Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  7 * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
  8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/gfp.h>
 18#include <linux/highmem.h>
 
 19
 20#include <asm/cache.h>
 
 21#include <asm/io.h>
 22
 23#include <dma-coherence.h>
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25static inline struct page *dma_addr_to_page(struct device *dev,
 26	dma_addr_t dma_addr)
 27{
 28	return pfn_to_page(
 29		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 30}
 31
 32/*
 
 
 
 
 33 * Warning on the terminology - Linux calls an uncached area coherent;
 34 * MIPS terminology calls memory areas with hardware maintained coherency
 35 * coherent.
 
 
 
 
 
 36 */
 37
 38static inline int cpu_is_noncoherent_r10000(struct device *dev)
 39{
 40	return !plat_device_is_coherent(dev) &&
 41	       (current_cpu_type() == CPU_R10000 ||
 42	       current_cpu_type() == CPU_R12000);
 
 43}
 44
 45static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 46{
 47	gfp_t dma_flag;
 48
 49	/* ignore region specifiers */
 50	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 51
 52#ifdef CONFIG_ISA
 53	if (dev == NULL)
 54		dma_flag = __GFP_DMA;
 55	else
 56#endif
 57#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
 58	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
 59			dma_flag = __GFP_DMA;
 60	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 61			dma_flag = __GFP_DMA32;
 62	else
 63#endif
 64#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
 65	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 66		dma_flag = __GFP_DMA32;
 67	else
 68#endif
 69#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
 70	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 71		dma_flag = __GFP_DMA;
 72	else
 73#endif
 74		dma_flag = 0;
 75
 76	/* Don't invoke OOM killer */
 77	gfp |= __GFP_NORETRY;
 78
 79	return gfp | dma_flag;
 80}
 81
 82void *dma_alloc_noncoherent(struct device *dev, size_t size,
 83	dma_addr_t * dma_handle, gfp_t gfp)
 84{
 85	void *ret;
 86
 87	gfp = massage_gfp_flags(dev, gfp);
 88
 89	ret = (void *) __get_free_pages(gfp, get_order(size));
 90
 91	if (ret != NULL) {
 92		memset(ret, 0, size);
 93		*dma_handle = plat_map_dma_mem(dev, ret, size);
 94	}
 95
 96	return ret;
 97}
 98EXPORT_SYMBOL(dma_alloc_noncoherent);
 99
100static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
101	dma_addr_t * dma_handle, gfp_t gfp)
102{
103	void *ret;
 
 
104
105	if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
106		return ret;
 
 
 
 
107
108	gfp = massage_gfp_flags(dev, gfp);
109
110	ret = (void *) __get_free_pages(gfp, get_order(size));
111
112	if (ret) {
113		memset(ret, 0, size);
114		*dma_handle = plat_map_dma_mem(dev, ret, size);
115
116		if (!plat_device_is_coherent(dev)) {
117			dma_cache_wback_inv((unsigned long) ret, size);
 
 
 
 
 
 
 
118			ret = UNCAC_ADDR(ret);
119		}
120	}
121
122	return ret;
123}
124
125
126void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
127	dma_addr_t dma_handle)
128{
129	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
130	free_pages((unsigned long) vaddr, get_order(size));
131}
132EXPORT_SYMBOL(dma_free_noncoherent);
133
134static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
135	dma_addr_t dma_handle)
136{
137	unsigned long addr = (unsigned long) vaddr;
138	int order = get_order(size);
 
139
140	if (dma_release_from_coherent(dev, order, vaddr))
 
141		return;
 
142
143	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
144
145	if (!plat_device_is_coherent(dev))
146		addr = CAC_ADDR(addr);
147
148	free_pages(addr, get_order(size));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149}
150
151static inline void __dma_sync_virtual(void *addr, size_t size,
152	enum dma_data_direction direction)
153{
154	switch (direction) {
155	case DMA_TO_DEVICE:
156		dma_cache_wback((unsigned long)addr, size);
157		break;
158
159	case DMA_FROM_DEVICE:
160		dma_cache_inv((unsigned long)addr, size);
161		break;
162
163	case DMA_BIDIRECTIONAL:
164		dma_cache_wback_inv((unsigned long)addr, size);
165		break;
166
167	default:
168		BUG();
169	}
170}
171
172/*
173 * A single sg entry may refer to multiple physically contiguous
174 * pages. But we still need to process highmem pages individually.
175 * If highmem is not configured then the bulk of this loop gets
176 * optimized out.
177 */
178static inline void __dma_sync(struct page *page,
179	unsigned long offset, size_t size, enum dma_data_direction direction)
180{
181	size_t left = size;
182
183	do {
184		size_t len = left;
185
186		if (PageHighMem(page)) {
187			void *addr;
188
189			if (offset + len > PAGE_SIZE) {
190				if (offset >= PAGE_SIZE) {
191					page += offset >> PAGE_SHIFT;
192					offset &= ~PAGE_MASK;
193				}
194				len = PAGE_SIZE - offset;
195			}
196
197			addr = kmap_atomic(page);
198			__dma_sync_virtual(addr + offset, len, direction);
199			kunmap_atomic(addr);
200		} else
201			__dma_sync_virtual(page_address(page) + offset,
202					   size, direction);
203		offset = 0;
204		page++;
205		left -= len;
206	} while (left);
207}
208
209static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
210	size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
211{
212	if (cpu_is_noncoherent_r10000(dev))
213		__dma_sync(dma_addr_to_page(dev, dma_addr),
214			   dma_addr & ~PAGE_MASK, size, direction);
215
216	plat_unmap_dma_mem(dev, dma_addr, size, direction);
217}
218
219static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
220	int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
221{
222	int i;
 
223
224	for (i = 0; i < nents; i++, sg++) {
225		if (!plat_device_is_coherent(dev))
226			__dma_sync(sg_page(sg), sg->offset, sg->length,
227				   direction);
 
 
 
228		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
229				  sg->offset;
230	}
231
232	return nents;
233}
234
235static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
236	unsigned long offset, size_t size, enum dma_data_direction direction,
237	struct dma_attrs *attrs)
238{
239	if (!plat_device_is_coherent(dev))
240		__dma_sync(page, offset, size, direction);
241
242	return plat_map_dma_mem_page(dev, page) + offset;
243}
244
245static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
246	int nhwentries, enum dma_data_direction direction,
247	struct dma_attrs *attrs)
248{
249	int i;
 
250
251	for (i = 0; i < nhwentries; i++, sg++) {
252		if (!plat_device_is_coherent(dev) &&
253		    direction != DMA_TO_DEVICE)
254			__dma_sync(sg_page(sg), sg->offset, sg->length,
255				   direction);
256		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
257	}
258}
259
260static void mips_dma_sync_single_for_cpu(struct device *dev,
261	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
262{
263	if (cpu_is_noncoherent_r10000(dev))
264		__dma_sync(dma_addr_to_page(dev, dma_handle),
265			   dma_handle & ~PAGE_MASK, size, direction);
 
266}
267
268static void mips_dma_sync_single_for_device(struct device *dev,
269	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
270{
271	plat_extra_sync_for_device(dev);
272	if (!plat_device_is_coherent(dev))
273		__dma_sync(dma_addr_to_page(dev, dma_handle),
274			   dma_handle & ~PAGE_MASK, size, direction);
275}
276
277static void mips_dma_sync_sg_for_cpu(struct device *dev,
278	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
 
279{
280	int i;
 
281
282	/* Make sure that gcc doesn't leave the empty loop body.  */
283	for (i = 0; i < nelems; i++, sg++) {
284		if (cpu_is_noncoherent_r10000(dev))
285			__dma_sync(sg_page(sg), sg->offset, sg->length,
286				   direction);
 
287	}
 
288}
289
290static void mips_dma_sync_sg_for_device(struct device *dev,
291	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
 
292{
293	int i;
 
294
295	/* Make sure that gcc doesn't leave the empty loop body.  */
296	for (i = 0; i < nelems; i++, sg++) {
297		if (!plat_device_is_coherent(dev))
298			__dma_sync(sg_page(sg), sg->offset, sg->length,
299				   direction);
 
300	}
301}
302
303int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
304{
305	return plat_dma_mapping_error(dev, dma_addr);
306}
307
308int mips_dma_supported(struct device *dev, u64 mask)
309{
310	return plat_dma_supported(dev, mask);
311}
312
313void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
314			 enum dma_data_direction direction)
315{
316	BUG_ON(direction == DMA_NONE);
317
318	plat_extra_sync_for_device(dev);
319	if (!plat_device_is_coherent(dev))
320		__dma_sync_virtual(vaddr, size, direction);
321}
322
323EXPORT_SYMBOL(dma_cache_sync);
324
325static struct dma_map_ops mips_default_dma_map_ops = {
326	.alloc_coherent = mips_dma_alloc_coherent,
327	.free_coherent = mips_dma_free_coherent,
 
328	.map_page = mips_dma_map_page,
329	.unmap_page = mips_dma_unmap_page,
330	.map_sg = mips_dma_map_sg,
331	.unmap_sg = mips_dma_unmap_sg,
332	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
333	.sync_single_for_device = mips_dma_sync_single_for_device,
334	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
335	.sync_sg_for_device = mips_dma_sync_sg_for_device,
336	.mapping_error = mips_dma_mapping_error,
337	.dma_supported = mips_dma_supported
338};
339
340struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
341EXPORT_SYMBOL(mips_dma_map_ops);
342
343#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
344
345static int __init mips_dma_init(void)
346{
347	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
348
349	return 0;
350}
351fs_initcall(mips_dma_init);
v4.6
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  7 * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
  8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/gfp.h>
 18#include <linux/highmem.h>
 19#include <linux/dma-contiguous.h>
 20
 21#include <asm/cache.h>
 22#include <asm/cpu-type.h>
 23#include <asm/io.h>
 24
 25#include <dma-coherence.h>
 26
 27#ifdef CONFIG_DMA_MAYBE_COHERENT
 28int coherentio = 0;	/* User defined DMA coherency from command line. */
 29EXPORT_SYMBOL_GPL(coherentio);
 30int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */
 31
 32static int __init setcoherentio(char *str)
 33{
 34	coherentio = 1;
 35	pr_info("Hardware DMA cache coherency (command line)\n");
 36	return 0;
 37}
 38early_param("coherentio", setcoherentio);
 39
 40static int __init setnocoherentio(char *str)
 41{
 42	coherentio = 0;
 43	pr_info("Software DMA cache coherency (command line)\n");
 44	return 0;
 45}
 46early_param("nocoherentio", setnocoherentio);
 47#endif
 48
 49static inline struct page *dma_addr_to_page(struct device *dev,
 50	dma_addr_t dma_addr)
 51{
 52	return pfn_to_page(
 53		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 54}
 55
 56/*
 57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
 58 * speculatively fill random cachelines with stale data at any time,
 59 * requiring an extra flush post-DMA.
 60 *
 61 * Warning on the terminology - Linux calls an uncached area coherent;
 62 * MIPS terminology calls memory areas with hardware maintained coherency
 63 * coherent.
 64 *
 65 * Note that the R14000 and R16000 should also be checked for in this
 66 * condition.  However this function is only called on non-I/O-coherent
 67 * systems and only the R10000 and R12000 are used in such systems, the
 68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
 69 */
 70static inline int cpu_needs_post_dma_flush(struct device *dev)
 
 71{
 72	return !plat_device_is_coherent(dev) &&
 73	       (boot_cpu_type() == CPU_R10000 ||
 74		boot_cpu_type() == CPU_R12000 ||
 75		boot_cpu_type() == CPU_BMIPS5000);
 76}
 77
 78static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 79{
 80	gfp_t dma_flag;
 81
 82	/* ignore region specifiers */
 83	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 84
 85#ifdef CONFIG_ISA
 86	if (dev == NULL)
 87		dma_flag = __GFP_DMA;
 88	else
 89#endif
 90#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
 91	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
 92			dma_flag = __GFP_DMA;
 93	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 94			dma_flag = __GFP_DMA32;
 95	else
 96#endif
 97#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
 98	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 99		dma_flag = __GFP_DMA32;
100	else
101#endif
102#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
103	     if (dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
104		dma_flag = __GFP_DMA;
105	else
106#endif
107		dma_flag = 0;
108
109	/* Don't invoke OOM killer */
110	gfp |= __GFP_NORETRY;
111
112	return gfp | dma_flag;
113}
114
115static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
116	dma_addr_t * dma_handle, gfp_t gfp)
117{
118	void *ret;
119
120	gfp = massage_gfp_flags(dev, gfp);
121
122	ret = (void *) __get_free_pages(gfp, get_order(size));
123
124	if (ret != NULL) {
125		memset(ret, 0, size);
126		*dma_handle = plat_map_dma_mem(dev, ret, size);
127	}
128
129	return ret;
130}
 
131
132static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
133	dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
134{
135	void *ret;
136	struct page *page = NULL;
137	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
138
139	/*
140	 * XXX: seems like the coherent and non-coherent implementations could
141	 * be consolidated.
142	 */
143	if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs))
144		return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
145
146	gfp = massage_gfp_flags(dev, gfp);
147
148	if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
149		page = dma_alloc_from_contiguous(dev,
150					count, get_order(size));
151	if (!page)
152		page = alloc_pages(gfp, get_order(size));
153
154	if (!page)
155		return NULL;
156
157	ret = page_address(page);
158	memset(ret, 0, size);
159	*dma_handle = plat_map_dma_mem(dev, ret, size);
160	if (!plat_device_is_coherent(dev)) {
161		dma_cache_wback_inv((unsigned long) ret, size);
162		if (!hw_coherentio)
163			ret = UNCAC_ADDR(ret);
 
164	}
165
166	return ret;
167}
168
169
170static void mips_dma_free_noncoherent(struct device *dev, size_t size,
171		void *vaddr, dma_addr_t dma_handle)
172{
173	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
174	free_pages((unsigned long) vaddr, get_order(size));
175}
 
176
177static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
178	dma_addr_t dma_handle, struct dma_attrs *attrs)
179{
180	unsigned long addr = (unsigned long) vaddr;
181	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
182	struct page *page = NULL;
183
184	if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs)) {
185		mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
186		return;
187	}
188
189	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
190
191	if (!plat_device_is_coherent(dev) && !hw_coherentio)
192		addr = CAC_ADDR(addr);
193
194	page = virt_to_page((void *) addr);
195
196	if (!dma_release_from_contiguous(dev, page, count))
197		__free_pages(page, get_order(size));
198}
199
200static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
201	void *cpu_addr, dma_addr_t dma_addr, size_t size,
202	struct dma_attrs *attrs)
203{
204	unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
205	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
206	unsigned long addr = (unsigned long)cpu_addr;
207	unsigned long off = vma->vm_pgoff;
208	unsigned long pfn;
209	int ret = -ENXIO;
210
211	if (!plat_device_is_coherent(dev) && !hw_coherentio)
212		addr = CAC_ADDR(addr);
213
214	pfn = page_to_pfn(virt_to_page((void *)addr));
215
216	if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
217		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
218	else
219		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
220
221	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
222		return ret;
223
224	if (off < count && user_count <= (count - off)) {
225		ret = remap_pfn_range(vma, vma->vm_start,
226				      pfn + off,
227				      user_count << PAGE_SHIFT,
228				      vma->vm_page_prot);
229	}
230
231	return ret;
232}
233
234static inline void __dma_sync_virtual(void *addr, size_t size,
235	enum dma_data_direction direction)
236{
237	switch (direction) {
238	case DMA_TO_DEVICE:
239		dma_cache_wback((unsigned long)addr, size);
240		break;
241
242	case DMA_FROM_DEVICE:
243		dma_cache_inv((unsigned long)addr, size);
244		break;
245
246	case DMA_BIDIRECTIONAL:
247		dma_cache_wback_inv((unsigned long)addr, size);
248		break;
249
250	default:
251		BUG();
252	}
253}
254
255/*
256 * A single sg entry may refer to multiple physically contiguous
257 * pages. But we still need to process highmem pages individually.
258 * If highmem is not configured then the bulk of this loop gets
259 * optimized out.
260 */
261static inline void __dma_sync(struct page *page,
262	unsigned long offset, size_t size, enum dma_data_direction direction)
263{
264	size_t left = size;
265
266	do {
267		size_t len = left;
268
269		if (PageHighMem(page)) {
270			void *addr;
271
272			if (offset + len > PAGE_SIZE) {
273				if (offset >= PAGE_SIZE) {
274					page += offset >> PAGE_SHIFT;
275					offset &= ~PAGE_MASK;
276				}
277				len = PAGE_SIZE - offset;
278			}
279
280			addr = kmap_atomic(page);
281			__dma_sync_virtual(addr + offset, len, direction);
282			kunmap_atomic(addr);
283		} else
284			__dma_sync_virtual(page_address(page) + offset,
285					   size, direction);
286		offset = 0;
287		page++;
288		left -= len;
289	} while (left);
290}
291
292static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
293	size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
294{
295	if (cpu_needs_post_dma_flush(dev))
296		__dma_sync(dma_addr_to_page(dev, dma_addr),
297			   dma_addr & ~PAGE_MASK, size, direction);
298	plat_post_dma_flush(dev);
299	plat_unmap_dma_mem(dev, dma_addr, size, direction);
300}
301
302static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
303	int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
304{
305	int i;
306	struct scatterlist *sg;
307
308	for_each_sg(sglist, sg, nents, i) {
309		if (!plat_device_is_coherent(dev))
310			__dma_sync(sg_page(sg), sg->offset, sg->length,
311				   direction);
312#ifdef CONFIG_NEED_SG_DMA_LENGTH
313		sg->dma_length = sg->length;
314#endif
315		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
316				  sg->offset;
317	}
318
319	return nents;
320}
321
322static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
323	unsigned long offset, size_t size, enum dma_data_direction direction,
324	struct dma_attrs *attrs)
325{
326	if (!plat_device_is_coherent(dev))
327		__dma_sync(page, offset, size, direction);
328
329	return plat_map_dma_mem_page(dev, page) + offset;
330}
331
332static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
333	int nhwentries, enum dma_data_direction direction,
334	struct dma_attrs *attrs)
335{
336	int i;
337	struct scatterlist *sg;
338
339	for_each_sg(sglist, sg, nhwentries, i) {
340		if (!plat_device_is_coherent(dev) &&
341		    direction != DMA_TO_DEVICE)
342			__dma_sync(sg_page(sg), sg->offset, sg->length,
343				   direction);
344		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
345	}
346}
347
348static void mips_dma_sync_single_for_cpu(struct device *dev,
349	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
350{
351	if (cpu_needs_post_dma_flush(dev))
352		__dma_sync(dma_addr_to_page(dev, dma_handle),
353			   dma_handle & ~PAGE_MASK, size, direction);
354	plat_post_dma_flush(dev);
355}
356
357static void mips_dma_sync_single_for_device(struct device *dev,
358	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
359{
 
360	if (!plat_device_is_coherent(dev))
361		__dma_sync(dma_addr_to_page(dev, dma_handle),
362			   dma_handle & ~PAGE_MASK, size, direction);
363}
364
365static void mips_dma_sync_sg_for_cpu(struct device *dev,
366	struct scatterlist *sglist, int nelems,
367	enum dma_data_direction direction)
368{
369	int i;
370	struct scatterlist *sg;
371
372	if (cpu_needs_post_dma_flush(dev)) {
373		for_each_sg(sglist, sg, nelems, i) {
 
374			__dma_sync(sg_page(sg), sg->offset, sg->length,
375				   direction);
376		}
377	}
378	plat_post_dma_flush(dev);
379}
380
381static void mips_dma_sync_sg_for_device(struct device *dev,
382	struct scatterlist *sglist, int nelems,
383	enum dma_data_direction direction)
384{
385	int i;
386	struct scatterlist *sg;
387
388	if (!plat_device_is_coherent(dev)) {
389		for_each_sg(sglist, sg, nelems, i) {
 
390			__dma_sync(sg_page(sg), sg->offset, sg->length,
391				   direction);
392		}
393	}
394}
395
396int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
397{
398	return 0;
399}
400
401int mips_dma_supported(struct device *dev, u64 mask)
402{
403	return plat_dma_supported(dev, mask);
404}
405
406void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
407			 enum dma_data_direction direction)
408{
409	BUG_ON(direction == DMA_NONE);
410
 
411	if (!plat_device_is_coherent(dev))
412		__dma_sync_virtual(vaddr, size, direction);
413}
414
415EXPORT_SYMBOL(dma_cache_sync);
416
417static struct dma_map_ops mips_default_dma_map_ops = {
418	.alloc = mips_dma_alloc_coherent,
419	.free = mips_dma_free_coherent,
420	.mmap = mips_dma_mmap,
421	.map_page = mips_dma_map_page,
422	.unmap_page = mips_dma_unmap_page,
423	.map_sg = mips_dma_map_sg,
424	.unmap_sg = mips_dma_unmap_sg,
425	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
426	.sync_single_for_device = mips_dma_sync_single_for_device,
427	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
428	.sync_sg_for_device = mips_dma_sync_sg_for_device,
429	.mapping_error = mips_dma_mapping_error,
430	.dma_supported = mips_dma_supported
431};
432
433struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
434EXPORT_SYMBOL(mips_dma_map_ops);
435
436#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
437
438static int __init mips_dma_init(void)
439{
440	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
441
442	return 0;
443}
444fs_initcall(mips_dma_init);