Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * PCI Virtual Channel support
  4 *
  5 * Copyright (C) 2013 Red Hat, Inc.  All rights reserved.
  6 *     Author: Alex Williamson <alex.williamson@redhat.com>
  7 */
  8
  9#include <linux/device.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/pci.h>
 13#include <linux/pci_regs.h>
 14#include <linux/types.h>
 15
 16/**
 17 * pci_vc_save_restore_dwords - Save or restore a series of dwords
 18 * @dev: device
 19 * @pos: starting config space position
 20 * @buf: buffer to save to or restore from
 21 * @dwords: number of dwords to save/restore
 22 * @save: whether to save or restore
 23 */
 24static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
 25				       u32 *buf, int dwords, bool save)
 26{
 27	int i;
 28
 29	for (i = 0; i < dwords; i++, buf++) {
 30		if (save)
 31			pci_read_config_dword(dev, pos + (i * 4), buf);
 32		else
 33			pci_write_config_dword(dev, pos + (i * 4), *buf);
 34	}
 35}
 36
 37/**
 38 * pci_vc_load_arb_table - load and wait for VC arbitration table
 39 * @dev: device
 40 * @pos: starting position of VC capability (VC/VC9/MFVC)
 41 *
 42 * Set Load VC Arbitration Table bit requesting hardware to apply the VC
 43 * Arbitration Table (previously loaded).  When the VC Arbitration Table
 44 * Status clears, hardware has latched the table into VC arbitration logic.
 45 */
 46static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
 47{
 48	u16 ctrl;
 49
 50	pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
 51	pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
 52			      ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
 53	if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
 54				 PCI_VC_PORT_STATUS_TABLE))
 55		return;
 56
 57	pci_err(dev, "VC arbitration table failed to load\n");
 58}
 59
 60/**
 61 * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
 62 * @dev: device
 63 * @pos: starting position of VC capability (VC/VC9/MFVC)
 64 * @res: VC resource number, ie. VCn (0-7)
 65 *
 66 * Set Load Port Arbitration Table bit requesting hardware to apply the Port
 67 * Arbitration Table (previously loaded).  When the Port Arbitration Table
 68 * Status clears, hardware has latched the table into port arbitration logic.
 69 */
 70static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
 71{
 72	int ctrl_pos, status_pos;
 73	u32 ctrl;
 74
 75	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
 76	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
 77
 78	pci_read_config_dword(dev, ctrl_pos, &ctrl);
 79	pci_write_config_dword(dev, ctrl_pos,
 80			       ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
 81
 82	if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
 83		return;
 84
 85	pci_err(dev, "VC%d port arbitration table failed to load\n", res);
 86}
 87
 88/**
 89 * pci_vc_enable - Enable virtual channel
 90 * @dev: device
 91 * @pos: starting position of VC capability (VC/VC9/MFVC)
 92 * @res: VC res number, ie. VCn (0-7)
 93 *
 94 * A VC is enabled by setting the enable bit in matching resource control
 95 * registers on both sides of a link.  We therefore need to find the opposite
 96 * end of the link.  To keep this simple we enable from the downstream device.
 97 * RC devices do not have an upstream device, nor does it seem that VC9 do
 98 * (spec is unclear).  Once we find the upstream device, match the VC ID to
 99 * get the correct resource, disable and enable on both ends.
100 */
101static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
102{
103	int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
104	u32 ctrl, header, cap1, ctrl2;
105	struct pci_dev *link = NULL;
106
107	/* Enable VCs from the downstream device */
108	if (!dev->has_secondary_link)
109		return;
110
111	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
112	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
113
114	pci_read_config_dword(dev, ctrl_pos, &ctrl);
115	id = ctrl & PCI_VC_RES_CTRL_ID;
116
117	pci_read_config_dword(dev, pos, &header);
118
119	/* If there is no opposite end of the link, skip to enable */
120	if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
121	    pci_is_root_bus(dev->bus))
122		goto enable;
123
124	pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
125	if (!pos2)
126		goto enable;
127
128	pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
129	evcc = cap1 & PCI_VC_CAP1_EVCC;
130
131	/* VC0 is hardwired enabled, so we can start with 1 */
132	for (i = 1; i < evcc + 1; i++) {
133		ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
134				(i * PCI_CAP_VC_PER_VC_SIZEOF);
135		status_pos2 = pos2 + PCI_VC_RES_STATUS +
136				(i * PCI_CAP_VC_PER_VC_SIZEOF);
137		pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
138		if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
139			link = dev->bus->self;
140			break;
141		}
142	}
143
144	if (!link)
145		goto enable;
146
147	/* Disable if enabled */
148	if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
149		ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
150		pci_write_config_dword(link, ctrl_pos2, ctrl2);
151	}
152
153	/* Enable on both ends */
154	ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
155	pci_write_config_dword(link, ctrl_pos2, ctrl2);
156enable:
157	ctrl |= PCI_VC_RES_CTRL_ENABLE;
158	pci_write_config_dword(dev, ctrl_pos, ctrl);
159
160	if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
161		pci_err(dev, "VC%d negotiation stuck pending\n", id);
162
163	if (link && !pci_wait_for_pending(link, status_pos2,
164					  PCI_VC_RES_STATUS_NEGO))
165		pci_err(link, "VC%d negotiation stuck pending\n", id);
166}
167
168/**
169 * pci_vc_do_save_buffer - Size, save, or restore VC state
170 * @dev: device
171 * @pos: starting position of VC capability (VC/VC9/MFVC)
172 * @save_state: buffer for save/restore
173 * @name: for error message
174 * @save: if provided a buffer, this indicates what to do with it
175 *
176 * Walking Virtual Channel config space to size, save, or restore it
177 * is complicated, so we do it all from one function to reduce code and
178 * guarantee ordering matches in the buffer.  When called with NULL
179 * @save_state, return the size of the necessary save buffer.  When called
180 * with a non-NULL @save_state, @save determines whether we save to the
181 * buffer or restore from it.
182 */
183static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
184				 struct pci_cap_saved_state *save_state,
185				 bool save)
186{
187	u32 cap1;
188	char evcc, lpevcc, parb_size;
189	int i, len = 0;
190	u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
191
192	/* Sanity check buffer size for save/restore */
193	if (buf && save_state->cap.size !=
194	    pci_vc_do_save_buffer(dev, pos, NULL, save)) {
195		pci_err(dev, "VC save buffer size does not match @0x%x\n", pos);
196		return -ENOMEM;
197	}
198
199	pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
200	/* Extended VC Count (not counting VC0) */
201	evcc = cap1 & PCI_VC_CAP1_EVCC;
202	/* Low Priority Extended VC Count (not counting VC0) */
203	lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
204	/* Port Arbitration Table Entry Size (bits) */
205	parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);
206
207	/*
208	 * Port VC Control Register contains VC Arbitration Select, which
209	 * cannot be modified when more than one LPVC is in operation.  We
210	 * therefore save/restore it first, as only VC0 should be enabled
211	 * after device reset.
212	 */
213	if (buf) {
214		if (save)
215			pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
216					     (u16 *)buf);
217		else
218			pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
219					      *(u16 *)buf);
220		buf += 4;
221	}
222	len += 4;
223
224	/*
225	 * If we have any Low Priority VCs and a VC Arbitration Table Offset
226	 * in Port VC Capability Register 2 then save/restore it next.
227	 */
228	if (lpevcc) {
229		u32 cap2;
230		int vcarb_offset;
231
232		pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
233		vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;
234
235		if (vcarb_offset) {
236			int size, vcarb_phases = 0;
237
238			if (cap2 & PCI_VC_CAP2_128_PHASE)
239				vcarb_phases = 128;
240			else if (cap2 & PCI_VC_CAP2_64_PHASE)
241				vcarb_phases = 64;
242			else if (cap2 & PCI_VC_CAP2_32_PHASE)
243				vcarb_phases = 32;
244
245			/* Fixed 4 bits per phase per lpevcc (plus VC0) */
246			size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
247
248			if (size && buf) {
249				pci_vc_save_restore_dwords(dev,
250							   pos + vcarb_offset,
251							   (u32 *)buf,
252							   size / 4, save);
253				/*
254				 * On restore, we need to signal hardware to
255				 * re-load the VC Arbitration Table.
256				 */
257				if (!save)
258					pci_vc_load_arb_table(dev, pos);
259
260				buf += size;
261			}
262			len += size;
263		}
264	}
265
266	/*
267	 * In addition to each VC Resource Control Register, we may have a
268	 * Port Arbitration Table attached to each VC.  The Port Arbitration
269	 * Table Offset in each VC Resource Capability Register tells us if
270	 * it exists.  The entry size is global from the Port VC Capability
271	 * Register1 above.  The number of phases is determined per VC.
272	 */
273	for (i = 0; i < evcc + 1; i++) {
274		u32 cap;
275		int parb_offset;
276
277		pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
278				      (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
279		parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
280		if (parb_offset) {
281			int size, parb_phases = 0;
282
283			if (cap & PCI_VC_RES_CAP_256_PHASE)
284				parb_phases = 256;
285			else if (cap & (PCI_VC_RES_CAP_128_PHASE |
286					PCI_VC_RES_CAP_128_PHASE_TB))
287				parb_phases = 128;
288			else if (cap & PCI_VC_RES_CAP_64_PHASE)
289				parb_phases = 64;
290			else if (cap & PCI_VC_RES_CAP_32_PHASE)
291				parb_phases = 32;
292
293			size = (parb_size * parb_phases) / 8;
294
295			if (size && buf) {
296				pci_vc_save_restore_dwords(dev,
297							   pos + parb_offset,
298							   (u32 *)buf,
299							   size / 4, save);
300				buf += size;
301			}
302			len += size;
303		}
304
305		/* VC Resource Control Register */
306		if (buf) {
307			int ctrl_pos = pos + PCI_VC_RES_CTRL +
308						(i * PCI_CAP_VC_PER_VC_SIZEOF);
309			if (save)
310				pci_read_config_dword(dev, ctrl_pos,
311						      (u32 *)buf);
312			else {
313				u32 tmp, ctrl = *(u32 *)buf;
314				/*
315				 * For an FLR case, the VC config may remain.
316				 * Preserve enable bit, restore the rest.
317				 */
318				pci_read_config_dword(dev, ctrl_pos, &tmp);
319				tmp &= PCI_VC_RES_CTRL_ENABLE;
320				tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
321				pci_write_config_dword(dev, ctrl_pos, tmp);
322				/* Load port arbitration table if used */
323				if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
324					pci_vc_load_port_arb_table(dev, pos, i);
325				/* Re-enable if needed */
326				if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
327					pci_vc_enable(dev, pos, i);
328			}
329			buf += 4;
330		}
331		len += 4;
332	}
333
334	return buf ? 0 : len;
335}
336
337static struct {
338	u16 id;
339	const char *name;
340} vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
341		{ PCI_EXT_CAP_ID_VC, "VC" },
342		{ PCI_EXT_CAP_ID_VC9, "VC9" } };
343
344/**
345 * pci_save_vc_state - Save VC state to pre-allocate save buffer
346 * @dev: device
347 *
348 * For each type of VC capability, VC/VC9/MFVC, find the capability and
349 * save it to the pre-allocated save buffer.
350 */
351int pci_save_vc_state(struct pci_dev *dev)
352{
353	int i;
354
355	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
356		int pos, ret;
357		struct pci_cap_saved_state *save_state;
358
359		pos = pci_find_ext_capability(dev, vc_caps[i].id);
360		if (!pos)
361			continue;
362
363		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
364		if (!save_state) {
365			pci_err(dev, "%s buffer not found in %s\n",
366				vc_caps[i].name, __func__);
367			return -ENOMEM;
368		}
369
370		ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
371		if (ret) {
372			pci_err(dev, "%s save unsuccessful %s\n",
373				vc_caps[i].name, __func__);
374			return ret;
375		}
376	}
377
378	return 0;
379}
380
381/**
382 * pci_restore_vc_state - Restore VC state from save buffer
383 * @dev: device
384 *
385 * For each type of VC capability, VC/VC9/MFVC, find the capability and
386 * restore it from the previously saved buffer.
387 */
388void pci_restore_vc_state(struct pci_dev *dev)
389{
390	int i;
391
392	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
393		int pos;
394		struct pci_cap_saved_state *save_state;
395
396		pos = pci_find_ext_capability(dev, vc_caps[i].id);
397		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
398		if (!save_state || !pos)
399			continue;
400
401		pci_vc_do_save_buffer(dev, pos, save_state, false);
402	}
403}
404
405/**
406 * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
407 * @dev: device
408 *
409 * For each type of VC capability, VC/VC9/MFVC, find the capability, size
410 * it, and allocate a buffer for save/restore.
411 */
412
413void pci_allocate_vc_save_buffers(struct pci_dev *dev)
414{
415	int i;
416
417	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
418		int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
419
420		if (!pos)
421			continue;
422
423		len = pci_vc_do_save_buffer(dev, pos, NULL, false);
424		if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
425			pci_err(dev, "unable to preallocate %s save buffer\n",
426				vc_caps[i].name);
427	}
428}