Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999,2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
 
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
 
  23#include <trace/syscall.h>
  24#include <asm/compat.h>
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
  29#include <asm/system.h>
  30#include <asm/uaccess.h>
  31#include <asm/unistd.h>
 
 
 
 
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41enum s390_regset {
  42	REGSET_GENERAL,
  43	REGSET_FP,
  44	REGSET_LAST_BREAK,
  45	REGSET_GENERAL_EXTENDED,
  46};
  47
  48void update_per_regs(struct task_struct *task)
  49{
  50	static const struct per_regs per_single_step = {
  51		.control = PER_EVENT_IFETCH,
  52		.start = 0,
  53		.end = PSW_ADDR_INSN,
  54	};
  55	struct pt_regs *regs = task_pt_regs(task);
  56	struct thread_struct *thread = &task->thread;
  57	const struct per_regs *new;
  58	struct per_regs old;
  59
  60	/* TIF_SINGLE_STEP overrides the user specified PER registers. */
  61	new = test_tsk_thread_flag(task, TIF_SINGLE_STEP) ?
  62		&per_single_step : &thread->per_user;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64	/* Take care of the PER enablement bit in the PSW. */
  65	if (!(new->control & PER_EVENT_MASK)) {
  66		regs->psw.mask &= ~PSW_MASK_PER;
  67		return;
  68	}
  69	regs->psw.mask |= PSW_MASK_PER;
  70	__ctl_store(old, 9, 11);
  71	if (memcmp(new, &old, sizeof(struct per_regs)) != 0)
  72		__ctl_load(*new, 9, 11);
  73}
  74
  75void user_enable_single_step(struct task_struct *task)
  76{
 
  77	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
  78	if (task == current)
  79		update_per_regs(task);
  80}
  81
  82void user_disable_single_step(struct task_struct *task)
  83{
 
  84	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  85	if (task == current)
  86		update_per_regs(task);
 
 
 
 
  87}
  88
  89/*
  90 * Called by kernel/ptrace.c when detaching..
  91 *
  92 * Clear all debugging related fields.
  93 */
  94void ptrace_disable(struct task_struct *task)
  95{
  96	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
  97	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
  98	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  99	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 
 100}
 101
 102#ifndef CONFIG_64BIT
 103# define __ADDR_MASK 3
 104#else
 105# define __ADDR_MASK 7
 106#endif
 107
 108static inline unsigned long __peek_user_per(struct task_struct *child,
 109					    addr_t addr)
 110{
 111	struct per_struct_kernel *dummy = NULL;
 112
 113	if (addr == (addr_t) &dummy->cr9)
 114		/* Control bits of the active per set. */
 115		return test_thread_flag(TIF_SINGLE_STEP) ?
 116			PER_EVENT_IFETCH : child->thread.per_user.control;
 117	else if (addr == (addr_t) &dummy->cr10)
 118		/* Start address of the active per set. */
 119		return test_thread_flag(TIF_SINGLE_STEP) ?
 120			0 : child->thread.per_user.start;
 121	else if (addr == (addr_t) &dummy->cr11)
 122		/* End address of the active per set. */
 123		return test_thread_flag(TIF_SINGLE_STEP) ?
 124			PSW_ADDR_INSN : child->thread.per_user.end;
 125	else if (addr == (addr_t) &dummy->bits)
 126		/* Single-step bit. */
 127		return test_thread_flag(TIF_SINGLE_STEP) ?
 128			(1UL << (BITS_PER_LONG - 1)) : 0;
 129	else if (addr == (addr_t) &dummy->starting_addr)
 130		/* Start address of the user specified per set. */
 131		return child->thread.per_user.start;
 132	else if (addr == (addr_t) &dummy->ending_addr)
 133		/* End address of the user specified per set. */
 134		return child->thread.per_user.end;
 135	else if (addr == (addr_t) &dummy->perc_atmid)
 136		/* PER code, ATMID and AI of the last PER trap */
 137		return (unsigned long)
 138			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 139	else if (addr == (addr_t) &dummy->address)
 140		/* Address of the last PER trap */
 141		return child->thread.per_event.address;
 142	else if (addr == (addr_t) &dummy->access_id)
 143		/* Access id of the last PER trap */
 144		return (unsigned long)
 145			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 146	return 0;
 147}
 148
 149/*
 150 * Read the word at offset addr from the user area of a process. The
 151 * trouble here is that the information is littered over different
 152 * locations. The process registers are found on the kernel stack,
 153 * the floating point stuff and the trace settings are stored in
 154 * the task structure. In addition the different structures in
 155 * struct user contain pad bytes that should be read as zeroes.
 156 * Lovely...
 157 */
 158static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 159{
 160	struct user *dummy = NULL;
 161	addr_t offset, tmp;
 162
 163	if (addr < (addr_t) &dummy->regs.acrs) {
 164		/*
 165		 * psw and gprs are stored on the stack
 166		 */
 167		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 168		if (addr == (addr_t) &dummy->regs.psw.mask)
 169			/* Remove per bit from user psw. */
 170			tmp &= ~PSW_MASK_PER;
 
 
 171
 172	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 173		/*
 174		 * access registers are stored in the thread structure
 175		 */
 176		offset = addr - (addr_t) &dummy->regs.acrs;
 177#ifdef CONFIG_64BIT
 178		/*
 179		 * Very special case: old & broken 64 bit gdb reading
 180		 * from acrs[15]. Result is a 64 bit value. Read the
 181		 * 32 bit acrs[15] value and shift it by 32. Sick...
 182		 */
 183		if (addr == (addr_t) &dummy->regs.acrs[15])
 184			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 185		else
 186#endif
 187		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 188
 189	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 190		/*
 191		 * orig_gpr2 is stored on the kernel stack
 192		 */
 193		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 194
 195	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 196		/*
 197		 * prevent reads of padding hole between
 198		 * orig_gpr2 and fp_regs on s390.
 199		 */
 200		tmp = 0;
 201
 
 
 
 
 
 
 
 202	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 203		/* 
 204		 * floating point regs. are stored in the thread structure
 
 205		 */
 206		offset = addr - (addr_t) &dummy->regs.fp_regs;
 207		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
 208		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 209			tmp &= (unsigned long) FPC_VALID_MASK
 210				<< (BITS_PER_LONG - 32);
 
 
 211
 212	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 213		/*
 214		 * Handle access to the per_info structure.
 215		 */
 216		addr -= (addr_t) &dummy->regs.per_info;
 217		tmp = __peek_user_per(child, addr);
 218
 219	} else
 220		tmp = 0;
 221
 222	return tmp;
 223}
 224
 225static int
 226peek_user(struct task_struct *child, addr_t addr, addr_t data)
 227{
 228	addr_t tmp, mask;
 229
 230	/*
 231	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 232	 * an alignment of 4. Programmers from hell...
 233	 */
 234	mask = __ADDR_MASK;
 235#ifdef CONFIG_64BIT
 236	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 237	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 238		mask = 3;
 239#endif
 240	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 241		return -EIO;
 242
 243	tmp = __peek_user(child, addr);
 244	return put_user(tmp, (addr_t __user *) data);
 245}
 246
 247static inline void __poke_user_per(struct task_struct *child,
 248				   addr_t addr, addr_t data)
 249{
 250	struct per_struct_kernel *dummy = NULL;
 251
 252	/*
 253	 * There are only three fields in the per_info struct that the
 254	 * debugger user can write to.
 255	 * 1) cr9: the debugger wants to set a new PER event mask
 256	 * 2) starting_addr: the debugger wants to set a new starting
 257	 *    address to use with the PER event mask.
 258	 * 3) ending_addr: the debugger wants to set a new ending
 259	 *    address to use with the PER event mask.
 260	 * The user specified PER event mask and the start and end
 261	 * addresses are used only if single stepping is not in effect.
 262	 * Writes to any other field in per_info are ignored.
 263	 */
 264	if (addr == (addr_t) &dummy->cr9)
 265		/* PER event mask of the user specified per set. */
 266		child->thread.per_user.control =
 267			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 268	else if (addr == (addr_t) &dummy->starting_addr)
 269		/* Starting address of the user specified per set. */
 270		child->thread.per_user.start = data;
 271	else if (addr == (addr_t) &dummy->ending_addr)
 272		/* Ending address of the user specified per set. */
 273		child->thread.per_user.end = data;
 274}
 275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276/*
 277 * Write a word to the user area of a process at location addr. This
 278 * operation does have an additional problem compared to peek_user.
 279 * Stores to the program status word and on the floating point
 280 * control register needs to get checked for validity.
 281 */
 282static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 283{
 284	struct user *dummy = NULL;
 285	addr_t offset;
 286
 
 287	if (addr < (addr_t) &dummy->regs.acrs) {
 
 288		/*
 289		 * psw and gprs are stored on the stack
 290		 */
 291		if (addr == (addr_t) &dummy->regs.psw.mask &&
 292#ifdef CONFIG_COMPAT
 293		    data != PSW_MASK_MERGE(psw_user32_bits, data) &&
 294#endif
 295		    data != PSW_MASK_MERGE(psw_user_bits, data))
 296			/* Invalid psw mask. */
 297			return -EINVAL;
 298#ifndef CONFIG_64BIT
 299		if (addr == (addr_t) &dummy->regs.psw.addr)
 300			/* I'd like to reject addresses without the
 301			   high order bit but older gdb's rely on it */
 302			data |= PSW_ADDR_AMODE;
 303#endif
 304		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 
 
 
 
 
 305
 306	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 307		/*
 308		 * access registers are stored in the thread structure
 309		 */
 310		offset = addr - (addr_t) &dummy->regs.acrs;
 311#ifdef CONFIG_64BIT
 312		/*
 313		 * Very special case: old & broken 64 bit gdb writing
 314		 * to acrs[15] with a 64 bit value. Ignore the lower
 315		 * half of the value and write the upper 32 bit to
 316		 * acrs[15]. Sick...
 317		 */
 318		if (addr == (addr_t) &dummy->regs.acrs[15])
 319			child->thread.acrs[15] = (unsigned int) (data >> 32);
 320		else
 321#endif
 322		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 323
 324	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 325		/*
 326		 * orig_gpr2 is stored on the kernel stack
 327		 */
 328		task_pt_regs(child)->orig_gpr2 = data;
 329
 330	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 331		/*
 332		 * prevent writes of padding hole between
 333		 * orig_gpr2 and fp_regs on s390.
 334		 */
 335		return 0;
 336
 337	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 338		/*
 339		 * floating point regs. are stored in the thread structure
 340		 */
 341		if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
 342		    (data & ~((unsigned long) FPC_VALID_MASK
 343			      << (BITS_PER_LONG - 32))) != 0)
 344			return -EINVAL;
 345		offset = addr - (addr_t) &dummy->regs.fp_regs;
 346		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
 
 
 
 
 
 
 
 
 
 
 
 
 347
 348	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 349		/*
 350		 * Handle access to the per_info structure.
 351		 */
 352		addr -= (addr_t) &dummy->regs.per_info;
 353		__poke_user_per(child, addr, data);
 354
 355	}
 356
 357	return 0;
 358}
 359
 360static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 361{
 362	addr_t mask;
 363
 364	/*
 365	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 366	 * an alignment of 4. Programmers from hell indeed...
 367	 */
 368	mask = __ADDR_MASK;
 369#ifdef CONFIG_64BIT
 370	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 371	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 372		mask = 3;
 373#endif
 374	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 375		return -EIO;
 376
 377	return __poke_user(child, addr, data);
 378}
 379
 380long arch_ptrace(struct task_struct *child, long request,
 381		 unsigned long addr, unsigned long data)
 382{
 383	ptrace_area parea; 
 384	int copied, ret;
 385
 386	switch (request) {
 387	case PTRACE_PEEKUSR:
 388		/* read the word at location addr in the USER area. */
 389		return peek_user(child, addr, data);
 390
 391	case PTRACE_POKEUSR:
 392		/* write the word at location addr in the USER area */
 393		return poke_user(child, addr, data);
 394
 395	case PTRACE_PEEKUSR_AREA:
 396	case PTRACE_POKEUSR_AREA:
 397		if (copy_from_user(&parea, (void __force __user *) addr,
 398							sizeof(parea)))
 399			return -EFAULT;
 400		addr = parea.kernel_addr;
 401		data = parea.process_addr;
 402		copied = 0;
 403		while (copied < parea.len) {
 404			if (request == PTRACE_PEEKUSR_AREA)
 405				ret = peek_user(child, addr, data);
 406			else {
 407				addr_t utmp;
 408				if (get_user(utmp,
 409					     (addr_t __force __user *) data))
 410					return -EFAULT;
 411				ret = poke_user(child, addr, utmp);
 412			}
 413			if (ret)
 414				return ret;
 415			addr += sizeof(unsigned long);
 416			data += sizeof(unsigned long);
 417			copied += sizeof(unsigned long);
 418		}
 419		return 0;
 420	case PTRACE_GET_LAST_BREAK:
 421		put_user(task_thread_info(child)->last_break,
 422			 (unsigned long __user *) data);
 423		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424	default:
 425		/* Removing high order bit from addr (only for 31 bit). */
 426		addr &= PSW_ADDR_INSN;
 427		return ptrace_request(child, request, addr, data);
 428	}
 429}
 430
 431#ifdef CONFIG_COMPAT
 432/*
 433 * Now the fun part starts... a 31 bit program running in the
 434 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 435 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 436 * to handle, the difference to the 64 bit versions of the requests
 437 * is that the access is done in multiples of 4 byte instead of
 438 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 439 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 440 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 441 * is a 31 bit program too, the content of struct user can be
 442 * emulated. A 31 bit program peeking into the struct user of
 443 * a 64 bit program is a no-no.
 444 */
 445
 446/*
 447 * Same as peek_user_per but for a 31 bit program.
 448 */
 449static inline __u32 __peek_user_per_compat(struct task_struct *child,
 450					   addr_t addr)
 451{
 452	struct compat_per_struct_kernel *dummy32 = NULL;
 453
 454	if (addr == (addr_t) &dummy32->cr9)
 455		/* Control bits of the active per set. */
 456		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 457			PER_EVENT_IFETCH : child->thread.per_user.control;
 458	else if (addr == (addr_t) &dummy32->cr10)
 459		/* Start address of the active per set. */
 460		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 461			0 : child->thread.per_user.start;
 462	else if (addr == (addr_t) &dummy32->cr11)
 463		/* End address of the active per set. */
 464		return test_thread_flag(TIF_SINGLE_STEP) ?
 465			PSW32_ADDR_INSN : child->thread.per_user.end;
 466	else if (addr == (addr_t) &dummy32->bits)
 467		/* Single-step bit. */
 468		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 469			0x80000000 : 0;
 470	else if (addr == (addr_t) &dummy32->starting_addr)
 471		/* Start address of the user specified per set. */
 472		return (__u32) child->thread.per_user.start;
 473	else if (addr == (addr_t) &dummy32->ending_addr)
 474		/* End address of the user specified per set. */
 475		return (__u32) child->thread.per_user.end;
 476	else if (addr == (addr_t) &dummy32->perc_atmid)
 477		/* PER code, ATMID and AI of the last PER trap */
 478		return (__u32) child->thread.per_event.cause << 16;
 479	else if (addr == (addr_t) &dummy32->address)
 480		/* Address of the last PER trap */
 481		return (__u32) child->thread.per_event.address;
 482	else if (addr == (addr_t) &dummy32->access_id)
 483		/* Access id of the last PER trap */
 484		return (__u32) child->thread.per_event.paid << 24;
 485	return 0;
 486}
 487
 488/*
 489 * Same as peek_user but for a 31 bit program.
 490 */
 491static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 492{
 493	struct compat_user *dummy32 = NULL;
 494	addr_t offset;
 495	__u32 tmp;
 496
 497	if (addr < (addr_t) &dummy32->regs.acrs) {
 
 498		/*
 499		 * psw and gprs are stored on the stack
 500		 */
 501		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 502			/* Fake a 31 bit psw mask. */
 503			tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32);
 504			tmp = PSW32_MASK_MERGE(psw32_user_bits, tmp);
 
 505		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 506			/* Fake a 31 bit psw address. */
 507			tmp = (__u32) task_pt_regs(child)->psw.addr |
 508				PSW32_ADDR_AMODE31;
 509		} else {
 510			/* gpr 0-15 */
 511			tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw +
 512					 addr*2 + 4);
 513		}
 514	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 515		/*
 516		 * access registers are stored in the thread structure
 517		 */
 518		offset = addr - (addr_t) &dummy32->regs.acrs;
 519		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 520
 521	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 522		/*
 523		 * orig_gpr2 is stored on the kernel stack
 524		 */
 525		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 526
 527	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 528		/*
 529		 * prevent reads of padding hole between
 530		 * orig_gpr2 and fp_regs on s390.
 531		 */
 532		tmp = 0;
 533
 
 
 
 
 
 
 534	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 535		/*
 536		 * floating point regs. are stored in the thread structure 
 
 537		 */
 538	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 539		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
 
 
 
 
 
 540
 541	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 542		/*
 543		 * Handle access to the per_info structure.
 544		 */
 545		addr -= (addr_t) &dummy32->regs.per_info;
 546		tmp = __peek_user_per_compat(child, addr);
 547
 548	} else
 549		tmp = 0;
 550
 551	return tmp;
 552}
 553
 554static int peek_user_compat(struct task_struct *child,
 555			    addr_t addr, addr_t data)
 556{
 557	__u32 tmp;
 558
 559	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 560		return -EIO;
 561
 562	tmp = __peek_user_compat(child, addr);
 563	return put_user(tmp, (__u32 __user *) data);
 564}
 565
 566/*
 567 * Same as poke_user_per but for a 31 bit program.
 568 */
 569static inline void __poke_user_per_compat(struct task_struct *child,
 570					  addr_t addr, __u32 data)
 571{
 572	struct compat_per_struct_kernel *dummy32 = NULL;
 573
 574	if (addr == (addr_t) &dummy32->cr9)
 575		/* PER event mask of the user specified per set. */
 576		child->thread.per_user.control =
 577			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 578	else if (addr == (addr_t) &dummy32->starting_addr)
 579		/* Starting address of the user specified per set. */
 580		child->thread.per_user.start = data;
 581	else if (addr == (addr_t) &dummy32->ending_addr)
 582		/* Ending address of the user specified per set. */
 583		child->thread.per_user.end = data;
 584}
 585
 586/*
 587 * Same as poke_user but for a 31 bit program.
 588 */
 589static int __poke_user_compat(struct task_struct *child,
 590			      addr_t addr, addr_t data)
 591{
 592	struct compat_user *dummy32 = NULL;
 593	__u32 tmp = (__u32) data;
 594	addr_t offset;
 595
 596	if (addr < (addr_t) &dummy32->regs.acrs) {
 
 597		/*
 598		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 599		 */
 600		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 
 
 
 601			/* Build a 64 bit psw mask from 31 bit mask. */
 602			if (tmp != PSW32_MASK_MERGE(psw32_user_bits, tmp))
 603				/* Invalid psw mask. */
 604				return -EINVAL;
 605			task_pt_regs(child)->psw.mask =
 606				PSW_MASK_MERGE(psw_user32_bits, (__u64) tmp << 32);
 
 
 
 
 607		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 608			/* Build a 64 bit psw address from 31 bit address. */
 609			task_pt_regs(child)->psw.addr =
 610				(__u64) tmp & PSW32_ADDR_INSN;
 
 
 611		} else {
 
 
 
 
 612			/* gpr 0-15 */
 613			*(__u32*)((addr_t) &task_pt_regs(child)->psw
 614				  + addr*2 + 4) = tmp;
 615		}
 616	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 617		/*
 618		 * access registers are stored in the thread structure
 619		 */
 620		offset = addr - (addr_t) &dummy32->regs.acrs;
 621		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 622
 623	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 624		/*
 625		 * orig_gpr2 is stored on the kernel stack
 626		 */
 627		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 628
 629	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 630		/*
 631		 * prevent writess of padding hole between
 632		 * orig_gpr2 and fp_regs on s390.
 633		 */
 634		return 0;
 635
 636	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 637		/*
 638		 * floating point regs. are stored in the thread structure 
 639		 */
 640		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
 641		    (tmp & ~FPC_VALID_MASK) != 0)
 642			/* Invalid floating point control. */
 643			return -EINVAL;
 644	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 645		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 646
 647	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 648		/*
 649		 * Handle access to the per_info structure.
 650		 */
 651		addr -= (addr_t) &dummy32->regs.per_info;
 652		__poke_user_per_compat(child, addr, data);
 653	}
 654
 655	return 0;
 656}
 657
 658static int poke_user_compat(struct task_struct *child,
 659			    addr_t addr, addr_t data)
 660{
 661	if (!is_compat_task() || (addr & 3) ||
 662	    addr > sizeof(struct compat_user) - 3)
 663		return -EIO;
 664
 665	return __poke_user_compat(child, addr, data);
 666}
 667
 668long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 669			compat_ulong_t caddr, compat_ulong_t cdata)
 670{
 671	unsigned long addr = caddr;
 672	unsigned long data = cdata;
 673	compat_ptrace_area parea;
 674	int copied, ret;
 675
 676	switch (request) {
 677	case PTRACE_PEEKUSR:
 678		/* read the word at location addr in the USER area. */
 679		return peek_user_compat(child, addr, data);
 680
 681	case PTRACE_POKEUSR:
 682		/* write the word at location addr in the USER area */
 683		return poke_user_compat(child, addr, data);
 684
 685	case PTRACE_PEEKUSR_AREA:
 686	case PTRACE_POKEUSR_AREA:
 687		if (copy_from_user(&parea, (void __force __user *) addr,
 688							sizeof(parea)))
 689			return -EFAULT;
 690		addr = parea.kernel_addr;
 691		data = parea.process_addr;
 692		copied = 0;
 693		while (copied < parea.len) {
 694			if (request == PTRACE_PEEKUSR_AREA)
 695				ret = peek_user_compat(child, addr, data);
 696			else {
 697				__u32 utmp;
 698				if (get_user(utmp,
 699					     (__u32 __force __user *) data))
 700					return -EFAULT;
 701				ret = poke_user_compat(child, addr, utmp);
 702			}
 703			if (ret)
 704				return ret;
 705			addr += sizeof(unsigned int);
 706			data += sizeof(unsigned int);
 707			copied += sizeof(unsigned int);
 708		}
 709		return 0;
 710	case PTRACE_GET_LAST_BREAK:
 711		put_user(task_thread_info(child)->last_break,
 712			 (unsigned int __user *) data);
 713		return 0;
 714	}
 715	return compat_ptrace_request(child, request, addr, data);
 716}
 717#endif
 718
 719asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 720{
 721	long ret = 0;
 
 722
 723	/* Do the secure computing check first. */
 724	secure_computing(regs->gprs[2]);
 725
 726	/*
 727	 * The sysc_tracesys code in entry.S stored the system
 728	 * call number to gprs[2].
 729	 */
 730	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 731	    (tracehook_report_syscall_entry(regs) ||
 732	     regs->gprs[2] >= NR_syscalls)) {
 733		/*
 734		 * Tracing decided this syscall should not happen or the
 735		 * debugger stored an invalid system call number. Skip
 736		 * the system call and the system call restart handling.
 737		 */
 738		regs->svcnr = 0;
 739		ret = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740	}
 
 741
 742	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 743		trace_sys_enter(regs, regs->gprs[2]);
 744
 745	if (unlikely(current->audit_context))
 746		audit_syscall_entry(is_compat_task() ?
 747					AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
 748				    regs->gprs[2], regs->orig_gpr2,
 749				    regs->gprs[3], regs->gprs[4],
 750				    regs->gprs[5]);
 751	return ret ?: regs->gprs[2];
 
 
 
 
 
 
 752}
 753
 754asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 755{
 756	if (unlikely(current->audit_context))
 757		audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
 758				   regs->gprs[2]);
 759
 760	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 761		trace_sys_exit(regs, regs->gprs[2]);
 762
 763	if (test_thread_flag(TIF_SYSCALL_TRACE))
 764		tracehook_report_syscall_exit(regs, 0);
 765}
 766
 767/*
 768 * user_regset definitions.
 769 */
 770
 771static int s390_regs_get(struct task_struct *target,
 772			 const struct user_regset *regset,
 773			 unsigned int pos, unsigned int count,
 774			 void *kbuf, void __user *ubuf)
 775{
 
 776	if (target == current)
 777		save_access_regs(target->thread.acrs);
 778
 779	if (kbuf) {
 780		unsigned long *k = kbuf;
 781		while (count > 0) {
 782			*k++ = __peek_user(target, pos);
 783			count -= sizeof(*k);
 784			pos += sizeof(*k);
 785		}
 786	} else {
 787		unsigned long __user *u = ubuf;
 788		while (count > 0) {
 789			if (__put_user(__peek_user(target, pos), u++))
 790				return -EFAULT;
 791			count -= sizeof(*u);
 792			pos += sizeof(*u);
 793		}
 794	}
 795	return 0;
 796}
 797
 798static int s390_regs_set(struct task_struct *target,
 799			 const struct user_regset *regset,
 800			 unsigned int pos, unsigned int count,
 801			 const void *kbuf, const void __user *ubuf)
 802{
 803	int rc = 0;
 804
 805	if (target == current)
 806		save_access_regs(target->thread.acrs);
 807
 808	if (kbuf) {
 809		const unsigned long *k = kbuf;
 810		while (count > 0 && !rc) {
 811			rc = __poke_user(target, pos, *k++);
 812			count -= sizeof(*k);
 813			pos += sizeof(*k);
 814		}
 815	} else {
 816		const unsigned long  __user *u = ubuf;
 817		while (count > 0 && !rc) {
 818			unsigned long word;
 819			rc = __get_user(word, u++);
 820			if (rc)
 821				break;
 822			rc = __poke_user(target, pos, word);
 823			count -= sizeof(*u);
 824			pos += sizeof(*u);
 825		}
 826	}
 827
 828	if (rc == 0 && target == current)
 829		restore_access_regs(target->thread.acrs);
 830
 831	return rc;
 832}
 833
 834static int s390_fpregs_get(struct task_struct *target,
 835			   const struct user_regset *regset, unsigned int pos,
 836			   unsigned int count, void *kbuf, void __user *ubuf)
 837{
 
 
 838	if (target == current)
 839		save_fp_regs(&target->thread.fp_regs);
 840
 841	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 842				   &target->thread.fp_regs, 0, -1);
 
 
 843}
 844
 845static int s390_fpregs_set(struct task_struct *target,
 846			   const struct user_regset *regset, unsigned int pos,
 847			   unsigned int count, const void *kbuf,
 848			   const void __user *ubuf)
 849{
 850	int rc = 0;
 
 851
 852	if (target == current)
 853		save_fp_regs(&target->thread.fp_regs);
 
 
 
 
 
 854
 855	/* If setting FPC, must validate it first. */
 856	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 857		u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
 858		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
 859					0, offsetof(s390_fp_regs, fprs));
 860		if (rc)
 861			return rc;
 862		if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
 863			return -EINVAL;
 864		target->thread.fp_regs.fpc = fpc[0];
 865	}
 866
 867	if (rc == 0 && count > 0)
 868		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 869					target->thread.fp_regs.fprs,
 870					offsetof(s390_fp_regs, fprs), -1);
 871
 872	if (rc == 0 && target == current)
 873		restore_fp_regs(&target->thread.fp_regs);
 
 
 
 874
 875	return rc;
 876}
 877
 878#ifdef CONFIG_64BIT
 879
 880static int s390_last_break_get(struct task_struct *target,
 881			       const struct user_regset *regset,
 
 
 
 
 
 
 
 882			       unsigned int pos, unsigned int count,
 883			       void *kbuf, void __user *ubuf)
 884{
 885	if (count > 0) {
 886		if (kbuf) {
 887			unsigned long *k = kbuf;
 888			*k = task_thread_info(target)->last_break;
 889		} else {
 890			unsigned long  __user *u = ubuf;
 891			if (__put_user(task_thread_info(target)->last_break, u))
 892				return -EFAULT;
 893		}
 894	}
 895	return 0;
 896}
 897
 898#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900static const struct user_regset s390_regsets[] = {
 901	[REGSET_GENERAL] = {
 902		.core_note_type = NT_PRSTATUS,
 903		.n = sizeof(s390_regs) / sizeof(long),
 904		.size = sizeof(long),
 905		.align = sizeof(long),
 906		.get = s390_regs_get,
 907		.set = s390_regs_set,
 908	},
 909	[REGSET_FP] = {
 910		.core_note_type = NT_PRFPREG,
 911		.n = sizeof(s390_fp_regs) / sizeof(long),
 912		.size = sizeof(long),
 913		.align = sizeof(long),
 914		.get = s390_fpregs_get,
 915		.set = s390_fpregs_set,
 916	},
 917#ifdef CONFIG_64BIT
 918	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 919		.core_note_type = NT_S390_LAST_BREAK,
 920		.n = 1,
 921		.size = sizeof(long),
 922		.align = sizeof(long),
 923		.get = s390_last_break_get,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924	},
 925#endif
 926};
 927
 928static const struct user_regset_view user_s390_view = {
 929	.name = UTS_MACHINE,
 930	.e_machine = EM_S390,
 931	.regsets = s390_regsets,
 932	.n = ARRAY_SIZE(s390_regsets)
 933};
 934
 935#ifdef CONFIG_COMPAT
 936static int s390_compat_regs_get(struct task_struct *target,
 937				const struct user_regset *regset,
 938				unsigned int pos, unsigned int count,
 939				void *kbuf, void __user *ubuf)
 940{
 
 
 941	if (target == current)
 942		save_access_regs(target->thread.acrs);
 943
 944	if (kbuf) {
 945		compat_ulong_t *k = kbuf;
 946		while (count > 0) {
 947			*k++ = __peek_user_compat(target, pos);
 948			count -= sizeof(*k);
 949			pos += sizeof(*k);
 950		}
 951	} else {
 952		compat_ulong_t __user *u = ubuf;
 953		while (count > 0) {
 954			if (__put_user(__peek_user_compat(target, pos), u++))
 955				return -EFAULT;
 956			count -= sizeof(*u);
 957			pos += sizeof(*u);
 958		}
 959	}
 960	return 0;
 961}
 962
 963static int s390_compat_regs_set(struct task_struct *target,
 964				const struct user_regset *regset,
 965				unsigned int pos, unsigned int count,
 966				const void *kbuf, const void __user *ubuf)
 967{
 968	int rc = 0;
 969
 970	if (target == current)
 971		save_access_regs(target->thread.acrs);
 972
 973	if (kbuf) {
 974		const compat_ulong_t *k = kbuf;
 975		while (count > 0 && !rc) {
 976			rc = __poke_user_compat(target, pos, *k++);
 977			count -= sizeof(*k);
 978			pos += sizeof(*k);
 979		}
 980	} else {
 981		const compat_ulong_t  __user *u = ubuf;
 982		while (count > 0 && !rc) {
 983			compat_ulong_t word;
 984			rc = __get_user(word, u++);
 985			if (rc)
 986				break;
 987			rc = __poke_user_compat(target, pos, word);
 988			count -= sizeof(*u);
 989			pos += sizeof(*u);
 990		}
 991	}
 992
 993	if (rc == 0 && target == current)
 994		restore_access_regs(target->thread.acrs);
 995
 996	return rc;
 997}
 998
 999static int s390_compat_regs_high_get(struct task_struct *target,
1000				     const struct user_regset *regset,
1001				     unsigned int pos, unsigned int count,
1002				     void *kbuf, void __user *ubuf)
1003{
1004	compat_ulong_t *gprs_high;
 
1005
1006	gprs_high = (compat_ulong_t *)
1007		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1008	if (kbuf) {
1009		compat_ulong_t *k = kbuf;
1010		while (count > 0) {
1011			*k++ = *gprs_high;
1012			gprs_high += 2;
1013			count -= sizeof(*k);
1014		}
1015	} else {
1016		compat_ulong_t __user *u = ubuf;
1017		while (count > 0) {
1018			if (__put_user(*gprs_high, u++))
1019				return -EFAULT;
1020			gprs_high += 2;
1021			count -= sizeof(*u);
1022		}
1023	}
1024	return 0;
1025}
1026
1027static int s390_compat_regs_high_set(struct task_struct *target,
1028				     const struct user_regset *regset,
1029				     unsigned int pos, unsigned int count,
1030				     const void *kbuf, const void __user *ubuf)
1031{
1032	compat_ulong_t *gprs_high;
1033	int rc = 0;
1034
1035	gprs_high = (compat_ulong_t *)
1036		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1037	if (kbuf) {
1038		const compat_ulong_t *k = kbuf;
1039		while (count > 0) {
1040			*gprs_high = *k++;
1041			*gprs_high += 2;
1042			count -= sizeof(*k);
1043		}
1044	} else {
1045		const compat_ulong_t  __user *u = ubuf;
1046		while (count > 0 && !rc) {
1047			unsigned long word;
1048			rc = __get_user(word, u++);
1049			if (rc)
1050				break;
1051			*gprs_high = word;
1052			*gprs_high += 2;
1053			count -= sizeof(*u);
1054		}
1055	}
1056
1057	return rc;
1058}
1059
1060static int s390_compat_last_break_get(struct task_struct *target,
1061				      const struct user_regset *regset,
1062				      unsigned int pos, unsigned int count,
1063				      void *kbuf, void __user *ubuf)
1064{
1065	compat_ulong_t last_break;
1066
1067	if (count > 0) {
1068		last_break = task_thread_info(target)->last_break;
1069		if (kbuf) {
1070			unsigned long *k = kbuf;
1071			*k = last_break;
1072		} else {
1073			unsigned long  __user *u = ubuf;
1074			if (__put_user(last_break, u))
1075				return -EFAULT;
1076		}
1077	}
1078	return 0;
1079}
1080
1081static const struct user_regset s390_compat_regsets[] = {
1082	[REGSET_GENERAL] = {
1083		.core_note_type = NT_PRSTATUS,
1084		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1085		.size = sizeof(compat_long_t),
1086		.align = sizeof(compat_long_t),
1087		.get = s390_compat_regs_get,
1088		.set = s390_compat_regs_set,
1089	},
1090	[REGSET_FP] = {
1091		.core_note_type = NT_PRFPREG,
1092		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1093		.size = sizeof(compat_long_t),
1094		.align = sizeof(compat_long_t),
1095		.get = s390_fpregs_get,
1096		.set = s390_fpregs_set,
1097	},
1098	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 
1099		.core_note_type = NT_S390_LAST_BREAK,
1100		.n = 1,
1101		.size = sizeof(long),
1102		.align = sizeof(long),
1103		.get = s390_compat_last_break_get,
 
1104	},
1105	[REGSET_GENERAL_EXTENDED] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106		.core_note_type = NT_S390_HIGH_GPRS,
1107		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1108		.size = sizeof(compat_long_t),
1109		.align = sizeof(compat_long_t),
1110		.get = s390_compat_regs_high_get,
1111		.set = s390_compat_regs_high_set,
1112	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113};
1114
1115static const struct user_regset_view user_s390_compat_view = {
1116	.name = "s390",
1117	.e_machine = EM_S390,
1118	.regsets = s390_compat_regsets,
1119	.n = ARRAY_SIZE(s390_compat_regsets)
1120};
1121#endif
1122
1123const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1124{
1125#ifdef CONFIG_COMPAT
1126	if (test_tsk_thread_flag(task, TIF_31BIT))
1127		return &user_s390_compat_view;
1128#endif
1129	return &user_s390_view;
1130}
1131
1132static const char *gpr_names[NUM_GPRS] = {
1133	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1134	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1135};
1136
1137unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1138{
1139	if (offset >= NUM_GPRS)
1140		return 0;
1141	return regs->gprs[offset];
1142}
1143
1144int regs_query_register_offset(const char *name)
1145{
1146	unsigned long offset;
1147
1148	if (!name || *name != 'r')
1149		return -EINVAL;
1150	if (strict_strtoul(name + 1, 10, &offset))
1151		return -EINVAL;
1152	if (offset >= NUM_GPRS)
1153		return -EINVAL;
1154	return offset;
1155}
1156
1157const char *regs_query_register_name(unsigned int offset)
1158{
1159	if (offset >= NUM_GPRS)
1160		return NULL;
1161	return gpr_names[offset];
1162}
1163
1164static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1165{
1166	unsigned long ksp = kernel_stack_pointer(regs);
1167
1168	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1169}
1170
1171/**
1172 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1173 * @regs:pt_regs which contains kernel stack pointer.
1174 * @n:stack entry number.
1175 *
1176 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1177 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1178 * this returns 0.
1179 */
1180unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1181{
1182	unsigned long addr;
1183
1184	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1185	if (!regs_within_kernel_stack(regs, addr))
1186		return 0;
1187	return *(unsigned long *)addr;
1188}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/sched/task_stack.h>
  13#include <linux/mm.h>
  14#include <linux/smp.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/elf.h>
  22#include <linux/regset.h>
  23#include <linux/tracehook.h>
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
 
 
  27#include <asm/page.h>
  28#include <linux/uaccess.h>
 
 
 
  29#include <asm/unistd.h>
  30#include <asm/switch_to.h>
  31#include <asm/runtime_instr.h>
  32#include <asm/facility.h>
  33
  34#include "entry.h"
  35
  36#ifdef CONFIG_COMPAT
  37#include "compat_ptrace.h"
  38#endif
  39
  40#define CREATE_TRACE_POINTS
  41#include <trace/events/syscalls.h>
  42
  43void update_cr_regs(struct task_struct *task)
 
 
 
 
 
 
 
  44{
 
 
 
 
 
  45	struct pt_regs *regs = task_pt_regs(task);
  46	struct thread_struct *thread = &task->thread;
  47	struct per_regs old, new;
  48	union ctlreg0 cr0_old, cr0_new;
  49	union ctlreg2 cr2_old, cr2_new;
  50	int cr0_changed, cr2_changed;
  51
  52	__ctl_store(cr0_old.val, 0, 0);
  53	__ctl_store(cr2_old.val, 2, 2);
  54	cr0_new = cr0_old;
  55	cr2_new = cr2_old;
  56	/* Take care of the enable/disable of transactional execution. */
  57	if (MACHINE_HAS_TE) {
  58		/* Set or clear transaction execution TXC bit 8. */
  59		cr0_new.tcx = 1;
  60		if (task->thread.per_flags & PER_FLAG_NO_TE)
  61			cr0_new.tcx = 0;
  62		/* Set or clear transaction execution TDC bits 62 and 63. */
  63		cr2_new.tdc = 0;
  64		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  65			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  66				cr2_new.tdc = 1;
  67			else
  68				cr2_new.tdc = 2;
  69		}
  70	}
  71	/* Take care of enable/disable of guarded storage. */
  72	if (MACHINE_HAS_GS) {
  73		cr2_new.gse = 0;
  74		if (task->thread.gs_cb)
  75			cr2_new.gse = 1;
  76	}
  77	/* Load control register 0/2 iff changed */
  78	cr0_changed = cr0_new.val != cr0_old.val;
  79	cr2_changed = cr2_new.val != cr2_old.val;
  80	if (cr0_changed)
  81		__ctl_load(cr0_new.val, 0, 0);
  82	if (cr2_changed)
  83		__ctl_load(cr2_new.val, 2, 2);
  84	/* Copy user specified PER registers */
  85	new.control = thread->per_user.control;
  86	new.start = thread->per_user.start;
  87	new.end = thread->per_user.end;
  88
  89	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  90	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  91	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  92		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  93			new.control |= PER_EVENT_BRANCH;
  94		else
  95			new.control |= PER_EVENT_IFETCH;
  96		new.control |= PER_CONTROL_SUSPENSION;
  97		new.control |= PER_EVENT_TRANSACTION_END;
  98		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
  99			new.control |= PER_EVENT_IFETCH;
 100		new.start = 0;
 101		new.end = -1UL;
 102	}
 103
 104	/* Take care of the PER enablement bit in the PSW. */
 105	if (!(new.control & PER_EVENT_MASK)) {
 106		regs->psw.mask &= ~PSW_MASK_PER;
 107		return;
 108	}
 109	regs->psw.mask |= PSW_MASK_PER;
 110	__ctl_store(old, 9, 11);
 111	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 112		__ctl_load(new, 9, 11);
 113}
 114
 115void user_enable_single_step(struct task_struct *task)
 116{
 117	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 118	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 
 
 119}
 120
 121void user_disable_single_step(struct task_struct *task)
 122{
 123	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 124	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 125}
 126
 127void user_enable_block_step(struct task_struct *task)
 128{
 129	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 130	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 131}
 132
 133/*
 134 * Called by kernel/ptrace.c when detaching..
 135 *
 136 * Clear all debugging related fields.
 137 */
 138void ptrace_disable(struct task_struct *task)
 139{
 140	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 141	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 142	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 143	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 144	task->thread.per_flags = 0;
 145}
 146
 147#define __ADDR_MASK 7
 
 
 
 
 148
 149static inline unsigned long __peek_user_per(struct task_struct *child,
 150					    addr_t addr)
 151{
 152	struct per_struct_kernel *dummy = NULL;
 153
 154	if (addr == (addr_t) &dummy->cr9)
 155		/* Control bits of the active per set. */
 156		return test_thread_flag(TIF_SINGLE_STEP) ?
 157			PER_EVENT_IFETCH : child->thread.per_user.control;
 158	else if (addr == (addr_t) &dummy->cr10)
 159		/* Start address of the active per set. */
 160		return test_thread_flag(TIF_SINGLE_STEP) ?
 161			0 : child->thread.per_user.start;
 162	else if (addr == (addr_t) &dummy->cr11)
 163		/* End address of the active per set. */
 164		return test_thread_flag(TIF_SINGLE_STEP) ?
 165			-1UL : child->thread.per_user.end;
 166	else if (addr == (addr_t) &dummy->bits)
 167		/* Single-step bit. */
 168		return test_thread_flag(TIF_SINGLE_STEP) ?
 169			(1UL << (BITS_PER_LONG - 1)) : 0;
 170	else if (addr == (addr_t) &dummy->starting_addr)
 171		/* Start address of the user specified per set. */
 172		return child->thread.per_user.start;
 173	else if (addr == (addr_t) &dummy->ending_addr)
 174		/* End address of the user specified per set. */
 175		return child->thread.per_user.end;
 176	else if (addr == (addr_t) &dummy->perc_atmid)
 177		/* PER code, ATMID and AI of the last PER trap */
 178		return (unsigned long)
 179			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 180	else if (addr == (addr_t) &dummy->address)
 181		/* Address of the last PER trap */
 182		return child->thread.per_event.address;
 183	else if (addr == (addr_t) &dummy->access_id)
 184		/* Access id of the last PER trap */
 185		return (unsigned long)
 186			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 187	return 0;
 188}
 189
 190/*
 191 * Read the word at offset addr from the user area of a process. The
 192 * trouble here is that the information is littered over different
 193 * locations. The process registers are found on the kernel stack,
 194 * the floating point stuff and the trace settings are stored in
 195 * the task structure. In addition the different structures in
 196 * struct user contain pad bytes that should be read as zeroes.
 197 * Lovely...
 198 */
 199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 200{
 201	struct user *dummy = NULL;
 202	addr_t offset, tmp;
 203
 204	if (addr < (addr_t) &dummy->regs.acrs) {
 205		/*
 206		 * psw and gprs are stored on the stack
 207		 */
 208		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 209		if (addr == (addr_t) &dummy->regs.psw.mask) {
 210			/* Return a clean psw mask. */
 211			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 212			tmp |= PSW_USER_BITS;
 213		}
 214
 215	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 216		/*
 217		 * access registers are stored in the thread structure
 218		 */
 219		offset = addr - (addr_t) &dummy->regs.acrs;
 
 220		/*
 221		 * Very special case: old & broken 64 bit gdb reading
 222		 * from acrs[15]. Result is a 64 bit value. Read the
 223		 * 32 bit acrs[15] value and shift it by 32. Sick...
 224		 */
 225		if (addr == (addr_t) &dummy->regs.acrs[15])
 226			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 227		else
 228			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 
 229
 230	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 231		/*
 232		 * orig_gpr2 is stored on the kernel stack
 233		 */
 234		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 235
 236	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 237		/*
 238		 * prevent reads of padding hole between
 239		 * orig_gpr2 and fp_regs on s390.
 240		 */
 241		tmp = 0;
 242
 243	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 244		/*
 245		 * floating point control reg. is in the thread structure
 246		 */
 247		tmp = child->thread.fpu.fpc;
 248		tmp <<= BITS_PER_LONG - 32;
 249
 250	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 251		/*
 252		 * floating point regs. are either in child->thread.fpu
 253		 * or the child->thread.fpu.vxrs array
 254		 */
 255		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 256		if (MACHINE_HAS_VX)
 257			tmp = *(addr_t *)
 258			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 259		else
 260			tmp = *(addr_t *)
 261			       ((addr_t) child->thread.fpu.fprs + offset);
 262
 263	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 264		/*
 265		 * Handle access to the per_info structure.
 266		 */
 267		addr -= (addr_t) &dummy->regs.per_info;
 268		tmp = __peek_user_per(child, addr);
 269
 270	} else
 271		tmp = 0;
 272
 273	return tmp;
 274}
 275
 276static int
 277peek_user(struct task_struct *child, addr_t addr, addr_t data)
 278{
 279	addr_t tmp, mask;
 280
 281	/*
 282	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 283	 * an alignment of 4. Programmers from hell...
 284	 */
 285	mask = __ADDR_MASK;
 
 286	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 287	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 288		mask = 3;
 
 289	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 290		return -EIO;
 291
 292	tmp = __peek_user(child, addr);
 293	return put_user(tmp, (addr_t __user *) data);
 294}
 295
 296static inline void __poke_user_per(struct task_struct *child,
 297				   addr_t addr, addr_t data)
 298{
 299	struct per_struct_kernel *dummy = NULL;
 300
 301	/*
 302	 * There are only three fields in the per_info struct that the
 303	 * debugger user can write to.
 304	 * 1) cr9: the debugger wants to set a new PER event mask
 305	 * 2) starting_addr: the debugger wants to set a new starting
 306	 *    address to use with the PER event mask.
 307	 * 3) ending_addr: the debugger wants to set a new ending
 308	 *    address to use with the PER event mask.
 309	 * The user specified PER event mask and the start and end
 310	 * addresses are used only if single stepping is not in effect.
 311	 * Writes to any other field in per_info are ignored.
 312	 */
 313	if (addr == (addr_t) &dummy->cr9)
 314		/* PER event mask of the user specified per set. */
 315		child->thread.per_user.control =
 316			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 317	else if (addr == (addr_t) &dummy->starting_addr)
 318		/* Starting address of the user specified per set. */
 319		child->thread.per_user.start = data;
 320	else if (addr == (addr_t) &dummy->ending_addr)
 321		/* Ending address of the user specified per set. */
 322		child->thread.per_user.end = data;
 323}
 324
 325static void fixup_int_code(struct task_struct *child, addr_t data)
 326{
 327	struct pt_regs *regs = task_pt_regs(child);
 328	int ilc = regs->int_code >> 16;
 329	u16 insn;
 330
 331	if (ilc > 6)
 332		return;
 333
 334	if (ptrace_access_vm(child, regs->psw.addr - (regs->int_code >> 16),
 335			&insn, sizeof(insn), FOLL_FORCE) != sizeof(insn))
 336		return;
 337
 338	/* double check that tracee stopped on svc instruction */
 339	if ((insn >> 8) != 0xa)
 340		return;
 341
 342	regs->int_code = 0x20000 | (data & 0xffff);
 343}
 344/*
 345 * Write a word to the user area of a process at location addr. This
 346 * operation does have an additional problem compared to peek_user.
 347 * Stores to the program status word and on the floating point
 348 * control register needs to get checked for validity.
 349 */
 350static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 351{
 352	struct user *dummy = NULL;
 353	addr_t offset;
 354
 355
 356	if (addr < (addr_t) &dummy->regs.acrs) {
 357		struct pt_regs *regs = task_pt_regs(child);
 358		/*
 359		 * psw and gprs are stored on the stack
 360		 */
 361		if (addr == (addr_t) &dummy->regs.psw.mask) {
 362			unsigned long mask = PSW_MASK_USER;
 363
 364			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 365			if ((data ^ PSW_USER_BITS) & ~mask)
 366				/* Invalid psw mask. */
 367				return -EINVAL;
 368			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 369				/* Invalid address-space-control bits */
 370				return -EINVAL;
 371			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 372				/* Invalid addressing mode bits */
 373				return -EINVAL;
 374		}
 375
 376		if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 377			addr == offsetof(struct user, regs.gprs[2]))
 378			fixup_int_code(child, data);
 379		*(addr_t *)((addr_t) &regs->psw + addr) = data;
 380
 381	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 382		/*
 383		 * access registers are stored in the thread structure
 384		 */
 385		offset = addr - (addr_t) &dummy->regs.acrs;
 
 386		/*
 387		 * Very special case: old & broken 64 bit gdb writing
 388		 * to acrs[15] with a 64 bit value. Ignore the lower
 389		 * half of the value and write the upper 32 bit to
 390		 * acrs[15]. Sick...
 391		 */
 392		if (addr == (addr_t) &dummy->regs.acrs[15])
 393			child->thread.acrs[15] = (unsigned int) (data >> 32);
 394		else
 395			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 
 396
 397	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 398		/*
 399		 * orig_gpr2 is stored on the kernel stack
 400		 */
 401		task_pt_regs(child)->orig_gpr2 = data;
 402
 403	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 404		/*
 405		 * prevent writes of padding hole between
 406		 * orig_gpr2 and fp_regs on s390.
 407		 */
 408		return 0;
 409
 410	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 411		/*
 412		 * floating point control reg. is in the thread structure
 413		 */
 414		if ((unsigned int) data != 0 ||
 415		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 
 416			return -EINVAL;
 417		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 418
 419	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 420		/*
 421		 * floating point regs. are either in child->thread.fpu
 422		 * or the child->thread.fpu.vxrs array
 423		 */
 424		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 425		if (MACHINE_HAS_VX)
 426			*(addr_t *)((addr_t)
 427				child->thread.fpu.vxrs + 2*offset) = data;
 428		else
 429			*(addr_t *)((addr_t)
 430				child->thread.fpu.fprs + offset) = data;
 431
 432	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 433		/*
 434		 * Handle access to the per_info structure.
 435		 */
 436		addr -= (addr_t) &dummy->regs.per_info;
 437		__poke_user_per(child, addr, data);
 438
 439	}
 440
 441	return 0;
 442}
 443
 444static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 445{
 446	addr_t mask;
 447
 448	/*
 449	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 450	 * an alignment of 4. Programmers from hell indeed...
 451	 */
 452	mask = __ADDR_MASK;
 
 453	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 454	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 455		mask = 3;
 
 456	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 457		return -EIO;
 458
 459	return __poke_user(child, addr, data);
 460}
 461
 462long arch_ptrace(struct task_struct *child, long request,
 463		 unsigned long addr, unsigned long data)
 464{
 465	ptrace_area parea; 
 466	int copied, ret;
 467
 468	switch (request) {
 469	case PTRACE_PEEKUSR:
 470		/* read the word at location addr in the USER area. */
 471		return peek_user(child, addr, data);
 472
 473	case PTRACE_POKEUSR:
 474		/* write the word at location addr in the USER area */
 475		return poke_user(child, addr, data);
 476
 477	case PTRACE_PEEKUSR_AREA:
 478	case PTRACE_POKEUSR_AREA:
 479		if (copy_from_user(&parea, (void __force __user *) addr,
 480							sizeof(parea)))
 481			return -EFAULT;
 482		addr = parea.kernel_addr;
 483		data = parea.process_addr;
 484		copied = 0;
 485		while (copied < parea.len) {
 486			if (request == PTRACE_PEEKUSR_AREA)
 487				ret = peek_user(child, addr, data);
 488			else {
 489				addr_t utmp;
 490				if (get_user(utmp,
 491					     (addr_t __force __user *) data))
 492					return -EFAULT;
 493				ret = poke_user(child, addr, utmp);
 494			}
 495			if (ret)
 496				return ret;
 497			addr += sizeof(unsigned long);
 498			data += sizeof(unsigned long);
 499			copied += sizeof(unsigned long);
 500		}
 501		return 0;
 502	case PTRACE_GET_LAST_BREAK:
 503		put_user(child->thread.last_break,
 504			 (unsigned long __user *) data);
 505		return 0;
 506	case PTRACE_ENABLE_TE:
 507		if (!MACHINE_HAS_TE)
 508			return -EIO;
 509		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 510		return 0;
 511	case PTRACE_DISABLE_TE:
 512		if (!MACHINE_HAS_TE)
 513			return -EIO;
 514		child->thread.per_flags |= PER_FLAG_NO_TE;
 515		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 516		return 0;
 517	case PTRACE_TE_ABORT_RAND:
 518		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 519			return -EIO;
 520		switch (data) {
 521		case 0UL:
 522			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 523			break;
 524		case 1UL:
 525			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 526			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 527			break;
 528		case 2UL:
 529			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 530			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 531			break;
 532		default:
 533			return -EINVAL;
 534		}
 535		return 0;
 536	default:
 
 
 537		return ptrace_request(child, request, addr, data);
 538	}
 539}
 540
 541#ifdef CONFIG_COMPAT
 542/*
 543 * Now the fun part starts... a 31 bit program running in the
 544 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 545 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 546 * to handle, the difference to the 64 bit versions of the requests
 547 * is that the access is done in multiples of 4 byte instead of
 548 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 549 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 550 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 551 * is a 31 bit program too, the content of struct user can be
 552 * emulated. A 31 bit program peeking into the struct user of
 553 * a 64 bit program is a no-no.
 554 */
 555
 556/*
 557 * Same as peek_user_per but for a 31 bit program.
 558 */
 559static inline __u32 __peek_user_per_compat(struct task_struct *child,
 560					   addr_t addr)
 561{
 562	struct compat_per_struct_kernel *dummy32 = NULL;
 563
 564	if (addr == (addr_t) &dummy32->cr9)
 565		/* Control bits of the active per set. */
 566		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 567			PER_EVENT_IFETCH : child->thread.per_user.control;
 568	else if (addr == (addr_t) &dummy32->cr10)
 569		/* Start address of the active per set. */
 570		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 571			0 : child->thread.per_user.start;
 572	else if (addr == (addr_t) &dummy32->cr11)
 573		/* End address of the active per set. */
 574		return test_thread_flag(TIF_SINGLE_STEP) ?
 575			PSW32_ADDR_INSN : child->thread.per_user.end;
 576	else if (addr == (addr_t) &dummy32->bits)
 577		/* Single-step bit. */
 578		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 579			0x80000000 : 0;
 580	else if (addr == (addr_t) &dummy32->starting_addr)
 581		/* Start address of the user specified per set. */
 582		return (__u32) child->thread.per_user.start;
 583	else if (addr == (addr_t) &dummy32->ending_addr)
 584		/* End address of the user specified per set. */
 585		return (__u32) child->thread.per_user.end;
 586	else if (addr == (addr_t) &dummy32->perc_atmid)
 587		/* PER code, ATMID and AI of the last PER trap */
 588		return (__u32) child->thread.per_event.cause << 16;
 589	else if (addr == (addr_t) &dummy32->address)
 590		/* Address of the last PER trap */
 591		return (__u32) child->thread.per_event.address;
 592	else if (addr == (addr_t) &dummy32->access_id)
 593		/* Access id of the last PER trap */
 594		return (__u32) child->thread.per_event.paid << 24;
 595	return 0;
 596}
 597
 598/*
 599 * Same as peek_user but for a 31 bit program.
 600 */
 601static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 602{
 603	struct compat_user *dummy32 = NULL;
 604	addr_t offset;
 605	__u32 tmp;
 606
 607	if (addr < (addr_t) &dummy32->regs.acrs) {
 608		struct pt_regs *regs = task_pt_regs(child);
 609		/*
 610		 * psw and gprs are stored on the stack
 611		 */
 612		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 613			/* Fake a 31 bit psw mask. */
 614			tmp = (__u32)(regs->psw.mask >> 32);
 615			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 616			tmp |= PSW32_USER_BITS;
 617		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 618			/* Fake a 31 bit psw address. */
 619			tmp = (__u32) regs->psw.addr |
 620				(__u32)(regs->psw.mask & PSW_MASK_BA);
 621		} else {
 622			/* gpr 0-15 */
 623			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 
 624		}
 625	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 626		/*
 627		 * access registers are stored in the thread structure
 628		 */
 629		offset = addr - (addr_t) &dummy32->regs.acrs;
 630		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 631
 632	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 633		/*
 634		 * orig_gpr2 is stored on the kernel stack
 635		 */
 636		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 637
 638	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 639		/*
 640		 * prevent reads of padding hole between
 641		 * orig_gpr2 and fp_regs on s390.
 642		 */
 643		tmp = 0;
 644
 645	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 646		/*
 647		 * floating point control reg. is in the thread structure
 648		 */
 649		tmp = child->thread.fpu.fpc;
 650
 651	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 652		/*
 653		 * floating point regs. are either in child->thread.fpu
 654		 * or the child->thread.fpu.vxrs array
 655		 */
 656		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 657		if (MACHINE_HAS_VX)
 658			tmp = *(__u32 *)
 659			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 660		else
 661			tmp = *(__u32 *)
 662			       ((addr_t) child->thread.fpu.fprs + offset);
 663
 664	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 665		/*
 666		 * Handle access to the per_info structure.
 667		 */
 668		addr -= (addr_t) &dummy32->regs.per_info;
 669		tmp = __peek_user_per_compat(child, addr);
 670
 671	} else
 672		tmp = 0;
 673
 674	return tmp;
 675}
 676
 677static int peek_user_compat(struct task_struct *child,
 678			    addr_t addr, addr_t data)
 679{
 680	__u32 tmp;
 681
 682	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 683		return -EIO;
 684
 685	tmp = __peek_user_compat(child, addr);
 686	return put_user(tmp, (__u32 __user *) data);
 687}
 688
 689/*
 690 * Same as poke_user_per but for a 31 bit program.
 691 */
 692static inline void __poke_user_per_compat(struct task_struct *child,
 693					  addr_t addr, __u32 data)
 694{
 695	struct compat_per_struct_kernel *dummy32 = NULL;
 696
 697	if (addr == (addr_t) &dummy32->cr9)
 698		/* PER event mask of the user specified per set. */
 699		child->thread.per_user.control =
 700			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 701	else if (addr == (addr_t) &dummy32->starting_addr)
 702		/* Starting address of the user specified per set. */
 703		child->thread.per_user.start = data;
 704	else if (addr == (addr_t) &dummy32->ending_addr)
 705		/* Ending address of the user specified per set. */
 706		child->thread.per_user.end = data;
 707}
 708
 709/*
 710 * Same as poke_user but for a 31 bit program.
 711 */
 712static int __poke_user_compat(struct task_struct *child,
 713			      addr_t addr, addr_t data)
 714{
 715	struct compat_user *dummy32 = NULL;
 716	__u32 tmp = (__u32) data;
 717	addr_t offset;
 718
 719	if (addr < (addr_t) &dummy32->regs.acrs) {
 720		struct pt_regs *regs = task_pt_regs(child);
 721		/*
 722		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 723		 */
 724		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 725			__u32 mask = PSW32_MASK_USER;
 726
 727			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 728			/* Build a 64 bit psw mask from 31 bit mask. */
 729			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 730				/* Invalid psw mask. */
 731				return -EINVAL;
 732			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 733				/* Invalid address-space-control bits */
 734				return -EINVAL;
 735			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 736				(regs->psw.mask & PSW_MASK_BA) |
 737				(__u64)(tmp & mask) << 32;
 738		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 739			/* Build a 64 bit psw address from 31 bit address. */
 740			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 741			/* Transfer 31 bit amode bit to psw mask. */
 742			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 743				(__u64)(tmp & PSW32_ADDR_AMODE);
 744		} else {
 745
 746			if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 747				addr == offsetof(struct compat_user, regs.gprs[2]))
 748				fixup_int_code(child, data);
 749			/* gpr 0-15 */
 750			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 
 751		}
 752	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 753		/*
 754		 * access registers are stored in the thread structure
 755		 */
 756		offset = addr - (addr_t) &dummy32->regs.acrs;
 757		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 758
 759	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 760		/*
 761		 * orig_gpr2 is stored on the kernel stack
 762		 */
 763		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 764
 765	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 766		/*
 767		 * prevent writess of padding hole between
 768		 * orig_gpr2 and fp_regs on s390.
 769		 */
 770		return 0;
 771
 772	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 773		/*
 774		 * floating point control reg. is in the thread structure
 775		 */
 776		if (test_fp_ctl(tmp))
 
 
 777			return -EINVAL;
 778		child->thread.fpu.fpc = data;
 779
 780	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 781		/*
 782		 * floating point regs. are either in child->thread.fpu
 783		 * or the child->thread.fpu.vxrs array
 784		 */
 785		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 786		if (MACHINE_HAS_VX)
 787			*(__u32 *)((addr_t)
 788				child->thread.fpu.vxrs + 2*offset) = tmp;
 789		else
 790			*(__u32 *)((addr_t)
 791				child->thread.fpu.fprs + offset) = tmp;
 792
 793	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 794		/*
 795		 * Handle access to the per_info structure.
 796		 */
 797		addr -= (addr_t) &dummy32->regs.per_info;
 798		__poke_user_per_compat(child, addr, data);
 799	}
 800
 801	return 0;
 802}
 803
 804static int poke_user_compat(struct task_struct *child,
 805			    addr_t addr, addr_t data)
 806{
 807	if (!is_compat_task() || (addr & 3) ||
 808	    addr > sizeof(struct compat_user) - 3)
 809		return -EIO;
 810
 811	return __poke_user_compat(child, addr, data);
 812}
 813
 814long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 815			compat_ulong_t caddr, compat_ulong_t cdata)
 816{
 817	unsigned long addr = caddr;
 818	unsigned long data = cdata;
 819	compat_ptrace_area parea;
 820	int copied, ret;
 821
 822	switch (request) {
 823	case PTRACE_PEEKUSR:
 824		/* read the word at location addr in the USER area. */
 825		return peek_user_compat(child, addr, data);
 826
 827	case PTRACE_POKEUSR:
 828		/* write the word at location addr in the USER area */
 829		return poke_user_compat(child, addr, data);
 830
 831	case PTRACE_PEEKUSR_AREA:
 832	case PTRACE_POKEUSR_AREA:
 833		if (copy_from_user(&parea, (void __force __user *) addr,
 834							sizeof(parea)))
 835			return -EFAULT;
 836		addr = parea.kernel_addr;
 837		data = parea.process_addr;
 838		copied = 0;
 839		while (copied < parea.len) {
 840			if (request == PTRACE_PEEKUSR_AREA)
 841				ret = peek_user_compat(child, addr, data);
 842			else {
 843				__u32 utmp;
 844				if (get_user(utmp,
 845					     (__u32 __force __user *) data))
 846					return -EFAULT;
 847				ret = poke_user_compat(child, addr, utmp);
 848			}
 849			if (ret)
 850				return ret;
 851			addr += sizeof(unsigned int);
 852			data += sizeof(unsigned int);
 853			copied += sizeof(unsigned int);
 854		}
 855		return 0;
 856	case PTRACE_GET_LAST_BREAK:
 857		put_user(child->thread.last_break,
 858			 (unsigned int __user *) data);
 859		return 0;
 860	}
 861	return compat_ptrace_request(child, request, addr, data);
 862}
 863#endif
 864
 865asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 866{
 867	unsigned long mask = -1UL;
 868	long ret = -1;
 869
 870	if (is_compat_task())
 871		mask = 0xffffffff;
 872
 873	/*
 874	 * The sysc_tracesys code in entry.S stored the system
 875	 * call number to gprs[2].
 876	 */
 877	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 878	    tracehook_report_syscall_entry(regs)) {
 
 879		/*
 880		 * Tracing decided this syscall should not happen. Skip
 
 881		 * the system call and the system call restart handling.
 882		 */
 883		goto skip;
 884	}
 885
 886#ifdef CONFIG_SECCOMP
 887	/* Do the secure computing check after ptrace. */
 888	if (unlikely(test_thread_flag(TIF_SECCOMP))) {
 889		struct seccomp_data sd;
 890
 891		if (is_compat_task()) {
 892			sd.instruction_pointer = regs->psw.addr & 0x7fffffff;
 893			sd.arch = AUDIT_ARCH_S390;
 894		} else {
 895			sd.instruction_pointer = regs->psw.addr;
 896			sd.arch = AUDIT_ARCH_S390X;
 897		}
 898
 899		sd.nr = regs->int_code & 0xffff;
 900		sd.args[0] = regs->orig_gpr2 & mask;
 901		sd.args[1] = regs->gprs[3] & mask;
 902		sd.args[2] = regs->gprs[4] & mask;
 903		sd.args[3] = regs->gprs[5] & mask;
 904		sd.args[4] = regs->gprs[6] & mask;
 905		sd.args[5] = regs->gprs[7] & mask;
 906
 907		if (__secure_computing(&sd) == -1)
 908			goto skip;
 909	}
 910#endif /* CONFIG_SECCOMP */
 911
 912	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 913		trace_sys_enter(regs, regs->int_code & 0xffff);
 914
 915
 916	audit_syscall_entry(regs->int_code & 0xffff, regs->orig_gpr2 & mask,
 917			    regs->gprs[3] &mask, regs->gprs[4] &mask,
 918			    regs->gprs[5] &mask);
 919
 920	if ((signed long)regs->gprs[2] >= NR_syscalls) {
 921		regs->gprs[2] = -ENOSYS;
 922		ret = -ENOSYS;
 923	}
 924	return regs->gprs[2];
 925skip:
 926	clear_pt_regs_flag(regs, PIF_SYSCALL);
 927	return ret;
 928}
 929
 930asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 931{
 932	audit_syscall_exit(regs);
 
 
 933
 934	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 935		trace_sys_exit(regs, regs->gprs[2]);
 936
 937	if (test_thread_flag(TIF_SYSCALL_TRACE))
 938		tracehook_report_syscall_exit(regs, 0);
 939}
 940
 941/*
 942 * user_regset definitions.
 943 */
 944
 945static int s390_regs_get(struct task_struct *target,
 946			 const struct user_regset *regset,
 947			 struct membuf to)
 
 948{
 949	unsigned pos;
 950	if (target == current)
 951		save_access_regs(target->thread.acrs);
 952
 953	for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
 954		membuf_store(&to, __peek_user(target, pos));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955	return 0;
 956}
 957
 958static int s390_regs_set(struct task_struct *target,
 959			 const struct user_regset *regset,
 960			 unsigned int pos, unsigned int count,
 961			 const void *kbuf, const void __user *ubuf)
 962{
 963	int rc = 0;
 964
 965	if (target == current)
 966		save_access_regs(target->thread.acrs);
 967
 968	if (kbuf) {
 969		const unsigned long *k = kbuf;
 970		while (count > 0 && !rc) {
 971			rc = __poke_user(target, pos, *k++);
 972			count -= sizeof(*k);
 973			pos += sizeof(*k);
 974		}
 975	} else {
 976		const unsigned long  __user *u = ubuf;
 977		while (count > 0 && !rc) {
 978			unsigned long word;
 979			rc = __get_user(word, u++);
 980			if (rc)
 981				break;
 982			rc = __poke_user(target, pos, word);
 983			count -= sizeof(*u);
 984			pos += sizeof(*u);
 985		}
 986	}
 987
 988	if (rc == 0 && target == current)
 989		restore_access_regs(target->thread.acrs);
 990
 991	return rc;
 992}
 993
 994static int s390_fpregs_get(struct task_struct *target,
 995			   const struct user_regset *regset,
 996			   struct membuf to)
 997{
 998	_s390_fp_regs fp_regs;
 999
1000	if (target == current)
1001		save_fpu_regs();
1002
1003	fp_regs.fpc = target->thread.fpu.fpc;
1004	fpregs_store(&fp_regs, &target->thread.fpu);
1005
1006	return membuf_write(&to, &fp_regs, sizeof(fp_regs));
1007}
1008
1009static int s390_fpregs_set(struct task_struct *target,
1010			   const struct user_regset *regset, unsigned int pos,
1011			   unsigned int count, const void *kbuf,
1012			   const void __user *ubuf)
1013{
1014	int rc = 0;
1015	freg_t fprs[__NUM_FPRS];
1016
1017	if (target == current)
1018		save_fpu_regs();
1019
1020	if (MACHINE_HAS_VX)
1021		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
1022	else
1023		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
1024
1025	/* If setting FPC, must validate it first. */
1026	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
1027		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
1028		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
1029					0, offsetof(s390_fp_regs, fprs));
1030		if (rc)
1031			return rc;
1032		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
1033			return -EINVAL;
1034		target->thread.fpu.fpc = ufpc[0];
1035	}
1036
1037	if (rc == 0 && count > 0)
1038		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1039					fprs, offsetof(s390_fp_regs, fprs), -1);
1040	if (rc)
1041		return rc;
1042
1043	if (MACHINE_HAS_VX)
1044		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1045	else
1046		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1047
1048	return rc;
1049}
1050
 
 
1051static int s390_last_break_get(struct task_struct *target,
1052			       const struct user_regset *regset,
1053			       struct membuf to)
1054{
1055	return membuf_store(&to, target->thread.last_break);
1056}
1057
1058static int s390_last_break_set(struct task_struct *target,
1059			       const struct user_regset *regset,
1060			       unsigned int pos, unsigned int count,
1061			       const void *kbuf, const void __user *ubuf)
1062{
 
 
 
 
 
 
 
 
 
 
1063	return 0;
1064}
1065
1066static int s390_tdb_get(struct task_struct *target,
1067			const struct user_regset *regset,
1068			struct membuf to)
1069{
1070	struct pt_regs *regs = task_pt_regs(target);
1071
1072	if (!(regs->int_code & 0x200))
1073		return -ENODATA;
1074	return membuf_write(&to, target->thread.trap_tdb, 256);
1075}
1076
1077static int s390_tdb_set(struct task_struct *target,
1078			const struct user_regset *regset,
1079			unsigned int pos, unsigned int count,
1080			const void *kbuf, const void __user *ubuf)
1081{
1082	return 0;
1083}
1084
1085static int s390_vxrs_low_get(struct task_struct *target,
1086			     const struct user_regset *regset,
1087			     struct membuf to)
1088{
1089	__u64 vxrs[__NUM_VXRS_LOW];
1090	int i;
1091
1092	if (!MACHINE_HAS_VX)
1093		return -ENODEV;
1094	if (target == current)
1095		save_fpu_regs();
1096	for (i = 0; i < __NUM_VXRS_LOW; i++)
1097		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1098	return membuf_write(&to, vxrs, sizeof(vxrs));
1099}
1100
1101static int s390_vxrs_low_set(struct task_struct *target,
1102			     const struct user_regset *regset,
1103			     unsigned int pos, unsigned int count,
1104			     const void *kbuf, const void __user *ubuf)
1105{
1106	__u64 vxrs[__NUM_VXRS_LOW];
1107	int i, rc;
1108
1109	if (!MACHINE_HAS_VX)
1110		return -ENODEV;
1111	if (target == current)
1112		save_fpu_regs();
1113
1114	for (i = 0; i < __NUM_VXRS_LOW; i++)
1115		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1116
1117	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1118	if (rc == 0)
1119		for (i = 0; i < __NUM_VXRS_LOW; i++)
1120			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1121
1122	return rc;
1123}
1124
1125static int s390_vxrs_high_get(struct task_struct *target,
1126			      const struct user_regset *regset,
1127			      struct membuf to)
1128{
1129	if (!MACHINE_HAS_VX)
1130		return -ENODEV;
1131	if (target == current)
1132		save_fpu_regs();
1133	return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1134			    __NUM_VXRS_HIGH * sizeof(__vector128));
1135}
1136
1137static int s390_vxrs_high_set(struct task_struct *target,
1138			      const struct user_regset *regset,
1139			      unsigned int pos, unsigned int count,
1140			      const void *kbuf, const void __user *ubuf)
1141{
1142	int rc;
1143
1144	if (!MACHINE_HAS_VX)
1145		return -ENODEV;
1146	if (target == current)
1147		save_fpu_regs();
1148
1149	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1150				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1151	return rc;
1152}
1153
1154static int s390_system_call_get(struct task_struct *target,
1155				const struct user_regset *regset,
1156				struct membuf to)
1157{
1158	return membuf_store(&to, target->thread.system_call);
1159}
1160
1161static int s390_system_call_set(struct task_struct *target,
1162				const struct user_regset *regset,
1163				unsigned int pos, unsigned int count,
1164				const void *kbuf, const void __user *ubuf)
1165{
1166	unsigned int *data = &target->thread.system_call;
1167	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1168				  data, 0, sizeof(unsigned int));
1169}
1170
1171static int s390_gs_cb_get(struct task_struct *target,
1172			  const struct user_regset *regset,
1173			  struct membuf to)
1174{
1175	struct gs_cb *data = target->thread.gs_cb;
1176
1177	if (!MACHINE_HAS_GS)
1178		return -ENODEV;
1179	if (!data)
1180		return -ENODATA;
1181	if (target == current)
1182		save_gs_cb(data);
1183	return membuf_write(&to, data, sizeof(struct gs_cb));
1184}
1185
1186static int s390_gs_cb_set(struct task_struct *target,
1187			  const struct user_regset *regset,
1188			  unsigned int pos, unsigned int count,
1189			  const void *kbuf, const void __user *ubuf)
1190{
1191	struct gs_cb gs_cb = { }, *data = NULL;
1192	int rc;
1193
1194	if (!MACHINE_HAS_GS)
1195		return -ENODEV;
1196	if (!target->thread.gs_cb) {
1197		data = kzalloc(sizeof(*data), GFP_KERNEL);
1198		if (!data)
1199			return -ENOMEM;
1200	}
1201	if (!target->thread.gs_cb)
1202		gs_cb.gsd = 25;
1203	else if (target == current)
1204		save_gs_cb(&gs_cb);
1205	else
1206		gs_cb = *target->thread.gs_cb;
1207	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1208				&gs_cb, 0, sizeof(gs_cb));
1209	if (rc) {
1210		kfree(data);
1211		return -EFAULT;
1212	}
1213	preempt_disable();
1214	if (!target->thread.gs_cb)
1215		target->thread.gs_cb = data;
1216	*target->thread.gs_cb = gs_cb;
1217	if (target == current) {
1218		__ctl_set_bit(2, 4);
1219		restore_gs_cb(target->thread.gs_cb);
1220	}
1221	preempt_enable();
1222	return rc;
1223}
1224
1225static int s390_gs_bc_get(struct task_struct *target,
1226			  const struct user_regset *regset,
1227			  struct membuf to)
1228{
1229	struct gs_cb *data = target->thread.gs_bc_cb;
1230
1231	if (!MACHINE_HAS_GS)
1232		return -ENODEV;
1233	if (!data)
1234		return -ENODATA;
1235	return membuf_write(&to, data, sizeof(struct gs_cb));
1236}
1237
1238static int s390_gs_bc_set(struct task_struct *target,
1239			  const struct user_regset *regset,
1240			  unsigned int pos, unsigned int count,
1241			  const void *kbuf, const void __user *ubuf)
1242{
1243	struct gs_cb *data = target->thread.gs_bc_cb;
1244
1245	if (!MACHINE_HAS_GS)
1246		return -ENODEV;
1247	if (!data) {
1248		data = kzalloc(sizeof(*data), GFP_KERNEL);
1249		if (!data)
1250			return -ENOMEM;
1251		target->thread.gs_bc_cb = data;
1252	}
1253	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1254				  data, 0, sizeof(struct gs_cb));
1255}
1256
1257static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1258{
1259	return (cb->rca & 0x1f) == 0 &&
1260		(cb->roa & 0xfff) == 0 &&
1261		(cb->rla & 0xfff) == 0xfff &&
1262		cb->s == 1 &&
1263		cb->k == 1 &&
1264		cb->h == 0 &&
1265		cb->reserved1 == 0 &&
1266		cb->ps == 1 &&
1267		cb->qs == 0 &&
1268		cb->pc == 1 &&
1269		cb->qc == 0 &&
1270		cb->reserved2 == 0 &&
1271		cb->reserved3 == 0 &&
1272		cb->reserved4 == 0 &&
1273		cb->reserved5 == 0 &&
1274		cb->reserved6 == 0 &&
1275		cb->reserved7 == 0 &&
1276		cb->reserved8 == 0 &&
1277		cb->rla >= cb->roa &&
1278		cb->rca >= cb->roa &&
1279		cb->rca <= cb->rla+1 &&
1280		cb->m < 3;
1281}
1282
1283static int s390_runtime_instr_get(struct task_struct *target,
1284				const struct user_regset *regset,
1285				struct membuf to)
1286{
1287	struct runtime_instr_cb *data = target->thread.ri_cb;
1288
1289	if (!test_facility(64))
1290		return -ENODEV;
1291	if (!data)
1292		return -ENODATA;
1293
1294	return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1295}
1296
1297static int s390_runtime_instr_set(struct task_struct *target,
1298				  const struct user_regset *regset,
1299				  unsigned int pos, unsigned int count,
1300				  const void *kbuf, const void __user *ubuf)
1301{
1302	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1303	int rc;
1304
1305	if (!test_facility(64))
1306		return -ENODEV;
1307
1308	if (!target->thread.ri_cb) {
1309		data = kzalloc(sizeof(*data), GFP_KERNEL);
1310		if (!data)
1311			return -ENOMEM;
1312	}
1313
1314	if (target->thread.ri_cb) {
1315		if (target == current)
1316			store_runtime_instr_cb(&ri_cb);
1317		else
1318			ri_cb = *target->thread.ri_cb;
1319	}
1320
1321	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1322				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1323	if (rc) {
1324		kfree(data);
1325		return -EFAULT;
1326	}
1327
1328	if (!is_ri_cb_valid(&ri_cb)) {
1329		kfree(data);
1330		return -EINVAL;
1331	}
1332	/*
1333	 * Override access key in any case, since user space should
1334	 * not be able to set it, nor should it care about it.
1335	 */
1336	ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1337	preempt_disable();
1338	if (!target->thread.ri_cb)
1339		target->thread.ri_cb = data;
1340	*target->thread.ri_cb = ri_cb;
1341	if (target == current)
1342		load_runtime_instr_cb(target->thread.ri_cb);
1343	preempt_enable();
1344
1345	return 0;
1346}
1347
1348static const struct user_regset s390_regsets[] = {
1349	{
1350		.core_note_type = NT_PRSTATUS,
1351		.n = sizeof(s390_regs) / sizeof(long),
1352		.size = sizeof(long),
1353		.align = sizeof(long),
1354		.regset_get = s390_regs_get,
1355		.set = s390_regs_set,
1356	},
1357	{
1358		.core_note_type = NT_PRFPREG,
1359		.n = sizeof(s390_fp_regs) / sizeof(long),
1360		.size = sizeof(long),
1361		.align = sizeof(long),
1362		.regset_get = s390_fpregs_get,
1363		.set = s390_fpregs_set,
1364	},
1365	{
1366		.core_note_type = NT_S390_SYSTEM_CALL,
1367		.n = 1,
1368		.size = sizeof(unsigned int),
1369		.align = sizeof(unsigned int),
1370		.regset_get = s390_system_call_get,
1371		.set = s390_system_call_set,
1372	},
1373	{
1374		.core_note_type = NT_S390_LAST_BREAK,
1375		.n = 1,
1376		.size = sizeof(long),
1377		.align = sizeof(long),
1378		.regset_get = s390_last_break_get,
1379		.set = s390_last_break_set,
1380	},
1381	{
1382		.core_note_type = NT_S390_TDB,
1383		.n = 1,
1384		.size = 256,
1385		.align = 1,
1386		.regset_get = s390_tdb_get,
1387		.set = s390_tdb_set,
1388	},
1389	{
1390		.core_note_type = NT_S390_VXRS_LOW,
1391		.n = __NUM_VXRS_LOW,
1392		.size = sizeof(__u64),
1393		.align = sizeof(__u64),
1394		.regset_get = s390_vxrs_low_get,
1395		.set = s390_vxrs_low_set,
1396	},
1397	{
1398		.core_note_type = NT_S390_VXRS_HIGH,
1399		.n = __NUM_VXRS_HIGH,
1400		.size = sizeof(__vector128),
1401		.align = sizeof(__vector128),
1402		.regset_get = s390_vxrs_high_get,
1403		.set = s390_vxrs_high_set,
1404	},
1405	{
1406		.core_note_type = NT_S390_GS_CB,
1407		.n = sizeof(struct gs_cb) / sizeof(__u64),
1408		.size = sizeof(__u64),
1409		.align = sizeof(__u64),
1410		.regset_get = s390_gs_cb_get,
1411		.set = s390_gs_cb_set,
1412	},
1413	{
1414		.core_note_type = NT_S390_GS_BC,
1415		.n = sizeof(struct gs_cb) / sizeof(__u64),
1416		.size = sizeof(__u64),
1417		.align = sizeof(__u64),
1418		.regset_get = s390_gs_bc_get,
1419		.set = s390_gs_bc_set,
1420	},
1421	{
1422		.core_note_type = NT_S390_RI_CB,
1423		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1424		.size = sizeof(__u64),
1425		.align = sizeof(__u64),
1426		.regset_get = s390_runtime_instr_get,
1427		.set = s390_runtime_instr_set,
1428	},
 
1429};
1430
1431static const struct user_regset_view user_s390_view = {
1432	.name = "s390x",
1433	.e_machine = EM_S390,
1434	.regsets = s390_regsets,
1435	.n = ARRAY_SIZE(s390_regsets)
1436};
1437
1438#ifdef CONFIG_COMPAT
1439static int s390_compat_regs_get(struct task_struct *target,
1440				const struct user_regset *regset,
1441				struct membuf to)
 
1442{
1443	unsigned n;
1444
1445	if (target == current)
1446		save_access_regs(target->thread.acrs);
1447
1448	for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1449		membuf_store(&to, __peek_user_compat(target, n));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450	return 0;
1451}
1452
1453static int s390_compat_regs_set(struct task_struct *target,
1454				const struct user_regset *regset,
1455				unsigned int pos, unsigned int count,
1456				const void *kbuf, const void __user *ubuf)
1457{
1458	int rc = 0;
1459
1460	if (target == current)
1461		save_access_regs(target->thread.acrs);
1462
1463	if (kbuf) {
1464		const compat_ulong_t *k = kbuf;
1465		while (count > 0 && !rc) {
1466			rc = __poke_user_compat(target, pos, *k++);
1467			count -= sizeof(*k);
1468			pos += sizeof(*k);
1469		}
1470	} else {
1471		const compat_ulong_t  __user *u = ubuf;
1472		while (count > 0 && !rc) {
1473			compat_ulong_t word;
1474			rc = __get_user(word, u++);
1475			if (rc)
1476				break;
1477			rc = __poke_user_compat(target, pos, word);
1478			count -= sizeof(*u);
1479			pos += sizeof(*u);
1480		}
1481	}
1482
1483	if (rc == 0 && target == current)
1484		restore_access_regs(target->thread.acrs);
1485
1486	return rc;
1487}
1488
1489static int s390_compat_regs_high_get(struct task_struct *target,
1490				     const struct user_regset *regset,
1491				     struct membuf to)
 
1492{
1493	compat_ulong_t *gprs_high;
1494	int i;
1495
1496	gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1497	for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1498		membuf_store(&to, *gprs_high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499	return 0;
1500}
1501
1502static int s390_compat_regs_high_set(struct task_struct *target,
1503				     const struct user_regset *regset,
1504				     unsigned int pos, unsigned int count,
1505				     const void *kbuf, const void __user *ubuf)
1506{
1507	compat_ulong_t *gprs_high;
1508	int rc = 0;
1509
1510	gprs_high = (compat_ulong_t *)
1511		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1512	if (kbuf) {
1513		const compat_ulong_t *k = kbuf;
1514		while (count > 0) {
1515			*gprs_high = *k++;
1516			*gprs_high += 2;
1517			count -= sizeof(*k);
1518		}
1519	} else {
1520		const compat_ulong_t  __user *u = ubuf;
1521		while (count > 0 && !rc) {
1522			unsigned long word;
1523			rc = __get_user(word, u++);
1524			if (rc)
1525				break;
1526			*gprs_high = word;
1527			*gprs_high += 2;
1528			count -= sizeof(*u);
1529		}
1530	}
1531
1532	return rc;
1533}
1534
1535static int s390_compat_last_break_get(struct task_struct *target,
1536				      const struct user_regset *regset,
1537				      struct membuf to)
 
1538{
1539	compat_ulong_t last_break = target->thread.last_break;
1540
1541	return membuf_store(&to, (unsigned long)last_break);
1542}
1543
1544static int s390_compat_last_break_set(struct task_struct *target,
1545				      const struct user_regset *regset,
1546				      unsigned int pos, unsigned int count,
1547				      const void *kbuf, const void __user *ubuf)
1548{
 
 
 
1549	return 0;
1550}
1551
1552static const struct user_regset s390_compat_regsets[] = {
1553	{
1554		.core_note_type = NT_PRSTATUS,
1555		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1556		.size = sizeof(compat_long_t),
1557		.align = sizeof(compat_long_t),
1558		.regset_get = s390_compat_regs_get,
1559		.set = s390_compat_regs_set,
1560	},
1561	{
1562		.core_note_type = NT_PRFPREG,
1563		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1564		.size = sizeof(compat_long_t),
1565		.align = sizeof(compat_long_t),
1566		.regset_get = s390_fpregs_get,
1567		.set = s390_fpregs_set,
1568	},
1569	{
1570		.core_note_type = NT_S390_SYSTEM_CALL,
1571		.n = 1,
1572		.size = sizeof(compat_uint_t),
1573		.align = sizeof(compat_uint_t),
1574		.regset_get = s390_system_call_get,
1575		.set = s390_system_call_set,
1576	},
1577	{
1578		.core_note_type = NT_S390_LAST_BREAK,
1579		.n = 1,
1580		.size = sizeof(long),
1581		.align = sizeof(long),
1582		.regset_get = s390_compat_last_break_get,
1583		.set = s390_compat_last_break_set,
1584	},
1585	{
1586		.core_note_type = NT_S390_TDB,
1587		.n = 1,
1588		.size = 256,
1589		.align = 1,
1590		.regset_get = s390_tdb_get,
1591		.set = s390_tdb_set,
1592	},
1593	{
1594		.core_note_type = NT_S390_VXRS_LOW,
1595		.n = __NUM_VXRS_LOW,
1596		.size = sizeof(__u64),
1597		.align = sizeof(__u64),
1598		.regset_get = s390_vxrs_low_get,
1599		.set = s390_vxrs_low_set,
1600	},
1601	{
1602		.core_note_type = NT_S390_VXRS_HIGH,
1603		.n = __NUM_VXRS_HIGH,
1604		.size = sizeof(__vector128),
1605		.align = sizeof(__vector128),
1606		.regset_get = s390_vxrs_high_get,
1607		.set = s390_vxrs_high_set,
1608	},
1609	{
1610		.core_note_type = NT_S390_HIGH_GPRS,
1611		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1612		.size = sizeof(compat_long_t),
1613		.align = sizeof(compat_long_t),
1614		.regset_get = s390_compat_regs_high_get,
1615		.set = s390_compat_regs_high_set,
1616	},
1617	{
1618		.core_note_type = NT_S390_GS_CB,
1619		.n = sizeof(struct gs_cb) / sizeof(__u64),
1620		.size = sizeof(__u64),
1621		.align = sizeof(__u64),
1622		.regset_get = s390_gs_cb_get,
1623		.set = s390_gs_cb_set,
1624	},
1625	{
1626		.core_note_type = NT_S390_GS_BC,
1627		.n = sizeof(struct gs_cb) / sizeof(__u64),
1628		.size = sizeof(__u64),
1629		.align = sizeof(__u64),
1630		.regset_get = s390_gs_bc_get,
1631		.set = s390_gs_bc_set,
1632	},
1633	{
1634		.core_note_type = NT_S390_RI_CB,
1635		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1636		.size = sizeof(__u64),
1637		.align = sizeof(__u64),
1638		.regset_get = s390_runtime_instr_get,
1639		.set = s390_runtime_instr_set,
1640	},
1641};
1642
1643static const struct user_regset_view user_s390_compat_view = {
1644	.name = "s390",
1645	.e_machine = EM_S390,
1646	.regsets = s390_compat_regsets,
1647	.n = ARRAY_SIZE(s390_compat_regsets)
1648};
1649#endif
1650
1651const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1652{
1653#ifdef CONFIG_COMPAT
1654	if (test_tsk_thread_flag(task, TIF_31BIT))
1655		return &user_s390_compat_view;
1656#endif
1657	return &user_s390_view;
1658}
1659
1660static const char *gpr_names[NUM_GPRS] = {
1661	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1662	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1663};
1664
1665unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1666{
1667	if (offset >= NUM_GPRS)
1668		return 0;
1669	return regs->gprs[offset];
1670}
1671
1672int regs_query_register_offset(const char *name)
1673{
1674	unsigned long offset;
1675
1676	if (!name || *name != 'r')
1677		return -EINVAL;
1678	if (kstrtoul(name + 1, 10, &offset))
1679		return -EINVAL;
1680	if (offset >= NUM_GPRS)
1681		return -EINVAL;
1682	return offset;
1683}
1684
1685const char *regs_query_register_name(unsigned int offset)
1686{
1687	if (offset >= NUM_GPRS)
1688		return NULL;
1689	return gpr_names[offset];
1690}
1691
1692static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1693{
1694	unsigned long ksp = kernel_stack_pointer(regs);
1695
1696	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1697}
1698
1699/**
1700 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1701 * @regs:pt_regs which contains kernel stack pointer.
1702 * @n:stack entry number.
1703 *
1704 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1705 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1706 * this returns 0.
1707 */
1708unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1709{
1710	unsigned long addr;
1711
1712	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1713	if (!regs_within_kernel_stack(regs, addr))
1714		return 0;
1715	return *(unsigned long *)addr;
1716}