Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21
  22#define DM_MSG_PREFIX "table"
  23
  24#define MAX_DEPTH 16
  25#define NODE_SIZE L1_CACHE_BYTES
  26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  28
  29/*
  30 * The table has always exactly one reference from either mapped_device->map
  31 * or hash_cell->new_map. This reference is not counted in table->holders.
  32 * A pair of dm_create_table/dm_destroy_table functions is used for table
  33 * creation/destruction.
  34 *
  35 * Temporary references from the other code increase table->holders. A pair
  36 * of dm_table_get/dm_table_put functions is used to manipulate it.
  37 *
  38 * When the table is about to be destroyed, we wait for table->holders to
  39 * drop to zero.
  40 */
  41
  42struct dm_table {
  43	struct mapped_device *md;
  44	atomic_t holders;
  45	unsigned type;
  46
  47	/* btree table */
  48	unsigned int depth;
  49	unsigned int counts[MAX_DEPTH];	/* in nodes */
  50	sector_t *index[MAX_DEPTH];
  51
  52	unsigned int num_targets;
  53	unsigned int num_allocated;
  54	sector_t *highs;
  55	struct dm_target *targets;
  56
 
  57	unsigned integrity_supported:1;
 
  58
  59	/*
  60	 * Indicates the rw permissions for the new logical
  61	 * device.  This should be a combination of FMODE_READ
  62	 * and FMODE_WRITE.
  63	 */
  64	fmode_t mode;
  65
  66	/* a list of devices used by this table */
  67	struct list_head devices;
  68
  69	/* events get handed up using this callback */
  70	void (*event_fn)(void *);
  71	void *event_context;
  72
  73	struct dm_md_mempools *mempools;
  74
  75	struct list_head target_callbacks;
  76};
  77
  78/*
  79 * Similar to ceiling(log_size(n))
  80 */
  81static unsigned int int_log(unsigned int n, unsigned int base)
  82{
  83	int result = 0;
  84
  85	while (n > 1) {
  86		n = dm_div_up(n, base);
  87		result++;
  88	}
  89
  90	return result;
  91}
  92
  93/*
  94 * Calculate the index of the child node of the n'th node k'th key.
  95 */
  96static inline unsigned int get_child(unsigned int n, unsigned int k)
  97{
  98	return (n * CHILDREN_PER_NODE) + k;
  99}
 100
 101/*
 102 * Return the n'th node of level l from table t.
 103 */
 104static inline sector_t *get_node(struct dm_table *t,
 105				 unsigned int l, unsigned int n)
 106{
 107	return t->index[l] + (n * KEYS_PER_NODE);
 108}
 109
 110/*
 111 * Return the highest key that you could lookup from the n'th
 112 * node on level l of the btree.
 113 */
 114static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 115{
 116	for (; l < t->depth - 1; l++)
 117		n = get_child(n, CHILDREN_PER_NODE - 1);
 118
 119	if (n >= t->counts[l])
 120		return (sector_t) - 1;
 121
 122	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 123}
 124
 125/*
 126 * Fills in a level of the btree based on the highs of the level
 127 * below it.
 128 */
 129static int setup_btree_index(unsigned int l, struct dm_table *t)
 130{
 131	unsigned int n, k;
 132	sector_t *node;
 133
 134	for (n = 0U; n < t->counts[l]; n++) {
 135		node = get_node(t, l, n);
 136
 137		for (k = 0U; k < KEYS_PER_NODE; k++)
 138			node[k] = high(t, l + 1, get_child(n, k));
 139	}
 140
 141	return 0;
 142}
 143
 144void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 145{
 146	unsigned long size;
 147	void *addr;
 148
 149	/*
 150	 * Check that we're not going to overflow.
 151	 */
 152	if (nmemb > (ULONG_MAX / elem_size))
 153		return NULL;
 154
 155	size = nmemb * elem_size;
 156	addr = vzalloc(size);
 157
 158	return addr;
 159}
 160EXPORT_SYMBOL(dm_vcalloc);
 161
 162/*
 163 * highs, and targets are managed as dynamic arrays during a
 164 * table load.
 165 */
 166static int alloc_targets(struct dm_table *t, unsigned int num)
 167{
 168	sector_t *n_highs;
 169	struct dm_target *n_targets;
 170	int n = t->num_targets;
 171
 172	/*
 173	 * Allocate both the target array and offset array at once.
 174	 * Append an empty entry to catch sectors beyond the end of
 175	 * the device.
 176	 */
 177	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 178					  sizeof(sector_t));
 179	if (!n_highs)
 180		return -ENOMEM;
 181
 182	n_targets = (struct dm_target *) (n_highs + num);
 183
 184	if (n) {
 185		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
 186		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
 187	}
 188
 189	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
 190	vfree(t->highs);
 191
 192	t->num_allocated = num;
 193	t->highs = n_highs;
 194	t->targets = n_targets;
 195
 196	return 0;
 197}
 198
 199int dm_table_create(struct dm_table **result, fmode_t mode,
 200		    unsigned num_targets, struct mapped_device *md)
 201{
 202	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 203
 204	if (!t)
 205		return -ENOMEM;
 206
 207	INIT_LIST_HEAD(&t->devices);
 208	INIT_LIST_HEAD(&t->target_callbacks);
 209	atomic_set(&t->holders, 0);
 210
 211	if (!num_targets)
 212		num_targets = KEYS_PER_NODE;
 213
 214	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 215
 
 
 
 
 
 216	if (alloc_targets(t, num_targets)) {
 217		kfree(t);
 218		t = NULL;
 219		return -ENOMEM;
 220	}
 221
 222	t->mode = mode;
 223	t->md = md;
 224	*result = t;
 225	return 0;
 226}
 227
 228static void free_devices(struct list_head *devices)
 229{
 230	struct list_head *tmp, *next;
 231
 232	list_for_each_safe(tmp, next, devices) {
 233		struct dm_dev_internal *dd =
 234		    list_entry(tmp, struct dm_dev_internal, list);
 235		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
 236		       dd->dm_dev.name);
 237		kfree(dd);
 238	}
 239}
 240
 241void dm_table_destroy(struct dm_table *t)
 242{
 243	unsigned int i;
 244
 245	if (!t)
 246		return;
 247
 248	while (atomic_read(&t->holders))
 249		msleep(1);
 250	smp_mb();
 251
 252	/* free the indexes */
 253	if (t->depth >= 2)
 254		vfree(t->index[t->depth - 2]);
 255
 256	/* free the targets */
 257	for (i = 0; i < t->num_targets; i++) {
 258		struct dm_target *tgt = t->targets + i;
 259
 260		if (tgt->type->dtr)
 261			tgt->type->dtr(tgt);
 262
 263		dm_put_target_type(tgt->type);
 264	}
 265
 266	vfree(t->highs);
 267
 268	/* free the device list */
 269	if (t->devices.next != &t->devices)
 270		free_devices(&t->devices);
 271
 272	dm_free_md_mempools(t->mempools);
 273
 274	kfree(t);
 275}
 276
 277void dm_table_get(struct dm_table *t)
 278{
 279	atomic_inc(&t->holders);
 280}
 281EXPORT_SYMBOL(dm_table_get);
 282
 283void dm_table_put(struct dm_table *t)
 284{
 285	if (!t)
 286		return;
 287
 288	smp_mb__before_atomic_dec();
 289	atomic_dec(&t->holders);
 290}
 291EXPORT_SYMBOL(dm_table_put);
 292
 293/*
 294 * Checks to see if we need to extend highs or targets.
 295 */
 296static inline int check_space(struct dm_table *t)
 297{
 298	if (t->num_targets >= t->num_allocated)
 299		return alloc_targets(t, t->num_allocated * 2);
 300
 301	return 0;
 302}
 303
 304/*
 305 * See if we've already got a device in the list.
 306 */
 307static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 308{
 309	struct dm_dev_internal *dd;
 310
 311	list_for_each_entry (dd, l, list)
 312		if (dd->dm_dev.bdev->bd_dev == dev)
 313			return dd;
 314
 315	return NULL;
 316}
 317
 318/*
 319 * Open a device so we can use it as a map destination.
 320 */
 321static int open_dev(struct dm_dev_internal *d, dev_t dev,
 322		    struct mapped_device *md)
 323{
 324	static char *_claim_ptr = "I belong to device-mapper";
 325	struct block_device *bdev;
 326
 327	int r;
 328
 329	BUG_ON(d->dm_dev.bdev);
 330
 331	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 332	if (IS_ERR(bdev))
 333		return PTR_ERR(bdev);
 334
 335	r = bd_link_disk_holder(bdev, dm_disk(md));
 336	if (r) {
 337		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
 338		return r;
 339	}
 340
 341	d->dm_dev.bdev = bdev;
 342	return 0;
 343}
 344
 345/*
 346 * Close a device that we've been using.
 347 */
 348static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
 349{
 350	if (!d->dm_dev.bdev)
 351		return;
 352
 353	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
 354	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
 355	d->dm_dev.bdev = NULL;
 356}
 357
 358/*
 359 * If possible, this checks an area of a destination device is invalid.
 360 */
 361static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 362				  sector_t start, sector_t len, void *data)
 363{
 364	struct request_queue *q;
 365	struct queue_limits *limits = data;
 366	struct block_device *bdev = dev->bdev;
 367	sector_t dev_size =
 368		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 369	unsigned short logical_block_size_sectors =
 370		limits->logical_block_size >> SECTOR_SHIFT;
 371	char b[BDEVNAME_SIZE];
 372
 373	/*
 374	 * Some devices exist without request functions,
 375	 * such as loop devices not yet bound to backing files.
 376	 * Forbid the use of such devices.
 377	 */
 378	q = bdev_get_queue(bdev);
 379	if (!q || !q->make_request_fn) {
 380		DMWARN("%s: %s is not yet initialised: "
 381		       "start=%llu, len=%llu, dev_size=%llu",
 382		       dm_device_name(ti->table->md), bdevname(bdev, b),
 383		       (unsigned long long)start,
 384		       (unsigned long long)len,
 385		       (unsigned long long)dev_size);
 386		return 1;
 387	}
 388
 389	if (!dev_size)
 390		return 0;
 391
 392	if ((start >= dev_size) || (start + len > dev_size)) {
 393		DMWARN("%s: %s too small for target: "
 394		       "start=%llu, len=%llu, dev_size=%llu",
 395		       dm_device_name(ti->table->md), bdevname(bdev, b),
 396		       (unsigned long long)start,
 397		       (unsigned long long)len,
 398		       (unsigned long long)dev_size);
 399		return 1;
 400	}
 401
 402	if (logical_block_size_sectors <= 1)
 403		return 0;
 404
 405	if (start & (logical_block_size_sectors - 1)) {
 406		DMWARN("%s: start=%llu not aligned to h/w "
 407		       "logical block size %u of %s",
 408		       dm_device_name(ti->table->md),
 409		       (unsigned long long)start,
 410		       limits->logical_block_size, bdevname(bdev, b));
 411		return 1;
 412	}
 413
 414	if (len & (logical_block_size_sectors - 1)) {
 415		DMWARN("%s: len=%llu not aligned to h/w "
 416		       "logical block size %u of %s",
 417		       dm_device_name(ti->table->md),
 418		       (unsigned long long)len,
 419		       limits->logical_block_size, bdevname(bdev, b));
 420		return 1;
 421	}
 422
 423	return 0;
 424}
 425
 426/*
 427 * This upgrades the mode on an already open dm_dev, being
 428 * careful to leave things as they were if we fail to reopen the
 429 * device and not to touch the existing bdev field in case
 430 * it is accessed concurrently inside dm_table_any_congested().
 431 */
 432static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 433			struct mapped_device *md)
 434{
 435	int r;
 436	struct dm_dev_internal dd_new, dd_old;
 437
 438	dd_new = dd_old = *dd;
 439
 440	dd_new.dm_dev.mode |= new_mode;
 441	dd_new.dm_dev.bdev = NULL;
 442
 443	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
 444	if (r)
 445		return r;
 446
 447	dd->dm_dev.mode |= new_mode;
 448	close_dev(&dd_old, md);
 449
 450	return 0;
 451}
 452
 453/*
 454 * Add a device to the list, or just increment the usage count if
 455 * it's already present.
 456 */
 457int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 458		  struct dm_dev **result)
 459{
 460	int r;
 461	dev_t uninitialized_var(dev);
 462	struct dm_dev_internal *dd;
 463	unsigned int major, minor;
 464	struct dm_table *t = ti->table;
 
 465
 466	BUG_ON(!t);
 467
 468	if (sscanf(path, "%u:%u", &major, &minor) == 2) {
 469		/* Extract the major/minor numbers */
 470		dev = MKDEV(major, minor);
 471		if (MAJOR(dev) != major || MINOR(dev) != minor)
 472			return -EOVERFLOW;
 473	} else {
 474		/* convert the path to a device */
 475		struct block_device *bdev = lookup_bdev(path);
 476
 477		if (IS_ERR(bdev))
 478			return PTR_ERR(bdev);
 479		dev = bdev->bd_dev;
 480		bdput(bdev);
 481	}
 482
 483	dd = find_device(&t->devices, dev);
 484	if (!dd) {
 485		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 486		if (!dd)
 487			return -ENOMEM;
 488
 489		dd->dm_dev.mode = mode;
 490		dd->dm_dev.bdev = NULL;
 491
 492		if ((r = open_dev(dd, dev, t->md))) {
 493			kfree(dd);
 494			return r;
 495		}
 496
 497		format_dev_t(dd->dm_dev.name, dev);
 498
 499		atomic_set(&dd->count, 0);
 500		list_add(&dd->list, &t->devices);
 501
 502	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
 503		r = upgrade_mode(dd, mode, t->md);
 504		if (r)
 505			return r;
 506	}
 507	atomic_inc(&dd->count);
 508
 509	*result = &dd->dm_dev;
 510	return 0;
 511}
 512EXPORT_SYMBOL(dm_get_device);
 513
 514int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 515			 sector_t start, sector_t len, void *data)
 516{
 517	struct queue_limits *limits = data;
 518	struct block_device *bdev = dev->bdev;
 519	struct request_queue *q = bdev_get_queue(bdev);
 520	char b[BDEVNAME_SIZE];
 521
 522	if (unlikely(!q)) {
 523		DMWARN("%s: Cannot set limits for nonexistent device %s",
 524		       dm_device_name(ti->table->md), bdevname(bdev, b));
 525		return 0;
 526	}
 527
 528	if (bdev_stack_limits(limits, bdev, start) < 0)
 529		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 530		       "physical_block_size=%u, logical_block_size=%u, "
 531		       "alignment_offset=%u, start=%llu",
 532		       dm_device_name(ti->table->md), bdevname(bdev, b),
 533		       q->limits.physical_block_size,
 534		       q->limits.logical_block_size,
 535		       q->limits.alignment_offset,
 536		       (unsigned long long) start << SECTOR_SHIFT);
 537
 538	/*
 539	 * Check if merge fn is supported.
 540	 * If not we'll force DM to use PAGE_SIZE or
 541	 * smaller I/O, just to be safe.
 542	 */
 543	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
 544		blk_limits_max_hw_sectors(limits,
 545					  (unsigned int) (PAGE_SIZE >> 9));
 546	return 0;
 547}
 548EXPORT_SYMBOL_GPL(dm_set_device_limits);
 549
 550/*
 551 * Decrement a device's use count and remove it if necessary.
 552 */
 553void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 554{
 555	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
 556						  dm_dev);
 557
 558	if (atomic_dec_and_test(&dd->count)) {
 559		close_dev(dd, ti->table->md);
 560		list_del(&dd->list);
 561		kfree(dd);
 562	}
 563}
 564EXPORT_SYMBOL(dm_put_device);
 565
 566/*
 567 * Checks to see if the target joins onto the end of the table.
 568 */
 569static int adjoin(struct dm_table *table, struct dm_target *ti)
 570{
 571	struct dm_target *prev;
 572
 573	if (!table->num_targets)
 574		return !ti->begin;
 575
 576	prev = &table->targets[table->num_targets - 1];
 577	return (ti->begin == (prev->begin + prev->len));
 578}
 579
 580/*
 581 * Used to dynamically allocate the arg array.
 
 
 
 
 
 
 
 582 */
 583static char **realloc_argv(unsigned *array_size, char **old_argv)
 584{
 585	char **argv;
 586	unsigned new_size;
 
 587
 588	new_size = *array_size ? *array_size * 2 : 64;
 589	argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
 
 
 
 
 
 
 590	if (argv) {
 591		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 592		*array_size = new_size;
 593	}
 594
 595	kfree(old_argv);
 596	return argv;
 597}
 598
 599/*
 600 * Destructively splits up the argument list to pass to ctr.
 601 */
 602int dm_split_args(int *argc, char ***argvp, char *input)
 603{
 604	char *start, *end = input, *out, **argv = NULL;
 605	unsigned array_size = 0;
 606
 607	*argc = 0;
 608
 609	if (!input) {
 610		*argvp = NULL;
 611		return 0;
 612	}
 613
 614	argv = realloc_argv(&array_size, argv);
 615	if (!argv)
 616		return -ENOMEM;
 617
 618	while (1) {
 619		/* Skip whitespace */
 620		start = skip_spaces(end);
 621
 622		if (!*start)
 623			break;	/* success, we hit the end */
 624
 625		/* 'out' is used to remove any back-quotes */
 626		end = out = start;
 627		while (*end) {
 628			/* Everything apart from '\0' can be quoted */
 629			if (*end == '\\' && *(end + 1)) {
 630				*out++ = *(end + 1);
 631				end += 2;
 632				continue;
 633			}
 634
 635			if (isspace(*end))
 636				break;	/* end of token */
 637
 638			*out++ = *end++;
 639		}
 640
 641		/* have we already filled the array ? */
 642		if ((*argc + 1) > array_size) {
 643			argv = realloc_argv(&array_size, argv);
 644			if (!argv)
 645				return -ENOMEM;
 646		}
 647
 648		/* we know this is whitespace */
 649		if (*end)
 650			end++;
 651
 652		/* terminate the string and put it in the array */
 653		*out = '\0';
 654		argv[*argc] = start;
 655		(*argc)++;
 656	}
 657
 658	*argvp = argv;
 659	return 0;
 660}
 661
 662/*
 663 * Impose necessary and sufficient conditions on a devices's table such
 664 * that any incoming bio which respects its logical_block_size can be
 665 * processed successfully.  If it falls across the boundary between
 666 * two or more targets, the size of each piece it gets split into must
 667 * be compatible with the logical_block_size of the target processing it.
 668 */
 669static int validate_hardware_logical_block_alignment(struct dm_table *table,
 670						 struct queue_limits *limits)
 671{
 672	/*
 673	 * This function uses arithmetic modulo the logical_block_size
 674	 * (in units of 512-byte sectors).
 675	 */
 676	unsigned short device_logical_block_size_sects =
 677		limits->logical_block_size >> SECTOR_SHIFT;
 678
 679	/*
 680	 * Offset of the start of the next table entry, mod logical_block_size.
 681	 */
 682	unsigned short next_target_start = 0;
 683
 684	/*
 685	 * Given an aligned bio that extends beyond the end of a
 686	 * target, how many sectors must the next target handle?
 687	 */
 688	unsigned short remaining = 0;
 689
 690	struct dm_target *uninitialized_var(ti);
 691	struct queue_limits ti_limits;
 692	unsigned i = 0;
 693
 694	/*
 695	 * Check each entry in the table in turn.
 696	 */
 697	while (i < dm_table_get_num_targets(table)) {
 698		ti = dm_table_get_target(table, i++);
 699
 700		blk_set_default_limits(&ti_limits);
 701
 702		/* combine all target devices' limits */
 703		if (ti->type->iterate_devices)
 704			ti->type->iterate_devices(ti, dm_set_device_limits,
 705						  &ti_limits);
 706
 707		/*
 708		 * If the remaining sectors fall entirely within this
 709		 * table entry are they compatible with its logical_block_size?
 710		 */
 711		if (remaining < ti->len &&
 712		    remaining & ((ti_limits.logical_block_size >>
 713				  SECTOR_SHIFT) - 1))
 714			break;	/* Error */
 715
 716		next_target_start =
 717		    (unsigned short) ((next_target_start + ti->len) &
 718				      (device_logical_block_size_sects - 1));
 719		remaining = next_target_start ?
 720		    device_logical_block_size_sects - next_target_start : 0;
 721	}
 722
 723	if (remaining) {
 724		DMWARN("%s: table line %u (start sect %llu len %llu) "
 725		       "not aligned to h/w logical block size %u",
 726		       dm_device_name(table->md), i,
 727		       (unsigned long long) ti->begin,
 728		       (unsigned long long) ti->len,
 729		       limits->logical_block_size);
 730		return -EINVAL;
 731	}
 732
 733	return 0;
 734}
 735
 736int dm_table_add_target(struct dm_table *t, const char *type,
 737			sector_t start, sector_t len, char *params)
 738{
 739	int r = -EINVAL, argc;
 740	char **argv;
 741	struct dm_target *tgt;
 742
 743	if ((r = check_space(t)))
 744		return r;
 
 
 
 
 
 745
 746	tgt = t->targets + t->num_targets;
 747	memset(tgt, 0, sizeof(*tgt));
 748
 749	if (!len) {
 750		DMERR("%s: zero-length target", dm_device_name(t->md));
 751		return -EINVAL;
 752	}
 753
 754	tgt->type = dm_get_target_type(type);
 755	if (!tgt->type) {
 756		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
 757		      type);
 758		return -EINVAL;
 759	}
 760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761	tgt->table = t;
 762	tgt->begin = start;
 763	tgt->len = len;
 764	tgt->error = "Unknown error";
 765
 766	/*
 767	 * Does this target adjoin the previous one ?
 768	 */
 769	if (!adjoin(t, tgt)) {
 770		tgt->error = "Gap in table";
 771		r = -EINVAL;
 772		goto bad;
 773	}
 774
 775	r = dm_split_args(&argc, &argv, params);
 776	if (r) {
 777		tgt->error = "couldn't split parameters (insufficient memory)";
 778		goto bad;
 779	}
 780
 781	r = tgt->type->ctr(tgt, argc, argv);
 782	kfree(argv);
 783	if (r)
 784		goto bad;
 785
 786	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 787
 788	if (!tgt->num_discard_requests && tgt->discards_supported)
 789		DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
 790		       dm_device_name(t->md), type);
 791
 792	return 0;
 793
 794 bad:
 795	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 796	dm_put_target_type(tgt->type);
 797	return r;
 798}
 799
 800/*
 801 * Target argument parsing helpers.
 802 */
 803static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 804			     unsigned *value, char **error, unsigned grouped)
 805{
 806	const char *arg_str = dm_shift_arg(arg_set);
 
 807
 808	if (!arg_str ||
 809	    (sscanf(arg_str, "%u", value) != 1) ||
 810	    (*value < arg->min) ||
 811	    (*value > arg->max) ||
 812	    (grouped && arg_set->argc < *value)) {
 813		*error = arg->error;
 814		return -EINVAL;
 815	}
 816
 817	return 0;
 818}
 819
 820int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 821		unsigned *value, char **error)
 822{
 823	return validate_next_arg(arg, arg_set, value, error, 0);
 824}
 825EXPORT_SYMBOL(dm_read_arg);
 826
 827int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 828		      unsigned *value, char **error)
 829{
 830	return validate_next_arg(arg, arg_set, value, error, 1);
 831}
 832EXPORT_SYMBOL(dm_read_arg_group);
 833
 834const char *dm_shift_arg(struct dm_arg_set *as)
 835{
 836	char *r;
 837
 838	if (as->argc) {
 839		as->argc--;
 840		r = *as->argv;
 841		as->argv++;
 842		return r;
 843	}
 844
 845	return NULL;
 846}
 847EXPORT_SYMBOL(dm_shift_arg);
 848
 849void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 850{
 851	BUG_ON(as->argc < num_args);
 852	as->argc -= num_args;
 853	as->argv += num_args;
 854}
 855EXPORT_SYMBOL(dm_consume_args);
 856
 857static int dm_table_set_type(struct dm_table *t)
 858{
 859	unsigned i;
 860	unsigned bio_based = 0, request_based = 0;
 861	struct dm_target *tgt;
 862	struct dm_dev_internal *dd;
 863	struct list_head *devices;
 
 864
 865	for (i = 0; i < t->num_targets; i++) {
 866		tgt = t->targets + i;
 867		if (dm_target_request_based(tgt))
 
 
 868			request_based = 1;
 869		else
 870			bio_based = 1;
 871
 872		if (bio_based && request_based) {
 873			DMWARN("Inconsistent table: different target types"
 874			       " can't be mixed up");
 875			return -EINVAL;
 876		}
 877	}
 878
 
 
 
 
 
 
 
 
 
 
 
 
 
 879	if (bio_based) {
 880		/* We must use this table as bio-based */
 881		t->type = DM_TYPE_BIO_BASED;
 882		return 0;
 883	}
 884
 885	BUG_ON(!request_based); /* No targets in this table */
 886
 887	/* Non-request-stackable devices can't be used for request-based dm */
 888	devices = dm_table_get_devices(t);
 889	list_for_each_entry(dd, devices, list) {
 890		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
 891			DMWARN("table load rejected: including"
 892			       " non-request-stackable devices");
 893			return -EINVAL;
 894		}
 895	}
 896
 897	/*
 898	 * Request-based dm supports only tables that have a single target now.
 899	 * To support multiple targets, request splitting support is needed,
 900	 * and that needs lots of changes in the block-layer.
 901	 * (e.g. request completion process for partial completion.)
 902	 */
 903	if (t->num_targets > 1) {
 904		DMWARN("Request-based dm doesn't support multiple targets yet");
 905		return -EINVAL;
 906	}
 907
 908	t->type = DM_TYPE_REQUEST_BASED;
 909
 910	return 0;
 911}
 912
 913unsigned dm_table_get_type(struct dm_table *t)
 914{
 915	return t->type;
 916}
 917
 
 
 
 
 
 918bool dm_table_request_based(struct dm_table *t)
 919{
 920	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
 921}
 922
 923int dm_table_alloc_md_mempools(struct dm_table *t)
 924{
 925	unsigned type = dm_table_get_type(t);
 
 
 
 926
 927	if (unlikely(type == DM_TYPE_NONE)) {
 928		DMWARN("no table type is set, can't allocate mempools");
 929		return -EINVAL;
 930	}
 931
 932	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
 
 
 
 
 
 
 933	if (!t->mempools)
 934		return -ENOMEM;
 935
 936	return 0;
 937}
 938
 939void dm_table_free_md_mempools(struct dm_table *t)
 940{
 941	dm_free_md_mempools(t->mempools);
 942	t->mempools = NULL;
 943}
 944
 945struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
 946{
 947	return t->mempools;
 948}
 949
 950static int setup_indexes(struct dm_table *t)
 951{
 952	int i;
 953	unsigned int total = 0;
 954	sector_t *indexes;
 955
 956	/* allocate the space for *all* the indexes */
 957	for (i = t->depth - 2; i >= 0; i--) {
 958		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
 959		total += t->counts[i];
 960	}
 961
 962	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
 963	if (!indexes)
 964		return -ENOMEM;
 965
 966	/* set up internal nodes, bottom-up */
 967	for (i = t->depth - 2; i >= 0; i--) {
 968		t->index[i] = indexes;
 969		indexes += (KEYS_PER_NODE * t->counts[i]);
 970		setup_btree_index(i, t);
 971	}
 972
 973	return 0;
 974}
 975
 976/*
 977 * Builds the btree to index the map.
 978 */
 979static int dm_table_build_index(struct dm_table *t)
 980{
 981	int r = 0;
 982	unsigned int leaf_nodes;
 983
 984	/* how many indexes will the btree have ? */
 985	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
 986	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
 987
 988	/* leaf layer has already been set up */
 989	t->counts[t->depth - 1] = leaf_nodes;
 990	t->index[t->depth - 1] = t->highs;
 991
 992	if (t->depth >= 2)
 993		r = setup_indexes(t);
 994
 995	return r;
 996}
 997
 998/*
 999 * Get a disk whose integrity profile reflects the table's profile.
1000 * If %match_all is true, all devices' profiles must match.
1001 * If %match_all is false, all devices must at least have an
1002 * allocated integrity profile; but uninitialized is ok.
1003 * Returns NULL if integrity support was inconsistent or unavailable.
1004 */
1005static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1006						    bool match_all)
1007{
1008	struct list_head *devices = dm_table_get_devices(t);
1009	struct dm_dev_internal *dd = NULL;
1010	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1011
1012	list_for_each_entry(dd, devices, list) {
1013		template_disk = dd->dm_dev.bdev->bd_disk;
1014		if (!blk_get_integrity(template_disk))
1015			goto no_integrity;
1016		if (!match_all && !blk_integrity_is_initialized(template_disk))
1017			continue; /* skip uninitialized profiles */
1018		else if (prev_disk &&
1019			 blk_integrity_compare(prev_disk, template_disk) < 0)
1020			goto no_integrity;
1021		prev_disk = template_disk;
1022	}
1023
1024	return template_disk;
1025
1026no_integrity:
1027	if (prev_disk)
1028		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1029		       dm_device_name(t->md),
1030		       prev_disk->disk_name,
1031		       template_disk->disk_name);
1032	return NULL;
1033}
1034
1035/*
1036 * Register the mapped device for blk_integrity support if
1037 * the underlying devices have an integrity profile.  But all devices
1038 * may not have matching profiles (checking all devices isn't reliable
1039 * during table load because this table may use other DM device(s) which
1040 * must be resumed before they will have an initialized integity profile).
1041 * Stacked DM devices force a 2 stage integrity profile validation:
1042 * 1 - during load, validate all initialized integrity profiles match
1043 * 2 - during resume, validate all integrity profiles match
1044 */
1045static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1046{
1047	struct gendisk *template_disk = NULL;
1048
1049	template_disk = dm_table_get_integrity_disk(t, false);
1050	if (!template_disk)
1051		return 0;
1052
1053	if (!blk_integrity_is_initialized(dm_disk(md))) {
1054		t->integrity_supported = 1;
1055		return blk_integrity_register(dm_disk(md), NULL);
1056	}
1057
1058	/*
1059	 * If DM device already has an initalized integrity
1060	 * profile the new profile should not conflict.
1061	 */
1062	if (blk_integrity_is_initialized(template_disk) &&
1063	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1064		DMWARN("%s: conflict with existing integrity profile: "
1065		       "%s profile mismatch",
1066		       dm_device_name(t->md),
1067		       template_disk->disk_name);
1068		return 1;
1069	}
1070
1071	/* Preserve existing initialized integrity profile */
1072	t->integrity_supported = 1;
1073	return 0;
1074}
1075
1076/*
1077 * Prepares the table for use by building the indices,
1078 * setting the type, and allocating mempools.
1079 */
1080int dm_table_complete(struct dm_table *t)
1081{
1082	int r;
1083
1084	r = dm_table_set_type(t);
1085	if (r) {
1086		DMERR("unable to set table type");
1087		return r;
1088	}
1089
1090	r = dm_table_build_index(t);
1091	if (r) {
1092		DMERR("unable to build btrees");
1093		return r;
1094	}
1095
1096	r = dm_table_prealloc_integrity(t, t->md);
1097	if (r) {
1098		DMERR("could not register integrity profile.");
1099		return r;
1100	}
1101
1102	r = dm_table_alloc_md_mempools(t);
1103	if (r)
1104		DMERR("unable to allocate mempools");
1105
1106	return r;
1107}
1108
1109static DEFINE_MUTEX(_event_lock);
1110void dm_table_event_callback(struct dm_table *t,
1111			     void (*fn)(void *), void *context)
1112{
1113	mutex_lock(&_event_lock);
1114	t->event_fn = fn;
1115	t->event_context = context;
1116	mutex_unlock(&_event_lock);
1117}
1118
1119void dm_table_event(struct dm_table *t)
1120{
1121	/*
1122	 * You can no longer call dm_table_event() from interrupt
1123	 * context, use a bottom half instead.
1124	 */
1125	BUG_ON(in_interrupt());
1126
1127	mutex_lock(&_event_lock);
1128	if (t->event_fn)
1129		t->event_fn(t->event_context);
1130	mutex_unlock(&_event_lock);
1131}
1132EXPORT_SYMBOL(dm_table_event);
1133
1134sector_t dm_table_get_size(struct dm_table *t)
1135{
1136	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1137}
1138EXPORT_SYMBOL(dm_table_get_size);
1139
1140struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1141{
1142	if (index >= t->num_targets)
1143		return NULL;
1144
1145	return t->targets + index;
1146}
1147
1148/*
1149 * Search the btree for the correct target.
1150 *
1151 * Caller should check returned pointer with dm_target_is_valid()
1152 * to trap I/O beyond end of device.
1153 */
1154struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1155{
1156	unsigned int l, n = 0, k = 0;
1157	sector_t *node;
1158
1159	for (l = 0; l < t->depth; l++) {
1160		n = get_child(n, k);
1161		node = get_node(t, l, n);
1162
1163		for (k = 0; k < KEYS_PER_NODE; k++)
1164			if (node[k] >= sector)
1165				break;
1166	}
1167
1168	return &t->targets[(KEYS_PER_NODE * n) + k];
1169}
1170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171/*
1172 * Establish the new table's queue_limits and validate them.
1173 */
1174int dm_calculate_queue_limits(struct dm_table *table,
1175			      struct queue_limits *limits)
1176{
1177	struct dm_target *uninitialized_var(ti);
1178	struct queue_limits ti_limits;
1179	unsigned i = 0;
1180
1181	blk_set_default_limits(limits);
1182
1183	while (i < dm_table_get_num_targets(table)) {
1184		blk_set_default_limits(&ti_limits);
1185
1186		ti = dm_table_get_target(table, i++);
1187
1188		if (!ti->type->iterate_devices)
1189			goto combine_limits;
1190
1191		/*
1192		 * Combine queue limits of all the devices this target uses.
1193		 */
1194		ti->type->iterate_devices(ti, dm_set_device_limits,
1195					  &ti_limits);
1196
1197		/* Set I/O hints portion of queue limits */
1198		if (ti->type->io_hints)
1199			ti->type->io_hints(ti, &ti_limits);
1200
1201		/*
1202		 * Check each device area is consistent with the target's
1203		 * overall queue limits.
1204		 */
1205		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1206					      &ti_limits))
1207			return -EINVAL;
1208
1209combine_limits:
1210		/*
1211		 * Merge this target's queue limits into the overall limits
1212		 * for the table.
1213		 */
1214		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1215			DMWARN("%s: adding target device "
1216			       "(start sect %llu len %llu) "
1217			       "caused an alignment inconsistency",
1218			       dm_device_name(table->md),
1219			       (unsigned long long) ti->begin,
1220			       (unsigned long long) ti->len);
1221	}
1222
1223	return validate_hardware_logical_block_alignment(table, limits);
1224}
1225
1226/*
1227 * Set the integrity profile for this device if all devices used have
1228 * matching profiles.  We're quite deep in the resume path but still
1229 * don't know if all devices (particularly DM devices this device
1230 * may be stacked on) have matching profiles.  Even if the profiles
1231 * don't match we have no way to fail (to resume) at this point.
1232 */
1233static void dm_table_set_integrity(struct dm_table *t)
1234{
1235	struct gendisk *template_disk = NULL;
1236
1237	if (!blk_get_integrity(dm_disk(t->md)))
1238		return;
1239
1240	template_disk = dm_table_get_integrity_disk(t, true);
1241	if (template_disk)
1242		blk_integrity_register(dm_disk(t->md),
1243				       blk_get_integrity(template_disk));
1244	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1245		DMWARN("%s: device no longer has a valid integrity profile",
1246		       dm_device_name(t->md));
1247	else
1248		DMWARN("%s: unable to establish an integrity profile",
1249		       dm_device_name(t->md));
1250}
1251
1252static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1253				sector_t start, sector_t len, void *data)
1254{
1255	unsigned flush = (*(unsigned *)data);
1256	struct request_queue *q = bdev_get_queue(dev->bdev);
1257
1258	return q && (q->flush_flags & flush);
1259}
1260
1261static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1262{
1263	struct dm_target *ti;
1264	unsigned i = 0;
1265
1266	/*
1267	 * Require at least one underlying device to support flushes.
1268	 * t->devices includes internal dm devices such as mirror logs
1269	 * so we need to use iterate_devices here, which targets
1270	 * supporting flushes must provide.
1271	 */
1272	while (i < dm_table_get_num_targets(t)) {
1273		ti = dm_table_get_target(t, i++);
1274
1275		if (!ti->num_flush_requests)
1276			continue;
1277
 
 
 
1278		if (ti->type->iterate_devices &&
1279		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1280			return 1;
1281	}
1282
1283	return 0;
1284}
1285
1286static bool dm_table_discard_zeroes_data(struct dm_table *t)
1287{
1288	struct dm_target *ti;
1289	unsigned i = 0;
1290
1291	/* Ensure that all targets supports discard_zeroes_data. */
1292	while (i < dm_table_get_num_targets(t)) {
1293		ti = dm_table_get_target(t, i++);
1294
1295		if (ti->discard_zeroes_data_unsupported)
1296			return 0;
1297	}
1298
1299	return 1;
1300}
1301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1303			       struct queue_limits *limits)
1304{
1305	unsigned flush = 0;
1306
1307	/*
1308	 * Copy table's limits to the DM device's request_queue
1309	 */
1310	q->limits = *limits;
1311
1312	if (!dm_table_supports_discards(t))
1313		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1314	else
1315		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1316
1317	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1318		flush |= REQ_FLUSH;
1319		if (dm_table_supports_flush(t, REQ_FUA))
1320			flush |= REQ_FUA;
1321	}
1322	blk_queue_flush(q, flush);
1323
1324	if (!dm_table_discard_zeroes_data(t))
1325		q->limits.discard_zeroes_data = 0;
1326
 
 
 
 
 
 
 
 
 
1327	dm_table_set_integrity(t);
1328
1329	/*
 
 
 
 
 
 
 
 
 
1330	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1331	 * visible to other CPUs because, once the flag is set, incoming bios
1332	 * are processed by request-based dm, which refers to the queue
1333	 * settings.
1334	 * Until the flag set, bios are passed to bio-based dm and queued to
1335	 * md->deferred where queue settings are not needed yet.
1336	 * Those bios are passed to request-based dm at the resume time.
1337	 */
1338	smp_mb();
1339	if (dm_table_request_based(t))
1340		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1341}
1342
1343unsigned int dm_table_get_num_targets(struct dm_table *t)
1344{
1345	return t->num_targets;
1346}
1347
1348struct list_head *dm_table_get_devices(struct dm_table *t)
1349{
1350	return &t->devices;
1351}
1352
1353fmode_t dm_table_get_mode(struct dm_table *t)
1354{
1355	return t->mode;
1356}
1357EXPORT_SYMBOL(dm_table_get_mode);
1358
1359static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1360{
1361	int i = t->num_targets;
1362	struct dm_target *ti = t->targets;
1363
1364	while (i--) {
1365		if (postsuspend) {
1366			if (ti->type->postsuspend)
1367				ti->type->postsuspend(ti);
1368		} else if (ti->type->presuspend)
1369			ti->type->presuspend(ti);
1370
1371		ti++;
1372	}
1373}
1374
1375void dm_table_presuspend_targets(struct dm_table *t)
1376{
1377	if (!t)
1378		return;
1379
1380	suspend_targets(t, 0);
1381}
1382
1383void dm_table_postsuspend_targets(struct dm_table *t)
1384{
1385	if (!t)
1386		return;
1387
1388	suspend_targets(t, 1);
1389}
1390
1391int dm_table_resume_targets(struct dm_table *t)
1392{
1393	int i, r = 0;
1394
1395	for (i = 0; i < t->num_targets; i++) {
1396		struct dm_target *ti = t->targets + i;
1397
1398		if (!ti->type->preresume)
1399			continue;
1400
1401		r = ti->type->preresume(ti);
1402		if (r)
 
 
1403			return r;
 
1404	}
1405
1406	for (i = 0; i < t->num_targets; i++) {
1407		struct dm_target *ti = t->targets + i;
1408
1409		if (ti->type->resume)
1410			ti->type->resume(ti);
1411	}
1412
1413	return 0;
1414}
1415
1416void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1417{
1418	list_add(&cb->list, &t->target_callbacks);
1419}
1420EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1421
1422int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1423{
1424	struct dm_dev_internal *dd;
1425	struct list_head *devices = dm_table_get_devices(t);
1426	struct dm_target_callbacks *cb;
1427	int r = 0;
1428
1429	list_for_each_entry(dd, devices, list) {
1430		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1431		char b[BDEVNAME_SIZE];
1432
1433		if (likely(q))
1434			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1435		else
1436			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1437				     dm_device_name(t->md),
1438				     bdevname(dd->dm_dev.bdev, b));
1439	}
1440
1441	list_for_each_entry(cb, &t->target_callbacks, list)
1442		if (cb->congested_fn)
1443			r |= cb->congested_fn(cb, bdi_bits);
1444
1445	return r;
1446}
1447
1448int dm_table_any_busy_target(struct dm_table *t)
1449{
1450	unsigned i;
1451	struct dm_target *ti;
1452
1453	for (i = 0; i < t->num_targets; i++) {
1454		ti = t->targets + i;
1455		if (ti->type->busy && ti->type->busy(ti))
1456			return 1;
1457	}
1458
1459	return 0;
1460}
1461
1462struct mapped_device *dm_table_get_md(struct dm_table *t)
1463{
1464	return t->md;
1465}
1466EXPORT_SYMBOL(dm_table_get_md);
1467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1468static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1469				  sector_t start, sector_t len, void *data)
1470{
1471	struct request_queue *q = bdev_get_queue(dev->bdev);
1472
1473	return q && blk_queue_discard(q);
1474}
1475
1476bool dm_table_supports_discards(struct dm_table *t)
1477{
1478	struct dm_target *ti;
1479	unsigned i = 0;
1480
1481	/*
1482	 * Unless any target used by the table set discards_supported,
1483	 * require at least one underlying device to support discards.
1484	 * t->devices includes internal dm devices such as mirror logs
1485	 * so we need to use iterate_devices here, which targets
1486	 * supporting discard selectively must provide.
1487	 */
1488	while (i < dm_table_get_num_targets(t)) {
1489		ti = dm_table_get_target(t, i++);
1490
1491		if (!ti->num_discard_requests)
1492			continue;
1493
1494		if (ti->discards_supported)
1495			return 1;
1496
1497		if (ti->type->iterate_devices &&
1498		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1499			return 1;
1500	}
1501
1502	return 0;
1503}
v3.15
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21
  22#define DM_MSG_PREFIX "table"
  23
  24#define MAX_DEPTH 16
  25#define NODE_SIZE L1_CACHE_BYTES
  26#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  27#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  28
 
 
 
 
 
 
 
 
 
 
 
 
 
  29struct dm_table {
  30	struct mapped_device *md;
 
  31	unsigned type;
  32
  33	/* btree table */
  34	unsigned int depth;
  35	unsigned int counts[MAX_DEPTH];	/* in nodes */
  36	sector_t *index[MAX_DEPTH];
  37
  38	unsigned int num_targets;
  39	unsigned int num_allocated;
  40	sector_t *highs;
  41	struct dm_target *targets;
  42
  43	struct target_type *immutable_target_type;
  44	unsigned integrity_supported:1;
  45	unsigned singleton:1;
  46
  47	/*
  48	 * Indicates the rw permissions for the new logical
  49	 * device.  This should be a combination of FMODE_READ
  50	 * and FMODE_WRITE.
  51	 */
  52	fmode_t mode;
  53
  54	/* a list of devices used by this table */
  55	struct list_head devices;
  56
  57	/* events get handed up using this callback */
  58	void (*event_fn)(void *);
  59	void *event_context;
  60
  61	struct dm_md_mempools *mempools;
  62
  63	struct list_head target_callbacks;
  64};
  65
  66/*
  67 * Similar to ceiling(log_size(n))
  68 */
  69static unsigned int int_log(unsigned int n, unsigned int base)
  70{
  71	int result = 0;
  72
  73	while (n > 1) {
  74		n = dm_div_up(n, base);
  75		result++;
  76	}
  77
  78	return result;
  79}
  80
  81/*
  82 * Calculate the index of the child node of the n'th node k'th key.
  83 */
  84static inline unsigned int get_child(unsigned int n, unsigned int k)
  85{
  86	return (n * CHILDREN_PER_NODE) + k;
  87}
  88
  89/*
  90 * Return the n'th node of level l from table t.
  91 */
  92static inline sector_t *get_node(struct dm_table *t,
  93				 unsigned int l, unsigned int n)
  94{
  95	return t->index[l] + (n * KEYS_PER_NODE);
  96}
  97
  98/*
  99 * Return the highest key that you could lookup from the n'th
 100 * node on level l of the btree.
 101 */
 102static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 103{
 104	for (; l < t->depth - 1; l++)
 105		n = get_child(n, CHILDREN_PER_NODE - 1);
 106
 107	if (n >= t->counts[l])
 108		return (sector_t) - 1;
 109
 110	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 111}
 112
 113/*
 114 * Fills in a level of the btree based on the highs of the level
 115 * below it.
 116 */
 117static int setup_btree_index(unsigned int l, struct dm_table *t)
 118{
 119	unsigned int n, k;
 120	sector_t *node;
 121
 122	for (n = 0U; n < t->counts[l]; n++) {
 123		node = get_node(t, l, n);
 124
 125		for (k = 0U; k < KEYS_PER_NODE; k++)
 126			node[k] = high(t, l + 1, get_child(n, k));
 127	}
 128
 129	return 0;
 130}
 131
 132void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 133{
 134	unsigned long size;
 135	void *addr;
 136
 137	/*
 138	 * Check that we're not going to overflow.
 139	 */
 140	if (nmemb > (ULONG_MAX / elem_size))
 141		return NULL;
 142
 143	size = nmemb * elem_size;
 144	addr = vzalloc(size);
 145
 146	return addr;
 147}
 148EXPORT_SYMBOL(dm_vcalloc);
 149
 150/*
 151 * highs, and targets are managed as dynamic arrays during a
 152 * table load.
 153 */
 154static int alloc_targets(struct dm_table *t, unsigned int num)
 155{
 156	sector_t *n_highs;
 157	struct dm_target *n_targets;
 
 158
 159	/*
 160	 * Allocate both the target array and offset array at once.
 161	 * Append an empty entry to catch sectors beyond the end of
 162	 * the device.
 163	 */
 164	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 165					  sizeof(sector_t));
 166	if (!n_highs)
 167		return -ENOMEM;
 168
 169	n_targets = (struct dm_target *) (n_highs + num);
 170
 171	memset(n_highs, -1, sizeof(*n_highs) * num);
 
 
 
 
 
 172	vfree(t->highs);
 173
 174	t->num_allocated = num;
 175	t->highs = n_highs;
 176	t->targets = n_targets;
 177
 178	return 0;
 179}
 180
 181int dm_table_create(struct dm_table **result, fmode_t mode,
 182		    unsigned num_targets, struct mapped_device *md)
 183{
 184	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 185
 186	if (!t)
 187		return -ENOMEM;
 188
 189	INIT_LIST_HEAD(&t->devices);
 190	INIT_LIST_HEAD(&t->target_callbacks);
 
 191
 192	if (!num_targets)
 193		num_targets = KEYS_PER_NODE;
 194
 195	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 196
 197	if (!num_targets) {
 198		kfree(t);
 199		return -ENOMEM;
 200	}
 201
 202	if (alloc_targets(t, num_targets)) {
 203		kfree(t);
 
 204		return -ENOMEM;
 205	}
 206
 207	t->mode = mode;
 208	t->md = md;
 209	*result = t;
 210	return 0;
 211}
 212
 213static void free_devices(struct list_head *devices)
 214{
 215	struct list_head *tmp, *next;
 216
 217	list_for_each_safe(tmp, next, devices) {
 218		struct dm_dev_internal *dd =
 219		    list_entry(tmp, struct dm_dev_internal, list);
 220		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
 221		       dd->dm_dev.name);
 222		kfree(dd);
 223	}
 224}
 225
 226void dm_table_destroy(struct dm_table *t)
 227{
 228	unsigned int i;
 229
 230	if (!t)
 231		return;
 232
 
 
 
 
 233	/* free the indexes */
 234	if (t->depth >= 2)
 235		vfree(t->index[t->depth - 2]);
 236
 237	/* free the targets */
 238	for (i = 0; i < t->num_targets; i++) {
 239		struct dm_target *tgt = t->targets + i;
 240
 241		if (tgt->type->dtr)
 242			tgt->type->dtr(tgt);
 243
 244		dm_put_target_type(tgt->type);
 245	}
 246
 247	vfree(t->highs);
 248
 249	/* free the device list */
 250	free_devices(&t->devices);
 
 251
 252	dm_free_md_mempools(t->mempools);
 253
 254	kfree(t);
 255}
 256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257/*
 258 * See if we've already got a device in the list.
 259 */
 260static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 261{
 262	struct dm_dev_internal *dd;
 263
 264	list_for_each_entry (dd, l, list)
 265		if (dd->dm_dev.bdev->bd_dev == dev)
 266			return dd;
 267
 268	return NULL;
 269}
 270
 271/*
 272 * Open a device so we can use it as a map destination.
 273 */
 274static int open_dev(struct dm_dev_internal *d, dev_t dev,
 275		    struct mapped_device *md)
 276{
 277	static char *_claim_ptr = "I belong to device-mapper";
 278	struct block_device *bdev;
 279
 280	int r;
 281
 282	BUG_ON(d->dm_dev.bdev);
 283
 284	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 285	if (IS_ERR(bdev))
 286		return PTR_ERR(bdev);
 287
 288	r = bd_link_disk_holder(bdev, dm_disk(md));
 289	if (r) {
 290		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
 291		return r;
 292	}
 293
 294	d->dm_dev.bdev = bdev;
 295	return 0;
 296}
 297
 298/*
 299 * Close a device that we've been using.
 300 */
 301static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
 302{
 303	if (!d->dm_dev.bdev)
 304		return;
 305
 306	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
 307	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
 308	d->dm_dev.bdev = NULL;
 309}
 310
 311/*
 312 * If possible, this checks an area of a destination device is invalid.
 313 */
 314static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 315				  sector_t start, sector_t len, void *data)
 316{
 317	struct request_queue *q;
 318	struct queue_limits *limits = data;
 319	struct block_device *bdev = dev->bdev;
 320	sector_t dev_size =
 321		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 322	unsigned short logical_block_size_sectors =
 323		limits->logical_block_size >> SECTOR_SHIFT;
 324	char b[BDEVNAME_SIZE];
 325
 326	/*
 327	 * Some devices exist without request functions,
 328	 * such as loop devices not yet bound to backing files.
 329	 * Forbid the use of such devices.
 330	 */
 331	q = bdev_get_queue(bdev);
 332	if (!q || !q->make_request_fn) {
 333		DMWARN("%s: %s is not yet initialised: "
 334		       "start=%llu, len=%llu, dev_size=%llu",
 335		       dm_device_name(ti->table->md), bdevname(bdev, b),
 336		       (unsigned long long)start,
 337		       (unsigned long long)len,
 338		       (unsigned long long)dev_size);
 339		return 1;
 340	}
 341
 342	if (!dev_size)
 343		return 0;
 344
 345	if ((start >= dev_size) || (start + len > dev_size)) {
 346		DMWARN("%s: %s too small for target: "
 347		       "start=%llu, len=%llu, dev_size=%llu",
 348		       dm_device_name(ti->table->md), bdevname(bdev, b),
 349		       (unsigned long long)start,
 350		       (unsigned long long)len,
 351		       (unsigned long long)dev_size);
 352		return 1;
 353	}
 354
 355	if (logical_block_size_sectors <= 1)
 356		return 0;
 357
 358	if (start & (logical_block_size_sectors - 1)) {
 359		DMWARN("%s: start=%llu not aligned to h/w "
 360		       "logical block size %u of %s",
 361		       dm_device_name(ti->table->md),
 362		       (unsigned long long)start,
 363		       limits->logical_block_size, bdevname(bdev, b));
 364		return 1;
 365	}
 366
 367	if (len & (logical_block_size_sectors - 1)) {
 368		DMWARN("%s: len=%llu not aligned to h/w "
 369		       "logical block size %u of %s",
 370		       dm_device_name(ti->table->md),
 371		       (unsigned long long)len,
 372		       limits->logical_block_size, bdevname(bdev, b));
 373		return 1;
 374	}
 375
 376	return 0;
 377}
 378
 379/*
 380 * This upgrades the mode on an already open dm_dev, being
 381 * careful to leave things as they were if we fail to reopen the
 382 * device and not to touch the existing bdev field in case
 383 * it is accessed concurrently inside dm_table_any_congested().
 384 */
 385static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 386			struct mapped_device *md)
 387{
 388	int r;
 389	struct dm_dev_internal dd_new, dd_old;
 390
 391	dd_new = dd_old = *dd;
 392
 393	dd_new.dm_dev.mode |= new_mode;
 394	dd_new.dm_dev.bdev = NULL;
 395
 396	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
 397	if (r)
 398		return r;
 399
 400	dd->dm_dev.mode |= new_mode;
 401	close_dev(&dd_old, md);
 402
 403	return 0;
 404}
 405
 406/*
 407 * Add a device to the list, or just increment the usage count if
 408 * it's already present.
 409 */
 410int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 411		  struct dm_dev **result)
 412{
 413	int r;
 414	dev_t uninitialized_var(dev);
 415	struct dm_dev_internal *dd;
 416	unsigned int major, minor;
 417	struct dm_table *t = ti->table;
 418	char dummy;
 419
 420	BUG_ON(!t);
 421
 422	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
 423		/* Extract the major/minor numbers */
 424		dev = MKDEV(major, minor);
 425		if (MAJOR(dev) != major || MINOR(dev) != minor)
 426			return -EOVERFLOW;
 427	} else {
 428		/* convert the path to a device */
 429		struct block_device *bdev = lookup_bdev(path);
 430
 431		if (IS_ERR(bdev))
 432			return PTR_ERR(bdev);
 433		dev = bdev->bd_dev;
 434		bdput(bdev);
 435	}
 436
 437	dd = find_device(&t->devices, dev);
 438	if (!dd) {
 439		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 440		if (!dd)
 441			return -ENOMEM;
 442
 443		dd->dm_dev.mode = mode;
 444		dd->dm_dev.bdev = NULL;
 445
 446		if ((r = open_dev(dd, dev, t->md))) {
 447			kfree(dd);
 448			return r;
 449		}
 450
 451		format_dev_t(dd->dm_dev.name, dev);
 452
 453		atomic_set(&dd->count, 0);
 454		list_add(&dd->list, &t->devices);
 455
 456	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
 457		r = upgrade_mode(dd, mode, t->md);
 458		if (r)
 459			return r;
 460	}
 461	atomic_inc(&dd->count);
 462
 463	*result = &dd->dm_dev;
 464	return 0;
 465}
 466EXPORT_SYMBOL(dm_get_device);
 467
 468int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 469			 sector_t start, sector_t len, void *data)
 470{
 471	struct queue_limits *limits = data;
 472	struct block_device *bdev = dev->bdev;
 473	struct request_queue *q = bdev_get_queue(bdev);
 474	char b[BDEVNAME_SIZE];
 475
 476	if (unlikely(!q)) {
 477		DMWARN("%s: Cannot set limits for nonexistent device %s",
 478		       dm_device_name(ti->table->md), bdevname(bdev, b));
 479		return 0;
 480	}
 481
 482	if (bdev_stack_limits(limits, bdev, start) < 0)
 483		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 484		       "physical_block_size=%u, logical_block_size=%u, "
 485		       "alignment_offset=%u, start=%llu",
 486		       dm_device_name(ti->table->md), bdevname(bdev, b),
 487		       q->limits.physical_block_size,
 488		       q->limits.logical_block_size,
 489		       q->limits.alignment_offset,
 490		       (unsigned long long) start << SECTOR_SHIFT);
 491
 492	/*
 493	 * Check if merge fn is supported.
 494	 * If not we'll force DM to use PAGE_SIZE or
 495	 * smaller I/O, just to be safe.
 496	 */
 497	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
 498		blk_limits_max_hw_sectors(limits,
 499					  (unsigned int) (PAGE_SIZE >> 9));
 500	return 0;
 501}
 502EXPORT_SYMBOL_GPL(dm_set_device_limits);
 503
 504/*
 505 * Decrement a device's use count and remove it if necessary.
 506 */
 507void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 508{
 509	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
 510						  dm_dev);
 511
 512	if (atomic_dec_and_test(&dd->count)) {
 513		close_dev(dd, ti->table->md);
 514		list_del(&dd->list);
 515		kfree(dd);
 516	}
 517}
 518EXPORT_SYMBOL(dm_put_device);
 519
 520/*
 521 * Checks to see if the target joins onto the end of the table.
 522 */
 523static int adjoin(struct dm_table *table, struct dm_target *ti)
 524{
 525	struct dm_target *prev;
 526
 527	if (!table->num_targets)
 528		return !ti->begin;
 529
 530	prev = &table->targets[table->num_targets - 1];
 531	return (ti->begin == (prev->begin + prev->len));
 532}
 533
 534/*
 535 * Used to dynamically allocate the arg array.
 536 *
 537 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 538 * process messages even if some device is suspended. These messages have a
 539 * small fixed number of arguments.
 540 *
 541 * On the other hand, dm-switch needs to process bulk data using messages and
 542 * excessive use of GFP_NOIO could cause trouble.
 543 */
 544static char **realloc_argv(unsigned *array_size, char **old_argv)
 545{
 546	char **argv;
 547	unsigned new_size;
 548	gfp_t gfp;
 549
 550	if (*array_size) {
 551		new_size = *array_size * 2;
 552		gfp = GFP_KERNEL;
 553	} else {
 554		new_size = 8;
 555		gfp = GFP_NOIO;
 556	}
 557	argv = kmalloc(new_size * sizeof(*argv), gfp);
 558	if (argv) {
 559		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 560		*array_size = new_size;
 561	}
 562
 563	kfree(old_argv);
 564	return argv;
 565}
 566
 567/*
 568 * Destructively splits up the argument list to pass to ctr.
 569 */
 570int dm_split_args(int *argc, char ***argvp, char *input)
 571{
 572	char *start, *end = input, *out, **argv = NULL;
 573	unsigned array_size = 0;
 574
 575	*argc = 0;
 576
 577	if (!input) {
 578		*argvp = NULL;
 579		return 0;
 580	}
 581
 582	argv = realloc_argv(&array_size, argv);
 583	if (!argv)
 584		return -ENOMEM;
 585
 586	while (1) {
 587		/* Skip whitespace */
 588		start = skip_spaces(end);
 589
 590		if (!*start)
 591			break;	/* success, we hit the end */
 592
 593		/* 'out' is used to remove any back-quotes */
 594		end = out = start;
 595		while (*end) {
 596			/* Everything apart from '\0' can be quoted */
 597			if (*end == '\\' && *(end + 1)) {
 598				*out++ = *(end + 1);
 599				end += 2;
 600				continue;
 601			}
 602
 603			if (isspace(*end))
 604				break;	/* end of token */
 605
 606			*out++ = *end++;
 607		}
 608
 609		/* have we already filled the array ? */
 610		if ((*argc + 1) > array_size) {
 611			argv = realloc_argv(&array_size, argv);
 612			if (!argv)
 613				return -ENOMEM;
 614		}
 615
 616		/* we know this is whitespace */
 617		if (*end)
 618			end++;
 619
 620		/* terminate the string and put it in the array */
 621		*out = '\0';
 622		argv[*argc] = start;
 623		(*argc)++;
 624	}
 625
 626	*argvp = argv;
 627	return 0;
 628}
 629
 630/*
 631 * Impose necessary and sufficient conditions on a devices's table such
 632 * that any incoming bio which respects its logical_block_size can be
 633 * processed successfully.  If it falls across the boundary between
 634 * two or more targets, the size of each piece it gets split into must
 635 * be compatible with the logical_block_size of the target processing it.
 636 */
 637static int validate_hardware_logical_block_alignment(struct dm_table *table,
 638						 struct queue_limits *limits)
 639{
 640	/*
 641	 * This function uses arithmetic modulo the logical_block_size
 642	 * (in units of 512-byte sectors).
 643	 */
 644	unsigned short device_logical_block_size_sects =
 645		limits->logical_block_size >> SECTOR_SHIFT;
 646
 647	/*
 648	 * Offset of the start of the next table entry, mod logical_block_size.
 649	 */
 650	unsigned short next_target_start = 0;
 651
 652	/*
 653	 * Given an aligned bio that extends beyond the end of a
 654	 * target, how many sectors must the next target handle?
 655	 */
 656	unsigned short remaining = 0;
 657
 658	struct dm_target *uninitialized_var(ti);
 659	struct queue_limits ti_limits;
 660	unsigned i = 0;
 661
 662	/*
 663	 * Check each entry in the table in turn.
 664	 */
 665	while (i < dm_table_get_num_targets(table)) {
 666		ti = dm_table_get_target(table, i++);
 667
 668		blk_set_stacking_limits(&ti_limits);
 669
 670		/* combine all target devices' limits */
 671		if (ti->type->iterate_devices)
 672			ti->type->iterate_devices(ti, dm_set_device_limits,
 673						  &ti_limits);
 674
 675		/*
 676		 * If the remaining sectors fall entirely within this
 677		 * table entry are they compatible with its logical_block_size?
 678		 */
 679		if (remaining < ti->len &&
 680		    remaining & ((ti_limits.logical_block_size >>
 681				  SECTOR_SHIFT) - 1))
 682			break;	/* Error */
 683
 684		next_target_start =
 685		    (unsigned short) ((next_target_start + ti->len) &
 686				      (device_logical_block_size_sects - 1));
 687		remaining = next_target_start ?
 688		    device_logical_block_size_sects - next_target_start : 0;
 689	}
 690
 691	if (remaining) {
 692		DMWARN("%s: table line %u (start sect %llu len %llu) "
 693		       "not aligned to h/w logical block size %u",
 694		       dm_device_name(table->md), i,
 695		       (unsigned long long) ti->begin,
 696		       (unsigned long long) ti->len,
 697		       limits->logical_block_size);
 698		return -EINVAL;
 699	}
 700
 701	return 0;
 702}
 703
 704int dm_table_add_target(struct dm_table *t, const char *type,
 705			sector_t start, sector_t len, char *params)
 706{
 707	int r = -EINVAL, argc;
 708	char **argv;
 709	struct dm_target *tgt;
 710
 711	if (t->singleton) {
 712		DMERR("%s: target type %s must appear alone in table",
 713		      dm_device_name(t->md), t->targets->type->name);
 714		return -EINVAL;
 715	}
 716
 717	BUG_ON(t->num_targets >= t->num_allocated);
 718
 719	tgt = t->targets + t->num_targets;
 720	memset(tgt, 0, sizeof(*tgt));
 721
 722	if (!len) {
 723		DMERR("%s: zero-length target", dm_device_name(t->md));
 724		return -EINVAL;
 725	}
 726
 727	tgt->type = dm_get_target_type(type);
 728	if (!tgt->type) {
 729		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
 730		      type);
 731		return -EINVAL;
 732	}
 733
 734	if (dm_target_needs_singleton(tgt->type)) {
 735		if (t->num_targets) {
 736			DMERR("%s: target type %s must appear alone in table",
 737			      dm_device_name(t->md), type);
 738			return -EINVAL;
 739		}
 740		t->singleton = 1;
 741	}
 742
 743	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 744		DMERR("%s: target type %s may not be included in read-only tables",
 745		      dm_device_name(t->md), type);
 746		return -EINVAL;
 747	}
 748
 749	if (t->immutable_target_type) {
 750		if (t->immutable_target_type != tgt->type) {
 751			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 752			      dm_device_name(t->md), t->immutable_target_type->name);
 753			return -EINVAL;
 754		}
 755	} else if (dm_target_is_immutable(tgt->type)) {
 756		if (t->num_targets) {
 757			DMERR("%s: immutable target type %s cannot be mixed with other target types",
 758			      dm_device_name(t->md), tgt->type->name);
 759			return -EINVAL;
 760		}
 761		t->immutable_target_type = tgt->type;
 762	}
 763
 764	tgt->table = t;
 765	tgt->begin = start;
 766	tgt->len = len;
 767	tgt->error = "Unknown error";
 768
 769	/*
 770	 * Does this target adjoin the previous one ?
 771	 */
 772	if (!adjoin(t, tgt)) {
 773		tgt->error = "Gap in table";
 774		r = -EINVAL;
 775		goto bad;
 776	}
 777
 778	r = dm_split_args(&argc, &argv, params);
 779	if (r) {
 780		tgt->error = "couldn't split parameters (insufficient memory)";
 781		goto bad;
 782	}
 783
 784	r = tgt->type->ctr(tgt, argc, argv);
 785	kfree(argv);
 786	if (r)
 787		goto bad;
 788
 789	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 790
 791	if (!tgt->num_discard_bios && tgt->discards_supported)
 792		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 793		       dm_device_name(t->md), type);
 794
 795	return 0;
 796
 797 bad:
 798	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 799	dm_put_target_type(tgt->type);
 800	return r;
 801}
 802
 803/*
 804 * Target argument parsing helpers.
 805 */
 806static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 807			     unsigned *value, char **error, unsigned grouped)
 808{
 809	const char *arg_str = dm_shift_arg(arg_set);
 810	char dummy;
 811
 812	if (!arg_str ||
 813	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 814	    (*value < arg->min) ||
 815	    (*value > arg->max) ||
 816	    (grouped && arg_set->argc < *value)) {
 817		*error = arg->error;
 818		return -EINVAL;
 819	}
 820
 821	return 0;
 822}
 823
 824int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
 825		unsigned *value, char **error)
 826{
 827	return validate_next_arg(arg, arg_set, value, error, 0);
 828}
 829EXPORT_SYMBOL(dm_read_arg);
 830
 831int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
 832		      unsigned *value, char **error)
 833{
 834	return validate_next_arg(arg, arg_set, value, error, 1);
 835}
 836EXPORT_SYMBOL(dm_read_arg_group);
 837
 838const char *dm_shift_arg(struct dm_arg_set *as)
 839{
 840	char *r;
 841
 842	if (as->argc) {
 843		as->argc--;
 844		r = *as->argv;
 845		as->argv++;
 846		return r;
 847	}
 848
 849	return NULL;
 850}
 851EXPORT_SYMBOL(dm_shift_arg);
 852
 853void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 854{
 855	BUG_ON(as->argc < num_args);
 856	as->argc -= num_args;
 857	as->argv += num_args;
 858}
 859EXPORT_SYMBOL(dm_consume_args);
 860
 861static int dm_table_set_type(struct dm_table *t)
 862{
 863	unsigned i;
 864	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 865	struct dm_target *tgt;
 866	struct dm_dev_internal *dd;
 867	struct list_head *devices;
 868	unsigned live_md_type;
 869
 870	for (i = 0; i < t->num_targets; i++) {
 871		tgt = t->targets + i;
 872		if (dm_target_hybrid(tgt))
 873			hybrid = 1;
 874		else if (dm_target_request_based(tgt))
 875			request_based = 1;
 876		else
 877			bio_based = 1;
 878
 879		if (bio_based && request_based) {
 880			DMWARN("Inconsistent table: different target types"
 881			       " can't be mixed up");
 882			return -EINVAL;
 883		}
 884	}
 885
 886	if (hybrid && !bio_based && !request_based) {
 887		/*
 888		 * The targets can work either way.
 889		 * Determine the type from the live device.
 890		 * Default to bio-based if device is new.
 891		 */
 892		live_md_type = dm_get_md_type(t->md);
 893		if (live_md_type == DM_TYPE_REQUEST_BASED)
 894			request_based = 1;
 895		else
 896			bio_based = 1;
 897	}
 898
 899	if (bio_based) {
 900		/* We must use this table as bio-based */
 901		t->type = DM_TYPE_BIO_BASED;
 902		return 0;
 903	}
 904
 905	BUG_ON(!request_based); /* No targets in this table */
 906
 907	/* Non-request-stackable devices can't be used for request-based dm */
 908	devices = dm_table_get_devices(t);
 909	list_for_each_entry(dd, devices, list) {
 910		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
 911			DMWARN("table load rejected: including"
 912			       " non-request-stackable devices");
 913			return -EINVAL;
 914		}
 915	}
 916
 917	/*
 918	 * Request-based dm supports only tables that have a single target now.
 919	 * To support multiple targets, request splitting support is needed,
 920	 * and that needs lots of changes in the block-layer.
 921	 * (e.g. request completion process for partial completion.)
 922	 */
 923	if (t->num_targets > 1) {
 924		DMWARN("Request-based dm doesn't support multiple targets yet");
 925		return -EINVAL;
 926	}
 927
 928	t->type = DM_TYPE_REQUEST_BASED;
 929
 930	return 0;
 931}
 932
 933unsigned dm_table_get_type(struct dm_table *t)
 934{
 935	return t->type;
 936}
 937
 938struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 939{
 940	return t->immutable_target_type;
 941}
 942
 943bool dm_table_request_based(struct dm_table *t)
 944{
 945	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
 946}
 947
 948static int dm_table_alloc_md_mempools(struct dm_table *t)
 949{
 950	unsigned type = dm_table_get_type(t);
 951	unsigned per_bio_data_size = 0;
 952	struct dm_target *tgt;
 953	unsigned i;
 954
 955	if (unlikely(type == DM_TYPE_NONE)) {
 956		DMWARN("no table type is set, can't allocate mempools");
 957		return -EINVAL;
 958	}
 959
 960	if (type == DM_TYPE_BIO_BASED)
 961		for (i = 0; i < t->num_targets; i++) {
 962			tgt = t->targets + i;
 963			per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
 964		}
 965
 966	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported, per_bio_data_size);
 967	if (!t->mempools)
 968		return -ENOMEM;
 969
 970	return 0;
 971}
 972
 973void dm_table_free_md_mempools(struct dm_table *t)
 974{
 975	dm_free_md_mempools(t->mempools);
 976	t->mempools = NULL;
 977}
 978
 979struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
 980{
 981	return t->mempools;
 982}
 983
 984static int setup_indexes(struct dm_table *t)
 985{
 986	int i;
 987	unsigned int total = 0;
 988	sector_t *indexes;
 989
 990	/* allocate the space for *all* the indexes */
 991	for (i = t->depth - 2; i >= 0; i--) {
 992		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
 993		total += t->counts[i];
 994	}
 995
 996	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
 997	if (!indexes)
 998		return -ENOMEM;
 999
1000	/* set up internal nodes, bottom-up */
1001	for (i = t->depth - 2; i >= 0; i--) {
1002		t->index[i] = indexes;
1003		indexes += (KEYS_PER_NODE * t->counts[i]);
1004		setup_btree_index(i, t);
1005	}
1006
1007	return 0;
1008}
1009
1010/*
1011 * Builds the btree to index the map.
1012 */
1013static int dm_table_build_index(struct dm_table *t)
1014{
1015	int r = 0;
1016	unsigned int leaf_nodes;
1017
1018	/* how many indexes will the btree have ? */
1019	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1020	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1021
1022	/* leaf layer has already been set up */
1023	t->counts[t->depth - 1] = leaf_nodes;
1024	t->index[t->depth - 1] = t->highs;
1025
1026	if (t->depth >= 2)
1027		r = setup_indexes(t);
1028
1029	return r;
1030}
1031
1032/*
1033 * Get a disk whose integrity profile reflects the table's profile.
1034 * If %match_all is true, all devices' profiles must match.
1035 * If %match_all is false, all devices must at least have an
1036 * allocated integrity profile; but uninitialized is ok.
1037 * Returns NULL if integrity support was inconsistent or unavailable.
1038 */
1039static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
1040						    bool match_all)
1041{
1042	struct list_head *devices = dm_table_get_devices(t);
1043	struct dm_dev_internal *dd = NULL;
1044	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1045
1046	list_for_each_entry(dd, devices, list) {
1047		template_disk = dd->dm_dev.bdev->bd_disk;
1048		if (!blk_get_integrity(template_disk))
1049			goto no_integrity;
1050		if (!match_all && !blk_integrity_is_initialized(template_disk))
1051			continue; /* skip uninitialized profiles */
1052		else if (prev_disk &&
1053			 blk_integrity_compare(prev_disk, template_disk) < 0)
1054			goto no_integrity;
1055		prev_disk = template_disk;
1056	}
1057
1058	return template_disk;
1059
1060no_integrity:
1061	if (prev_disk)
1062		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1063		       dm_device_name(t->md),
1064		       prev_disk->disk_name,
1065		       template_disk->disk_name);
1066	return NULL;
1067}
1068
1069/*
1070 * Register the mapped device for blk_integrity support if
1071 * the underlying devices have an integrity profile.  But all devices
1072 * may not have matching profiles (checking all devices isn't reliable
1073 * during table load because this table may use other DM device(s) which
1074 * must be resumed before they will have an initialized integity profile).
1075 * Stacked DM devices force a 2 stage integrity profile validation:
1076 * 1 - during load, validate all initialized integrity profiles match
1077 * 2 - during resume, validate all integrity profiles match
1078 */
1079static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
1080{
1081	struct gendisk *template_disk = NULL;
1082
1083	template_disk = dm_table_get_integrity_disk(t, false);
1084	if (!template_disk)
1085		return 0;
1086
1087	if (!blk_integrity_is_initialized(dm_disk(md))) {
1088		t->integrity_supported = 1;
1089		return blk_integrity_register(dm_disk(md), NULL);
1090	}
1091
1092	/*
1093	 * If DM device already has an initalized integrity
1094	 * profile the new profile should not conflict.
1095	 */
1096	if (blk_integrity_is_initialized(template_disk) &&
1097	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1098		DMWARN("%s: conflict with existing integrity profile: "
1099		       "%s profile mismatch",
1100		       dm_device_name(t->md),
1101		       template_disk->disk_name);
1102		return 1;
1103	}
1104
1105	/* Preserve existing initialized integrity profile */
1106	t->integrity_supported = 1;
1107	return 0;
1108}
1109
1110/*
1111 * Prepares the table for use by building the indices,
1112 * setting the type, and allocating mempools.
1113 */
1114int dm_table_complete(struct dm_table *t)
1115{
1116	int r;
1117
1118	r = dm_table_set_type(t);
1119	if (r) {
1120		DMERR("unable to set table type");
1121		return r;
1122	}
1123
1124	r = dm_table_build_index(t);
1125	if (r) {
1126		DMERR("unable to build btrees");
1127		return r;
1128	}
1129
1130	r = dm_table_prealloc_integrity(t, t->md);
1131	if (r) {
1132		DMERR("could not register integrity profile.");
1133		return r;
1134	}
1135
1136	r = dm_table_alloc_md_mempools(t);
1137	if (r)
1138		DMERR("unable to allocate mempools");
1139
1140	return r;
1141}
1142
1143static DEFINE_MUTEX(_event_lock);
1144void dm_table_event_callback(struct dm_table *t,
1145			     void (*fn)(void *), void *context)
1146{
1147	mutex_lock(&_event_lock);
1148	t->event_fn = fn;
1149	t->event_context = context;
1150	mutex_unlock(&_event_lock);
1151}
1152
1153void dm_table_event(struct dm_table *t)
1154{
1155	/*
1156	 * You can no longer call dm_table_event() from interrupt
1157	 * context, use a bottom half instead.
1158	 */
1159	BUG_ON(in_interrupt());
1160
1161	mutex_lock(&_event_lock);
1162	if (t->event_fn)
1163		t->event_fn(t->event_context);
1164	mutex_unlock(&_event_lock);
1165}
1166EXPORT_SYMBOL(dm_table_event);
1167
1168sector_t dm_table_get_size(struct dm_table *t)
1169{
1170	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1171}
1172EXPORT_SYMBOL(dm_table_get_size);
1173
1174struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1175{
1176	if (index >= t->num_targets)
1177		return NULL;
1178
1179	return t->targets + index;
1180}
1181
1182/*
1183 * Search the btree for the correct target.
1184 *
1185 * Caller should check returned pointer with dm_target_is_valid()
1186 * to trap I/O beyond end of device.
1187 */
1188struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1189{
1190	unsigned int l, n = 0, k = 0;
1191	sector_t *node;
1192
1193	for (l = 0; l < t->depth; l++) {
1194		n = get_child(n, k);
1195		node = get_node(t, l, n);
1196
1197		for (k = 0; k < KEYS_PER_NODE; k++)
1198			if (node[k] >= sector)
1199				break;
1200	}
1201
1202	return &t->targets[(KEYS_PER_NODE * n) + k];
1203}
1204
1205static int count_device(struct dm_target *ti, struct dm_dev *dev,
1206			sector_t start, sector_t len, void *data)
1207{
1208	unsigned *num_devices = data;
1209
1210	(*num_devices)++;
1211
1212	return 0;
1213}
1214
1215/*
1216 * Check whether a table has no data devices attached using each
1217 * target's iterate_devices method.
1218 * Returns false if the result is unknown because a target doesn't
1219 * support iterate_devices.
1220 */
1221bool dm_table_has_no_data_devices(struct dm_table *table)
1222{
1223	struct dm_target *uninitialized_var(ti);
1224	unsigned i = 0, num_devices = 0;
1225
1226	while (i < dm_table_get_num_targets(table)) {
1227		ti = dm_table_get_target(table, i++);
1228
1229		if (!ti->type->iterate_devices)
1230			return false;
1231
1232		ti->type->iterate_devices(ti, count_device, &num_devices);
1233		if (num_devices)
1234			return false;
1235	}
1236
1237	return true;
1238}
1239
1240/*
1241 * Establish the new table's queue_limits and validate them.
1242 */
1243int dm_calculate_queue_limits(struct dm_table *table,
1244			      struct queue_limits *limits)
1245{
1246	struct dm_target *uninitialized_var(ti);
1247	struct queue_limits ti_limits;
1248	unsigned i = 0;
1249
1250	blk_set_stacking_limits(limits);
1251
1252	while (i < dm_table_get_num_targets(table)) {
1253		blk_set_stacking_limits(&ti_limits);
1254
1255		ti = dm_table_get_target(table, i++);
1256
1257		if (!ti->type->iterate_devices)
1258			goto combine_limits;
1259
1260		/*
1261		 * Combine queue limits of all the devices this target uses.
1262		 */
1263		ti->type->iterate_devices(ti, dm_set_device_limits,
1264					  &ti_limits);
1265
1266		/* Set I/O hints portion of queue limits */
1267		if (ti->type->io_hints)
1268			ti->type->io_hints(ti, &ti_limits);
1269
1270		/*
1271		 * Check each device area is consistent with the target's
1272		 * overall queue limits.
1273		 */
1274		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1275					      &ti_limits))
1276			return -EINVAL;
1277
1278combine_limits:
1279		/*
1280		 * Merge this target's queue limits into the overall limits
1281		 * for the table.
1282		 */
1283		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1284			DMWARN("%s: adding target device "
1285			       "(start sect %llu len %llu) "
1286			       "caused an alignment inconsistency",
1287			       dm_device_name(table->md),
1288			       (unsigned long long) ti->begin,
1289			       (unsigned long long) ti->len);
1290	}
1291
1292	return validate_hardware_logical_block_alignment(table, limits);
1293}
1294
1295/*
1296 * Set the integrity profile for this device if all devices used have
1297 * matching profiles.  We're quite deep in the resume path but still
1298 * don't know if all devices (particularly DM devices this device
1299 * may be stacked on) have matching profiles.  Even if the profiles
1300 * don't match we have no way to fail (to resume) at this point.
1301 */
1302static void dm_table_set_integrity(struct dm_table *t)
1303{
1304	struct gendisk *template_disk = NULL;
1305
1306	if (!blk_get_integrity(dm_disk(t->md)))
1307		return;
1308
1309	template_disk = dm_table_get_integrity_disk(t, true);
1310	if (template_disk)
1311		blk_integrity_register(dm_disk(t->md),
1312				       blk_get_integrity(template_disk));
1313	else if (blk_integrity_is_initialized(dm_disk(t->md)))
1314		DMWARN("%s: device no longer has a valid integrity profile",
1315		       dm_device_name(t->md));
1316	else
1317		DMWARN("%s: unable to establish an integrity profile",
1318		       dm_device_name(t->md));
1319}
1320
1321static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1322				sector_t start, sector_t len, void *data)
1323{
1324	unsigned flush = (*(unsigned *)data);
1325	struct request_queue *q = bdev_get_queue(dev->bdev);
1326
1327	return q && (q->flush_flags & flush);
1328}
1329
1330static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
1331{
1332	struct dm_target *ti;
1333	unsigned i = 0;
1334
1335	/*
1336	 * Require at least one underlying device to support flushes.
1337	 * t->devices includes internal dm devices such as mirror logs
1338	 * so we need to use iterate_devices here, which targets
1339	 * supporting flushes must provide.
1340	 */
1341	while (i < dm_table_get_num_targets(t)) {
1342		ti = dm_table_get_target(t, i++);
1343
1344		if (!ti->num_flush_bios)
1345			continue;
1346
1347		if (ti->flush_supported)
1348			return 1;
1349
1350		if (ti->type->iterate_devices &&
1351		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
1352			return 1;
1353	}
1354
1355	return 0;
1356}
1357
1358static bool dm_table_discard_zeroes_data(struct dm_table *t)
1359{
1360	struct dm_target *ti;
1361	unsigned i = 0;
1362
1363	/* Ensure that all targets supports discard_zeroes_data. */
1364	while (i < dm_table_get_num_targets(t)) {
1365		ti = dm_table_get_target(t, i++);
1366
1367		if (ti->discard_zeroes_data_unsupported)
1368			return 0;
1369	}
1370
1371	return 1;
1372}
1373
1374static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1375			    sector_t start, sector_t len, void *data)
1376{
1377	struct request_queue *q = bdev_get_queue(dev->bdev);
1378
1379	return q && blk_queue_nonrot(q);
1380}
1381
1382static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1383			     sector_t start, sector_t len, void *data)
1384{
1385	struct request_queue *q = bdev_get_queue(dev->bdev);
1386
1387	return q && !blk_queue_add_random(q);
1388}
1389
1390static bool dm_table_all_devices_attribute(struct dm_table *t,
1391					   iterate_devices_callout_fn func)
1392{
1393	struct dm_target *ti;
1394	unsigned i = 0;
1395
1396	while (i < dm_table_get_num_targets(t)) {
1397		ti = dm_table_get_target(t, i++);
1398
1399		if (!ti->type->iterate_devices ||
1400		    !ti->type->iterate_devices(ti, func, NULL))
1401			return 0;
1402	}
1403
1404	return 1;
1405}
1406
1407static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1408					 sector_t start, sector_t len, void *data)
1409{
1410	struct request_queue *q = bdev_get_queue(dev->bdev);
1411
1412	return q && !q->limits.max_write_same_sectors;
1413}
1414
1415static bool dm_table_supports_write_same(struct dm_table *t)
1416{
1417	struct dm_target *ti;
1418	unsigned i = 0;
1419
1420	while (i < dm_table_get_num_targets(t)) {
1421		ti = dm_table_get_target(t, i++);
1422
1423		if (!ti->num_write_same_bios)
1424			return false;
1425
1426		if (!ti->type->iterate_devices ||
1427		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1428			return false;
1429	}
1430
1431	return true;
1432}
1433
1434void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1435			       struct queue_limits *limits)
1436{
1437	unsigned flush = 0;
1438
1439	/*
1440	 * Copy table's limits to the DM device's request_queue
1441	 */
1442	q->limits = *limits;
1443
1444	if (!dm_table_supports_discards(t))
1445		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1446	else
1447		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1448
1449	if (dm_table_supports_flush(t, REQ_FLUSH)) {
1450		flush |= REQ_FLUSH;
1451		if (dm_table_supports_flush(t, REQ_FUA))
1452			flush |= REQ_FUA;
1453	}
1454	blk_queue_flush(q, flush);
1455
1456	if (!dm_table_discard_zeroes_data(t))
1457		q->limits.discard_zeroes_data = 0;
1458
1459	/* Ensure that all underlying devices are non-rotational. */
1460	if (dm_table_all_devices_attribute(t, device_is_nonrot))
1461		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1462	else
1463		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1464
1465	if (!dm_table_supports_write_same(t))
1466		q->limits.max_write_same_sectors = 0;
1467
1468	dm_table_set_integrity(t);
1469
1470	/*
1471	 * Determine whether or not this queue's I/O timings contribute
1472	 * to the entropy pool, Only request-based targets use this.
1473	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1474	 * have it set.
1475	 */
1476	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1477		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1478
1479	/*
1480	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1481	 * visible to other CPUs because, once the flag is set, incoming bios
1482	 * are processed by request-based dm, which refers to the queue
1483	 * settings.
1484	 * Until the flag set, bios are passed to bio-based dm and queued to
1485	 * md->deferred where queue settings are not needed yet.
1486	 * Those bios are passed to request-based dm at the resume time.
1487	 */
1488	smp_mb();
1489	if (dm_table_request_based(t))
1490		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1491}
1492
1493unsigned int dm_table_get_num_targets(struct dm_table *t)
1494{
1495	return t->num_targets;
1496}
1497
1498struct list_head *dm_table_get_devices(struct dm_table *t)
1499{
1500	return &t->devices;
1501}
1502
1503fmode_t dm_table_get_mode(struct dm_table *t)
1504{
1505	return t->mode;
1506}
1507EXPORT_SYMBOL(dm_table_get_mode);
1508
1509static void suspend_targets(struct dm_table *t, unsigned postsuspend)
1510{
1511	int i = t->num_targets;
1512	struct dm_target *ti = t->targets;
1513
1514	while (i--) {
1515		if (postsuspend) {
1516			if (ti->type->postsuspend)
1517				ti->type->postsuspend(ti);
1518		} else if (ti->type->presuspend)
1519			ti->type->presuspend(ti);
1520
1521		ti++;
1522	}
1523}
1524
1525void dm_table_presuspend_targets(struct dm_table *t)
1526{
1527	if (!t)
1528		return;
1529
1530	suspend_targets(t, 0);
1531}
1532
1533void dm_table_postsuspend_targets(struct dm_table *t)
1534{
1535	if (!t)
1536		return;
1537
1538	suspend_targets(t, 1);
1539}
1540
1541int dm_table_resume_targets(struct dm_table *t)
1542{
1543	int i, r = 0;
1544
1545	for (i = 0; i < t->num_targets; i++) {
1546		struct dm_target *ti = t->targets + i;
1547
1548		if (!ti->type->preresume)
1549			continue;
1550
1551		r = ti->type->preresume(ti);
1552		if (r) {
1553			DMERR("%s: %s: preresume failed, error = %d",
1554			      dm_device_name(t->md), ti->type->name, r);
1555			return r;
1556		}
1557	}
1558
1559	for (i = 0; i < t->num_targets; i++) {
1560		struct dm_target *ti = t->targets + i;
1561
1562		if (ti->type->resume)
1563			ti->type->resume(ti);
1564	}
1565
1566	return 0;
1567}
1568
1569void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1570{
1571	list_add(&cb->list, &t->target_callbacks);
1572}
1573EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1574
1575int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1576{
1577	struct dm_dev_internal *dd;
1578	struct list_head *devices = dm_table_get_devices(t);
1579	struct dm_target_callbacks *cb;
1580	int r = 0;
1581
1582	list_for_each_entry(dd, devices, list) {
1583		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1584		char b[BDEVNAME_SIZE];
1585
1586		if (likely(q))
1587			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1588		else
1589			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1590				     dm_device_name(t->md),
1591				     bdevname(dd->dm_dev.bdev, b));
1592	}
1593
1594	list_for_each_entry(cb, &t->target_callbacks, list)
1595		if (cb->congested_fn)
1596			r |= cb->congested_fn(cb, bdi_bits);
1597
1598	return r;
1599}
1600
1601int dm_table_any_busy_target(struct dm_table *t)
1602{
1603	unsigned i;
1604	struct dm_target *ti;
1605
1606	for (i = 0; i < t->num_targets; i++) {
1607		ti = t->targets + i;
1608		if (ti->type->busy && ti->type->busy(ti))
1609			return 1;
1610	}
1611
1612	return 0;
1613}
1614
1615struct mapped_device *dm_table_get_md(struct dm_table *t)
1616{
1617	return t->md;
1618}
1619EXPORT_SYMBOL(dm_table_get_md);
1620
1621void dm_table_run_md_queue_async(struct dm_table *t)
1622{
1623	struct mapped_device *md;
1624	struct request_queue *queue;
1625	unsigned long flags;
1626
1627	if (!dm_table_request_based(t))
1628		return;
1629
1630	md = dm_table_get_md(t);
1631	queue = dm_get_md_queue(md);
1632	if (queue) {
1633		spin_lock_irqsave(queue->queue_lock, flags);
1634		blk_run_queue_async(queue);
1635		spin_unlock_irqrestore(queue->queue_lock, flags);
1636	}
1637}
1638EXPORT_SYMBOL(dm_table_run_md_queue_async);
1639
1640static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1641				  sector_t start, sector_t len, void *data)
1642{
1643	struct request_queue *q = bdev_get_queue(dev->bdev);
1644
1645	return q && blk_queue_discard(q);
1646}
1647
1648bool dm_table_supports_discards(struct dm_table *t)
1649{
1650	struct dm_target *ti;
1651	unsigned i = 0;
1652
1653	/*
1654	 * Unless any target used by the table set discards_supported,
1655	 * require at least one underlying device to support discards.
1656	 * t->devices includes internal dm devices such as mirror logs
1657	 * so we need to use iterate_devices here, which targets
1658	 * supporting discard selectively must provide.
1659	 */
1660	while (i < dm_table_get_num_targets(t)) {
1661		ti = dm_table_get_target(t, i++);
1662
1663		if (!ti->num_discard_bios)
1664			continue;
1665
1666		if (ti->discards_supported)
1667			return 1;
1668
1669		if (ti->type->iterate_devices &&
1670		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
1671			return 1;
1672	}
1673
1674	return 0;
1675}