minPwrT4[i] / 2));
576			else
577				ss = 0;
578		} else {
579			ss = (int16_t)((pPdGainBoundaries[i - 1] -
580					(minPwrT4[i] / 2)) -
581				       tPdGainOverlap + 1 + minDelta);
582		}
583		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
584		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
585
586		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
587			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
588			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
589			ss++;
590		}
591
592		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
593		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
594				(minPwrT4[i] / 2));
595		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
596			tgtIndex : sizeCurrVpdTable;
597
598		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
599			pPDADCValues[k++] = vpdTableI[i][ss++];
600		}
601
602		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
603				    vpdTableI[i][sizeCurrVpdTable - 2]);
604		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
605
606		if (tgtIndex >= maxIndex) {
607			while ((ss <= tgtIndex) &&
608			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
609				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
610						    (ss - maxIndex + 1) * vpdStep));
611				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
612							 255 : tmpVal);
613				ss++;
614			}
615		}
616	}
617
618	if (eeprom_4k)
619		pdgain_boundary_default = 58;
620	else
621		pdgain_boundary_default = pPdGainBoundaries[i - 1];
622
623	while (i < AR5416_PD_GAINS_IN_MASK) {
624		pPdGainBoundaries[i] = pdgain_boundary_default;
625		i++;
626	}
627
628	while (k < AR5416_NUM_PDADC_VALUES) {
629		pPDADCValues[k] = pPDADCValues[k - 1];
630		k++;
631	}
632}
633
634int ath9k_hw_eeprom_init(struct ath_hw *ah)
635{
636	int status;
637
638	if (AR_SREV_9300_20_OR_LATER(ah))
639		ah->eep_ops = &eep_ar9300_ops;
640	else if (AR_SREV_9287(ah)) {
641		ah->eep_ops = &eep_ar9287_ops;
642	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
643		ah->eep_ops = &eep_4k_ops;
644	} else {
645		ah->eep_ops = &eep_def_ops;
646	}
647
648	if (!ah->eep_ops->fill_eeprom(ah))
649		return -EIO;
650
651	status = ah->eep_ops->check_eeprom(ah);
652
653	return status;
654}