Loading...
1/*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999,2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/mm.h>
12#include <linux/smp.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/user.h>
16#include <linux/security.h>
17#include <linux/audit.h>
18#include <linux/signal.h>
19#include <linux/elf.h>
20#include <linux/regset.h>
21#include <linux/tracehook.h>
22#include <linux/seccomp.h>
23#include <trace/syscall.h>
24#include <asm/compat.h>
25#include <asm/segment.h>
26#include <asm/page.h>
27#include <asm/pgtable.h>
28#include <asm/pgalloc.h>
29#include <asm/system.h>
30#include <asm/uaccess.h>
31#include <asm/unistd.h>
32#include "entry.h"
33
34#ifdef CONFIG_COMPAT
35#include "compat_ptrace.h"
36#endif
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/syscalls.h>
40
41enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_GENERAL_EXTENDED,
46};
47
48void update_per_regs(struct task_struct *task)
49{
50 static const struct per_regs per_single_step = {
51 .control = PER_EVENT_IFETCH,
52 .start = 0,
53 .end = PSW_ADDR_INSN,
54 };
55 struct pt_regs *regs = task_pt_regs(task);
56 struct thread_struct *thread = &task->thread;
57 const struct per_regs *new;
58 struct per_regs old;
59
60 /* TIF_SINGLE_STEP overrides the user specified PER registers. */
61 new = test_tsk_thread_flag(task, TIF_SINGLE_STEP) ?
62 &per_single_step : &thread->per_user;
63
64 /* Take care of the PER enablement bit in the PSW. */
65 if (!(new->control & PER_EVENT_MASK)) {
66 regs->psw.mask &= ~PSW_MASK_PER;
67 return;
68 }
69 regs->psw.mask |= PSW_MASK_PER;
70 __ctl_store(old, 9, 11);
71 if (memcmp(new, &old, sizeof(struct per_regs)) != 0)
72 __ctl_load(*new, 9, 11);
73}
74
75void user_enable_single_step(struct task_struct *task)
76{
77 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
78 if (task == current)
79 update_per_regs(task);
80}
81
82void user_disable_single_step(struct task_struct *task)
83{
84 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
85 if (task == current)
86 update_per_regs(task);
87}
88
89/*
90 * Called by kernel/ptrace.c when detaching..
91 *
92 * Clear all debugging related fields.
93 */
94void ptrace_disable(struct task_struct *task)
95{
96 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
97 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
98 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
99 clear_tsk_thread_flag(task, TIF_PER_TRAP);
100}
101
102#ifndef CONFIG_64BIT
103# define __ADDR_MASK 3
104#else
105# define __ADDR_MASK 7
106#endif
107
108static inline unsigned long __peek_user_per(struct task_struct *child,
109 addr_t addr)
110{
111 struct per_struct_kernel *dummy = NULL;
112
113 if (addr == (addr_t) &dummy->cr9)
114 /* Control bits of the active per set. */
115 return test_thread_flag(TIF_SINGLE_STEP) ?
116 PER_EVENT_IFETCH : child->thread.per_user.control;
117 else if (addr == (addr_t) &dummy->cr10)
118 /* Start address of the active per set. */
119 return test_thread_flag(TIF_SINGLE_STEP) ?
120 0 : child->thread.per_user.start;
121 else if (addr == (addr_t) &dummy->cr11)
122 /* End address of the active per set. */
123 return test_thread_flag(TIF_SINGLE_STEP) ?
124 PSW_ADDR_INSN : child->thread.per_user.end;
125 else if (addr == (addr_t) &dummy->bits)
126 /* Single-step bit. */
127 return test_thread_flag(TIF_SINGLE_STEP) ?
128 (1UL << (BITS_PER_LONG - 1)) : 0;
129 else if (addr == (addr_t) &dummy->starting_addr)
130 /* Start address of the user specified per set. */
131 return child->thread.per_user.start;
132 else if (addr == (addr_t) &dummy->ending_addr)
133 /* End address of the user specified per set. */
134 return child->thread.per_user.end;
135 else if (addr == (addr_t) &dummy->perc_atmid)
136 /* PER code, ATMID and AI of the last PER trap */
137 return (unsigned long)
138 child->thread.per_event.cause << (BITS_PER_LONG - 16);
139 else if (addr == (addr_t) &dummy->address)
140 /* Address of the last PER trap */
141 return child->thread.per_event.address;
142 else if (addr == (addr_t) &dummy->access_id)
143 /* Access id of the last PER trap */
144 return (unsigned long)
145 child->thread.per_event.paid << (BITS_PER_LONG - 8);
146 return 0;
147}
148
149/*
150 * Read the word at offset addr from the user area of a process. The
151 * trouble here is that the information is littered over different
152 * locations. The process registers are found on the kernel stack,
153 * the floating point stuff and the trace settings are stored in
154 * the task structure. In addition the different structures in
155 * struct user contain pad bytes that should be read as zeroes.
156 * Lovely...
157 */
158static unsigned long __peek_user(struct task_struct *child, addr_t addr)
159{
160 struct user *dummy = NULL;
161 addr_t offset, tmp;
162
163 if (addr < (addr_t) &dummy->regs.acrs) {
164 /*
165 * psw and gprs are stored on the stack
166 */
167 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
168 if (addr == (addr_t) &dummy->regs.psw.mask)
169 /* Remove per bit from user psw. */
170 tmp &= ~PSW_MASK_PER;
171
172 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
173 /*
174 * access registers are stored in the thread structure
175 */
176 offset = addr - (addr_t) &dummy->regs.acrs;
177#ifdef CONFIG_64BIT
178 /*
179 * Very special case: old & broken 64 bit gdb reading
180 * from acrs[15]. Result is a 64 bit value. Read the
181 * 32 bit acrs[15] value and shift it by 32. Sick...
182 */
183 if (addr == (addr_t) &dummy->regs.acrs[15])
184 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
185 else
186#endif
187 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
188
189 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
190 /*
191 * orig_gpr2 is stored on the kernel stack
192 */
193 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
194
195 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
196 /*
197 * prevent reads of padding hole between
198 * orig_gpr2 and fp_regs on s390.
199 */
200 tmp = 0;
201
202 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
203 /*
204 * floating point regs. are stored in the thread structure
205 */
206 offset = addr - (addr_t) &dummy->regs.fp_regs;
207 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
208 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
209 tmp &= (unsigned long) FPC_VALID_MASK
210 << (BITS_PER_LONG - 32);
211
212 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
213 /*
214 * Handle access to the per_info structure.
215 */
216 addr -= (addr_t) &dummy->regs.per_info;
217 tmp = __peek_user_per(child, addr);
218
219 } else
220 tmp = 0;
221
222 return tmp;
223}
224
225static int
226peek_user(struct task_struct *child, addr_t addr, addr_t data)
227{
228 addr_t tmp, mask;
229
230 /*
231 * Stupid gdb peeks/pokes the access registers in 64 bit with
232 * an alignment of 4. Programmers from hell...
233 */
234 mask = __ADDR_MASK;
235#ifdef CONFIG_64BIT
236 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
237 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
238 mask = 3;
239#endif
240 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
241 return -EIO;
242
243 tmp = __peek_user(child, addr);
244 return put_user(tmp, (addr_t __user *) data);
245}
246
247static inline void __poke_user_per(struct task_struct *child,
248 addr_t addr, addr_t data)
249{
250 struct per_struct_kernel *dummy = NULL;
251
252 /*
253 * There are only three fields in the per_info struct that the
254 * debugger user can write to.
255 * 1) cr9: the debugger wants to set a new PER event mask
256 * 2) starting_addr: the debugger wants to set a new starting
257 * address to use with the PER event mask.
258 * 3) ending_addr: the debugger wants to set a new ending
259 * address to use with the PER event mask.
260 * The user specified PER event mask and the start and end
261 * addresses are used only if single stepping is not in effect.
262 * Writes to any other field in per_info are ignored.
263 */
264 if (addr == (addr_t) &dummy->cr9)
265 /* PER event mask of the user specified per set. */
266 child->thread.per_user.control =
267 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
268 else if (addr == (addr_t) &dummy->starting_addr)
269 /* Starting address of the user specified per set. */
270 child->thread.per_user.start = data;
271 else if (addr == (addr_t) &dummy->ending_addr)
272 /* Ending address of the user specified per set. */
273 child->thread.per_user.end = data;
274}
275
276/*
277 * Write a word to the user area of a process at location addr. This
278 * operation does have an additional problem compared to peek_user.
279 * Stores to the program status word and on the floating point
280 * control register needs to get checked for validity.
281 */
282static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
283{
284 struct user *dummy = NULL;
285 addr_t offset;
286
287 if (addr < (addr_t) &dummy->regs.acrs) {
288 /*
289 * psw and gprs are stored on the stack
290 */
291 if (addr == (addr_t) &dummy->regs.psw.mask &&
292#ifdef CONFIG_COMPAT
293 data != PSW_MASK_MERGE(psw_user32_bits, data) &&
294#endif
295 data != PSW_MASK_MERGE(psw_user_bits, data))
296 /* Invalid psw mask. */
297 return -EINVAL;
298#ifndef CONFIG_64BIT
299 if (addr == (addr_t) &dummy->regs.psw.addr)
300 /* I'd like to reject addresses without the
301 high order bit but older gdb's rely on it */
302 data |= PSW_ADDR_AMODE;
303#endif
304 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
305
306 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
307 /*
308 * access registers are stored in the thread structure
309 */
310 offset = addr - (addr_t) &dummy->regs.acrs;
311#ifdef CONFIG_64BIT
312 /*
313 * Very special case: old & broken 64 bit gdb writing
314 * to acrs[15] with a 64 bit value. Ignore the lower
315 * half of the value and write the upper 32 bit to
316 * acrs[15]. Sick...
317 */
318 if (addr == (addr_t) &dummy->regs.acrs[15])
319 child->thread.acrs[15] = (unsigned int) (data >> 32);
320 else
321#endif
322 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
323
324 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
325 /*
326 * orig_gpr2 is stored on the kernel stack
327 */
328 task_pt_regs(child)->orig_gpr2 = data;
329
330 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
331 /*
332 * prevent writes of padding hole between
333 * orig_gpr2 and fp_regs on s390.
334 */
335 return 0;
336
337 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
338 /*
339 * floating point regs. are stored in the thread structure
340 */
341 if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
342 (data & ~((unsigned long) FPC_VALID_MASK
343 << (BITS_PER_LONG - 32))) != 0)
344 return -EINVAL;
345 offset = addr - (addr_t) &dummy->regs.fp_regs;
346 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
347
348 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
349 /*
350 * Handle access to the per_info structure.
351 */
352 addr -= (addr_t) &dummy->regs.per_info;
353 __poke_user_per(child, addr, data);
354
355 }
356
357 return 0;
358}
359
360static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
361{
362 addr_t mask;
363
364 /*
365 * Stupid gdb peeks/pokes the access registers in 64 bit with
366 * an alignment of 4. Programmers from hell indeed...
367 */
368 mask = __ADDR_MASK;
369#ifdef CONFIG_64BIT
370 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
371 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
372 mask = 3;
373#endif
374 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
375 return -EIO;
376
377 return __poke_user(child, addr, data);
378}
379
380long arch_ptrace(struct task_struct *child, long request,
381 unsigned long addr, unsigned long data)
382{
383 ptrace_area parea;
384 int copied, ret;
385
386 switch (request) {
387 case PTRACE_PEEKUSR:
388 /* read the word at location addr in the USER area. */
389 return peek_user(child, addr, data);
390
391 case PTRACE_POKEUSR:
392 /* write the word at location addr in the USER area */
393 return poke_user(child, addr, data);
394
395 case PTRACE_PEEKUSR_AREA:
396 case PTRACE_POKEUSR_AREA:
397 if (copy_from_user(&parea, (void __force __user *) addr,
398 sizeof(parea)))
399 return -EFAULT;
400 addr = parea.kernel_addr;
401 data = parea.process_addr;
402 copied = 0;
403 while (copied < parea.len) {
404 if (request == PTRACE_PEEKUSR_AREA)
405 ret = peek_user(child, addr, data);
406 else {
407 addr_t utmp;
408 if (get_user(utmp,
409 (addr_t __force __user *) data))
410 return -EFAULT;
411 ret = poke_user(child, addr, utmp);
412 }
413 if (ret)
414 return ret;
415 addr += sizeof(unsigned long);
416 data += sizeof(unsigned long);
417 copied += sizeof(unsigned long);
418 }
419 return 0;
420 case PTRACE_GET_LAST_BREAK:
421 put_user(task_thread_info(child)->last_break,
422 (unsigned long __user *) data);
423 return 0;
424 default:
425 /* Removing high order bit from addr (only for 31 bit). */
426 addr &= PSW_ADDR_INSN;
427 return ptrace_request(child, request, addr, data);
428 }
429}
430
431#ifdef CONFIG_COMPAT
432/*
433 * Now the fun part starts... a 31 bit program running in the
434 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
435 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
436 * to handle, the difference to the 64 bit versions of the requests
437 * is that the access is done in multiples of 4 byte instead of
438 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
439 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
440 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
441 * is a 31 bit program too, the content of struct user can be
442 * emulated. A 31 bit program peeking into the struct user of
443 * a 64 bit program is a no-no.
444 */
445
446/*
447 * Same as peek_user_per but for a 31 bit program.
448 */
449static inline __u32 __peek_user_per_compat(struct task_struct *child,
450 addr_t addr)
451{
452 struct compat_per_struct_kernel *dummy32 = NULL;
453
454 if (addr == (addr_t) &dummy32->cr9)
455 /* Control bits of the active per set. */
456 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
457 PER_EVENT_IFETCH : child->thread.per_user.control;
458 else if (addr == (addr_t) &dummy32->cr10)
459 /* Start address of the active per set. */
460 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
461 0 : child->thread.per_user.start;
462 else if (addr == (addr_t) &dummy32->cr11)
463 /* End address of the active per set. */
464 return test_thread_flag(TIF_SINGLE_STEP) ?
465 PSW32_ADDR_INSN : child->thread.per_user.end;
466 else if (addr == (addr_t) &dummy32->bits)
467 /* Single-step bit. */
468 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
469 0x80000000 : 0;
470 else if (addr == (addr_t) &dummy32->starting_addr)
471 /* Start address of the user specified per set. */
472 return (__u32) child->thread.per_user.start;
473 else if (addr == (addr_t) &dummy32->ending_addr)
474 /* End address of the user specified per set. */
475 return (__u32) child->thread.per_user.end;
476 else if (addr == (addr_t) &dummy32->perc_atmid)
477 /* PER code, ATMID and AI of the last PER trap */
478 return (__u32) child->thread.per_event.cause << 16;
479 else if (addr == (addr_t) &dummy32->address)
480 /* Address of the last PER trap */
481 return (__u32) child->thread.per_event.address;
482 else if (addr == (addr_t) &dummy32->access_id)
483 /* Access id of the last PER trap */
484 return (__u32) child->thread.per_event.paid << 24;
485 return 0;
486}
487
488/*
489 * Same as peek_user but for a 31 bit program.
490 */
491static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
492{
493 struct compat_user *dummy32 = NULL;
494 addr_t offset;
495 __u32 tmp;
496
497 if (addr < (addr_t) &dummy32->regs.acrs) {
498 /*
499 * psw and gprs are stored on the stack
500 */
501 if (addr == (addr_t) &dummy32->regs.psw.mask) {
502 /* Fake a 31 bit psw mask. */
503 tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32);
504 tmp = PSW32_MASK_MERGE(psw32_user_bits, tmp);
505 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
506 /* Fake a 31 bit psw address. */
507 tmp = (__u32) task_pt_regs(child)->psw.addr |
508 PSW32_ADDR_AMODE31;
509 } else {
510 /* gpr 0-15 */
511 tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw +
512 addr*2 + 4);
513 }
514 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
515 /*
516 * access registers are stored in the thread structure
517 */
518 offset = addr - (addr_t) &dummy32->regs.acrs;
519 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
520
521 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
522 /*
523 * orig_gpr2 is stored on the kernel stack
524 */
525 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
526
527 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
528 /*
529 * prevent reads of padding hole between
530 * orig_gpr2 and fp_regs on s390.
531 */
532 tmp = 0;
533
534 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
535 /*
536 * floating point regs. are stored in the thread structure
537 */
538 offset = addr - (addr_t) &dummy32->regs.fp_regs;
539 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
540
541 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
542 /*
543 * Handle access to the per_info structure.
544 */
545 addr -= (addr_t) &dummy32->regs.per_info;
546 tmp = __peek_user_per_compat(child, addr);
547
548 } else
549 tmp = 0;
550
551 return tmp;
552}
553
554static int peek_user_compat(struct task_struct *child,
555 addr_t addr, addr_t data)
556{
557 __u32 tmp;
558
559 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
560 return -EIO;
561
562 tmp = __peek_user_compat(child, addr);
563 return put_user(tmp, (__u32 __user *) data);
564}
565
566/*
567 * Same as poke_user_per but for a 31 bit program.
568 */
569static inline void __poke_user_per_compat(struct task_struct *child,
570 addr_t addr, __u32 data)
571{
572 struct compat_per_struct_kernel *dummy32 = NULL;
573
574 if (addr == (addr_t) &dummy32->cr9)
575 /* PER event mask of the user specified per set. */
576 child->thread.per_user.control =
577 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
578 else if (addr == (addr_t) &dummy32->starting_addr)
579 /* Starting address of the user specified per set. */
580 child->thread.per_user.start = data;
581 else if (addr == (addr_t) &dummy32->ending_addr)
582 /* Ending address of the user specified per set. */
583 child->thread.per_user.end = data;
584}
585
586/*
587 * Same as poke_user but for a 31 bit program.
588 */
589static int __poke_user_compat(struct task_struct *child,
590 addr_t addr, addr_t data)
591{
592 struct compat_user *dummy32 = NULL;
593 __u32 tmp = (__u32) data;
594 addr_t offset;
595
596 if (addr < (addr_t) &dummy32->regs.acrs) {
597 /*
598 * psw, gprs, acrs and orig_gpr2 are stored on the stack
599 */
600 if (addr == (addr_t) &dummy32->regs.psw.mask) {
601 /* Build a 64 bit psw mask from 31 bit mask. */
602 if (tmp != PSW32_MASK_MERGE(psw32_user_bits, tmp))
603 /* Invalid psw mask. */
604 return -EINVAL;
605 task_pt_regs(child)->psw.mask =
606 PSW_MASK_MERGE(psw_user32_bits, (__u64) tmp << 32);
607 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
608 /* Build a 64 bit psw address from 31 bit address. */
609 task_pt_regs(child)->psw.addr =
610 (__u64) tmp & PSW32_ADDR_INSN;
611 } else {
612 /* gpr 0-15 */
613 *(__u32*)((addr_t) &task_pt_regs(child)->psw
614 + addr*2 + 4) = tmp;
615 }
616 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
617 /*
618 * access registers are stored in the thread structure
619 */
620 offset = addr - (addr_t) &dummy32->regs.acrs;
621 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
622
623 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
624 /*
625 * orig_gpr2 is stored on the kernel stack
626 */
627 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
628
629 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
630 /*
631 * prevent writess of padding hole between
632 * orig_gpr2 and fp_regs on s390.
633 */
634 return 0;
635
636 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
637 /*
638 * floating point regs. are stored in the thread structure
639 */
640 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
641 (tmp & ~FPC_VALID_MASK) != 0)
642 /* Invalid floating point control. */
643 return -EINVAL;
644 offset = addr - (addr_t) &dummy32->regs.fp_regs;
645 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
646
647 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
648 /*
649 * Handle access to the per_info structure.
650 */
651 addr -= (addr_t) &dummy32->regs.per_info;
652 __poke_user_per_compat(child, addr, data);
653 }
654
655 return 0;
656}
657
658static int poke_user_compat(struct task_struct *child,
659 addr_t addr, addr_t data)
660{
661 if (!is_compat_task() || (addr & 3) ||
662 addr > sizeof(struct compat_user) - 3)
663 return -EIO;
664
665 return __poke_user_compat(child, addr, data);
666}
667
668long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
669 compat_ulong_t caddr, compat_ulong_t cdata)
670{
671 unsigned long addr = caddr;
672 unsigned long data = cdata;
673 compat_ptrace_area parea;
674 int copied, ret;
675
676 switch (request) {
677 case PTRACE_PEEKUSR:
678 /* read the word at location addr in the USER area. */
679 return peek_user_compat(child, addr, data);
680
681 case PTRACE_POKEUSR:
682 /* write the word at location addr in the USER area */
683 return poke_user_compat(child, addr, data);
684
685 case PTRACE_PEEKUSR_AREA:
686 case PTRACE_POKEUSR_AREA:
687 if (copy_from_user(&parea, (void __force __user *) addr,
688 sizeof(parea)))
689 return -EFAULT;
690 addr = parea.kernel_addr;
691 data = parea.process_addr;
692 copied = 0;
693 while (copied < parea.len) {
694 if (request == PTRACE_PEEKUSR_AREA)
695 ret = peek_user_compat(child, addr, data);
696 else {
697 __u32 utmp;
698 if (get_user(utmp,
699 (__u32 __force __user *) data))
700 return -EFAULT;
701 ret = poke_user_compat(child, addr, utmp);
702 }
703 if (ret)
704 return ret;
705 addr += sizeof(unsigned int);
706 data += sizeof(unsigned int);
707 copied += sizeof(unsigned int);
708 }
709 return 0;
710 case PTRACE_GET_LAST_BREAK:
711 put_user(task_thread_info(child)->last_break,
712 (unsigned int __user *) data);
713 return 0;
714 }
715 return compat_ptrace_request(child, request, addr, data);
716}
717#endif
718
719asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
720{
721 long ret = 0;
722
723 /* Do the secure computing check first. */
724 secure_computing(regs->gprs[2]);
725
726 /*
727 * The sysc_tracesys code in entry.S stored the system
728 * call number to gprs[2].
729 */
730 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
731 (tracehook_report_syscall_entry(regs) ||
732 regs->gprs[2] >= NR_syscalls)) {
733 /*
734 * Tracing decided this syscall should not happen or the
735 * debugger stored an invalid system call number. Skip
736 * the system call and the system call restart handling.
737 */
738 regs->svcnr = 0;
739 ret = -1;
740 }
741
742 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
743 trace_sys_enter(regs, regs->gprs[2]);
744
745 if (unlikely(current->audit_context))
746 audit_syscall_entry(is_compat_task() ?
747 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
748 regs->gprs[2], regs->orig_gpr2,
749 regs->gprs[3], regs->gprs[4],
750 regs->gprs[5]);
751 return ret ?: regs->gprs[2];
752}
753
754asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
755{
756 if (unlikely(current->audit_context))
757 audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
758 regs->gprs[2]);
759
760 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
761 trace_sys_exit(regs, regs->gprs[2]);
762
763 if (test_thread_flag(TIF_SYSCALL_TRACE))
764 tracehook_report_syscall_exit(regs, 0);
765}
766
767/*
768 * user_regset definitions.
769 */
770
771static int s390_regs_get(struct task_struct *target,
772 const struct user_regset *regset,
773 unsigned int pos, unsigned int count,
774 void *kbuf, void __user *ubuf)
775{
776 if (target == current)
777 save_access_regs(target->thread.acrs);
778
779 if (kbuf) {
780 unsigned long *k = kbuf;
781 while (count > 0) {
782 *k++ = __peek_user(target, pos);
783 count -= sizeof(*k);
784 pos += sizeof(*k);
785 }
786 } else {
787 unsigned long __user *u = ubuf;
788 while (count > 0) {
789 if (__put_user(__peek_user(target, pos), u++))
790 return -EFAULT;
791 count -= sizeof(*u);
792 pos += sizeof(*u);
793 }
794 }
795 return 0;
796}
797
798static int s390_regs_set(struct task_struct *target,
799 const struct user_regset *regset,
800 unsigned int pos, unsigned int count,
801 const void *kbuf, const void __user *ubuf)
802{
803 int rc = 0;
804
805 if (target == current)
806 save_access_regs(target->thread.acrs);
807
808 if (kbuf) {
809 const unsigned long *k = kbuf;
810 while (count > 0 && !rc) {
811 rc = __poke_user(target, pos, *k++);
812 count -= sizeof(*k);
813 pos += sizeof(*k);
814 }
815 } else {
816 const unsigned long __user *u = ubuf;
817 while (count > 0 && !rc) {
818 unsigned long word;
819 rc = __get_user(word, u++);
820 if (rc)
821 break;
822 rc = __poke_user(target, pos, word);
823 count -= sizeof(*u);
824 pos += sizeof(*u);
825 }
826 }
827
828 if (rc == 0 && target == current)
829 restore_access_regs(target->thread.acrs);
830
831 return rc;
832}
833
834static int s390_fpregs_get(struct task_struct *target,
835 const struct user_regset *regset, unsigned int pos,
836 unsigned int count, void *kbuf, void __user *ubuf)
837{
838 if (target == current)
839 save_fp_regs(&target->thread.fp_regs);
840
841 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
842 &target->thread.fp_regs, 0, -1);
843}
844
845static int s390_fpregs_set(struct task_struct *target,
846 const struct user_regset *regset, unsigned int pos,
847 unsigned int count, const void *kbuf,
848 const void __user *ubuf)
849{
850 int rc = 0;
851
852 if (target == current)
853 save_fp_regs(&target->thread.fp_regs);
854
855 /* If setting FPC, must validate it first. */
856 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
857 u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
858 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
859 0, offsetof(s390_fp_regs, fprs));
860 if (rc)
861 return rc;
862 if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
863 return -EINVAL;
864 target->thread.fp_regs.fpc = fpc[0];
865 }
866
867 if (rc == 0 && count > 0)
868 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
869 target->thread.fp_regs.fprs,
870 offsetof(s390_fp_regs, fprs), -1);
871
872 if (rc == 0 && target == current)
873 restore_fp_regs(&target->thread.fp_regs);
874
875 return rc;
876}
877
878#ifdef CONFIG_64BIT
879
880static int s390_last_break_get(struct task_struct *target,
881 const struct user_regset *regset,
882 unsigned int pos, unsigned int count,
883 void *kbuf, void __user *ubuf)
884{
885 if (count > 0) {
886 if (kbuf) {
887 unsigned long *k = kbuf;
888 *k = task_thread_info(target)->last_break;
889 } else {
890 unsigned long __user *u = ubuf;
891 if (__put_user(task_thread_info(target)->last_break, u))
892 return -EFAULT;
893 }
894 }
895 return 0;
896}
897
898#endif
899
900static const struct user_regset s390_regsets[] = {
901 [REGSET_GENERAL] = {
902 .core_note_type = NT_PRSTATUS,
903 .n = sizeof(s390_regs) / sizeof(long),
904 .size = sizeof(long),
905 .align = sizeof(long),
906 .get = s390_regs_get,
907 .set = s390_regs_set,
908 },
909 [REGSET_FP] = {
910 .core_note_type = NT_PRFPREG,
911 .n = sizeof(s390_fp_regs) / sizeof(long),
912 .size = sizeof(long),
913 .align = sizeof(long),
914 .get = s390_fpregs_get,
915 .set = s390_fpregs_set,
916 },
917#ifdef CONFIG_64BIT
918 [REGSET_LAST_BREAK] = {
919 .core_note_type = NT_S390_LAST_BREAK,
920 .n = 1,
921 .size = sizeof(long),
922 .align = sizeof(long),
923 .get = s390_last_break_get,
924 },
925#endif
926};
927
928static const struct user_regset_view user_s390_view = {
929 .name = UTS_MACHINE,
930 .e_machine = EM_S390,
931 .regsets = s390_regsets,
932 .n = ARRAY_SIZE(s390_regsets)
933};
934
935#ifdef CONFIG_COMPAT
936static int s390_compat_regs_get(struct task_struct *target,
937 const struct user_regset *regset,
938 unsigned int pos, unsigned int count,
939 void *kbuf, void __user *ubuf)
940{
941 if (target == current)
942 save_access_regs(target->thread.acrs);
943
944 if (kbuf) {
945 compat_ulong_t *k = kbuf;
946 while (count > 0) {
947 *k++ = __peek_user_compat(target, pos);
948 count -= sizeof(*k);
949 pos += sizeof(*k);
950 }
951 } else {
952 compat_ulong_t __user *u = ubuf;
953 while (count > 0) {
954 if (__put_user(__peek_user_compat(target, pos), u++))
955 return -EFAULT;
956 count -= sizeof(*u);
957 pos += sizeof(*u);
958 }
959 }
960 return 0;
961}
962
963static int s390_compat_regs_set(struct task_struct *target,
964 const struct user_regset *regset,
965 unsigned int pos, unsigned int count,
966 const void *kbuf, const void __user *ubuf)
967{
968 int rc = 0;
969
970 if (target == current)
971 save_access_regs(target->thread.acrs);
972
973 if (kbuf) {
974 const compat_ulong_t *k = kbuf;
975 while (count > 0 && !rc) {
976 rc = __poke_user_compat(target, pos, *k++);
977 count -= sizeof(*k);
978 pos += sizeof(*k);
979 }
980 } else {
981 const compat_ulong_t __user *u = ubuf;
982 while (count > 0 && !rc) {
983 compat_ulong_t word;
984 rc = __get_user(word, u++);
985 if (rc)
986 break;
987 rc = __poke_user_compat(target, pos, word);
988 count -= sizeof(*u);
989 pos += sizeof(*u);
990 }
991 }
992
993 if (rc == 0 && target == current)
994 restore_access_regs(target->thread.acrs);
995
996 return rc;
997}
998
999static int s390_compat_regs_high_get(struct task_struct *target,
1000 const struct user_regset *regset,
1001 unsigned int pos, unsigned int count,
1002 void *kbuf, void __user *ubuf)
1003{
1004 compat_ulong_t *gprs_high;
1005
1006 gprs_high = (compat_ulong_t *)
1007 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1008 if (kbuf) {
1009 compat_ulong_t *k = kbuf;
1010 while (count > 0) {
1011 *k++ = *gprs_high;
1012 gprs_high += 2;
1013 count -= sizeof(*k);
1014 }
1015 } else {
1016 compat_ulong_t __user *u = ubuf;
1017 while (count > 0) {
1018 if (__put_user(*gprs_high, u++))
1019 return -EFAULT;
1020 gprs_high += 2;
1021 count -= sizeof(*u);
1022 }
1023 }
1024 return 0;
1025}
1026
1027static int s390_compat_regs_high_set(struct task_struct *target,
1028 const struct user_regset *regset,
1029 unsigned int pos, unsigned int count,
1030 const void *kbuf, const void __user *ubuf)
1031{
1032 compat_ulong_t *gprs_high;
1033 int rc = 0;
1034
1035 gprs_high = (compat_ulong_t *)
1036 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1037 if (kbuf) {
1038 const compat_ulong_t *k = kbuf;
1039 while (count > 0) {
1040 *gprs_high = *k++;
1041 *gprs_high += 2;
1042 count -= sizeof(*k);
1043 }
1044 } else {
1045 const compat_ulong_t __user *u = ubuf;
1046 while (count > 0 && !rc) {
1047 unsigned long word;
1048 rc = __get_user(word, u++);
1049 if (rc)
1050 break;
1051 *gprs_high = word;
1052 *gprs_high += 2;
1053 count -= sizeof(*u);
1054 }
1055 }
1056
1057 return rc;
1058}
1059
1060static int s390_compat_last_break_get(struct task_struct *target,
1061 const struct user_regset *regset,
1062 unsigned int pos, unsigned int count,
1063 void *kbuf, void __user *ubuf)
1064{
1065 compat_ulong_t last_break;
1066
1067 if (count > 0) {
1068 last_break = task_thread_info(target)->last_break;
1069 if (kbuf) {
1070 unsigned long *k = kbuf;
1071 *k = last_break;
1072 } else {
1073 unsigned long __user *u = ubuf;
1074 if (__put_user(last_break, u))
1075 return -EFAULT;
1076 }
1077 }
1078 return 0;
1079}
1080
1081static const struct user_regset s390_compat_regsets[] = {
1082 [REGSET_GENERAL] = {
1083 .core_note_type = NT_PRSTATUS,
1084 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1085 .size = sizeof(compat_long_t),
1086 .align = sizeof(compat_long_t),
1087 .get = s390_compat_regs_get,
1088 .set = s390_compat_regs_set,
1089 },
1090 [REGSET_FP] = {
1091 .core_note_type = NT_PRFPREG,
1092 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1093 .size = sizeof(compat_long_t),
1094 .align = sizeof(compat_long_t),
1095 .get = s390_fpregs_get,
1096 .set = s390_fpregs_set,
1097 },
1098 [REGSET_LAST_BREAK] = {
1099 .core_note_type = NT_S390_LAST_BREAK,
1100 .n = 1,
1101 .size = sizeof(long),
1102 .align = sizeof(long),
1103 .get = s390_compat_last_break_get,
1104 },
1105 [REGSET_GENERAL_EXTENDED] = {
1106 .core_note_type = NT_S390_HIGH_GPRS,
1107 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1108 .size = sizeof(compat_long_t),
1109 .align = sizeof(compat_long_t),
1110 .get = s390_compat_regs_high_get,
1111 .set = s390_compat_regs_high_set,
1112 },
1113};
1114
1115static const struct user_regset_view user_s390_compat_view = {
1116 .name = "s390",
1117 .e_machine = EM_S390,
1118 .regsets = s390_compat_regsets,
1119 .n = ARRAY_SIZE(s390_compat_regsets)
1120};
1121#endif
1122
1123const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1124{
1125#ifdef CONFIG_COMPAT
1126 if (test_tsk_thread_flag(task, TIF_31BIT))
1127 return &user_s390_compat_view;
1128#endif
1129 return &user_s390_view;
1130}
1131
1132static const char *gpr_names[NUM_GPRS] = {
1133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1135};
1136
1137unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1138{
1139 if (offset >= NUM_GPRS)
1140 return 0;
1141 return regs->gprs[offset];
1142}
1143
1144int regs_query_register_offset(const char *name)
1145{
1146 unsigned long offset;
1147
1148 if (!name || *name != 'r')
1149 return -EINVAL;
1150 if (strict_strtoul(name + 1, 10, &offset))
1151 return -EINVAL;
1152 if (offset >= NUM_GPRS)
1153 return -EINVAL;
1154 return offset;
1155}
1156
1157const char *regs_query_register_name(unsigned int offset)
1158{
1159 if (offset >= NUM_GPRS)
1160 return NULL;
1161 return gpr_names[offset];
1162}
1163
1164static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1165{
1166 unsigned long ksp = kernel_stack_pointer(regs);
1167
1168 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1169}
1170
1171/**
1172 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1173 * @regs:pt_regs which contains kernel stack pointer.
1174 * @n:stack entry number.
1175 *
1176 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1177 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1178 * this returns 0.
1179 */
1180unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1181{
1182 unsigned long addr;
1183
1184 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1185 if (!regs_within_kernel_stack(regs, addr))
1186 return 0;
1187 return *(unsigned long *)addr;
1188}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/sched/task_stack.h>
13#include <linux/mm.h>
14#include <linux/smp.h>
15#include <linux/errno.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
20#include <linux/signal.h>
21#include <linux/elf.h>
22#include <linux/regset.h>
23#include <linux/tracehook.h>
24#include <linux/seccomp.h>
25#include <linux/compat.h>
26#include <trace/syscall.h>
27#include <asm/page.h>
28#include <linux/uaccess.h>
29#include <asm/unistd.h>
30#include <asm/switch_to.h>
31#include <asm/runtime_instr.h>
32#include <asm/facility.h>
33
34#include "entry.h"
35
36#ifdef CONFIG_COMPAT
37#include "compat_ptrace.h"
38#endif
39
40#define CREATE_TRACE_POINTS
41#include <trace/events/syscalls.h>
42
43void update_cr_regs(struct task_struct *task)
44{
45 struct pt_regs *regs = task_pt_regs(task);
46 struct thread_struct *thread = &task->thread;
47 struct per_regs old, new;
48 union ctlreg0 cr0_old, cr0_new;
49 union ctlreg2 cr2_old, cr2_new;
50 int cr0_changed, cr2_changed;
51
52 __ctl_store(cr0_old.val, 0, 0);
53 __ctl_store(cr2_old.val, 2, 2);
54 cr0_new = cr0_old;
55 cr2_new = cr2_old;
56 /* Take care of the enable/disable of transactional execution. */
57 if (MACHINE_HAS_TE) {
58 /* Set or clear transaction execution TXC bit 8. */
59 cr0_new.tcx = 1;
60 if (task->thread.per_flags & PER_FLAG_NO_TE)
61 cr0_new.tcx = 0;
62 /* Set or clear transaction execution TDC bits 62 and 63. */
63 cr2_new.tdc = 0;
64 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
65 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
66 cr2_new.tdc = 1;
67 else
68 cr2_new.tdc = 2;
69 }
70 }
71 /* Take care of enable/disable of guarded storage. */
72 if (MACHINE_HAS_GS) {
73 cr2_new.gse = 0;
74 if (task->thread.gs_cb)
75 cr2_new.gse = 1;
76 }
77 /* Load control register 0/2 iff changed */
78 cr0_changed = cr0_new.val != cr0_old.val;
79 cr2_changed = cr2_new.val != cr2_old.val;
80 if (cr0_changed)
81 __ctl_load(cr0_new.val, 0, 0);
82 if (cr2_changed)
83 __ctl_load(cr2_new.val, 2, 2);
84 /* Copy user specified PER registers */
85 new.control = thread->per_user.control;
86 new.start = thread->per_user.start;
87 new.end = thread->per_user.end;
88
89 /* merge TIF_SINGLE_STEP into user specified PER registers. */
90 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
91 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
92 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
93 new.control |= PER_EVENT_BRANCH;
94 else
95 new.control |= PER_EVENT_IFETCH;
96 new.control |= PER_CONTROL_SUSPENSION;
97 new.control |= PER_EVENT_TRANSACTION_END;
98 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
99 new.control |= PER_EVENT_IFETCH;
100 new.start = 0;
101 new.end = -1UL;
102 }
103
104 /* Take care of the PER enablement bit in the PSW. */
105 if (!(new.control & PER_EVENT_MASK)) {
106 regs->psw.mask &= ~PSW_MASK_PER;
107 return;
108 }
109 regs->psw.mask |= PSW_MASK_PER;
110 __ctl_store(old, 9, 11);
111 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
112 __ctl_load(new, 9, 11);
113}
114
115void user_enable_single_step(struct task_struct *task)
116{
117 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
118 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
119}
120
121void user_disable_single_step(struct task_struct *task)
122{
123 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
124 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
125}
126
127void user_enable_block_step(struct task_struct *task)
128{
129 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
130 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
131}
132
133/*
134 * Called by kernel/ptrace.c when detaching..
135 *
136 * Clear all debugging related fields.
137 */
138void ptrace_disable(struct task_struct *task)
139{
140 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
141 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
142 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
143 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
144 task->thread.per_flags = 0;
145}
146
147#define __ADDR_MASK 7
148
149static inline unsigned long __peek_user_per(struct task_struct *child,
150 addr_t addr)
151{
152 struct per_struct_kernel *dummy = NULL;
153
154 if (addr == (addr_t) &dummy->cr9)
155 /* Control bits of the active per set. */
156 return test_thread_flag(TIF_SINGLE_STEP) ?
157 PER_EVENT_IFETCH : child->thread.per_user.control;
158 else if (addr == (addr_t) &dummy->cr10)
159 /* Start address of the active per set. */
160 return test_thread_flag(TIF_SINGLE_STEP) ?
161 0 : child->thread.per_user.start;
162 else if (addr == (addr_t) &dummy->cr11)
163 /* End address of the active per set. */
164 return test_thread_flag(TIF_SINGLE_STEP) ?
165 -1UL : child->thread.per_user.end;
166 else if (addr == (addr_t) &dummy->bits)
167 /* Single-step bit. */
168 return test_thread_flag(TIF_SINGLE_STEP) ?
169 (1UL << (BITS_PER_LONG - 1)) : 0;
170 else if (addr == (addr_t) &dummy->starting_addr)
171 /* Start address of the user specified per set. */
172 return child->thread.per_user.start;
173 else if (addr == (addr_t) &dummy->ending_addr)
174 /* End address of the user specified per set. */
175 return child->thread.per_user.end;
176 else if (addr == (addr_t) &dummy->perc_atmid)
177 /* PER code, ATMID and AI of the last PER trap */
178 return (unsigned long)
179 child->thread.per_event.cause << (BITS_PER_LONG - 16);
180 else if (addr == (addr_t) &dummy->address)
181 /* Address of the last PER trap */
182 return child->thread.per_event.address;
183 else if (addr == (addr_t) &dummy->access_id)
184 /* Access id of the last PER trap */
185 return (unsigned long)
186 child->thread.per_event.paid << (BITS_PER_LONG - 8);
187 return 0;
188}
189
190/*
191 * Read the word at offset addr from the user area of a process. The
192 * trouble here is that the information is littered over different
193 * locations. The process registers are found on the kernel stack,
194 * the floating point stuff and the trace settings are stored in
195 * the task structure. In addition the different structures in
196 * struct user contain pad bytes that should be read as zeroes.
197 * Lovely...
198 */
199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
200{
201 struct user *dummy = NULL;
202 addr_t offset, tmp;
203
204 if (addr < (addr_t) &dummy->regs.acrs) {
205 /*
206 * psw and gprs are stored on the stack
207 */
208 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
209 if (addr == (addr_t) &dummy->regs.psw.mask) {
210 /* Return a clean psw mask. */
211 tmp &= PSW_MASK_USER | PSW_MASK_RI;
212 tmp |= PSW_USER_BITS;
213 }
214
215 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
216 /*
217 * access registers are stored in the thread structure
218 */
219 offset = addr - (addr_t) &dummy->regs.acrs;
220 /*
221 * Very special case: old & broken 64 bit gdb reading
222 * from acrs[15]. Result is a 64 bit value. Read the
223 * 32 bit acrs[15] value and shift it by 32. Sick...
224 */
225 if (addr == (addr_t) &dummy->regs.acrs[15])
226 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
227 else
228 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
229
230 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
231 /*
232 * orig_gpr2 is stored on the kernel stack
233 */
234 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
235
236 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
237 /*
238 * prevent reads of padding hole between
239 * orig_gpr2 and fp_regs on s390.
240 */
241 tmp = 0;
242
243 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
244 /*
245 * floating point control reg. is in the thread structure
246 */
247 tmp = child->thread.fpu.fpc;
248 tmp <<= BITS_PER_LONG - 32;
249
250 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
251 /*
252 * floating point regs. are either in child->thread.fpu
253 * or the child->thread.fpu.vxrs array
254 */
255 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
256 if (MACHINE_HAS_VX)
257 tmp = *(addr_t *)
258 ((addr_t) child->thread.fpu.vxrs + 2*offset);
259 else
260 tmp = *(addr_t *)
261 ((addr_t) child->thread.fpu.fprs + offset);
262
263 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
264 /*
265 * Handle access to the per_info structure.
266 */
267 addr -= (addr_t) &dummy->regs.per_info;
268 tmp = __peek_user_per(child, addr);
269
270 } else
271 tmp = 0;
272
273 return tmp;
274}
275
276static int
277peek_user(struct task_struct *child, addr_t addr, addr_t data)
278{
279 addr_t tmp, mask;
280
281 /*
282 * Stupid gdb peeks/pokes the access registers in 64 bit with
283 * an alignment of 4. Programmers from hell...
284 */
285 mask = __ADDR_MASK;
286 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
287 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
288 mask = 3;
289 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
290 return -EIO;
291
292 tmp = __peek_user(child, addr);
293 return put_user(tmp, (addr_t __user *) data);
294}
295
296static inline void __poke_user_per(struct task_struct *child,
297 addr_t addr, addr_t data)
298{
299 struct per_struct_kernel *dummy = NULL;
300
301 /*
302 * There are only three fields in the per_info struct that the
303 * debugger user can write to.
304 * 1) cr9: the debugger wants to set a new PER event mask
305 * 2) starting_addr: the debugger wants to set a new starting
306 * address to use with the PER event mask.
307 * 3) ending_addr: the debugger wants to set a new ending
308 * address to use with the PER event mask.
309 * The user specified PER event mask and the start and end
310 * addresses are used only if single stepping is not in effect.
311 * Writes to any other field in per_info are ignored.
312 */
313 if (addr == (addr_t) &dummy->cr9)
314 /* PER event mask of the user specified per set. */
315 child->thread.per_user.control =
316 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
317 else if (addr == (addr_t) &dummy->starting_addr)
318 /* Starting address of the user specified per set. */
319 child->thread.per_user.start = data;
320 else if (addr == (addr_t) &dummy->ending_addr)
321 /* Ending address of the user specified per set. */
322 child->thread.per_user.end = data;
323}
324
325static void fixup_int_code(struct task_struct *child, addr_t data)
326{
327 struct pt_regs *regs = task_pt_regs(child);
328 int ilc = regs->int_code >> 16;
329 u16 insn;
330
331 if (ilc > 6)
332 return;
333
334 if (ptrace_access_vm(child, regs->psw.addr - (regs->int_code >> 16),
335 &insn, sizeof(insn), FOLL_FORCE) != sizeof(insn))
336 return;
337
338 /* double check that tracee stopped on svc instruction */
339 if ((insn >> 8) != 0xa)
340 return;
341
342 regs->int_code = 0x20000 | (data & 0xffff);
343}
344/*
345 * Write a word to the user area of a process at location addr. This
346 * operation does have an additional problem compared to peek_user.
347 * Stores to the program status word and on the floating point
348 * control register needs to get checked for validity.
349 */
350static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
351{
352 struct user *dummy = NULL;
353 addr_t offset;
354
355
356 if (addr < (addr_t) &dummy->regs.acrs) {
357 struct pt_regs *regs = task_pt_regs(child);
358 /*
359 * psw and gprs are stored on the stack
360 */
361 if (addr == (addr_t) &dummy->regs.psw.mask) {
362 unsigned long mask = PSW_MASK_USER;
363
364 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
365 if ((data ^ PSW_USER_BITS) & ~mask)
366 /* Invalid psw mask. */
367 return -EINVAL;
368 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
369 /* Invalid address-space-control bits */
370 return -EINVAL;
371 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
372 /* Invalid addressing mode bits */
373 return -EINVAL;
374 }
375
376 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
377 addr == offsetof(struct user, regs.gprs[2]))
378 fixup_int_code(child, data);
379 *(addr_t *)((addr_t) ®s->psw + addr) = data;
380
381 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
382 /*
383 * access registers are stored in the thread structure
384 */
385 offset = addr - (addr_t) &dummy->regs.acrs;
386 /*
387 * Very special case: old & broken 64 bit gdb writing
388 * to acrs[15] with a 64 bit value. Ignore the lower
389 * half of the value and write the upper 32 bit to
390 * acrs[15]. Sick...
391 */
392 if (addr == (addr_t) &dummy->regs.acrs[15])
393 child->thread.acrs[15] = (unsigned int) (data >> 32);
394 else
395 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
396
397 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
398 /*
399 * orig_gpr2 is stored on the kernel stack
400 */
401 task_pt_regs(child)->orig_gpr2 = data;
402
403 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
404 /*
405 * prevent writes of padding hole between
406 * orig_gpr2 and fp_regs on s390.
407 */
408 return 0;
409
410 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
411 /*
412 * floating point control reg. is in the thread structure
413 */
414 if ((unsigned int) data != 0 ||
415 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
416 return -EINVAL;
417 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
418
419 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
420 /*
421 * floating point regs. are either in child->thread.fpu
422 * or the child->thread.fpu.vxrs array
423 */
424 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
425 if (MACHINE_HAS_VX)
426 *(addr_t *)((addr_t)
427 child->thread.fpu.vxrs + 2*offset) = data;
428 else
429 *(addr_t *)((addr_t)
430 child->thread.fpu.fprs + offset) = data;
431
432 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
433 /*
434 * Handle access to the per_info structure.
435 */
436 addr -= (addr_t) &dummy->regs.per_info;
437 __poke_user_per(child, addr, data);
438
439 }
440
441 return 0;
442}
443
444static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
445{
446 addr_t mask;
447
448 /*
449 * Stupid gdb peeks/pokes the access registers in 64 bit with
450 * an alignment of 4. Programmers from hell indeed...
451 */
452 mask = __ADDR_MASK;
453 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
454 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
455 mask = 3;
456 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
457 return -EIO;
458
459 return __poke_user(child, addr, data);
460}
461
462long arch_ptrace(struct task_struct *child, long request,
463 unsigned long addr, unsigned long data)
464{
465 ptrace_area parea;
466 int copied, ret;
467
468 switch (request) {
469 case PTRACE_PEEKUSR:
470 /* read the word at location addr in the USER area. */
471 return peek_user(child, addr, data);
472
473 case PTRACE_POKEUSR:
474 /* write the word at location addr in the USER area */
475 return poke_user(child, addr, data);
476
477 case PTRACE_PEEKUSR_AREA:
478 case PTRACE_POKEUSR_AREA:
479 if (copy_from_user(&parea, (void __force __user *) addr,
480 sizeof(parea)))
481 return -EFAULT;
482 addr = parea.kernel_addr;
483 data = parea.process_addr;
484 copied = 0;
485 while (copied < parea.len) {
486 if (request == PTRACE_PEEKUSR_AREA)
487 ret = peek_user(child, addr, data);
488 else {
489 addr_t utmp;
490 if (get_user(utmp,
491 (addr_t __force __user *) data))
492 return -EFAULT;
493 ret = poke_user(child, addr, utmp);
494 }
495 if (ret)
496 return ret;
497 addr += sizeof(unsigned long);
498 data += sizeof(unsigned long);
499 copied += sizeof(unsigned long);
500 }
501 return 0;
502 case PTRACE_GET_LAST_BREAK:
503 put_user(child->thread.last_break,
504 (unsigned long __user *) data);
505 return 0;
506 case PTRACE_ENABLE_TE:
507 if (!MACHINE_HAS_TE)
508 return -EIO;
509 child->thread.per_flags &= ~PER_FLAG_NO_TE;
510 return 0;
511 case PTRACE_DISABLE_TE:
512 if (!MACHINE_HAS_TE)
513 return -EIO;
514 child->thread.per_flags |= PER_FLAG_NO_TE;
515 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
516 return 0;
517 case PTRACE_TE_ABORT_RAND:
518 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
519 return -EIO;
520 switch (data) {
521 case 0UL:
522 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
523 break;
524 case 1UL:
525 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
526 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
527 break;
528 case 2UL:
529 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
530 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
531 break;
532 default:
533 return -EINVAL;
534 }
535 return 0;
536 default:
537 return ptrace_request(child, request, addr, data);
538 }
539}
540
541#ifdef CONFIG_COMPAT
542/*
543 * Now the fun part starts... a 31 bit program running in the
544 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
545 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
546 * to handle, the difference to the 64 bit versions of the requests
547 * is that the access is done in multiples of 4 byte instead of
548 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
549 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
550 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
551 * is a 31 bit program too, the content of struct user can be
552 * emulated. A 31 bit program peeking into the struct user of
553 * a 64 bit program is a no-no.
554 */
555
556/*
557 * Same as peek_user_per but for a 31 bit program.
558 */
559static inline __u32 __peek_user_per_compat(struct task_struct *child,
560 addr_t addr)
561{
562 struct compat_per_struct_kernel *dummy32 = NULL;
563
564 if (addr == (addr_t) &dummy32->cr9)
565 /* Control bits of the active per set. */
566 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
567 PER_EVENT_IFETCH : child->thread.per_user.control;
568 else if (addr == (addr_t) &dummy32->cr10)
569 /* Start address of the active per set. */
570 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
571 0 : child->thread.per_user.start;
572 else if (addr == (addr_t) &dummy32->cr11)
573 /* End address of the active per set. */
574 return test_thread_flag(TIF_SINGLE_STEP) ?
575 PSW32_ADDR_INSN : child->thread.per_user.end;
576 else if (addr == (addr_t) &dummy32->bits)
577 /* Single-step bit. */
578 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
579 0x80000000 : 0;
580 else if (addr == (addr_t) &dummy32->starting_addr)
581 /* Start address of the user specified per set. */
582 return (__u32) child->thread.per_user.start;
583 else if (addr == (addr_t) &dummy32->ending_addr)
584 /* End address of the user specified per set. */
585 return (__u32) child->thread.per_user.end;
586 else if (addr == (addr_t) &dummy32->perc_atmid)
587 /* PER code, ATMID and AI of the last PER trap */
588 return (__u32) child->thread.per_event.cause << 16;
589 else if (addr == (addr_t) &dummy32->address)
590 /* Address of the last PER trap */
591 return (__u32) child->thread.per_event.address;
592 else if (addr == (addr_t) &dummy32->access_id)
593 /* Access id of the last PER trap */
594 return (__u32) child->thread.per_event.paid << 24;
595 return 0;
596}
597
598/*
599 * Same as peek_user but for a 31 bit program.
600 */
601static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
602{
603 struct compat_user *dummy32 = NULL;
604 addr_t offset;
605 __u32 tmp;
606
607 if (addr < (addr_t) &dummy32->regs.acrs) {
608 struct pt_regs *regs = task_pt_regs(child);
609 /*
610 * psw and gprs are stored on the stack
611 */
612 if (addr == (addr_t) &dummy32->regs.psw.mask) {
613 /* Fake a 31 bit psw mask. */
614 tmp = (__u32)(regs->psw.mask >> 32);
615 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
616 tmp |= PSW32_USER_BITS;
617 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
618 /* Fake a 31 bit psw address. */
619 tmp = (__u32) regs->psw.addr |
620 (__u32)(regs->psw.mask & PSW_MASK_BA);
621 } else {
622 /* gpr 0-15 */
623 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
624 }
625 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
626 /*
627 * access registers are stored in the thread structure
628 */
629 offset = addr - (addr_t) &dummy32->regs.acrs;
630 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
631
632 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
633 /*
634 * orig_gpr2 is stored on the kernel stack
635 */
636 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
637
638 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
639 /*
640 * prevent reads of padding hole between
641 * orig_gpr2 and fp_regs on s390.
642 */
643 tmp = 0;
644
645 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
646 /*
647 * floating point control reg. is in the thread structure
648 */
649 tmp = child->thread.fpu.fpc;
650
651 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
652 /*
653 * floating point regs. are either in child->thread.fpu
654 * or the child->thread.fpu.vxrs array
655 */
656 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
657 if (MACHINE_HAS_VX)
658 tmp = *(__u32 *)
659 ((addr_t) child->thread.fpu.vxrs + 2*offset);
660 else
661 tmp = *(__u32 *)
662 ((addr_t) child->thread.fpu.fprs + offset);
663
664 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
665 /*
666 * Handle access to the per_info structure.
667 */
668 addr -= (addr_t) &dummy32->regs.per_info;
669 tmp = __peek_user_per_compat(child, addr);
670
671 } else
672 tmp = 0;
673
674 return tmp;
675}
676
677static int peek_user_compat(struct task_struct *child,
678 addr_t addr, addr_t data)
679{
680 __u32 tmp;
681
682 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
683 return -EIO;
684
685 tmp = __peek_user_compat(child, addr);
686 return put_user(tmp, (__u32 __user *) data);
687}
688
689/*
690 * Same as poke_user_per but for a 31 bit program.
691 */
692static inline void __poke_user_per_compat(struct task_struct *child,
693 addr_t addr, __u32 data)
694{
695 struct compat_per_struct_kernel *dummy32 = NULL;
696
697 if (addr == (addr_t) &dummy32->cr9)
698 /* PER event mask of the user specified per set. */
699 child->thread.per_user.control =
700 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
701 else if (addr == (addr_t) &dummy32->starting_addr)
702 /* Starting address of the user specified per set. */
703 child->thread.per_user.start = data;
704 else if (addr == (addr_t) &dummy32->ending_addr)
705 /* Ending address of the user specified per set. */
706 child->thread.per_user.end = data;
707}
708
709/*
710 * Same as poke_user but for a 31 bit program.
711 */
712static int __poke_user_compat(struct task_struct *child,
713 addr_t addr, addr_t data)
714{
715 struct compat_user *dummy32 = NULL;
716 __u32 tmp = (__u32) data;
717 addr_t offset;
718
719 if (addr < (addr_t) &dummy32->regs.acrs) {
720 struct pt_regs *regs = task_pt_regs(child);
721 /*
722 * psw, gprs, acrs and orig_gpr2 are stored on the stack
723 */
724 if (addr == (addr_t) &dummy32->regs.psw.mask) {
725 __u32 mask = PSW32_MASK_USER;
726
727 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
728 /* Build a 64 bit psw mask from 31 bit mask. */
729 if ((tmp ^ PSW32_USER_BITS) & ~mask)
730 /* Invalid psw mask. */
731 return -EINVAL;
732 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
733 /* Invalid address-space-control bits */
734 return -EINVAL;
735 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
736 (regs->psw.mask & PSW_MASK_BA) |
737 (__u64)(tmp & mask) << 32;
738 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
739 /* Build a 64 bit psw address from 31 bit address. */
740 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
741 /* Transfer 31 bit amode bit to psw mask. */
742 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
743 (__u64)(tmp & PSW32_ADDR_AMODE);
744 } else {
745
746 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
747 addr == offsetof(struct compat_user, regs.gprs[2]))
748 fixup_int_code(child, data);
749 /* gpr 0-15 */
750 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
751 }
752 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
753 /*
754 * access registers are stored in the thread structure
755 */
756 offset = addr - (addr_t) &dummy32->regs.acrs;
757 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
758
759 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
760 /*
761 * orig_gpr2 is stored on the kernel stack
762 */
763 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
764
765 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
766 /*
767 * prevent writess of padding hole between
768 * orig_gpr2 and fp_regs on s390.
769 */
770 return 0;
771
772 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
773 /*
774 * floating point control reg. is in the thread structure
775 */
776 if (test_fp_ctl(tmp))
777 return -EINVAL;
778 child->thread.fpu.fpc = data;
779
780 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
781 /*
782 * floating point regs. are either in child->thread.fpu
783 * or the child->thread.fpu.vxrs array
784 */
785 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
786 if (MACHINE_HAS_VX)
787 *(__u32 *)((addr_t)
788 child->thread.fpu.vxrs + 2*offset) = tmp;
789 else
790 *(__u32 *)((addr_t)
791 child->thread.fpu.fprs + offset) = tmp;
792
793 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
794 /*
795 * Handle access to the per_info structure.
796 */
797 addr -= (addr_t) &dummy32->regs.per_info;
798 __poke_user_per_compat(child, addr, data);
799 }
800
801 return 0;
802}
803
804static int poke_user_compat(struct task_struct *child,
805 addr_t addr, addr_t data)
806{
807 if (!is_compat_task() || (addr & 3) ||
808 addr > sizeof(struct compat_user) - 3)
809 return -EIO;
810
811 return __poke_user_compat(child, addr, data);
812}
813
814long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
815 compat_ulong_t caddr, compat_ulong_t cdata)
816{
817 unsigned long addr = caddr;
818 unsigned long data = cdata;
819 compat_ptrace_area parea;
820 int copied, ret;
821
822 switch (request) {
823 case PTRACE_PEEKUSR:
824 /* read the word at location addr in the USER area. */
825 return peek_user_compat(child, addr, data);
826
827 case PTRACE_POKEUSR:
828 /* write the word at location addr in the USER area */
829 return poke_user_compat(child, addr, data);
830
831 case PTRACE_PEEKUSR_AREA:
832 case PTRACE_POKEUSR_AREA:
833 if (copy_from_user(&parea, (void __force __user *) addr,
834 sizeof(parea)))
835 return -EFAULT;
836 addr = parea.kernel_addr;
837 data = parea.process_addr;
838 copied = 0;
839 while (copied < parea.len) {
840 if (request == PTRACE_PEEKUSR_AREA)
841 ret = peek_user_compat(child, addr, data);
842 else {
843 __u32 utmp;
844 if (get_user(utmp,
845 (__u32 __force __user *) data))
846 return -EFAULT;
847 ret = poke_user_compat(child, addr, utmp);
848 }
849 if (ret)
850 return ret;
851 addr += sizeof(unsigned int);
852 data += sizeof(unsigned int);
853 copied += sizeof(unsigned int);
854 }
855 return 0;
856 case PTRACE_GET_LAST_BREAK:
857 put_user(child->thread.last_break,
858 (unsigned int __user *) data);
859 return 0;
860 }
861 return compat_ptrace_request(child, request, addr, data);
862}
863#endif
864
865asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
866{
867 unsigned long mask = -1UL;
868 long ret = -1;
869
870 if (is_compat_task())
871 mask = 0xffffffff;
872
873 /*
874 * The sysc_tracesys code in entry.S stored the system
875 * call number to gprs[2].
876 */
877 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
878 tracehook_report_syscall_entry(regs)) {
879 /*
880 * Tracing decided this syscall should not happen. Skip
881 * the system call and the system call restart handling.
882 */
883 goto skip;
884 }
885
886#ifdef CONFIG_SECCOMP
887 /* Do the secure computing check after ptrace. */
888 if (unlikely(test_thread_flag(TIF_SECCOMP))) {
889 struct seccomp_data sd;
890
891 if (is_compat_task()) {
892 sd.instruction_pointer = regs->psw.addr & 0x7fffffff;
893 sd.arch = AUDIT_ARCH_S390;
894 } else {
895 sd.instruction_pointer = regs->psw.addr;
896 sd.arch = AUDIT_ARCH_S390X;
897 }
898
899 sd.nr = regs->int_code & 0xffff;
900 sd.args[0] = regs->orig_gpr2 & mask;
901 sd.args[1] = regs->gprs[3] & mask;
902 sd.args[2] = regs->gprs[4] & mask;
903 sd.args[3] = regs->gprs[5] & mask;
904 sd.args[4] = regs->gprs[6] & mask;
905 sd.args[5] = regs->gprs[7] & mask;
906
907 if (__secure_computing(&sd) == -1)
908 goto skip;
909 }
910#endif /* CONFIG_SECCOMP */
911
912 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
913 trace_sys_enter(regs, regs->int_code & 0xffff);
914
915
916 audit_syscall_entry(regs->int_code & 0xffff, regs->orig_gpr2 & mask,
917 regs->gprs[3] &mask, regs->gprs[4] &mask,
918 regs->gprs[5] &mask);
919
920 if ((signed long)regs->gprs[2] >= NR_syscalls) {
921 regs->gprs[2] = -ENOSYS;
922 ret = -ENOSYS;
923 }
924 return regs->gprs[2];
925skip:
926 clear_pt_regs_flag(regs, PIF_SYSCALL);
927 return ret;
928}
929
930asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
931{
932 audit_syscall_exit(regs);
933
934 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
935 trace_sys_exit(regs, regs->gprs[2]);
936
937 if (test_thread_flag(TIF_SYSCALL_TRACE))
938 tracehook_report_syscall_exit(regs, 0);
939}
940
941/*
942 * user_regset definitions.
943 */
944
945static int s390_regs_get(struct task_struct *target,
946 const struct user_regset *regset,
947 struct membuf to)
948{
949 unsigned pos;
950 if (target == current)
951 save_access_regs(target->thread.acrs);
952
953 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
954 membuf_store(&to, __peek_user(target, pos));
955 return 0;
956}
957
958static int s390_regs_set(struct task_struct *target,
959 const struct user_regset *regset,
960 unsigned int pos, unsigned int count,
961 const void *kbuf, const void __user *ubuf)
962{
963 int rc = 0;
964
965 if (target == current)
966 save_access_regs(target->thread.acrs);
967
968 if (kbuf) {
969 const unsigned long *k = kbuf;
970 while (count > 0 && !rc) {
971 rc = __poke_user(target, pos, *k++);
972 count -= sizeof(*k);
973 pos += sizeof(*k);
974 }
975 } else {
976 const unsigned long __user *u = ubuf;
977 while (count > 0 && !rc) {
978 unsigned long word;
979 rc = __get_user(word, u++);
980 if (rc)
981 break;
982 rc = __poke_user(target, pos, word);
983 count -= sizeof(*u);
984 pos += sizeof(*u);
985 }
986 }
987
988 if (rc == 0 && target == current)
989 restore_access_regs(target->thread.acrs);
990
991 return rc;
992}
993
994static int s390_fpregs_get(struct task_struct *target,
995 const struct user_regset *regset,
996 struct membuf to)
997{
998 _s390_fp_regs fp_regs;
999
1000 if (target == current)
1001 save_fpu_regs();
1002
1003 fp_regs.fpc = target->thread.fpu.fpc;
1004 fpregs_store(&fp_regs, &target->thread.fpu);
1005
1006 return membuf_write(&to, &fp_regs, sizeof(fp_regs));
1007}
1008
1009static int s390_fpregs_set(struct task_struct *target,
1010 const struct user_regset *regset, unsigned int pos,
1011 unsigned int count, const void *kbuf,
1012 const void __user *ubuf)
1013{
1014 int rc = 0;
1015 freg_t fprs[__NUM_FPRS];
1016
1017 if (target == current)
1018 save_fpu_regs();
1019
1020 if (MACHINE_HAS_VX)
1021 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
1022 else
1023 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
1024
1025 /* If setting FPC, must validate it first. */
1026 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
1027 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
1028 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
1029 0, offsetof(s390_fp_regs, fprs));
1030 if (rc)
1031 return rc;
1032 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
1033 return -EINVAL;
1034 target->thread.fpu.fpc = ufpc[0];
1035 }
1036
1037 if (rc == 0 && count > 0)
1038 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1039 fprs, offsetof(s390_fp_regs, fprs), -1);
1040 if (rc)
1041 return rc;
1042
1043 if (MACHINE_HAS_VX)
1044 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1045 else
1046 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1047
1048 return rc;
1049}
1050
1051static int s390_last_break_get(struct task_struct *target,
1052 const struct user_regset *regset,
1053 struct membuf to)
1054{
1055 return membuf_store(&to, target->thread.last_break);
1056}
1057
1058static int s390_last_break_set(struct task_struct *target,
1059 const struct user_regset *regset,
1060 unsigned int pos, unsigned int count,
1061 const void *kbuf, const void __user *ubuf)
1062{
1063 return 0;
1064}
1065
1066static int s390_tdb_get(struct task_struct *target,
1067 const struct user_regset *regset,
1068 struct membuf to)
1069{
1070 struct pt_regs *regs = task_pt_regs(target);
1071
1072 if (!(regs->int_code & 0x200))
1073 return -ENODATA;
1074 return membuf_write(&to, target->thread.trap_tdb, 256);
1075}
1076
1077static int s390_tdb_set(struct task_struct *target,
1078 const struct user_regset *regset,
1079 unsigned int pos, unsigned int count,
1080 const void *kbuf, const void __user *ubuf)
1081{
1082 return 0;
1083}
1084
1085static int s390_vxrs_low_get(struct task_struct *target,
1086 const struct user_regset *regset,
1087 struct membuf to)
1088{
1089 __u64 vxrs[__NUM_VXRS_LOW];
1090 int i;
1091
1092 if (!MACHINE_HAS_VX)
1093 return -ENODEV;
1094 if (target == current)
1095 save_fpu_regs();
1096 for (i = 0; i < __NUM_VXRS_LOW; i++)
1097 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1098 return membuf_write(&to, vxrs, sizeof(vxrs));
1099}
1100
1101static int s390_vxrs_low_set(struct task_struct *target,
1102 const struct user_regset *regset,
1103 unsigned int pos, unsigned int count,
1104 const void *kbuf, const void __user *ubuf)
1105{
1106 __u64 vxrs[__NUM_VXRS_LOW];
1107 int i, rc;
1108
1109 if (!MACHINE_HAS_VX)
1110 return -ENODEV;
1111 if (target == current)
1112 save_fpu_regs();
1113
1114 for (i = 0; i < __NUM_VXRS_LOW; i++)
1115 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1116
1117 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1118 if (rc == 0)
1119 for (i = 0; i < __NUM_VXRS_LOW; i++)
1120 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1121
1122 return rc;
1123}
1124
1125static int s390_vxrs_high_get(struct task_struct *target,
1126 const struct user_regset *regset,
1127 struct membuf to)
1128{
1129 if (!MACHINE_HAS_VX)
1130 return -ENODEV;
1131 if (target == current)
1132 save_fpu_regs();
1133 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1134 __NUM_VXRS_HIGH * sizeof(__vector128));
1135}
1136
1137static int s390_vxrs_high_set(struct task_struct *target,
1138 const struct user_regset *regset,
1139 unsigned int pos, unsigned int count,
1140 const void *kbuf, const void __user *ubuf)
1141{
1142 int rc;
1143
1144 if (!MACHINE_HAS_VX)
1145 return -ENODEV;
1146 if (target == current)
1147 save_fpu_regs();
1148
1149 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1151 return rc;
1152}
1153
1154static int s390_system_call_get(struct task_struct *target,
1155 const struct user_regset *regset,
1156 struct membuf to)
1157{
1158 return membuf_store(&to, target->thread.system_call);
1159}
1160
1161static int s390_system_call_set(struct task_struct *target,
1162 const struct user_regset *regset,
1163 unsigned int pos, unsigned int count,
1164 const void *kbuf, const void __user *ubuf)
1165{
1166 unsigned int *data = &target->thread.system_call;
1167 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1168 data, 0, sizeof(unsigned int));
1169}
1170
1171static int s390_gs_cb_get(struct task_struct *target,
1172 const struct user_regset *regset,
1173 struct membuf to)
1174{
1175 struct gs_cb *data = target->thread.gs_cb;
1176
1177 if (!MACHINE_HAS_GS)
1178 return -ENODEV;
1179 if (!data)
1180 return -ENODATA;
1181 if (target == current)
1182 save_gs_cb(data);
1183 return membuf_write(&to, data, sizeof(struct gs_cb));
1184}
1185
1186static int s390_gs_cb_set(struct task_struct *target,
1187 const struct user_regset *regset,
1188 unsigned int pos, unsigned int count,
1189 const void *kbuf, const void __user *ubuf)
1190{
1191 struct gs_cb gs_cb = { }, *data = NULL;
1192 int rc;
1193
1194 if (!MACHINE_HAS_GS)
1195 return -ENODEV;
1196 if (!target->thread.gs_cb) {
1197 data = kzalloc(sizeof(*data), GFP_KERNEL);
1198 if (!data)
1199 return -ENOMEM;
1200 }
1201 if (!target->thread.gs_cb)
1202 gs_cb.gsd = 25;
1203 else if (target == current)
1204 save_gs_cb(&gs_cb);
1205 else
1206 gs_cb = *target->thread.gs_cb;
1207 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1208 &gs_cb, 0, sizeof(gs_cb));
1209 if (rc) {
1210 kfree(data);
1211 return -EFAULT;
1212 }
1213 preempt_disable();
1214 if (!target->thread.gs_cb)
1215 target->thread.gs_cb = data;
1216 *target->thread.gs_cb = gs_cb;
1217 if (target == current) {
1218 __ctl_set_bit(2, 4);
1219 restore_gs_cb(target->thread.gs_cb);
1220 }
1221 preempt_enable();
1222 return rc;
1223}
1224
1225static int s390_gs_bc_get(struct task_struct *target,
1226 const struct user_regset *regset,
1227 struct membuf to)
1228{
1229 struct gs_cb *data = target->thread.gs_bc_cb;
1230
1231 if (!MACHINE_HAS_GS)
1232 return -ENODEV;
1233 if (!data)
1234 return -ENODATA;
1235 return membuf_write(&to, data, sizeof(struct gs_cb));
1236}
1237
1238static int s390_gs_bc_set(struct task_struct *target,
1239 const struct user_regset *regset,
1240 unsigned int pos, unsigned int count,
1241 const void *kbuf, const void __user *ubuf)
1242{
1243 struct gs_cb *data = target->thread.gs_bc_cb;
1244
1245 if (!MACHINE_HAS_GS)
1246 return -ENODEV;
1247 if (!data) {
1248 data = kzalloc(sizeof(*data), GFP_KERNEL);
1249 if (!data)
1250 return -ENOMEM;
1251 target->thread.gs_bc_cb = data;
1252 }
1253 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1254 data, 0, sizeof(struct gs_cb));
1255}
1256
1257static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1258{
1259 return (cb->rca & 0x1f) == 0 &&
1260 (cb->roa & 0xfff) == 0 &&
1261 (cb->rla & 0xfff) == 0xfff &&
1262 cb->s == 1 &&
1263 cb->k == 1 &&
1264 cb->h == 0 &&
1265 cb->reserved1 == 0 &&
1266 cb->ps == 1 &&
1267 cb->qs == 0 &&
1268 cb->pc == 1 &&
1269 cb->qc == 0 &&
1270 cb->reserved2 == 0 &&
1271 cb->reserved3 == 0 &&
1272 cb->reserved4 == 0 &&
1273 cb->reserved5 == 0 &&
1274 cb->reserved6 == 0 &&
1275 cb->reserved7 == 0 &&
1276 cb->reserved8 == 0 &&
1277 cb->rla >= cb->roa &&
1278 cb->rca >= cb->roa &&
1279 cb->rca <= cb->rla+1 &&
1280 cb->m < 3;
1281}
1282
1283static int s390_runtime_instr_get(struct task_struct *target,
1284 const struct user_regset *regset,
1285 struct membuf to)
1286{
1287 struct runtime_instr_cb *data = target->thread.ri_cb;
1288
1289 if (!test_facility(64))
1290 return -ENODEV;
1291 if (!data)
1292 return -ENODATA;
1293
1294 return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1295}
1296
1297static int s390_runtime_instr_set(struct task_struct *target,
1298 const struct user_regset *regset,
1299 unsigned int pos, unsigned int count,
1300 const void *kbuf, const void __user *ubuf)
1301{
1302 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1303 int rc;
1304
1305 if (!test_facility(64))
1306 return -ENODEV;
1307
1308 if (!target->thread.ri_cb) {
1309 data = kzalloc(sizeof(*data), GFP_KERNEL);
1310 if (!data)
1311 return -ENOMEM;
1312 }
1313
1314 if (target->thread.ri_cb) {
1315 if (target == current)
1316 store_runtime_instr_cb(&ri_cb);
1317 else
1318 ri_cb = *target->thread.ri_cb;
1319 }
1320
1321 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1322 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1323 if (rc) {
1324 kfree(data);
1325 return -EFAULT;
1326 }
1327
1328 if (!is_ri_cb_valid(&ri_cb)) {
1329 kfree(data);
1330 return -EINVAL;
1331 }
1332 /*
1333 * Override access key in any case, since user space should
1334 * not be able to set it, nor should it care about it.
1335 */
1336 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1337 preempt_disable();
1338 if (!target->thread.ri_cb)
1339 target->thread.ri_cb = data;
1340 *target->thread.ri_cb = ri_cb;
1341 if (target == current)
1342 load_runtime_instr_cb(target->thread.ri_cb);
1343 preempt_enable();
1344
1345 return 0;
1346}
1347
1348static const struct user_regset s390_regsets[] = {
1349 {
1350 .core_note_type = NT_PRSTATUS,
1351 .n = sizeof(s390_regs) / sizeof(long),
1352 .size = sizeof(long),
1353 .align = sizeof(long),
1354 .regset_get = s390_regs_get,
1355 .set = s390_regs_set,
1356 },
1357 {
1358 .core_note_type = NT_PRFPREG,
1359 .n = sizeof(s390_fp_regs) / sizeof(long),
1360 .size = sizeof(long),
1361 .align = sizeof(long),
1362 .regset_get = s390_fpregs_get,
1363 .set = s390_fpregs_set,
1364 },
1365 {
1366 .core_note_type = NT_S390_SYSTEM_CALL,
1367 .n = 1,
1368 .size = sizeof(unsigned int),
1369 .align = sizeof(unsigned int),
1370 .regset_get = s390_system_call_get,
1371 .set = s390_system_call_set,
1372 },
1373 {
1374 .core_note_type = NT_S390_LAST_BREAK,
1375 .n = 1,
1376 .size = sizeof(long),
1377 .align = sizeof(long),
1378 .regset_get = s390_last_break_get,
1379 .set = s390_last_break_set,
1380 },
1381 {
1382 .core_note_type = NT_S390_TDB,
1383 .n = 1,
1384 .size = 256,
1385 .align = 1,
1386 .regset_get = s390_tdb_get,
1387 .set = s390_tdb_set,
1388 },
1389 {
1390 .core_note_type = NT_S390_VXRS_LOW,
1391 .n = __NUM_VXRS_LOW,
1392 .size = sizeof(__u64),
1393 .align = sizeof(__u64),
1394 .regset_get = s390_vxrs_low_get,
1395 .set = s390_vxrs_low_set,
1396 },
1397 {
1398 .core_note_type = NT_S390_VXRS_HIGH,
1399 .n = __NUM_VXRS_HIGH,
1400 .size = sizeof(__vector128),
1401 .align = sizeof(__vector128),
1402 .regset_get = s390_vxrs_high_get,
1403 .set = s390_vxrs_high_set,
1404 },
1405 {
1406 .core_note_type = NT_S390_GS_CB,
1407 .n = sizeof(struct gs_cb) / sizeof(__u64),
1408 .size = sizeof(__u64),
1409 .align = sizeof(__u64),
1410 .regset_get = s390_gs_cb_get,
1411 .set = s390_gs_cb_set,
1412 },
1413 {
1414 .core_note_type = NT_S390_GS_BC,
1415 .n = sizeof(struct gs_cb) / sizeof(__u64),
1416 .size = sizeof(__u64),
1417 .align = sizeof(__u64),
1418 .regset_get = s390_gs_bc_get,
1419 .set = s390_gs_bc_set,
1420 },
1421 {
1422 .core_note_type = NT_S390_RI_CB,
1423 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1424 .size = sizeof(__u64),
1425 .align = sizeof(__u64),
1426 .regset_get = s390_runtime_instr_get,
1427 .set = s390_runtime_instr_set,
1428 },
1429};
1430
1431static const struct user_regset_view user_s390_view = {
1432 .name = "s390x",
1433 .e_machine = EM_S390,
1434 .regsets = s390_regsets,
1435 .n = ARRAY_SIZE(s390_regsets)
1436};
1437
1438#ifdef CONFIG_COMPAT
1439static int s390_compat_regs_get(struct task_struct *target,
1440 const struct user_regset *regset,
1441 struct membuf to)
1442{
1443 unsigned n;
1444
1445 if (target == current)
1446 save_access_regs(target->thread.acrs);
1447
1448 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1449 membuf_store(&to, __peek_user_compat(target, n));
1450 return 0;
1451}
1452
1453static int s390_compat_regs_set(struct task_struct *target,
1454 const struct user_regset *regset,
1455 unsigned int pos, unsigned int count,
1456 const void *kbuf, const void __user *ubuf)
1457{
1458 int rc = 0;
1459
1460 if (target == current)
1461 save_access_regs(target->thread.acrs);
1462
1463 if (kbuf) {
1464 const compat_ulong_t *k = kbuf;
1465 while (count > 0 && !rc) {
1466 rc = __poke_user_compat(target, pos, *k++);
1467 count -= sizeof(*k);
1468 pos += sizeof(*k);
1469 }
1470 } else {
1471 const compat_ulong_t __user *u = ubuf;
1472 while (count > 0 && !rc) {
1473 compat_ulong_t word;
1474 rc = __get_user(word, u++);
1475 if (rc)
1476 break;
1477 rc = __poke_user_compat(target, pos, word);
1478 count -= sizeof(*u);
1479 pos += sizeof(*u);
1480 }
1481 }
1482
1483 if (rc == 0 && target == current)
1484 restore_access_regs(target->thread.acrs);
1485
1486 return rc;
1487}
1488
1489static int s390_compat_regs_high_get(struct task_struct *target,
1490 const struct user_regset *regset,
1491 struct membuf to)
1492{
1493 compat_ulong_t *gprs_high;
1494 int i;
1495
1496 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1497 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1498 membuf_store(&to, *gprs_high);
1499 return 0;
1500}
1501
1502static int s390_compat_regs_high_set(struct task_struct *target,
1503 const struct user_regset *regset,
1504 unsigned int pos, unsigned int count,
1505 const void *kbuf, const void __user *ubuf)
1506{
1507 compat_ulong_t *gprs_high;
1508 int rc = 0;
1509
1510 gprs_high = (compat_ulong_t *)
1511 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1512 if (kbuf) {
1513 const compat_ulong_t *k = kbuf;
1514 while (count > 0) {
1515 *gprs_high = *k++;
1516 *gprs_high += 2;
1517 count -= sizeof(*k);
1518 }
1519 } else {
1520 const compat_ulong_t __user *u = ubuf;
1521 while (count > 0 && !rc) {
1522 unsigned long word;
1523 rc = __get_user(word, u++);
1524 if (rc)
1525 break;
1526 *gprs_high = word;
1527 *gprs_high += 2;
1528 count -= sizeof(*u);
1529 }
1530 }
1531
1532 return rc;
1533}
1534
1535static int s390_compat_last_break_get(struct task_struct *target,
1536 const struct user_regset *regset,
1537 struct membuf to)
1538{
1539 compat_ulong_t last_break = target->thread.last_break;
1540
1541 return membuf_store(&to, (unsigned long)last_break);
1542}
1543
1544static int s390_compat_last_break_set(struct task_struct *target,
1545 const struct user_regset *regset,
1546 unsigned int pos, unsigned int count,
1547 const void *kbuf, const void __user *ubuf)
1548{
1549 return 0;
1550}
1551
1552static const struct user_regset s390_compat_regsets[] = {
1553 {
1554 .core_note_type = NT_PRSTATUS,
1555 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1556 .size = sizeof(compat_long_t),
1557 .align = sizeof(compat_long_t),
1558 .regset_get = s390_compat_regs_get,
1559 .set = s390_compat_regs_set,
1560 },
1561 {
1562 .core_note_type = NT_PRFPREG,
1563 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1564 .size = sizeof(compat_long_t),
1565 .align = sizeof(compat_long_t),
1566 .regset_get = s390_fpregs_get,
1567 .set = s390_fpregs_set,
1568 },
1569 {
1570 .core_note_type = NT_S390_SYSTEM_CALL,
1571 .n = 1,
1572 .size = sizeof(compat_uint_t),
1573 .align = sizeof(compat_uint_t),
1574 .regset_get = s390_system_call_get,
1575 .set = s390_system_call_set,
1576 },
1577 {
1578 .core_note_type = NT_S390_LAST_BREAK,
1579 .n = 1,
1580 .size = sizeof(long),
1581 .align = sizeof(long),
1582 .regset_get = s390_compat_last_break_get,
1583 .set = s390_compat_last_break_set,
1584 },
1585 {
1586 .core_note_type = NT_S390_TDB,
1587 .n = 1,
1588 .size = 256,
1589 .align = 1,
1590 .regset_get = s390_tdb_get,
1591 .set = s390_tdb_set,
1592 },
1593 {
1594 .core_note_type = NT_S390_VXRS_LOW,
1595 .n = __NUM_VXRS_LOW,
1596 .size = sizeof(__u64),
1597 .align = sizeof(__u64),
1598 .regset_get = s390_vxrs_low_get,
1599 .set = s390_vxrs_low_set,
1600 },
1601 {
1602 .core_note_type = NT_S390_VXRS_HIGH,
1603 .n = __NUM_VXRS_HIGH,
1604 .size = sizeof(__vector128),
1605 .align = sizeof(__vector128),
1606 .regset_get = s390_vxrs_high_get,
1607 .set = s390_vxrs_high_set,
1608 },
1609 {
1610 .core_note_type = NT_S390_HIGH_GPRS,
1611 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1612 .size = sizeof(compat_long_t),
1613 .align = sizeof(compat_long_t),
1614 .regset_get = s390_compat_regs_high_get,
1615 .set = s390_compat_regs_high_set,
1616 },
1617 {
1618 .core_note_type = NT_S390_GS_CB,
1619 .n = sizeof(struct gs_cb) / sizeof(__u64),
1620 .size = sizeof(__u64),
1621 .align = sizeof(__u64),
1622 .regset_get = s390_gs_cb_get,
1623 .set = s390_gs_cb_set,
1624 },
1625 {
1626 .core_note_type = NT_S390_GS_BC,
1627 .n = sizeof(struct gs_cb) / sizeof(__u64),
1628 .size = sizeof(__u64),
1629 .align = sizeof(__u64),
1630 .regset_get = s390_gs_bc_get,
1631 .set = s390_gs_bc_set,
1632 },
1633 {
1634 .core_note_type = NT_S390_RI_CB,
1635 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1636 .size = sizeof(__u64),
1637 .align = sizeof(__u64),
1638 .regset_get = s390_runtime_instr_get,
1639 .set = s390_runtime_instr_set,
1640 },
1641};
1642
1643static const struct user_regset_view user_s390_compat_view = {
1644 .name = "s390",
1645 .e_machine = EM_S390,
1646 .regsets = s390_compat_regsets,
1647 .n = ARRAY_SIZE(s390_compat_regsets)
1648};
1649#endif
1650
1651const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1652{
1653#ifdef CONFIG_COMPAT
1654 if (test_tsk_thread_flag(task, TIF_31BIT))
1655 return &user_s390_compat_view;
1656#endif
1657 return &user_s390_view;
1658}
1659
1660static const char *gpr_names[NUM_GPRS] = {
1661 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1662 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1663};
1664
1665unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1666{
1667 if (offset >= NUM_GPRS)
1668 return 0;
1669 return regs->gprs[offset];
1670}
1671
1672int regs_query_register_offset(const char *name)
1673{
1674 unsigned long offset;
1675
1676 if (!name || *name != 'r')
1677 return -EINVAL;
1678 if (kstrtoul(name + 1, 10, &offset))
1679 return -EINVAL;
1680 if (offset >= NUM_GPRS)
1681 return -EINVAL;
1682 return offset;
1683}
1684
1685const char *regs_query_register_name(unsigned int offset)
1686{
1687 if (offset >= NUM_GPRS)
1688 return NULL;
1689 return gpr_names[offset];
1690}
1691
1692static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1693{
1694 unsigned long ksp = kernel_stack_pointer(regs);
1695
1696 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1697}
1698
1699/**
1700 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1701 * @regs:pt_regs which contains kernel stack pointer.
1702 * @n:stack entry number.
1703 *
1704 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1705 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1706 * this returns 0.
1707 */
1708unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1709{
1710 unsigned long addr;
1711
1712 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1713 if (!regs_within_kernel_stack(regs, addr))
1714 return 0;
1715 return *(unsigned long *)addr;
1716}