Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * PCI Virtual Channel support
  3 *
  4 * Copyright (C) 2013 Red Hat, Inc.  All rights reserved.
  5 *     Author: Alex Williamson <alex.williamson@redhat.com>
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11
 12#include <linux/device.h>
 13#include <linux/kernel.h>
 14#include <linux/module.h>
 15#include <linux/pci.h>
 16#include <linux/pci_regs.h>
 17#include <linux/types.h>
 18
 19/**
 20 * pci_vc_save_restore_dwords - Save or restore a series of dwords
 21 * @dev: device
 22 * @pos: starting config space position
 23 * @buf: buffer to save to or restore from
 24 * @dwords: number of dwords to save/restore
 25 * @save: whether to save or restore
 26 */
 27static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
 28				       u32 *buf, int dwords, bool save)
 29{
 30	int i;
 31
 32	for (i = 0; i < dwords; i++, buf++) {
 33		if (save)
 34			pci_read_config_dword(dev, pos + (i * 4), buf);
 35		else
 36			pci_write_config_dword(dev, pos + (i * 4), *buf);
 37	}
 38}
 39
 40/**
 41 * pci_vc_load_arb_table - load and wait for VC arbitration table
 42 * @dev: device
 43 * @pos: starting position of VC capability (VC/VC9/MFVC)
 44 *
 45 * Set Load VC Arbitration Table bit requesting hardware to apply the VC
 46 * Arbitration Table (previously loaded).  When the VC Arbitration Table
 47 * Status clears, hardware has latched the table into VC arbitration logic.
 48 */
 49static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
 50{
 51	u16 ctrl;
 52
 53	pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
 54	pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
 55			      ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
 56	if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
 57				 PCI_VC_PORT_STATUS_TABLE))
 58		return;
 59
 60	dev_err(&dev->dev, "VC arbitration table failed to load\n");
 61}
 62
 63/**
 64 * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
 65 * @dev: device
 66 * @pos: starting position of VC capability (VC/VC9/MFVC)
 67 * @res: VC resource number, ie. VCn (0-7)
 68 *
 69 * Set Load Port Arbitration Table bit requesting hardware to apply the Port
 70 * Arbitration Table (previously loaded).  When the Port Arbitration Table
 71 * Status clears, hardware has latched the table into port arbitration logic.
 72 */
 73static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
 74{
 75	int ctrl_pos, status_pos;
 76	u32 ctrl;
 77
 78	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
 79	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
 80
 81	pci_read_config_dword(dev, ctrl_pos, &ctrl);
 82	pci_write_config_dword(dev, ctrl_pos,
 83			       ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
 84
 85	if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
 86		return;
 87
 88	dev_err(&dev->dev, "VC%d port arbitration table failed to load\n", res);
 89}
 90
 91/**
 92 * pci_vc_enable - Enable virtual channel
 93 * @dev: device
 94 * @pos: starting position of VC capability (VC/VC9/MFVC)
 95 * @res: VC res number, ie. VCn (0-7)
 96 *
 97 * A VC is enabled by setting the enable bit in matching resource control
 98 * registers on both sides of a link.  We therefore need to find the opposite
 99 * end of the link.  To keep this simple we enable from the downstream device.
100 * RC devices do not have an upstream device, nor does it seem that VC9 do
101 * (spec is unclear).  Once we find the upstream device, match the VC ID to
102 * get the correct resource, disable and enable on both ends.
103 */
104static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
105{
106	int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
107	u32 ctrl, header, cap1, ctrl2;
108	struct pci_dev *link = NULL;
109
110	/* Enable VCs from the downstream device */
111	if (!dev->has_secondary_link)
112		return;
113
114	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
115	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
116
117	pci_read_config_dword(dev, ctrl_pos, &ctrl);
118	id = ctrl & PCI_VC_RES_CTRL_ID;
119
120	pci_read_config_dword(dev, pos, &header);
121
122	/* If there is no opposite end of the link, skip to enable */
123	if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
124	    pci_is_root_bus(dev->bus))
125		goto enable;
126
127	pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
128	if (!pos2)
129		goto enable;
130
131	pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
132	evcc = cap1 & PCI_VC_CAP1_EVCC;
133
134	/* VC0 is hardwired enabled, so we can start with 1 */
135	for (i = 1; i < evcc + 1; i++) {
136		ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
137				(i * PCI_CAP_VC_PER_VC_SIZEOF);
138		status_pos2 = pos2 + PCI_VC_RES_STATUS +
139				(i * PCI_CAP_VC_PER_VC_SIZEOF);
140		pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
141		if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
142			link = dev->bus->self;
143			break;
144		}
145	}
146
147	if (!link)
148		goto enable;
149
150	/* Disable if enabled */
151	if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
152		ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
153		pci_write_config_dword(link, ctrl_pos2, ctrl2);
154	}
155
156	/* Enable on both ends */
157	ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
158	pci_write_config_dword(link, ctrl_pos2, ctrl2);
159enable:
160	ctrl |= PCI_VC_RES_CTRL_ENABLE;
161	pci_write_config_dword(dev, ctrl_pos, ctrl);
162
163	if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
164		dev_err(&dev->dev, "VC%d negotiation stuck pending\n", id);
165
166	if (link && !pci_wait_for_pending(link, status_pos2,
167					  PCI_VC_RES_STATUS_NEGO))
168		dev_err(&link->dev, "VC%d negotiation stuck pending\n", id);
169}
170
171/**
172 * pci_vc_do_save_buffer - Size, save, or restore VC state
173 * @dev: device
174 * @pos: starting position of VC capability (VC/VC9/MFVC)
175 * @save_state: buffer for save/restore
176 * @name: for error message
177 * @save: if provided a buffer, this indicates what to do with it
178 *
179 * Walking Virtual Channel config space to size, save, or restore it
180 * is complicated, so we do it all from one function to reduce code and
181 * guarantee ordering matches in the buffer.  When called with NULL
182 * @save_state, return the size of the necessary save buffer.  When called
183 * with a non-NULL @save_state, @save determines whether we save to the
184 * buffer or restore from it.
185 */
186static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
187				 struct pci_cap_saved_state *save_state,
188				 bool save)
189{
190	u32 cap1;
191	char evcc, lpevcc, parb_size;
192	int i, len = 0;
193	u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
194
195	/* Sanity check buffer size for save/restore */
196	if (buf && save_state->cap.size !=
197	    pci_vc_do_save_buffer(dev, pos, NULL, save)) {
198		dev_err(&dev->dev,
199			"VC save buffer size does not match @0x%x\n", pos);
200		return -ENOMEM;
201	}
202
203	pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
204	/* Extended VC Count (not counting VC0) */
205	evcc = cap1 & PCI_VC_CAP1_EVCC;
206	/* Low Priority Extended VC Count (not counting VC0) */
207	lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
208	/* Port Arbitration Table Entry Size (bits) */
209	parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);
210
211	/*
212	 * Port VC Control Register contains VC Arbitration Select, which
213	 * cannot be modified when more than one LPVC is in operation.  We
214	 * therefore save/restore it first, as only VC0 should be enabled
215	 * after device reset.
216	 */
217	if (buf) {
218		if (save)
219			pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
220					     (u16 *)buf);
221		else
222			pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
223					      *(u16 *)buf);
224		buf += 2;
225	}
226	len += 2;
227
228	/*
229	 * If we have any Low Priority VCs and a VC Arbitration Table Offset
230	 * in Port VC Capability Register 2 then save/restore it next.
231	 */
232	if (lpevcc) {
233		u32 cap2;
234		int vcarb_offset;
235
236		pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
237		vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;
238
239		if (vcarb_offset) {
240			int size, vcarb_phases = 0;
241
242			if (cap2 & PCI_VC_CAP2_128_PHASE)
243				vcarb_phases = 128;
244			else if (cap2 & PCI_VC_CAP2_64_PHASE)
245				vcarb_phases = 64;
246			else if (cap2 & PCI_VC_CAP2_32_PHASE)
247				vcarb_phases = 32;
248
249			/* Fixed 4 bits per phase per lpevcc (plus VC0) */
250			size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
251
252			if (size && buf) {
253				pci_vc_save_restore_dwords(dev,
254							   pos + vcarb_offset,
255							   (u32 *)buf,
256							   size / 4, save);
257				/*
258				 * On restore, we need to signal hardware to
259				 * re-load the VC Arbitration Table.
260				 */
261				if (!save)
262					pci_vc_load_arb_table(dev, pos);
263
264				buf += size;
265			}
266			len += size;
267		}
268	}
269
270	/*
271	 * In addition to each VC Resource Control Register, we may have a
272	 * Port Arbitration Table attached to each VC.  The Port Arbitration
273	 * Table Offset in each VC Resource Capability Register tells us if
274	 * it exists.  The entry size is global from the Port VC Capability
275	 * Register1 above.  The number of phases is determined per VC.
276	 */
277	for (i = 0; i < evcc + 1; i++) {
278		u32 cap;
279		int parb_offset;
280
281		pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
282				      (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
283		parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
284		if (parb_offset) {
285			int size, parb_phases = 0;
286
287			if (cap & PCI_VC_RES_CAP_256_PHASE)
288				parb_phases = 256;
289			else if (cap & (PCI_VC_RES_CAP_128_PHASE |
290					PCI_VC_RES_CAP_128_PHASE_TB))
291				parb_phases = 128;
292			else if (cap & PCI_VC_RES_CAP_64_PHASE)
293				parb_phases = 64;
294			else if (cap & PCI_VC_RES_CAP_32_PHASE)
295				parb_phases = 32;
296
297			size = (parb_size * parb_phases) / 8;
298
299			if (size && buf) {
300				pci_vc_save_restore_dwords(dev,
301							   pos + parb_offset,
302							   (u32 *)buf,
303							   size / 4, save);
304				buf += size;
305			}
306			len += size;
307		}
308
309		/* VC Resource Control Register */
310		if (buf) {
311			int ctrl_pos = pos + PCI_VC_RES_CTRL +
312						(i * PCI_CAP_VC_PER_VC_SIZEOF);
313			if (save)
314				pci_read_config_dword(dev, ctrl_pos,
315						      (u32 *)buf);
316			else {
317				u32 tmp, ctrl = *(u32 *)buf;
318				/*
319				 * For an FLR case, the VC config may remain.
320				 * Preserve enable bit, restore the rest.
321				 */
322				pci_read_config_dword(dev, ctrl_pos, &tmp);
323				tmp &= PCI_VC_RES_CTRL_ENABLE;
324				tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
325				pci_write_config_dword(dev, ctrl_pos, tmp);
326				/* Load port arbitration table if used */
327				if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
328					pci_vc_load_port_arb_table(dev, pos, i);
329				/* Re-enable if needed */
330				if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
331					pci_vc_enable(dev, pos, i);
332			}
333			buf += 4;
334		}
335		len += 4;
336	}
337
338	return buf ? 0 : len;
339}
340
341static struct {
342	u16 id;
343	const char *name;
344} vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
345		{ PCI_EXT_CAP_ID_VC, "VC" },
346		{ PCI_EXT_CAP_ID_VC9, "VC9" } };
347
348/**
349 * pci_save_vc_state - Save VC state to pre-allocate save buffer
350 * @dev: device
351 *
352 * For each type of VC capability, VC/VC9/MFVC, find the capability and
353 * save it to the pre-allocated save buffer.
354 */
355int pci_save_vc_state(struct pci_dev *dev)
356{
357	int i;
358
359	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
360		int pos, ret;
361		struct pci_cap_saved_state *save_state;
362
363		pos = pci_find_ext_capability(dev, vc_caps[i].id);
364		if (!pos)
365			continue;
366
367		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
368		if (!save_state) {
369			dev_err(&dev->dev, "%s buffer not found in %s\n",
370				vc_caps[i].name, __func__);
371			return -ENOMEM;
372		}
373
374		ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
375		if (ret) {
376			dev_err(&dev->dev, "%s save unsuccessful %s\n",
377				vc_caps[i].name, __func__);
378			return ret;
379		}
380	}
381
382	return 0;
383}
384
385/**
386 * pci_restore_vc_state - Restore VC state from save buffer
387 * @dev: device
388 *
389 * For each type of VC capability, VC/VC9/MFVC, find the capability and
390 * restore it from the previously saved buffer.
391 */
392void pci_restore_vc_state(struct pci_dev *dev)
393{
394	int i;
395
396	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
397		int pos;
398		struct pci_cap_saved_state *save_state;
399
400		pos = pci_find_ext_capability(dev, vc_caps[i].id);
401		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
402		if (!save_state || !pos)
403			continue;
404
405		pci_vc_do_save_buffer(dev, pos, save_state, false);
406	}
407}
408
409/**
410 * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
411 * @dev: device
412 *
413 * For each type of VC capability, VC/VC9/MFVC, find the capability, size
414 * it, and allocate a buffer for save/restore.
415 */
416
417void pci_allocate_vc_save_buffers(struct pci_dev *dev)
418{
419	int i;
420
421	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
422		int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
423
424		if (!pos)
425			continue;
426
427		len = pci_vc_do_save_buffer(dev, pos, NULL, false);
428		if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
429			dev_err(&dev->dev,
430				"unable to preallocate %s save buffer\n",
431				vc_caps[i].name);
432	}
433}