Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  7 * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
  8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/mm.h>
 14#include <linux/module.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/gfp.h>
 18#include <linux/highmem.h>
 
 19
 20#include <asm/cache.h>
 
 21#include <asm/io.h>
 22
 23#include <dma-coherence.h>
 24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25static inline struct page *dma_addr_to_page(struct device *dev,
 26	dma_addr_t dma_addr)
 27{
 28	return pfn_to_page(
 29		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 30}
 31
 32/*
 
 
 
 
 33 * Warning on the terminology - Linux calls an uncached area coherent;
 34 * MIPS terminology calls memory areas with hardware maintained coherency
 35 * coherent.
 
 
 
 
 
 36 */
 37
 38static inline int cpu_is_noncoherent_r10000(struct device *dev)
 39{
 40	return !plat_device_is_coherent(dev) &&
 41	       (current_cpu_type() == CPU_R10000 ||
 42	       current_cpu_type() == CPU_R12000);
 
 43}
 44
 45static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 46{
 47	gfp_t dma_flag;
 48
 49	/* ignore region specifiers */
 50	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 51
 52#ifdef CONFIG_ISA
 53	if (dev == NULL)
 54		dma_flag = __GFP_DMA;
 55	else
 56#endif
 57#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
 58	     if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
 59			dma_flag = __GFP_DMA;
 60	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 61			dma_flag = __GFP_DMA32;
 62	else
 63#endif
 64#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
 65	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 66		dma_flag = __GFP_DMA32;
 67	else
 68#endif
 69#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
 70	     if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 
 71		dma_flag = __GFP_DMA;
 72	else
 73#endif
 74		dma_flag = 0;
 75
 76	/* Don't invoke OOM killer */
 77	gfp |= __GFP_NORETRY;
 78
 79	return gfp | dma_flag;
 80}
 81
 82void *dma_alloc_noncoherent(struct device *dev, size_t size,
 83	dma_addr_t * dma_handle, gfp_t gfp)
 84{
 85	void *ret;
 86
 87	gfp = massage_gfp_flags(dev, gfp);
 88
 89	ret = (void *) __get_free_pages(gfp, get_order(size));
 90
 91	if (ret != NULL) {
 92		memset(ret, 0, size);
 93		*dma_handle = plat_map_dma_mem(dev, ret, size);
 94	}
 95
 96	return ret;
 97}
 98EXPORT_SYMBOL(dma_alloc_noncoherent);
 99
100static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
101	dma_addr_t * dma_handle, gfp_t gfp)
102{
103	void *ret;
 
 
104
105	if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
106		return ret;
 
 
 
 
107
108	gfp = massage_gfp_flags(dev, gfp);
109
110	ret = (void *) __get_free_pages(gfp, get_order(size));
111
112	if (ret) {
113		memset(ret, 0, size);
114		*dma_handle = plat_map_dma_mem(dev, ret, size);
115
116		if (!plat_device_is_coherent(dev)) {
117			dma_cache_wback_inv((unsigned long) ret, size);
118			ret = UNCAC_ADDR(ret);
119		}
 
 
 
 
 
120	}
121
122	return ret;
123}
124
125
126void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
127	dma_addr_t dma_handle)
128{
129	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
130	free_pages((unsigned long) vaddr, get_order(size));
131}
132EXPORT_SYMBOL(dma_free_noncoherent);
133
134static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
135	dma_addr_t dma_handle)
136{
137	unsigned long addr = (unsigned long) vaddr;
138	int order = get_order(size);
 
139
140	if (dma_release_from_coherent(dev, order, vaddr))
 
141		return;
 
142
143	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
144
145	if (!plat_device_is_coherent(dev))
146		addr = CAC_ADDR(addr);
147
148	free_pages(addr, get_order(size));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149}
150
151static inline void __dma_sync_virtual(void *addr, size_t size,
152	enum dma_data_direction direction)
153{
154	switch (direction) {
155	case DMA_TO_DEVICE:
156		dma_cache_wback((unsigned long)addr, size);
157		break;
158
159	case DMA_FROM_DEVICE:
160		dma_cache_inv((unsigned long)addr, size);
161		break;
162
163	case DMA_BIDIRECTIONAL:
164		dma_cache_wback_inv((unsigned long)addr, size);
165		break;
166
167	default:
168		BUG();
169	}
170}
171
172/*
173 * A single sg entry may refer to multiple physically contiguous
174 * pages. But we still need to process highmem pages individually.
175 * If highmem is not configured then the bulk of this loop gets
176 * optimized out.
177 */
178static inline void __dma_sync(struct page *page,
179	unsigned long offset, size_t size, enum dma_data_direction direction)
180{
181	size_t left = size;
182
183	do {
184		size_t len = left;
185
186		if (PageHighMem(page)) {
187			void *addr;
188
189			if (offset + len > PAGE_SIZE) {
190				if (offset >= PAGE_SIZE) {
191					page += offset >> PAGE_SHIFT;
192					offset &= ~PAGE_MASK;
193				}
194				len = PAGE_SIZE - offset;
195			}
196
197			addr = kmap_atomic(page);
198			__dma_sync_virtual(addr + offset, len, direction);
199			kunmap_atomic(addr);
200		} else
201			__dma_sync_virtual(page_address(page) + offset,
202					   size, direction);
203		offset = 0;
204		page++;
205		left -= len;
206	} while (left);
207}
208
209static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
210	size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
211{
212	if (cpu_is_noncoherent_r10000(dev))
213		__dma_sync(dma_addr_to_page(dev, dma_addr),
214			   dma_addr & ~PAGE_MASK, size, direction);
215
216	plat_unmap_dma_mem(dev, dma_addr, size, direction);
217}
218
219static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
220	int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
221{
222	int i;
 
223
224	for (i = 0; i < nents; i++, sg++) {
225		if (!plat_device_is_coherent(dev))
 
226			__dma_sync(sg_page(sg), sg->offset, sg->length,
227				   direction);
 
 
 
228		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
229				  sg->offset;
230	}
231
232	return nents;
233}
234
235static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
236	unsigned long offset, size_t size, enum dma_data_direction direction,
237	struct dma_attrs *attrs)
238{
239	if (!plat_device_is_coherent(dev))
240		__dma_sync(page, offset, size, direction);
241
242	return plat_map_dma_mem_page(dev, page) + offset;
243}
244
245static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
246	int nhwentries, enum dma_data_direction direction,
247	struct dma_attrs *attrs)
248{
249	int i;
 
250
251	for (i = 0; i < nhwentries; i++, sg++) {
252		if (!plat_device_is_coherent(dev) &&
 
253		    direction != DMA_TO_DEVICE)
254			__dma_sync(sg_page(sg), sg->offset, sg->length,
255				   direction);
256		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
257	}
258}
259
260static void mips_dma_sync_single_for_cpu(struct device *dev,
261	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
262{
263	if (cpu_is_noncoherent_r10000(dev))
264		__dma_sync(dma_addr_to_page(dev, dma_handle),
265			   dma_handle & ~PAGE_MASK, size, direction);
 
266}
267
268static void mips_dma_sync_single_for_device(struct device *dev,
269	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
270{
271	plat_extra_sync_for_device(dev);
272	if (!plat_device_is_coherent(dev))
273		__dma_sync(dma_addr_to_page(dev, dma_handle),
274			   dma_handle & ~PAGE_MASK, size, direction);
275}
276
277static void mips_dma_sync_sg_for_cpu(struct device *dev,
278	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
 
279{
280	int i;
 
281
282	/* Make sure that gcc doesn't leave the empty loop body.  */
283	for (i = 0; i < nelems; i++, sg++) {
284		if (cpu_is_noncoherent_r10000(dev))
285			__dma_sync(sg_page(sg), sg->offset, sg->length,
286				   direction);
 
287	}
 
288}
289
290static void mips_dma_sync_sg_for_device(struct device *dev,
291	struct scatterlist *sg, int nelems, enum dma_data_direction direction)
 
292{
293	int i;
 
294
295	/* Make sure that gcc doesn't leave the empty loop body.  */
296	for (i = 0; i < nelems; i++, sg++) {
297		if (!plat_device_is_coherent(dev))
298			__dma_sync(sg_page(sg), sg->offset, sg->length,
299				   direction);
 
300	}
301}
302
303int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
304{
305	return plat_dma_mapping_error(dev, dma_addr);
306}
307
308int mips_dma_supported(struct device *dev, u64 mask)
309{
310	return plat_dma_supported(dev, mask);
311}
312
313void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
314			 enum dma_data_direction direction)
315{
316	BUG_ON(direction == DMA_NONE);
317
318	plat_extra_sync_for_device(dev);
319	if (!plat_device_is_coherent(dev))
320		__dma_sync_virtual(vaddr, size, direction);
321}
322
323EXPORT_SYMBOL(dma_cache_sync);
324
325static struct dma_map_ops mips_default_dma_map_ops = {
326	.alloc_coherent = mips_dma_alloc_coherent,
327	.free_coherent = mips_dma_free_coherent,
 
328	.map_page = mips_dma_map_page,
329	.unmap_page = mips_dma_unmap_page,
330	.map_sg = mips_dma_map_sg,
331	.unmap_sg = mips_dma_unmap_sg,
332	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
333	.sync_single_for_device = mips_dma_sync_single_for_device,
334	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
335	.sync_sg_for_device = mips_dma_sync_sg_for_device,
336	.mapping_error = mips_dma_mapping_error,
337	.dma_supported = mips_dma_supported
338};
339
340struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
341EXPORT_SYMBOL(mips_dma_map_ops);
342
343#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
344
345static int __init mips_dma_init(void)
346{
347	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
348
349	return 0;
350}
351fs_initcall(mips_dma_init);
v4.10.11
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
  7 * Copyright (C) 2000, 2001, 06	 Ralf Baechle <ralf@linux-mips.org>
  8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9 */
 10
 11#include <linux/types.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/mm.h>
 14#include <linux/export.h>
 15#include <linux/scatterlist.h>
 16#include <linux/string.h>
 17#include <linux/gfp.h>
 18#include <linux/highmem.h>
 19#include <linux/dma-contiguous.h>
 20
 21#include <asm/cache.h>
 22#include <asm/cpu-type.h>
 23#include <asm/io.h>
 24
 25#include <dma-coherence.h>
 26
 27#if defined(CONFIG_DMA_MAYBE_COHERENT) && !defined(CONFIG_DMA_PERDEV_COHERENT)
 28/* User defined DMA coherency from command line. */
 29enum coherent_io_user_state coherentio = IO_COHERENCE_DEFAULT;
 30EXPORT_SYMBOL_GPL(coherentio);
 31int hw_coherentio = 0;	/* Actual hardware supported DMA coherency setting. */
 32
 33static int __init setcoherentio(char *str)
 34{
 35	coherentio = IO_COHERENCE_ENABLED;
 36	pr_info("Hardware DMA cache coherency (command line)\n");
 37	return 0;
 38}
 39early_param("coherentio", setcoherentio);
 40
 41static int __init setnocoherentio(char *str)
 42{
 43	coherentio = IO_COHERENCE_DISABLED;
 44	pr_info("Software DMA cache coherency (command line)\n");
 45	return 0;
 46}
 47early_param("nocoherentio", setnocoherentio);
 48#endif
 49
 50static inline struct page *dma_addr_to_page(struct device *dev,
 51	dma_addr_t dma_addr)
 52{
 53	return pfn_to_page(
 54		plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
 55}
 56
 57/*
 58 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
 59 * speculatively fill random cachelines with stale data at any time,
 60 * requiring an extra flush post-DMA.
 61 *
 62 * Warning on the terminology - Linux calls an uncached area coherent;
 63 * MIPS terminology calls memory areas with hardware maintained coherency
 64 * coherent.
 65 *
 66 * Note that the R14000 and R16000 should also be checked for in this
 67 * condition.  However this function is only called on non-I/O-coherent
 68 * systems and only the R10000 and R12000 are used in such systems, the
 69 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
 70 */
 71static inline int cpu_needs_post_dma_flush(struct device *dev)
 
 72{
 73	return !plat_device_is_coherent(dev) &&
 74	       (boot_cpu_type() == CPU_R10000 ||
 75		boot_cpu_type() == CPU_R12000 ||
 76		boot_cpu_type() == CPU_BMIPS5000);
 77}
 78
 79static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
 80{
 81	gfp_t dma_flag;
 82
 83	/* ignore region specifiers */
 84	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
 85
 86#ifdef CONFIG_ISA
 87	if (dev == NULL)
 88		dma_flag = __GFP_DMA;
 89	else
 90#endif
 91#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
 92	     if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
 93			dma_flag = __GFP_DMA;
 94	else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
 95			dma_flag = __GFP_DMA32;
 96	else
 97#endif
 98#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
 99	     if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
100		dma_flag = __GFP_DMA32;
101	else
102#endif
103#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
104	     if (dev == NULL ||
105		 dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
106		dma_flag = __GFP_DMA;
107	else
108#endif
109		dma_flag = 0;
110
111	/* Don't invoke OOM killer */
112	gfp |= __GFP_NORETRY;
113
114	return gfp | dma_flag;
115}
116
117static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
118	dma_addr_t * dma_handle, gfp_t gfp)
119{
120	void *ret;
121
122	gfp = massage_gfp_flags(dev, gfp);
123
124	ret = (void *) __get_free_pages(gfp, get_order(size));
125
126	if (ret != NULL) {
127		memset(ret, 0, size);
128		*dma_handle = plat_map_dma_mem(dev, ret, size);
129	}
130
131	return ret;
132}
 
133
134static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
135	dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
136{
137	void *ret;
138	struct page *page = NULL;
139	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
140
141	/*
142	 * XXX: seems like the coherent and non-coherent implementations could
143	 * be consolidated.
144	 */
145	if (attrs & DMA_ATTR_NON_CONSISTENT)
146		return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
147
148	gfp = massage_gfp_flags(dev, gfp);
149
150	if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
151		page = dma_alloc_from_contiguous(dev,
152					count, get_order(size));
153	if (!page)
154		page = alloc_pages(gfp, get_order(size));
155
156	if (!page)
157		return NULL;
158
159	ret = page_address(page);
160	memset(ret, 0, size);
161	*dma_handle = plat_map_dma_mem(dev, ret, size);
162	if (!plat_device_is_coherent(dev)) {
163		dma_cache_wback_inv((unsigned long) ret, size);
164		ret = UNCAC_ADDR(ret);
165	}
166
167	return ret;
168}
169
170
171static void mips_dma_free_noncoherent(struct device *dev, size_t size,
172		void *vaddr, dma_addr_t dma_handle)
173{
174	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
175	free_pages((unsigned long) vaddr, get_order(size));
176}
 
177
178static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
179	dma_addr_t dma_handle, unsigned long attrs)
180{
181	unsigned long addr = (unsigned long) vaddr;
182	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
183	struct page *page = NULL;
184
185	if (attrs & DMA_ATTR_NON_CONSISTENT) {
186		mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
187		return;
188	}
189
190	plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
191
192	if (!plat_device_is_coherent(dev))
193		addr = CAC_ADDR(addr);
194
195	page = virt_to_page((void *) addr);
196
197	if (!dma_release_from_contiguous(dev, page, count))
198		__free_pages(page, get_order(size));
199}
200
201static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
202	void *cpu_addr, dma_addr_t dma_addr, size_t size,
203	unsigned long attrs)
204{
205	unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
206	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
207	unsigned long addr = (unsigned long)cpu_addr;
208	unsigned long off = vma->vm_pgoff;
209	unsigned long pfn;
210	int ret = -ENXIO;
211
212	if (!plat_device_is_coherent(dev))
213		addr = CAC_ADDR(addr);
214
215	pfn = page_to_pfn(virt_to_page((void *)addr));
216
217	if (attrs & DMA_ATTR_WRITE_COMBINE)
218		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
219	else
220		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
221
222	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
223		return ret;
224
225	if (off < count && user_count <= (count - off)) {
226		ret = remap_pfn_range(vma, vma->vm_start,
227				      pfn + off,
228				      user_count << PAGE_SHIFT,
229				      vma->vm_page_prot);
230	}
231
232	return ret;
233}
234
235static inline void __dma_sync_virtual(void *addr, size_t size,
236	enum dma_data_direction direction)
237{
238	switch (direction) {
239	case DMA_TO_DEVICE:
240		dma_cache_wback((unsigned long)addr, size);
241		break;
242
243	case DMA_FROM_DEVICE:
244		dma_cache_inv((unsigned long)addr, size);
245		break;
246
247	case DMA_BIDIRECTIONAL:
248		dma_cache_wback_inv((unsigned long)addr, size);
249		break;
250
251	default:
252		BUG();
253	}
254}
255
256/*
257 * A single sg entry may refer to multiple physically contiguous
258 * pages. But we still need to process highmem pages individually.
259 * If highmem is not configured then the bulk of this loop gets
260 * optimized out.
261 */
262static inline void __dma_sync(struct page *page,
263	unsigned long offset, size_t size, enum dma_data_direction direction)
264{
265	size_t left = size;
266
267	do {
268		size_t len = left;
269
270		if (PageHighMem(page)) {
271			void *addr;
272
273			if (offset + len > PAGE_SIZE) {
274				if (offset >= PAGE_SIZE) {
275					page += offset >> PAGE_SHIFT;
276					offset &= ~PAGE_MASK;
277				}
278				len = PAGE_SIZE - offset;
279			}
280
281			addr = kmap_atomic(page);
282			__dma_sync_virtual(addr + offset, len, direction);
283			kunmap_atomic(addr);
284		} else
285			__dma_sync_virtual(page_address(page) + offset,
286					   size, direction);
287		offset = 0;
288		page++;
289		left -= len;
290	} while (left);
291}
292
293static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
294	size_t size, enum dma_data_direction direction, unsigned long attrs)
295{
296	if (cpu_needs_post_dma_flush(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
297		__dma_sync(dma_addr_to_page(dev, dma_addr),
298			   dma_addr & ~PAGE_MASK, size, direction);
299	plat_post_dma_flush(dev);
300	plat_unmap_dma_mem(dev, dma_addr, size, direction);
301}
302
303static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
304	int nents, enum dma_data_direction direction, unsigned long attrs)
305{
306	int i;
307	struct scatterlist *sg;
308
309	for_each_sg(sglist, sg, nents, i) {
310		if (!plat_device_is_coherent(dev) &&
311		    !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
312			__dma_sync(sg_page(sg), sg->offset, sg->length,
313				   direction);
314#ifdef CONFIG_NEED_SG_DMA_LENGTH
315		sg->dma_length = sg->length;
316#endif
317		sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
318				  sg->offset;
319	}
320
321	return nents;
322}
323
324static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
325	unsigned long offset, size_t size, enum dma_data_direction direction,
326	unsigned long attrs)
327{
328	if (!plat_device_is_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
329		__dma_sync(page, offset, size, direction);
330
331	return plat_map_dma_mem_page(dev, page) + offset;
332}
333
334static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
335	int nhwentries, enum dma_data_direction direction,
336	unsigned long attrs)
337{
338	int i;
339	struct scatterlist *sg;
340
341	for_each_sg(sglist, sg, nhwentries, i) {
342		if (!plat_device_is_coherent(dev) &&
343		    !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
344		    direction != DMA_TO_DEVICE)
345			__dma_sync(sg_page(sg), sg->offset, sg->length,
346				   direction);
347		plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
348	}
349}
350
351static void mips_dma_sync_single_for_cpu(struct device *dev,
352	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
353{
354	if (cpu_needs_post_dma_flush(dev))
355		__dma_sync(dma_addr_to_page(dev, dma_handle),
356			   dma_handle & ~PAGE_MASK, size, direction);
357	plat_post_dma_flush(dev);
358}
359
360static void mips_dma_sync_single_for_device(struct device *dev,
361	dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
362{
 
363	if (!plat_device_is_coherent(dev))
364		__dma_sync(dma_addr_to_page(dev, dma_handle),
365			   dma_handle & ~PAGE_MASK, size, direction);
366}
367
368static void mips_dma_sync_sg_for_cpu(struct device *dev,
369	struct scatterlist *sglist, int nelems,
370	enum dma_data_direction direction)
371{
372	int i;
373	struct scatterlist *sg;
374
375	if (cpu_needs_post_dma_flush(dev)) {
376		for_each_sg(sglist, sg, nelems, i) {
 
377			__dma_sync(sg_page(sg), sg->offset, sg->length,
378				   direction);
379		}
380	}
381	plat_post_dma_flush(dev);
382}
383
384static void mips_dma_sync_sg_for_device(struct device *dev,
385	struct scatterlist *sglist, int nelems,
386	enum dma_data_direction direction)
387{
388	int i;
389	struct scatterlist *sg;
390
391	if (!plat_device_is_coherent(dev)) {
392		for_each_sg(sglist, sg, nelems, i) {
 
393			__dma_sync(sg_page(sg), sg->offset, sg->length,
394				   direction);
395		}
396	}
397}
398
399int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
400{
401	return 0;
402}
403
404int mips_dma_supported(struct device *dev, u64 mask)
405{
406	return plat_dma_supported(dev, mask);
407}
408
409void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
410			 enum dma_data_direction direction)
411{
412	BUG_ON(direction == DMA_NONE);
413
 
414	if (!plat_device_is_coherent(dev))
415		__dma_sync_virtual(vaddr, size, direction);
416}
417
418EXPORT_SYMBOL(dma_cache_sync);
419
420static struct dma_map_ops mips_default_dma_map_ops = {
421	.alloc = mips_dma_alloc_coherent,
422	.free = mips_dma_free_coherent,
423	.mmap = mips_dma_mmap,
424	.map_page = mips_dma_map_page,
425	.unmap_page = mips_dma_unmap_page,
426	.map_sg = mips_dma_map_sg,
427	.unmap_sg = mips_dma_unmap_sg,
428	.sync_single_for_cpu = mips_dma_sync_single_for_cpu,
429	.sync_single_for_device = mips_dma_sync_single_for_device,
430	.sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
431	.sync_sg_for_device = mips_dma_sync_sg_for_device,
432	.mapping_error = mips_dma_mapping_error,
433	.dma_supported = mips_dma_supported
434};
435
436struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
437EXPORT_SYMBOL(mips_dma_map_ops);
438
439#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
440
441static int __init mips_dma_init(void)
442{
443	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
444
445	return 0;
446}
447fs_initcall(mips_dma_init);