Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
10
11#include <linux/types.h>
12#include <linux/dma-mapping.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/scatterlist.h>
16#include <linux/string.h>
17#include <linux/gfp.h>
18#include <linux/highmem.h>
19
20#include <asm/cache.h>
21#include <asm/io.h>
22
23#include <dma-coherence.h>
24
25static inline struct page *dma_addr_to_page(struct device *dev,
26 dma_addr_t dma_addr)
27{
28 return pfn_to_page(
29 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
30}
31
32/*
33 * Warning on the terminology - Linux calls an uncached area coherent;
34 * MIPS terminology calls memory areas with hardware maintained coherency
35 * coherent.
36 */
37
38static inline int cpu_is_noncoherent_r10000(struct device *dev)
39{
40 return !plat_device_is_coherent(dev) &&
41 (current_cpu_type() == CPU_R10000 ||
42 current_cpu_type() == CPU_R12000);
43}
44
45static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
46{
47 gfp_t dma_flag;
48
49 /* ignore region specifiers */
50 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
51
52#ifdef CONFIG_ISA
53 if (dev == NULL)
54 dma_flag = __GFP_DMA;
55 else
56#endif
57#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
58 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
59 dma_flag = __GFP_DMA;
60 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
61 dma_flag = __GFP_DMA32;
62 else
63#endif
64#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
65 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
66 dma_flag = __GFP_DMA32;
67 else
68#endif
69#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
70 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
71 dma_flag = __GFP_DMA;
72 else
73#endif
74 dma_flag = 0;
75
76 /* Don't invoke OOM killer */
77 gfp |= __GFP_NORETRY;
78
79 return gfp | dma_flag;
80}
81
82void *dma_alloc_noncoherent(struct device *dev, size_t size,
83 dma_addr_t * dma_handle, gfp_t gfp)
84{
85 void *ret;
86
87 gfp = massage_gfp_flags(dev, gfp);
88
89 ret = (void *) __get_free_pages(gfp, get_order(size));
90
91 if (ret != NULL) {
92 memset(ret, 0, size);
93 *dma_handle = plat_map_dma_mem(dev, ret, size);
94 }
95
96 return ret;
97}
98EXPORT_SYMBOL(dma_alloc_noncoherent);
99
100static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
101 dma_addr_t * dma_handle, gfp_t gfp)
102{
103 void *ret;
104
105 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
106 return ret;
107
108 gfp = massage_gfp_flags(dev, gfp);
109
110 ret = (void *) __get_free_pages(gfp, get_order(size));
111
112 if (ret) {
113 memset(ret, 0, size);
114 *dma_handle = plat_map_dma_mem(dev, ret, size);
115
116 if (!plat_device_is_coherent(dev)) {
117 dma_cache_wback_inv((unsigned long) ret, size);
118 ret = UNCAC_ADDR(ret);
119 }
120 }
121
122 return ret;
123}
124
125
126void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
127 dma_addr_t dma_handle)
128{
129 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
130 free_pages((unsigned long) vaddr, get_order(size));
131}
132EXPORT_SYMBOL(dma_free_noncoherent);
133
134static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
135 dma_addr_t dma_handle)
136{
137 unsigned long addr = (unsigned long) vaddr;
138 int order = get_order(size);
139
140 if (dma_release_from_coherent(dev, order, vaddr))
141 return;
142
143 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
144
145 if (!plat_device_is_coherent(dev))
146 addr = CAC_ADDR(addr);
147
148 free_pages(addr, get_order(size));
149}
150
151static inline void __dma_sync_virtual(void *addr, size_t size,
152 enum dma_data_direction direction)
153{
154 switch (direction) {
155 case DMA_TO_DEVICE:
156 dma_cache_wback((unsigned long)addr, size);
157 break;
158
159 case DMA_FROM_DEVICE:
160 dma_cache_inv((unsigned long)addr, size);
161 break;
162
163 case DMA_BIDIRECTIONAL:
164 dma_cache_wback_inv((unsigned long)addr, size);
165 break;
166
167 default:
168 BUG();
169 }
170}
171
172/*
173 * A single sg entry may refer to multiple physically contiguous
174 * pages. But we still need to process highmem pages individually.
175 * If highmem is not configured then the bulk of this loop gets
176 * optimized out.
177 */
178static inline void __dma_sync(struct page *page,
179 unsigned long offset, size_t size, enum dma_data_direction direction)
180{
181 size_t left = size;
182
183 do {
184 size_t len = left;
185
186 if (PageHighMem(page)) {
187 void *addr;
188
189 if (offset + len > PAGE_SIZE) {
190 if (offset >= PAGE_SIZE) {
191 page += offset >> PAGE_SHIFT;
192 offset &= ~PAGE_MASK;
193 }
194 len = PAGE_SIZE - offset;
195 }
196
197 addr = kmap_atomic(page);
198 __dma_sync_virtual(addr + offset, len, direction);
199 kunmap_atomic(addr);
200 } else
201 __dma_sync_virtual(page_address(page) + offset,
202 size, direction);
203 offset = 0;
204 page++;
205 left -= len;
206 } while (left);
207}
208
209static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
210 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
211{
212 if (cpu_is_noncoherent_r10000(dev))
213 __dma_sync(dma_addr_to_page(dev, dma_addr),
214 dma_addr & ~PAGE_MASK, size, direction);
215
216 plat_unmap_dma_mem(dev, dma_addr, size, direction);
217}
218
219static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
220 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
221{
222 int i;
223
224 for (i = 0; i < nents; i++, sg++) {
225 if (!plat_device_is_coherent(dev))
226 __dma_sync(sg_page(sg), sg->offset, sg->length,
227 direction);
228 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
229 sg->offset;
230 }
231
232 return nents;
233}
234
235static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
236 unsigned long offset, size_t size, enum dma_data_direction direction,
237 struct dma_attrs *attrs)
238{
239 if (!plat_device_is_coherent(dev))
240 __dma_sync(page, offset, size, direction);
241
242 return plat_map_dma_mem_page(dev, page) + offset;
243}
244
245static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
246 int nhwentries, enum dma_data_direction direction,
247 struct dma_attrs *attrs)
248{
249 int i;
250
251 for (i = 0; i < nhwentries; i++, sg++) {
252 if (!plat_device_is_coherent(dev) &&
253 direction != DMA_TO_DEVICE)
254 __dma_sync(sg_page(sg), sg->offset, sg->length,
255 direction);
256 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
257 }
258}
259
260static void mips_dma_sync_single_for_cpu(struct device *dev,
261 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
262{
263 if (cpu_is_noncoherent_r10000(dev))
264 __dma_sync(dma_addr_to_page(dev, dma_handle),
265 dma_handle & ~PAGE_MASK, size, direction);
266}
267
268static void mips_dma_sync_single_for_device(struct device *dev,
269 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
270{
271 plat_extra_sync_for_device(dev);
272 if (!plat_device_is_coherent(dev))
273 __dma_sync(dma_addr_to_page(dev, dma_handle),
274 dma_handle & ~PAGE_MASK, size, direction);
275}
276
277static void mips_dma_sync_sg_for_cpu(struct device *dev,
278 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
279{
280 int i;
281
282 /* Make sure that gcc doesn't leave the empty loop body. */
283 for (i = 0; i < nelems; i++, sg++) {
284 if (cpu_is_noncoherent_r10000(dev))
285 __dma_sync(sg_page(sg), sg->offset, sg->length,
286 direction);
287 }
288}
289
290static void mips_dma_sync_sg_for_device(struct device *dev,
291 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
292{
293 int i;
294
295 /* Make sure that gcc doesn't leave the empty loop body. */
296 for (i = 0; i < nelems; i++, sg++) {
297 if (!plat_device_is_coherent(dev))
298 __dma_sync(sg_page(sg), sg->offset, sg->length,
299 direction);
300 }
301}
302
303int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
304{
305 return plat_dma_mapping_error(dev, dma_addr);
306}
307
308int mips_dma_supported(struct device *dev, u64 mask)
309{
310 return plat_dma_supported(dev, mask);
311}
312
313void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
314 enum dma_data_direction direction)
315{
316 BUG_ON(direction == DMA_NONE);
317
318 plat_extra_sync_for_device(dev);
319 if (!plat_device_is_coherent(dev))
320 __dma_sync_virtual(vaddr, size, direction);
321}
322
323EXPORT_SYMBOL(dma_cache_sync);
324
325static struct dma_map_ops mips_default_dma_map_ops = {
326 .alloc_coherent = mips_dma_alloc_coherent,
327 .free_coherent = mips_dma_free_coherent,
328 .map_page = mips_dma_map_page,
329 .unmap_page = mips_dma_unmap_page,
330 .map_sg = mips_dma_map_sg,
331 .unmap_sg = mips_dma_unmap_sg,
332 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
333 .sync_single_for_device = mips_dma_sync_single_for_device,
334 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
335 .sync_sg_for_device = mips_dma_sync_sg_for_device,
336 .mapping_error = mips_dma_mapping_error,
337 .dma_supported = mips_dma_supported
338};
339
340struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
341EXPORT_SYMBOL(mips_dma_map_ops);
342
343#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
344
345static int __init mips_dma_init(void)
346{
347 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
348
349 return 0;
350}
351fs_initcall(mips_dma_init);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
10
11#include <linux/types.h>
12#include <linux/dma-mapping.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <linux/scatterlist.h>
16#include <linux/string.h>
17#include <linux/gfp.h>
18#include <linux/highmem.h>
19
20#include <asm/cache.h>
21#include <asm/cpu-type.h>
22#include <asm/io.h>
23
24#include <dma-coherence.h>
25
26#ifdef CONFIG_DMA_MAYBE_COHERENT
27int coherentio = 0; /* User defined DMA coherency from command line. */
28EXPORT_SYMBOL_GPL(coherentio);
29int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
30
31static int __init setcoherentio(char *str)
32{
33 coherentio = 1;
34 pr_info("Hardware DMA cache coherency (command line)\n");
35 return 0;
36}
37early_param("coherentio", setcoherentio);
38
39static int __init setnocoherentio(char *str)
40{
41 coherentio = 0;
42 pr_info("Software DMA cache coherency (command line)\n");
43 return 0;
44}
45early_param("nocoherentio", setnocoherentio);
46#endif
47
48static inline struct page *dma_addr_to_page(struct device *dev,
49 dma_addr_t dma_addr)
50{
51 return pfn_to_page(
52 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
53}
54
55/*
56 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
57 * speculatively fill random cachelines with stale data at any time,
58 * requiring an extra flush post-DMA.
59 *
60 * Warning on the terminology - Linux calls an uncached area coherent;
61 * MIPS terminology calls memory areas with hardware maintained coherency
62 * coherent.
63 */
64static inline int cpu_needs_post_dma_flush(struct device *dev)
65{
66 return !plat_device_is_coherent(dev) &&
67 (boot_cpu_type() == CPU_R10000 ||
68 boot_cpu_type() == CPU_R12000 ||
69 boot_cpu_type() == CPU_BMIPS5000);
70}
71
72static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
73{
74 gfp_t dma_flag;
75
76 /* ignore region specifiers */
77 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
78
79#ifdef CONFIG_ISA
80 if (dev == NULL)
81 dma_flag = __GFP_DMA;
82 else
83#endif
84#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
85 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
86 dma_flag = __GFP_DMA;
87 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
88 dma_flag = __GFP_DMA32;
89 else
90#endif
91#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
92 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
93 dma_flag = __GFP_DMA32;
94 else
95#endif
96#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
97 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
98 dma_flag = __GFP_DMA;
99 else
100#endif
101 dma_flag = 0;
102
103 /* Don't invoke OOM killer */
104 gfp |= __GFP_NORETRY;
105
106 return gfp | dma_flag;
107}
108
109void *dma_alloc_noncoherent(struct device *dev, size_t size,
110 dma_addr_t * dma_handle, gfp_t gfp)
111{
112 void *ret;
113
114 gfp = massage_gfp_flags(dev, gfp);
115
116 ret = (void *) __get_free_pages(gfp, get_order(size));
117
118 if (ret != NULL) {
119 memset(ret, 0, size);
120 *dma_handle = plat_map_dma_mem(dev, ret, size);
121 }
122
123 return ret;
124}
125EXPORT_SYMBOL(dma_alloc_noncoherent);
126
127static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
128 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
129{
130 void *ret;
131
132 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
133 return ret;
134
135 gfp = massage_gfp_flags(dev, gfp);
136
137 ret = (void *) __get_free_pages(gfp, get_order(size));
138
139 if (ret) {
140 memset(ret, 0, size);
141 *dma_handle = plat_map_dma_mem(dev, ret, size);
142
143 if (!plat_device_is_coherent(dev)) {
144 dma_cache_wback_inv((unsigned long) ret, size);
145 if (!hw_coherentio)
146 ret = UNCAC_ADDR(ret);
147 }
148 }
149
150 return ret;
151}
152
153
154void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
155 dma_addr_t dma_handle)
156{
157 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
158 free_pages((unsigned long) vaddr, get_order(size));
159}
160EXPORT_SYMBOL(dma_free_noncoherent);
161
162static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
163 dma_addr_t dma_handle, struct dma_attrs *attrs)
164{
165 unsigned long addr = (unsigned long) vaddr;
166 int order = get_order(size);
167
168 if (dma_release_from_coherent(dev, order, vaddr))
169 return;
170
171 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
172
173 if (!plat_device_is_coherent(dev) && !hw_coherentio)
174 addr = CAC_ADDR(addr);
175
176 free_pages(addr, get_order(size));
177}
178
179static inline void __dma_sync_virtual(void *addr, size_t size,
180 enum dma_data_direction direction)
181{
182 switch (direction) {
183 case DMA_TO_DEVICE:
184 dma_cache_wback((unsigned long)addr, size);
185 break;
186
187 case DMA_FROM_DEVICE:
188 dma_cache_inv((unsigned long)addr, size);
189 break;
190
191 case DMA_BIDIRECTIONAL:
192 dma_cache_wback_inv((unsigned long)addr, size);
193 break;
194
195 default:
196 BUG();
197 }
198}
199
200/*
201 * A single sg entry may refer to multiple physically contiguous
202 * pages. But we still need to process highmem pages individually.
203 * If highmem is not configured then the bulk of this loop gets
204 * optimized out.
205 */
206static inline void __dma_sync(struct page *page,
207 unsigned long offset, size_t size, enum dma_data_direction direction)
208{
209 size_t left = size;
210
211 do {
212 size_t len = left;
213
214 if (PageHighMem(page)) {
215 void *addr;
216
217 if (offset + len > PAGE_SIZE) {
218 if (offset >= PAGE_SIZE) {
219 page += offset >> PAGE_SHIFT;
220 offset &= ~PAGE_MASK;
221 }
222 len = PAGE_SIZE - offset;
223 }
224
225 addr = kmap_atomic(page);
226 __dma_sync_virtual(addr + offset, len, direction);
227 kunmap_atomic(addr);
228 } else
229 __dma_sync_virtual(page_address(page) + offset,
230 size, direction);
231 offset = 0;
232 page++;
233 left -= len;
234 } while (left);
235}
236
237static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
238 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
239{
240 if (cpu_needs_post_dma_flush(dev))
241 __dma_sync(dma_addr_to_page(dev, dma_addr),
242 dma_addr & ~PAGE_MASK, size, direction);
243
244 plat_unmap_dma_mem(dev, dma_addr, size, direction);
245}
246
247static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
248 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
249{
250 int i;
251
252 for (i = 0; i < nents; i++, sg++) {
253 if (!plat_device_is_coherent(dev))
254 __dma_sync(sg_page(sg), sg->offset, sg->length,
255 direction);
256#ifdef CONFIG_NEED_SG_DMA_LENGTH
257 sg->dma_length = sg->length;
258#endif
259 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
260 sg->offset;
261 }
262
263 return nents;
264}
265
266static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
267 unsigned long offset, size_t size, enum dma_data_direction direction,
268 struct dma_attrs *attrs)
269{
270 if (!plat_device_is_coherent(dev))
271 __dma_sync(page, offset, size, direction);
272
273 return plat_map_dma_mem_page(dev, page) + offset;
274}
275
276static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
277 int nhwentries, enum dma_data_direction direction,
278 struct dma_attrs *attrs)
279{
280 int i;
281
282 for (i = 0; i < nhwentries; i++, sg++) {
283 if (!plat_device_is_coherent(dev) &&
284 direction != DMA_TO_DEVICE)
285 __dma_sync(sg_page(sg), sg->offset, sg->length,
286 direction);
287 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
288 }
289}
290
291static void mips_dma_sync_single_for_cpu(struct device *dev,
292 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
293{
294 if (cpu_needs_post_dma_flush(dev))
295 __dma_sync(dma_addr_to_page(dev, dma_handle),
296 dma_handle & ~PAGE_MASK, size, direction);
297}
298
299static void mips_dma_sync_single_for_device(struct device *dev,
300 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
301{
302 if (!plat_device_is_coherent(dev))
303 __dma_sync(dma_addr_to_page(dev, dma_handle),
304 dma_handle & ~PAGE_MASK, size, direction);
305}
306
307static void mips_dma_sync_sg_for_cpu(struct device *dev,
308 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
309{
310 int i;
311
312 if (cpu_needs_post_dma_flush(dev))
313 for (i = 0; i < nelems; i++, sg++)
314 __dma_sync(sg_page(sg), sg->offset, sg->length,
315 direction);
316}
317
318static void mips_dma_sync_sg_for_device(struct device *dev,
319 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
320{
321 int i;
322
323 if (!plat_device_is_coherent(dev))
324 for (i = 0; i < nelems; i++, sg++)
325 __dma_sync(sg_page(sg), sg->offset, sg->length,
326 direction);
327}
328
329int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
330{
331 return 0;
332}
333
334int mips_dma_supported(struct device *dev, u64 mask)
335{
336 return plat_dma_supported(dev, mask);
337}
338
339void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
340 enum dma_data_direction direction)
341{
342 BUG_ON(direction == DMA_NONE);
343
344 if (!plat_device_is_coherent(dev))
345 __dma_sync_virtual(vaddr, size, direction);
346}
347
348EXPORT_SYMBOL(dma_cache_sync);
349
350static struct dma_map_ops mips_default_dma_map_ops = {
351 .alloc = mips_dma_alloc_coherent,
352 .free = mips_dma_free_coherent,
353 .map_page = mips_dma_map_page,
354 .unmap_page = mips_dma_unmap_page,
355 .map_sg = mips_dma_map_sg,
356 .unmap_sg = mips_dma_unmap_sg,
357 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
358 .sync_single_for_device = mips_dma_sync_single_for_device,
359 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
360 .sync_sg_for_device = mips_dma_sync_sg_for_device,
361 .mapping_error = mips_dma_mapping_error,
362 .dma_supported = mips_dma_supported
363};
364
365struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
366EXPORT_SYMBOL(mips_dma_map_ops);
367
368#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
369
370static int __init mips_dma_init(void)
371{
372 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
373
374 return 0;
375}
376fs_initcall(mips_dma_init);