Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999,2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
 
  23#include <trace/syscall.h>
  24#include <asm/compat.h>
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
  29#include <asm/system.h>
  30#include <asm/uaccess.h>
  31#include <asm/unistd.h>
 
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41enum s390_regset {
  42	REGSET_GENERAL,
  43	REGSET_FP,
  44	REGSET_LAST_BREAK,
 
 
  45	REGSET_GENERAL_EXTENDED,
  46};
  47
  48void update_per_regs(struct task_struct *task)
  49{
  50	static const struct per_regs per_single_step = {
  51		.control = PER_EVENT_IFETCH,
  52		.start = 0,
  53		.end = PSW_ADDR_INSN,
  54	};
  55	struct pt_regs *regs = task_pt_regs(task);
  56	struct thread_struct *thread = &task->thread;
  57	const struct per_regs *new;
  58	struct per_regs old;
  59
  60	/* TIF_SINGLE_STEP overrides the user specified PER registers. */
  61	new = test_tsk_thread_flag(task, TIF_SINGLE_STEP) ?
  62		&per_single_step : &thread->per_user;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64	/* Take care of the PER enablement bit in the PSW. */
  65	if (!(new->control & PER_EVENT_MASK)) {
  66		regs->psw.mask &= ~PSW_MASK_PER;
  67		return;
  68	}
  69	regs->psw.mask |= PSW_MASK_PER;
  70	__ctl_store(old, 9, 11);
  71	if (memcmp(new, &old, sizeof(struct per_regs)) != 0)
  72		__ctl_load(*new, 9, 11);
  73}
  74
  75void user_enable_single_step(struct task_struct *task)
  76{
 
  77	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
  78	if (task == current)
  79		update_per_regs(task);
  80}
  81
  82void user_disable_single_step(struct task_struct *task)
  83{
 
  84	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  85	if (task == current)
  86		update_per_regs(task);
 
 
 
 
  87}
  88
  89/*
  90 * Called by kernel/ptrace.c when detaching..
  91 *
  92 * Clear all debugging related fields.
  93 */
  94void ptrace_disable(struct task_struct *task)
  95{
  96	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
  97	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
  98	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  99	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 
 100}
 101
 102#ifndef CONFIG_64BIT
 103# define __ADDR_MASK 3
 104#else
 105# define __ADDR_MASK 7
 106#endif
 107
 108static inline unsigned long __peek_user_per(struct task_struct *child,
 109					    addr_t addr)
 110{
 111	struct per_struct_kernel *dummy = NULL;
 112
 113	if (addr == (addr_t) &dummy->cr9)
 114		/* Control bits of the active per set. */
 115		return test_thread_flag(TIF_SINGLE_STEP) ?
 116			PER_EVENT_IFETCH : child->thread.per_user.control;
 117	else if (addr == (addr_t) &dummy->cr10)
 118		/* Start address of the active per set. */
 119		return test_thread_flag(TIF_SINGLE_STEP) ?
 120			0 : child->thread.per_user.start;
 121	else if (addr == (addr_t) &dummy->cr11)
 122		/* End address of the active per set. */
 123		return test_thread_flag(TIF_SINGLE_STEP) ?
 124			PSW_ADDR_INSN : child->thread.per_user.end;
 125	else if (addr == (addr_t) &dummy->bits)
 126		/* Single-step bit. */
 127		return test_thread_flag(TIF_SINGLE_STEP) ?
 128			(1UL << (BITS_PER_LONG - 1)) : 0;
 129	else if (addr == (addr_t) &dummy->starting_addr)
 130		/* Start address of the user specified per set. */
 131		return child->thread.per_user.start;
 132	else if (addr == (addr_t) &dummy->ending_addr)
 133		/* End address of the user specified per set. */
 134		return child->thread.per_user.end;
 135	else if (addr == (addr_t) &dummy->perc_atmid)
 136		/* PER code, ATMID and AI of the last PER trap */
 137		return (unsigned long)
 138			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 139	else if (addr == (addr_t) &dummy->address)
 140		/* Address of the last PER trap */
 141		return child->thread.per_event.address;
 142	else if (addr == (addr_t) &dummy->access_id)
 143		/* Access id of the last PER trap */
 144		return (unsigned long)
 145			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 146	return 0;
 147}
 148
 149/*
 150 * Read the word at offset addr from the user area of a process. The
 151 * trouble here is that the information is littered over different
 152 * locations. The process registers are found on the kernel stack,
 153 * the floating point stuff and the trace settings are stored in
 154 * the task structure. In addition the different structures in
 155 * struct user contain pad bytes that should be read as zeroes.
 156 * Lovely...
 157 */
 158static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 159{
 160	struct user *dummy = NULL;
 161	addr_t offset, tmp;
 162
 163	if (addr < (addr_t) &dummy->regs.acrs) {
 164		/*
 165		 * psw and gprs are stored on the stack
 166		 */
 167		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 168		if (addr == (addr_t) &dummy->regs.psw.mask)
 169			/* Remove per bit from user psw. */
 170			tmp &= ~PSW_MASK_PER;
 
 
 171
 172	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 173		/*
 174		 * access registers are stored in the thread structure
 175		 */
 176		offset = addr - (addr_t) &dummy->regs.acrs;
 177#ifdef CONFIG_64BIT
 178		/*
 179		 * Very special case: old & broken 64 bit gdb reading
 180		 * from acrs[15]. Result is a 64 bit value. Read the
 181		 * 32 bit acrs[15] value and shift it by 32. Sick...
 182		 */
 183		if (addr == (addr_t) &dummy->regs.acrs[15])
 184			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 185		else
 186#endif
 187		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 188
 189	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 190		/*
 191		 * orig_gpr2 is stored on the kernel stack
 192		 */
 193		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 194
 195	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 196		/*
 197		 * prevent reads of padding hole between
 198		 * orig_gpr2 and fp_regs on s390.
 199		 */
 200		tmp = 0;
 201
 202	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 203		/* 
 204		 * floating point regs. are stored in the thread structure
 205		 */
 206		offset = addr - (addr_t) &dummy->regs.fp_regs;
 207		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
 208		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 209			tmp &= (unsigned long) FPC_VALID_MASK
 210				<< (BITS_PER_LONG - 32);
 211
 212	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 213		/*
 214		 * Handle access to the per_info structure.
 215		 */
 216		addr -= (addr_t) &dummy->regs.per_info;
 217		tmp = __peek_user_per(child, addr);
 218
 219	} else
 220		tmp = 0;
 221
 222	return tmp;
 223}
 224
 225static int
 226peek_user(struct task_struct *child, addr_t addr, addr_t data)
 227{
 228	addr_t tmp, mask;
 229
 230	/*
 231	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 232	 * an alignment of 4. Programmers from hell...
 233	 */
 234	mask = __ADDR_MASK;
 235#ifdef CONFIG_64BIT
 236	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 237	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 238		mask = 3;
 239#endif
 240	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 241		return -EIO;
 242
 243	tmp = __peek_user(child, addr);
 244	return put_user(tmp, (addr_t __user *) data);
 245}
 246
 247static inline void __poke_user_per(struct task_struct *child,
 248				   addr_t addr, addr_t data)
 249{
 250	struct per_struct_kernel *dummy = NULL;
 251
 252	/*
 253	 * There are only three fields in the per_info struct that the
 254	 * debugger user can write to.
 255	 * 1) cr9: the debugger wants to set a new PER event mask
 256	 * 2) starting_addr: the debugger wants to set a new starting
 257	 *    address to use with the PER event mask.
 258	 * 3) ending_addr: the debugger wants to set a new ending
 259	 *    address to use with the PER event mask.
 260	 * The user specified PER event mask and the start and end
 261	 * addresses are used only if single stepping is not in effect.
 262	 * Writes to any other field in per_info are ignored.
 263	 */
 264	if (addr == (addr_t) &dummy->cr9)
 265		/* PER event mask of the user specified per set. */
 266		child->thread.per_user.control =
 267			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 268	else if (addr == (addr_t) &dummy->starting_addr)
 269		/* Starting address of the user specified per set. */
 270		child->thread.per_user.start = data;
 271	else if (addr == (addr_t) &dummy->ending_addr)
 272		/* Ending address of the user specified per set. */
 273		child->thread.per_user.end = data;
 274}
 275
 276/*
 277 * Write a word to the user area of a process at location addr. This
 278 * operation does have an additional problem compared to peek_user.
 279 * Stores to the program status word and on the floating point
 280 * control register needs to get checked for validity.
 281 */
 282static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 283{
 284	struct user *dummy = NULL;
 285	addr_t offset;
 286
 287	if (addr < (addr_t) &dummy->regs.acrs) {
 288		/*
 289		 * psw and gprs are stored on the stack
 290		 */
 291		if (addr == (addr_t) &dummy->regs.psw.mask &&
 292#ifdef CONFIG_COMPAT
 293		    data != PSW_MASK_MERGE(psw_user32_bits, data) &&
 294#endif
 295		    data != PSW_MASK_MERGE(psw_user_bits, data))
 296			/* Invalid psw mask. */
 297			return -EINVAL;
 298#ifndef CONFIG_64BIT
 299		if (addr == (addr_t) &dummy->regs.psw.addr)
 300			/* I'd like to reject addresses without the
 301			   high order bit but older gdb's rely on it */
 302			data |= PSW_ADDR_AMODE;
 303#endif
 304		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 305
 306	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 307		/*
 308		 * access registers are stored in the thread structure
 309		 */
 310		offset = addr - (addr_t) &dummy->regs.acrs;
 311#ifdef CONFIG_64BIT
 312		/*
 313		 * Very special case: old & broken 64 bit gdb writing
 314		 * to acrs[15] with a 64 bit value. Ignore the lower
 315		 * half of the value and write the upper 32 bit to
 316		 * acrs[15]. Sick...
 317		 */
 318		if (addr == (addr_t) &dummy->regs.acrs[15])
 319			child->thread.acrs[15] = (unsigned int) (data >> 32);
 320		else
 321#endif
 322		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 323
 324	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 325		/*
 326		 * orig_gpr2 is stored on the kernel stack
 327		 */
 328		task_pt_regs(child)->orig_gpr2 = data;
 329
 330	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 331		/*
 332		 * prevent writes of padding hole between
 333		 * orig_gpr2 and fp_regs on s390.
 334		 */
 335		return 0;
 336
 337	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 338		/*
 339		 * floating point regs. are stored in the thread structure
 340		 */
 341		if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
 342		    (data & ~((unsigned long) FPC_VALID_MASK
 343			      << (BITS_PER_LONG - 32))) != 0)
 344			return -EINVAL;
 345		offset = addr - (addr_t) &dummy->regs.fp_regs;
 346		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
 347
 348	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 349		/*
 350		 * Handle access to the per_info structure.
 351		 */
 352		addr -= (addr_t) &dummy->regs.per_info;
 353		__poke_user_per(child, addr, data);
 354
 355	}
 356
 357	return 0;
 358}
 359
 360static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 361{
 362	addr_t mask;
 363
 364	/*
 365	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 366	 * an alignment of 4. Programmers from hell indeed...
 367	 */
 368	mask = __ADDR_MASK;
 369#ifdef CONFIG_64BIT
 370	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 371	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 372		mask = 3;
 373#endif
 374	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 375		return -EIO;
 376
 377	return __poke_user(child, addr, data);
 378}
 379
 380long arch_ptrace(struct task_struct *child, long request,
 381		 unsigned long addr, unsigned long data)
 382{
 383	ptrace_area parea; 
 384	int copied, ret;
 385
 386	switch (request) {
 387	case PTRACE_PEEKUSR:
 388		/* read the word at location addr in the USER area. */
 389		return peek_user(child, addr, data);
 390
 391	case PTRACE_POKEUSR:
 392		/* write the word at location addr in the USER area */
 393		return poke_user(child, addr, data);
 394
 395	case PTRACE_PEEKUSR_AREA:
 396	case PTRACE_POKEUSR_AREA:
 397		if (copy_from_user(&parea, (void __force __user *) addr,
 398							sizeof(parea)))
 399			return -EFAULT;
 400		addr = parea.kernel_addr;
 401		data = parea.process_addr;
 402		copied = 0;
 403		while (copied < parea.len) {
 404			if (request == PTRACE_PEEKUSR_AREA)
 405				ret = peek_user(child, addr, data);
 406			else {
 407				addr_t utmp;
 408				if (get_user(utmp,
 409					     (addr_t __force __user *) data))
 410					return -EFAULT;
 411				ret = poke_user(child, addr, utmp);
 412			}
 413			if (ret)
 414				return ret;
 415			addr += sizeof(unsigned long);
 416			data += sizeof(unsigned long);
 417			copied += sizeof(unsigned long);
 418		}
 419		return 0;
 420	case PTRACE_GET_LAST_BREAK:
 421		put_user(task_thread_info(child)->last_break,
 422			 (unsigned long __user *) data);
 423		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424	default:
 425		/* Removing high order bit from addr (only for 31 bit). */
 426		addr &= PSW_ADDR_INSN;
 427		return ptrace_request(child, request, addr, data);
 428	}
 429}
 430
 431#ifdef CONFIG_COMPAT
 432/*
 433 * Now the fun part starts... a 31 bit program running in the
 434 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 435 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 436 * to handle, the difference to the 64 bit versions of the requests
 437 * is that the access is done in multiples of 4 byte instead of
 438 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 439 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 440 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 441 * is a 31 bit program too, the content of struct user can be
 442 * emulated. A 31 bit program peeking into the struct user of
 443 * a 64 bit program is a no-no.
 444 */
 445
 446/*
 447 * Same as peek_user_per but for a 31 bit program.
 448 */
 449static inline __u32 __peek_user_per_compat(struct task_struct *child,
 450					   addr_t addr)
 451{
 452	struct compat_per_struct_kernel *dummy32 = NULL;
 453
 454	if (addr == (addr_t) &dummy32->cr9)
 455		/* Control bits of the active per set. */
 456		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 457			PER_EVENT_IFETCH : child->thread.per_user.control;
 458	else if (addr == (addr_t) &dummy32->cr10)
 459		/* Start address of the active per set. */
 460		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 461			0 : child->thread.per_user.start;
 462	else if (addr == (addr_t) &dummy32->cr11)
 463		/* End address of the active per set. */
 464		return test_thread_flag(TIF_SINGLE_STEP) ?
 465			PSW32_ADDR_INSN : child->thread.per_user.end;
 466	else if (addr == (addr_t) &dummy32->bits)
 467		/* Single-step bit. */
 468		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 469			0x80000000 : 0;
 470	else if (addr == (addr_t) &dummy32->starting_addr)
 471		/* Start address of the user specified per set. */
 472		return (__u32) child->thread.per_user.start;
 473	else if (addr == (addr_t) &dummy32->ending_addr)
 474		/* End address of the user specified per set. */
 475		return (__u32) child->thread.per_user.end;
 476	else if (addr == (addr_t) &dummy32->perc_atmid)
 477		/* PER code, ATMID and AI of the last PER trap */
 478		return (__u32) child->thread.per_event.cause << 16;
 479	else if (addr == (addr_t) &dummy32->address)
 480		/* Address of the last PER trap */
 481		return (__u32) child->thread.per_event.address;
 482	else if (addr == (addr_t) &dummy32->access_id)
 483		/* Access id of the last PER trap */
 484		return (__u32) child->thread.per_event.paid << 24;
 485	return 0;
 486}
 487
 488/*
 489 * Same as peek_user but for a 31 bit program.
 490 */
 491static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 492{
 493	struct compat_user *dummy32 = NULL;
 494	addr_t offset;
 495	__u32 tmp;
 496
 497	if (addr < (addr_t) &dummy32->regs.acrs) {
 
 498		/*
 499		 * psw and gprs are stored on the stack
 500		 */
 501		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 502			/* Fake a 31 bit psw mask. */
 503			tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32);
 504			tmp = PSW32_MASK_MERGE(psw32_user_bits, tmp);
 
 505		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 506			/* Fake a 31 bit psw address. */
 507			tmp = (__u32) task_pt_regs(child)->psw.addr |
 508				PSW32_ADDR_AMODE31;
 509		} else {
 510			/* gpr 0-15 */
 511			tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw +
 512					 addr*2 + 4);
 513		}
 514	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 515		/*
 516		 * access registers are stored in the thread structure
 517		 */
 518		offset = addr - (addr_t) &dummy32->regs.acrs;
 519		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 520
 521	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 522		/*
 523		 * orig_gpr2 is stored on the kernel stack
 524		 */
 525		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 526
 527	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 528		/*
 529		 * prevent reads of padding hole between
 530		 * orig_gpr2 and fp_regs on s390.
 531		 */
 532		tmp = 0;
 533
 534	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 535		/*
 536		 * floating point regs. are stored in the thread structure 
 537		 */
 538	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 539		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
 540
 541	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 542		/*
 543		 * Handle access to the per_info structure.
 544		 */
 545		addr -= (addr_t) &dummy32->regs.per_info;
 546		tmp = __peek_user_per_compat(child, addr);
 547
 548	} else
 549		tmp = 0;
 550
 551	return tmp;
 552}
 553
 554static int peek_user_compat(struct task_struct *child,
 555			    addr_t addr, addr_t data)
 556{
 557	__u32 tmp;
 558
 559	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 560		return -EIO;
 561
 562	tmp = __peek_user_compat(child, addr);
 563	return put_user(tmp, (__u32 __user *) data);
 564}
 565
 566/*
 567 * Same as poke_user_per but for a 31 bit program.
 568 */
 569static inline void __poke_user_per_compat(struct task_struct *child,
 570					  addr_t addr, __u32 data)
 571{
 572	struct compat_per_struct_kernel *dummy32 = NULL;
 573
 574	if (addr == (addr_t) &dummy32->cr9)
 575		/* PER event mask of the user specified per set. */
 576		child->thread.per_user.control =
 577			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 578	else if (addr == (addr_t) &dummy32->starting_addr)
 579		/* Starting address of the user specified per set. */
 580		child->thread.per_user.start = data;
 581	else if (addr == (addr_t) &dummy32->ending_addr)
 582		/* Ending address of the user specified per set. */
 583		child->thread.per_user.end = data;
 584}
 585
 586/*
 587 * Same as poke_user but for a 31 bit program.
 588 */
 589static int __poke_user_compat(struct task_struct *child,
 590			      addr_t addr, addr_t data)
 591{
 592	struct compat_user *dummy32 = NULL;
 593	__u32 tmp = (__u32) data;
 594	addr_t offset;
 595
 596	if (addr < (addr_t) &dummy32->regs.acrs) {
 
 597		/*
 598		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 599		 */
 600		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 
 
 
 601			/* Build a 64 bit psw mask from 31 bit mask. */
 602			if (tmp != PSW32_MASK_MERGE(psw32_user_bits, tmp))
 603				/* Invalid psw mask. */
 604				return -EINVAL;
 605			task_pt_regs(child)->psw.mask =
 606				PSW_MASK_MERGE(psw_user32_bits, (__u64) tmp << 32);
 
 607		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 608			/* Build a 64 bit psw address from 31 bit address. */
 609			task_pt_regs(child)->psw.addr =
 610				(__u64) tmp & PSW32_ADDR_INSN;
 
 
 611		} else {
 612			/* gpr 0-15 */
 613			*(__u32*)((addr_t) &task_pt_regs(child)->psw
 614				  + addr*2 + 4) = tmp;
 615		}
 616	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 617		/*
 618		 * access registers are stored in the thread structure
 619		 */
 620		offset = addr - (addr_t) &dummy32->regs.acrs;
 621		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 622
 623	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 624		/*
 625		 * orig_gpr2 is stored on the kernel stack
 626		 */
 627		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 628
 629	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 630		/*
 631		 * prevent writess of padding hole between
 632		 * orig_gpr2 and fp_regs on s390.
 633		 */
 634		return 0;
 635
 636	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 637		/*
 638		 * floating point regs. are stored in the thread structure 
 639		 */
 640		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
 641		    (tmp & ~FPC_VALID_MASK) != 0)
 642			/* Invalid floating point control. */
 643			return -EINVAL;
 644	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 645		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
 646
 647	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 648		/*
 649		 * Handle access to the per_info structure.
 650		 */
 651		addr -= (addr_t) &dummy32->regs.per_info;
 652		__poke_user_per_compat(child, addr, data);
 653	}
 654
 655	return 0;
 656}
 657
 658static int poke_user_compat(struct task_struct *child,
 659			    addr_t addr, addr_t data)
 660{
 661	if (!is_compat_task() || (addr & 3) ||
 662	    addr > sizeof(struct compat_user) - 3)
 663		return -EIO;
 664
 665	return __poke_user_compat(child, addr, data);
 666}
 667
 668long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 669			compat_ulong_t caddr, compat_ulong_t cdata)
 670{
 671	unsigned long addr = caddr;
 672	unsigned long data = cdata;
 673	compat_ptrace_area parea;
 674	int copied, ret;
 675
 676	switch (request) {
 677	case PTRACE_PEEKUSR:
 678		/* read the word at location addr in the USER area. */
 679		return peek_user_compat(child, addr, data);
 680
 681	case PTRACE_POKEUSR:
 682		/* write the word at location addr in the USER area */
 683		return poke_user_compat(child, addr, data);
 684
 685	case PTRACE_PEEKUSR_AREA:
 686	case PTRACE_POKEUSR_AREA:
 687		if (copy_from_user(&parea, (void __force __user *) addr,
 688							sizeof(parea)))
 689			return -EFAULT;
 690		addr = parea.kernel_addr;
 691		data = parea.process_addr;
 692		copied = 0;
 693		while (copied < parea.len) {
 694			if (request == PTRACE_PEEKUSR_AREA)
 695				ret = peek_user_compat(child, addr, data);
 696			else {
 697				__u32 utmp;
 698				if (get_user(utmp,
 699					     (__u32 __force __user *) data))
 700					return -EFAULT;
 701				ret = poke_user_compat(child, addr, utmp);
 702			}
 703			if (ret)
 704				return ret;
 705			addr += sizeof(unsigned int);
 706			data += sizeof(unsigned int);
 707			copied += sizeof(unsigned int);
 708		}
 709		return 0;
 710	case PTRACE_GET_LAST_BREAK:
 711		put_user(task_thread_info(child)->last_break,
 712			 (unsigned int __user *) data);
 713		return 0;
 714	}
 715	return compat_ptrace_request(child, request, addr, data);
 716}
 717#endif
 718
 719asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 720{
 721	long ret = 0;
 722
 723	/* Do the secure computing check first. */
 724	secure_computing(regs->gprs[2]);
 
 
 
 
 725
 726	/*
 727	 * The sysc_tracesys code in entry.S stored the system
 728	 * call number to gprs[2].
 729	 */
 730	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 731	    (tracehook_report_syscall_entry(regs) ||
 732	     regs->gprs[2] >= NR_syscalls)) {
 733		/*
 734		 * Tracing decided this syscall should not happen or the
 735		 * debugger stored an invalid system call number. Skip
 736		 * the system call and the system call restart handling.
 737		 */
 738		regs->svcnr = 0;
 739		ret = -1;
 740	}
 741
 742	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 743		trace_sys_enter(regs, regs->gprs[2]);
 744
 745	if (unlikely(current->audit_context))
 746		audit_syscall_entry(is_compat_task() ?
 747					AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
 748				    regs->gprs[2], regs->orig_gpr2,
 749				    regs->gprs[3], regs->gprs[4],
 750				    regs->gprs[5]);
 751	return ret ?: regs->gprs[2];
 752}
 753
 754asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 755{
 756	if (unlikely(current->audit_context))
 757		audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
 758				   regs->gprs[2]);
 759
 760	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 761		trace_sys_exit(regs, regs->gprs[2]);
 762
 763	if (test_thread_flag(TIF_SYSCALL_TRACE))
 764		tracehook_report_syscall_exit(regs, 0);
 765}
 766
 767/*
 768 * user_regset definitions.
 769 */
 770
 771static int s390_regs_get(struct task_struct *target,
 772			 const struct user_regset *regset,
 773			 unsigned int pos, unsigned int count,
 774			 void *kbuf, void __user *ubuf)
 775{
 776	if (target == current)
 777		save_access_regs(target->thread.acrs);
 778
 779	if (kbuf) {
 780		unsigned long *k = kbuf;
 781		while (count > 0) {
 782			*k++ = __peek_user(target, pos);
 783			count -= sizeof(*k);
 784			pos += sizeof(*k);
 785		}
 786	} else {
 787		unsigned long __user *u = ubuf;
 788		while (count > 0) {
 789			if (__put_user(__peek_user(target, pos), u++))
 790				return -EFAULT;
 791			count -= sizeof(*u);
 792			pos += sizeof(*u);
 793		}
 794	}
 795	return 0;
 796}
 797
 798static int s390_regs_set(struct task_struct *target,
 799			 const struct user_regset *regset,
 800			 unsigned int pos, unsigned int count,
 801			 const void *kbuf, const void __user *ubuf)
 802{
 803	int rc = 0;
 804
 805	if (target == current)
 806		save_access_regs(target->thread.acrs);
 807
 808	if (kbuf) {
 809		const unsigned long *k = kbuf;
 810		while (count > 0 && !rc) {
 811			rc = __poke_user(target, pos, *k++);
 812			count -= sizeof(*k);
 813			pos += sizeof(*k);
 814		}
 815	} else {
 816		const unsigned long  __user *u = ubuf;
 817		while (count > 0 && !rc) {
 818			unsigned long word;
 819			rc = __get_user(word, u++);
 820			if (rc)
 821				break;
 822			rc = __poke_user(target, pos, word);
 823			count -= sizeof(*u);
 824			pos += sizeof(*u);
 825		}
 826	}
 827
 828	if (rc == 0 && target == current)
 829		restore_access_regs(target->thread.acrs);
 830
 831	return rc;
 832}
 833
 834static int s390_fpregs_get(struct task_struct *target,
 835			   const struct user_regset *regset, unsigned int pos,
 836			   unsigned int count, void *kbuf, void __user *ubuf)
 837{
 838	if (target == current)
 839		save_fp_regs(&target->thread.fp_regs);
 
 
 840
 841	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 842				   &target->thread.fp_regs, 0, -1);
 843}
 844
 845static int s390_fpregs_set(struct task_struct *target,
 846			   const struct user_regset *regset, unsigned int pos,
 847			   unsigned int count, const void *kbuf,
 848			   const void __user *ubuf)
 849{
 850	int rc = 0;
 851
 852	if (target == current)
 853		save_fp_regs(&target->thread.fp_regs);
 
 
 854
 855	/* If setting FPC, must validate it first. */
 856	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 857		u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
 858		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
 859					0, offsetof(s390_fp_regs, fprs));
 860		if (rc)
 861			return rc;
 862		if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
 863			return -EINVAL;
 864		target->thread.fp_regs.fpc = fpc[0];
 865	}
 866
 867	if (rc == 0 && count > 0)
 868		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 869					target->thread.fp_regs.fprs,
 870					offsetof(s390_fp_regs, fprs), -1);
 871
 872	if (rc == 0 && target == current)
 873		restore_fp_regs(&target->thread.fp_regs);
 
 
 874
 875	return rc;
 876}
 877
 878#ifdef CONFIG_64BIT
 879
 880static int s390_last_break_get(struct task_struct *target,
 881			       const struct user_regset *regset,
 882			       unsigned int pos, unsigned int count,
 883			       void *kbuf, void __user *ubuf)
 884{
 885	if (count > 0) {
 886		if (kbuf) {
 887			unsigned long *k = kbuf;
 888			*k = task_thread_info(target)->last_break;
 889		} else {
 890			unsigned long  __user *u = ubuf;
 891			if (__put_user(task_thread_info(target)->last_break, u))
 892				return -EFAULT;
 893		}
 894	}
 895	return 0;
 896}
 897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 898#endif
 899
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900static const struct user_regset s390_regsets[] = {
 901	[REGSET_GENERAL] = {
 902		.core_note_type = NT_PRSTATUS,
 903		.n = sizeof(s390_regs) / sizeof(long),
 904		.size = sizeof(long),
 905		.align = sizeof(long),
 906		.get = s390_regs_get,
 907		.set = s390_regs_set,
 908	},
 909	[REGSET_FP] = {
 910		.core_note_type = NT_PRFPREG,
 911		.n = sizeof(s390_fp_regs) / sizeof(long),
 912		.size = sizeof(long),
 913		.align = sizeof(long),
 914		.get = s390_fpregs_get,
 915		.set = s390_fpregs_set,
 916	},
 917#ifdef CONFIG_64BIT
 918	[REGSET_LAST_BREAK] = {
 919		.core_note_type = NT_S390_LAST_BREAK,
 920		.n = 1,
 921		.size = sizeof(long),
 922		.align = sizeof(long),
 923		.get = s390_last_break_get,
 
 
 
 
 
 
 
 
 
 924	},
 925#endif
 
 
 
 
 
 
 
 
 926};
 927
 928static const struct user_regset_view user_s390_view = {
 929	.name = UTS_MACHINE,
 930	.e_machine = EM_S390,
 931	.regsets = s390_regsets,
 932	.n = ARRAY_SIZE(s390_regsets)
 933};
 934
 935#ifdef CONFIG_COMPAT
 936static int s390_compat_regs_get(struct task_struct *target,
 937				const struct user_regset *regset,
 938				unsigned int pos, unsigned int count,
 939				void *kbuf, void __user *ubuf)
 940{
 941	if (target == current)
 942		save_access_regs(target->thread.acrs);
 943
 944	if (kbuf) {
 945		compat_ulong_t *k = kbuf;
 946		while (count > 0) {
 947			*k++ = __peek_user_compat(target, pos);
 948			count -= sizeof(*k);
 949			pos += sizeof(*k);
 950		}
 951	} else {
 952		compat_ulong_t __user *u = ubuf;
 953		while (count > 0) {
 954			if (__put_user(__peek_user_compat(target, pos), u++))
 955				return -EFAULT;
 956			count -= sizeof(*u);
 957			pos += sizeof(*u);
 958		}
 959	}
 960	return 0;
 961}
 962
 963static int s390_compat_regs_set(struct task_struct *target,
 964				const struct user_regset *regset,
 965				unsigned int pos, unsigned int count,
 966				const void *kbuf, const void __user *ubuf)
 967{
 968	int rc = 0;
 969
 970	if (target == current)
 971		save_access_regs(target->thread.acrs);
 972
 973	if (kbuf) {
 974		const compat_ulong_t *k = kbuf;
 975		while (count > 0 && !rc) {
 976			rc = __poke_user_compat(target, pos, *k++);
 977			count -= sizeof(*k);
 978			pos += sizeof(*k);
 979		}
 980	} else {
 981		const compat_ulong_t  __user *u = ubuf;
 982		while (count > 0 && !rc) {
 983			compat_ulong_t word;
 984			rc = __get_user(word, u++);
 985			if (rc)
 986				break;
 987			rc = __poke_user_compat(target, pos, word);
 988			count -= sizeof(*u);
 989			pos += sizeof(*u);
 990		}
 991	}
 992
 993	if (rc == 0 && target == current)
 994		restore_access_regs(target->thread.acrs);
 995
 996	return rc;
 997}
 998
 999static int s390_compat_regs_high_get(struct task_struct *target,
1000				     const struct user_regset *regset,
1001				     unsigned int pos, unsigned int count,
1002				     void *kbuf, void __user *ubuf)
1003{
1004	compat_ulong_t *gprs_high;
1005
1006	gprs_high = (compat_ulong_t *)
1007		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1008	if (kbuf) {
1009		compat_ulong_t *k = kbuf;
1010		while (count > 0) {
1011			*k++ = *gprs_high;
1012			gprs_high += 2;
1013			count -= sizeof(*k);
1014		}
1015	} else {
1016		compat_ulong_t __user *u = ubuf;
1017		while (count > 0) {
1018			if (__put_user(*gprs_high, u++))
1019				return -EFAULT;
1020			gprs_high += 2;
1021			count -= sizeof(*u);
1022		}
1023	}
1024	return 0;
1025}
1026
1027static int s390_compat_regs_high_set(struct task_struct *target,
1028				     const struct user_regset *regset,
1029				     unsigned int pos, unsigned int count,
1030				     const void *kbuf, const void __user *ubuf)
1031{
1032	compat_ulong_t *gprs_high;
1033	int rc = 0;
1034
1035	gprs_high = (compat_ulong_t *)
1036		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1037	if (kbuf) {
1038		const compat_ulong_t *k = kbuf;
1039		while (count > 0) {
1040			*gprs_high = *k++;
1041			*gprs_high += 2;
1042			count -= sizeof(*k);
1043		}
1044	} else {
1045		const compat_ulong_t  __user *u = ubuf;
1046		while (count > 0 && !rc) {
1047			unsigned long word;
1048			rc = __get_user(word, u++);
1049			if (rc)
1050				break;
1051			*gprs_high = word;
1052			*gprs_high += 2;
1053			count -= sizeof(*u);
1054		}
1055	}
1056
1057	return rc;
1058}
1059
1060static int s390_compat_last_break_get(struct task_struct *target,
1061				      const struct user_regset *regset,
1062				      unsigned int pos, unsigned int count,
1063				      void *kbuf, void __user *ubuf)
1064{
1065	compat_ulong_t last_break;
1066
1067	if (count > 0) {
1068		last_break = task_thread_info(target)->last_break;
1069		if (kbuf) {
1070			unsigned long *k = kbuf;
1071			*k = last_break;
1072		} else {
1073			unsigned long  __user *u = ubuf;
1074			if (__put_user(last_break, u))
1075				return -EFAULT;
1076		}
1077	}
1078	return 0;
1079}
1080
 
 
 
 
 
 
 
 
1081static const struct user_regset s390_compat_regsets[] = {
1082	[REGSET_GENERAL] = {
1083		.core_note_type = NT_PRSTATUS,
1084		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1085		.size = sizeof(compat_long_t),
1086		.align = sizeof(compat_long_t),
1087		.get = s390_compat_regs_get,
1088		.set = s390_compat_regs_set,
1089	},
1090	[REGSET_FP] = {
1091		.core_note_type = NT_PRFPREG,
1092		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1093		.size = sizeof(compat_long_t),
1094		.align = sizeof(compat_long_t),
1095		.get = s390_fpregs_get,
1096		.set = s390_fpregs_set,
1097	},
1098	[REGSET_LAST_BREAK] = {
1099		.core_note_type = NT_S390_LAST_BREAK,
1100		.n = 1,
1101		.size = sizeof(long),
1102		.align = sizeof(long),
1103		.get = s390_compat_last_break_get,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104	},
1105	[REGSET_GENERAL_EXTENDED] = {
1106		.core_note_type = NT_S390_HIGH_GPRS,
1107		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1108		.size = sizeof(compat_long_t),
1109		.align = sizeof(compat_long_t),
1110		.get = s390_compat_regs_high_get,
1111		.set = s390_compat_regs_high_set,
1112	},
1113};
1114
1115static const struct user_regset_view user_s390_compat_view = {
1116	.name = "s390",
1117	.e_machine = EM_S390,
1118	.regsets = s390_compat_regsets,
1119	.n = ARRAY_SIZE(s390_compat_regsets)
1120};
1121#endif
1122
1123const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1124{
1125#ifdef CONFIG_COMPAT
1126	if (test_tsk_thread_flag(task, TIF_31BIT))
1127		return &user_s390_compat_view;
1128#endif
1129	return &user_s390_view;
1130}
1131
1132static const char *gpr_names[NUM_GPRS] = {
1133	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1134	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1135};
1136
1137unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1138{
1139	if (offset >= NUM_GPRS)
1140		return 0;
1141	return regs->gprs[offset];
1142}
1143
1144int regs_query_register_offset(const char *name)
1145{
1146	unsigned long offset;
1147
1148	if (!name || *name != 'r')
1149		return -EINVAL;
1150	if (strict_strtoul(name + 1, 10, &offset))
1151		return -EINVAL;
1152	if (offset >= NUM_GPRS)
1153		return -EINVAL;
1154	return offset;
1155}
1156
1157const char *regs_query_register_name(unsigned int offset)
1158{
1159	if (offset >= NUM_GPRS)
1160		return NULL;
1161	return gpr_names[offset];
1162}
1163
1164static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1165{
1166	unsigned long ksp = kernel_stack_pointer(regs);
1167
1168	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1169}
1170
1171/**
1172 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1173 * @regs:pt_regs which contains kernel stack pointer.
1174 * @n:stack entry number.
1175 *
1176 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1177 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1178 * this returns 0.
1179 */
1180unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1181{
1182	unsigned long addr;
1183
1184	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1185	if (!regs_within_kernel_stack(regs, addr))
1186		return 0;
1187	return *(unsigned long *)addr;
1188}
v3.15
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999, 2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
  23#include <linux/compat.h>
  24#include <trace/syscall.h>
 
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
 
  29#include <asm/uaccess.h>
  30#include <asm/unistd.h>
  31#include <asm/switch_to.h>
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41enum s390_regset {
  42	REGSET_GENERAL,
  43	REGSET_FP,
  44	REGSET_LAST_BREAK,
  45	REGSET_TDB,
  46	REGSET_SYSTEM_CALL,
  47	REGSET_GENERAL_EXTENDED,
  48};
  49
  50void update_cr_regs(struct task_struct *task)
  51{
 
 
 
 
 
  52	struct pt_regs *regs = task_pt_regs(task);
  53	struct thread_struct *thread = &task->thread;
  54	struct per_regs old, new;
 
  55
  56#ifdef CONFIG_64BIT
  57	/* Take care of the enable/disable of transactional execution. */
  58	if (MACHINE_HAS_TE) {
  59		unsigned long cr, cr_new;
  60
  61		__ctl_store(cr, 0, 0);
  62		/* Set or clear transaction execution TXC bit 8. */
  63		cr_new = cr | (1UL << 55);
  64		if (task->thread.per_flags & PER_FLAG_NO_TE)
  65			cr_new &= ~(1UL << 55);
  66		if (cr_new != cr)
  67			__ctl_load(cr_new, 0, 0);
  68		/* Set or clear transaction execution TDC bits 62 and 63. */
  69		__ctl_store(cr, 2, 2);
  70		cr_new = cr & ~3UL;
  71		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  72			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  73				cr_new |= 1UL;
  74			else
  75				cr_new |= 2UL;
  76		}
  77		if (cr_new != cr)
  78			__ctl_load(cr_new, 2, 2);
  79	}
  80#endif
  81	/* Copy user specified PER registers */
  82	new.control = thread->per_user.control;
  83	new.start = thread->per_user.start;
  84	new.end = thread->per_user.end;
  85
  86	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  87	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
  88		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  89			new.control |= PER_EVENT_BRANCH;
  90		else
  91			new.control |= PER_EVENT_IFETCH;
  92#ifdef CONFIG_64BIT
  93		new.control |= PER_CONTROL_SUSPENSION;
  94		new.control |= PER_EVENT_TRANSACTION_END;
  95#endif
  96		new.start = 0;
  97		new.end = PSW_ADDR_INSN;
  98	}
  99
 100	/* Take care of the PER enablement bit in the PSW. */
 101	if (!(new.control & PER_EVENT_MASK)) {
 102		regs->psw.mask &= ~PSW_MASK_PER;
 103		return;
 104	}
 105	regs->psw.mask |= PSW_MASK_PER;
 106	__ctl_store(old, 9, 11);
 107	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 108		__ctl_load(new, 9, 11);
 109}
 110
 111void user_enable_single_step(struct task_struct *task)
 112{
 113	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 114	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 
 
 115}
 116
 117void user_disable_single_step(struct task_struct *task)
 118{
 119	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 120	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 121}
 122
 123void user_enable_block_step(struct task_struct *task)
 124{
 125	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 126	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 127}
 128
 129/*
 130 * Called by kernel/ptrace.c when detaching..
 131 *
 132 * Clear all debugging related fields.
 133 */
 134void ptrace_disable(struct task_struct *task)
 135{
 136	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 137	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 138	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 139	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 140	task->thread.per_flags = 0;
 141}
 142
 143#ifndef CONFIG_64BIT
 144# define __ADDR_MASK 3
 145#else
 146# define __ADDR_MASK 7
 147#endif
 148
 149static inline unsigned long __peek_user_per(struct task_struct *child,
 150					    addr_t addr)
 151{
 152	struct per_struct_kernel *dummy = NULL;
 153
 154	if (addr == (addr_t) &dummy->cr9)
 155		/* Control bits of the active per set. */
 156		return test_thread_flag(TIF_SINGLE_STEP) ?
 157			PER_EVENT_IFETCH : child->thread.per_user.control;
 158	else if (addr == (addr_t) &dummy->cr10)
 159		/* Start address of the active per set. */
 160		return test_thread_flag(TIF_SINGLE_STEP) ?
 161			0 : child->thread.per_user.start;
 162	else if (addr == (addr_t) &dummy->cr11)
 163		/* End address of the active per set. */
 164		return test_thread_flag(TIF_SINGLE_STEP) ?
 165			PSW_ADDR_INSN : child->thread.per_user.end;
 166	else if (addr == (addr_t) &dummy->bits)
 167		/* Single-step bit. */
 168		return test_thread_flag(TIF_SINGLE_STEP) ?
 169			(1UL << (BITS_PER_LONG - 1)) : 0;
 170	else if (addr == (addr_t) &dummy->starting_addr)
 171		/* Start address of the user specified per set. */
 172		return child->thread.per_user.start;
 173	else if (addr == (addr_t) &dummy->ending_addr)
 174		/* End address of the user specified per set. */
 175		return child->thread.per_user.end;
 176	else if (addr == (addr_t) &dummy->perc_atmid)
 177		/* PER code, ATMID and AI of the last PER trap */
 178		return (unsigned long)
 179			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 180	else if (addr == (addr_t) &dummy->address)
 181		/* Address of the last PER trap */
 182		return child->thread.per_event.address;
 183	else if (addr == (addr_t) &dummy->access_id)
 184		/* Access id of the last PER trap */
 185		return (unsigned long)
 186			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 187	return 0;
 188}
 189
 190/*
 191 * Read the word at offset addr from the user area of a process. The
 192 * trouble here is that the information is littered over different
 193 * locations. The process registers are found on the kernel stack,
 194 * the floating point stuff and the trace settings are stored in
 195 * the task structure. In addition the different structures in
 196 * struct user contain pad bytes that should be read as zeroes.
 197 * Lovely...
 198 */
 199static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 200{
 201	struct user *dummy = NULL;
 202	addr_t offset, tmp;
 203
 204	if (addr < (addr_t) &dummy->regs.acrs) {
 205		/*
 206		 * psw and gprs are stored on the stack
 207		 */
 208		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 209		if (addr == (addr_t) &dummy->regs.psw.mask) {
 210			/* Return a clean psw mask. */
 211			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 212			tmp |= PSW_USER_BITS;
 213		}
 214
 215	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 216		/*
 217		 * access registers are stored in the thread structure
 218		 */
 219		offset = addr - (addr_t) &dummy->regs.acrs;
 220#ifdef CONFIG_64BIT
 221		/*
 222		 * Very special case: old & broken 64 bit gdb reading
 223		 * from acrs[15]. Result is a 64 bit value. Read the
 224		 * 32 bit acrs[15] value and shift it by 32. Sick...
 225		 */
 226		if (addr == (addr_t) &dummy->regs.acrs[15])
 227			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 228		else
 229#endif
 230		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 231
 232	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 233		/*
 234		 * orig_gpr2 is stored on the kernel stack
 235		 */
 236		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 237
 238	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 239		/*
 240		 * prevent reads of padding hole between
 241		 * orig_gpr2 and fp_regs on s390.
 242		 */
 243		tmp = 0;
 244
 245	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 246		/* 
 247		 * floating point regs. are stored in the thread structure
 248		 */
 249		offset = addr - (addr_t) &dummy->regs.fp_regs;
 250		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
 251		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 252			tmp <<= BITS_PER_LONG - 32;
 
 253
 254	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 255		/*
 256		 * Handle access to the per_info structure.
 257		 */
 258		addr -= (addr_t) &dummy->regs.per_info;
 259		tmp = __peek_user_per(child, addr);
 260
 261	} else
 262		tmp = 0;
 263
 264	return tmp;
 265}
 266
 267static int
 268peek_user(struct task_struct *child, addr_t addr, addr_t data)
 269{
 270	addr_t tmp, mask;
 271
 272	/*
 273	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 274	 * an alignment of 4. Programmers from hell...
 275	 */
 276	mask = __ADDR_MASK;
 277#ifdef CONFIG_64BIT
 278	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 279	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 280		mask = 3;
 281#endif
 282	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 283		return -EIO;
 284
 285	tmp = __peek_user(child, addr);
 286	return put_user(tmp, (addr_t __user *) data);
 287}
 288
 289static inline void __poke_user_per(struct task_struct *child,
 290				   addr_t addr, addr_t data)
 291{
 292	struct per_struct_kernel *dummy = NULL;
 293
 294	/*
 295	 * There are only three fields in the per_info struct that the
 296	 * debugger user can write to.
 297	 * 1) cr9: the debugger wants to set a new PER event mask
 298	 * 2) starting_addr: the debugger wants to set a new starting
 299	 *    address to use with the PER event mask.
 300	 * 3) ending_addr: the debugger wants to set a new ending
 301	 *    address to use with the PER event mask.
 302	 * The user specified PER event mask and the start and end
 303	 * addresses are used only if single stepping is not in effect.
 304	 * Writes to any other field in per_info are ignored.
 305	 */
 306	if (addr == (addr_t) &dummy->cr9)
 307		/* PER event mask of the user specified per set. */
 308		child->thread.per_user.control =
 309			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 310	else if (addr == (addr_t) &dummy->starting_addr)
 311		/* Starting address of the user specified per set. */
 312		child->thread.per_user.start = data;
 313	else if (addr == (addr_t) &dummy->ending_addr)
 314		/* Ending address of the user specified per set. */
 315		child->thread.per_user.end = data;
 316}
 317
 318/*
 319 * Write a word to the user area of a process at location addr. This
 320 * operation does have an additional problem compared to peek_user.
 321 * Stores to the program status word and on the floating point
 322 * control register needs to get checked for validity.
 323 */
 324static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 325{
 326	struct user *dummy = NULL;
 327	addr_t offset;
 328
 329	if (addr < (addr_t) &dummy->regs.acrs) {
 330		/*
 331		 * psw and gprs are stored on the stack
 332		 */
 333		if (addr == (addr_t) &dummy->regs.psw.mask) {
 334			unsigned long mask = PSW_MASK_USER;
 335
 336			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 337			if ((data & ~mask) != PSW_USER_BITS)
 338				return -EINVAL;
 339			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 340				return -EINVAL;
 341		}
 
 
 
 
 342		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 343
 344	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 345		/*
 346		 * access registers are stored in the thread structure
 347		 */
 348		offset = addr - (addr_t) &dummy->regs.acrs;
 349#ifdef CONFIG_64BIT
 350		/*
 351		 * Very special case: old & broken 64 bit gdb writing
 352		 * to acrs[15] with a 64 bit value. Ignore the lower
 353		 * half of the value and write the upper 32 bit to
 354		 * acrs[15]. Sick...
 355		 */
 356		if (addr == (addr_t) &dummy->regs.acrs[15])
 357			child->thread.acrs[15] = (unsigned int) (data >> 32);
 358		else
 359#endif
 360		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 361
 362	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 363		/*
 364		 * orig_gpr2 is stored on the kernel stack
 365		 */
 366		task_pt_regs(child)->orig_gpr2 = data;
 367
 368	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 369		/*
 370		 * prevent writes of padding hole between
 371		 * orig_gpr2 and fp_regs on s390.
 372		 */
 373		return 0;
 374
 375	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 376		/*
 377		 * floating point regs. are stored in the thread structure
 378		 */
 379		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 380			if ((unsigned int) data != 0 ||
 381			    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 382				return -EINVAL;
 383		offset = addr - (addr_t) &dummy->regs.fp_regs;
 384		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
 385
 386	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 387		/*
 388		 * Handle access to the per_info structure.
 389		 */
 390		addr -= (addr_t) &dummy->regs.per_info;
 391		__poke_user_per(child, addr, data);
 392
 393	}
 394
 395	return 0;
 396}
 397
 398static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 399{
 400	addr_t mask;
 401
 402	/*
 403	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 404	 * an alignment of 4. Programmers from hell indeed...
 405	 */
 406	mask = __ADDR_MASK;
 407#ifdef CONFIG_64BIT
 408	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 409	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 410		mask = 3;
 411#endif
 412	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 413		return -EIO;
 414
 415	return __poke_user(child, addr, data);
 416}
 417
 418long arch_ptrace(struct task_struct *child, long request,
 419		 unsigned long addr, unsigned long data)
 420{
 421	ptrace_area parea; 
 422	int copied, ret;
 423
 424	switch (request) {
 425	case PTRACE_PEEKUSR:
 426		/* read the word at location addr in the USER area. */
 427		return peek_user(child, addr, data);
 428
 429	case PTRACE_POKEUSR:
 430		/* write the word at location addr in the USER area */
 431		return poke_user(child, addr, data);
 432
 433	case PTRACE_PEEKUSR_AREA:
 434	case PTRACE_POKEUSR_AREA:
 435		if (copy_from_user(&parea, (void __force __user *) addr,
 436							sizeof(parea)))
 437			return -EFAULT;
 438		addr = parea.kernel_addr;
 439		data = parea.process_addr;
 440		copied = 0;
 441		while (copied < parea.len) {
 442			if (request == PTRACE_PEEKUSR_AREA)
 443				ret = peek_user(child, addr, data);
 444			else {
 445				addr_t utmp;
 446				if (get_user(utmp,
 447					     (addr_t __force __user *) data))
 448					return -EFAULT;
 449				ret = poke_user(child, addr, utmp);
 450			}
 451			if (ret)
 452				return ret;
 453			addr += sizeof(unsigned long);
 454			data += sizeof(unsigned long);
 455			copied += sizeof(unsigned long);
 456		}
 457		return 0;
 458	case PTRACE_GET_LAST_BREAK:
 459		put_user(task_thread_info(child)->last_break,
 460			 (unsigned long __user *) data);
 461		return 0;
 462	case PTRACE_ENABLE_TE:
 463		if (!MACHINE_HAS_TE)
 464			return -EIO;
 465		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 466		return 0;
 467	case PTRACE_DISABLE_TE:
 468		if (!MACHINE_HAS_TE)
 469			return -EIO;
 470		child->thread.per_flags |= PER_FLAG_NO_TE;
 471		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 472		return 0;
 473	case PTRACE_TE_ABORT_RAND:
 474		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 475			return -EIO;
 476		switch (data) {
 477		case 0UL:
 478			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 479			break;
 480		case 1UL:
 481			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 482			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 483			break;
 484		case 2UL:
 485			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 486			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 487			break;
 488		default:
 489			return -EINVAL;
 490		}
 491		return 0;
 492	default:
 493		/* Removing high order bit from addr (only for 31 bit). */
 494		addr &= PSW_ADDR_INSN;
 495		return ptrace_request(child, request, addr, data);
 496	}
 497}
 498
 499#ifdef CONFIG_COMPAT
 500/*
 501 * Now the fun part starts... a 31 bit program running in the
 502 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 503 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 504 * to handle, the difference to the 64 bit versions of the requests
 505 * is that the access is done in multiples of 4 byte instead of
 506 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 507 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 508 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 509 * is a 31 bit program too, the content of struct user can be
 510 * emulated. A 31 bit program peeking into the struct user of
 511 * a 64 bit program is a no-no.
 512 */
 513
 514/*
 515 * Same as peek_user_per but for a 31 bit program.
 516 */
 517static inline __u32 __peek_user_per_compat(struct task_struct *child,
 518					   addr_t addr)
 519{
 520	struct compat_per_struct_kernel *dummy32 = NULL;
 521
 522	if (addr == (addr_t) &dummy32->cr9)
 523		/* Control bits of the active per set. */
 524		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 525			PER_EVENT_IFETCH : child->thread.per_user.control;
 526	else if (addr == (addr_t) &dummy32->cr10)
 527		/* Start address of the active per set. */
 528		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 529			0 : child->thread.per_user.start;
 530	else if (addr == (addr_t) &dummy32->cr11)
 531		/* End address of the active per set. */
 532		return test_thread_flag(TIF_SINGLE_STEP) ?
 533			PSW32_ADDR_INSN : child->thread.per_user.end;
 534	else if (addr == (addr_t) &dummy32->bits)
 535		/* Single-step bit. */
 536		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 537			0x80000000 : 0;
 538	else if (addr == (addr_t) &dummy32->starting_addr)
 539		/* Start address of the user specified per set. */
 540		return (__u32) child->thread.per_user.start;
 541	else if (addr == (addr_t) &dummy32->ending_addr)
 542		/* End address of the user specified per set. */
 543		return (__u32) child->thread.per_user.end;
 544	else if (addr == (addr_t) &dummy32->perc_atmid)
 545		/* PER code, ATMID and AI of the last PER trap */
 546		return (__u32) child->thread.per_event.cause << 16;
 547	else if (addr == (addr_t) &dummy32->address)
 548		/* Address of the last PER trap */
 549		return (__u32) child->thread.per_event.address;
 550	else if (addr == (addr_t) &dummy32->access_id)
 551		/* Access id of the last PER trap */
 552		return (__u32) child->thread.per_event.paid << 24;
 553	return 0;
 554}
 555
 556/*
 557 * Same as peek_user but for a 31 bit program.
 558 */
 559static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 560{
 561	struct compat_user *dummy32 = NULL;
 562	addr_t offset;
 563	__u32 tmp;
 564
 565	if (addr < (addr_t) &dummy32->regs.acrs) {
 566		struct pt_regs *regs = task_pt_regs(child);
 567		/*
 568		 * psw and gprs are stored on the stack
 569		 */
 570		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 571			/* Fake a 31 bit psw mask. */
 572			tmp = (__u32)(regs->psw.mask >> 32);
 573			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 574			tmp |= PSW32_USER_BITS;
 575		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 576			/* Fake a 31 bit psw address. */
 577			tmp = (__u32) regs->psw.addr |
 578				(__u32)(regs->psw.mask & PSW_MASK_BA);
 579		} else {
 580			/* gpr 0-15 */
 581			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 
 582		}
 583	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 584		/*
 585		 * access registers are stored in the thread structure
 586		 */
 587		offset = addr - (addr_t) &dummy32->regs.acrs;
 588		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 589
 590	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 591		/*
 592		 * orig_gpr2 is stored on the kernel stack
 593		 */
 594		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 595
 596	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 597		/*
 598		 * prevent reads of padding hole between
 599		 * orig_gpr2 and fp_regs on s390.
 600		 */
 601		tmp = 0;
 602
 603	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 604		/*
 605		 * floating point regs. are stored in the thread structure 
 606		 */
 607	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 608		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
 609
 610	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 611		/*
 612		 * Handle access to the per_info structure.
 613		 */
 614		addr -= (addr_t) &dummy32->regs.per_info;
 615		tmp = __peek_user_per_compat(child, addr);
 616
 617	} else
 618		tmp = 0;
 619
 620	return tmp;
 621}
 622
 623static int peek_user_compat(struct task_struct *child,
 624			    addr_t addr, addr_t data)
 625{
 626	__u32 tmp;
 627
 628	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 629		return -EIO;
 630
 631	tmp = __peek_user_compat(child, addr);
 632	return put_user(tmp, (__u32 __user *) data);
 633}
 634
 635/*
 636 * Same as poke_user_per but for a 31 bit program.
 637 */
 638static inline void __poke_user_per_compat(struct task_struct *child,
 639					  addr_t addr, __u32 data)
 640{
 641	struct compat_per_struct_kernel *dummy32 = NULL;
 642
 643	if (addr == (addr_t) &dummy32->cr9)
 644		/* PER event mask of the user specified per set. */
 645		child->thread.per_user.control =
 646			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 647	else if (addr == (addr_t) &dummy32->starting_addr)
 648		/* Starting address of the user specified per set. */
 649		child->thread.per_user.start = data;
 650	else if (addr == (addr_t) &dummy32->ending_addr)
 651		/* Ending address of the user specified per set. */
 652		child->thread.per_user.end = data;
 653}
 654
 655/*
 656 * Same as poke_user but for a 31 bit program.
 657 */
 658static int __poke_user_compat(struct task_struct *child,
 659			      addr_t addr, addr_t data)
 660{
 661	struct compat_user *dummy32 = NULL;
 662	__u32 tmp = (__u32) data;
 663	addr_t offset;
 664
 665	if (addr < (addr_t) &dummy32->regs.acrs) {
 666		struct pt_regs *regs = task_pt_regs(child);
 667		/*
 668		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 669		 */
 670		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 671			__u32 mask = PSW32_MASK_USER;
 672
 673			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 674			/* Build a 64 bit psw mask from 31 bit mask. */
 675			if ((tmp & ~mask) != PSW32_USER_BITS)
 676				/* Invalid psw mask. */
 677				return -EINVAL;
 678			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 679				(regs->psw.mask & PSW_MASK_BA) |
 680				(__u64)(tmp & mask) << 32;
 681		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 682			/* Build a 64 bit psw address from 31 bit address. */
 683			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 684			/* Transfer 31 bit amode bit to psw mask. */
 685			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 686				(__u64)(tmp & PSW32_ADDR_AMODE);
 687		} else {
 688			/* gpr 0-15 */
 689			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 
 690		}
 691	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 692		/*
 693		 * access registers are stored in the thread structure
 694		 */
 695		offset = addr - (addr_t) &dummy32->regs.acrs;
 696		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 697
 698	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 699		/*
 700		 * orig_gpr2 is stored on the kernel stack
 701		 */
 702		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 703
 704	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 705		/*
 706		 * prevent writess of padding hole between
 707		 * orig_gpr2 and fp_regs on s390.
 708		 */
 709		return 0;
 710
 711	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 712		/*
 713		 * floating point regs. are stored in the thread structure 
 714		 */
 715		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
 716		    test_fp_ctl(tmp))
 
 717			return -EINVAL;
 718	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 719		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
 720
 721	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 722		/*
 723		 * Handle access to the per_info structure.
 724		 */
 725		addr -= (addr_t) &dummy32->regs.per_info;
 726		__poke_user_per_compat(child, addr, data);
 727	}
 728
 729	return 0;
 730}
 731
 732static int poke_user_compat(struct task_struct *child,
 733			    addr_t addr, addr_t data)
 734{
 735	if (!is_compat_task() || (addr & 3) ||
 736	    addr > sizeof(struct compat_user) - 3)
 737		return -EIO;
 738
 739	return __poke_user_compat(child, addr, data);
 740}
 741
 742long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 743			compat_ulong_t caddr, compat_ulong_t cdata)
 744{
 745	unsigned long addr = caddr;
 746	unsigned long data = cdata;
 747	compat_ptrace_area parea;
 748	int copied, ret;
 749
 750	switch (request) {
 751	case PTRACE_PEEKUSR:
 752		/* read the word at location addr in the USER area. */
 753		return peek_user_compat(child, addr, data);
 754
 755	case PTRACE_POKEUSR:
 756		/* write the word at location addr in the USER area */
 757		return poke_user_compat(child, addr, data);
 758
 759	case PTRACE_PEEKUSR_AREA:
 760	case PTRACE_POKEUSR_AREA:
 761		if (copy_from_user(&parea, (void __force __user *) addr,
 762							sizeof(parea)))
 763			return -EFAULT;
 764		addr = parea.kernel_addr;
 765		data = parea.process_addr;
 766		copied = 0;
 767		while (copied < parea.len) {
 768			if (request == PTRACE_PEEKUSR_AREA)
 769				ret = peek_user_compat(child, addr, data);
 770			else {
 771				__u32 utmp;
 772				if (get_user(utmp,
 773					     (__u32 __force __user *) data))
 774					return -EFAULT;
 775				ret = poke_user_compat(child, addr, utmp);
 776			}
 777			if (ret)
 778				return ret;
 779			addr += sizeof(unsigned int);
 780			data += sizeof(unsigned int);
 781			copied += sizeof(unsigned int);
 782		}
 783		return 0;
 784	case PTRACE_GET_LAST_BREAK:
 785		put_user(task_thread_info(child)->last_break,
 786			 (unsigned int __user *) data);
 787		return 0;
 788	}
 789	return compat_ptrace_request(child, request, addr, data);
 790}
 791#endif
 792
 793asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 794{
 795	long ret = 0;
 796
 797	/* Do the secure computing check first. */
 798	if (secure_computing(regs->gprs[2])) {
 799		/* seccomp failures shouldn't expose any additional code. */
 800		ret = -1;
 801		goto out;
 802	}
 803
 804	/*
 805	 * The sysc_tracesys code in entry.S stored the system
 806	 * call number to gprs[2].
 807	 */
 808	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 809	    (tracehook_report_syscall_entry(regs) ||
 810	     regs->gprs[2] >= NR_syscalls)) {
 811		/*
 812		 * Tracing decided this syscall should not happen or the
 813		 * debugger stored an invalid system call number. Skip
 814		 * the system call and the system call restart handling.
 815		 */
 816		clear_thread_flag(TIF_SYSCALL);
 817		ret = -1;
 818	}
 819
 820	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 821		trace_sys_enter(regs, regs->gprs[2]);
 822
 823	audit_syscall_entry(is_compat_task() ?
 824				AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
 825			    regs->gprs[2], regs->orig_gpr2,
 826			    regs->gprs[3], regs->gprs[4],
 827			    regs->gprs[5]);
 828out:
 829	return ret ?: regs->gprs[2];
 830}
 831
 832asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 833{
 834	audit_syscall_exit(regs);
 
 
 835
 836	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 837		trace_sys_exit(regs, regs->gprs[2]);
 838
 839	if (test_thread_flag(TIF_SYSCALL_TRACE))
 840		tracehook_report_syscall_exit(regs, 0);
 841}
 842
 843/*
 844 * user_regset definitions.
 845 */
 846
 847static int s390_regs_get(struct task_struct *target,
 848			 const struct user_regset *regset,
 849			 unsigned int pos, unsigned int count,
 850			 void *kbuf, void __user *ubuf)
 851{
 852	if (target == current)
 853		save_access_regs(target->thread.acrs);
 854
 855	if (kbuf) {
 856		unsigned long *k = kbuf;
 857		while (count > 0) {
 858			*k++ = __peek_user(target, pos);
 859			count -= sizeof(*k);
 860			pos += sizeof(*k);
 861		}
 862	} else {
 863		unsigned long __user *u = ubuf;
 864		while (count > 0) {
 865			if (__put_user(__peek_user(target, pos), u++))
 866				return -EFAULT;
 867			count -= sizeof(*u);
 868			pos += sizeof(*u);
 869		}
 870	}
 871	return 0;
 872}
 873
 874static int s390_regs_set(struct task_struct *target,
 875			 const struct user_regset *regset,
 876			 unsigned int pos, unsigned int count,
 877			 const void *kbuf, const void __user *ubuf)
 878{
 879	int rc = 0;
 880
 881	if (target == current)
 882		save_access_regs(target->thread.acrs);
 883
 884	if (kbuf) {
 885		const unsigned long *k = kbuf;
 886		while (count > 0 && !rc) {
 887			rc = __poke_user(target, pos, *k++);
 888			count -= sizeof(*k);
 889			pos += sizeof(*k);
 890		}
 891	} else {
 892		const unsigned long  __user *u = ubuf;
 893		while (count > 0 && !rc) {
 894			unsigned long word;
 895			rc = __get_user(word, u++);
 896			if (rc)
 897				break;
 898			rc = __poke_user(target, pos, word);
 899			count -= sizeof(*u);
 900			pos += sizeof(*u);
 901		}
 902	}
 903
 904	if (rc == 0 && target == current)
 905		restore_access_regs(target->thread.acrs);
 906
 907	return rc;
 908}
 909
 910static int s390_fpregs_get(struct task_struct *target,
 911			   const struct user_regset *regset, unsigned int pos,
 912			   unsigned int count, void *kbuf, void __user *ubuf)
 913{
 914	if (target == current) {
 915		save_fp_ctl(&target->thread.fp_regs.fpc);
 916		save_fp_regs(target->thread.fp_regs.fprs);
 917	}
 918
 919	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 920				   &target->thread.fp_regs, 0, -1);
 921}
 922
 923static int s390_fpregs_set(struct task_struct *target,
 924			   const struct user_regset *regset, unsigned int pos,
 925			   unsigned int count, const void *kbuf,
 926			   const void __user *ubuf)
 927{
 928	int rc = 0;
 929
 930	if (target == current) {
 931		save_fp_ctl(&target->thread.fp_regs.fpc);
 932		save_fp_regs(target->thread.fp_regs.fprs);
 933	}
 934
 935	/* If setting FPC, must validate it first. */
 936	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 937		u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
 938		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 939					0, offsetof(s390_fp_regs, fprs));
 940		if (rc)
 941			return rc;
 942		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 943			return -EINVAL;
 944		target->thread.fp_regs.fpc = ufpc[0];
 945	}
 946
 947	if (rc == 0 && count > 0)
 948		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 949					target->thread.fp_regs.fprs,
 950					offsetof(s390_fp_regs, fprs), -1);
 951
 952	if (rc == 0 && target == current) {
 953		restore_fp_ctl(&target->thread.fp_regs.fpc);
 954		restore_fp_regs(target->thread.fp_regs.fprs);
 955	}
 956
 957	return rc;
 958}
 959
 960#ifdef CONFIG_64BIT
 961
 962static int s390_last_break_get(struct task_struct *target,
 963			       const struct user_regset *regset,
 964			       unsigned int pos, unsigned int count,
 965			       void *kbuf, void __user *ubuf)
 966{
 967	if (count > 0) {
 968		if (kbuf) {
 969			unsigned long *k = kbuf;
 970			*k = task_thread_info(target)->last_break;
 971		} else {
 972			unsigned long  __user *u = ubuf;
 973			if (__put_user(task_thread_info(target)->last_break, u))
 974				return -EFAULT;
 975		}
 976	}
 977	return 0;
 978}
 979
 980static int s390_last_break_set(struct task_struct *target,
 981			       const struct user_regset *regset,
 982			       unsigned int pos, unsigned int count,
 983			       const void *kbuf, const void __user *ubuf)
 984{
 985	return 0;
 986}
 987
 988static int s390_tdb_get(struct task_struct *target,
 989			const struct user_regset *regset,
 990			unsigned int pos, unsigned int count,
 991			void *kbuf, void __user *ubuf)
 992{
 993	struct pt_regs *regs = task_pt_regs(target);
 994	unsigned char *data;
 995
 996	if (!(regs->int_code & 0x200))
 997		return -ENODATA;
 998	data = target->thread.trap_tdb;
 999	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1000}
1001
1002static int s390_tdb_set(struct task_struct *target,
1003			const struct user_regset *regset,
1004			unsigned int pos, unsigned int count,
1005			const void *kbuf, const void __user *ubuf)
1006{
1007	return 0;
1008}
1009
1010#endif
1011
1012static int s390_system_call_get(struct task_struct *target,
1013				const struct user_regset *regset,
1014				unsigned int pos, unsigned int count,
1015				void *kbuf, void __user *ubuf)
1016{
1017	unsigned int *data = &task_thread_info(target)->system_call;
1018	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1019				   data, 0, sizeof(unsigned int));
1020}
1021
1022static int s390_system_call_set(struct task_struct *target,
1023				const struct user_regset *regset,
1024				unsigned int pos, unsigned int count,
1025				const void *kbuf, const void __user *ubuf)
1026{
1027	unsigned int *data = &task_thread_info(target)->system_call;
1028	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1029				  data, 0, sizeof(unsigned int));
1030}
1031
1032static const struct user_regset s390_regsets[] = {
1033	[REGSET_GENERAL] = {
1034		.core_note_type = NT_PRSTATUS,
1035		.n = sizeof(s390_regs) / sizeof(long),
1036		.size = sizeof(long),
1037		.align = sizeof(long),
1038		.get = s390_regs_get,
1039		.set = s390_regs_set,
1040	},
1041	[REGSET_FP] = {
1042		.core_note_type = NT_PRFPREG,
1043		.n = sizeof(s390_fp_regs) / sizeof(long),
1044		.size = sizeof(long),
1045		.align = sizeof(long),
1046		.get = s390_fpregs_get,
1047		.set = s390_fpregs_set,
1048	},
1049#ifdef CONFIG_64BIT
1050	[REGSET_LAST_BREAK] = {
1051		.core_note_type = NT_S390_LAST_BREAK,
1052		.n = 1,
1053		.size = sizeof(long),
1054		.align = sizeof(long),
1055		.get = s390_last_break_get,
1056		.set = s390_last_break_set,
1057	},
1058	[REGSET_TDB] = {
1059		.core_note_type = NT_S390_TDB,
1060		.n = 1,
1061		.size = 256,
1062		.align = 1,
1063		.get = s390_tdb_get,
1064		.set = s390_tdb_set,
1065	},
1066#endif
1067	[REGSET_SYSTEM_CALL] = {
1068		.core_note_type = NT_S390_SYSTEM_CALL,
1069		.n = 1,
1070		.size = sizeof(unsigned int),
1071		.align = sizeof(unsigned int),
1072		.get = s390_system_call_get,
1073		.set = s390_system_call_set,
1074	},
1075};
1076
1077static const struct user_regset_view user_s390_view = {
1078	.name = UTS_MACHINE,
1079	.e_machine = EM_S390,
1080	.regsets = s390_regsets,
1081	.n = ARRAY_SIZE(s390_regsets)
1082};
1083
1084#ifdef CONFIG_COMPAT
1085static int s390_compat_regs_get(struct task_struct *target,
1086				const struct user_regset *regset,
1087				unsigned int pos, unsigned int count,
1088				void *kbuf, void __user *ubuf)
1089{
1090	if (target == current)
1091		save_access_regs(target->thread.acrs);
1092
1093	if (kbuf) {
1094		compat_ulong_t *k = kbuf;
1095		while (count > 0) {
1096			*k++ = __peek_user_compat(target, pos);
1097			count -= sizeof(*k);
1098			pos += sizeof(*k);
1099		}
1100	} else {
1101		compat_ulong_t __user *u = ubuf;
1102		while (count > 0) {
1103			if (__put_user(__peek_user_compat(target, pos), u++))
1104				return -EFAULT;
1105			count -= sizeof(*u);
1106			pos += sizeof(*u);
1107		}
1108	}
1109	return 0;
1110}
1111
1112static int s390_compat_regs_set(struct task_struct *target,
1113				const struct user_regset *regset,
1114				unsigned int pos, unsigned int count,
1115				const void *kbuf, const void __user *ubuf)
1116{
1117	int rc = 0;
1118
1119	if (target == current)
1120		save_access_regs(target->thread.acrs);
1121
1122	if (kbuf) {
1123		const compat_ulong_t *k = kbuf;
1124		while (count > 0 && !rc) {
1125			rc = __poke_user_compat(target, pos, *k++);
1126			count -= sizeof(*k);
1127			pos += sizeof(*k);
1128		}
1129	} else {
1130		const compat_ulong_t  __user *u = ubuf;
1131		while (count > 0 && !rc) {
1132			compat_ulong_t word;
1133			rc = __get_user(word, u++);
1134			if (rc)
1135				break;
1136			rc = __poke_user_compat(target, pos, word);
1137			count -= sizeof(*u);
1138			pos += sizeof(*u);
1139		}
1140	}
1141
1142	if (rc == 0 && target == current)
1143		restore_access_regs(target->thread.acrs);
1144
1145	return rc;
1146}
1147
1148static int s390_compat_regs_high_get(struct task_struct *target,
1149				     const struct user_regset *regset,
1150				     unsigned int pos, unsigned int count,
1151				     void *kbuf, void __user *ubuf)
1152{
1153	compat_ulong_t *gprs_high;
1154
1155	gprs_high = (compat_ulong_t *)
1156		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1157	if (kbuf) {
1158		compat_ulong_t *k = kbuf;
1159		while (count > 0) {
1160			*k++ = *gprs_high;
1161			gprs_high += 2;
1162			count -= sizeof(*k);
1163		}
1164	} else {
1165		compat_ulong_t __user *u = ubuf;
1166		while (count > 0) {
1167			if (__put_user(*gprs_high, u++))
1168				return -EFAULT;
1169			gprs_high += 2;
1170			count -= sizeof(*u);
1171		}
1172	}
1173	return 0;
1174}
1175
1176static int s390_compat_regs_high_set(struct task_struct *target,
1177				     const struct user_regset *regset,
1178				     unsigned int pos, unsigned int count,
1179				     const void *kbuf, const void __user *ubuf)
1180{
1181	compat_ulong_t *gprs_high;
1182	int rc = 0;
1183
1184	gprs_high = (compat_ulong_t *)
1185		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1186	if (kbuf) {
1187		const compat_ulong_t *k = kbuf;
1188		while (count > 0) {
1189			*gprs_high = *k++;
1190			*gprs_high += 2;
1191			count -= sizeof(*k);
1192		}
1193	} else {
1194		const compat_ulong_t  __user *u = ubuf;
1195		while (count > 0 && !rc) {
1196			unsigned long word;
1197			rc = __get_user(word, u++);
1198			if (rc)
1199				break;
1200			*gprs_high = word;
1201			*gprs_high += 2;
1202			count -= sizeof(*u);
1203		}
1204	}
1205
1206	return rc;
1207}
1208
1209static int s390_compat_last_break_get(struct task_struct *target,
1210				      const struct user_regset *regset,
1211				      unsigned int pos, unsigned int count,
1212				      void *kbuf, void __user *ubuf)
1213{
1214	compat_ulong_t last_break;
1215
1216	if (count > 0) {
1217		last_break = task_thread_info(target)->last_break;
1218		if (kbuf) {
1219			unsigned long *k = kbuf;
1220			*k = last_break;
1221		} else {
1222			unsigned long  __user *u = ubuf;
1223			if (__put_user(last_break, u))
1224				return -EFAULT;
1225		}
1226	}
1227	return 0;
1228}
1229
1230static int s390_compat_last_break_set(struct task_struct *target,
1231				      const struct user_regset *regset,
1232				      unsigned int pos, unsigned int count,
1233				      const void *kbuf, const void __user *ubuf)
1234{
1235	return 0;
1236}
1237
1238static const struct user_regset s390_compat_regsets[] = {
1239	[REGSET_GENERAL] = {
1240		.core_note_type = NT_PRSTATUS,
1241		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1242		.size = sizeof(compat_long_t),
1243		.align = sizeof(compat_long_t),
1244		.get = s390_compat_regs_get,
1245		.set = s390_compat_regs_set,
1246	},
1247	[REGSET_FP] = {
1248		.core_note_type = NT_PRFPREG,
1249		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1250		.size = sizeof(compat_long_t),
1251		.align = sizeof(compat_long_t),
1252		.get = s390_fpregs_get,
1253		.set = s390_fpregs_set,
1254	},
1255	[REGSET_LAST_BREAK] = {
1256		.core_note_type = NT_S390_LAST_BREAK,
1257		.n = 1,
1258		.size = sizeof(long),
1259		.align = sizeof(long),
1260		.get = s390_compat_last_break_get,
1261		.set = s390_compat_last_break_set,
1262	},
1263	[REGSET_TDB] = {
1264		.core_note_type = NT_S390_TDB,
1265		.n = 1,
1266		.size = 256,
1267		.align = 1,
1268		.get = s390_tdb_get,
1269		.set = s390_tdb_set,
1270	},
1271	[REGSET_SYSTEM_CALL] = {
1272		.core_note_type = NT_S390_SYSTEM_CALL,
1273		.n = 1,
1274		.size = sizeof(compat_uint_t),
1275		.align = sizeof(compat_uint_t),
1276		.get = s390_system_call_get,
1277		.set = s390_system_call_set,
1278	},
1279	[REGSET_GENERAL_EXTENDED] = {
1280		.core_note_type = NT_S390_HIGH_GPRS,
1281		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1282		.size = sizeof(compat_long_t),
1283		.align = sizeof(compat_long_t),
1284		.get = s390_compat_regs_high_get,
1285		.set = s390_compat_regs_high_set,
1286	},
1287};
1288
1289static const struct user_regset_view user_s390_compat_view = {
1290	.name = "s390",
1291	.e_machine = EM_S390,
1292	.regsets = s390_compat_regsets,
1293	.n = ARRAY_SIZE(s390_compat_regsets)
1294};
1295#endif
1296
1297const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1298{
1299#ifdef CONFIG_COMPAT
1300	if (test_tsk_thread_flag(task, TIF_31BIT))
1301		return &user_s390_compat_view;
1302#endif
1303	return &user_s390_view;
1304}
1305
1306static const char *gpr_names[NUM_GPRS] = {
1307	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1308	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1309};
1310
1311unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1312{
1313	if (offset >= NUM_GPRS)
1314		return 0;
1315	return regs->gprs[offset];
1316}
1317
1318int regs_query_register_offset(const char *name)
1319{
1320	unsigned long offset;
1321
1322	if (!name || *name != 'r')
1323		return -EINVAL;
1324	if (kstrtoul(name + 1, 10, &offset))
1325		return -EINVAL;
1326	if (offset >= NUM_GPRS)
1327		return -EINVAL;
1328	return offset;
1329}
1330
1331const char *regs_query_register_name(unsigned int offset)
1332{
1333	if (offset >= NUM_GPRS)
1334		return NULL;
1335	return gpr_names[offset];
1336}
1337
1338static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1339{
1340	unsigned long ksp = kernel_stack_pointer(regs);
1341
1342	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1343}
1344
1345/**
1346 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1347 * @regs:pt_regs which contains kernel stack pointer.
1348 * @n:stack entry number.
1349 *
1350 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1351 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1352 * this returns 0.
1353 */
1354unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1355{
1356	unsigned long addr;
1357
1358	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1359	if (!regs_within_kernel_stack(regs, addr))
1360		return 0;
1361	return *(unsigned long *)addr;
1362}