Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
 
 
  21
  22#define DM_MSG_PREFIX "table"
  23
  24#define MAX_DEPTH 16
  25#define NODE_SIZE L1_CACHE_BYTES
  26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  28
  29/*
  30 * The table has always exactly one reference from either mapped_device->map
  31 * or hash_cell->new_map. This reference is not counted in table->holders.
  32 * A pair of dm_create_table/dm_destroy_table functions is used for table
  33 * creation/destruction.
  34 *
  35 * Temporary references from the other code increase table->holders. A pair
  36 * of dm_table_get/dm_table_put functions is used to manipulate it.
  37 *
  38 * When the table is about to be destroyed, we wait for table->holders to
  39 * drop to zero.
  40 */
  41
  42struct dm_table {
  43	struct mapped_device *md;
  44	atomic_t holders;
  45	unsigned type;
  46
  47	/* btree table */
  48	unsigned int depth;
  49	unsigned int counts[MAX_DEPTH];	/* in nodes */
  50	sector_t *index[MAX_DEPTH];
  51
  52	unsigned int num_targets;
  53	unsigned int num_allocated;
  54	sector_t *highs;
  55	struct dm_target *targets;
  56
 
  57	unsigned integrity_supported:1;
 
  58
  59	/*
  60	 * Indicates the rw permissions for the new logical
  61	 * device.  This should be a combination of FMODE_READ
  62	 * and FMODE_WRITE.
  63	 */
  64	fmode_t mode;
  65
  66	/* a list of devices used by this table */
  67	struct list_head devices;
  68
  69	/* events get handed up using this callback */
  70	void (*event_fn)(void *);
  71	void *event_context;
  72
  73	struct dm_md_mempools *mempools;
  74
  75	struct list_head target_callbacks;
  76};
  77
  78/*
  79 * Similar to ceiling(log_size(n))
  80 */
  81static unsigned int int_log(unsigned int n, unsigned int base)
  82{
  83	int result = 0;
  84
  85	while (n > 1) {
  86		n = dm_div_up(n, base);
  87		result++;
  88	}
  89
  90	return result;
  91}
  92
  93/*
  94 * Calculate the index of the child node of the n'th node k'th key.
  95 */
  96static inline unsigned int get_child(unsigned int n, unsigned int k)
  97{
  98	return (n * CHILDREN_PER_NODE) + k;
  99}
 100
 101/*
 102 * Return the n'th node of level l from table t.
 103 */
 104static inline sector_t *get_node(struct dm_table *t,
 105				 unsigned int l, unsigned int n)
 106{
 107	return t->index[l] + (n * KEYS_PER_NODE);
 108}
 109
 110/*
 111 * Return the highest key that you could lookup from the n'th
 112 * node on level l of the btree.
 113 */
 114static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 115{
 116	for (; l < t->depth - 1; l++)
 117		n = get_child(n, CHILDREN_PER_NODE - 1);
 118
 119	if (n >= t->counts[l])
 120		return (sector_t) - 1;
 121
 122	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 123}
 124
 125/*
 126 * Fills in a level of the btree based on the highs of the level
 127 * below it.
 128 */
 129static int setup_btree_index(unsigned int l, struct dm_table *t)
 130{
 131	unsigned int n, k;
 132	sector_t *node;
 133
 134	for (n = 0U; n < t->counts[l]; n++) {
 135		node = get_node(t, l, n);
 136
 137		for (k = 0U; k < KEYS_PER_NODE; k++)
 138			node[k] = high(t, l + 1, get_child(n, k));
 139	}
 140
 141	return 0;
 142}
 143
 144void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 145{
 146	unsigned long size;
 147	void *addr;
 148
 149	/*
 150	 * Check that we're not going to overflow.
 151	 */
 152	if (nmemb > (ULONG_MAX / elem_size))
 153		return NULL;
 154
 155	size = nmemb * elem_size;
 156	addr = vzalloc(size);
 157
 158	return addr;
 159}
 160EXPORT_SYMBOL(dm_vcalloc);
 161
 162/*
 163 * highs, and targets are managed as dynamic arrays during a
 164 * table load.
 165 */
 166static int alloc_targets(struct dm_table *t, unsigned int num)
 167{
 168	sector_t *n_highs;
 169	struct dm_target *n_targets;
 170	int n = t->num_targets;
 171
 172	/*
 173	 * Allocate both the target array and offset array at once.
 174	 * Append an empty entry to catch sectors beyond the end of
 175	 * the device.
 176	 */
 177	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 178					  sizeof(sector_t));
 179	if (!n_highs)
 180		return -ENOMEM;
 181
 182	n_targets = (struct dm_target *) (n_highs + num);
 183
 184	if (n) {
 185		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
 186		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
 187	}
 188
 189	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
 190	vfree(t->highs);
 191
 192	t->num_allocated = num;
 193	t->highs = n_highs;
 194	t->targets = n_targets;
 195
 196	return 0;
 197}
 198
 199int dm_table_create(struct dm_table **result, fmode_t mode,
 200		    unsigned num_targets, struct mapped_device *md)
 201{
 202	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 203
 204	if (!t)
 205		return -ENOMEM;
 206
 207	INIT_LIST_HEAD(&t->devices);
 208	INIT_LIST_HEAD(&t->target_callbacks);
 209	atomic_set(&t->holders, 0);
 210
 211	if (!num_targets)
 212		num_targets = KEYS_PER_NODE;
 213
 214	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 215
 
 
 
 
 
 216	if (alloc_targets(t, num_targets)) {
 217		kfree(t);
 218		t = NULL;
 219		return -ENOMEM;
 220	}
 221
 222	t->mode = mode;
 223	t->md = md;
 224	*result = t;
 225	return 0;
 226}
 227
 228static void free_devices(struct list_head *devices)
 229{
 230	struct list_head *tmp, *next;
 231
 232	list_for_each_safe(tmp, next, devices) {
 233		struct dm_dev_internal *dd =
 234		    list_entry(tmp, struct dm_dev_internal, list);
 235		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
 236		       dd->dm_dev.name);
 
 237		kfree(dd);
 238	}
 239}
 240
 241void dm_table_destroy(struct dm_table *t)
 242{
 243	unsigned int i;
 244
 245	if (!t)
 246		return;
 247
 248	while (atomic_read(&t->holders))
 249		msleep(1);
 250	smp_mb();
 251
 252	/* free the indexes */
 253	if (t->depth >= 2)
 254		vfree(t->index[t->depth - 2]);
 255
 256	/* free the targets */
 257	for (i = 0; i < t->num_targets; i++) {
 258		struct dm_target *tgt = t->targets + i;
 259
 260		if (tgt->type->dtr)
 261			tgt->type->dtr(tgt);
 262
 263		dm_put_target_type(tgt->type);
 264	}
 265
 266	vfree(t->highs);
 267
 268	/* free the device list */
 269	if (t->devices.next != &t->devices)
 270		free_devices(&t->devices);
 271
 272	dm_free_md_mempools(t->mempools);
 273
 274	kfree(t);
 275}
 276
 277void dm_table_get(struct dm_table *t)
 278{
 279	atomic_inc(&t->holders);
 280}
 281EXPORT_SYMBOL(dm_table_get);
 282
 283void dm_table_put(struct dm_table *t)
 284{
 285	if (!t)
 286		return;
 287
 288	smp_mb__before_atomic_dec();
 289	atomic_dec(&t->holders);
 290}
 291EXPORT_SYMBOL(dm_table_put);
 292
 293/*
 294 * Checks to see if we need to extend highs or targets.
 295 */
 296static inline int check_space(struct dm_table *t)
 297{
 298	if (t->num_targets >= t->num_allocated)
 299		return alloc_targets(t, t->num_allocated * 2);
 300
 301	return 0;
 302}
 303
 304/*
 305 * See if we've already got a device in the list.
 306 */
 307static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 308{
 309	struct dm_dev_internal *dd;
 310
 311	list_for_each_entry (dd, l, list)
 312		if (dd->dm_dev.bdev->bd_dev == dev)
 313			return dd;
 314
 315	return NULL;
 316}
 317
 318/*
 319 * Open a device so we can use it as a map destination.
 320 */
 321static int open_dev(struct dm_dev_internal *d, dev_t dev,
 322		    struct mapped_device *md)
 323{
 324	static char *_claim_ptr = "I belong to device-mapper";
 325	struct block_device *bdev;
 326
 327	int r;
 328
 329	BUG_ON(d->dm_dev.bdev);
 330
 331	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 332	if (IS_ERR(bdev))
 333		return PTR_ERR(bdev);
 334
 335	r = bd_link_disk_holder(bdev, dm_disk(md));
 336	if (r) {
 337		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
 338		return r;
 339	}
 340
 341	d->dm_dev.bdev = bdev;
 342	return 0;
 343}
 344
 345/*
 346 * Close a device that we've been using.
 347 */
 348static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
 349{
 350	if (!d->dm_dev.bdev)
 351		return;
 352
 353	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
 354	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
 355	d->dm_dev.bdev = NULL;
 356}
 357
 358/*
 359 * If possible, this checks an area of a destination device is invalid.
 360 */
 361static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 362				  sector_t start, sector_t len, void *data)
 363{
 364	struct request_queue *q;
 365	struct queue_limits *limits = data;
 366	struct block_device *bdev = dev->bdev;
 367	sector_t dev_size =
 368		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 369	unsigned short logical_block_size_sectors =
 370		limits->logical_block_size >> SECTOR_SHIFT;
 371	char b[BDEVNAME_SIZE];
 372
 373	/*
 374	 * Some devices exist without request functions,
 375	 * such as loop devices not yet bound to backing files.
 376	 * Forbid the use of such devices.
 377	 */
 378	q = bdev_get_queue(bdev);
 379	if (!q || !q->make_request_fn) {
 380		DMWARN("%s: %s is not yet initialised: "
 381		       "start=%llu, len=%llu, dev_size=%llu",
 382		       dm_device_name(ti->table->md), bdevname(bdev, b),
 383		       (unsigned long long)start,
 384		       (unsigned long long)len,
 385		       (unsigned long long)dev_size);
 386		return 1;
 387	}
 388
 389	if (!dev_size)
 390		return 0;
 391
 392	if ((start >= dev_size) || (start + len > dev_size)) {
 393		DMWARN("%s: %s too small for target: "
 394		       "start=%llu, len=%llu, dev_size=%llu",
 395		       dm_device_name(ti->table->md), bdevname(bdev, b),
 396		       (unsigned long long)start,
 397		       (unsigned long long)len,
 398		       (unsigned long long)dev_size);
 399		return 1;
 400	}
 401
 402	if (logical_block_size_sectors <= 1)
 403		return 0;
 404
 405	if (start & (logical_block_size_sectors - 1)) {
 406		DMWARN("%s: start=%llu not aligned to h/w "
 407		       "logical block size %u of %s",
 408		       dm_device_name(ti->table->md),
 409		       (unsigned long long)start,
 410		       limits->logical_block_size, bdevname(bdev, b));
 411		return 1;
 412	}
 413
 414	if (len & (logical_block_size_sectors - 1)) {
 415		DMWARN("%s: len=%llu not aligned to h/w "
 416		       "logical block size %u of %s",
 417		       dm_device_name(ti->table->md),
 418		       (unsigned long long)len,
 419		       limits->logical_block_size, bdevname(bdev, b));
 420		return 1;
 421	}
 422
 423	return 0;
 424}
 425
 426/*
 427 * This upgrades the mode on an already open dm_dev, being
 428 * careful to leave things as they were if we fail to reopen the
 429 * device and not to touch the existing bdev field in case
 430 * it is accessed concurrently inside dm_table_any_congested().
 431 */
 432static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 433			struct mapped_device *md)
 434{
 435	int r;
 436	struct dm_dev_internal dd_new, dd_old;
 437
 438	dd_new = dd_old = *dd;
 439
 440	dd_new.dm_dev.mode |= new_mode;
 441	dd_new.dm_dev.bdev = NULL;
 442
 443	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
 444	if (r)
 445		return r;
 446
 447	dd->dm_dev.mode |= new_mode;
 448	close_dev(&dd_old, md);
 449
 450	return 0;
 451}
 452
 453/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454 * Add a device to the list, or just increment the usage count if
 455 * it's already present.
 456 */
 457int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 458		  struct dm_dev **result)
 459{
 460	int r;
 461	dev_t uninitialized_var(dev);
 462	struct dm_dev_internal *dd;
 463	unsigned int major, minor;
 464	struct dm_table *t = ti->table;
 465
 466	BUG_ON(!t);
 467
 468	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
 469		/* Extract the major/minor numbers */
 470		dev = MKDEV(major, minor);
 471		if (MAJOR(dev) != major || MINOR(dev) != minor)
 472			return -EOVERFLOW;
 473	} else {
 474		/* convert the path to a device */
 475		struct block_device *bdev = lookup_bdev(path);
 476
 477		if (IS_ERR(bdev))
 478			return PTR_ERR(bdev);
 479		dev = bdev->bd_dev;
 480		bdput(bdev);
 481	}
 482
 483	dd = find_device(&t->devices, dev);
 484	if (!dd) {
 485		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 486		if (!dd)
 487			return -ENOMEM;
 488
 489		dd->dm_dev.mode = mode;
 490		dd->dm_dev.bdev = NULL;
 491
 492		if ((r = open_dev(dd, dev, t->md))) {
 493			kfree(dd);
 494			return r;
 495		}
 496
 497		format_dev_t(dd->dm_dev.name, dev);
 498
 499		atomic_set(&dd->count, 0);
 500		list_add(&dd->list, &t->devices);
 501
 502	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
 503		r = upgrade_mode(dd, mode, t->md);
 504		if (r)
 505			return r;
 506	}
 507	atomic_inc(&dd->count);
 508
 509	*result = &dd->dm_dev;
 510	return 0;
 511}
 512EXPORT_SYMBOL(dm_get_device);
 513
 514int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 515			 sector_t start, sector_t len, void *data)
 516{
 517	struct queue_limits *limits = data;
 518	struct block_device *bdev = dev->bdev;
 519	struct request_queue *q = bdev_get_queue(bdev);
 520	char b[BDEVNAME_SIZE];
 521
 522	if (unlikely(!q)) {
 523		DMWARN("%s: Cannot set limits for nonexistent device %s",
 524		       dm_device_name(ti->table->md), bdevname(bdev, b));
 525		return 0;
 526	}
 527
 528	if (bdev_stack_limits(limits, bdev, start) < 0)
 529		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 530		       "physical_block_size=%u, logical_block_size=%u, "
 531		       "alignment_offset=%u, start=%llu",
 532		       dm_device_name(ti->table->md), bdevname(bdev, b),
 533		       q->limits.physical_block_size,
 534		       q->limits.logical_block_size,
 535		       q->limits.alignment_offset,
 536		       (unsigned long long) start << SECTOR_SHIFT);
 537
 538	/*
 539	 * Check if merge fn is supported.
 540	 * If not we'll force DM to use PAGE_SIZE or
 541	 * smaller I/O, just to be safe.
 542	 */
 543	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
 544		blk_limits_max_hw_sectors(limits,
 545					  (unsigned int) (PAGE_SIZE >> 9));
 546	return 0;
 547}
 548EXPORT_SYMBOL_GPL(dm_set_device_limits);
 549
 550/*
 551 * Decrement a device's use count and remove it if necessary.
 552 */
 553void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 554{
 555	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
 556						  dm_dev);
 
 557
 
 
 
 
 
 
 
 
 
 
 
 558	if (atomic_dec_and_test(&dd->count)) {
 559		close_dev(dd, ti->table->md);
 560		list_del(&dd->list);
 561		kfree(dd);
 562	}
 563}
 564EXPORT_SYMBOL(dm_put_device);
 565
 566/*
 567 * Checks to see if the target joins onto the end of the table.
 568 */
 569static int adjoin(struct dm_table *table, struct dm_target *ti)
 570{
 571	struct dm_target *prev;
 572
 573	if (!table->num_targets)
 574		return !ti->begin;
 575
 576	prev = &table->targets[table->num_targets - 1];
 577	return (ti->begin == (prev->begin + prev->len));
 578}
 579
 580/*
 581 * Used to dynamically allocate the arg array.
 
 
 
 
 
 
 
 582 */
 583static char **realloc_argv(unsigned *array_size, char **old_argv)
 584{
 585	char **argv;
 586	unsigned new_size;
 
 587
 588	new_size = *array_size ? *array_size * 2 : 64;
 589	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
 
 
 
 
 
 
 590	if (argv) {
 591		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 592		*array_size = new_size;
 593	}
 594
 595	kfree(old_argv);
 596	return argv;
 597}
 598
 599/*
 600 * Destructively splits up the argument list to pass to ctr.
 601 */
 602int dm_split_args(int *argc, char ***argvp, char *input)
 603{
 604	char *start, *end = input, *out, **argv = NULL;
 605	unsigned array_size = 0;
 606
 607	*argc = 0;
 608
 609	if (!input) {
 610		*argvp = NULL;
 611		return 0;
 612	}
 613
 614	argv = realloc_argv(&array_size, argv);
 615	if (!argv)
 616		return -ENOMEM;
 617
 618	while (1) {
 619		/* Skip whitespace */
 620		start = skip_spaces(end);
 621
 622		if (!*start)
 623			break;	/* success, we hit the end */
 624
 625		/* 'out' is used to remove any back-quotes */
 626		end = out = start;
 627		while (*end) {
 628			/* Everything apart from '\0' can be quoted */
 629			if (*end == '\\' && *(end + 1)) {
 630				*out++ = *(end + 1);
 631				end += 2;
 632				continue;
 633			}
 634
 635			if (isspace(*end))
 636				break;	/* end of token */
 637
 638			*out++ = *end++;
 639		}
 640
 641		/* have we already filled the array ? */
 642		if ((*argc + 1) > array_size) {
 643			argv = realloc_argv(&array_size, argv);
 644			if (!argv)
 645				return -ENOMEM;
 646		}
 647
 648		/* we know this is whitespace */
 649		if (*end)
 650			end++;
 651
 652		/* terminate the string and put it in the array */
 653		*out = '\0';
 654		argv[*argc] = start;
 655		(*argc)++;
 656	}
 657
 658	*argvp = argv;
 659	return 0;
 660}
 661
 662/*
 663 * Impose necessary and sufficient conditions on a devices's table such
 664 * that any incoming bio which respects its logical_block_size can be
 665 * processed successfully.  If it falls across the boundary between
 666 * two or more targets, the size of each piece it gets split into must
 667 * be compatible with the logical_block_size of the target processing it.
 668 */
 669static int validate_hardware_logical_block_alignment(struct dm_table *table,
 670						 struct queue_limits *limits)
 671{
 672	/*
 673	 * This function uses arithmetic modulo the logical_block_size
 674	 * (in units of 512-byte sectors).
 675	 */
 676	unsigned short device_logical_block_size_sects =
 677		limits->logical_block_size >> SECTOR_SHIFT;
 678
 679	/*
 680	 * Offset of the start of the next table entry, mod logical_block_size.
 681	 */
 682	unsigned short next_target_start = 0;
 683
 684	/*
 685	 * Given an aligned bio that extends beyond the end of a
 686	 * target, how many sectors must the next target handle?
 687	 */
 688	unsigned short remaining = 0;
 689
 690	struct dm_target *uninitialized_var(ti);
 691	struct queue_limits ti_limits;
 692	unsigned i = 0;
 693
 694	/*
 695	 * Check each entry in the table in turn.
 696	 */
 697	while (i < dm_table_get_num_targets(table)) {
 698		ti = dm_table_get_target(table, i++);
 699
 700		blk_set_default_limits(&ti_limits);
 701
 702		/* combine all target devices' limits */
 703		if (ti->type->iterate_devices)
 704			ti->type->iterate_devices(ti, dm_set_device_limits,
 705						  &ti_limits);
 706
 707		/*
 708		 * If the remaining sectors fall entirely within this
 709		 * table entry are they compatible with its logical_block_size?
 710		 */
 711		if (remaining < ti->len &&
 712		    remaining & ((ti_limits.logical_block_size >>
 713				  SECTOR_SHIFT) - 1))
 714			break;	/* Error */
 715
 716		next_target_start =
 717		    (unsigned short) ((next_target_start + ti->len) &
 718				      (device_logical_block_size_sects - 1));
 719		remaining = next_target_start ?
 720		    device_logical_block_size_sects - next_target_start : 0;
 721	}
 722
 723	if (remaining) {
 724		DMWARN("%s: table line %u (start sect %llu len %llu) "
 725		       "not aligned to h/w logical block size %u",
 726		       dm_device_name(table->md), i,
 727		       (unsigned long long) ti->begin,
 728		       (unsigned long long) ti->len,
 729		       limits->logical_block_size);
 730		return -EINVAL;
 731	}
 732
 733	return 0;
 734}
 735
 736int dm_table_add_target(struct dm_table *t, const char *type,
 737			sector_t start, sector_t len, char *params)
 738{
 739	int r = -EINVAL, argc;
 740	char **argv;
 741	struct dm_target *tgt;
 742
 743	if ((r = check_space(t)))
 744		return r;
 
 
 
 
 
 745
 746	tgt = t->targets + t->num_targets;
 747	memset(tgt, 0, sizeof(*tgt));
 748
 749	if (!len) {
 750		DMERR("%s: zero-length target", dm_device_name(t->md));
 751		return -EINVAL;
 752	}
 753
 754	tgt->type = dm_get_target_type(type);
 755	if (!tgt->type) {
 756		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
 757		      type);
 758		return -EINVAL;
 759	}
 760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761	tgt->table = t;
 762	tgt->begin = start;
 763	tgt->len = len;
 764	tgt->error = "Unknown error";
 765
 766	/*
 767	 * Does this target adjoin the previous one ?
 768	 */
 769	if (!adjoin(t, tgt)) {
 770		tgt->error = "Gap in table";
 771		r = -EINVAL;
 772		goto bad;
 773	}
 774
 775	r = dm_split_args(&argc, &argv, params);
 776	if (r) {
 777		tgt->error = "couldn't split parameters (insufficient memory)";
 778		goto bad;
 779	}
 780
 781	r = tgt->type->ctr(tgt, argc, argv);
 782	kfree(argv);
 783	if (r)
 784		goto bad;
 785
 786	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 787
 788	if (!tgt->num_discard_requests && tgt->discards_supported)
 789		DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
 790		       dm_device_name(t->md), type);
 791
 792	return 0;
 793
 794 bad:
 795	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 796	dm_put_target_type(tgt->type);
 797	return r;
 798}
 799
 800/*
 801 * Target argument parsing helpers.
 802 */
 803static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 804			     unsigned *value, char **error, unsigned grouped)
 805{
 806	const char *arg_str = dm_shift_arg(arg_set);
 
 807
 808	if (!arg_str ||
 809	    (sscanf(arg_str, "%u", value) != 1) ||
 810	    (*value < arg->min) ||
 811	    (*value > arg->max) ||
 812	    (grouped && arg_set->argc < *value)) {
 813		*error = arg->error;
 814		return -EINVAL;
 815	}
 816
 817	return 0;
 818}
 819
 820int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 821		unsigned *value, char **error)
 822{
 823	return validate_next_arg(arg, arg_set, value, error, 0);
 824}
 825EXPORT_SYMBOL(dm_read_arg);
 826
 827int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 828		      unsigned *value, char **error)
 829{
 830	return validate_next_arg(arg, arg_set, value, error, 1);
 831}
 832EXPORT_SYMBOL(dm_read_arg_group);
 833
 834const char *dm_shift_arg(struct dm_arg_set *as)
 835{
 836	char *r;
 837
 838	if (as->argc) {
 839		as->argc--;
 840		r = *as->argv;
 841		as->argv++;
 842		return r;
 843	}
 844
 845	return NULL;
 846}
 847EXPORT_SYMBOL(dm_shift_arg);
 848
 849void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 850{
 851	BUG_ON(as->argc < num_args);
 852	as->argc -= num_args;
 853	as->argv += num_args;
 854}
 855EXPORT_SYMBOL(dm_consume_args);
 856
 
 
 
 
 
 
 857static int dm_table_set_type(struct dm_table *t)
 858{
 859	unsigned i;
 860	unsigned bio_based = 0, request_based = 0;
 
 861	struct dm_target *tgt;
 862	struct dm_dev_internal *dd;
 863	struct list_head *devices;
 
 864
 865	for (i = 0; i < t->num_targets; i++) {
 866		tgt = t->targets + i;
 867		if (dm_target_request_based(tgt))
 
 
 868			request_based = 1;
 869		else
 870			bio_based = 1;
 871
 872		if (bio_based && request_based) {
 873			DMWARN("Inconsistent table: different target types"
 874			       " can't be mixed up");
 875			return -EINVAL;
 876		}
 877	}
 878
 
 
 
 
 
 
 
 
 
 
 
 
 879	if (bio_based) {
 880		/* We must use this table as bio-based */
 881		t->type = DM_TYPE_BIO_BASED;
 882		return 0;
 883	}
 884
 885	BUG_ON(!request_based); /* No targets in this table */
 886
 887	/* Non-request-stackable devices can't be used for request-based dm */
 888	devices = dm_table_get_devices(t);
 889	list_for_each_entry(dd, devices, list) {
 890		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
 891			DMWARN("table load rejected: including"
 892			       " non-request-stackable devices");
 893			return -EINVAL;
 894		}
 895	}
 896
 897	/*
 898	 * Request-based dm supports only tables that have a single target now.
 899	 * To support multiple targets, request splitting support is needed,
 900	 * and that needs lots of changes in the block-layer.
 901	 * (e.g. request completion process for partial completion.)
 902	 */
 903	if (t->num_targets > 1) {
 904		DMWARN("Request-based dm doesn't support multiple targets yet");
 905		return -EINVAL;
 906	}
 907
 908	t->type = DM_TYPE_REQUEST_BASED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909
 910	return 0;
 911}
 912
 913unsigned dm_table_get_type(struct dm_table *t)
 914{
 915	return t->type;
 916}
 917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918bool dm_table_request_based(struct dm_table *t)
 919{
 920	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
 921}
 922
 923int dm_table_alloc_md_mempools(struct dm_table *t)
 
 
 
 
 
 924{
 925	unsigned type = dm_table_get_type(t);
 
 
 
 926
 927	if (unlikely(type == DM_TYPE_NONE)) {
 928		DMWARN("no table type is set, can't allocate mempools");
 929		return -EINVAL;
 930	}
 931
 932	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
 
 
 
 
 
 
 933	if (!t->mempools)
 934		return -ENOMEM;
 935
 936	return 0;
 937}
 938
 939void dm_table_free_md_mempools(struct dm_table *t)
 940{
 941	dm_free_md_mempools(t->mempools);
 942	t->mempools = NULL;
 943}
 944
 945struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
 946{
 947	return t->mempools;
 948}
 949
 950static int setup_indexes(struct dm_table *t)
 951{
 952	int i;
 953	unsigned int total = 0;
 954	sector_t *indexes;
 955
 956	/* allocate the space for *all* the indexes */
 957	for (i = t->depth - 2; i >= 0; i--) {
 958		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
 959		total += t->counts[i];
 960	}
 961
 962	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
 963	if (!indexes)
 964		return -ENOMEM;
 965
 966	/* set up internal nodes, bottom-up */
 967	for (i = t->depth - 2; i >= 0; i--) {
 968		t->index[i] = indexes;
 969		indexes += (KEYS_PER_NODE * t->counts[i]);
 970		setup_btree_index(i, t);
 971	}
 972
 973	return 0;
 974}
 975
 976/*
 977 * Builds the btree to index the map.
 978 */
 979static int dm_table_build_index(struct dm_table *t)
 980{
 981	int r = 0;
 982	unsigned int leaf_nodes;
 983
 984	/* how many indexes will the btree have ? */
 985	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
 986	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
 987
 988	/* leaf layer has already been set up */
 989	t->counts[t->depth - 1] = leaf_nodes;
 990	t->index[t->depth - 1] = t->highs;
 991
 992	if (t->depth >= 2)
 993		r = setup_indexes(t);
 994
 995	return r;
 996}
 997
 
 
 
 
 
 998/*
 999 * Get a disk whose integrity profile reflects the table's profile.
1000 * If %match_all is true, all devices' profiles must match.
1001 * If %match_all is false, all devices must at least have an
1002 * allocated integrity profile; but uninitialized is ok.
1003 * Returns NULL if integrity support was inconsistent or unavailable.
1004 */
1005static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1006						    bool match_all)
1007{
1008	struct list_head *devices = dm_table_get_devices(t);
1009	struct dm_dev_internal *dd = NULL;
1010	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1011
1012	list_for_each_entry(dd, devices, list) {
1013		template_disk = dd->dm_dev.bdev->bd_disk;
1014		if (!blk_get_integrity(template_disk))
1015			goto no_integrity;
1016		if (!match_all && !blk_integrity_is_initialized(template_disk))
1017			continue; /* skip uninitialized profiles */
1018		else if (prev_disk &&
1019			 blk_integrity_compare(prev_disk, template_disk) < 0)
1020			goto no_integrity;
1021		prev_disk = template_disk;
1022	}
1023
1024	return template_disk;
1025
1026no_integrity:
1027	if (prev_disk)
1028		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1029		       dm_device_name(t->md),
1030		       prev_disk->disk_name,
1031		       template_disk->disk_name);
1032	return NULL;
1033}
1034
1035/*
1036 * Register the mapped device for blk_integrity support if
1037 * the underlying devices have an integrity profile.  But all devices
1038 * may not have matching profiles (checking all devices isn't reliable
1039 * during table load because this table may use other DM device(s) which
1040 * must be resumed before they will have an initialized integity profile).
1041 * Stacked DM devices force a 2 stage integrity profile validation:
1042 * 1 - during load, validate all initialized integrity profiles match
1043 * 2 - during resume, validate all integrity profiles match
1044 */
1045static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1046{
 
1047	struct gendisk *template_disk = NULL;
1048
1049	template_disk = dm_table_get_integrity_disk(t, false);
1050	if (!template_disk)
1051		return 0;
1052
1053	if (!blk_integrity_is_initialized(dm_disk(md))) {
1054		t->integrity_supported = 1;
1055		return blk_integrity_register(dm_disk(md), NULL);
 
 
 
 
 
 
1056	}
1057
1058	/*
1059	 * If DM device already has an initalized integrity
1060	 * profile the new profile should not conflict.
1061	 */
1062	if (blk_integrity_is_initialized(template_disk) &&
1063	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1064		DMWARN("%s: conflict with existing integrity profile: "
1065		       "%s profile mismatch",
1066		       dm_device_name(t->md),
1067		       template_disk->disk_name);
1068		return 1;
1069	}
1070
1071	/* Preserve existing initialized integrity profile */
1072	t->integrity_supported = 1;
1073	return 0;
1074}
1075
1076/*
1077 * Prepares the table for use by building the indices,
1078 * setting the type, and allocating mempools.
1079 */
1080int dm_table_complete(struct dm_table *t)
1081{
1082	int r;
1083
1084	r = dm_table_set_type(t);
1085	if (r) {
1086		DMERR("unable to set table type");
1087		return r;
1088	}
1089
1090	r = dm_table_build_index(t);
1091	if (r) {
1092		DMERR("unable to build btrees");
1093		return r;
1094	}
1095
1096	r = dm_table_prealloc_integrity(t, t->md);
1097	if (r) {
1098		DMERR("could not register integrity profile.");
1099		return r;
1100	}
1101
1102	r = dm_table_alloc_md_mempools(t);
1103	if (r)
1104		DMERR("unable to allocate mempools");
1105
1106	return r;
1107}
1108
1109static DEFINE_MUTEX(_event_lock);
1110void dm_table_event_callback(struct dm_table *t,
1111			     void (*fn)(void *), void *context)
1112{
1113	mutex_lock(&_event_lock);
1114	t->event_fn = fn;
1115	t->event_context = context;
1116	mutex_unlock(&_event_lock);
1117}
1118
1119void dm_table_event(struct dm_table *t)
1120{
1121	/*
1122	 * You can no longer call dm_table_event() from interrupt
1123	 * context, use a bottom half instead.
1124	 */
1125	BUG_ON(in_interrupt());
1126
1127	mutex_lock(&_event_lock);
1128	if (t->event_fn)
1129		t->event_fn(t->event_context);
1130	mutex_unlock(&_event_lock);
1131}
1132EXPORT_SYMBOL(dm_table_event);
1133
1134sector_t dm_table_get_size(struct dm_table *t)
1135{
1136	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1137}
1138EXPORT_SYMBOL(dm_table_get_size);
1139
1140struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1141{
1142	if (index >= t->num_targets)
1143		return NULL;
1144
1145	return t->targets + index;
1146}
1147
1148/*
1149 * Search the btree for the correct target.
1150 *
1151 * Caller should check returned pointer with dm_target_is_valid()
1152 * to trap I/O beyond end of device.
1153 */
1154struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1155{
1156	unsigned int l, n = 0, k = 0;
1157	sector_t *node;
1158
1159	for (l = 0; l < t->depth; l++) {
1160		n = get_child(n, k);
1161		node = get_node(t, l, n);
1162
1163		for (k = 0; k < KEYS_PER_NODE; k++)
1164			if (node[k] >= sector)
1165				break;
1166	}
1167
1168	return &t->targets[(KEYS_PER_NODE * n) + k];
1169}
1170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171/*
1172 * Establish the new table's queue_limits and validate them.
1173 */
1174int dm_calculate_queue_limits(struct dm_table *table,
1175			      struct queue_limits *limits)
1176{
1177	struct dm_target *uninitialized_var(ti);
1178	struct queue_limits ti_limits;
1179	unsigned i = 0;
1180
1181	blk_set_default_limits(limits);
1182
1183	while (i < dm_table_get_num_targets(table)) {
1184		blk_set_default_limits(&ti_limits);
1185
1186		ti = dm_table_get_target(table, i++);
1187
1188		if (!ti->type->iterate_devices)
1189			goto combine_limits;
1190
1191		/*
1192		 * Combine queue limits of all the devices this target uses.
1193		 */
1194		ti->type->iterate_devices(ti, dm_set_device_limits,
1195					  &ti_limits);
1196
1197		/* Set I/O hints portion of queue limits */
1198		if (ti->type->io_hints)
1199			ti->type->io_hints(ti, &ti_limits);
1200
1201		/*
1202		 * Check each device area is consistent with the target's
1203		 * overall queue limits.
1204		 */
1205		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1206					      &ti_limits))
1207			return -EINVAL;
1208
1209combine_limits:
1210		/*
1211		 * Merge this target's queue limits into the overall limits
1212		 * for the table.
1213		 */
1214		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1215			DMWARN("%s: adding target device "
1216			       "(start sect %llu len %llu) "
1217			       "caused an alignment inconsistency",
1218			       dm_device_name(table->md),
1219			       (unsigned long long) ti->begin,
1220			       (unsigned long long) ti->len);
1221	}
1222
1223	return validate_hardware_logical_block_alignment(table, limits);
1224}
1225
1226/*
1227 * Set the integrity profile for this device if all devices used have
1228 * matching profiles.  We're quite deep in the resume path but still
1229 * don't know if all devices (particularly DM devices this device
1230 * may be stacked on) have matching profiles.  Even if the profiles
1231 * don't match we have no way to fail (to resume) at this point.
1232 */
1233static void dm_table_set_integrity(struct dm_table *t)
1234{
1235	struct gendisk *template_disk = NULL;
1236
1237	if (!blk_get_integrity(dm_disk(t->md)))
1238		return;
 
 
 
 
 
 
 
 
1239
1240	template_disk = dm_table_get_integrity_disk(t, true);
1241	if (template_disk)
1242		blk_integrity_register(dm_disk(t->md),
1243				       blk_get_integrity(template_disk));
1244	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1245		DMWARN("%s: device no longer has a valid integrity profile",
1246		       dm_device_name(t->md));
1247	else
1248		DMWARN("%s: unable to establish an integrity profile",
1249		       dm_device_name(t->md));
 
 
1250}
1251
1252static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1253				sector_t start, sector_t len, void *data)
1254{
1255	unsigned flush = (*(unsigned *)data);
1256	struct request_queue *q = bdev_get_queue(dev->bdev);
1257
1258	return q && (q->flush_flags & flush);
1259}
1260
1261static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1262{
1263	struct dm_target *ti;
1264	unsigned i = 0;
1265
1266	/*
1267	 * Require at least one underlying device to support flushes.
1268	 * t->devices includes internal dm devices such as mirror logs
1269	 * so we need to use iterate_devices here, which targets
1270	 * supporting flushes must provide.
1271	 */
1272	while (i < dm_table_get_num_targets(t)) {
1273		ti = dm_table_get_target(t, i++);
1274
1275		if (!ti->num_flush_requests)
1276			continue;
1277
 
 
 
1278		if (ti->type->iterate_devices &&
1279		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1280			return 1;
1281	}
1282
1283	return 0;
1284}
1285
1286static bool dm_table_discard_zeroes_data(struct dm_table *t)
1287{
1288	struct dm_target *ti;
1289	unsigned i = 0;
1290
1291	/* Ensure that all targets supports discard_zeroes_data. */
1292	while (i < dm_table_get_num_targets(t)) {
1293		ti = dm_table_get_target(t, i++);
1294
1295		if (ti->discard_zeroes_data_unsupported)
1296			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297	}
1298
1299	return 1;
1300}
1301
1302void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1303			       struct queue_limits *limits)
1304{
1305	unsigned flush = 0;
1306
1307	/*
1308	 * Copy table's limits to the DM device's request_queue
1309	 */
1310	q->limits = *limits;
1311
1312	if (!dm_table_supports_discards(t))
1313		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1314	else
1315		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1316
1317	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1318		flush |= REQ_FLUSH;
1319		if (dm_table_supports_flush(t, REQ_FUA))
1320			flush |= REQ_FUA;
1321	}
1322	blk_queue_flush(q, flush);
1323
1324	if (!dm_table_discard_zeroes_data(t))
1325		q->limits.discard_zeroes_data = 0;
1326
1327	dm_table_set_integrity(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328
1329	/*
1330	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1331	 * visible to other CPUs because, once the flag is set, incoming bios
1332	 * are processed by request-based dm, which refers to the queue
1333	 * settings.
1334	 * Until the flag set, bios are passed to bio-based dm and queued to
1335	 * md->deferred where queue settings are not needed yet.
1336	 * Those bios are passed to request-based dm at the resume time.
1337	 */
1338	smp_mb();
1339	if (dm_table_request_based(t))
1340		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1341}
1342
1343unsigned int dm_table_get_num_targets(struct dm_table *t)
1344{
1345	return t->num_targets;
1346}
1347
1348struct list_head *dm_table_get_devices(struct dm_table *t)
1349{
1350	return &t->devices;
1351}
1352
1353fmode_t dm_table_get_mode(struct dm_table *t)
1354{
1355	return t->mode;
1356}
1357EXPORT_SYMBOL(dm_table_get_mode);
1358
1359static void suspend_targets(struct dm_table *t, unsigned postsuspend)
 
 
 
 
 
 
1360{
1361	int i = t->num_targets;
1362	struct dm_target *ti = t->targets;
1363
1364	while (i--) {
1365		if (postsuspend) {
 
 
 
 
 
 
 
 
 
1366			if (ti->type->postsuspend)
1367				ti->type->postsuspend(ti);
1368		} else if (ti->type->presuspend)
1369			ti->type->presuspend(ti);
1370
1371		ti++;
1372	}
1373}
1374
1375void dm_table_presuspend_targets(struct dm_table *t)
1376{
1377	if (!t)
1378		return;
1379
1380	suspend_targets(t, 0);
 
 
 
 
 
 
 
 
1381}
1382
1383void dm_table_postsuspend_targets(struct dm_table *t)
1384{
1385	if (!t)
1386		return;
1387
1388	suspend_targets(t, 1);
1389}
1390
1391int dm_table_resume_targets(struct dm_table *t)
1392{
1393	int i, r = 0;
1394
1395	for (i = 0; i < t->num_targets; i++) {
1396		struct dm_target *ti = t->targets + i;
1397
1398		if (!ti->type->preresume)
1399			continue;
1400
1401		r = ti->type->preresume(ti);
1402		if (r)
 
 
1403			return r;
 
1404	}
1405
1406	for (i = 0; i < t->num_targets; i++) {
1407		struct dm_target *ti = t->targets + i;
1408
1409		if (ti->type->resume)
1410			ti->type->resume(ti);
1411	}
1412
1413	return 0;
1414}
1415
1416void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1417{
1418	list_add(&cb->list, &t->target_callbacks);
1419}
1420EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1421
1422int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1423{
1424	struct dm_dev_internal *dd;
1425	struct list_head *devices = dm_table_get_devices(t);
1426	struct dm_target_callbacks *cb;
1427	int r = 0;
1428
1429	list_for_each_entry(dd, devices, list) {
1430		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1431		char b[BDEVNAME_SIZE];
1432
1433		if (likely(q))
1434			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1435		else
1436			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1437				     dm_device_name(t->md),
1438				     bdevname(dd->dm_dev.bdev, b));
1439	}
1440
1441	list_for_each_entry(cb, &t->target_callbacks, list)
1442		if (cb->congested_fn)
1443			r |= cb->congested_fn(cb, bdi_bits);
1444
1445	return r;
1446}
1447
1448int dm_table_any_busy_target(struct dm_table *t)
1449{
1450	unsigned i;
1451	struct dm_target *ti;
1452
1453	for (i = 0; i < t->num_targets; i++) {
1454		ti = t->targets + i;
1455		if (ti->type->busy && ti->type->busy(ti))
1456			return 1;
1457	}
1458
1459	return 0;
1460}
1461
1462struct mapped_device *dm_table_get_md(struct dm_table *t)
1463{
1464	return t->md;
1465}
1466EXPORT_SYMBOL(dm_table_get_md);
1467
1468static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1469				  sector_t start, sector_t len, void *data)
1470{
1471	struct request_queue *q = bdev_get_queue(dev->bdev);
1472
1473	return q && blk_queue_discard(q);
1474}
1475
1476bool dm_table_supports_discards(struct dm_table *t)
1477{
1478	struct dm_target *ti;
1479	unsigned i = 0;
1480
1481	/*
1482	 * Unless any target used by the table set discards_supported,
1483	 * require at least one underlying device to support discards.
1484	 * t->devices includes internal dm devices such as mirror logs
1485	 * so we need to use iterate_devices here, which targets
1486	 * supporting discard selectively must provide.
1487	 */
1488	while (i < dm_table_get_num_targets(t)) {
1489		ti = dm_table_get_target(t, i++);
1490
1491		if (!ti->num_discard_requests)
1492			continue;
1493
1494		if (ti->discards_supported)
1495			return 1;
1496
1497		if (ti->type->iterate_devices &&
1498		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1499			return 1;
 
 
 
 
 
 
 
1500	}
1501
1502	return 0;
1503}
v4.6
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23
  24#define DM_MSG_PREFIX "table"
  25
  26#define MAX_DEPTH 16
  27#define NODE_SIZE L1_CACHE_BYTES
  28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  30
 
 
 
 
 
 
 
 
 
 
 
 
 
  31struct dm_table {
  32	struct mapped_device *md;
 
  33	unsigned type;
  34
  35	/* btree table */
  36	unsigned int depth;
  37	unsigned int counts[MAX_DEPTH];	/* in nodes */
  38	sector_t *index[MAX_DEPTH];
  39
  40	unsigned int num_targets;
  41	unsigned int num_allocated;
  42	sector_t *highs;
  43	struct dm_target *targets;
  44
  45	struct target_type *immutable_target_type;
  46	unsigned integrity_supported:1;
  47	unsigned singleton:1;
  48
  49	/*
  50	 * Indicates the rw permissions for the new logical
  51	 * device.  This should be a combination of FMODE_READ
  52	 * and FMODE_WRITE.
  53	 */
  54	fmode_t mode;
  55
  56	/* a list of devices used by this table */
  57	struct list_head devices;
  58
  59	/* events get handed up using this callback */
  60	void (*event_fn)(void *);
  61	void *event_context;
  62
  63	struct dm_md_mempools *mempools;
  64
  65	struct list_head target_callbacks;
  66};
  67
  68/*
  69 * Similar to ceiling(log_size(n))
  70 */
  71static unsigned int int_log(unsigned int n, unsigned int base)
  72{
  73	int result = 0;
  74
  75	while (n > 1) {
  76		n = dm_div_up(n, base);
  77		result++;
  78	}
  79
  80	return result;
  81}
  82
  83/*
  84 * Calculate the index of the child node of the n'th node k'th key.
  85 */
  86static inline unsigned int get_child(unsigned int n, unsigned int k)
  87{
  88	return (n * CHILDREN_PER_NODE) + k;
  89}
  90
  91/*
  92 * Return the n'th node of level l from table t.
  93 */
  94static inline sector_t *get_node(struct dm_table *t,
  95				 unsigned int l, unsigned int n)
  96{
  97	return t->index[l] + (n * KEYS_PER_NODE);
  98}
  99
 100/*
 101 * Return the highest key that you could lookup from the n'th
 102 * node on level l of the btree.
 103 */
 104static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 105{
 106	for (; l < t->depth - 1; l++)
 107		n = get_child(n, CHILDREN_PER_NODE - 1);
 108
 109	if (n >= t->counts[l])
 110		return (sector_t) - 1;
 111
 112	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 113}
 114
 115/*
 116 * Fills in a level of the btree based on the highs of the level
 117 * below it.
 118 */
 119static int setup_btree_index(unsigned int l, struct dm_table *t)
 120{
 121	unsigned int n, k;
 122	sector_t *node;
 123
 124	for (n = 0U; n < t->counts[l]; n++) {
 125		node = get_node(t, l, n);
 126
 127		for (k = 0U; k < KEYS_PER_NODE; k++)
 128			node[k] = high(t, l + 1, get_child(n, k));
 129	}
 130
 131	return 0;
 132}
 133
 134void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 135{
 136	unsigned long size;
 137	void *addr;
 138
 139	/*
 140	 * Check that we're not going to overflow.
 141	 */
 142	if (nmemb > (ULONG_MAX / elem_size))
 143		return NULL;
 144
 145	size = nmemb * elem_size;
 146	addr = vzalloc(size);
 147
 148	return addr;
 149}
 150EXPORT_SYMBOL(dm_vcalloc);
 151
 152/*
 153 * highs, and targets are managed as dynamic arrays during a
 154 * table load.
 155 */
 156static int alloc_targets(struct dm_table *t, unsigned int num)
 157{
 158	sector_t *n_highs;
 159	struct dm_target *n_targets;
 
 160
 161	/*
 162	 * Allocate both the target array and offset array at once.
 163	 * Append an empty entry to catch sectors beyond the end of
 164	 * the device.
 165	 */
 166	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 167					  sizeof(sector_t));
 168	if (!n_highs)
 169		return -ENOMEM;
 170
 171	n_targets = (struct dm_target *) (n_highs + num);
 172
 173	memset(n_highs, -1, sizeof(*n_highs) * num);
 
 
 
 
 
 174	vfree(t->highs);
 175
 176	t->num_allocated = num;
 177	t->highs = n_highs;
 178	t->targets = n_targets;
 179
 180	return 0;
 181}
 182
 183int dm_table_create(struct dm_table **result, fmode_t mode,
 184		    unsigned num_targets, struct mapped_device *md)
 185{
 186	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 187
 188	if (!t)
 189		return -ENOMEM;
 190
 191	INIT_LIST_HEAD(&t->devices);
 192	INIT_LIST_HEAD(&t->target_callbacks);
 
 193
 194	if (!num_targets)
 195		num_targets = KEYS_PER_NODE;
 196
 197	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 198
 199	if (!num_targets) {
 200		kfree(t);
 201		return -ENOMEM;
 202	}
 203
 204	if (alloc_targets(t, num_targets)) {
 205		kfree(t);
 
 206		return -ENOMEM;
 207	}
 208
 209	t->mode = mode;
 210	t->md = md;
 211	*result = t;
 212	return 0;
 213}
 214
 215static void free_devices(struct list_head *devices, struct mapped_device *md)
 216{
 217	struct list_head *tmp, *next;
 218
 219	list_for_each_safe(tmp, next, devices) {
 220		struct dm_dev_internal *dd =
 221		    list_entry(tmp, struct dm_dev_internal, list);
 222		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 223		       dm_device_name(md), dd->dm_dev->name);
 224		dm_put_table_device(md, dd->dm_dev);
 225		kfree(dd);
 226	}
 227}
 228
 229void dm_table_destroy(struct dm_table *t)
 230{
 231	unsigned int i;
 232
 233	if (!t)
 234		return;
 235
 
 
 
 
 236	/* free the indexes */
 237	if (t->depth >= 2)
 238		vfree(t->index[t->depth - 2]);
 239
 240	/* free the targets */
 241	for (i = 0; i < t->num_targets; i++) {
 242		struct dm_target *tgt = t->targets + i;
 243
 244		if (tgt->type->dtr)
 245			tgt->type->dtr(tgt);
 246
 247		dm_put_target_type(tgt->type);
 248	}
 249
 250	vfree(t->highs);
 251
 252	/* free the device list */
 253	free_devices(&t->devices, t->md);
 
 254
 255	dm_free_md_mempools(t->mempools);
 256
 257	kfree(t);
 258}
 259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260/*
 261 * See if we've already got a device in the list.
 262 */
 263static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 264{
 265	struct dm_dev_internal *dd;
 266
 267	list_for_each_entry (dd, l, list)
 268		if (dd->dm_dev->bdev->bd_dev == dev)
 269			return dd;
 270
 271	return NULL;
 272}
 273
 274/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275 * If possible, this checks an area of a destination device is invalid.
 276 */
 277static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 278				  sector_t start, sector_t len, void *data)
 279{
 280	struct request_queue *q;
 281	struct queue_limits *limits = data;
 282	struct block_device *bdev = dev->bdev;
 283	sector_t dev_size =
 284		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 285	unsigned short logical_block_size_sectors =
 286		limits->logical_block_size >> SECTOR_SHIFT;
 287	char b[BDEVNAME_SIZE];
 288
 289	/*
 290	 * Some devices exist without request functions,
 291	 * such as loop devices not yet bound to backing files.
 292	 * Forbid the use of such devices.
 293	 */
 294	q = bdev_get_queue(bdev);
 295	if (!q || !q->make_request_fn) {
 296		DMWARN("%s: %s is not yet initialised: "
 297		       "start=%llu, len=%llu, dev_size=%llu",
 298		       dm_device_name(ti->table->md), bdevname(bdev, b),
 299		       (unsigned long long)start,
 300		       (unsigned long long)len,
 301		       (unsigned long long)dev_size);
 302		return 1;
 303	}
 304
 305	if (!dev_size)
 306		return 0;
 307
 308	if ((start >= dev_size) || (start + len > dev_size)) {
 309		DMWARN("%s: %s too small for target: "
 310		       "start=%llu, len=%llu, dev_size=%llu",
 311		       dm_device_name(ti->table->md), bdevname(bdev, b),
 312		       (unsigned long long)start,
 313		       (unsigned long long)len,
 314		       (unsigned long long)dev_size);
 315		return 1;
 316	}
 317
 318	if (logical_block_size_sectors <= 1)
 319		return 0;
 320
 321	if (start & (logical_block_size_sectors - 1)) {
 322		DMWARN("%s: start=%llu not aligned to h/w "
 323		       "logical block size %u of %s",
 324		       dm_device_name(ti->table->md),
 325		       (unsigned long long)start,
 326		       limits->logical_block_size, bdevname(bdev, b));
 327		return 1;
 328	}
 329
 330	if (len & (logical_block_size_sectors - 1)) {
 331		DMWARN("%s: len=%llu not aligned to h/w "
 332		       "logical block size %u of %s",
 333		       dm_device_name(ti->table->md),
 334		       (unsigned long long)len,
 335		       limits->logical_block_size, bdevname(bdev, b));
 336		return 1;
 337	}
 338
 339	return 0;
 340}
 341
 342/*
 343 * This upgrades the mode on an already open dm_dev, being
 344 * careful to leave things as they were if we fail to reopen the
 345 * device and not to touch the existing bdev field in case
 346 * it is accessed concurrently inside dm_table_any_congested().
 347 */
 348static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 349			struct mapped_device *md)
 350{
 351	int r;
 352	struct dm_dev *old_dev, *new_dev;
 353
 354	old_dev = dd->dm_dev;
 355
 356	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 357				dd->dm_dev->mode | new_mode, &new_dev);
 
 
 358	if (r)
 359		return r;
 360
 361	dd->dm_dev = new_dev;
 362	dm_put_table_device(md, old_dev);
 363
 364	return 0;
 365}
 366
 367/*
 368 * Convert the path to a device
 369 */
 370dev_t dm_get_dev_t(const char *path)
 371{
 372	dev_t uninitialized_var(dev);
 373	struct block_device *bdev;
 374
 375	bdev = lookup_bdev(path);
 376	if (IS_ERR(bdev))
 377		dev = name_to_dev_t(path);
 378	else {
 379		dev = bdev->bd_dev;
 380		bdput(bdev);
 381	}
 382
 383	return dev;
 384}
 385EXPORT_SYMBOL_GPL(dm_get_dev_t);
 386
 387/*
 388 * Add a device to the list, or just increment the usage count if
 389 * it's already present.
 390 */
 391int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 392		  struct dm_dev **result)
 393{
 394	int r;
 395	dev_t dev;
 396	struct dm_dev_internal *dd;
 
 397	struct dm_table *t = ti->table;
 398
 399	BUG_ON(!t);
 400
 401	dev = dm_get_dev_t(path);
 402	if (!dev)
 403		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 404
 405	dd = find_device(&t->devices, dev);
 406	if (!dd) {
 407		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 408		if (!dd)
 409			return -ENOMEM;
 410
 411		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 
 
 
 412			kfree(dd);
 413			return r;
 414		}
 415
 
 
 416		atomic_set(&dd->count, 0);
 417		list_add(&dd->list, &t->devices);
 418
 419	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 420		r = upgrade_mode(dd, mode, t->md);
 421		if (r)
 422			return r;
 423	}
 424	atomic_inc(&dd->count);
 425
 426	*result = dd->dm_dev;
 427	return 0;
 428}
 429EXPORT_SYMBOL(dm_get_device);
 430
 431static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 432				sector_t start, sector_t len, void *data)
 433{
 434	struct queue_limits *limits = data;
 435	struct block_device *bdev = dev->bdev;
 436	struct request_queue *q = bdev_get_queue(bdev);
 437	char b[BDEVNAME_SIZE];
 438
 439	if (unlikely(!q)) {
 440		DMWARN("%s: Cannot set limits for nonexistent device %s",
 441		       dm_device_name(ti->table->md), bdevname(bdev, b));
 442		return 0;
 443	}
 444
 445	if (bdev_stack_limits(limits, bdev, start) < 0)
 446		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 447		       "physical_block_size=%u, logical_block_size=%u, "
 448		       "alignment_offset=%u, start=%llu",
 449		       dm_device_name(ti->table->md), bdevname(bdev, b),
 450		       q->limits.physical_block_size,
 451		       q->limits.logical_block_size,
 452		       q->limits.alignment_offset,
 453		       (unsigned long long) start << SECTOR_SHIFT);
 454
 
 
 
 
 
 
 
 
 455	return 0;
 456}
 
 457
 458/*
 459 * Decrement a device's use count and remove it if necessary.
 460 */
 461void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 462{
 463	int found = 0;
 464	struct list_head *devices = &ti->table->devices;
 465	struct dm_dev_internal *dd;
 466
 467	list_for_each_entry(dd, devices, list) {
 468		if (dd->dm_dev == d) {
 469			found = 1;
 470			break;
 471		}
 472	}
 473	if (!found) {
 474		DMWARN("%s: device %s not in table devices list",
 475		       dm_device_name(ti->table->md), d->name);
 476		return;
 477	}
 478	if (atomic_dec_and_test(&dd->count)) {
 479		dm_put_table_device(ti->table->md, d);
 480		list_del(&dd->list);
 481		kfree(dd);
 482	}
 483}
 484EXPORT_SYMBOL(dm_put_device);
 485
 486/*
 487 * Checks to see if the target joins onto the end of the table.
 488 */
 489static int adjoin(struct dm_table *table, struct dm_target *ti)
 490{
 491	struct dm_target *prev;
 492
 493	if (!table->num_targets)
 494		return !ti->begin;
 495
 496	prev = &table->targets[table->num_targets - 1];
 497	return (ti->begin == (prev->begin + prev->len));
 498}
 499
 500/*
 501 * Used to dynamically allocate the arg array.
 502 *
 503 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 504 * process messages even if some device is suspended. These messages have a
 505 * small fixed number of arguments.
 506 *
 507 * On the other hand, dm-switch needs to process bulk data using messages and
 508 * excessive use of GFP_NOIO could cause trouble.
 509 */
 510static char **realloc_argv(unsigned *array_size, char **old_argv)
 511{
 512	char **argv;
 513	unsigned new_size;
 514	gfp_t gfp;
 515
 516	if (*array_size) {
 517		new_size = *array_size * 2;
 518		gfp = GFP_KERNEL;
 519	} else {
 520		new_size = 8;
 521		gfp = GFP_NOIO;
 522	}
 523	argv = kmalloc(new_size * sizeof(*argv), gfp);
 524	if (argv) {
 525		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 526		*array_size = new_size;
 527	}
 528
 529	kfree(old_argv);
 530	return argv;
 531}
 532
 533/*
 534 * Destructively splits up the argument list to pass to ctr.
 535 */
 536int dm_split_args(int *argc, char ***argvp, char *input)
 537{
 538	char *start, *end = input, *out, **argv = NULL;
 539	unsigned array_size = 0;
 540
 541	*argc = 0;
 542
 543	if (!input) {
 544		*argvp = NULL;
 545		return 0;
 546	}
 547
 548	argv = realloc_argv(&array_size, argv);
 549	if (!argv)
 550		return -ENOMEM;
 551
 552	while (1) {
 553		/* Skip whitespace */
 554		start = skip_spaces(end);
 555
 556		if (!*start)
 557			break;	/* success, we hit the end */
 558
 559		/* 'out' is used to remove any back-quotes */
 560		end = out = start;
 561		while (*end) {
 562			/* Everything apart from '\0' can be quoted */
 563			if (*end == '\\' && *(end + 1)) {
 564				*out++ = *(end + 1);
 565				end += 2;
 566				continue;
 567			}
 568
 569			if (isspace(*end))
 570				break;	/* end of token */
 571
 572			*out++ = *end++;
 573		}
 574
 575		/* have we already filled the array ? */
 576		if ((*argc + 1) > array_size) {
 577			argv = realloc_argv(&array_size, argv);
 578			if (!argv)
 579				return -ENOMEM;
 580		}
 581
 582		/* we know this is whitespace */
 583		if (*end)
 584			end++;
 585
 586		/* terminate the string and put it in the array */
 587		*out = '\0';
 588		argv[*argc] = start;
 589		(*argc)++;
 590	}
 591
 592	*argvp = argv;
 593	return 0;
 594}
 595
 596/*
 597 * Impose necessary and sufficient conditions on a devices's table such
 598 * that any incoming bio which respects its logical_block_size can be
 599 * processed successfully.  If it falls across the boundary between
 600 * two or more targets, the size of each piece it gets split into must
 601 * be compatible with the logical_block_size of the target processing it.
 602 */
 603static int validate_hardware_logical_block_alignment(struct dm_table *table,
 604						 struct queue_limits *limits)
 605{
 606	/*
 607	 * This function uses arithmetic modulo the logical_block_size
 608	 * (in units of 512-byte sectors).
 609	 */
 610	unsigned short device_logical_block_size_sects =
 611		limits->logical_block_size >> SECTOR_SHIFT;
 612
 613	/*
 614	 * Offset of the start of the next table entry, mod logical_block_size.
 615	 */
 616	unsigned short next_target_start = 0;
 617
 618	/*
 619	 * Given an aligned bio that extends beyond the end of a
 620	 * target, how many sectors must the next target handle?
 621	 */
 622	unsigned short remaining = 0;
 623
 624	struct dm_target *uninitialized_var(ti);
 625	struct queue_limits ti_limits;
 626	unsigned i = 0;
 627
 628	/*
 629	 * Check each entry in the table in turn.
 630	 */
 631	while (i < dm_table_get_num_targets(table)) {
 632		ti = dm_table_get_target(table, i++);
 633
 634		blk_set_stacking_limits(&ti_limits);
 635
 636		/* combine all target devices' limits */
 637		if (ti->type->iterate_devices)
 638			ti->type->iterate_devices(ti, dm_set_device_limits,
 639						  &ti_limits);
 640
 641		/*
 642		 * If the remaining sectors fall entirely within this
 643		 * table entry are they compatible with its logical_block_size?
 644		 */
 645		if (remaining < ti->len &&
 646		    remaining & ((ti_limits.logical_block_size >>
 647				  SECTOR_SHIFT) - 1))
 648			break;	/* Error */
 649
 650		next_target_start =
 651		    (unsigned short) ((next_target_start + ti->len) &
 652				      (device_logical_block_size_sects - 1));
 653		remaining = next_target_start ?
 654		    device_logical_block_size_sects - next_target_start : 0;
 655	}
 656
 657	if (remaining) {
 658		DMWARN("%s: table line %u (start sect %llu len %llu) "
 659		       "not aligned to h/w logical block size %u",
 660		       dm_device_name(table->md), i,
 661		       (unsigned long long) ti->begin,
 662		       (unsigned long long) ti->len,
 663		       limits->logical_block_size);
 664		return -EINVAL;
 665	}
 666
 667	return 0;
 668}
 669
 670int dm_table_add_target(struct dm_table *t, const char *type,
 671			sector_t start, sector_t len, char *params)
 672{
 673	int r = -EINVAL, argc;
 674	char **argv;
 675	struct dm_target *tgt;
 676
 677	if (t->singleton) {
 678		DMERR("%s: target type %s must appear alone in table",
 679		      dm_device_name(t->md), t->targets->type->name);
 680		return -EINVAL;
 681	}
 682
 683	BUG_ON(t->num_targets >= t->num_allocated);
 684
 685	tgt = t->targets + t->num_targets;
 686	memset(tgt, 0, sizeof(*tgt));
 687
 688	if (!len) {
 689		DMERR("%s: zero-length target", dm_device_name(t->md));
 690		return -EINVAL;
 691	}
 692
 693	tgt->type = dm_get_target_type(type);
 694	if (!tgt->type) {
 695		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
 696		      type);
 697		return -EINVAL;
 698	}
 699
 700	if (dm_target_needs_singleton(tgt->type)) {
 701		if (t->num_targets) {
 702			DMERR("%s: target type %s must appear alone in table",
 703			      dm_device_name(t->md), type);
 704			return -EINVAL;
 705		}
 706		t->singleton = 1;
 707	}
 708
 709	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 710		DMERR("%s: target type %s may not be included in read-only tables",
 711		      dm_device_name(t->md), type);
 712		return -EINVAL;
 713	}
 714
 715	if (t->immutable_target_type) {
 716		if (t->immutable_target_type != tgt->type) {
 717			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 718			      dm_device_name(t->md), t->immutable_target_type->name);
 719			return -EINVAL;
 720		}
 721	} else if (dm_target_is_immutable(tgt->type)) {
 722		if (t->num_targets) {
 723			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 724			      dm_device_name(t->md), tgt->type->name);
 725			return -EINVAL;
 726		}
 727		t->immutable_target_type = tgt->type;
 728	}
 729
 730	tgt->table = t;
 731	tgt->begin = start;
 732	tgt->len = len;
 733	tgt->error = "Unknown error";
 734
 735	/*
 736	 * Does this target adjoin the previous one ?
 737	 */
 738	if (!adjoin(t, tgt)) {
 739		tgt->error = "Gap in table";
 740		r = -EINVAL;
 741		goto bad;
 742	}
 743
 744	r = dm_split_args(&argc, &argv, params);
 745	if (r) {
 746		tgt->error = "couldn't split parameters (insufficient memory)";
 747		goto bad;
 748	}
 749
 750	r = tgt->type->ctr(tgt, argc, argv);
 751	kfree(argv);
 752	if (r)
 753		goto bad;
 754
 755	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 756
 757	if (!tgt->num_discard_bios && tgt->discards_supported)
 758		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 759		       dm_device_name(t->md), type);
 760
 761	return 0;
 762
 763 bad:
 764	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 765	dm_put_target_type(tgt->type);
 766	return r;
 767}
 768
 769/*
 770 * Target argument parsing helpers.
 771 */
 772static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 773			     unsigned *value, char **error, unsigned grouped)
 774{
 775	const char *arg_str = dm_shift_arg(arg_set);
 776	char dummy;
 777
 778	if (!arg_str ||
 779	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 780	    (*value < arg->min) ||
 781	    (*value > arg->max) ||
 782	    (grouped && arg_set->argc < *value)) {
 783		*error = arg->error;
 784		return -EINVAL;
 785	}
 786
 787	return 0;
 788}
 789
 790int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 791		unsigned *value, char **error)
 792{
 793	return validate_next_arg(arg, arg_set, value, error, 0);
 794}
 795EXPORT_SYMBOL(dm_read_arg);
 796
 797int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 798		      unsigned *value, char **error)
 799{
 800	return validate_next_arg(arg, arg_set, value, error, 1);
 801}
 802EXPORT_SYMBOL(dm_read_arg_group);
 803
 804const char *dm_shift_arg(struct dm_arg_set *as)
 805{
 806	char *r;
 807
 808	if (as->argc) {
 809		as->argc--;
 810		r = *as->argv;
 811		as->argv++;
 812		return r;
 813	}
 814
 815	return NULL;
 816}
 817EXPORT_SYMBOL(dm_shift_arg);
 818
 819void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 820{
 821	BUG_ON(as->argc < num_args);
 822	as->argc -= num_args;
 823	as->argv += num_args;
 824}
 825EXPORT_SYMBOL(dm_consume_args);
 826
 827static bool __table_type_request_based(unsigned table_type)
 828{
 829	return (table_type == DM_TYPE_REQUEST_BASED ||
 830		table_type == DM_TYPE_MQ_REQUEST_BASED);
 831}
 832
 833static int dm_table_set_type(struct dm_table *t)
 834{
 835	unsigned i;
 836	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 837	bool use_blk_mq = false;
 838	struct dm_target *tgt;
 839	struct dm_dev_internal *dd;
 840	struct list_head *devices;
 841	unsigned live_md_type = dm_get_md_type(t->md);
 842
 843	for (i = 0; i < t->num_targets; i++) {
 844		tgt = t->targets + i;
 845		if (dm_target_hybrid(tgt))
 846			hybrid = 1;
 847		else if (dm_target_request_based(tgt))
 848			request_based = 1;
 849		else
 850			bio_based = 1;
 851
 852		if (bio_based && request_based) {
 853			DMWARN("Inconsistent table: different target types"
 854			       " can't be mixed up");
 855			return -EINVAL;
 856		}
 857	}
 858
 859	if (hybrid && !bio_based && !request_based) {
 860		/*
 861		 * The targets can work either way.
 862		 * Determine the type from the live device.
 863		 * Default to bio-based if device is new.
 864		 */
 865		if (__table_type_request_based(live_md_type))
 866			request_based = 1;
 867		else
 868			bio_based = 1;
 869	}
 870
 871	if (bio_based) {
 872		/* We must use this table as bio-based */
 873		t->type = DM_TYPE_BIO_BASED;
 874		return 0;
 875	}
 876
 877	BUG_ON(!request_based); /* No targets in this table */
 878
 
 
 
 
 
 
 
 
 
 
 879	/*
 880	 * Request-based dm supports only tables that have a single target now.
 881	 * To support multiple targets, request splitting support is needed,
 882	 * and that needs lots of changes in the block-layer.
 883	 * (e.g. request completion process for partial completion.)
 884	 */
 885	if (t->num_targets > 1) {
 886		DMWARN("Request-based dm doesn't support multiple targets yet");
 887		return -EINVAL;
 888	}
 889
 890	/* Non-request-stackable devices can't be used for request-based dm */
 891	devices = dm_table_get_devices(t);
 892	list_for_each_entry(dd, devices, list) {
 893		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
 894
 895		if (!blk_queue_stackable(q)) {
 896			DMERR("table load rejected: including"
 897			      " non-request-stackable devices");
 898			return -EINVAL;
 899		}
 900
 901		if (q->mq_ops)
 902			use_blk_mq = true;
 903	}
 904
 905	if (use_blk_mq) {
 906		/* verify _all_ devices in the table are blk-mq devices */
 907		list_for_each_entry(dd, devices, list)
 908			if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
 909				DMERR("table load rejected: not all devices"
 910				      " are blk-mq request-stackable");
 911				return -EINVAL;
 912			}
 913		t->type = DM_TYPE_MQ_REQUEST_BASED;
 914
 915	} else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
 916		/* inherit live MD type */
 917		t->type = live_md_type;
 918
 919	} else
 920		t->type = DM_TYPE_REQUEST_BASED;
 921
 922	return 0;
 923}
 924
 925unsigned dm_table_get_type(struct dm_table *t)
 926{
 927	return t->type;
 928}
 929
 930struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 931{
 932	return t->immutable_target_type;
 933}
 934
 935struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 936{
 937	/* Immutable target is implicitly a singleton */
 938	if (t->num_targets > 1 ||
 939	    !dm_target_is_immutable(t->targets[0].type))
 940		return NULL;
 941
 942	return t->targets;
 943}
 944
 945struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
 946{
 947	struct dm_target *uninitialized_var(ti);
 948	unsigned i = 0;
 949
 950	while (i < dm_table_get_num_targets(t)) {
 951		ti = dm_table_get_target(t, i++);
 952		if (dm_target_is_wildcard(ti->type))
 953			return ti;
 954	}
 955
 956	return NULL;
 957}
 958
 959bool dm_table_request_based(struct dm_table *t)
 960{
 961	return __table_type_request_based(dm_table_get_type(t));
 962}
 963
 964bool dm_table_mq_request_based(struct dm_table *t)
 965{
 966	return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
 967}
 968
 969static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
 970{
 971	unsigned type = dm_table_get_type(t);
 972	unsigned per_io_data_size = 0;
 973	struct dm_target *tgt;
 974	unsigned i;
 975
 976	if (unlikely(type == DM_TYPE_NONE)) {
 977		DMWARN("no table type is set, can't allocate mempools");
 978		return -EINVAL;
 979	}
 980
 981	if (type == DM_TYPE_BIO_BASED)
 982		for (i = 0; i < t->num_targets; i++) {
 983			tgt = t->targets + i;
 984			per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
 985		}
 986
 987	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
 988	if (!t->mempools)
 989		return -ENOMEM;
 990
 991	return 0;
 992}
 993
 994void dm_table_free_md_mempools(struct dm_table *t)
 995{
 996	dm_free_md_mempools(t->mempools);
 997	t->mempools = NULL;
 998}
 999
1000struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1001{
1002	return t->mempools;
1003}
1004
1005static int setup_indexes(struct dm_table *t)
1006{
1007	int i;
1008	unsigned int total = 0;
1009	sector_t *indexes;
1010
1011	/* allocate the space for *all* the indexes */
1012	for (i = t->depth - 2; i >= 0; i--) {
1013		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1014		total += t->counts[i];
1015	}
1016
1017	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1018	if (!indexes)
1019		return -ENOMEM;
1020
1021	/* set up internal nodes, bottom-up */
1022	for (i = t->depth - 2; i >= 0; i--) {
1023		t->index[i] = indexes;
1024		indexes += (KEYS_PER_NODE * t->counts[i]);
1025		setup_btree_index(i, t);
1026	}
1027
1028	return 0;
1029}
1030
1031/*
1032 * Builds the btree to index the map.
1033 */
1034static int dm_table_build_index(struct dm_table *t)
1035{
1036	int r = 0;
1037	unsigned int leaf_nodes;
1038
1039	/* how many indexes will the btree have ? */
1040	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1041	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1042
1043	/* leaf layer has already been set up */
1044	t->counts[t->depth - 1] = leaf_nodes;
1045	t->index[t->depth - 1] = t->highs;
1046
1047	if (t->depth >= 2)
1048		r = setup_indexes(t);
1049
1050	return r;
1051}
1052
1053static bool integrity_profile_exists(struct gendisk *disk)
1054{
1055	return !!blk_get_integrity(disk);
1056}
1057
1058/*
1059 * Get a disk whose integrity profile reflects the table's profile.
 
 
 
1060 * Returns NULL if integrity support was inconsistent or unavailable.
1061 */
1062static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
 
1063{
1064	struct list_head *devices = dm_table_get_devices(t);
1065	struct dm_dev_internal *dd = NULL;
1066	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1067
1068	list_for_each_entry(dd, devices, list) {
1069		template_disk = dd->dm_dev->bdev->bd_disk;
1070		if (!integrity_profile_exists(template_disk))
1071			goto no_integrity;
 
 
1072		else if (prev_disk &&
1073			 blk_integrity_compare(prev_disk, template_disk) < 0)
1074			goto no_integrity;
1075		prev_disk = template_disk;
1076	}
1077
1078	return template_disk;
1079
1080no_integrity:
1081	if (prev_disk)
1082		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1083		       dm_device_name(t->md),
1084		       prev_disk->disk_name,
1085		       template_disk->disk_name);
1086	return NULL;
1087}
1088
1089/*
1090 * Register the mapped device for blk_integrity support if the
1091 * underlying devices have an integrity profile.  But all devices may
1092 * not have matching profiles (checking all devices isn't reliable
1093 * during table load because this table may use other DM device(s) which
1094 * must be resumed before they will have an initialized integity
1095 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1096 * profile validation: First pass during table load, final pass during
1097 * resume.
1098 */
1099static int dm_table_register_integrity(struct dm_table *t)
1100{
1101	struct mapped_device *md = t->md;
1102	struct gendisk *template_disk = NULL;
1103
1104	template_disk = dm_table_get_integrity_disk(t);
1105	if (!template_disk)
1106		return 0;
1107
1108	if (!integrity_profile_exists(dm_disk(md))) {
1109		t->integrity_supported = 1;
1110		/*
1111		 * Register integrity profile during table load; we can do
1112		 * this because the final profile must match during resume.
1113		 */
1114		blk_integrity_register(dm_disk(md),
1115				       blk_get_integrity(template_disk));
1116		return 0;
1117	}
1118
1119	/*
1120	 * If DM device already has an initialized integrity
1121	 * profile the new profile should not conflict.
1122	 */
1123	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
 
1124		DMWARN("%s: conflict with existing integrity profile: "
1125		       "%s profile mismatch",
1126		       dm_device_name(t->md),
1127		       template_disk->disk_name);
1128		return 1;
1129	}
1130
1131	/* Preserve existing integrity profile */
1132	t->integrity_supported = 1;
1133	return 0;
1134}
1135
1136/*
1137 * Prepares the table for use by building the indices,
1138 * setting the type, and allocating mempools.
1139 */
1140int dm_table_complete(struct dm_table *t)
1141{
1142	int r;
1143
1144	r = dm_table_set_type(t);
1145	if (r) {
1146		DMERR("unable to set table type");
1147		return r;
1148	}
1149
1150	r = dm_table_build_index(t);
1151	if (r) {
1152		DMERR("unable to build btrees");
1153		return r;
1154	}
1155
1156	r = dm_table_register_integrity(t);
1157	if (r) {
1158		DMERR("could not register integrity profile.");
1159		return r;
1160	}
1161
1162	r = dm_table_alloc_md_mempools(t, t->md);
1163	if (r)
1164		DMERR("unable to allocate mempools");
1165
1166	return r;
1167}
1168
1169static DEFINE_MUTEX(_event_lock);
1170void dm_table_event_callback(struct dm_table *t,
1171			     void (*fn)(void *), void *context)
1172{
1173	mutex_lock(&_event_lock);
1174	t->event_fn = fn;
1175	t->event_context = context;
1176	mutex_unlock(&_event_lock);
1177}
1178
1179void dm_table_event(struct dm_table *t)
1180{
1181	/*
1182	 * You can no longer call dm_table_event() from interrupt
1183	 * context, use a bottom half instead.
1184	 */
1185	BUG_ON(in_interrupt());
1186
1187	mutex_lock(&_event_lock);
1188	if (t->event_fn)
1189		t->event_fn(t->event_context);
1190	mutex_unlock(&_event_lock);
1191}
1192EXPORT_SYMBOL(dm_table_event);
1193
1194sector_t dm_table_get_size(struct dm_table *t)
1195{
1196	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1197}
1198EXPORT_SYMBOL(dm_table_get_size);
1199
1200struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1201{
1202	if (index >= t->num_targets)
1203		return NULL;
1204
1205	return t->targets + index;
1206}
1207
1208/*
1209 * Search the btree for the correct target.
1210 *
1211 * Caller should check returned pointer with dm_target_is_valid()
1212 * to trap I/O beyond end of device.
1213 */
1214struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1215{
1216	unsigned int l, n = 0, k = 0;
1217	sector_t *node;
1218
1219	for (l = 0; l < t->depth; l++) {
1220		n = get_child(n, k);
1221		node = get_node(t, l, n);
1222
1223		for (k = 0; k < KEYS_PER_NODE; k++)
1224			if (node[k] >= sector)
1225				break;
1226	}
1227
1228	return &t->targets[(KEYS_PER_NODE * n) + k];
1229}
1230
1231static int count_device(struct dm_target *ti, struct dm_dev *dev,
1232			sector_t start, sector_t len, void *data)
1233{
1234	unsigned *num_devices = data;
1235
1236	(*num_devices)++;
1237
1238	return 0;
1239}
1240
1241/*
1242 * Check whether a table has no data devices attached using each
1243 * target's iterate_devices method.
1244 * Returns false if the result is unknown because a target doesn't
1245 * support iterate_devices.
1246 */
1247bool dm_table_has_no_data_devices(struct dm_table *table)
1248{
1249	struct dm_target *uninitialized_var(ti);
1250	unsigned i = 0, num_devices = 0;
1251
1252	while (i < dm_table_get_num_targets(table)) {
1253		ti = dm_table_get_target(table, i++);
1254
1255		if (!ti->type->iterate_devices)
1256			return false;
1257
1258		ti->type->iterate_devices(ti, count_device, &num_devices);
1259		if (num_devices)
1260			return false;
1261	}
1262
1263	return true;
1264}
1265
1266/*
1267 * Establish the new table's queue_limits and validate them.
1268 */
1269int dm_calculate_queue_limits(struct dm_table *table,
1270			      struct queue_limits *limits)
1271{
1272	struct dm_target *uninitialized_var(ti);
1273	struct queue_limits ti_limits;
1274	unsigned i = 0;
1275
1276	blk_set_stacking_limits(limits);
1277
1278	while (i < dm_table_get_num_targets(table)) {
1279		blk_set_stacking_limits(&ti_limits);
1280
1281		ti = dm_table_get_target(table, i++);
1282
1283		if (!ti->type->iterate_devices)
1284			goto combine_limits;
1285
1286		/*
1287		 * Combine queue limits of all the devices this target uses.
1288		 */
1289		ti->type->iterate_devices(ti, dm_set_device_limits,
1290					  &ti_limits);
1291
1292		/* Set I/O hints portion of queue limits */
1293		if (ti->type->io_hints)
1294			ti->type->io_hints(ti, &ti_limits);
1295
1296		/*
1297		 * Check each device area is consistent with the target's
1298		 * overall queue limits.
1299		 */
1300		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1301					      &ti_limits))
1302			return -EINVAL;
1303
1304combine_limits:
1305		/*
1306		 * Merge this target's queue limits into the overall limits
1307		 * for the table.
1308		 */
1309		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1310			DMWARN("%s: adding target device "
1311			       "(start sect %llu len %llu) "
1312			       "caused an alignment inconsistency",
1313			       dm_device_name(table->md),
1314			       (unsigned long long) ti->begin,
1315			       (unsigned long long) ti->len);
1316	}
1317
1318	return validate_hardware_logical_block_alignment(table, limits);
1319}
1320
1321/*
1322 * Verify that all devices have an integrity profile that matches the
1323 * DM device's registered integrity profile.  If the profiles don't
1324 * match then unregister the DM device's integrity profile.
 
 
1325 */
1326static void dm_table_verify_integrity(struct dm_table *t)
1327{
1328	struct gendisk *template_disk = NULL;
1329
1330	if (t->integrity_supported) {
1331		/*
1332		 * Verify that the original integrity profile
1333		 * matches all the devices in this table.
1334		 */
1335		template_disk = dm_table_get_integrity_disk(t);
1336		if (template_disk &&
1337		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1338			return;
1339	}
1340
1341	if (integrity_profile_exists(dm_disk(t->md))) {
 
 
 
 
 
 
 
1342		DMWARN("%s: unable to establish an integrity profile",
1343		       dm_device_name(t->md));
1344		blk_integrity_unregister(dm_disk(t->md));
1345	}
1346}
1347
1348static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1349				sector_t start, sector_t len, void *data)
1350{
1351	unsigned flush = (*(unsigned *)data);
1352	struct request_queue *q = bdev_get_queue(dev->bdev);
1353
1354	return q && (q->flush_flags & flush);
1355}
1356
1357static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1358{
1359	struct dm_target *ti;
1360	unsigned i = 0;
1361
1362	/*
1363	 * Require at least one underlying device to support flushes.
1364	 * t->devices includes internal dm devices such as mirror logs
1365	 * so we need to use iterate_devices here, which targets
1366	 * supporting flushes must provide.
1367	 */
1368	while (i < dm_table_get_num_targets(t)) {
1369		ti = dm_table_get_target(t, i++);
1370
1371		if (!ti->num_flush_bios)
1372			continue;
1373
1374		if (ti->flush_supported)
1375			return true;
1376
1377		if (ti->type->iterate_devices &&
1378		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1379			return true;
1380	}
1381
1382	return false;
1383}
1384
1385static bool dm_table_discard_zeroes_data(struct dm_table *t)
1386{
1387	struct dm_target *ti;
1388	unsigned i = 0;
1389
1390	/* Ensure that all targets supports discard_zeroes_data. */
1391	while (i < dm_table_get_num_targets(t)) {
1392		ti = dm_table_get_target(t, i++);
1393
1394		if (ti->discard_zeroes_data_unsupported)
1395			return false;
1396	}
1397
1398	return true;
1399}
1400
1401static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1402			    sector_t start, sector_t len, void *data)
1403{
1404	struct request_queue *q = bdev_get_queue(dev->bdev);
1405
1406	return q && blk_queue_nonrot(q);
1407}
1408
1409static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1410			     sector_t start, sector_t len, void *data)
1411{
1412	struct request_queue *q = bdev_get_queue(dev->bdev);
1413
1414	return q && !blk_queue_add_random(q);
1415}
1416
1417static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1418				   sector_t start, sector_t len, void *data)
1419{
1420	struct request_queue *q = bdev_get_queue(dev->bdev);
1421
1422	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1423}
1424
1425static bool dm_table_all_devices_attribute(struct dm_table *t,
1426					   iterate_devices_callout_fn func)
1427{
1428	struct dm_target *ti;
1429	unsigned i = 0;
1430
1431	while (i < dm_table_get_num_targets(t)) {
1432		ti = dm_table_get_target(t, i++);
1433
1434		if (!ti->type->iterate_devices ||
1435		    !ti->type->iterate_devices(ti, func, NULL))
1436			return false;
1437	}
1438
1439	return true;
1440}
1441
1442static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1443					 sector_t start, sector_t len, void *data)
1444{
1445	struct request_queue *q = bdev_get_queue(dev->bdev);
1446
1447	return q && !q->limits.max_write_same_sectors;
1448}
1449
1450static bool dm_table_supports_write_same(struct dm_table *t)
1451{
1452	struct dm_target *ti;
1453	unsigned i = 0;
1454
1455	while (i < dm_table_get_num_targets(t)) {
1456		ti = dm_table_get_target(t, i++);
1457
1458		if (!ti->num_write_same_bios)
1459			return false;
1460
1461		if (!ti->type->iterate_devices ||
1462		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1463			return false;
1464	}
1465
1466	return true;
1467}
1468
1469static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1470				  sector_t start, sector_t len, void *data)
1471{
1472	struct request_queue *q = bdev_get_queue(dev->bdev);
1473
1474	return q && blk_queue_discard(q);
1475}
1476
1477static bool dm_table_supports_discards(struct dm_table *t)
1478{
1479	struct dm_target *ti;
1480	unsigned i = 0;
1481
1482	/*
1483	 * Unless any target used by the table set discards_supported,
1484	 * require at least one underlying device to support discards.
1485	 * t->devices includes internal dm devices such as mirror logs
1486	 * so we need to use iterate_devices here, which targets
1487	 * supporting discard selectively must provide.
1488	 */
1489	while (i < dm_table_get_num_targets(t)) {
1490		ti = dm_table_get_target(t, i++);
1491
1492		if (!ti->num_discard_bios)
1493			continue;
1494
1495		if (ti->discards_supported)
1496			return true;
1497
1498		if (ti->type->iterate_devices &&
1499		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1500			return true;
1501	}
1502
1503	return false;
1504}
1505
1506void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1507			       struct queue_limits *limits)
1508{
1509	unsigned flush = 0;
1510
1511	/*
1512	 * Copy table's limits to the DM device's request_queue
1513	 */
1514	q->limits = *limits;
1515
1516	if (!dm_table_supports_discards(t))
1517		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1518	else
1519		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1520
1521	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1522		flush |= REQ_FLUSH;
1523		if (dm_table_supports_flush(t, REQ_FUA))
1524			flush |= REQ_FUA;
1525	}
1526	blk_queue_flush(q, flush);
1527
1528	if (!dm_table_discard_zeroes_data(t))
1529		q->limits.discard_zeroes_data = 0;
1530
1531	/* Ensure that all underlying devices are non-rotational. */
1532	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1533		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1534	else
1535		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1536
1537	if (!dm_table_supports_write_same(t))
1538		q->limits.max_write_same_sectors = 0;
1539
1540	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1541		queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1542	else
1543		queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1544
1545	dm_table_verify_integrity(t);
1546
1547	/*
1548	 * Determine whether or not this queue's I/O timings contribute
1549	 * to the entropy pool, Only request-based targets use this.
1550	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1551	 * have it set.
1552	 */
1553	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1554		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1555
1556	/*
1557	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1558	 * visible to other CPUs because, once the flag is set, incoming bios
1559	 * are processed by request-based dm, which refers to the queue
1560	 * settings.
1561	 * Until the flag set, bios are passed to bio-based dm and queued to
1562	 * md->deferred where queue settings are not needed yet.
1563	 * Those bios are passed to request-based dm at the resume time.
1564	 */
1565	smp_mb();
1566	if (dm_table_request_based(t))
1567		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1568}
1569
1570unsigned int dm_table_get_num_targets(struct dm_table *t)
1571{
1572	return t->num_targets;
1573}
1574
1575struct list_head *dm_table_get_devices(struct dm_table *t)
1576{
1577	return &t->devices;
1578}
1579
1580fmode_t dm_table_get_mode(struct dm_table *t)
1581{
1582	return t->mode;
1583}
1584EXPORT_SYMBOL(dm_table_get_mode);
1585
1586enum suspend_mode {
1587	PRESUSPEND,
1588	PRESUSPEND_UNDO,
1589	POSTSUSPEND,
1590};
1591
1592static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1593{
1594	int i = t->num_targets;
1595	struct dm_target *ti = t->targets;
1596
1597	while (i--) {
1598		switch (mode) {
1599		case PRESUSPEND:
1600			if (ti->type->presuspend)
1601				ti->type->presuspend(ti);
1602			break;
1603		case PRESUSPEND_UNDO:
1604			if (ti->type->presuspend_undo)
1605				ti->type->presuspend_undo(ti);
1606			break;
1607		case POSTSUSPEND:
1608			if (ti->type->postsuspend)
1609				ti->type->postsuspend(ti);
1610			break;
1611		}
 
1612		ti++;
1613	}
1614}
1615
1616void dm_table_presuspend_targets(struct dm_table *t)
1617{
1618	if (!t)
1619		return;
1620
1621	suspend_targets(t, PRESUSPEND);
1622}
1623
1624void dm_table_presuspend_undo_targets(struct dm_table *t)
1625{
1626	if (!t)
1627		return;
1628
1629	suspend_targets(t, PRESUSPEND_UNDO);
1630}
1631
1632void dm_table_postsuspend_targets(struct dm_table *t)
1633{
1634	if (!t)
1635		return;
1636
1637	suspend_targets(t, POSTSUSPEND);
1638}
1639
1640int dm_table_resume_targets(struct dm_table *t)
1641{
1642	int i, r = 0;
1643
1644	for (i = 0; i < t->num_targets; i++) {
1645		struct dm_target *ti = t->targets + i;
1646
1647		if (!ti->type->preresume)
1648			continue;
1649
1650		r = ti->type->preresume(ti);
1651		if (r) {
1652			DMERR("%s: %s: preresume failed, error = %d",
1653			      dm_device_name(t->md), ti->type->name, r);
1654			return r;
1655		}
1656	}
1657
1658	for (i = 0; i < t->num_targets; i++) {
1659		struct dm_target *ti = t->targets + i;
1660
1661		if (ti->type->resume)
1662			ti->type->resume(ti);
1663	}
1664
1665	return 0;
1666}
1667
1668void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1669{
1670	list_add(&cb->list, &t->target_callbacks);
1671}
1672EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1673
1674int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1675{
1676	struct dm_dev_internal *dd;
1677	struct list_head *devices = dm_table_get_devices(t);
1678	struct dm_target_callbacks *cb;
1679	int r = 0;
1680
1681	list_for_each_entry(dd, devices, list) {
1682		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1683		char b[BDEVNAME_SIZE];
1684
1685		if (likely(q))
1686			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1687		else
1688			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1689				     dm_device_name(t->md),
1690				     bdevname(dd->dm_dev->bdev, b));
1691	}
1692
1693	list_for_each_entry(cb, &t->target_callbacks, list)
1694		if (cb->congested_fn)
1695			r |= cb->congested_fn(cb, bdi_bits);
1696
1697	return r;
1698}
1699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1700struct mapped_device *dm_table_get_md(struct dm_table *t)
1701{
1702	return t->md;
1703}
1704EXPORT_SYMBOL(dm_table_get_md);
1705
1706void dm_table_run_md_queue_async(struct dm_table *t)
 
 
 
 
 
 
 
 
1707{
1708	struct mapped_device *md;
1709	struct request_queue *queue;
1710	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
1711
1712	if (!dm_table_request_based(t))
1713		return;
1714
1715	md = dm_table_get_md(t);
1716	queue = dm_get_md_queue(md);
1717	if (queue) {
1718		if (queue->mq_ops)
1719			blk_mq_run_hw_queues(queue, true);
1720		else {
1721			spin_lock_irqsave(queue->queue_lock, flags);
1722			blk_run_queue_async(queue);
1723			spin_unlock_irqrestore(queue->queue_lock, flags);
1724		}
1725	}
 
 
1726}
1727EXPORT_SYMBOL(dm_table_run_md_queue_async);
1728