Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999,2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
 
  23#include <trace/syscall.h>
  24#include <asm/compat.h>
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
  29#include <asm/system.h>
  30#include <asm/uaccess.h>
  31#include <asm/unistd.h>
 
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41enum s390_regset {
  42	REGSET_GENERAL,
  43	REGSET_FP,
  44	REGSET_LAST_BREAK,
  45	REGSET_GENERAL_EXTENDED,
  46};
  47
  48void update_per_regs(struct task_struct *task)
  49{
  50	static const struct per_regs per_single_step = {
  51		.control = PER_EVENT_IFETCH,
  52		.start = 0,
  53		.end = PSW_ADDR_INSN,
  54	};
  55	struct pt_regs *regs = task_pt_regs(task);
  56	struct thread_struct *thread = &task->thread;
  57	const struct per_regs *new;
  58	struct per_regs old;
  59
  60	/* TIF_SINGLE_STEP overrides the user specified PER registers. */
  61	new = test_tsk_thread_flag(task, TIF_SINGLE_STEP) ?
  62		&per_single_step : &thread->per_user;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64	/* Take care of the PER enablement bit in the PSW. */
  65	if (!(new->control & PER_EVENT_MASK)) {
  66		regs->psw.mask &= ~PSW_MASK_PER;
  67		return;
  68	}
  69	regs->psw.mask |= PSW_MASK_PER;
  70	__ctl_store(old, 9, 11);
  71	if (memcmp(new, &old, sizeof(struct per_regs)) != 0)
  72		__ctl_load(*new, 9, 11);
  73}
  74
  75void user_enable_single_step(struct task_struct *task)
  76{
 
  77	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
  78	if (task == current)
  79		update_per_regs(task);
  80}
  81
  82void user_disable_single_step(struct task_struct *task)
  83{
 
  84	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  85	if (task == current)
  86		update_per_regs(task);
 
 
 
 
  87}
  88
  89/*
  90 * Called by kernel/ptrace.c when detaching..
  91 *
  92 * Clear all debugging related fields.
  93 */
  94void ptrace_disable(struct task_struct *task)
  95{
  96	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
  97	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
  98	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  99	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 
 100}
 101
 102#ifndef CONFIG_64BIT
 103# define __ADDR_MASK 3
 104#else
 105# define __ADDR_MASK 7
 106#endif
 107
 108static inline unsigned long __peek_user_per(struct task_struct *child,
 109					    addr_t addr)
 110{
 111	struct per_struct_kernel *dummy = NULL;
 112
 113	if (addr == (addr_t) &dummy->cr9)
 114		/* Control bits of the active per set. */
 115		return test_thread_flag(TIF_SINGLE_STEP) ?
 116			PER_EVENT_IFETCH : child->thread.per_user.control;
 117	else if (addr == (addr_t) &dummy->cr10)
 118		/* Start address of the active per set. */
 119		return test_thread_flag(TIF_SINGLE_STEP) ?
 120			0 : child->thread.per_user.start;
 121	else if (addr == (addr_t) &dummy->cr11)
 122		/* End address of the active per set. */
 123		return test_thread_flag(TIF_SINGLE_STEP) ?
 124			PSW_ADDR_INSN : child->thread.per_user.end;
 125	else if (addr == (addr_t) &dummy->bits)
 126		/* Single-step bit. */
 127		return test_thread_flag(TIF_SINGLE_STEP) ?
 128			(1UL << (BITS_PER_LONG - 1)) : 0;
 129	else if (addr == (addr_t) &dummy->starting_addr)
 130		/* Start address of the user specified per set. */
 131		return child->thread.per_user.start;
 132	else if (addr == (addr_t) &dummy->ending_addr)
 133		/* End address of the user specified per set. */
 134		return child->thread.per_user.end;
 135	else if (addr == (addr_t) &dummy->perc_atmid)
 136		/* PER code, ATMID and AI of the last PER trap */
 137		return (unsigned long)
 138			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 139	else if (addr == (addr_t) &dummy->address)
 140		/* Address of the last PER trap */
 141		return child->thread.per_event.address;
 142	else if (addr == (addr_t) &dummy->access_id)
 143		/* Access id of the last PER trap */
 144		return (unsigned long)
 145			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 146	return 0;
 147}
 148
 149/*
 150 * Read the word at offset addr from the user area of a process. The
 151 * trouble here is that the information is littered over different
 152 * locations. The process registers are found on the kernel stack,
 153 * the floating point stuff and the trace settings are stored in
 154 * the task structure. In addition the different structures in
 155 * struct user contain pad bytes that should be read as zeroes.
 156 * Lovely...
 157 */
 158static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 159{
 160	struct user *dummy = NULL;
 161	addr_t offset, tmp;
 162
 163	if (addr < (addr_t) &dummy->regs.acrs) {
 164		/*
 165		 * psw and gprs are stored on the stack
 166		 */
 167		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 168		if (addr == (addr_t) &dummy->regs.psw.mask)
 169			/* Remove per bit from user psw. */
 170			tmp &= ~PSW_MASK_PER;
 
 
 171
 172	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 173		/*
 174		 * access registers are stored in the thread structure
 175		 */
 176		offset = addr - (addr_t) &dummy->regs.acrs;
 177#ifdef CONFIG_64BIT
 178		/*
 179		 * Very special case: old & broken 64 bit gdb reading
 180		 * from acrs[15]. Result is a 64 bit value. Read the
 181		 * 32 bit acrs[15] value and shift it by 32. Sick...
 182		 */
 183		if (addr == (addr_t) &dummy->regs.acrs[15])
 184			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 185		else
 186#endif
 187		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 188
 189	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 190		/*
 191		 * orig_gpr2 is stored on the kernel stack
 192		 */
 193		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 194
 195	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 196		/*
 197		 * prevent reads of padding hole between
 198		 * orig_gpr2 and fp_regs on s390.
 199		 */
 200		tmp = 0;
 201
 
 
 
 
 
 
 
 202	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 203		/* 
 204		 * floating point regs. are stored in the thread structure
 
 205		 */
 206		offset = addr - (addr_t) &dummy->regs.fp_regs;
 207		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
 208		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 209			tmp &= (unsigned long) FPC_VALID_MASK
 210				<< (BITS_PER_LONG - 32);
 
 
 211
 212	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 213		/*
 214		 * Handle access to the per_info structure.
 215		 */
 216		addr -= (addr_t) &dummy->regs.per_info;
 217		tmp = __peek_user_per(child, addr);
 218
 219	} else
 220		tmp = 0;
 221
 222	return tmp;
 223}
 224
 225static int
 226peek_user(struct task_struct *child, addr_t addr, addr_t data)
 227{
 228	addr_t tmp, mask;
 229
 230	/*
 231	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 232	 * an alignment of 4. Programmers from hell...
 233	 */
 234	mask = __ADDR_MASK;
 235#ifdef CONFIG_64BIT
 236	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 237	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 238		mask = 3;
 239#endif
 240	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 241		return -EIO;
 242
 243	tmp = __peek_user(child, addr);
 244	return put_user(tmp, (addr_t __user *) data);
 245}
 246
 247static inline void __poke_user_per(struct task_struct *child,
 248				   addr_t addr, addr_t data)
 249{
 250	struct per_struct_kernel *dummy = NULL;
 251
 252	/*
 253	 * There are only three fields in the per_info struct that the
 254	 * debugger user can write to.
 255	 * 1) cr9: the debugger wants to set a new PER event mask
 256	 * 2) starting_addr: the debugger wants to set a new starting
 257	 *    address to use with the PER event mask.
 258	 * 3) ending_addr: the debugger wants to set a new ending
 259	 *    address to use with the PER event mask.
 260	 * The user specified PER event mask and the start and end
 261	 * addresses are used only if single stepping is not in effect.
 262	 * Writes to any other field in per_info are ignored.
 263	 */
 264	if (addr == (addr_t) &dummy->cr9)
 265		/* PER event mask of the user specified per set. */
 266		child->thread.per_user.control =
 267			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 268	else if (addr == (addr_t) &dummy->starting_addr)
 269		/* Starting address of the user specified per set. */
 270		child->thread.per_user.start = data;
 271	else if (addr == (addr_t) &dummy->ending_addr)
 272		/* Ending address of the user specified per set. */
 273		child->thread.per_user.end = data;
 274}
 275
 276/*
 277 * Write a word to the user area of a process at location addr. This
 278 * operation does have an additional problem compared to peek_user.
 279 * Stores to the program status word and on the floating point
 280 * control register needs to get checked for validity.
 281 */
 282static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 283{
 284	struct user *dummy = NULL;
 285	addr_t offset;
 286
 287	if (addr < (addr_t) &dummy->regs.acrs) {
 288		/*
 289		 * psw and gprs are stored on the stack
 290		 */
 291		if (addr == (addr_t) &dummy->regs.psw.mask &&
 292#ifdef CONFIG_COMPAT
 293		    data != PSW_MASK_MERGE(psw_user32_bits, data) &&
 294#endif
 295		    data != PSW_MASK_MERGE(psw_user_bits, data))
 296			/* Invalid psw mask. */
 297			return -EINVAL;
 298#ifndef CONFIG_64BIT
 299		if (addr == (addr_t) &dummy->regs.psw.addr)
 300			/* I'd like to reject addresses without the
 301			   high order bit but older gdb's rely on it */
 302			data |= PSW_ADDR_AMODE;
 303#endif
 
 304		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 305
 306	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 307		/*
 308		 * access registers are stored in the thread structure
 309		 */
 310		offset = addr - (addr_t) &dummy->regs.acrs;
 311#ifdef CONFIG_64BIT
 312		/*
 313		 * Very special case: old & broken 64 bit gdb writing
 314		 * to acrs[15] with a 64 bit value. Ignore the lower
 315		 * half of the value and write the upper 32 bit to
 316		 * acrs[15]. Sick...
 317		 */
 318		if (addr == (addr_t) &dummy->regs.acrs[15])
 319			child->thread.acrs[15] = (unsigned int) (data >> 32);
 320		else
 321#endif
 322		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 323
 324	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 325		/*
 326		 * orig_gpr2 is stored on the kernel stack
 327		 */
 328		task_pt_regs(child)->orig_gpr2 = data;
 329
 330	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 331		/*
 332		 * prevent writes of padding hole between
 333		 * orig_gpr2 and fp_regs on s390.
 334		 */
 335		return 0;
 336
 337	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 338		/*
 339		 * floating point regs. are stored in the thread structure
 340		 */
 341		if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
 342		    (data & ~((unsigned long) FPC_VALID_MASK
 343			      << (BITS_PER_LONG - 32))) != 0)
 344			return -EINVAL;
 345		offset = addr - (addr_t) &dummy->regs.fp_regs;
 346		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
 
 
 
 
 
 
 
 
 
 
 
 
 347
 348	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 349		/*
 350		 * Handle access to the per_info structure.
 351		 */
 352		addr -= (addr_t) &dummy->regs.per_info;
 353		__poke_user_per(child, addr, data);
 354
 355	}
 356
 357	return 0;
 358}
 359
 360static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 361{
 362	addr_t mask;
 363
 364	/*
 365	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 366	 * an alignment of 4. Programmers from hell indeed...
 367	 */
 368	mask = __ADDR_MASK;
 369#ifdef CONFIG_64BIT
 370	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 371	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 372		mask = 3;
 373#endif
 374	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 375		return -EIO;
 376
 377	return __poke_user(child, addr, data);
 378}
 379
 380long arch_ptrace(struct task_struct *child, long request,
 381		 unsigned long addr, unsigned long data)
 382{
 383	ptrace_area parea; 
 384	int copied, ret;
 385
 386	switch (request) {
 387	case PTRACE_PEEKUSR:
 388		/* read the word at location addr in the USER area. */
 389		return peek_user(child, addr, data);
 390
 391	case PTRACE_POKEUSR:
 392		/* write the word at location addr in the USER area */
 393		return poke_user(child, addr, data);
 394
 395	case PTRACE_PEEKUSR_AREA:
 396	case PTRACE_POKEUSR_AREA:
 397		if (copy_from_user(&parea, (void __force __user *) addr,
 398							sizeof(parea)))
 399			return -EFAULT;
 400		addr = parea.kernel_addr;
 401		data = parea.process_addr;
 402		copied = 0;
 403		while (copied < parea.len) {
 404			if (request == PTRACE_PEEKUSR_AREA)
 405				ret = peek_user(child, addr, data);
 406			else {
 407				addr_t utmp;
 408				if (get_user(utmp,
 409					     (addr_t __force __user *) data))
 410					return -EFAULT;
 411				ret = poke_user(child, addr, utmp);
 412			}
 413			if (ret)
 414				return ret;
 415			addr += sizeof(unsigned long);
 416			data += sizeof(unsigned long);
 417			copied += sizeof(unsigned long);
 418		}
 419		return 0;
 420	case PTRACE_GET_LAST_BREAK:
 421		put_user(task_thread_info(child)->last_break,
 422			 (unsigned long __user *) data);
 423		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424	default:
 425		/* Removing high order bit from addr (only for 31 bit). */
 426		addr &= PSW_ADDR_INSN;
 427		return ptrace_request(child, request, addr, data);
 428	}
 429}
 430
 431#ifdef CONFIG_COMPAT
 432/*
 433 * Now the fun part starts... a 31 bit program running in the
 434 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 435 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 436 * to handle, the difference to the 64 bit versions of the requests
 437 * is that the access is done in multiples of 4 byte instead of
 438 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 439 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 440 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 441 * is a 31 bit program too, the content of struct user can be
 442 * emulated. A 31 bit program peeking into the struct user of
 443 * a 64 bit program is a no-no.
 444 */
 445
 446/*
 447 * Same as peek_user_per but for a 31 bit program.
 448 */
 449static inline __u32 __peek_user_per_compat(struct task_struct *child,
 450					   addr_t addr)
 451{
 452	struct compat_per_struct_kernel *dummy32 = NULL;
 453
 454	if (addr == (addr_t) &dummy32->cr9)
 455		/* Control bits of the active per set. */
 456		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 457			PER_EVENT_IFETCH : child->thread.per_user.control;
 458	else if (addr == (addr_t) &dummy32->cr10)
 459		/* Start address of the active per set. */
 460		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 461			0 : child->thread.per_user.start;
 462	else if (addr == (addr_t) &dummy32->cr11)
 463		/* End address of the active per set. */
 464		return test_thread_flag(TIF_SINGLE_STEP) ?
 465			PSW32_ADDR_INSN : child->thread.per_user.end;
 466	else if (addr == (addr_t) &dummy32->bits)
 467		/* Single-step bit. */
 468		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 469			0x80000000 : 0;
 470	else if (addr == (addr_t) &dummy32->starting_addr)
 471		/* Start address of the user specified per set. */
 472		return (__u32) child->thread.per_user.start;
 473	else if (addr == (addr_t) &dummy32->ending_addr)
 474		/* End address of the user specified per set. */
 475		return (__u32) child->thread.per_user.end;
 476	else if (addr == (addr_t) &dummy32->perc_atmid)
 477		/* PER code, ATMID and AI of the last PER trap */
 478		return (__u32) child->thread.per_event.cause << 16;
 479	else if (addr == (addr_t) &dummy32->address)
 480		/* Address of the last PER trap */
 481		return (__u32) child->thread.per_event.address;
 482	else if (addr == (addr_t) &dummy32->access_id)
 483		/* Access id of the last PER trap */
 484		return (__u32) child->thread.per_event.paid << 24;
 485	return 0;
 486}
 487
 488/*
 489 * Same as peek_user but for a 31 bit program.
 490 */
 491static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 492{
 493	struct compat_user *dummy32 = NULL;
 494	addr_t offset;
 495	__u32 tmp;
 496
 497	if (addr < (addr_t) &dummy32->regs.acrs) {
 
 498		/*
 499		 * psw and gprs are stored on the stack
 500		 */
 501		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 502			/* Fake a 31 bit psw mask. */
 503			tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32);
 504			tmp = PSW32_MASK_MERGE(psw32_user_bits, tmp);
 
 505		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 506			/* Fake a 31 bit psw address. */
 507			tmp = (__u32) task_pt_regs(child)->psw.addr |
 508				PSW32_ADDR_AMODE31;
 509		} else {
 510			/* gpr 0-15 */
 511			tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw +
 512					 addr*2 + 4);
 513		}
 514	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 515		/*
 516		 * access registers are stored in the thread structure
 517		 */
 518		offset = addr - (addr_t) &dummy32->regs.acrs;
 519		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 520
 521	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 522		/*
 523		 * orig_gpr2 is stored on the kernel stack
 524		 */
 525		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 526
 527	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 528		/*
 529		 * prevent reads of padding hole between
 530		 * orig_gpr2 and fp_regs on s390.
 531		 */
 532		tmp = 0;
 533
 
 
 
 
 
 
 534	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 535		/*
 536		 * floating point regs. are stored in the thread structure 
 
 537		 */
 538	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 539		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
 
 
 
 
 
 540
 541	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 542		/*
 543		 * Handle access to the per_info structure.
 544		 */
 545		addr -= (addr_t) &dummy32->regs.per_info;
 546		tmp = __peek_user_per_compat(child, addr);
 547
 548	} else
 549		tmp = 0;
 550
 551	return tmp;
 552}
 553
 554static int peek_user_compat(struct task_struct *child,
 555			    addr_t addr, addr_t data)
 556{
 557	__u32 tmp;
 558
 559	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 560		return -EIO;
 561
 562	tmp = __peek_user_compat(child, addr);
 563	return put_user(tmp, (__u32 __user *) data);
 564}
 565
 566/*
 567 * Same as poke_user_per but for a 31 bit program.
 568 */
 569static inline void __poke_user_per_compat(struct task_struct *child,
 570					  addr_t addr, __u32 data)
 571{
 572	struct compat_per_struct_kernel *dummy32 = NULL;
 573
 574	if (addr == (addr_t) &dummy32->cr9)
 575		/* PER event mask of the user specified per set. */
 576		child->thread.per_user.control =
 577			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 578	else if (addr == (addr_t) &dummy32->starting_addr)
 579		/* Starting address of the user specified per set. */
 580		child->thread.per_user.start = data;
 581	else if (addr == (addr_t) &dummy32->ending_addr)
 582		/* Ending address of the user specified per set. */
 583		child->thread.per_user.end = data;
 584}
 585
 586/*
 587 * Same as poke_user but for a 31 bit program.
 588 */
 589static int __poke_user_compat(struct task_struct *child,
 590			      addr_t addr, addr_t data)
 591{
 592	struct compat_user *dummy32 = NULL;
 593	__u32 tmp = (__u32) data;
 594	addr_t offset;
 595
 596	if (addr < (addr_t) &dummy32->regs.acrs) {
 
 597		/*
 598		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 599		 */
 600		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 
 
 
 601			/* Build a 64 bit psw mask from 31 bit mask. */
 602			if (tmp != PSW32_MASK_MERGE(psw32_user_bits, tmp))
 603				/* Invalid psw mask. */
 604				return -EINVAL;
 605			task_pt_regs(child)->psw.mask =
 606				PSW_MASK_MERGE(psw_user32_bits, (__u64) tmp << 32);
 
 
 
 
 607		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 608			/* Build a 64 bit psw address from 31 bit address. */
 609			task_pt_regs(child)->psw.addr =
 610				(__u64) tmp & PSW32_ADDR_INSN;
 
 
 611		} else {
 612			/* gpr 0-15 */
 613			*(__u32*)((addr_t) &task_pt_regs(child)->psw
 614				  + addr*2 + 4) = tmp;
 615		}
 616	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 617		/*
 618		 * access registers are stored in the thread structure
 619		 */
 620		offset = addr - (addr_t) &dummy32->regs.acrs;
 621		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 622
 623	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 624		/*
 625		 * orig_gpr2 is stored on the kernel stack
 626		 */
 627		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 628
 629	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 630		/*
 631		 * prevent writess of padding hole between
 632		 * orig_gpr2 and fp_regs on s390.
 633		 */
 634		return 0;
 635
 636	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 637		/*
 638		 * floating point regs. are stored in the thread structure 
 639		 */
 640		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
 641		    (tmp & ~FPC_VALID_MASK) != 0)
 642			/* Invalid floating point control. */
 643			return -EINVAL;
 644	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 645		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 646
 647	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 648		/*
 649		 * Handle access to the per_info structure.
 650		 */
 651		addr -= (addr_t) &dummy32->regs.per_info;
 652		__poke_user_per_compat(child, addr, data);
 653	}
 654
 655	return 0;
 656}
 657
 658static int poke_user_compat(struct task_struct *child,
 659			    addr_t addr, addr_t data)
 660{
 661	if (!is_compat_task() || (addr & 3) ||
 662	    addr > sizeof(struct compat_user) - 3)
 663		return -EIO;
 664
 665	return __poke_user_compat(child, addr, data);
 666}
 667
 668long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 669			compat_ulong_t caddr, compat_ulong_t cdata)
 670{
 671	unsigned long addr = caddr;
 672	unsigned long data = cdata;
 673	compat_ptrace_area parea;
 674	int copied, ret;
 675
 676	switch (request) {
 677	case PTRACE_PEEKUSR:
 678		/* read the word at location addr in the USER area. */
 679		return peek_user_compat(child, addr, data);
 680
 681	case PTRACE_POKEUSR:
 682		/* write the word at location addr in the USER area */
 683		return poke_user_compat(child, addr, data);
 684
 685	case PTRACE_PEEKUSR_AREA:
 686	case PTRACE_POKEUSR_AREA:
 687		if (copy_from_user(&parea, (void __force __user *) addr,
 688							sizeof(parea)))
 689			return -EFAULT;
 690		addr = parea.kernel_addr;
 691		data = parea.process_addr;
 692		copied = 0;
 693		while (copied < parea.len) {
 694			if (request == PTRACE_PEEKUSR_AREA)
 695				ret = peek_user_compat(child, addr, data);
 696			else {
 697				__u32 utmp;
 698				if (get_user(utmp,
 699					     (__u32 __force __user *) data))
 700					return -EFAULT;
 701				ret = poke_user_compat(child, addr, utmp);
 702			}
 703			if (ret)
 704				return ret;
 705			addr += sizeof(unsigned int);
 706			data += sizeof(unsigned int);
 707			copied += sizeof(unsigned int);
 708		}
 709		return 0;
 710	case PTRACE_GET_LAST_BREAK:
 711		put_user(task_thread_info(child)->last_break,
 712			 (unsigned int __user *) data);
 713		return 0;
 714	}
 715	return compat_ptrace_request(child, request, addr, data);
 716}
 717#endif
 718
 719asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 720{
 721	long ret = 0;
 722
 723	/* Do the secure computing check first. */
 724	secure_computing(regs->gprs[2]);
 
 
 
 
 725
 726	/*
 727	 * The sysc_tracesys code in entry.S stored the system
 728	 * call number to gprs[2].
 729	 */
 730	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 731	    (tracehook_report_syscall_entry(regs) ||
 732	     regs->gprs[2] >= NR_syscalls)) {
 733		/*
 734		 * Tracing decided this syscall should not happen or the
 735		 * debugger stored an invalid system call number. Skip
 736		 * the system call and the system call restart handling.
 737		 */
 738		regs->svcnr = 0;
 739		ret = -1;
 740	}
 741
 742	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 743		trace_sys_enter(regs, regs->gprs[2]);
 744
 745	if (unlikely(current->audit_context))
 746		audit_syscall_entry(is_compat_task() ?
 747					AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
 748				    regs->gprs[2], regs->orig_gpr2,
 749				    regs->gprs[3], regs->gprs[4],
 750				    regs->gprs[5]);
 751	return ret ?: regs->gprs[2];
 752}
 753
 754asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 755{
 756	if (unlikely(current->audit_context))
 757		audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
 758				   regs->gprs[2]);
 759
 760	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 761		trace_sys_exit(regs, regs->gprs[2]);
 762
 763	if (test_thread_flag(TIF_SYSCALL_TRACE))
 764		tracehook_report_syscall_exit(regs, 0);
 765}
 766
 767/*
 768 * user_regset definitions.
 769 */
 770
 771static int s390_regs_get(struct task_struct *target,
 772			 const struct user_regset *regset,
 773			 unsigned int pos, unsigned int count,
 774			 void *kbuf, void __user *ubuf)
 775{
 776	if (target == current)
 777		save_access_regs(target->thread.acrs);
 778
 779	if (kbuf) {
 780		unsigned long *k = kbuf;
 781		while (count > 0) {
 782			*k++ = __peek_user(target, pos);
 783			count -= sizeof(*k);
 784			pos += sizeof(*k);
 785		}
 786	} else {
 787		unsigned long __user *u = ubuf;
 788		while (count > 0) {
 789			if (__put_user(__peek_user(target, pos), u++))
 790				return -EFAULT;
 791			count -= sizeof(*u);
 792			pos += sizeof(*u);
 793		}
 794	}
 795	return 0;
 796}
 797
 798static int s390_regs_set(struct task_struct *target,
 799			 const struct user_regset *regset,
 800			 unsigned int pos, unsigned int count,
 801			 const void *kbuf, const void __user *ubuf)
 802{
 803	int rc = 0;
 804
 805	if (target == current)
 806		save_access_regs(target->thread.acrs);
 807
 808	if (kbuf) {
 809		const unsigned long *k = kbuf;
 810		while (count > 0 && !rc) {
 811			rc = __poke_user(target, pos, *k++);
 812			count -= sizeof(*k);
 813			pos += sizeof(*k);
 814		}
 815	} else {
 816		const unsigned long  __user *u = ubuf;
 817		while (count > 0 && !rc) {
 818			unsigned long word;
 819			rc = __get_user(word, u++);
 820			if (rc)
 821				break;
 822			rc = __poke_user(target, pos, word);
 823			count -= sizeof(*u);
 824			pos += sizeof(*u);
 825		}
 826	}
 827
 828	if (rc == 0 && target == current)
 829		restore_access_regs(target->thread.acrs);
 830
 831	return rc;
 832}
 833
 834static int s390_fpregs_get(struct task_struct *target,
 835			   const struct user_regset *regset, unsigned int pos,
 836			   unsigned int count, void *kbuf, void __user *ubuf)
 837{
 
 
 838	if (target == current)
 839		save_fp_regs(&target->thread.fp_regs);
 
 
 
 840
 841	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 842				   &target->thread.fp_regs, 0, -1);
 843}
 844
 845static int s390_fpregs_set(struct task_struct *target,
 846			   const struct user_regset *regset, unsigned int pos,
 847			   unsigned int count, const void *kbuf,
 848			   const void __user *ubuf)
 849{
 850	int rc = 0;
 
 851
 852	if (target == current)
 853		save_fp_regs(&target->thread.fp_regs);
 854
 855	/* If setting FPC, must validate it first. */
 856	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 857		u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
 858		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
 859					0, offsetof(s390_fp_regs, fprs));
 860		if (rc)
 861			return rc;
 862		if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
 863			return -EINVAL;
 864		target->thread.fp_regs.fpc = fpc[0];
 865	}
 866
 867	if (rc == 0 && count > 0)
 868		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 869					target->thread.fp_regs.fprs,
 870					offsetof(s390_fp_regs, fprs), -1);
 871
 872	if (rc == 0 && target == current)
 873		restore_fp_regs(&target->thread.fp_regs);
 
 
 
 874
 875	return rc;
 876}
 877
 878#ifdef CONFIG_64BIT
 879
 880static int s390_last_break_get(struct task_struct *target,
 881			       const struct user_regset *regset,
 882			       unsigned int pos, unsigned int count,
 883			       void *kbuf, void __user *ubuf)
 884{
 885	if (count > 0) {
 886		if (kbuf) {
 887			unsigned long *k = kbuf;
 888			*k = task_thread_info(target)->last_break;
 889		} else {
 890			unsigned long  __user *u = ubuf;
 891			if (__put_user(task_thread_info(target)->last_break, u))
 892				return -EFAULT;
 893		}
 894	}
 895	return 0;
 896}
 897
 898#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900static const struct user_regset s390_regsets[] = {
 901	[REGSET_GENERAL] = {
 902		.core_note_type = NT_PRSTATUS,
 903		.n = sizeof(s390_regs) / sizeof(long),
 904		.size = sizeof(long),
 905		.align = sizeof(long),
 906		.get = s390_regs_get,
 907		.set = s390_regs_set,
 908	},
 909	[REGSET_FP] = {
 910		.core_note_type = NT_PRFPREG,
 911		.n = sizeof(s390_fp_regs) / sizeof(long),
 912		.size = sizeof(long),
 913		.align = sizeof(long),
 914		.get = s390_fpregs_get,
 915		.set = s390_fpregs_set,
 916	},
 917#ifdef CONFIG_64BIT
 918	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 919		.core_note_type = NT_S390_LAST_BREAK,
 920		.n = 1,
 921		.size = sizeof(long),
 922		.align = sizeof(long),
 923		.get = s390_last_break_get,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924	},
 925#endif
 926};
 927
 928static const struct user_regset_view user_s390_view = {
 929	.name = UTS_MACHINE,
 930	.e_machine = EM_S390,
 931	.regsets = s390_regsets,
 932	.n = ARRAY_SIZE(s390_regsets)
 933};
 934
 935#ifdef CONFIG_COMPAT
 936static int s390_compat_regs_get(struct task_struct *target,
 937				const struct user_regset *regset,
 938				unsigned int pos, unsigned int count,
 939				void *kbuf, void __user *ubuf)
 940{
 941	if (target == current)
 942		save_access_regs(target->thread.acrs);
 943
 944	if (kbuf) {
 945		compat_ulong_t *k = kbuf;
 946		while (count > 0) {
 947			*k++ = __peek_user_compat(target, pos);
 948			count -= sizeof(*k);
 949			pos += sizeof(*k);
 950		}
 951	} else {
 952		compat_ulong_t __user *u = ubuf;
 953		while (count > 0) {
 954			if (__put_user(__peek_user_compat(target, pos), u++))
 955				return -EFAULT;
 956			count -= sizeof(*u);
 957			pos += sizeof(*u);
 958		}
 959	}
 960	return 0;
 961}
 962
 963static int s390_compat_regs_set(struct task_struct *target,
 964				const struct user_regset *regset,
 965				unsigned int pos, unsigned int count,
 966				const void *kbuf, const void __user *ubuf)
 967{
 968	int rc = 0;
 969
 970	if (target == current)
 971		save_access_regs(target->thread.acrs);
 972
 973	if (kbuf) {
 974		const compat_ulong_t *k = kbuf;
 975		while (count > 0 && !rc) {
 976			rc = __poke_user_compat(target, pos, *k++);
 977			count -= sizeof(*k);
 978			pos += sizeof(*k);
 979		}
 980	} else {
 981		const compat_ulong_t  __user *u = ubuf;
 982		while (count > 0 && !rc) {
 983			compat_ulong_t word;
 984			rc = __get_user(word, u++);
 985			if (rc)
 986				break;
 987			rc = __poke_user_compat(target, pos, word);
 988			count -= sizeof(*u);
 989			pos += sizeof(*u);
 990		}
 991	}
 992
 993	if (rc == 0 && target == current)
 994		restore_access_regs(target->thread.acrs);
 995
 996	return rc;
 997}
 998
 999static int s390_compat_regs_high_get(struct task_struct *target,
1000				     const struct user_regset *regset,
1001				     unsigned int pos, unsigned int count,
1002				     void *kbuf, void __user *ubuf)
1003{
1004	compat_ulong_t *gprs_high;
1005
1006	gprs_high = (compat_ulong_t *)
1007		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1008	if (kbuf) {
1009		compat_ulong_t *k = kbuf;
1010		while (count > 0) {
1011			*k++ = *gprs_high;
1012			gprs_high += 2;
1013			count -= sizeof(*k);
1014		}
1015	} else {
1016		compat_ulong_t __user *u = ubuf;
1017		while (count > 0) {
1018			if (__put_user(*gprs_high, u++))
1019				return -EFAULT;
1020			gprs_high += 2;
1021			count -= sizeof(*u);
1022		}
1023	}
1024	return 0;
1025}
1026
1027static int s390_compat_regs_high_set(struct task_struct *target,
1028				     const struct user_regset *regset,
1029				     unsigned int pos, unsigned int count,
1030				     const void *kbuf, const void __user *ubuf)
1031{
1032	compat_ulong_t *gprs_high;
1033	int rc = 0;
1034
1035	gprs_high = (compat_ulong_t *)
1036		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1037	if (kbuf) {
1038		const compat_ulong_t *k = kbuf;
1039		while (count > 0) {
1040			*gprs_high = *k++;
1041			*gprs_high += 2;
1042			count -= sizeof(*k);
1043		}
1044	} else {
1045		const compat_ulong_t  __user *u = ubuf;
1046		while (count > 0 && !rc) {
1047			unsigned long word;
1048			rc = __get_user(word, u++);
1049			if (rc)
1050				break;
1051			*gprs_high = word;
1052			*gprs_high += 2;
1053			count -= sizeof(*u);
1054		}
1055	}
1056
1057	return rc;
1058}
1059
1060static int s390_compat_last_break_get(struct task_struct *target,
1061				      const struct user_regset *regset,
1062				      unsigned int pos, unsigned int count,
1063				      void *kbuf, void __user *ubuf)
1064{
1065	compat_ulong_t last_break;
1066
1067	if (count > 0) {
1068		last_break = task_thread_info(target)->last_break;
1069		if (kbuf) {
1070			unsigned long *k = kbuf;
1071			*k = last_break;
1072		} else {
1073			unsigned long  __user *u = ubuf;
1074			if (__put_user(last_break, u))
1075				return -EFAULT;
1076		}
1077	}
1078	return 0;
1079}
1080
 
 
 
 
 
 
 
 
1081static const struct user_regset s390_compat_regsets[] = {
1082	[REGSET_GENERAL] = {
1083		.core_note_type = NT_PRSTATUS,
1084		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1085		.size = sizeof(compat_long_t),
1086		.align = sizeof(compat_long_t),
1087		.get = s390_compat_regs_get,
1088		.set = s390_compat_regs_set,
1089	},
1090	[REGSET_FP] = {
1091		.core_note_type = NT_PRFPREG,
1092		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1093		.size = sizeof(compat_long_t),
1094		.align = sizeof(compat_long_t),
1095		.get = s390_fpregs_get,
1096		.set = s390_fpregs_set,
1097	},
1098	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 
1099		.core_note_type = NT_S390_LAST_BREAK,
1100		.n = 1,
1101		.size = sizeof(long),
1102		.align = sizeof(long),
1103		.get = s390_compat_last_break_get,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104	},
1105	[REGSET_GENERAL_EXTENDED] = {
1106		.core_note_type = NT_S390_HIGH_GPRS,
1107		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1108		.size = sizeof(compat_long_t),
1109		.align = sizeof(compat_long_t),
1110		.get = s390_compat_regs_high_get,
1111		.set = s390_compat_regs_high_set,
1112	},
1113};
1114
1115static const struct user_regset_view user_s390_compat_view = {
1116	.name = "s390",
1117	.e_machine = EM_S390,
1118	.regsets = s390_compat_regsets,
1119	.n = ARRAY_SIZE(s390_compat_regsets)
1120};
1121#endif
1122
1123const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1124{
1125#ifdef CONFIG_COMPAT
1126	if (test_tsk_thread_flag(task, TIF_31BIT))
1127		return &user_s390_compat_view;
1128#endif
1129	return &user_s390_view;
1130}
1131
1132static const char *gpr_names[NUM_GPRS] = {
1133	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1134	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1135};
1136
1137unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1138{
1139	if (offset >= NUM_GPRS)
1140		return 0;
1141	return regs->gprs[offset];
1142}
1143
1144int regs_query_register_offset(const char *name)
1145{
1146	unsigned long offset;
1147
1148	if (!name || *name != 'r')
1149		return -EINVAL;
1150	if (strict_strtoul(name + 1, 10, &offset))
1151		return -EINVAL;
1152	if (offset >= NUM_GPRS)
1153		return -EINVAL;
1154	return offset;
1155}
1156
1157const char *regs_query_register_name(unsigned int offset)
1158{
1159	if (offset >= NUM_GPRS)
1160		return NULL;
1161	return gpr_names[offset];
1162}
1163
1164static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1165{
1166	unsigned long ksp = kernel_stack_pointer(regs);
1167
1168	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1169}
1170
1171/**
1172 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1173 * @regs:pt_regs which contains kernel stack pointer.
1174 * @n:stack entry number.
1175 *
1176 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1177 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1178 * this returns 0.
1179 */
1180unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1181{
1182	unsigned long addr;
1183
1184	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1185	if (!regs_within_kernel_stack(regs, addr))
1186		return 0;
1187	return *(unsigned long *)addr;
1188}
v4.6
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999, 2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
  23#include <linux/compat.h>
  24#include <trace/syscall.h>
 
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
 
  29#include <asm/uaccess.h>
  30#include <asm/unistd.h>
  31#include <asm/switch_to.h>
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41void update_cr_regs(struct task_struct *task)
 
 
 
 
 
 
 
  42{
 
 
 
 
 
  43	struct pt_regs *regs = task_pt_regs(task);
  44	struct thread_struct *thread = &task->thread;
  45	struct per_regs old, new;
 
  46
  47	/* Take care of the enable/disable of transactional execution. */
  48	if (MACHINE_HAS_TE) {
  49		unsigned long cr, cr_new;
  50
  51		__ctl_store(cr, 0, 0);
  52		/* Set or clear transaction execution TXC bit 8. */
  53		cr_new = cr | (1UL << 55);
  54		if (task->thread.per_flags & PER_FLAG_NO_TE)
  55			cr_new &= ~(1UL << 55);
  56		if (cr_new != cr)
  57			__ctl_load(cr_new, 0, 0);
  58		/* Set or clear transaction execution TDC bits 62 and 63. */
  59		__ctl_store(cr, 2, 2);
  60		cr_new = cr & ~3UL;
  61		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  62			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  63				cr_new |= 1UL;
  64			else
  65				cr_new |= 2UL;
  66		}
  67		if (cr_new != cr)
  68			__ctl_load(cr_new, 2, 2);
  69	}
  70	/* Copy user specified PER registers */
  71	new.control = thread->per_user.control;
  72	new.start = thread->per_user.start;
  73	new.end = thread->per_user.end;
  74
  75	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  76	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  77	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  78		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  79			new.control |= PER_EVENT_BRANCH;
  80		else
  81			new.control |= PER_EVENT_IFETCH;
  82		new.control |= PER_CONTROL_SUSPENSION;
  83		new.control |= PER_EVENT_TRANSACTION_END;
  84		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
  85			new.control |= PER_EVENT_IFETCH;
  86		new.start = 0;
  87		new.end = -1UL;
  88	}
  89
  90	/* Take care of the PER enablement bit in the PSW. */
  91	if (!(new.control & PER_EVENT_MASK)) {
  92		regs->psw.mask &= ~PSW_MASK_PER;
  93		return;
  94	}
  95	regs->psw.mask |= PSW_MASK_PER;
  96	__ctl_store(old, 9, 11);
  97	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
  98		__ctl_load(new, 9, 11);
  99}
 100
 101void user_enable_single_step(struct task_struct *task)
 102{
 103	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 104	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 
 
 105}
 106
 107void user_disable_single_step(struct task_struct *task)
 108{
 109	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 110	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 111}
 112
 113void user_enable_block_step(struct task_struct *task)
 114{
 115	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 116	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 117}
 118
 119/*
 120 * Called by kernel/ptrace.c when detaching..
 121 *
 122 * Clear all debugging related fields.
 123 */
 124void ptrace_disable(struct task_struct *task)
 125{
 126	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 127	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 128	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 129	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 130	task->thread.per_flags = 0;
 131}
 132
 133#define __ADDR_MASK 7
 
 
 
 
 134
 135static inline unsigned long __peek_user_per(struct task_struct *child,
 136					    addr_t addr)
 137{
 138	struct per_struct_kernel *dummy = NULL;
 139
 140	if (addr == (addr_t) &dummy->cr9)
 141		/* Control bits of the active per set. */
 142		return test_thread_flag(TIF_SINGLE_STEP) ?
 143			PER_EVENT_IFETCH : child->thread.per_user.control;
 144	else if (addr == (addr_t) &dummy->cr10)
 145		/* Start address of the active per set. */
 146		return test_thread_flag(TIF_SINGLE_STEP) ?
 147			0 : child->thread.per_user.start;
 148	else if (addr == (addr_t) &dummy->cr11)
 149		/* End address of the active per set. */
 150		return test_thread_flag(TIF_SINGLE_STEP) ?
 151			-1UL : child->thread.per_user.end;
 152	else if (addr == (addr_t) &dummy->bits)
 153		/* Single-step bit. */
 154		return test_thread_flag(TIF_SINGLE_STEP) ?
 155			(1UL << (BITS_PER_LONG - 1)) : 0;
 156	else if (addr == (addr_t) &dummy->starting_addr)
 157		/* Start address of the user specified per set. */
 158		return child->thread.per_user.start;
 159	else if (addr == (addr_t) &dummy->ending_addr)
 160		/* End address of the user specified per set. */
 161		return child->thread.per_user.end;
 162	else if (addr == (addr_t) &dummy->perc_atmid)
 163		/* PER code, ATMID and AI of the last PER trap */
 164		return (unsigned long)
 165			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 166	else if (addr == (addr_t) &dummy->address)
 167		/* Address of the last PER trap */
 168		return child->thread.per_event.address;
 169	else if (addr == (addr_t) &dummy->access_id)
 170		/* Access id of the last PER trap */
 171		return (unsigned long)
 172			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 173	return 0;
 174}
 175
 176/*
 177 * Read the word at offset addr from the user area of a process. The
 178 * trouble here is that the information is littered over different
 179 * locations. The process registers are found on the kernel stack,
 180 * the floating point stuff and the trace settings are stored in
 181 * the task structure. In addition the different structures in
 182 * struct user contain pad bytes that should be read as zeroes.
 183 * Lovely...
 184 */
 185static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 186{
 187	struct user *dummy = NULL;
 188	addr_t offset, tmp;
 189
 190	if (addr < (addr_t) &dummy->regs.acrs) {
 191		/*
 192		 * psw and gprs are stored on the stack
 193		 */
 194		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 195		if (addr == (addr_t) &dummy->regs.psw.mask) {
 196			/* Return a clean psw mask. */
 197			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 198			tmp |= PSW_USER_BITS;
 199		}
 200
 201	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 202		/*
 203		 * access registers are stored in the thread structure
 204		 */
 205		offset = addr - (addr_t) &dummy->regs.acrs;
 
 206		/*
 207		 * Very special case: old & broken 64 bit gdb reading
 208		 * from acrs[15]. Result is a 64 bit value. Read the
 209		 * 32 bit acrs[15] value and shift it by 32. Sick...
 210		 */
 211		if (addr == (addr_t) &dummy->regs.acrs[15])
 212			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 213		else
 214			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 
 215
 216	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 217		/*
 218		 * orig_gpr2 is stored on the kernel stack
 219		 */
 220		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 221
 222	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 223		/*
 224		 * prevent reads of padding hole between
 225		 * orig_gpr2 and fp_regs on s390.
 226		 */
 227		tmp = 0;
 228
 229	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 230		/*
 231		 * floating point control reg. is in the thread structure
 232		 */
 233		tmp = child->thread.fpu.fpc;
 234		tmp <<= BITS_PER_LONG - 32;
 235
 236	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 237		/*
 238		 * floating point regs. are either in child->thread.fpu
 239		 * or the child->thread.fpu.vxrs array
 240		 */
 241		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 242		if (MACHINE_HAS_VX)
 243			tmp = *(addr_t *)
 244			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 245		else
 246			tmp = *(addr_t *)
 247			       ((addr_t) child->thread.fpu.fprs + offset);
 248
 249	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 250		/*
 251		 * Handle access to the per_info structure.
 252		 */
 253		addr -= (addr_t) &dummy->regs.per_info;
 254		tmp = __peek_user_per(child, addr);
 255
 256	} else
 257		tmp = 0;
 258
 259	return tmp;
 260}
 261
 262static int
 263peek_user(struct task_struct *child, addr_t addr, addr_t data)
 264{
 265	addr_t tmp, mask;
 266
 267	/*
 268	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 269	 * an alignment of 4. Programmers from hell...
 270	 */
 271	mask = __ADDR_MASK;
 
 272	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 273	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 274		mask = 3;
 
 275	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 276		return -EIO;
 277
 278	tmp = __peek_user(child, addr);
 279	return put_user(tmp, (addr_t __user *) data);
 280}
 281
 282static inline void __poke_user_per(struct task_struct *child,
 283				   addr_t addr, addr_t data)
 284{
 285	struct per_struct_kernel *dummy = NULL;
 286
 287	/*
 288	 * There are only three fields in the per_info struct that the
 289	 * debugger user can write to.
 290	 * 1) cr9: the debugger wants to set a new PER event mask
 291	 * 2) starting_addr: the debugger wants to set a new starting
 292	 *    address to use with the PER event mask.
 293	 * 3) ending_addr: the debugger wants to set a new ending
 294	 *    address to use with the PER event mask.
 295	 * The user specified PER event mask and the start and end
 296	 * addresses are used only if single stepping is not in effect.
 297	 * Writes to any other field in per_info are ignored.
 298	 */
 299	if (addr == (addr_t) &dummy->cr9)
 300		/* PER event mask of the user specified per set. */
 301		child->thread.per_user.control =
 302			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 303	else if (addr == (addr_t) &dummy->starting_addr)
 304		/* Starting address of the user specified per set. */
 305		child->thread.per_user.start = data;
 306	else if (addr == (addr_t) &dummy->ending_addr)
 307		/* Ending address of the user specified per set. */
 308		child->thread.per_user.end = data;
 309}
 310
 311/*
 312 * Write a word to the user area of a process at location addr. This
 313 * operation does have an additional problem compared to peek_user.
 314 * Stores to the program status word and on the floating point
 315 * control register needs to get checked for validity.
 316 */
 317static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 318{
 319	struct user *dummy = NULL;
 320	addr_t offset;
 321
 322	if (addr < (addr_t) &dummy->regs.acrs) {
 323		/*
 324		 * psw and gprs are stored on the stack
 325		 */
 326		if (addr == (addr_t) &dummy->regs.psw.mask) {
 327			unsigned long mask = PSW_MASK_USER;
 328
 329			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 330			if ((data ^ PSW_USER_BITS) & ~mask)
 331				/* Invalid psw mask. */
 332				return -EINVAL;
 333			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 334				/* Invalid address-space-control bits */
 335				return -EINVAL;
 336			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 337				/* Invalid addressing mode bits */
 338				return -EINVAL;
 339		}
 340		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 341
 342	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 343		/*
 344		 * access registers are stored in the thread structure
 345		 */
 346		offset = addr - (addr_t) &dummy->regs.acrs;
 
 347		/*
 348		 * Very special case: old & broken 64 bit gdb writing
 349		 * to acrs[15] with a 64 bit value. Ignore the lower
 350		 * half of the value and write the upper 32 bit to
 351		 * acrs[15]. Sick...
 352		 */
 353		if (addr == (addr_t) &dummy->regs.acrs[15])
 354			child->thread.acrs[15] = (unsigned int) (data >> 32);
 355		else
 356			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 
 357
 358	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 359		/*
 360		 * orig_gpr2 is stored on the kernel stack
 361		 */
 362		task_pt_regs(child)->orig_gpr2 = data;
 363
 364	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 365		/*
 366		 * prevent writes of padding hole between
 367		 * orig_gpr2 and fp_regs on s390.
 368		 */
 369		return 0;
 370
 371	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 372		/*
 373		 * floating point control reg. is in the thread structure
 374		 */
 375		if ((unsigned int) data != 0 ||
 376		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 
 377			return -EINVAL;
 378		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 379
 380	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 381		/*
 382		 * floating point regs. are either in child->thread.fpu
 383		 * or the child->thread.fpu.vxrs array
 384		 */
 385		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 386		if (MACHINE_HAS_VX)
 387			*(addr_t *)((addr_t)
 388				child->thread.fpu.vxrs + 2*offset) = data;
 389		else
 390			*(addr_t *)((addr_t)
 391				child->thread.fpu.fprs + offset) = data;
 392
 393	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 394		/*
 395		 * Handle access to the per_info structure.
 396		 */
 397		addr -= (addr_t) &dummy->regs.per_info;
 398		__poke_user_per(child, addr, data);
 399
 400	}
 401
 402	return 0;
 403}
 404
 405static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 406{
 407	addr_t mask;
 408
 409	/*
 410	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 411	 * an alignment of 4. Programmers from hell indeed...
 412	 */
 413	mask = __ADDR_MASK;
 
 414	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 415	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 416		mask = 3;
 
 417	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 418		return -EIO;
 419
 420	return __poke_user(child, addr, data);
 421}
 422
 423long arch_ptrace(struct task_struct *child, long request,
 424		 unsigned long addr, unsigned long data)
 425{
 426	ptrace_area parea; 
 427	int copied, ret;
 428
 429	switch (request) {
 430	case PTRACE_PEEKUSR:
 431		/* read the word at location addr in the USER area. */
 432		return peek_user(child, addr, data);
 433
 434	case PTRACE_POKEUSR:
 435		/* write the word at location addr in the USER area */
 436		return poke_user(child, addr, data);
 437
 438	case PTRACE_PEEKUSR_AREA:
 439	case PTRACE_POKEUSR_AREA:
 440		if (copy_from_user(&parea, (void __force __user *) addr,
 441							sizeof(parea)))
 442			return -EFAULT;
 443		addr = parea.kernel_addr;
 444		data = parea.process_addr;
 445		copied = 0;
 446		while (copied < parea.len) {
 447			if (request == PTRACE_PEEKUSR_AREA)
 448				ret = peek_user(child, addr, data);
 449			else {
 450				addr_t utmp;
 451				if (get_user(utmp,
 452					     (addr_t __force __user *) data))
 453					return -EFAULT;
 454				ret = poke_user(child, addr, utmp);
 455			}
 456			if (ret)
 457				return ret;
 458			addr += sizeof(unsigned long);
 459			data += sizeof(unsigned long);
 460			copied += sizeof(unsigned long);
 461		}
 462		return 0;
 463	case PTRACE_GET_LAST_BREAK:
 464		put_user(task_thread_info(child)->last_break,
 465			 (unsigned long __user *) data);
 466		return 0;
 467	case PTRACE_ENABLE_TE:
 468		if (!MACHINE_HAS_TE)
 469			return -EIO;
 470		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 471		return 0;
 472	case PTRACE_DISABLE_TE:
 473		if (!MACHINE_HAS_TE)
 474			return -EIO;
 475		child->thread.per_flags |= PER_FLAG_NO_TE;
 476		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 477		return 0;
 478	case PTRACE_TE_ABORT_RAND:
 479		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 480			return -EIO;
 481		switch (data) {
 482		case 0UL:
 483			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 484			break;
 485		case 1UL:
 486			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 487			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 488			break;
 489		case 2UL:
 490			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 491			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 492			break;
 493		default:
 494			return -EINVAL;
 495		}
 496		return 0;
 497	default:
 
 
 498		return ptrace_request(child, request, addr, data);
 499	}
 500}
 501
 502#ifdef CONFIG_COMPAT
 503/*
 504 * Now the fun part starts... a 31 bit program running in the
 505 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 506 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 507 * to handle, the difference to the 64 bit versions of the requests
 508 * is that the access is done in multiples of 4 byte instead of
 509 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 510 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 511 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 512 * is a 31 bit program too, the content of struct user can be
 513 * emulated. A 31 bit program peeking into the struct user of
 514 * a 64 bit program is a no-no.
 515 */
 516
 517/*
 518 * Same as peek_user_per but for a 31 bit program.
 519 */
 520static inline __u32 __peek_user_per_compat(struct task_struct *child,
 521					   addr_t addr)
 522{
 523	struct compat_per_struct_kernel *dummy32 = NULL;
 524
 525	if (addr == (addr_t) &dummy32->cr9)
 526		/* Control bits of the active per set. */
 527		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 528			PER_EVENT_IFETCH : child->thread.per_user.control;
 529	else if (addr == (addr_t) &dummy32->cr10)
 530		/* Start address of the active per set. */
 531		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 532			0 : child->thread.per_user.start;
 533	else if (addr == (addr_t) &dummy32->cr11)
 534		/* End address of the active per set. */
 535		return test_thread_flag(TIF_SINGLE_STEP) ?
 536			PSW32_ADDR_INSN : child->thread.per_user.end;
 537	else if (addr == (addr_t) &dummy32->bits)
 538		/* Single-step bit. */
 539		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 540			0x80000000 : 0;
 541	else if (addr == (addr_t) &dummy32->starting_addr)
 542		/* Start address of the user specified per set. */
 543		return (__u32) child->thread.per_user.start;
 544	else if (addr == (addr_t) &dummy32->ending_addr)
 545		/* End address of the user specified per set. */
 546		return (__u32) child->thread.per_user.end;
 547	else if (addr == (addr_t) &dummy32->perc_atmid)
 548		/* PER code, ATMID and AI of the last PER trap */
 549		return (__u32) child->thread.per_event.cause << 16;
 550	else if (addr == (addr_t) &dummy32->address)
 551		/* Address of the last PER trap */
 552		return (__u32) child->thread.per_event.address;
 553	else if (addr == (addr_t) &dummy32->access_id)
 554		/* Access id of the last PER trap */
 555		return (__u32) child->thread.per_event.paid << 24;
 556	return 0;
 557}
 558
 559/*
 560 * Same as peek_user but for a 31 bit program.
 561 */
 562static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 563{
 564	struct compat_user *dummy32 = NULL;
 565	addr_t offset;
 566	__u32 tmp;
 567
 568	if (addr < (addr_t) &dummy32->regs.acrs) {
 569		struct pt_regs *regs = task_pt_regs(child);
 570		/*
 571		 * psw and gprs are stored on the stack
 572		 */
 573		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 574			/* Fake a 31 bit psw mask. */
 575			tmp = (__u32)(regs->psw.mask >> 32);
 576			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 577			tmp |= PSW32_USER_BITS;
 578		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 579			/* Fake a 31 bit psw address. */
 580			tmp = (__u32) regs->psw.addr |
 581				(__u32)(regs->psw.mask & PSW_MASK_BA);
 582		} else {
 583			/* gpr 0-15 */
 584			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 
 585		}
 586	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 587		/*
 588		 * access registers are stored in the thread structure
 589		 */
 590		offset = addr - (addr_t) &dummy32->regs.acrs;
 591		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 592
 593	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 594		/*
 595		 * orig_gpr2 is stored on the kernel stack
 596		 */
 597		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 598
 599	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 600		/*
 601		 * prevent reads of padding hole between
 602		 * orig_gpr2 and fp_regs on s390.
 603		 */
 604		tmp = 0;
 605
 606	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 607		/*
 608		 * floating point control reg. is in the thread structure
 609		 */
 610		tmp = child->thread.fpu.fpc;
 611
 612	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 613		/*
 614		 * floating point regs. are either in child->thread.fpu
 615		 * or the child->thread.fpu.vxrs array
 616		 */
 617		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 618		if (MACHINE_HAS_VX)
 619			tmp = *(__u32 *)
 620			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 621		else
 622			tmp = *(__u32 *)
 623			       ((addr_t) child->thread.fpu.fprs + offset);
 624
 625	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 626		/*
 627		 * Handle access to the per_info structure.
 628		 */
 629		addr -= (addr_t) &dummy32->regs.per_info;
 630		tmp = __peek_user_per_compat(child, addr);
 631
 632	} else
 633		tmp = 0;
 634
 635	return tmp;
 636}
 637
 638static int peek_user_compat(struct task_struct *child,
 639			    addr_t addr, addr_t data)
 640{
 641	__u32 tmp;
 642
 643	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 644		return -EIO;
 645
 646	tmp = __peek_user_compat(child, addr);
 647	return put_user(tmp, (__u32 __user *) data);
 648}
 649
 650/*
 651 * Same as poke_user_per but for a 31 bit program.
 652 */
 653static inline void __poke_user_per_compat(struct task_struct *child,
 654					  addr_t addr, __u32 data)
 655{
 656	struct compat_per_struct_kernel *dummy32 = NULL;
 657
 658	if (addr == (addr_t) &dummy32->cr9)
 659		/* PER event mask of the user specified per set. */
 660		child->thread.per_user.control =
 661			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 662	else if (addr == (addr_t) &dummy32->starting_addr)
 663		/* Starting address of the user specified per set. */
 664		child->thread.per_user.start = data;
 665	else if (addr == (addr_t) &dummy32->ending_addr)
 666		/* Ending address of the user specified per set. */
 667		child->thread.per_user.end = data;
 668}
 669
 670/*
 671 * Same as poke_user but for a 31 bit program.
 672 */
 673static int __poke_user_compat(struct task_struct *child,
 674			      addr_t addr, addr_t data)
 675{
 676	struct compat_user *dummy32 = NULL;
 677	__u32 tmp = (__u32) data;
 678	addr_t offset;
 679
 680	if (addr < (addr_t) &dummy32->regs.acrs) {
 681		struct pt_regs *regs = task_pt_regs(child);
 682		/*
 683		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 684		 */
 685		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 686			__u32 mask = PSW32_MASK_USER;
 687
 688			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 689			/* Build a 64 bit psw mask from 31 bit mask. */
 690			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 691				/* Invalid psw mask. */
 692				return -EINVAL;
 693			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 694				/* Invalid address-space-control bits */
 695				return -EINVAL;
 696			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 697				(regs->psw.mask & PSW_MASK_BA) |
 698				(__u64)(tmp & mask) << 32;
 699		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 700			/* Build a 64 bit psw address from 31 bit address. */
 701			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 702			/* Transfer 31 bit amode bit to psw mask. */
 703			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 704				(__u64)(tmp & PSW32_ADDR_AMODE);
 705		} else {
 706			/* gpr 0-15 */
 707			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 
 708		}
 709	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 710		/*
 711		 * access registers are stored in the thread structure
 712		 */
 713		offset = addr - (addr_t) &dummy32->regs.acrs;
 714		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 715
 716	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 717		/*
 718		 * orig_gpr2 is stored on the kernel stack
 719		 */
 720		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 721
 722	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 723		/*
 724		 * prevent writess of padding hole between
 725		 * orig_gpr2 and fp_regs on s390.
 726		 */
 727		return 0;
 728
 729	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 730		/*
 731		 * floating point control reg. is in the thread structure
 732		 */
 733		if (test_fp_ctl(tmp))
 
 
 734			return -EINVAL;
 735		child->thread.fpu.fpc = data;
 736
 737	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 738		/*
 739		 * floating point regs. are either in child->thread.fpu
 740		 * or the child->thread.fpu.vxrs array
 741		 */
 742		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 743		if (MACHINE_HAS_VX)
 744			*(__u32 *)((addr_t)
 745				child->thread.fpu.vxrs + 2*offset) = tmp;
 746		else
 747			*(__u32 *)((addr_t)
 748				child->thread.fpu.fprs + offset) = tmp;
 749
 750	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 751		/*
 752		 * Handle access to the per_info structure.
 753		 */
 754		addr -= (addr_t) &dummy32->regs.per_info;
 755		__poke_user_per_compat(child, addr, data);
 756	}
 757
 758	return 0;
 759}
 760
 761static int poke_user_compat(struct task_struct *child,
 762			    addr_t addr, addr_t data)
 763{
 764	if (!is_compat_task() || (addr & 3) ||
 765	    addr > sizeof(struct compat_user) - 3)
 766		return -EIO;
 767
 768	return __poke_user_compat(child, addr, data);
 769}
 770
 771long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 772			compat_ulong_t caddr, compat_ulong_t cdata)
 773{
 774	unsigned long addr = caddr;
 775	unsigned long data = cdata;
 776	compat_ptrace_area parea;
 777	int copied, ret;
 778
 779	switch (request) {
 780	case PTRACE_PEEKUSR:
 781		/* read the word at location addr in the USER area. */
 782		return peek_user_compat(child, addr, data);
 783
 784	case PTRACE_POKEUSR:
 785		/* write the word at location addr in the USER area */
 786		return poke_user_compat(child, addr, data);
 787
 788	case PTRACE_PEEKUSR_AREA:
 789	case PTRACE_POKEUSR_AREA:
 790		if (copy_from_user(&parea, (void __force __user *) addr,
 791							sizeof(parea)))
 792			return -EFAULT;
 793		addr = parea.kernel_addr;
 794		data = parea.process_addr;
 795		copied = 0;
 796		while (copied < parea.len) {
 797			if (request == PTRACE_PEEKUSR_AREA)
 798				ret = peek_user_compat(child, addr, data);
 799			else {
 800				__u32 utmp;
 801				if (get_user(utmp,
 802					     (__u32 __force __user *) data))
 803					return -EFAULT;
 804				ret = poke_user_compat(child, addr, utmp);
 805			}
 806			if (ret)
 807				return ret;
 808			addr += sizeof(unsigned int);
 809			data += sizeof(unsigned int);
 810			copied += sizeof(unsigned int);
 811		}
 812		return 0;
 813	case PTRACE_GET_LAST_BREAK:
 814		put_user(task_thread_info(child)->last_break,
 815			 (unsigned int __user *) data);
 816		return 0;
 817	}
 818	return compat_ptrace_request(child, request, addr, data);
 819}
 820#endif
 821
 822asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 823{
 824	long ret = 0;
 825
 826	/* Do the secure computing check first. */
 827	if (secure_computing()) {
 828		/* seccomp failures shouldn't expose any additional code. */
 829		ret = -1;
 830		goto out;
 831	}
 832
 833	/*
 834	 * The sysc_tracesys code in entry.S stored the system
 835	 * call number to gprs[2].
 836	 */
 837	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 838	    (tracehook_report_syscall_entry(regs) ||
 839	     regs->gprs[2] >= NR_syscalls)) {
 840		/*
 841		 * Tracing decided this syscall should not happen or the
 842		 * debugger stored an invalid system call number. Skip
 843		 * the system call and the system call restart handling.
 844		 */
 845		clear_pt_regs_flag(regs, PIF_SYSCALL);
 846		ret = -1;
 847	}
 848
 849	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 850		trace_sys_enter(regs, regs->gprs[2]);
 851
 852	audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
 853			    regs->gprs[3], regs->gprs[4],
 854			    regs->gprs[5]);
 855out:
 
 
 856	return ret ?: regs->gprs[2];
 857}
 858
 859asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 860{
 861	audit_syscall_exit(regs);
 
 
 862
 863	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 864		trace_sys_exit(regs, regs->gprs[2]);
 865
 866	if (test_thread_flag(TIF_SYSCALL_TRACE))
 867		tracehook_report_syscall_exit(regs, 0);
 868}
 869
 870/*
 871 * user_regset definitions.
 872 */
 873
 874static int s390_regs_get(struct task_struct *target,
 875			 const struct user_regset *regset,
 876			 unsigned int pos, unsigned int count,
 877			 void *kbuf, void __user *ubuf)
 878{
 879	if (target == current)
 880		save_access_regs(target->thread.acrs);
 881
 882	if (kbuf) {
 883		unsigned long *k = kbuf;
 884		while (count > 0) {
 885			*k++ = __peek_user(target, pos);
 886			count -= sizeof(*k);
 887			pos += sizeof(*k);
 888		}
 889	} else {
 890		unsigned long __user *u = ubuf;
 891		while (count > 0) {
 892			if (__put_user(__peek_user(target, pos), u++))
 893				return -EFAULT;
 894			count -= sizeof(*u);
 895			pos += sizeof(*u);
 896		}
 897	}
 898	return 0;
 899}
 900
 901static int s390_regs_set(struct task_struct *target,
 902			 const struct user_regset *regset,
 903			 unsigned int pos, unsigned int count,
 904			 const void *kbuf, const void __user *ubuf)
 905{
 906	int rc = 0;
 907
 908	if (target == current)
 909		save_access_regs(target->thread.acrs);
 910
 911	if (kbuf) {
 912		const unsigned long *k = kbuf;
 913		while (count > 0 && !rc) {
 914			rc = __poke_user(target, pos, *k++);
 915			count -= sizeof(*k);
 916			pos += sizeof(*k);
 917		}
 918	} else {
 919		const unsigned long  __user *u = ubuf;
 920		while (count > 0 && !rc) {
 921			unsigned long word;
 922			rc = __get_user(word, u++);
 923			if (rc)
 924				break;
 925			rc = __poke_user(target, pos, word);
 926			count -= sizeof(*u);
 927			pos += sizeof(*u);
 928		}
 929	}
 930
 931	if (rc == 0 && target == current)
 932		restore_access_regs(target->thread.acrs);
 933
 934	return rc;
 935}
 936
 937static int s390_fpregs_get(struct task_struct *target,
 938			   const struct user_regset *regset, unsigned int pos,
 939			   unsigned int count, void *kbuf, void __user *ubuf)
 940{
 941	_s390_fp_regs fp_regs;
 942
 943	if (target == current)
 944		save_fpu_regs();
 945
 946	fp_regs.fpc = target->thread.fpu.fpc;
 947	fpregs_store(&fp_regs, &target->thread.fpu);
 948
 949	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 950				   &fp_regs, 0, -1);
 951}
 952
 953static int s390_fpregs_set(struct task_struct *target,
 954			   const struct user_regset *regset, unsigned int pos,
 955			   unsigned int count, const void *kbuf,
 956			   const void __user *ubuf)
 957{
 958	int rc = 0;
 959	freg_t fprs[__NUM_FPRS];
 960
 961	if (target == current)
 962		save_fpu_regs();
 963
 964	/* If setting FPC, must validate it first. */
 965	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 966		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 967		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 968					0, offsetof(s390_fp_regs, fprs));
 969		if (rc)
 970			return rc;
 971		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 972			return -EINVAL;
 973		target->thread.fpu.fpc = ufpc[0];
 974	}
 975
 976	if (rc == 0 && count > 0)
 977		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 978					fprs, offsetof(s390_fp_regs, fprs), -1);
 979	if (rc)
 980		return rc;
 981
 982	if (MACHINE_HAS_VX)
 983		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
 984	else
 985		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
 986
 987	return rc;
 988}
 989
 
 
 990static int s390_last_break_get(struct task_struct *target,
 991			       const struct user_regset *regset,
 992			       unsigned int pos, unsigned int count,
 993			       void *kbuf, void __user *ubuf)
 994{
 995	if (count > 0) {
 996		if (kbuf) {
 997			unsigned long *k = kbuf;
 998			*k = task_thread_info(target)->last_break;
 999		} else {
1000			unsigned long  __user *u = ubuf;
1001			if (__put_user(task_thread_info(target)->last_break, u))
1002				return -EFAULT;
1003		}
1004	}
1005	return 0;
1006}
1007
1008static int s390_last_break_set(struct task_struct *target,
1009			       const struct user_regset *regset,
1010			       unsigned int pos, unsigned int count,
1011			       const void *kbuf, const void __user *ubuf)
1012{
1013	return 0;
1014}
1015
1016static int s390_tdb_get(struct task_struct *target,
1017			const struct user_regset *regset,
1018			unsigned int pos, unsigned int count,
1019			void *kbuf, void __user *ubuf)
1020{
1021	struct pt_regs *regs = task_pt_regs(target);
1022	unsigned char *data;
1023
1024	if (!(regs->int_code & 0x200))
1025		return -ENODATA;
1026	data = target->thread.trap_tdb;
1027	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1028}
1029
1030static int s390_tdb_set(struct task_struct *target,
1031			const struct user_regset *regset,
1032			unsigned int pos, unsigned int count,
1033			const void *kbuf, const void __user *ubuf)
1034{
1035	return 0;
1036}
1037
1038static int s390_vxrs_low_get(struct task_struct *target,
1039			     const struct user_regset *regset,
1040			     unsigned int pos, unsigned int count,
1041			     void *kbuf, void __user *ubuf)
1042{
1043	__u64 vxrs[__NUM_VXRS_LOW];
1044	int i;
1045
1046	if (!MACHINE_HAS_VX)
1047		return -ENODEV;
1048	if (target == current)
1049		save_fpu_regs();
1050	for (i = 0; i < __NUM_VXRS_LOW; i++)
1051		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1052	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1053}
1054
1055static int s390_vxrs_low_set(struct task_struct *target,
1056			     const struct user_regset *regset,
1057			     unsigned int pos, unsigned int count,
1058			     const void *kbuf, const void __user *ubuf)
1059{
1060	__u64 vxrs[__NUM_VXRS_LOW];
1061	int i, rc;
1062
1063	if (!MACHINE_HAS_VX)
1064		return -ENODEV;
1065	if (target == current)
1066		save_fpu_regs();
1067
1068	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1069	if (rc == 0)
1070		for (i = 0; i < __NUM_VXRS_LOW; i++)
1071			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1072
1073	return rc;
1074}
1075
1076static int s390_vxrs_high_get(struct task_struct *target,
1077			      const struct user_regset *regset,
1078			      unsigned int pos, unsigned int count,
1079			      void *kbuf, void __user *ubuf)
1080{
1081	__vector128 vxrs[__NUM_VXRS_HIGH];
1082
1083	if (!MACHINE_HAS_VX)
1084		return -ENODEV;
1085	if (target == current)
1086		save_fpu_regs();
1087	memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1088
1089	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1090}
1091
1092static int s390_vxrs_high_set(struct task_struct *target,
1093			      const struct user_regset *regset,
1094			      unsigned int pos, unsigned int count,
1095			      const void *kbuf, const void __user *ubuf)
1096{
1097	int rc;
1098
1099	if (!MACHINE_HAS_VX)
1100		return -ENODEV;
1101	if (target == current)
1102		save_fpu_regs();
1103
1104	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1105				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1106	return rc;
1107}
1108
1109static int s390_system_call_get(struct task_struct *target,
1110				const struct user_regset *regset,
1111				unsigned int pos, unsigned int count,
1112				void *kbuf, void __user *ubuf)
1113{
1114	unsigned int *data = &task_thread_info(target)->system_call;
1115	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1116				   data, 0, sizeof(unsigned int));
1117}
1118
1119static int s390_system_call_set(struct task_struct *target,
1120				const struct user_regset *regset,
1121				unsigned int pos, unsigned int count,
1122				const void *kbuf, const void __user *ubuf)
1123{
1124	unsigned int *data = &task_thread_info(target)->system_call;
1125	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1126				  data, 0, sizeof(unsigned int));
1127}
1128
1129static const struct user_regset s390_regsets[] = {
1130	{
1131		.core_note_type = NT_PRSTATUS,
1132		.n = sizeof(s390_regs) / sizeof(long),
1133		.size = sizeof(long),
1134		.align = sizeof(long),
1135		.get = s390_regs_get,
1136		.set = s390_regs_set,
1137	},
1138	{
1139		.core_note_type = NT_PRFPREG,
1140		.n = sizeof(s390_fp_regs) / sizeof(long),
1141		.size = sizeof(long),
1142		.align = sizeof(long),
1143		.get = s390_fpregs_get,
1144		.set = s390_fpregs_set,
1145	},
1146	{
1147		.core_note_type = NT_S390_SYSTEM_CALL,
1148		.n = 1,
1149		.size = sizeof(unsigned int),
1150		.align = sizeof(unsigned int),
1151		.get = s390_system_call_get,
1152		.set = s390_system_call_set,
1153	},
1154	{
1155		.core_note_type = NT_S390_LAST_BREAK,
1156		.n = 1,
1157		.size = sizeof(long),
1158		.align = sizeof(long),
1159		.get = s390_last_break_get,
1160		.set = s390_last_break_set,
1161	},
1162	{
1163		.core_note_type = NT_S390_TDB,
1164		.n = 1,
1165		.size = 256,
1166		.align = 1,
1167		.get = s390_tdb_get,
1168		.set = s390_tdb_set,
1169	},
1170	{
1171		.core_note_type = NT_S390_VXRS_LOW,
1172		.n = __NUM_VXRS_LOW,
1173		.size = sizeof(__u64),
1174		.align = sizeof(__u64),
1175		.get = s390_vxrs_low_get,
1176		.set = s390_vxrs_low_set,
1177	},
1178	{
1179		.core_note_type = NT_S390_VXRS_HIGH,
1180		.n = __NUM_VXRS_HIGH,
1181		.size = sizeof(__vector128),
1182		.align = sizeof(__vector128),
1183		.get = s390_vxrs_high_get,
1184		.set = s390_vxrs_high_set,
1185	},
 
1186};
1187
1188static const struct user_regset_view user_s390_view = {
1189	.name = UTS_MACHINE,
1190	.e_machine = EM_S390,
1191	.regsets = s390_regsets,
1192	.n = ARRAY_SIZE(s390_regsets)
1193};
1194
1195#ifdef CONFIG_COMPAT
1196static int s390_compat_regs_get(struct task_struct *target,
1197				const struct user_regset *regset,
1198				unsigned int pos, unsigned int count,
1199				void *kbuf, void __user *ubuf)
1200{
1201	if (target == current)
1202		save_access_regs(target->thread.acrs);
1203
1204	if (kbuf) {
1205		compat_ulong_t *k = kbuf;
1206		while (count > 0) {
1207			*k++ = __peek_user_compat(target, pos);
1208			count -= sizeof(*k);
1209			pos += sizeof(*k);
1210		}
1211	} else {
1212		compat_ulong_t __user *u = ubuf;
1213		while (count > 0) {
1214			if (__put_user(__peek_user_compat(target, pos), u++))
1215				return -EFAULT;
1216			count -= sizeof(*u);
1217			pos += sizeof(*u);
1218		}
1219	}
1220	return 0;
1221}
1222
1223static int s390_compat_regs_set(struct task_struct *target,
1224				const struct user_regset *regset,
1225				unsigned int pos, unsigned int count,
1226				const void *kbuf, const void __user *ubuf)
1227{
1228	int rc = 0;
1229
1230	if (target == current)
1231		save_access_regs(target->thread.acrs);
1232
1233	if (kbuf) {
1234		const compat_ulong_t *k = kbuf;
1235		while (count > 0 && !rc) {
1236			rc = __poke_user_compat(target, pos, *k++);
1237			count -= sizeof(*k);
1238			pos += sizeof(*k);
1239		}
1240	} else {
1241		const compat_ulong_t  __user *u = ubuf;
1242		while (count > 0 && !rc) {
1243			compat_ulong_t word;
1244			rc = __get_user(word, u++);
1245			if (rc)
1246				break;
1247			rc = __poke_user_compat(target, pos, word);
1248			count -= sizeof(*u);
1249			pos += sizeof(*u);
1250		}
1251	}
1252
1253	if (rc == 0 && target == current)
1254		restore_access_regs(target->thread.acrs);
1255
1256	return rc;
1257}
1258
1259static int s390_compat_regs_high_get(struct task_struct *target,
1260				     const struct user_regset *regset,
1261				     unsigned int pos, unsigned int count,
1262				     void *kbuf, void __user *ubuf)
1263{
1264	compat_ulong_t *gprs_high;
1265
1266	gprs_high = (compat_ulong_t *)
1267		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1268	if (kbuf) {
1269		compat_ulong_t *k = kbuf;
1270		while (count > 0) {
1271			*k++ = *gprs_high;
1272			gprs_high += 2;
1273			count -= sizeof(*k);
1274		}
1275	} else {
1276		compat_ulong_t __user *u = ubuf;
1277		while (count > 0) {
1278			if (__put_user(*gprs_high, u++))
1279				return -EFAULT;
1280			gprs_high += 2;
1281			count -= sizeof(*u);
1282		}
1283	}
1284	return 0;
1285}
1286
1287static int s390_compat_regs_high_set(struct task_struct *target,
1288				     const struct user_regset *regset,
1289				     unsigned int pos, unsigned int count,
1290				     const void *kbuf, const void __user *ubuf)
1291{
1292	compat_ulong_t *gprs_high;
1293	int rc = 0;
1294
1295	gprs_high = (compat_ulong_t *)
1296		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1297	if (kbuf) {
1298		const compat_ulong_t *k = kbuf;
1299		while (count > 0) {
1300			*gprs_high = *k++;
1301			*gprs_high += 2;
1302			count -= sizeof(*k);
1303		}
1304	} else {
1305		const compat_ulong_t  __user *u = ubuf;
1306		while (count > 0 && !rc) {
1307			unsigned long word;
1308			rc = __get_user(word, u++);
1309			if (rc)
1310				break;
1311			*gprs_high = word;
1312			*gprs_high += 2;
1313			count -= sizeof(*u);
1314		}
1315	}
1316
1317	return rc;
1318}
1319
1320static int s390_compat_last_break_get(struct task_struct *target,
1321				      const struct user_regset *regset,
1322				      unsigned int pos, unsigned int count,
1323				      void *kbuf, void __user *ubuf)
1324{
1325	compat_ulong_t last_break;
1326
1327	if (count > 0) {
1328		last_break = task_thread_info(target)->last_break;
1329		if (kbuf) {
1330			unsigned long *k = kbuf;
1331			*k = last_break;
1332		} else {
1333			unsigned long  __user *u = ubuf;
1334			if (__put_user(last_break, u))
1335				return -EFAULT;
1336		}
1337	}
1338	return 0;
1339}
1340
1341static int s390_compat_last_break_set(struct task_struct *target,
1342				      const struct user_regset *regset,
1343				      unsigned int pos, unsigned int count,
1344				      const void *kbuf, const void __user *ubuf)
1345{
1346	return 0;
1347}
1348
1349static const struct user_regset s390_compat_regsets[] = {
1350	{
1351		.core_note_type = NT_PRSTATUS,
1352		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1353		.size = sizeof(compat_long_t),
1354		.align = sizeof(compat_long_t),
1355		.get = s390_compat_regs_get,
1356		.set = s390_compat_regs_set,
1357	},
1358	{
1359		.core_note_type = NT_PRFPREG,
1360		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1361		.size = sizeof(compat_long_t),
1362		.align = sizeof(compat_long_t),
1363		.get = s390_fpregs_get,
1364		.set = s390_fpregs_set,
1365	},
1366	{
1367		.core_note_type = NT_S390_SYSTEM_CALL,
1368		.n = 1,
1369		.size = sizeof(compat_uint_t),
1370		.align = sizeof(compat_uint_t),
1371		.get = s390_system_call_get,
1372		.set = s390_system_call_set,
1373	},
1374	{
1375		.core_note_type = NT_S390_LAST_BREAK,
1376		.n = 1,
1377		.size = sizeof(long),
1378		.align = sizeof(long),
1379		.get = s390_compat_last_break_get,
1380		.set = s390_compat_last_break_set,
1381	},
1382	{
1383		.core_note_type = NT_S390_TDB,
1384		.n = 1,
1385		.size = 256,
1386		.align = 1,
1387		.get = s390_tdb_get,
1388		.set = s390_tdb_set,
1389	},
1390	{
1391		.core_note_type = NT_S390_VXRS_LOW,
1392		.n = __NUM_VXRS_LOW,
1393		.size = sizeof(__u64),
1394		.align = sizeof(__u64),
1395		.get = s390_vxrs_low_get,
1396		.set = s390_vxrs_low_set,
1397	},
1398	{
1399		.core_note_type = NT_S390_VXRS_HIGH,
1400		.n = __NUM_VXRS_HIGH,
1401		.size = sizeof(__vector128),
1402		.align = sizeof(__vector128),
1403		.get = s390_vxrs_high_get,
1404		.set = s390_vxrs_high_set,
1405	},
1406	{
1407		.core_note_type = NT_S390_HIGH_GPRS,
1408		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1409		.size = sizeof(compat_long_t),
1410		.align = sizeof(compat_long_t),
1411		.get = s390_compat_regs_high_get,
1412		.set = s390_compat_regs_high_set,
1413	},
1414};
1415
1416static const struct user_regset_view user_s390_compat_view = {
1417	.name = "s390",
1418	.e_machine = EM_S390,
1419	.regsets = s390_compat_regsets,
1420	.n = ARRAY_SIZE(s390_compat_regsets)
1421};
1422#endif
1423
1424const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1425{
1426#ifdef CONFIG_COMPAT
1427	if (test_tsk_thread_flag(task, TIF_31BIT))
1428		return &user_s390_compat_view;
1429#endif
1430	return &user_s390_view;
1431}
1432
1433static const char *gpr_names[NUM_GPRS] = {
1434	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1435	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1436};
1437
1438unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1439{
1440	if (offset >= NUM_GPRS)
1441		return 0;
1442	return regs->gprs[offset];
1443}
1444
1445int regs_query_register_offset(const char *name)
1446{
1447	unsigned long offset;
1448
1449	if (!name || *name != 'r')
1450		return -EINVAL;
1451	if (kstrtoul(name + 1, 10, &offset))
1452		return -EINVAL;
1453	if (offset >= NUM_GPRS)
1454		return -EINVAL;
1455	return offset;
1456}
1457
1458const char *regs_query_register_name(unsigned int offset)
1459{
1460	if (offset >= NUM_GPRS)
1461		return NULL;
1462	return gpr_names[offset];
1463}
1464
1465static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1466{
1467	unsigned long ksp = kernel_stack_pointer(regs);
1468
1469	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1470}
1471
1472/**
1473 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1474 * @regs:pt_regs which contains kernel stack pointer.
1475 * @n:stack entry number.
1476 *
1477 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1478 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1479 * this returns 0.
1480 */
1481unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1482{
1483	unsigned long addr;
1484
1485	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1486	if (!regs_within_kernel_stack(regs, addr))
1487		return 0;
1488	return *(unsigned long *)addr;
1489}