Loading...
1/*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999,2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/mm.h>
12#include <linux/smp.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/user.h>
16#include <linux/security.h>
17#include <linux/audit.h>
18#include <linux/signal.h>
19#include <linux/elf.h>
20#include <linux/regset.h>
21#include <linux/tracehook.h>
22#include <linux/seccomp.h>
23#include <trace/syscall.h>
24#include <asm/compat.h>
25#include <asm/segment.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/pgalloc.h>
29#include <asm/system.h>
30#include <asm/uaccess.h>
31#include <asm/unistd.h>
32#include "entry.h"
33
34#ifdef CONFIG_COMPAT
35#include "compat_ptrace.h"
36#endif
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/syscalls.h>
40
41enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_GENERAL_EXTENDED,
46};
47
48void update_per_regs(struct task_struct *task)
49{
50 static const struct per_regs per_single_step = {
51 .control = PER_EVENT_IFETCH,
52 .start = 0,
53 .end = PSW_ADDR_INSN,
54 };
55 struct pt_regs *regs = task_pt_regs(task);
56 struct thread_struct *thread = &task->thread;
57 const struct per_regs *new;
58 struct per_regs old;
59
60 /* TIF_SINGLE_STEP overrides the user specified PER registers. */
61 new = test_tsk_thread_flag(task, TIF_SINGLE_STEP) ?
62 &per_single_step : &thread->per_user;
63
64 /* Take care of the PER enablement bit in the PSW. */
65 if (!(new->control & PER_EVENT_MASK)) {
66 regs->psw.mask &= ~PSW_MASK_PER;
67 return;
68 }
69 regs->psw.mask |= PSW_MASK_PER;
70 __ctl_store(old, 9, 11);
71 if (memcmp(new, &old, sizeof(struct per_regs)) != 0)
72 __ctl_load(*new, 9, 11);
73}
74
75void user_enable_single_step(struct task_struct *task)
76{
77 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
78 if (task == current)
79 update_per_regs(task);
80}
81
82void user_disable_single_step(struct task_struct *task)
83{
84 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
85 if (task == current)
86 update_per_regs(task);
87}
88
89/*
90 * Called by kernel/ptrace.c when detaching..
91 *
92 * Clear all debugging related fields.
93 */
94void ptrace_disable(struct task_struct *task)
95{
96 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
97 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
98 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
99 clear_tsk_thread_flag(task, TIF_PER_TRAP);
100}
101
102#ifndef CONFIG_64BIT
103# define __ADDR_MASK 3
104#else
105# define __ADDR_MASK 7
106#endif
107
108static inline unsigned long __peek_user_per(struct task_struct *child,
109 addr_t addr)
110{
111 struct per_struct_kernel *dummy = NULL;
112
113 if (addr == (addr_t) &dummy->cr9)
114 /* Control bits of the active per set. */
115 return test_thread_flag(TIF_SINGLE_STEP) ?
116 PER_EVENT_IFETCH : child->thread.per_user.control;
117 else if (addr == (addr_t) &dummy->cr10)
118 /* Start address of the active per set. */
119 return test_thread_flag(TIF_SINGLE_STEP) ?
120 0 : child->thread.per_user.start;
121 else if (addr == (addr_t) &dummy->cr11)
122 /* End address of the active per set. */
123 return test_thread_flag(TIF_SINGLE_STEP) ?
124 PSW_ADDR_INSN : child->thread.per_user.end;
125 else if (addr == (addr_t) &dummy->bits)
126 /* Single-step bit. */
127 return test_thread_flag(TIF_SINGLE_STEP) ?
128 (1UL << (BITS_PER_LONG - 1)) : 0;
129 else if (addr == (addr_t) &dummy->starting_addr)
130 /* Start address of the user specified per set. */
131 return child->thread.per_user.start;
132 else if (addr == (addr_t) &dummy->ending_addr)
133 /* End address of the user specified per set. */
134 return child->thread.per_user.end;
135 else if (addr == (addr_t) &dummy->perc_atmid)
136 /* PER code, ATMID and AI of the last PER trap */
137 return (unsigned long)
138 child->thread.per_event.cause << (BITS_PER_LONG - 16);
139 else if (addr == (addr_t) &dummy->address)
140 /* Address of the last PER trap */
141 return child->thread.per_event.address;
142 else if (addr == (addr_t) &dummy->access_id)
143 /* Access id of the last PER trap */
144 return (unsigned long)
145 child->thread.per_event.paid << (BITS_PER_LONG - 8);
146 return 0;
147}
148
149/*
150 * Read the word at offset addr from the user area of a process. The
151 * trouble here is that the information is littered over different
152 * locations. The process registers are found on the kernel stack,
153 * the floating point stuff and the trace settings are stored in
154 * the task structure. In addition the different structures in
155 * struct user contain pad bytes that should be read as zeroes.
156 * Lovely...
157 */
158static unsigned long __peek_user(struct task_struct *child, addr_t addr)
159{
160 struct user *dummy = NULL;
161 addr_t offset, tmp;
162
163 if (addr < (addr_t) &dummy->regs.acrs) {
164 /*
165 * psw and gprs are stored on the stack
166 */
167 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
168 if (addr == (addr_t) &dummy->regs.psw.mask)
169 /* Remove per bit from user psw. */
170 tmp &= ~PSW_MASK_PER;
171
172 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
173 /*
174 * access registers are stored in the thread structure
175 */
176 offset = addr - (addr_t) &dummy->regs.acrs;
177#ifdef CONFIG_64BIT
178 /*
179 * Very special case: old & broken 64 bit gdb reading
180 * from acrs[15]. Result is a 64 bit value. Read the
181 * 32 bit acrs[15] value and shift it by 32. Sick...
182 */
183 if (addr == (addr_t) &dummy->regs.acrs[15])
184 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
185 else
186#endif
187 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
188
189 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
190 /*
191 * orig_gpr2 is stored on the kernel stack
192 */
193 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
194
195 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
196 /*
197 * prevent reads of padding hole between
198 * orig_gpr2 and fp_regs on s390.
199 */
200 tmp = 0;
201
202 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
203 /*
204 * floating point regs. are stored in the thread structure
205 */
206 offset = addr - (addr_t) &dummy->regs.fp_regs;
207 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
208 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
209 tmp &= (unsigned long) FPC_VALID_MASK
210 << (BITS_PER_LONG - 32);
211
212 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
213 /*
214 * Handle access to the per_info structure.
215 */
216 addr -= (addr_t) &dummy->regs.per_info;
217 tmp = __peek_user_per(child, addr);
218
219 } else
220 tmp = 0;
221
222 return tmp;
223}
224
225static int
226peek_user(struct task_struct *child, addr_t addr, addr_t data)
227{
228 addr_t tmp, mask;
229
230 /*
231 * Stupid gdb peeks/pokes the access registers in 64 bit with
232 * an alignment of 4. Programmers from hell...
233 */
234 mask = __ADDR_MASK;
235#ifdef CONFIG_64BIT
236 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
237 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
238 mask = 3;
239#endif
240 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
241 return -EIO;
242
243 tmp = __peek_user(child, addr);
244 return put_user(tmp, (addr_t __user *) data);
245}
246
247static inline void __poke_user_per(struct task_struct *child,
248 addr_t addr, addr_t data)
249{
250 struct per_struct_kernel *dummy = NULL;
251
252 /*
253 * There are only three fields in the per_info struct that the
254 * debugger user can write to.
255 * 1) cr9: the debugger wants to set a new PER event mask
256 * 2) starting_addr: the debugger wants to set a new starting
257 * address to use with the PER event mask.
258 * 3) ending_addr: the debugger wants to set a new ending
259 * address to use with the PER event mask.
260 * The user specified PER event mask and the start and end
261 * addresses are used only if single stepping is not in effect.
262 * Writes to any other field in per_info are ignored.
263 */
264 if (addr == (addr_t) &dummy->cr9)
265 /* PER event mask of the user specified per set. */
266 child->thread.per_user.control =
267 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
268 else if (addr == (addr_t) &dummy->starting_addr)
269 /* Starting address of the user specified per set. */
270 child->thread.per_user.start = data;
271 else if (addr == (addr_t) &dummy->ending_addr)
272 /* Ending address of the user specified per set. */
273 child->thread.per_user.end = data;
274}
275
276/*
277 * Write a word to the user area of a process at location addr. This
278 * operation does have an additional problem compared to peek_user.
279 * Stores to the program status word and on the floating point
280 * control register needs to get checked for validity.
281 */
282static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
283{
284 struct user *dummy = NULL;
285 addr_t offset;
286
287 if (addr < (addr_t) &dummy->regs.acrs) {
288 /*
289 * psw and gprs are stored on the stack
290 */
291 if (addr == (addr_t) &dummy->regs.psw.mask &&
292#ifdef CONFIG_COMPAT
293 data != PSW_MASK_MERGE(psw_user32_bits, data) &&
294#endif
295 data != PSW_MASK_MERGE(psw_user_bits, data))
296 /* Invalid psw mask. */
297 return -EINVAL;
298#ifndef CONFIG_64BIT
299 if (addr == (addr_t) &dummy->regs.psw.addr)
300 /* I'd like to reject addresses without the
301 high order bit but older gdb's rely on it */
302 data |= PSW_ADDR_AMODE;
303#endif
304 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
305
306 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
307 /*
308 * access registers are stored in the thread structure
309 */
310 offset = addr - (addr_t) &dummy->regs.acrs;
311#ifdef CONFIG_64BIT
312 /*
313 * Very special case: old & broken 64 bit gdb writing
314 * to acrs[15] with a 64 bit value. Ignore the lower
315 * half of the value and write the upper 32 bit to
316 * acrs[15]. Sick...
317 */
318 if (addr == (addr_t) &dummy->regs.acrs[15])
319 child->thread.acrs[15] = (unsigned int) (data >> 32);
320 else
321#endif
322 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
323
324 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
325 /*
326 * orig_gpr2 is stored on the kernel stack
327 */
328 task_pt_regs(child)->orig_gpr2 = data;
329
330 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
331 /*
332 * prevent writes of padding hole between
333 * orig_gpr2 and fp_regs on s390.
334 */
335 return 0;
336
337 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
338 /*
339 * floating point regs. are stored in the thread structure
340 */
341 if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
342 (data & ~((unsigned long) FPC_VALID_MASK
343 << (BITS_PER_LONG - 32))) != 0)
344 return -EINVAL;
345 offset = addr - (addr_t) &dummy->regs.fp_regs;
346 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
347
348 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
349 /*
350 * Handle access to the per_info structure.
351 */
352 addr -= (addr_t) &dummy->regs.per_info;
353 __poke_user_per(child, addr, data);
354
355 }
356
357 return 0;
358}
359
360static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
361{
362 addr_t mask;
363
364 /*
365 * Stupid gdb peeks/pokes the access registers in 64 bit with
366 * an alignment of 4. Programmers from hell indeed...
367 */
368 mask = __ADDR_MASK;
369#ifdef CONFIG_64BIT
370 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
371 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
372 mask = 3;
373#endif
374 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
375 return -EIO;
376
377 return __poke_user(child, addr, data);
378}
379
380long arch_ptrace(struct task_struct *child, long request,
381 unsigned long addr, unsigned long data)
382{
383 ptrace_area parea;
384 int copied, ret;
385
386 switch (request) {
387 case PTRACE_PEEKUSR:
388 /* read the word at location addr in the USER area. */
389 return peek_user(child, addr, data);
390
391 case PTRACE_POKEUSR:
392 /* write the word at location addr in the USER area */
393 return poke_user(child, addr, data);
394
395 case PTRACE_PEEKUSR_AREA:
396 case PTRACE_POKEUSR_AREA:
397 if (copy_from_user(&parea, (void __force __user *) addr,
398 sizeof(parea)))
399 return -EFAULT;
400 addr = parea.kernel_addr;
401 data = parea.process_addr;
402 copied = 0;
403 while (copied < parea.len) {
404 if (request == PTRACE_PEEKUSR_AREA)
405 ret = peek_user(child, addr, data);
406 else {
407 addr_t utmp;
408 if (get_user(utmp,
409 (addr_t __force __user *) data))
410 return -EFAULT;
411 ret = poke_user(child, addr, utmp);
412 }
413 if (ret)
414 return ret;
415 addr += sizeof(unsigned long);
416 data += sizeof(unsigned long);
417 copied += sizeof(unsigned long);
418 }
419 return 0;
420 case PTRACE_GET_LAST_BREAK:
421 put_user(task_thread_info(child)->last_break,
422 (unsigned long __user *) data);
423 return 0;
424 default:
425 /* Removing high order bit from addr (only for 31 bit). */
426 addr &= PSW_ADDR_INSN;
427 return ptrace_request(child, request, addr, data);
428 }
429}
430
431#ifdef CONFIG_COMPAT
432/*
433 * Now the fun part starts... a 31 bit program running in the
434 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
435 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
436 * to handle, the difference to the 64 bit versions of the requests
437 * is that the access is done in multiples of 4 byte instead of
438 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
439 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
440 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
441 * is a 31 bit program too, the content of struct user can be
442 * emulated. A 31 bit program peeking into the struct user of
443 * a 64 bit program is a no-no.
444 */
445
446/*
447 * Same as peek_user_per but for a 31 bit program.
448 */
449static inline __u32 __peek_user_per_compat(struct task_struct *child,
450 addr_t addr)
451{
452 struct compat_per_struct_kernel *dummy32 = NULL;
453
454 if (addr == (addr_t) &dummy32->cr9)
455 /* Control bits of the active per set. */
456 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
457 PER_EVENT_IFETCH : child->thread.per_user.control;
458 else if (addr == (addr_t) &dummy32->cr10)
459 /* Start address of the active per set. */
460 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
461 0 : child->thread.per_user.start;
462 else if (addr == (addr_t) &dummy32->cr11)
463 /* End address of the active per set. */
464 return test_thread_flag(TIF_SINGLE_STEP) ?
465 PSW32_ADDR_INSN : child->thread.per_user.end;
466 else if (addr == (addr_t) &dummy32->bits)
467 /* Single-step bit. */
468 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
469 0x80000000 : 0;
470 else if (addr == (addr_t) &dummy32->starting_addr)
471 /* Start address of the user specified per set. */
472 return (__u32) child->thread.per_user.start;
473 else if (addr == (addr_t) &dummy32->ending_addr)
474 /* End address of the user specified per set. */
475 return (__u32) child->thread.per_user.end;
476 else if (addr == (addr_t) &dummy32->perc_atmid)
477 /* PER code, ATMID and AI of the last PER trap */
478 return (__u32) child->thread.per_event.cause << 16;
479 else if (addr == (addr_t) &dummy32->address)
480 /* Address of the last PER trap */
481 return (__u32) child->thread.per_event.address;
482 else if (addr == (addr_t) &dummy32->access_id)
483 /* Access id of the last PER trap */
484 return (__u32) child->thread.per_event.paid << 24;
485 return 0;
486}
487
488/*
489 * Same as peek_user but for a 31 bit program.
490 */
491static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
492{
493 struct compat_user *dummy32 = NULL;
494 addr_t offset;
495 __u32 tmp;
496
497 if (addr < (addr_t) &dummy32->regs.acrs) {
498 /*
499 * psw and gprs are stored on the stack
500 */
501 if (addr == (addr_t) &dummy32->regs.psw.mask) {
502 /* Fake a 31 bit psw mask. */
503 tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32);
504 tmp = PSW32_MASK_MERGE(psw32_user_bits, tmp);
505 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
506 /* Fake a 31 bit psw address. */
507 tmp = (__u32) task_pt_regs(child)->psw.addr |
508 PSW32_ADDR_AMODE31;
509 } else {
510 /* gpr 0-15 */
511 tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw +
512 addr*2 + 4);
513 }
514 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
515 /*
516 * access registers are stored in the thread structure
517 */
518 offset = addr - (addr_t) &dummy32->regs.acrs;
519 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
520
521 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
522 /*
523 * orig_gpr2 is stored on the kernel stack
524 */
525 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
526
527 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
528 /*
529 * prevent reads of padding hole between
530 * orig_gpr2 and fp_regs on s390.
531 */
532 tmp = 0;
533
534 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
535 /*
536 * floating point regs. are stored in the thread structure
537 */
538 offset = addr - (addr_t) &dummy32->regs.fp_regs;
539 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
540
541 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
542 /*
543 * Handle access to the per_info structure.
544 */
545 addr -= (addr_t) &dummy32->regs.per_info;
546 tmp = __peek_user_per_compat(child, addr);
547
548 } else
549 tmp = 0;
550
551 return tmp;
552}
553
554static int peek_user_compat(struct task_struct *child,
555 addr_t addr, addr_t data)
556{
557 __u32 tmp;
558
559 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
560 return -EIO;
561
562 tmp = __peek_user_compat(child, addr);
563 return put_user(tmp, (__u32 __user *) data);
564}
565
566/*
567 * Same as poke_user_per but for a 31 bit program.
568 */
569static inline void __poke_user_per_compat(struct task_struct *child,
570 addr_t addr, __u32 data)
571{
572 struct compat_per_struct_kernel *dummy32 = NULL;
573
574 if (addr == (addr_t) &dummy32->cr9)
575 /* PER event mask of the user specified per set. */
576 child->thread.per_user.control =
577 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
578 else if (addr == (addr_t) &dummy32->starting_addr)
579 /* Starting address of the user specified per set. */
580 child->thread.per_user.start = data;
581 else if (addr == (addr_t) &dummy32->ending_addr)
582 /* Ending address of the user specified per set. */
583 child->thread.per_user.end = data;
584}
585
586/*
587 * Same as poke_user but for a 31 bit program.
588 */
589static int __poke_user_compat(struct task_struct *child,
590 addr_t addr, addr_t data)
591{
592 struct compat_user *dummy32 = NULL;
593 __u32 tmp = (__u32) data;
594 addr_t offset;
595
596 if (addr < (addr_t) &dummy32->regs.acrs) {
597 /*
598 * psw, gprs, acrs and orig_gpr2 are stored on the stack
599 */
600 if (addr == (addr_t) &dummy32->regs.psw.mask) {
601 /* Build a 64 bit psw mask from 31 bit mask. */
602 if (tmp != PSW32_MASK_MERGE(psw32_user_bits, tmp))
603 /* Invalid psw mask. */
604 return -EINVAL;
605 task_pt_regs(child)->psw.mask =
606 PSW_MASK_MERGE(psw_user32_bits, (__u64) tmp << 32);
607 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
608 /* Build a 64 bit psw address from 31 bit address. */
609 task_pt_regs(child)->psw.addr =
610 (__u64) tmp & PSW32_ADDR_INSN;
611 } else {
612 /* gpr 0-15 */
613 *(__u32*)((addr_t) &task_pt_regs(child)->psw
614 + addr*2 + 4) = tmp;
615 }
616 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
617 /*
618 * access registers are stored in the thread structure
619 */
620 offset = addr - (addr_t) &dummy32->regs.acrs;
621 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
622
623 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
624 /*
625 * orig_gpr2 is stored on the kernel stack
626 */
627 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
628
629 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
630 /*
631 * prevent writess of padding hole between
632 * orig_gpr2 and fp_regs on s390.
633 */
634 return 0;
635
636 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
637 /*
638 * floating point regs. are stored in the thread structure
639 */
640 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
641 (tmp & ~FPC_VALID_MASK) != 0)
642 /* Invalid floating point control. */
643 return -EINVAL;
644 offset = addr - (addr_t) &dummy32->regs.fp_regs;
645 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
646
647 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
648 /*
649 * Handle access to the per_info structure.
650 */
651 addr -= (addr_t) &dummy32->regs.per_info;
652 __poke_user_per_compat(child, addr, data);
653 }
654
655 return 0;
656}
657
658static int poke_user_compat(struct task_struct *child,
659 addr_t addr, addr_t data)
660{
661 if (!is_compat_task() || (addr & 3) ||
662 addr > sizeof(struct compat_user) - 3)
663 return -EIO;
664
665 return __poke_user_compat(child, addr, data);
666}
667
668long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
669 compat_ulong_t caddr, compat_ulong_t cdata)
670{
671 unsigned long addr = caddr;
672 unsigned long data = cdata;
673 compat_ptrace_area parea;
674 int copied, ret;
675
676 switch (request) {
677 case PTRACE_PEEKUSR:
678 /* read the word at location addr in the USER area. */
679 return peek_user_compat(child, addr, data);
680
681 case PTRACE_POKEUSR:
682 /* write the word at location addr in the USER area */
683 return poke_user_compat(child, addr, data);
684
685 case PTRACE_PEEKUSR_AREA:
686 case PTRACE_POKEUSR_AREA:
687 if (copy_from_user(&parea, (void __force __user *) addr,
688 sizeof(parea)))
689 return -EFAULT;
690 addr = parea.kernel_addr;
691 data = parea.process_addr;
692 copied = 0;
693 while (copied < parea.len) {
694 if (request == PTRACE_PEEKUSR_AREA)
695 ret = peek_user_compat(child, addr, data);
696 else {
697 __u32 utmp;
698 if (get_user(utmp,
699 (__u32 __force __user *) data))
700 return -EFAULT;
701 ret = poke_user_compat(child, addr, utmp);
702 }
703 if (ret)
704 return ret;
705 addr += sizeof(unsigned int);
706 data += sizeof(unsigned int);
707 copied += sizeof(unsigned int);
708 }
709 return 0;
710 case PTRACE_GET_LAST_BREAK:
711 put_user(task_thread_info(child)->last_break,
712 (unsigned int __user *) data);
713 return 0;
714 }
715 return compat_ptrace_request(child, request, addr, data);
716}
717#endif
718
719asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
720{
721 long ret = 0;
722
723 /* Do the secure computing check first. */
724 secure_computing(regs->gprs[2]);
725
726 /*
727 * The sysc_tracesys code in entry.S stored the system
728 * call number to gprs[2].
729 */
730 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
731 (tracehook_report_syscall_entry(regs) ||
732 regs->gprs[2] >= NR_syscalls)) {
733 /*
734 * Tracing decided this syscall should not happen or the
735 * debugger stored an invalid system call number. Skip
736 * the system call and the system call restart handling.
737 */
738 regs->svcnr = 0;
739 ret = -1;
740 }
741
742 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
743 trace_sys_enter(regs, regs->gprs[2]);
744
745 if (unlikely(current->audit_context))
746 audit_syscall_entry(is_compat_task() ?
747 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
748 regs->gprs[2], regs->orig_gpr2,
749 regs->gprs[3], regs->gprs[4],
750 regs->gprs[5]);
751 return ret ?: regs->gprs[2];
752}
753
754asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
755{
756 if (unlikely(current->audit_context))
757 audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
758 regs->gprs[2]);
759
760 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
761 trace_sys_exit(regs, regs->gprs[2]);
762
763 if (test_thread_flag(TIF_SYSCALL_TRACE))
764 tracehook_report_syscall_exit(regs, 0);
765}
766
767/*
768 * user_regset definitions.
769 */
770
771static int s390_regs_get(struct task_struct *target,
772 const struct user_regset *regset,
773 unsigned int pos, unsigned int count,
774 void *kbuf, void __user *ubuf)
775{
776 if (target == current)
777 save_access_regs(target->thread.acrs);
778
779 if (kbuf) {
780 unsigned long *k = kbuf;
781 while (count > 0) {
782 *k++ = __peek_user(target, pos);
783 count -= sizeof(*k);
784 pos += sizeof(*k);
785 }
786 } else {
787 unsigned long __user *u = ubuf;
788 while (count > 0) {
789 if (__put_user(__peek_user(target, pos), u++))
790 return -EFAULT;
791 count -= sizeof(*u);
792 pos += sizeof(*u);
793 }
794 }
795 return 0;
796}
797
798static int s390_regs_set(struct task_struct *target,
799 const struct user_regset *regset,
800 unsigned int pos, unsigned int count,
801 const void *kbuf, const void __user *ubuf)
802{
803 int rc = 0;
804
805 if (target == current)
806 save_access_regs(target->thread.acrs);
807
808 if (kbuf) {
809 const unsigned long *k = kbuf;
810 while (count > 0 && !rc) {
811 rc = __poke_user(target, pos, *k++);
812 count -= sizeof(*k);
813 pos += sizeof(*k);
814 }
815 } else {
816 const unsigned long __user *u = ubuf;
817 while (count > 0 && !rc) {
818 unsigned long word;
819 rc = __get_user(word, u++);
820 if (rc)
821 break;
822 rc = __poke_user(target, pos, word);
823 count -= sizeof(*u);
824 pos += sizeof(*u);
825 }
826 }
827
828 if (rc == 0 && target == current)
829 restore_access_regs(target->thread.acrs);
830
831 return rc;
832}
833
834static int s390_fpregs_get(struct task_struct *target,
835 const struct user_regset *regset, unsigned int pos,
836 unsigned int count, void *kbuf, void __user *ubuf)
837{
838 if (target == current)
839 save_fp_regs(&target->thread.fp_regs);
840
841 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
842 &target->thread.fp_regs, 0, -1);
843}
844
845static int s390_fpregs_set(struct task_struct *target,
846 const struct user_regset *regset, unsigned int pos,
847 unsigned int count, const void *kbuf,
848 const void __user *ubuf)
849{
850 int rc = 0;
851
852 if (target == current)
853 save_fp_regs(&target->thread.fp_regs);
854
855 /* If setting FPC, must validate it first. */
856 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
857 u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
858 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
859 0, offsetof(s390_fp_regs, fprs));
860 if (rc)
861 return rc;
862 if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
863 return -EINVAL;
864 target->thread.fp_regs.fpc = fpc[0];
865 }
866
867 if (rc == 0 && count > 0)
868 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
869 target->thread.fp_regs.fprs,
870 offsetof(s390_fp_regs, fprs), -1);
871
872 if (rc == 0 && target == current)
873 restore_fp_regs(&target->thread.fp_regs);
874
875 return rc;
876}
877
878#ifdef CONFIG_64BIT
879
880static int s390_last_break_get(struct task_struct *target,
881 const struct user_regset *regset,
882 unsigned int pos, unsigned int count,
883 void *kbuf, void __user *ubuf)
884{
885 if (count > 0) {
886 if (kbuf) {
887 unsigned long *k = kbuf;
888 *k = task_thread_info(target)->last_break;
889 } else {
890 unsigned long __user *u = ubuf;
891 if (__put_user(task_thread_info(target)->last_break, u))
892 return -EFAULT;
893 }
894 }
895 return 0;
896}
897
898#endif
899
900static const struct user_regset s390_regsets[] = {
901 [REGSET_GENERAL] = {
902 .core_note_type = NT_PRSTATUS,
903 .n = sizeof(s390_regs) / sizeof(long),
904 .size = sizeof(long),
905 .align = sizeof(long),
906 .get = s390_regs_get,
907 .set = s390_regs_set,
908 },
909 [REGSET_FP] = {
910 .core_note_type = NT_PRFPREG,
911 .n = sizeof(s390_fp_regs) / sizeof(long),
912 .size = sizeof(long),
913 .align = sizeof(long),
914 .get = s390_fpregs_get,
915 .set = s390_fpregs_set,
916 },
917#ifdef CONFIG_64BIT
918 [REGSET_LAST_BREAK] = {
919 .core_note_type = NT_S390_LAST_BREAK,
920 .n = 1,
921 .size = sizeof(long),
922 .align = sizeof(long),
923 .get = s390_last_break_get,
924 },
925#endif
926};
927
928static const struct user_regset_view user_s390_view = {
929 .name = UTS_MACHINE,
930 .e_machine = EM_S390,
931 .regsets = s390_regsets,
932 .n = ARRAY_SIZE(s390_regsets)
933};
934
935#ifdef CONFIG_COMPAT
936static int s390_compat_regs_get(struct task_struct *target,
937 const struct user_regset *regset,
938 unsigned int pos, unsigned int count,
939 void *kbuf, void __user *ubuf)
940{
941 if (target == current)
942 save_access_regs(target->thread.acrs);
943
944 if (kbuf) {
945 compat_ulong_t *k = kbuf;
946 while (count > 0) {
947 *k++ = __peek_user_compat(target, pos);
948 count -= sizeof(*k);
949 pos += sizeof(*k);
950 }
951 } else {
952 compat_ulong_t __user *u = ubuf;
953 while (count > 0) {
954 if (__put_user(__peek_user_compat(target, pos), u++))
955 return -EFAULT;
956 count -= sizeof(*u);
957 pos += sizeof(*u);
958 }
959 }
960 return 0;
961}
962
963static int s390_compat_regs_set(struct task_struct *target,
964 const struct user_regset *regset,
965 unsigned int pos, unsigned int count,
966 const void *kbuf, const void __user *ubuf)
967{
968 int rc = 0;
969
970 if (target == current)
971 save_access_regs(target->thread.acrs);
972
973 if (kbuf) {
974 const compat_ulong_t *k = kbuf;
975 while (count > 0 && !rc) {
976 rc = __poke_user_compat(target, pos, *k++);
977 count -= sizeof(*k);
978 pos += sizeof(*k);
979 }
980 } else {
981 const compat_ulong_t __user *u = ubuf;
982 while (count > 0 && !rc) {
983 compat_ulong_t word;
984 rc = __get_user(word, u++);
985 if (rc)
986 break;
987 rc = __poke_user_compat(target, pos, word);
988 count -= sizeof(*u);
989 pos += sizeof(*u);
990 }
991 }
992
993 if (rc == 0 && target == current)
994 restore_access_regs(target->thread.acrs);
995
996 return rc;
997}
998
999static int s390_compat_regs_high_get(struct task_struct *target,
1000 const struct user_regset *regset,
1001 unsigned int pos, unsigned int count,
1002 void *kbuf, void __user *ubuf)
1003{
1004 compat_ulong_t *gprs_high;
1005
1006 gprs_high = (compat_ulong_t *)
1007 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1008 if (kbuf) {
1009 compat_ulong_t *k = kbuf;
1010 while (count > 0) {
1011 *k++ = *gprs_high;
1012 gprs_high += 2;
1013 count -= sizeof(*k);
1014 }
1015 } else {
1016 compat_ulong_t __user *u = ubuf;
1017 while (count > 0) {
1018 if (__put_user(*gprs_high, u++))
1019 return -EFAULT;
1020 gprs_high += 2;
1021 count -= sizeof(*u);
1022 }
1023 }
1024 return 0;
1025}
1026
1027static int s390_compat_regs_high_set(struct task_struct *target,
1028 const struct user_regset *regset,
1029 unsigned int pos, unsigned int count,
1030 const void *kbuf, const void __user *ubuf)
1031{
1032 compat_ulong_t *gprs_high;
1033 int rc = 0;
1034
1035 gprs_high = (compat_ulong_t *)
1036 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1037 if (kbuf) {
1038 const compat_ulong_t *k = kbuf;
1039 while (count > 0) {
1040 *gprs_high = *k++;
1041 *gprs_high += 2;
1042 count -= sizeof(*k);
1043 }
1044 } else {
1045 const compat_ulong_t __user *u = ubuf;
1046 while (count > 0 && !rc) {
1047 unsigned long word;
1048 rc = __get_user(word, u++);
1049 if (rc)
1050 break;
1051 *gprs_high = word;
1052 *gprs_high += 2;
1053 count -= sizeof(*u);
1054 }
1055 }
1056
1057 return rc;
1058}
1059
1060static int s390_compat_last_break_get(struct task_struct *target,
1061 const struct user_regset *regset,
1062 unsigned int pos, unsigned int count,
1063 void *kbuf, void __user *ubuf)
1064{
1065 compat_ulong_t last_break;
1066
1067 if (count > 0) {
1068 last_break = task_thread_info(target)->last_break;
1069 if (kbuf) {
1070 unsigned long *k = kbuf;
1071 *k = last_break;
1072 } else {
1073 unsigned long __user *u = ubuf;
1074 if (__put_user(last_break, u))
1075 return -EFAULT;
1076 }
1077 }
1078 return 0;
1079}
1080
1081static const struct user_regset s390_compat_regsets[] = {
1082 [REGSET_GENERAL] = {
1083 .core_note_type = NT_PRSTATUS,
1084 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1085 .size = sizeof(compat_long_t),
1086 .align = sizeof(compat_long_t),
1087 .get = s390_compat_regs_get,
1088 .set = s390_compat_regs_set,
1089 },
1090 [REGSET_FP] = {
1091 .core_note_type = NT_PRFPREG,
1092 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1093 .size = sizeof(compat_long_t),
1094 .align = sizeof(compat_long_t),
1095 .get = s390_fpregs_get,
1096 .set = s390_fpregs_set,
1097 },
1098 [REGSET_LAST_BREAK] = {
1099 .core_note_type = NT_S390_LAST_BREAK,
1100 .n = 1,
1101 .size = sizeof(long),
1102 .align = sizeof(long),
1103 .get = s390_compat_last_break_get,
1104 },
1105 [REGSET_GENERAL_EXTENDED] = {
1106 .core_note_type = NT_S390_HIGH_GPRS,
1107 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1108 .size = sizeof(compat_long_t),
1109 .align = sizeof(compat_long_t),
1110 .get = s390_compat_regs_high_get,
1111 .set = s390_compat_regs_high_set,
1112 },
1113};
1114
1115static const struct user_regset_view user_s390_compat_view = {
1116 .name = "s390",
1117 .e_machine = EM_S390,
1118 .regsets = s390_compat_regsets,
1119 .n = ARRAY_SIZE(s390_compat_regsets)
1120};
1121#endif
1122
1123const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1124{
1125#ifdef CONFIG_COMPAT
1126 if (test_tsk_thread_flag(task, TIF_31BIT))
1127 return &user_s390_compat_view;
1128#endif
1129 return &user_s390_view;
1130}
1131
1132static const char *gpr_names[NUM_GPRS] = {
1133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1135};
1136
1137unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1138{
1139 if (offset >= NUM_GPRS)
1140 return 0;
1141 return regs->gprs[offset];
1142}
1143
1144int regs_query_register_offset(const char *name)
1145{
1146 unsigned long offset;
1147
1148 if (!name || *name != 'r')
1149 return -EINVAL;
1150 if (strict_strtoul(name + 1, 10, &offset))
1151 return -EINVAL;
1152 if (offset >= NUM_GPRS)
1153 return -EINVAL;
1154 return offset;
1155}
1156
1157const char *regs_query_register_name(unsigned int offset)
1158{
1159 if (offset >= NUM_GPRS)
1160 return NULL;
1161 return gpr_names[offset];
1162}
1163
1164static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1165{
1166 unsigned long ksp = kernel_stack_pointer(regs);
1167
1168 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1169}
1170
1171/**
1172 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1173 * @regs:pt_regs which contains kernel stack pointer.
1174 * @n:stack entry number.
1175 *
1176 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1177 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1178 * this returns 0.
1179 */
1180unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1181{
1182 unsigned long addr;
1183
1184 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1185 if (!regs_within_kernel_stack(regs, addr))
1186 return 0;
1187 return *(unsigned long *)addr;
1188}
1/*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/mm.h>
12#include <linux/smp.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/user.h>
16#include <linux/security.h>
17#include <linux/audit.h>
18#include <linux/signal.h>
19#include <linux/elf.h>
20#include <linux/regset.h>
21#include <linux/tracehook.h>
22#include <linux/seccomp.h>
23#include <linux/compat.h>
24#include <trace/syscall.h>
25#include <asm/segment.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/pgalloc.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/switch_to.h>
32#include "entry.h"
33
34#ifdef CONFIG_COMPAT
35#include "compat_ptrace.h"
36#endif
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/syscalls.h>
40
41void update_cr_regs(struct task_struct *task)
42{
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 struct per_regs old, new;
46
47 /* Take care of the enable/disable of transactional execution. */
48 if (MACHINE_HAS_TE) {
49 unsigned long cr, cr_new;
50
51 __ctl_store(cr, 0, 0);
52 /* Set or clear transaction execution TXC bit 8. */
53 cr_new = cr | (1UL << 55);
54 if (task->thread.per_flags & PER_FLAG_NO_TE)
55 cr_new &= ~(1UL << 55);
56 if (cr_new != cr)
57 __ctl_load(cr_new, 0, 0);
58 /* Set or clear transaction execution TDC bits 62 and 63. */
59 __ctl_store(cr, 2, 2);
60 cr_new = cr & ~3UL;
61 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63 cr_new |= 1UL;
64 else
65 cr_new |= 2UL;
66 }
67 if (cr_new != cr)
68 __ctl_load(cr_new, 2, 2);
69 }
70 /* Copy user specified PER registers */
71 new.control = thread->per_user.control;
72 new.start = thread->per_user.start;
73 new.end = thread->per_user.end;
74
75 /* merge TIF_SINGLE_STEP into user specified PER registers. */
76 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
77 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
78 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
79 new.control |= PER_EVENT_BRANCH;
80 else
81 new.control |= PER_EVENT_IFETCH;
82 new.control |= PER_CONTROL_SUSPENSION;
83 new.control |= PER_EVENT_TRANSACTION_END;
84 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
85 new.control |= PER_EVENT_IFETCH;
86 new.start = 0;
87 new.end = -1UL;
88 }
89
90 /* Take care of the PER enablement bit in the PSW. */
91 if (!(new.control & PER_EVENT_MASK)) {
92 regs->psw.mask &= ~PSW_MASK_PER;
93 return;
94 }
95 regs->psw.mask |= PSW_MASK_PER;
96 __ctl_store(old, 9, 11);
97 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
98 __ctl_load(new, 9, 11);
99}
100
101void user_enable_single_step(struct task_struct *task)
102{
103 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
104 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
105}
106
107void user_disable_single_step(struct task_struct *task)
108{
109 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
110 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
111}
112
113void user_enable_block_step(struct task_struct *task)
114{
115 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
117}
118
119/*
120 * Called by kernel/ptrace.c when detaching..
121 *
122 * Clear all debugging related fields.
123 */
124void ptrace_disable(struct task_struct *task)
125{
126 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
127 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
128 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
129 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
130 task->thread.per_flags = 0;
131}
132
133#define __ADDR_MASK 7
134
135static inline unsigned long __peek_user_per(struct task_struct *child,
136 addr_t addr)
137{
138 struct per_struct_kernel *dummy = NULL;
139
140 if (addr == (addr_t) &dummy->cr9)
141 /* Control bits of the active per set. */
142 return test_thread_flag(TIF_SINGLE_STEP) ?
143 PER_EVENT_IFETCH : child->thread.per_user.control;
144 else if (addr == (addr_t) &dummy->cr10)
145 /* Start address of the active per set. */
146 return test_thread_flag(TIF_SINGLE_STEP) ?
147 0 : child->thread.per_user.start;
148 else if (addr == (addr_t) &dummy->cr11)
149 /* End address of the active per set. */
150 return test_thread_flag(TIF_SINGLE_STEP) ?
151 -1UL : child->thread.per_user.end;
152 else if (addr == (addr_t) &dummy->bits)
153 /* Single-step bit. */
154 return test_thread_flag(TIF_SINGLE_STEP) ?
155 (1UL << (BITS_PER_LONG - 1)) : 0;
156 else if (addr == (addr_t) &dummy->starting_addr)
157 /* Start address of the user specified per set. */
158 return child->thread.per_user.start;
159 else if (addr == (addr_t) &dummy->ending_addr)
160 /* End address of the user specified per set. */
161 return child->thread.per_user.end;
162 else if (addr == (addr_t) &dummy->perc_atmid)
163 /* PER code, ATMID and AI of the last PER trap */
164 return (unsigned long)
165 child->thread.per_event.cause << (BITS_PER_LONG - 16);
166 else if (addr == (addr_t) &dummy->address)
167 /* Address of the last PER trap */
168 return child->thread.per_event.address;
169 else if (addr == (addr_t) &dummy->access_id)
170 /* Access id of the last PER trap */
171 return (unsigned long)
172 child->thread.per_event.paid << (BITS_PER_LONG - 8);
173 return 0;
174}
175
176/*
177 * Read the word at offset addr from the user area of a process. The
178 * trouble here is that the information is littered over different
179 * locations. The process registers are found on the kernel stack,
180 * the floating point stuff and the trace settings are stored in
181 * the task structure. In addition the different structures in
182 * struct user contain pad bytes that should be read as zeroes.
183 * Lovely...
184 */
185static unsigned long __peek_user(struct task_struct *child, addr_t addr)
186{
187 struct user *dummy = NULL;
188 addr_t offset, tmp;
189
190 if (addr < (addr_t) &dummy->regs.acrs) {
191 /*
192 * psw and gprs are stored on the stack
193 */
194 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
195 if (addr == (addr_t) &dummy->regs.psw.mask) {
196 /* Return a clean psw mask. */
197 tmp &= PSW_MASK_USER | PSW_MASK_RI;
198 tmp |= PSW_USER_BITS;
199 }
200
201 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
202 /*
203 * access registers are stored in the thread structure
204 */
205 offset = addr - (addr_t) &dummy->regs.acrs;
206 /*
207 * Very special case: old & broken 64 bit gdb reading
208 * from acrs[15]. Result is a 64 bit value. Read the
209 * 32 bit acrs[15] value and shift it by 32. Sick...
210 */
211 if (addr == (addr_t) &dummy->regs.acrs[15])
212 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
213 else
214 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
215
216 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
217 /*
218 * orig_gpr2 is stored on the kernel stack
219 */
220 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
221
222 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
223 /*
224 * prevent reads of padding hole between
225 * orig_gpr2 and fp_regs on s390.
226 */
227 tmp = 0;
228
229 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
230 /*
231 * floating point control reg. is in the thread structure
232 */
233 tmp = child->thread.fpu.fpc;
234 tmp <<= BITS_PER_LONG - 32;
235
236 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
237 /*
238 * floating point regs. are either in child->thread.fpu
239 * or the child->thread.fpu.vxrs array
240 */
241 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
242 if (MACHINE_HAS_VX)
243 tmp = *(addr_t *)
244 ((addr_t) child->thread.fpu.vxrs + 2*offset);
245 else
246 tmp = *(addr_t *)
247 ((addr_t) child->thread.fpu.fprs + offset);
248
249 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
250 /*
251 * Handle access to the per_info structure.
252 */
253 addr -= (addr_t) &dummy->regs.per_info;
254 tmp = __peek_user_per(child, addr);
255
256 } else
257 tmp = 0;
258
259 return tmp;
260}
261
262static int
263peek_user(struct task_struct *child, addr_t addr, addr_t data)
264{
265 addr_t tmp, mask;
266
267 /*
268 * Stupid gdb peeks/pokes the access registers in 64 bit with
269 * an alignment of 4. Programmers from hell...
270 */
271 mask = __ADDR_MASK;
272 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
273 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
274 mask = 3;
275 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
276 return -EIO;
277
278 tmp = __peek_user(child, addr);
279 return put_user(tmp, (addr_t __user *) data);
280}
281
282static inline void __poke_user_per(struct task_struct *child,
283 addr_t addr, addr_t data)
284{
285 struct per_struct_kernel *dummy = NULL;
286
287 /*
288 * There are only three fields in the per_info struct that the
289 * debugger user can write to.
290 * 1) cr9: the debugger wants to set a new PER event mask
291 * 2) starting_addr: the debugger wants to set a new starting
292 * address to use with the PER event mask.
293 * 3) ending_addr: the debugger wants to set a new ending
294 * address to use with the PER event mask.
295 * The user specified PER event mask and the start and end
296 * addresses are used only if single stepping is not in effect.
297 * Writes to any other field in per_info are ignored.
298 */
299 if (addr == (addr_t) &dummy->cr9)
300 /* PER event mask of the user specified per set. */
301 child->thread.per_user.control =
302 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
303 else if (addr == (addr_t) &dummy->starting_addr)
304 /* Starting address of the user specified per set. */
305 child->thread.per_user.start = data;
306 else if (addr == (addr_t) &dummy->ending_addr)
307 /* Ending address of the user specified per set. */
308 child->thread.per_user.end = data;
309}
310
311/*
312 * Write a word to the user area of a process at location addr. This
313 * operation does have an additional problem compared to peek_user.
314 * Stores to the program status word and on the floating point
315 * control register needs to get checked for validity.
316 */
317static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
318{
319 struct user *dummy = NULL;
320 addr_t offset;
321
322 if (addr < (addr_t) &dummy->regs.acrs) {
323 /*
324 * psw and gprs are stored on the stack
325 */
326 if (addr == (addr_t) &dummy->regs.psw.mask) {
327 unsigned long mask = PSW_MASK_USER;
328
329 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
330 if ((data ^ PSW_USER_BITS) & ~mask)
331 /* Invalid psw mask. */
332 return -EINVAL;
333 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
334 /* Invalid address-space-control bits */
335 return -EINVAL;
336 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
337 /* Invalid addressing mode bits */
338 return -EINVAL;
339 }
340 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
341
342 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
343 /*
344 * access registers are stored in the thread structure
345 */
346 offset = addr - (addr_t) &dummy->regs.acrs;
347 /*
348 * Very special case: old & broken 64 bit gdb writing
349 * to acrs[15] with a 64 bit value. Ignore the lower
350 * half of the value and write the upper 32 bit to
351 * acrs[15]. Sick...
352 */
353 if (addr == (addr_t) &dummy->regs.acrs[15])
354 child->thread.acrs[15] = (unsigned int) (data >> 32);
355 else
356 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
357
358 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
359 /*
360 * orig_gpr2 is stored on the kernel stack
361 */
362 task_pt_regs(child)->orig_gpr2 = data;
363
364 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
365 /*
366 * prevent writes of padding hole between
367 * orig_gpr2 and fp_regs on s390.
368 */
369 return 0;
370
371 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
372 /*
373 * floating point control reg. is in the thread structure
374 */
375 if ((unsigned int) data != 0 ||
376 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
377 return -EINVAL;
378 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
379
380 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
381 /*
382 * floating point regs. are either in child->thread.fpu
383 * or the child->thread.fpu.vxrs array
384 */
385 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
386 if (MACHINE_HAS_VX)
387 *(addr_t *)((addr_t)
388 child->thread.fpu.vxrs + 2*offset) = data;
389 else
390 *(addr_t *)((addr_t)
391 child->thread.fpu.fprs + offset) = data;
392
393 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
394 /*
395 * Handle access to the per_info structure.
396 */
397 addr -= (addr_t) &dummy->regs.per_info;
398 __poke_user_per(child, addr, data);
399
400 }
401
402 return 0;
403}
404
405static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
406{
407 addr_t mask;
408
409 /*
410 * Stupid gdb peeks/pokes the access registers in 64 bit with
411 * an alignment of 4. Programmers from hell indeed...
412 */
413 mask = __ADDR_MASK;
414 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
415 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
416 mask = 3;
417 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
418 return -EIO;
419
420 return __poke_user(child, addr, data);
421}
422
423long arch_ptrace(struct task_struct *child, long request,
424 unsigned long addr, unsigned long data)
425{
426 ptrace_area parea;
427 int copied, ret;
428
429 switch (request) {
430 case PTRACE_PEEKUSR:
431 /* read the word at location addr in the USER area. */
432 return peek_user(child, addr, data);
433
434 case PTRACE_POKEUSR:
435 /* write the word at location addr in the USER area */
436 return poke_user(child, addr, data);
437
438 case PTRACE_PEEKUSR_AREA:
439 case PTRACE_POKEUSR_AREA:
440 if (copy_from_user(&parea, (void __force __user *) addr,
441 sizeof(parea)))
442 return -EFAULT;
443 addr = parea.kernel_addr;
444 data = parea.process_addr;
445 copied = 0;
446 while (copied < parea.len) {
447 if (request == PTRACE_PEEKUSR_AREA)
448 ret = peek_user(child, addr, data);
449 else {
450 addr_t utmp;
451 if (get_user(utmp,
452 (addr_t __force __user *) data))
453 return -EFAULT;
454 ret = poke_user(child, addr, utmp);
455 }
456 if (ret)
457 return ret;
458 addr += sizeof(unsigned long);
459 data += sizeof(unsigned long);
460 copied += sizeof(unsigned long);
461 }
462 return 0;
463 case PTRACE_GET_LAST_BREAK:
464 put_user(task_thread_info(child)->last_break,
465 (unsigned long __user *) data);
466 return 0;
467 case PTRACE_ENABLE_TE:
468 if (!MACHINE_HAS_TE)
469 return -EIO;
470 child->thread.per_flags &= ~PER_FLAG_NO_TE;
471 return 0;
472 case PTRACE_DISABLE_TE:
473 if (!MACHINE_HAS_TE)
474 return -EIO;
475 child->thread.per_flags |= PER_FLAG_NO_TE;
476 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
477 return 0;
478 case PTRACE_TE_ABORT_RAND:
479 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
480 return -EIO;
481 switch (data) {
482 case 0UL:
483 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
484 break;
485 case 1UL:
486 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
487 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
488 break;
489 case 2UL:
490 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
491 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
492 break;
493 default:
494 return -EINVAL;
495 }
496 return 0;
497 default:
498 return ptrace_request(child, request, addr, data);
499 }
500}
501
502#ifdef CONFIG_COMPAT
503/*
504 * Now the fun part starts... a 31 bit program running in the
505 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
506 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
507 * to handle, the difference to the 64 bit versions of the requests
508 * is that the access is done in multiples of 4 byte instead of
509 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
510 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
511 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
512 * is a 31 bit program too, the content of struct user can be
513 * emulated. A 31 bit program peeking into the struct user of
514 * a 64 bit program is a no-no.
515 */
516
517/*
518 * Same as peek_user_per but for a 31 bit program.
519 */
520static inline __u32 __peek_user_per_compat(struct task_struct *child,
521 addr_t addr)
522{
523 struct compat_per_struct_kernel *dummy32 = NULL;
524
525 if (addr == (addr_t) &dummy32->cr9)
526 /* Control bits of the active per set. */
527 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
528 PER_EVENT_IFETCH : child->thread.per_user.control;
529 else if (addr == (addr_t) &dummy32->cr10)
530 /* Start address of the active per set. */
531 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
532 0 : child->thread.per_user.start;
533 else if (addr == (addr_t) &dummy32->cr11)
534 /* End address of the active per set. */
535 return test_thread_flag(TIF_SINGLE_STEP) ?
536 PSW32_ADDR_INSN : child->thread.per_user.end;
537 else if (addr == (addr_t) &dummy32->bits)
538 /* Single-step bit. */
539 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
540 0x80000000 : 0;
541 else if (addr == (addr_t) &dummy32->starting_addr)
542 /* Start address of the user specified per set. */
543 return (__u32) child->thread.per_user.start;
544 else if (addr == (addr_t) &dummy32->ending_addr)
545 /* End address of the user specified per set. */
546 return (__u32) child->thread.per_user.end;
547 else if (addr == (addr_t) &dummy32->perc_atmid)
548 /* PER code, ATMID and AI of the last PER trap */
549 return (__u32) child->thread.per_event.cause << 16;
550 else if (addr == (addr_t) &dummy32->address)
551 /* Address of the last PER trap */
552 return (__u32) child->thread.per_event.address;
553 else if (addr == (addr_t) &dummy32->access_id)
554 /* Access id of the last PER trap */
555 return (__u32) child->thread.per_event.paid << 24;
556 return 0;
557}
558
559/*
560 * Same as peek_user but for a 31 bit program.
561 */
562static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
563{
564 struct compat_user *dummy32 = NULL;
565 addr_t offset;
566 __u32 tmp;
567
568 if (addr < (addr_t) &dummy32->regs.acrs) {
569 struct pt_regs *regs = task_pt_regs(child);
570 /*
571 * psw and gprs are stored on the stack
572 */
573 if (addr == (addr_t) &dummy32->regs.psw.mask) {
574 /* Fake a 31 bit psw mask. */
575 tmp = (__u32)(regs->psw.mask >> 32);
576 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
577 tmp |= PSW32_USER_BITS;
578 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
579 /* Fake a 31 bit psw address. */
580 tmp = (__u32) regs->psw.addr |
581 (__u32)(regs->psw.mask & PSW_MASK_BA);
582 } else {
583 /* gpr 0-15 */
584 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
585 }
586 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
587 /*
588 * access registers are stored in the thread structure
589 */
590 offset = addr - (addr_t) &dummy32->regs.acrs;
591 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
592
593 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
594 /*
595 * orig_gpr2 is stored on the kernel stack
596 */
597 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
598
599 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
600 /*
601 * prevent reads of padding hole between
602 * orig_gpr2 and fp_regs on s390.
603 */
604 tmp = 0;
605
606 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
607 /*
608 * floating point control reg. is in the thread structure
609 */
610 tmp = child->thread.fpu.fpc;
611
612 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
613 /*
614 * floating point regs. are either in child->thread.fpu
615 * or the child->thread.fpu.vxrs array
616 */
617 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
618 if (MACHINE_HAS_VX)
619 tmp = *(__u32 *)
620 ((addr_t) child->thread.fpu.vxrs + 2*offset);
621 else
622 tmp = *(__u32 *)
623 ((addr_t) child->thread.fpu.fprs + offset);
624
625 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
626 /*
627 * Handle access to the per_info structure.
628 */
629 addr -= (addr_t) &dummy32->regs.per_info;
630 tmp = __peek_user_per_compat(child, addr);
631
632 } else
633 tmp = 0;
634
635 return tmp;
636}
637
638static int peek_user_compat(struct task_struct *child,
639 addr_t addr, addr_t data)
640{
641 __u32 tmp;
642
643 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
644 return -EIO;
645
646 tmp = __peek_user_compat(child, addr);
647 return put_user(tmp, (__u32 __user *) data);
648}
649
650/*
651 * Same as poke_user_per but for a 31 bit program.
652 */
653static inline void __poke_user_per_compat(struct task_struct *child,
654 addr_t addr, __u32 data)
655{
656 struct compat_per_struct_kernel *dummy32 = NULL;
657
658 if (addr == (addr_t) &dummy32->cr9)
659 /* PER event mask of the user specified per set. */
660 child->thread.per_user.control =
661 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
662 else if (addr == (addr_t) &dummy32->starting_addr)
663 /* Starting address of the user specified per set. */
664 child->thread.per_user.start = data;
665 else if (addr == (addr_t) &dummy32->ending_addr)
666 /* Ending address of the user specified per set. */
667 child->thread.per_user.end = data;
668}
669
670/*
671 * Same as poke_user but for a 31 bit program.
672 */
673static int __poke_user_compat(struct task_struct *child,
674 addr_t addr, addr_t data)
675{
676 struct compat_user *dummy32 = NULL;
677 __u32 tmp = (__u32) data;
678 addr_t offset;
679
680 if (addr < (addr_t) &dummy32->regs.acrs) {
681 struct pt_regs *regs = task_pt_regs(child);
682 /*
683 * psw, gprs, acrs and orig_gpr2 are stored on the stack
684 */
685 if (addr == (addr_t) &dummy32->regs.psw.mask) {
686 __u32 mask = PSW32_MASK_USER;
687
688 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
689 /* Build a 64 bit psw mask from 31 bit mask. */
690 if ((tmp ^ PSW32_USER_BITS) & ~mask)
691 /* Invalid psw mask. */
692 return -EINVAL;
693 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
694 /* Invalid address-space-control bits */
695 return -EINVAL;
696 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
697 (regs->psw.mask & PSW_MASK_BA) |
698 (__u64)(tmp & mask) << 32;
699 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
700 /* Build a 64 bit psw address from 31 bit address. */
701 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
702 /* Transfer 31 bit amode bit to psw mask. */
703 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
704 (__u64)(tmp & PSW32_ADDR_AMODE);
705 } else {
706 /* gpr 0-15 */
707 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
708 }
709 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
710 /*
711 * access registers are stored in the thread structure
712 */
713 offset = addr - (addr_t) &dummy32->regs.acrs;
714 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
715
716 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
717 /*
718 * orig_gpr2 is stored on the kernel stack
719 */
720 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
721
722 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
723 /*
724 * prevent writess of padding hole between
725 * orig_gpr2 and fp_regs on s390.
726 */
727 return 0;
728
729 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
730 /*
731 * floating point control reg. is in the thread structure
732 */
733 if (test_fp_ctl(tmp))
734 return -EINVAL;
735 child->thread.fpu.fpc = data;
736
737 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
738 /*
739 * floating point regs. are either in child->thread.fpu
740 * or the child->thread.fpu.vxrs array
741 */
742 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
743 if (MACHINE_HAS_VX)
744 *(__u32 *)((addr_t)
745 child->thread.fpu.vxrs + 2*offset) = tmp;
746 else
747 *(__u32 *)((addr_t)
748 child->thread.fpu.fprs + offset) = tmp;
749
750 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
751 /*
752 * Handle access to the per_info structure.
753 */
754 addr -= (addr_t) &dummy32->regs.per_info;
755 __poke_user_per_compat(child, addr, data);
756 }
757
758 return 0;
759}
760
761static int poke_user_compat(struct task_struct *child,
762 addr_t addr, addr_t data)
763{
764 if (!is_compat_task() || (addr & 3) ||
765 addr > sizeof(struct compat_user) - 3)
766 return -EIO;
767
768 return __poke_user_compat(child, addr, data);
769}
770
771long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
772 compat_ulong_t caddr, compat_ulong_t cdata)
773{
774 unsigned long addr = caddr;
775 unsigned long data = cdata;
776 compat_ptrace_area parea;
777 int copied, ret;
778
779 switch (request) {
780 case PTRACE_PEEKUSR:
781 /* read the word at location addr in the USER area. */
782 return peek_user_compat(child, addr, data);
783
784 case PTRACE_POKEUSR:
785 /* write the word at location addr in the USER area */
786 return poke_user_compat(child, addr, data);
787
788 case PTRACE_PEEKUSR_AREA:
789 case PTRACE_POKEUSR_AREA:
790 if (copy_from_user(&parea, (void __force __user *) addr,
791 sizeof(parea)))
792 return -EFAULT;
793 addr = parea.kernel_addr;
794 data = parea.process_addr;
795 copied = 0;
796 while (copied < parea.len) {
797 if (request == PTRACE_PEEKUSR_AREA)
798 ret = peek_user_compat(child, addr, data);
799 else {
800 __u32 utmp;
801 if (get_user(utmp,
802 (__u32 __force __user *) data))
803 return -EFAULT;
804 ret = poke_user_compat(child, addr, utmp);
805 }
806 if (ret)
807 return ret;
808 addr += sizeof(unsigned int);
809 data += sizeof(unsigned int);
810 copied += sizeof(unsigned int);
811 }
812 return 0;
813 case PTRACE_GET_LAST_BREAK:
814 put_user(task_thread_info(child)->last_break,
815 (unsigned int __user *) data);
816 return 0;
817 }
818 return compat_ptrace_request(child, request, addr, data);
819}
820#endif
821
822asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
823{
824 long ret = 0;
825
826 /* Do the secure computing check first. */
827 if (secure_computing()) {
828 /* seccomp failures shouldn't expose any additional code. */
829 ret = -1;
830 goto out;
831 }
832
833 /*
834 * The sysc_tracesys code in entry.S stored the system
835 * call number to gprs[2].
836 */
837 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
838 (tracehook_report_syscall_entry(regs) ||
839 regs->gprs[2] >= NR_syscalls)) {
840 /*
841 * Tracing decided this syscall should not happen or the
842 * debugger stored an invalid system call number. Skip
843 * the system call and the system call restart handling.
844 */
845 clear_pt_regs_flag(regs, PIF_SYSCALL);
846 ret = -1;
847 }
848
849 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
850 trace_sys_enter(regs, regs->gprs[2]);
851
852 audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
853 regs->gprs[3], regs->gprs[4],
854 regs->gprs[5]);
855out:
856 return ret ?: regs->gprs[2];
857}
858
859asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
860{
861 audit_syscall_exit(regs);
862
863 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
864 trace_sys_exit(regs, regs->gprs[2]);
865
866 if (test_thread_flag(TIF_SYSCALL_TRACE))
867 tracehook_report_syscall_exit(regs, 0);
868}
869
870/*
871 * user_regset definitions.
872 */
873
874static int s390_regs_get(struct task_struct *target,
875 const struct user_regset *regset,
876 unsigned int pos, unsigned int count,
877 void *kbuf, void __user *ubuf)
878{
879 if (target == current)
880 save_access_regs(target->thread.acrs);
881
882 if (kbuf) {
883 unsigned long *k = kbuf;
884 while (count > 0) {
885 *k++ = __peek_user(target, pos);
886 count -= sizeof(*k);
887 pos += sizeof(*k);
888 }
889 } else {
890 unsigned long __user *u = ubuf;
891 while (count > 0) {
892 if (__put_user(__peek_user(target, pos), u++))
893 return -EFAULT;
894 count -= sizeof(*u);
895 pos += sizeof(*u);
896 }
897 }
898 return 0;
899}
900
901static int s390_regs_set(struct task_struct *target,
902 const struct user_regset *regset,
903 unsigned int pos, unsigned int count,
904 const void *kbuf, const void __user *ubuf)
905{
906 int rc = 0;
907
908 if (target == current)
909 save_access_regs(target->thread.acrs);
910
911 if (kbuf) {
912 const unsigned long *k = kbuf;
913 while (count > 0 && !rc) {
914 rc = __poke_user(target, pos, *k++);
915 count -= sizeof(*k);
916 pos += sizeof(*k);
917 }
918 } else {
919 const unsigned long __user *u = ubuf;
920 while (count > 0 && !rc) {
921 unsigned long word;
922 rc = __get_user(word, u++);
923 if (rc)
924 break;
925 rc = __poke_user(target, pos, word);
926 count -= sizeof(*u);
927 pos += sizeof(*u);
928 }
929 }
930
931 if (rc == 0 && target == current)
932 restore_access_regs(target->thread.acrs);
933
934 return rc;
935}
936
937static int s390_fpregs_get(struct task_struct *target,
938 const struct user_regset *regset, unsigned int pos,
939 unsigned int count, void *kbuf, void __user *ubuf)
940{
941 _s390_fp_regs fp_regs;
942
943 if (target == current)
944 save_fpu_regs();
945
946 fp_regs.fpc = target->thread.fpu.fpc;
947 fpregs_store(&fp_regs, &target->thread.fpu);
948
949 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
950 &fp_regs, 0, -1);
951}
952
953static int s390_fpregs_set(struct task_struct *target,
954 const struct user_regset *regset, unsigned int pos,
955 unsigned int count, const void *kbuf,
956 const void __user *ubuf)
957{
958 int rc = 0;
959 freg_t fprs[__NUM_FPRS];
960
961 if (target == current)
962 save_fpu_regs();
963
964 /* If setting FPC, must validate it first. */
965 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
966 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
967 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
968 0, offsetof(s390_fp_regs, fprs));
969 if (rc)
970 return rc;
971 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
972 return -EINVAL;
973 target->thread.fpu.fpc = ufpc[0];
974 }
975
976 if (rc == 0 && count > 0)
977 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
978 fprs, offsetof(s390_fp_regs, fprs), -1);
979 if (rc)
980 return rc;
981
982 if (MACHINE_HAS_VX)
983 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
984 else
985 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
986
987 return rc;
988}
989
990static int s390_last_break_get(struct task_struct *target,
991 const struct user_regset *regset,
992 unsigned int pos, unsigned int count,
993 void *kbuf, void __user *ubuf)
994{
995 if (count > 0) {
996 if (kbuf) {
997 unsigned long *k = kbuf;
998 *k = task_thread_info(target)->last_break;
999 } else {
1000 unsigned long __user *u = ubuf;
1001 if (__put_user(task_thread_info(target)->last_break, u))
1002 return -EFAULT;
1003 }
1004 }
1005 return 0;
1006}
1007
1008static int s390_last_break_set(struct task_struct *target,
1009 const struct user_regset *regset,
1010 unsigned int pos, unsigned int count,
1011 const void *kbuf, const void __user *ubuf)
1012{
1013 return 0;
1014}
1015
1016static int s390_tdb_get(struct task_struct *target,
1017 const struct user_regset *regset,
1018 unsigned int pos, unsigned int count,
1019 void *kbuf, void __user *ubuf)
1020{
1021 struct pt_regs *regs = task_pt_regs(target);
1022 unsigned char *data;
1023
1024 if (!(regs->int_code & 0x200))
1025 return -ENODATA;
1026 data = target->thread.trap_tdb;
1027 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1028}
1029
1030static int s390_tdb_set(struct task_struct *target,
1031 const struct user_regset *regset,
1032 unsigned int pos, unsigned int count,
1033 const void *kbuf, const void __user *ubuf)
1034{
1035 return 0;
1036}
1037
1038static int s390_vxrs_low_get(struct task_struct *target,
1039 const struct user_regset *regset,
1040 unsigned int pos, unsigned int count,
1041 void *kbuf, void __user *ubuf)
1042{
1043 __u64 vxrs[__NUM_VXRS_LOW];
1044 int i;
1045
1046 if (!MACHINE_HAS_VX)
1047 return -ENODEV;
1048 if (target == current)
1049 save_fpu_regs();
1050 for (i = 0; i < __NUM_VXRS_LOW; i++)
1051 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1052 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1053}
1054
1055static int s390_vxrs_low_set(struct task_struct *target,
1056 const struct user_regset *regset,
1057 unsigned int pos, unsigned int count,
1058 const void *kbuf, const void __user *ubuf)
1059{
1060 __u64 vxrs[__NUM_VXRS_LOW];
1061 int i, rc;
1062
1063 if (!MACHINE_HAS_VX)
1064 return -ENODEV;
1065 if (target == current)
1066 save_fpu_regs();
1067
1068 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1069 if (rc == 0)
1070 for (i = 0; i < __NUM_VXRS_LOW; i++)
1071 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1072
1073 return rc;
1074}
1075
1076static int s390_vxrs_high_get(struct task_struct *target,
1077 const struct user_regset *regset,
1078 unsigned int pos, unsigned int count,
1079 void *kbuf, void __user *ubuf)
1080{
1081 __vector128 vxrs[__NUM_VXRS_HIGH];
1082
1083 if (!MACHINE_HAS_VX)
1084 return -ENODEV;
1085 if (target == current)
1086 save_fpu_regs();
1087 memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1088
1089 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1090}
1091
1092static int s390_vxrs_high_set(struct task_struct *target,
1093 const struct user_regset *regset,
1094 unsigned int pos, unsigned int count,
1095 const void *kbuf, const void __user *ubuf)
1096{
1097 int rc;
1098
1099 if (!MACHINE_HAS_VX)
1100 return -ENODEV;
1101 if (target == current)
1102 save_fpu_regs();
1103
1104 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1105 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1106 return rc;
1107}
1108
1109static int s390_system_call_get(struct task_struct *target,
1110 const struct user_regset *regset,
1111 unsigned int pos, unsigned int count,
1112 void *kbuf, void __user *ubuf)
1113{
1114 unsigned int *data = &task_thread_info(target)->system_call;
1115 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1116 data, 0, sizeof(unsigned int));
1117}
1118
1119static int s390_system_call_set(struct task_struct *target,
1120 const struct user_regset *regset,
1121 unsigned int pos, unsigned int count,
1122 const void *kbuf, const void __user *ubuf)
1123{
1124 unsigned int *data = &task_thread_info(target)->system_call;
1125 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1126 data, 0, sizeof(unsigned int));
1127}
1128
1129static const struct user_regset s390_regsets[] = {
1130 {
1131 .core_note_type = NT_PRSTATUS,
1132 .n = sizeof(s390_regs) / sizeof(long),
1133 .size = sizeof(long),
1134 .align = sizeof(long),
1135 .get = s390_regs_get,
1136 .set = s390_regs_set,
1137 },
1138 {
1139 .core_note_type = NT_PRFPREG,
1140 .n = sizeof(s390_fp_regs) / sizeof(long),
1141 .size = sizeof(long),
1142 .align = sizeof(long),
1143 .get = s390_fpregs_get,
1144 .set = s390_fpregs_set,
1145 },
1146 {
1147 .core_note_type = NT_S390_SYSTEM_CALL,
1148 .n = 1,
1149 .size = sizeof(unsigned int),
1150 .align = sizeof(unsigned int),
1151 .get = s390_system_call_get,
1152 .set = s390_system_call_set,
1153 },
1154 {
1155 .core_note_type = NT_S390_LAST_BREAK,
1156 .n = 1,
1157 .size = sizeof(long),
1158 .align = sizeof(long),
1159 .get = s390_last_break_get,
1160 .set = s390_last_break_set,
1161 },
1162 {
1163 .core_note_type = NT_S390_TDB,
1164 .n = 1,
1165 .size = 256,
1166 .align = 1,
1167 .get = s390_tdb_get,
1168 .set = s390_tdb_set,
1169 },
1170 {
1171 .core_note_type = NT_S390_VXRS_LOW,
1172 .n = __NUM_VXRS_LOW,
1173 .size = sizeof(__u64),
1174 .align = sizeof(__u64),
1175 .get = s390_vxrs_low_get,
1176 .set = s390_vxrs_low_set,
1177 },
1178 {
1179 .core_note_type = NT_S390_VXRS_HIGH,
1180 .n = __NUM_VXRS_HIGH,
1181 .size = sizeof(__vector128),
1182 .align = sizeof(__vector128),
1183 .get = s390_vxrs_high_get,
1184 .set = s390_vxrs_high_set,
1185 },
1186};
1187
1188static const struct user_regset_view user_s390_view = {
1189 .name = UTS_MACHINE,
1190 .e_machine = EM_S390,
1191 .regsets = s390_regsets,
1192 .n = ARRAY_SIZE(s390_regsets)
1193};
1194
1195#ifdef CONFIG_COMPAT
1196static int s390_compat_regs_get(struct task_struct *target,
1197 const struct user_regset *regset,
1198 unsigned int pos, unsigned int count,
1199 void *kbuf, void __user *ubuf)
1200{
1201 if (target == current)
1202 save_access_regs(target->thread.acrs);
1203
1204 if (kbuf) {
1205 compat_ulong_t *k = kbuf;
1206 while (count > 0) {
1207 *k++ = __peek_user_compat(target, pos);
1208 count -= sizeof(*k);
1209 pos += sizeof(*k);
1210 }
1211 } else {
1212 compat_ulong_t __user *u = ubuf;
1213 while (count > 0) {
1214 if (__put_user(__peek_user_compat(target, pos), u++))
1215 return -EFAULT;
1216 count -= sizeof(*u);
1217 pos += sizeof(*u);
1218 }
1219 }
1220 return 0;
1221}
1222
1223static int s390_compat_regs_set(struct task_struct *target,
1224 const struct user_regset *regset,
1225 unsigned int pos, unsigned int count,
1226 const void *kbuf, const void __user *ubuf)
1227{
1228 int rc = 0;
1229
1230 if (target == current)
1231 save_access_regs(target->thread.acrs);
1232
1233 if (kbuf) {
1234 const compat_ulong_t *k = kbuf;
1235 while (count > 0 && !rc) {
1236 rc = __poke_user_compat(target, pos, *k++);
1237 count -= sizeof(*k);
1238 pos += sizeof(*k);
1239 }
1240 } else {
1241 const compat_ulong_t __user *u = ubuf;
1242 while (count > 0 && !rc) {
1243 compat_ulong_t word;
1244 rc = __get_user(word, u++);
1245 if (rc)
1246 break;
1247 rc = __poke_user_compat(target, pos, word);
1248 count -= sizeof(*u);
1249 pos += sizeof(*u);
1250 }
1251 }
1252
1253 if (rc == 0 && target == current)
1254 restore_access_regs(target->thread.acrs);
1255
1256 return rc;
1257}
1258
1259static int s390_compat_regs_high_get(struct task_struct *target,
1260 const struct user_regset *regset,
1261 unsigned int pos, unsigned int count,
1262 void *kbuf, void __user *ubuf)
1263{
1264 compat_ulong_t *gprs_high;
1265
1266 gprs_high = (compat_ulong_t *)
1267 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1268 if (kbuf) {
1269 compat_ulong_t *k = kbuf;
1270 while (count > 0) {
1271 *k++ = *gprs_high;
1272 gprs_high += 2;
1273 count -= sizeof(*k);
1274 }
1275 } else {
1276 compat_ulong_t __user *u = ubuf;
1277 while (count > 0) {
1278 if (__put_user(*gprs_high, u++))
1279 return -EFAULT;
1280 gprs_high += 2;
1281 count -= sizeof(*u);
1282 }
1283 }
1284 return 0;
1285}
1286
1287static int s390_compat_regs_high_set(struct task_struct *target,
1288 const struct user_regset *regset,
1289 unsigned int pos, unsigned int count,
1290 const void *kbuf, const void __user *ubuf)
1291{
1292 compat_ulong_t *gprs_high;
1293 int rc = 0;
1294
1295 gprs_high = (compat_ulong_t *)
1296 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1297 if (kbuf) {
1298 const compat_ulong_t *k = kbuf;
1299 while (count > 0) {
1300 *gprs_high = *k++;
1301 *gprs_high += 2;
1302 count -= sizeof(*k);
1303 }
1304 } else {
1305 const compat_ulong_t __user *u = ubuf;
1306 while (count > 0 && !rc) {
1307 unsigned long word;
1308 rc = __get_user(word, u++);
1309 if (rc)
1310 break;
1311 *gprs_high = word;
1312 *gprs_high += 2;
1313 count -= sizeof(*u);
1314 }
1315 }
1316
1317 return rc;
1318}
1319
1320static int s390_compat_last_break_get(struct task_struct *target,
1321 const struct user_regset *regset,
1322 unsigned int pos, unsigned int count,
1323 void *kbuf, void __user *ubuf)
1324{
1325 compat_ulong_t last_break;
1326
1327 if (count > 0) {
1328 last_break = task_thread_info(target)->last_break;
1329 if (kbuf) {
1330 unsigned long *k = kbuf;
1331 *k = last_break;
1332 } else {
1333 unsigned long __user *u = ubuf;
1334 if (__put_user(last_break, u))
1335 return -EFAULT;
1336 }
1337 }
1338 return 0;
1339}
1340
1341static int s390_compat_last_break_set(struct task_struct *target,
1342 const struct user_regset *regset,
1343 unsigned int pos, unsigned int count,
1344 const void *kbuf, const void __user *ubuf)
1345{
1346 return 0;
1347}
1348
1349static const struct user_regset s390_compat_regsets[] = {
1350 {
1351 .core_note_type = NT_PRSTATUS,
1352 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1353 .size = sizeof(compat_long_t),
1354 .align = sizeof(compat_long_t),
1355 .get = s390_compat_regs_get,
1356 .set = s390_compat_regs_set,
1357 },
1358 {
1359 .core_note_type = NT_PRFPREG,
1360 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1361 .size = sizeof(compat_long_t),
1362 .align = sizeof(compat_long_t),
1363 .get = s390_fpregs_get,
1364 .set = s390_fpregs_set,
1365 },
1366 {
1367 .core_note_type = NT_S390_SYSTEM_CALL,
1368 .n = 1,
1369 .size = sizeof(compat_uint_t),
1370 .align = sizeof(compat_uint_t),
1371 .get = s390_system_call_get,
1372 .set = s390_system_call_set,
1373 },
1374 {
1375 .core_note_type = NT_S390_LAST_BREAK,
1376 .n = 1,
1377 .size = sizeof(long),
1378 .align = sizeof(long),
1379 .get = s390_compat_last_break_get,
1380 .set = s390_compat_last_break_set,
1381 },
1382 {
1383 .core_note_type = NT_S390_TDB,
1384 .n = 1,
1385 .size = 256,
1386 .align = 1,
1387 .get = s390_tdb_get,
1388 .set = s390_tdb_set,
1389 },
1390 {
1391 .core_note_type = NT_S390_VXRS_LOW,
1392 .n = __NUM_VXRS_LOW,
1393 .size = sizeof(__u64),
1394 .align = sizeof(__u64),
1395 .get = s390_vxrs_low_get,
1396 .set = s390_vxrs_low_set,
1397 },
1398 {
1399 .core_note_type = NT_S390_VXRS_HIGH,
1400 .n = __NUM_VXRS_HIGH,
1401 .size = sizeof(__vector128),
1402 .align = sizeof(__vector128),
1403 .get = s390_vxrs_high_get,
1404 .set = s390_vxrs_high_set,
1405 },
1406 {
1407 .core_note_type = NT_S390_HIGH_GPRS,
1408 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1409 .size = sizeof(compat_long_t),
1410 .align = sizeof(compat_long_t),
1411 .get = s390_compat_regs_high_get,
1412 .set = s390_compat_regs_high_set,
1413 },
1414};
1415
1416static const struct user_regset_view user_s390_compat_view = {
1417 .name = "s390",
1418 .e_machine = EM_S390,
1419 .regsets = s390_compat_regsets,
1420 .n = ARRAY_SIZE(s390_compat_regsets)
1421};
1422#endif
1423
1424const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1425{
1426#ifdef CONFIG_COMPAT
1427 if (test_tsk_thread_flag(task, TIF_31BIT))
1428 return &user_s390_compat_view;
1429#endif
1430 return &user_s390_view;
1431}
1432
1433static const char *gpr_names[NUM_GPRS] = {
1434 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1435 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1436};
1437
1438unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1439{
1440 if (offset >= NUM_GPRS)
1441 return 0;
1442 return regs->gprs[offset];
1443}
1444
1445int regs_query_register_offset(const char *name)
1446{
1447 unsigned long offset;
1448
1449 if (!name || *name != 'r')
1450 return -EINVAL;
1451 if (kstrtoul(name + 1, 10, &offset))
1452 return -EINVAL;
1453 if (offset >= NUM_GPRS)
1454 return -EINVAL;
1455 return offset;
1456}
1457
1458const char *regs_query_register_name(unsigned int offset)
1459{
1460 if (offset >= NUM_GPRS)
1461 return NULL;
1462 return gpr_names[offset];
1463}
1464
1465static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1466{
1467 unsigned long ksp = kernel_stack_pointer(regs);
1468
1469 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1470}
1471
1472/**
1473 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1474 * @regs:pt_regs which contains kernel stack pointer.
1475 * @n:stack entry number.
1476 *
1477 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1478 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1479 * this returns 0.
1480 */
1481unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1482{
1483 unsigned long addr;
1484
1485 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1486 if (!regs_within_kernel_stack(regs, addr))
1487 return 0;
1488 return *(unsigned long *)addr;
1489}