Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  7 * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
  8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/gfp.h>
 18#include <linux/highmem.h>
 19
 20#include <asm/cache.h>
 
 21#include <asm/io.h>
 22
 23#include <dma-coherence.h>
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25static inline struct page *dma_addr_to_page(struct device *dev,
 26	dma_addr_t dma_addr)
 27{
 28	return pfn_to_page(
 29		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 30}
 31
 32/*
 
 
 
 
 33 * Warning on the terminology - Linux calls an uncached area coherent;
 34 * MIPS terminology calls memory areas with hardware maintained coherency
 35 * coherent.
 36 */
 37
 38static inline int cpu_is_noncoherent_r10000(struct device *dev)
 39{
 40	return !plat_device_is_coherent(dev) &&
 41	       (current_cpu_type() == CPU_R10000 ||
 42	       current_cpu_type() == CPU_R12000);
 
 43}
 44
 45static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 46{
 47	gfp_t dma_flag;
 48
 49	/* ignore region specifiers */
 50	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 51
 52#ifdef CONFIG_ISA
 53	if (dev == NULL)
 54		dma_flag = __GFP_DMA;
 55	else
 56#endif
 57#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
 58	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
 59			dma_flag = __GFP_DMA;
 60	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 61			dma_flag = __GFP_DMA32;
 62	else
 63#endif
 64#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
 65	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 66		dma_flag = __GFP_DMA32;
 67	else
 68#endif
 69#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
 70	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 71		dma_flag = __GFP_DMA;
 72	else
 73#endif
 74		dma_flag = 0;
 75
 76	/* Don't invoke OOM killer */
 77	gfp |= __GFP_NORETRY;
 78
 79	return gfp | dma_flag;
 80}
 81
 82void *dma_alloc_noncoherent(struct device *dev, size_t size,
 83	dma_addr_t * dma_handle, gfp_t gfp)
 84{
 85	void *ret;
 86
 87	gfp = massage_gfp_flags(dev, gfp);
 88
 89	ret = (void *) __get_free_pages(gfp, get_order(size));
 90
 91	if (ret != NULL) {
 92		memset(ret, 0, size);
 93		*dma_handle = plat_map_dma_mem(dev, ret, size);
 94	}
 95
 96	return ret;
 97}
 98EXPORT_SYMBOL(dma_alloc_noncoherent);
 99
100static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
101	dma_addr_t * dma_handle, gfp_t gfp)
102{
103	void *ret;
104
105	if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
106		return ret;
107
108	gfp = massage_gfp_flags(dev, gfp);
109
110	ret = (void *) __get_free_pages(gfp, get_order(size));
111
112	if (ret) {
113		memset(ret, 0, size);
114		*dma_handle = plat_map_dma_mem(dev, ret, size);
115
116		if (!plat_device_is_coherent(dev)) {
117			dma_cache_wback_inv((unsigned long) ret, size);
118			ret = UNCAC_ADDR(ret);
 
119		}
120	}
121
122	return ret;
123}
124
125
126void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
127	dma_addr_t dma_handle)
128{
129	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
130	free_pages((unsigned long) vaddr, get_order(size));
131}
132EXPORT_SYMBOL(dma_free_noncoherent);
133
134static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
135	dma_addr_t dma_handle)
136{
137	unsigned long addr = (unsigned long) vaddr;
138	int order = get_order(size);
139
140	if (dma_release_from_coherent(dev, order, vaddr))
141		return;
142
143	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
144
145	if (!plat_device_is_coherent(dev))
146		addr = CAC_ADDR(addr);
147
148	free_pages(addr, get_order(size));
149}
150
151static inline void __dma_sync_virtual(void *addr, size_t size,
152	enum dma_data_direction direction)
153{
154	switch (direction) {
155	case DMA_TO_DEVICE:
156		dma_cache_wback((unsigned long)addr, size);
157		break;
158
159	case DMA_FROM_DEVICE:
160		dma_cache_inv((unsigned long)addr, size);
161		break;
162
163	case DMA_BIDIRECTIONAL:
164		dma_cache_wback_inv((unsigned long)addr, size);
165		break;
166
167	default:
168		BUG();
169	}
170}
171
172/*
173 * A single sg entry may refer to multiple physically contiguous
174 * pages. But we still need to process highmem pages individually.
175 * If highmem is not configured then the bulk of this loop gets
176 * optimized out.
177 */
178static inline void __dma_sync(struct page *page,
179	unsigned long offset, size_t size, enum dma_data_direction direction)
180{
181	size_t left = size;
182
183	do {
184		size_t len = left;
185
186		if (PageHighMem(page)) {
187			void *addr;
188
189			if (offset + len > PAGE_SIZE) {
190				if (offset >= PAGE_SIZE) {
191					page += offset >> PAGE_SHIFT;
192					offset &= ~PAGE_MASK;
193				}
194				len = PAGE_SIZE - offset;
195			}
196
197			addr = kmap_atomic(page);
198			__dma_sync_virtual(addr + offset, len, direction);
199			kunmap_atomic(addr);
200		} else
201			__dma_sync_virtual(page_address(page) + offset,
202					   size, direction);
203		offset = 0;
204		page++;
205		left -= len;
206	} while (left);
207}
208
209static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
210	size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
211{
212	if (cpu_is_noncoherent_r10000(dev))
213		__dma_sync(dma_addr_to_page(dev, dma_addr),
214			   dma_addr & ~PAGE_MASK, size, direction);
215
216	plat_unmap_dma_mem(dev, dma_addr, size, direction);
217}
218
219static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
220	int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
221{
222	int i;
223
224	for (i = 0; i < nents; i++, sg++) {
225		if (!plat_device_is_coherent(dev))
226			__dma_sync(sg_page(sg), sg->offset, sg->length,
227				   direction);
 
 
 
228		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
229				  sg->offset;
230	}
231
232	return nents;
233}
234
235static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
236	unsigned long offset, size_t size, enum dma_data_direction direction,
237	struct dma_attrs *attrs)
238{
239	if (!plat_device_is_coherent(dev))
240		__dma_sync(page, offset, size, direction);
241
242	return plat_map_dma_mem_page(dev, page) + offset;
243}
244
245static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
246	int nhwentries, enum dma_data_direction direction,
247	struct dma_attrs *attrs)
248{
249	int i;
250
251	for (i = 0; i < nhwentries; i++, sg++) {
252		if (!plat_device_is_coherent(dev) &&
253		    direction != DMA_TO_DEVICE)
254			__dma_sync(sg_page(sg), sg->offset, sg->length,
255				   direction);
256		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
257	}
258}
259
260static void mips_dma_sync_single_for_cpu(struct device *dev,
261	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
262{
263	if (cpu_is_noncoherent_r10000(dev))
264		__dma_sync(dma_addr_to_page(dev, dma_handle),
265			   dma_handle & ~PAGE_MASK, size, direction);
266}
267
268static void mips_dma_sync_single_for_device(struct device *dev,
269	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
270{
271	plat_extra_sync_for_device(dev);
272	if (!plat_device_is_coherent(dev))
273		__dma_sync(dma_addr_to_page(dev, dma_handle),
274			   dma_handle & ~PAGE_MASK, size, direction);
275}
276
277static void mips_dma_sync_sg_for_cpu(struct device *dev,
278	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
279{
280	int i;
281
282	/* Make sure that gcc doesn't leave the empty loop body.  */
283	for (i = 0; i < nelems; i++, sg++) {
284		if (cpu_is_noncoherent_r10000(dev))
285			__dma_sync(sg_page(sg), sg->offset, sg->length,
286				   direction);
287	}
288}
289
290static void mips_dma_sync_sg_for_device(struct device *dev,
291	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
292{
293	int i;
294
295	/* Make sure that gcc doesn't leave the empty loop body.  */
296	for (i = 0; i < nelems; i++, sg++) {
297		if (!plat_device_is_coherent(dev))
298			__dma_sync(sg_page(sg), sg->offset, sg->length,
299				   direction);
300	}
301}
302
303int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
304{
305	return plat_dma_mapping_error(dev, dma_addr);
306}
307
308int mips_dma_supported(struct device *dev, u64 mask)
309{
310	return plat_dma_supported(dev, mask);
311}
312
313void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
314			 enum dma_data_direction direction)
315{
316	BUG_ON(direction == DMA_NONE);
317
318	plat_extra_sync_for_device(dev);
319	if (!plat_device_is_coherent(dev))
320		__dma_sync_virtual(vaddr, size, direction);
321}
322
323EXPORT_SYMBOL(dma_cache_sync);
324
325static struct dma_map_ops mips_default_dma_map_ops = {
326	.alloc_coherent = mips_dma_alloc_coherent,
327	.free_coherent = mips_dma_free_coherent,
328	.map_page = mips_dma_map_page,
329	.unmap_page = mips_dma_unmap_page,
330	.map_sg = mips_dma_map_sg,
331	.unmap_sg = mips_dma_unmap_sg,
332	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
333	.sync_single_for_device = mips_dma_sync_single_for_device,
334	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
335	.sync_sg_for_device = mips_dma_sync_sg_for_device,
336	.mapping_error = mips_dma_mapping_error,
337	.dma_supported = mips_dma_supported
338};
339
340struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
341EXPORT_SYMBOL(mips_dma_map_ops);
342
343#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
344
345static int __init mips_dma_init(void)
346{
347	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
348
349	return 0;
350}
351fs_initcall(mips_dma_init);
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  7 * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
  8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/gfp.h>
 18#include <linux/highmem.h>
 19
 20#include <asm/cache.h>
 21#include <asm/cpu-type.h>
 22#include <asm/io.h>
 23
 24#include <dma-coherence.h>
 25
 26#ifdef CONFIG_DMA_MAYBE_COHERENT
 27int coherentio = 0;	/* User defined DMA coherency from command line. */
 28EXPORT_SYMBOL_GPL(coherentio);
 29int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */
 30
 31static int __init setcoherentio(char *str)
 32{
 33	coherentio = 1;
 34	pr_info("Hardware DMA cache coherency (command line)\n");
 35	return 0;
 36}
 37early_param("coherentio", setcoherentio);
 38
 39static int __init setnocoherentio(char *str)
 40{
 41	coherentio = 0;
 42	pr_info("Software DMA cache coherency (command line)\n");
 43	return 0;
 44}
 45early_param("nocoherentio", setnocoherentio);
 46#endif
 47
 48static inline struct page *dma_addr_to_page(struct device *dev,
 49	dma_addr_t dma_addr)
 50{
 51	return pfn_to_page(
 52		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 53}
 54
 55/*
 56 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
 57 * speculatively fill random cachelines with stale data at any time,
 58 * requiring an extra flush post-DMA.
 59 *
 60 * Warning on the terminology - Linux calls an uncached area coherent;
 61 * MIPS terminology calls memory areas with hardware maintained coherency
 62 * coherent.
 63 */
 64static inline int cpu_needs_post_dma_flush(struct device *dev)
 
 65{
 66	return !plat_device_is_coherent(dev) &&
 67	       (boot_cpu_type() == CPU_R10000 ||
 68		boot_cpu_type() == CPU_R12000 ||
 69		boot_cpu_type() == CPU_BMIPS5000);
 70}
 71
 72static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 73{
 74	gfp_t dma_flag;
 75
 76	/* ignore region specifiers */
 77	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 78
 79#ifdef CONFIG_ISA
 80	if (dev == NULL)
 81		dma_flag = __GFP_DMA;
 82	else
 83#endif
 84#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
 85	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
 86			dma_flag = __GFP_DMA;
 87	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 88			dma_flag = __GFP_DMA32;
 89	else
 90#endif
 91#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
 92	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 93		dma_flag = __GFP_DMA32;
 94	else
 95#endif
 96#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
 97	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 98		dma_flag = __GFP_DMA;
 99	else
100#endif
101		dma_flag = 0;
102
103	/* Don't invoke OOM killer */
104	gfp |= __GFP_NORETRY;
105
106	return gfp | dma_flag;
107}
108
109void *dma_alloc_noncoherent(struct device *dev, size_t size,
110	dma_addr_t * dma_handle, gfp_t gfp)
111{
112	void *ret;
113
114	gfp = massage_gfp_flags(dev, gfp);
115
116	ret = (void *) __get_free_pages(gfp, get_order(size));
117
118	if (ret != NULL) {
119		memset(ret, 0, size);
120		*dma_handle = plat_map_dma_mem(dev, ret, size);
121	}
122
123	return ret;
124}
125EXPORT_SYMBOL(dma_alloc_noncoherent);
126
127static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
128	dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
129{
130	void *ret;
131
132	if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
133		return ret;
134
135	gfp = massage_gfp_flags(dev, gfp);
136
137	ret = (void *) __get_free_pages(gfp, get_order(size));
138
139	if (ret) {
140		memset(ret, 0, size);
141		*dma_handle = plat_map_dma_mem(dev, ret, size);
142
143		if (!plat_device_is_coherent(dev)) {
144			dma_cache_wback_inv((unsigned long) ret, size);
145			if (!hw_coherentio)
146				ret = UNCAC_ADDR(ret);
147		}
148	}
149
150	return ret;
151}
152
153
154void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
155	dma_addr_t dma_handle)
156{
157	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
158	free_pages((unsigned long) vaddr, get_order(size));
159}
160EXPORT_SYMBOL(dma_free_noncoherent);
161
162static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
163	dma_addr_t dma_handle, struct dma_attrs *attrs)
164{
165	unsigned long addr = (unsigned long) vaddr;
166	int order = get_order(size);
167
168	if (dma_release_from_coherent(dev, order, vaddr))
169		return;
170
171	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
172
173	if (!plat_device_is_coherent(dev) && !hw_coherentio)
174		addr = CAC_ADDR(addr);
175
176	free_pages(addr, get_order(size));
177}
178
179static inline void __dma_sync_virtual(void *addr, size_t size,
180	enum dma_data_direction direction)
181{
182	switch (direction) {
183	case DMA_TO_DEVICE:
184		dma_cache_wback((unsigned long)addr, size);
185		break;
186
187	case DMA_FROM_DEVICE:
188		dma_cache_inv((unsigned long)addr, size);
189		break;
190
191	case DMA_BIDIRECTIONAL:
192		dma_cache_wback_inv((unsigned long)addr, size);
193		break;
194
195	default:
196		BUG();
197	}
198}
199
200/*
201 * A single sg entry may refer to multiple physically contiguous
202 * pages. But we still need to process highmem pages individually.
203 * If highmem is not configured then the bulk of this loop gets
204 * optimized out.
205 */
206static inline void __dma_sync(struct page *page,
207	unsigned long offset, size_t size, enum dma_data_direction direction)
208{
209	size_t left = size;
210
211	do {
212		size_t len = left;
213
214		if (PageHighMem(page)) {
215			void *addr;
216
217			if (offset + len > PAGE_SIZE) {
218				if (offset >= PAGE_SIZE) {
219					page += offset >> PAGE_SHIFT;
220					offset &= ~PAGE_MASK;
221				}
222				len = PAGE_SIZE - offset;
223			}
224
225			addr = kmap_atomic(page);
226			__dma_sync_virtual(addr + offset, len, direction);
227			kunmap_atomic(addr);
228		} else
229			__dma_sync_virtual(page_address(page) + offset,
230					   size, direction);
231		offset = 0;
232		page++;
233		left -= len;
234	} while (left);
235}
236
237static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
238	size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
239{
240	if (cpu_needs_post_dma_flush(dev))
241		__dma_sync(dma_addr_to_page(dev, dma_addr),
242			   dma_addr & ~PAGE_MASK, size, direction);
243
244	plat_unmap_dma_mem(dev, dma_addr, size, direction);
245}
246
247static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
248	int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
249{
250	int i;
251
252	for (i = 0; i < nents; i++, sg++) {
253		if (!plat_device_is_coherent(dev))
254			__dma_sync(sg_page(sg), sg->offset, sg->length,
255				   direction);
256#ifdef CONFIG_NEED_SG_DMA_LENGTH
257		sg->dma_length = sg->length;
258#endif
259		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
260				  sg->offset;
261	}
262
263	return nents;
264}
265
266static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
267	unsigned long offset, size_t size, enum dma_data_direction direction,
268	struct dma_attrs *attrs)
269{
270	if (!plat_device_is_coherent(dev))
271		__dma_sync(page, offset, size, direction);
272
273	return plat_map_dma_mem_page(dev, page) + offset;
274}
275
276static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
277	int nhwentries, enum dma_data_direction direction,
278	struct dma_attrs *attrs)
279{
280	int i;
281
282	for (i = 0; i < nhwentries; i++, sg++) {
283		if (!plat_device_is_coherent(dev) &&
284		    direction != DMA_TO_DEVICE)
285			__dma_sync(sg_page(sg), sg->offset, sg->length,
286				   direction);
287		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
288	}
289}
290
291static void mips_dma_sync_single_for_cpu(struct device *dev,
292	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
293{
294	if (cpu_needs_post_dma_flush(dev))
295		__dma_sync(dma_addr_to_page(dev, dma_handle),
296			   dma_handle & ~PAGE_MASK, size, direction);
297}
298
299static void mips_dma_sync_single_for_device(struct device *dev,
300	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
301{
 
302	if (!plat_device_is_coherent(dev))
303		__dma_sync(dma_addr_to_page(dev, dma_handle),
304			   dma_handle & ~PAGE_MASK, size, direction);
305}
306
307static void mips_dma_sync_sg_for_cpu(struct device *dev,
308	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
309{
310	int i;
311
312	if (cpu_needs_post_dma_flush(dev))
313		for (i = 0; i < nelems; i++, sg++)
 
314			__dma_sync(sg_page(sg), sg->offset, sg->length,
315				   direction);
 
316}
317
318static void mips_dma_sync_sg_for_device(struct device *dev,
319	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
320{
321	int i;
322
323	if (!plat_device_is_coherent(dev))
324		for (i = 0; i < nelems; i++, sg++)
 
325			__dma_sync(sg_page(sg), sg->offset, sg->length,
326				   direction);
 
327}
328
329int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
330{
331	return 0;
332}
333
334int mips_dma_supported(struct device *dev, u64 mask)
335{
336	return plat_dma_supported(dev, mask);
337}
338
339void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
340			 enum dma_data_direction direction)
341{
342	BUG_ON(direction == DMA_NONE);
343
 
344	if (!plat_device_is_coherent(dev))
345		__dma_sync_virtual(vaddr, size, direction);
346}
347
348EXPORT_SYMBOL(dma_cache_sync);
349
350static struct dma_map_ops mips_default_dma_map_ops = {
351	.alloc = mips_dma_alloc_coherent,
352	.free = mips_dma_free_coherent,
353	.map_page = mips_dma_map_page,
354	.unmap_page = mips_dma_unmap_page,
355	.map_sg = mips_dma_map_sg,
356	.unmap_sg = mips_dma_unmap_sg,
357	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
358	.sync_single_for_device = mips_dma_sync_single_for_device,
359	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
360	.sync_sg_for_device = mips_dma_sync_sg_for_device,
361	.mapping_error = mips_dma_mapping_error,
362	.dma_supported = mips_dma_supported
363};
364
365struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
366EXPORT_SYMBOL(mips_dma_map_ops);
367
368#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
369
370static int __init mips_dma_init(void)
371{
372	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
373
374	return 0;
375}
376fs_initcall(mips_dma_init);